
ONEXP	1.2		 	
USER	MANUAL		

The	official	homepage	of	OnExp	is:	http://onexp.textstrukturen.uni‐goettingen.de	

Onexp	is	an	experimental	software	that	gives	you	the	power	and	flexibility	to	create	web‐based	
experiments	in	a	matter	of	minutes.	But	first,	you	need	to	understand,	how	onexp	works.	I	will	
give	you	a	simple	example	to	start	with.	

1.	GETTING	THE	IDEA!	

1.1.	WHAT	YOU	NEED	FOR	AN	EXPERIMENT	
You	want	a	nice	little	experiment	in	which	you	have	ten	questions	and	for	each	of	them,	you	
want	to	give	three	answer	options,	with	texts	that	differ	from	question	to	question,	like	this.	So	
you	want	participants	to	see	something	like	this:	

Dear	participant	–	please	answer	the	following	question:	
Question	1	
	
Choose	one	of	these	answers	
		 Answer	1	specific	to	question	1	
		 Answer	2	specific	to	question	1	
		 Answer	3	specific	to	question	1	
		 	 	 	 	 	 	 	 	 	 submit	

And	then	you	want	to	show	Question	2,	whit	the	specific	answers:	

Dear	participant	–	please	answer	the	following	question:	
Question	2	
	
Choose	one	of	these	answers	
		 Answer	1	specific	to	question	2	
		 Answer	2	specific	to	question	2	
		 Answer	3	specific	to	question	2	
		 	 	 	 	 	 	 	 	 	 submit	

First	thing	you	need,	is	the	list	of	stimuli.	Let	us	create	a	text	file	called	input1.txt	in	which	you	
just	write	up	your	questions	and	all	the	answers.	Of	course	you	don’t	write	“question1”	in	your	
file,	but	instead	your	question	1	e.g.	What	do	you	think	about	OnExp?.	

input1	.	txt	
Question1	
answer1q1	
answer2q1	
answer3q1	
Question2	
answer1q2	
answer2q2	
answer3q2	
…	

Now,	OnExp	will	want	to	know	how	your	page	should	look	like.	There	is	no	way,	OnExp	can	
guess	that	you	want	your	answers	one	below	the	other,	how	many	of	the	lines	in	the	input1.txt	
should	appear	at	once	etc.	While	other	programs	will	give	you	either	a	what	you	see	is	what	you	
get	editor	or	some	funky	tag‐set	to	create	your	page	design,	OnExp	relies	on	simple	html	tags.	If	

you	have	absolutely	no	idea	about	html,	you	can	use	our	samples	–	but	some	of	your	colleagues	
will	probably	gladly	help,	after	all	someone	must	have	written	your	homepage.	PHP	and	
Javascript	is	not	allowed	in	this	pages.	So,	here	is	an	example	.html	page.	We	name	it	stage1.html.	

stage1.html	
<html><head><meta	http‐equiv="Content‐Type"	content="text/html;	charset=utf‐8"></head>	
<body>	
<div		style="width:100%"><div	align="left"	style="width:600px;margin:auto">	
<form	action="next"	method="post">	

		
<p	align="center">			Dear	participant	–	please	answer	the	following	question:			</p>	
variablename	
<center>	
<table>	
<tr><td>	
<input	type="radio"	name="answer"	value="7">		variablename
		
<input	type="radio"	name="answer"	value="6">	variablename
	
<input	type="radio"	name="answer"	value="5"	required="required"	>	variablename
	
</td></tr>	
</table>	
</center>		
<p	align="right">	
<input	type="submit"	name	="submit"	value	=	"continue">	
</p>	
</form></div></div></center>	</body></html>	
<!‐‐		
OnExp	Variables:	
NumberOfRepetitions=10;	
variablename=input1.txt;	
‐‐>	

	

You	can	see	that	at	the	bottom	of	the	page,	you	inserted	a	comment	that	tells	OnExp	that	you	
want	the	page	to	appear	10	times,	and	you	want	the	variablename1	to	be	replaced	by	material	
from	input1.txt.	Now,	OnExp	will	display	stage1.html	exactly	ten	times,	and	it	will	loop	through	
your	input1.txt.	Every	time	it	finds	an	occurrence	of	variablename	in	stage1.html,	it	will	take	the	
next	element	of	input1.txt.	This	will	produce	the	desired	result.	

NOTE	THAT	YOU	ALWAYS	NEED	THE	TURQUOISE	MARKED	LINES	IN	ORDER	FOR	ONEXP	TO	WORK.	EVEN	IF	YOU	
KNOW	HTML	AND	YOU	KNOW	THAT	“NEXT”	IS	NO	VALID	ACTION	FOR	A	FORM,	DON’T	WORRY.	ONEXP	WILL	
KNOW	HOW	TO	HANDLE	THAT.		

1.2	RANDOMIZING	
Of	course,	if	you	want	an	experiment,	you	probably	want	to	have	many	participants	and	you	
want	them	to	see	your	stimuli	in	a	random	order.	So,	while	person1	sees	question7	first,	person2	
could	see	question1	first	and	so	on.	But	of	course,	you	don’t	want	the	specific	answer	to	question	
7	to	appear	below	question	1.	OnExp	can	do	that	for	you,	but	you	need	to	use	two	additional	tags	
in	your	input1.txt.	The	<block>	</block>	tag	and	the	<random>	tag.	Using	<block>	is	simpe:	you	
just	include	a	bunch	of	stimuli	in	a	block,	and	OnExp	will	then	keep	those	stimuli	together	
whenever	randomizing.	OnExp	will	randomize	a	block	if	and	only	if	the	first	tag	that	follows	the	
<block>	tag	is	<random>.			

So,	for	our	example	we	can	do	this:	

	

	

input1	.	txt	
<block>	
<random>	
<block>	
Question1	
answer1q1	
answer2q1	
answer3q1	
</block>	
<block>	
Question2	
answer1q2	
answer2q2	
answer3q2	
</block>	
…	
</block>	

Now,	OnExp	will	randomize	the	order	of	question‐answer	blocks,	but	will	not	change	the	order	
of	questions	and	answers	within	each	block.		Assume	for	instance	that	you	include	the	random	
tag	into	the	first	question‐answer	block,	like	this:	

<block>	
<random>	
Question1	
answer1q1	
answer2q1	
answer3q1	
</block>	

This	would	make	OnExp	shuffle	the	order	of	Questions	and	answers,	so	you	could	end	up	having	
the	question	appear	where	an	answer	should.		
Of	course,	you	might	want	to	keep	the	order	of	the	questions	fixed,	but	you	want	to	randomize	
only	the	order	of	the	answers	for	each	question.	This	can	be	achieved	like	this:	

input1	.	txt	
<block>	
Question1	
<block>	
<random>	
answer1q1	
answer2	q1	
answer3	q1	
</block>	
Question2	
<block>	
<random>	
answer1q2	
answer2	q2	
answer3	q2	
</block>	
…	
</block>	

And	of	course,	you	could	want	to	randomize	the	order	of	the	questions	AND	the	order	of	the	
answers	for	each	question.	This	is	done	as	follows:	(note	that	it	may	take	some	thinking	to	
realize	why	we	need	nested	blocks).		

There	is	no	limit	for	the	embedding	of	blocks.	So	you	can	embed	a	block	in	a	block	in	a	block	in	a	
block…	

	

	

input1	.	txt	
<block>	
<random>	
<block>	
Question1	
<block>	
<random>	
answer1q1	
answer2q1	
answer3q1	
</block>	
</block>	
<block>	
Question2	
<block>	
<random>	
answer1q2	
answer2q2	
answer3q2	
</block>	
</block>	
…	
</block>	

1.3	STIMULUS	IDS	
You	don’t	need	to	use	stimulus	IDs	in	OnExp.	But	there	are	good	reasons	to	do	so	and	that	is	
related	to	the	way	OnExp	will	save	your	material:	OnExp	will	create	one	“answers”	file	for	each	
experiment.	And	it	will	append	a	new	line	with	every	new	answer	that	is	choosen	by	any	
participant.	Of	course,	you	can	keep	the	participants	apart,	since	OnExp	will	start	every	new	line	
with	the	unique	participant	ID.	Also	it	will	save	the	relative	time	the	answer	has	been	given	with	
an	exactness	going	into	microseconds.	But	what	you	will	not	know	is	which	stimulus/question	
your	participant	has	seen.	Of	course,	if	the	data	is	not	randomized,	you	could	reconstruct	that,	
but	it	will	take	a	long	time.	If	you	choose	to	use	IDs,	however,	OnExp	will	save	the	ID	of	the	
stimulus	the	participant	has	seen	when	selecting	the	particular	answer.		

You	can	see	an	example	here:	

input1	.	txt	
<id:q1>Question1</id>	
<id:q1‐a1>answer1q1</id>	
<id:q1‐a2>answer2q1</id>	
<id:q1‐a3>answer3q1</id>	
<id:q2>Question2</id>	
<id:q2‐a1>answer1q2</id>	
<id:q2‐a2>answer2q2</id>	
<id:q2‐a3>answer3q2</id>	
…	

There	is	one	more	reason	you	may	want	to	use	id‐s.	Per	default,	OnExp	will	assume	that	every	
new	line	is	a	stimulus,	if	you	don’t	use	IDs.	In	fact,	if	you	only	use	the	“opening”	tags	for	ids,	and	
you	don’t	close	them,	OnExp	will	assume	that	every	end	of	a	line	is	a	closing	ID.	But	if	you	have	
long	stimuli	containing	several	lines,	it	may	be	usefull	to	actually	close	the	ids.	This	way	OnExp	
will	know	that	several	lines	belong	to	only	one	stimulus.		

It	is	good	practice	to	give	your	stimuli	IDs	according	to	your	experimental	factors	and	
conditions,	such	that	you	can	import	them	easily	into	your	statistics	program.		

Also	note	that	if	you	want	to	have	new	lines	actually	appear	in	the	html	file,	you	should	use	html	
tags	for	this,	such	as	
	or	<p></p>	etc.		

DON’T	EVER	USE	THE		“	”	OR	‘		‘	SIGNS	IN	YOUR	INPUT	FILES.	THAT	WILL	MOST	LIKELY	CAUSE	SEVERE	ERRORS.	IN	
SOME	LATER	VERSION	OF	ONEXP	THIS	WILL	BE	TAKEN	CARE	OF.		

1.4	SEVERAL	INPUT	FILES	
It	is	not	particularly	likely	that	you	will	ever	need	several	variables	for	one	stage	in	OnExp.	But	
it’s	good	to	know	that	you	CAN	have	that,	if	you	need	it.	Assume	you	want	an	experiment,	in	
which	you	want	to	randomly	pair	two	sets	of	stimuli,	say:	stimulus	1‐n	should	be	randomly	
paired	with	stimulus	a‐z.	It	is	easy	to	see	that	you	cannot	do	this	with	only	one	variable.	In	such	a	
case,	OnExp	allows	you	to	have	two	distinct	variables	in	one	stage.	Each	of	them	will	come	with	
their	own	input	file,	which	you	can	specify,	and	every	input	file	will	be	structured	as	you	please.	
The	stagefile	could	look	like	this:	

stage1.html	
<html><head><meta	http‐equiv="Content‐Type"	content="text/html;	charset=utf‐8"></head>	
<body>	
<div		style="width:100%"><div	align="left"	style="width:600px;margin:auto">	
<form	action="next"	method="post">	

		
<p	align="center">			Dear	participant	–	please	answer	the	following	question:			</p>	
variablename1		

	
variablename2	
<center>	
<table>	
<tr><td>	
<input	type="radio"	name="answer"	value="7">		yes
		
<input	type="radio"	name="answer"	value="6">	no	
	
<input	type="radio"	name="answer"	value="5"	required="required"	>	I	don’t	know	
	
</td></tr>	
</table>	
</center>		
<p	align="right">	
<input	type="submit"	name	="submit"	value	=	"Weiter">	
</p>	
</form></div></div></center>	</body></html>	
<!‐‐		
OnExp	Variables:	
NumberOfRepetitions=10;	
variablename1=input1.txt;	
variablename2=input2.txt;	
‐‐>	

In	this	case,	variablename1	will	be	seeded	from	input1.txt	and	variablename2	will	be	seeded	
from	input2.txt	

1.5	THE	_NOADVANCE	FEATURE.	
Assume,	you	have	an	input	file	and	a	stage‐file.	For	some	reason	you	want	a	stimulus	to	appear	
twice	on	the	same	page.	There	are	two	ways	to	achieve	this:	either	you	do	some	hard	thinking	
and	organize	your	input	txt	such	a	way	that	you	every	stimulus	appears	twice	and	
randomization	effects	are	successfully	cancelled.	Or	you	use	the	_noadvance	feature.	If	you	write	
“variablename_noadvance”	into	your	stage‐file,	OnExp	will	not	take	the	NEXT	element	of	your	
input	file,	but	the	same	it	used	before.		

	

	

	

stage1.html	
<html><head><meta	http‐equiv="Content‐Type"	content="text/html;	charset=utf‐8"></head>	
<body>	
<div		style="width:100%"><div	align="left"	style="width:600px;margin:auto">	
<form	action="next"	method="post">	

		
<p	align="center">			Dear	participant	–	please	answer	the	following	question:			</p>	
variablename1		

here	it	appears	again	
	
variablename1_noadvance	
<center>	
<table>	
<tr><td>	
<input	type="radio"	name="answer"	value="7">		yes
		
<input	type="radio"	name="answer"	value="6">	no	
	
<input	type="radio"	name="answer"	value="5"	required="required"		>	I	don’t	know	
	
</td></tr>	
</table>	
</center>		
<p	align="right">	
<input	type="submit"	name	="submit"	value	=	"Weiter">	
</p>	
</form></div></div></center>	</body></html>	
<!‐‐		
OnExp	Variables:	
NumberOfRepetitions=10;	
variablename1=input1.txt;	
‐‐>	

In	this	example,	the	stimulus	from	you	input1.txt	will	appear	twice	on	the	page.		

NOTE,	HOWEVER,	THAT	IF	VARIABLENAME_NOADVANCE	APPEARS	BEFORE	OR	WITHOUT	VARIABLENAME	YOU	
GET	TOTALLY	UNEXPECTED	RESULTS	OR	AN	ERROR	MESSAGE.		
	
YOU	CAN	USE	THE	_NOADVANCE	FEATURE	FOR	INSTANCE	TO	SAVE	THE	TEXT	OF	A	STIMULUS	IN	THE	RESULTS	
FILE	AS	IN:	
	
		<FORM	ACTION="NEXT"	METHOD="POST">	
								<P>	
									VARIABLENAME	
								</P>	
												<INPUT	TYPE="HIDDEN"	NAME	=	"TEXT"	VALUE="VARIABLENAME_NOADVANCE"/>	
								<P>	IHRE	WEITERFÜHRUNG:	<INPUT	TYPE="TEXT"		NAME="ANSWER"	SIZE="70"	
AUOFOCUS="AUTOFOCUS"	REQUIRED="REQUIRED"></P>	
			
	
			<P	ALIGN="RIGHT">	
				<INPUT	TYPE="SUBMIT"	NAME	="SUBMIT"	VALUE	=	"WEITER">	
			</P>	
		</FORM>	
	

1.6	RESOURCE	FILES	
You	can	use	resource	files,	such	as	audio,	video	or	picture	files.	Basically	the	way	to	use	them	is	
very	simple:	you	include	the	filenames	(with	respective	path	or	url)	in	your	input	file,	and	loop	
through	the	filenames	with	variablename.	So	for	instance	you	can	display	a	sound	with		

variablename		in	the	stage‐file	

and	the	input	file	could	contain	something	like:	

<audio	src=”http://myhomepage.com/mystimulus1.mp3”..	>	

Note	that	you	can:		

a) either	upload	your	resource	files	onto	the	onexp	server.	In	this	case,	you	can	use	relative	
path	to	display	them.	So	you	could	simply	have	“resources/mystimulus1.mp3”	in	your	
input	file	

b) or	you	can	store	them	on	some	independent	website,	say,	your	own	homepage,	and	let	
them	be	displayed	from	the	external	location	using	full	url‐s	in	the	input	file.		

I	STRONGLY	RECOMMEND	THE	LATTER	ALTERNATIVE:	PROBABLY	YOU	WILL	BE	USING	AN	ONEXP	SERVER	THAT	
SOMEONE	ELSE	HAS	SET	UP	AND	HAS	ALLOWED	YOU	TO	USE	–	WHY	UPLOAD	MB	AFTER	MB	OF	RESOURCE	FILES	
TO	HIS	SERVER?	AFTER	ALL,	HE	MAY	HAVE	LIMITED	BANDWIDTH	THAT	YOU	ARE	UNNECESSARILY	EATING	UP	
THIS	WAY.		
Of	course,	you	are	free	to	choose	your	own	way	of	displaying	videos,	images	and	audios.	You	can	
use	flash	or	whatever	method	you	want.	OnExp	will	only	replace	the	variable	name	with	the	
resource	file	name	you	specifiy,	and	will	not	interfere	any	further.		

	

	

1.6	PROGRESS	BAR	
Maybe	you	have	one	hundred	or	more	stimuli,	you	want	your	subject	to	see.	But	you	want	him	to	
know,	how	much	is	still	to	come,	such	that	they	don’t	quit	on	the	penultimate	slide,	being	
annoyed	that	this	experiment	will	never	end.	For	this	OnExp	provides	two	progress	bars:		

 The	first	one	is	displayed	on	the	title	bar	of	the	browser.	It	looks	like	“YOUR‐TITLE	‐	
experiment	running.	Progress	i/n”.	
You	can	decide	for	each	stage	file,	whether	you	want	such	a	progress	bar	to	be	shown	or	
not.	If	you	want	it,	please	include	<title></title>	tags	into	the	header	of	your	html	file.	If	
you	don’t	want	it,	just	delete	the	<title></title>	tags.	It	is	as	simple	as	that.		
Note	that	some	browsers	do	not	support	this	feature.	

 The	second	one	is	a	real	html5	progress	bar,	also	only	supported	by	some	browsers.	To	
achieve	this	you	simply	include	the	<progress>	tag	inside	your	stage	file	at	the	location	
you	wish.	You	can	also	have	several	progress	bars.		

	

1.8	SEVERAL	STAGES	
In	an	experiment	you	may	need	to	have	many	stages:	stage	1	gives	some	general	information,	
stage	2	collects	personal	data,	stage	3	is	for	practice	,	stage	4	is	for	warm‐up,	stage	5	is	for	the	
actual	experiment	and	stage	6	asks	for	comments	and	observations.	This	can	easily	be	done	in	
OnExp.	All	you	need	is	to	create	several	stage	html	files.	You	will	name	them	stage1.html	…	
stage2.html	etc.	OnExp	will	show	every	stage	as	often	as	specified	in	the	“NumberOfRepetitions”	
variable	one	after	the	other.	So,	first	it	will	completely	finish	stage1	and	only	then	proceed	to	
stage2.		

NOTE:		

Every	stage	has	to	specify	the	OnExp	variables.	AT	LEAST	the	Number	of	Repetitions.	If	you	don’t	
have	variables	to	replace,	you	don’t	need	an	input	file	either.		

Every	stage	has	to	advance	via	a	“form”.	If	you	don’t	have	a	form	containing	the	“action="next"”,	
tag,	the	next	stage	and	even	the	next	repetition	will	not	be	linked	correctly.	So	I	advise	to	create	
the	“instructions”	page	independently	of	OnExp	or	at	least	include	a	“proceed”	button	with	
“action	=”next”	on	it.	

1.7	METADATA	
Assume	you	need	20	participants	for	your	experiment.	It	may	take	a	day	or	a	couple	of	weeks	to	
get	that	number	of	participants.	How	do	you	know	when	you	reached	it?	Simple:	OnExp	will	
send	you	a	mail.	And	even	more:	if	you	do	this	experiment	in	cooperation	with	some	other	
people.	OnExp	will	send	an	E‐Mail	to	everyone	involved.		

What	you	need	to	do	is	this:	create	a	file	called	“metadata.txt”.	You	include	the	number	of	needed	
participants	into	this	file	and	all	the	involved	e‐mail	addresses.	As	soon	as	the	number	of	
participants	is	reached,	OnExp	will	close	down	the	experiment	and	send	out	a	notification	to	all	
e‐mail	addresses.	The	metadata	file	could	look	like	this:	

metadata.txt	
<!‐‐		
OnExp	Variables:	
NumberOfParticipants=100;	
NumberOfMails=3;	
first@domain.com;	
second@otherdomain.com;	
third@something.something;	
‐‐>	

	

NOTE	THAT	THE	METADATA.TXT		IS	OBLIGATORY.		

1.8	LATIN	SQUARE	AND	THE	LIKE	
Now,	assume	that	for	some	reason	you	have	one	big	experiment	in	which	you	have	to	split	your	
stimuli	across	participants.	In	other	words,	you	want	some	group	of	participants	to	see	one	set	of	
stimuli,	and	another	group	of	participants	to	see	another	group	of	stimuli.	With	other	software,	
you	could	simply	create	two	indepentend	experiments,	and	send	one	link	to	one	group	of	people,	
and	another	link	to	the	other	group	of	people.	OnExp	fortunately	helps	here.		

	You	simply	place	your	stage	files,	your	stimuli	files	and	your	metadata	files	for	each	sub‐
experiment	into	a	directory.	And	you	zip	all	of	these	directories	together.	When	you	upload	the	
zip.file,	OnExp	will	recognize	that	it	has	to	distribute	people	across	these	subexperiments	and	
will	simply	do	it.	You	only	have	to	distribute	ONE	link	to	your	participants.		

This	is	the	correct	way	to	zip	your	experiment:	(the	blue	ones	are	directories!)	

experimentname.zip	
	 experiment1	
		 	 metadata.txt	
	 	 stage1.html	
		 	 stage2.html	
		 	 stage3.html	
	 	 input1.txt	

	 	 input2.txt	
	 	 input3.txt	
	 experiment2	
		 	 metadata.txt	
	 	 stage1.html	
		 	 stage2.html	
		 	 stage3.html	
	 	 input1.txt	
	 	 input2.txt	
	 	 input3.txt	
These	are	wrong	ways	to	zip	your	experiment:	

Here	you	have	embedded	your	experiment‐data	too	much!	

experimentname.zip	
experimentname	
	 experiment1	
		 	 metadata.txt	
	 	 stage1.html	
		 	 stage2.html	
		 	 stage3.html	
	 	 input1.txt	
	 	 input2.txt	
	 	 input3.txt	
	 experiment2	
		 	 metadata.txt	
	 	 stage1.html	
		 	 stage2.html	
		 	 stage3.html	
	 	 input1.txt	
	 	 input2.txt	
	 	 input3.txt	
Here	you	have	not	embedded	the	files	enough.	
experimentname.zip	
	 metadata.txt	
	 stage1.html	
		 stage2.html	
	 stage3.html	
	 input1.txt	
	 input2.txt	
	 input3.txt	
	

NOTE	THAT	YOU	WILL	HAVE	TO	EMBED	YOUR	STIMULI	AND	STAGE	FILES	UNDER	A	DIRECTORY	EVEN	IF	YOU	
HAVE	ONLY	ONE	EXPERIMENT.	ONEXP	ALWAYS	ASSUMES	MULTIPLE	EXPERIMENTS	AND	TREATS	ONE	SINGLE	
EXPERIMENT	JUST	AS	A	SPECIAL	CASE.		
	

2.	TEN	GOOD	RULES	FOR	ONEXP	
1. Test	your	stage	files.	They	should	be	displayed	properly	in	your	browser	on	your	local	

machine.	If	they	are	not,	OnExp	will	not	fix	them.	

2. Test	your	stage‐files	independently	manually	replacing	the	varnames	with	exactly	what	
appears	between	the	id‐s	in	your	stimuli	file.	This	way	you	can	check	whether	what	you	
get	as	a	result	will	look	and	function	the	way	you	want.		

3. Never	omit	“;”	or	closing	tags.		
4. Never	use	uppercase	filenames	(windows	and	linux	treat	those	differently,	and	it	will	

most	likely	cause	problems).	
5. Don’t	use	special	characters	in	your	stimuli‐files.	Use	html	codes	instead.	
6. Don’t	use	“	and	‘	in	stimuli	files.	
7. Check	to	set	the	number	of	repetitions	for	each	stage	correctly.	It	maybe	lower	than	the	

number	of	available	stimuli	but	not	higher.		
8. If	your	randomization	fails	and	OnExp	displays	the	wrong	stimuli,	you	probably	got	the	

blocks	wrong.	
9. You	can	test	OnExp	on	your	local	machine	using	“WAMPserver”.	
10. You	should	always	test	your	experiment	online	before	sending	out	the	link.		

3.	USING	THE	ONEXP	SERVER	

	3.1	UPLOADING	AN	EXPERIMENT	
Go	to	http://onexp.textstrukturen.uni‐goettingen.de	and	click	to	“Register”.	Fill	out	the	Form	
and	wait	for	activation	by	administrator.	After	activation	you	have	to	go	to	the	upload	page.	
Enter	your	user	name	and	your	password.	Select	the	name	of	the	zip	file	containing	directories	
with	the	subexperiment:	each	directory	must	contain	stage‐files	and	input	files.	A	metadata	file	
is	optional.		

Submit.		

If	you	get	any	errors	try	to	fix	the	file	where	the	error	occurred.	If	you	think	the	File	should	be	
OK	send	a	copy	to	crcedv@zentr.uni‐goettingen.de	with	the	error	message	that	occurs.	If	you	
think	you	found	a	bug	please	report	it	at	http://bugs.onexp‐dev.textstrukturen.uni‐
goettingen.de.	

	

If	you	get	no	errors	save	the	link	that	you	get.	This	link	is	essential,	you	should		

a) Either	include	this	link	into	your	instruction	page.	
b) If	your	instruction	page	is	already	a	stage	in	the	experiment,	you	will	have	to	send	out	

the	whole	link	to	your	participants.		

a)	is		the	better	and	safer	option	for	most	cases.		

Note	that	after	testing	the	experiment,	you	should	upload	exactly	the	same	zip	again,	if	you	are	
satisfied.	This	way,	you	make	sure,	you	don’t	see	your	test‐answers	in	the	results	files	in	the	end.		

3.2	VIEWING	RESULTS	
Go	the	results	page.	Log	in,	and	you	will	automatically	see	a	number	of	csv	files	(if	results	already	
exist).	Click	on	them	and	save	them	wherever	you	please.	

	4.	SETTING	UP	YOUR	OWN	ONEXP	SERVER	
It	is	possible	to	create	an	own	onexp	server,	but	an	installer	is	not	yet	provided.	Please	contact	
us	for	the	download	links	and	support.		

	

DO	NOT	CREATE	AN	OWN	SERVER	IF	YOU	DON’T	UNDERSTAND	WHAT	THE	SCRIPTS	DO.	
PLEASE	LET	YOUR	WEBMASTER	DO	THAT	FOR	YOU.	PUTTING	UP	AN	ONEXP	SERVER	
WITHOUT	PROPER	PHP	AND	SERVER‐ADMIN	KNOWLEDGE	COULD	RESULT	IN	
CATASTROPHIC	SECURITY	ISSUES!	

<A	step	to	step	howto	is	under	construction>	

	 	

5.	HOW‐TOS?	

5.1	HOW	TO	DISPLAY	AUDIO	STIMULI:	
	

<audio src="varname" controls autoplay>
 Your browser does not support the audio element.
</audio>

	

5.2	HOW	TO	DISPLAY	RADIO	BUTTONS	
	

<input	type="radio"	name="answer"	value="7">	yes
		
<input	type="radio"	name="answer"	value="6">	no	
	
<input	type="radio"	name="answer"	value="5"	required="required"	>	I	don’t	know	
	

Note	that	you	need	to	have	the	SAME	“name”	for	each	button.	Only	the	value	will	be	saved.		

5.3	HOW	TO	INCLUDE	THE	INSTRUCTION	FILE	AS	A	STAGE:	
The	trick	is	to	have	a	simple	form	and	no	variables:	

Your	instructions	
		
<form	action="next"	method="post">	
<input	type="submit"	name	="submit"	value	=	"start">	
</form>	
<!‐‐		
OnExp	Variables:	
NumberOfRepetitions=1;	
‐‐>	

5.4	HOW	TO	REPORT	BUGS,	REQUESTS	AND	TO	HELP	DEVELOPING.	
If	you	want	to	help	us	developing	this	software	you	can	help	us	with	bug	reports,	wish	lists	or	
your	developing	skills.	

We	created	a	developing	server	under	http://onexp‐dev.textstrukturen.uni‐goettingen.de	here	
you	can	find	the	actual	revision	of	the	software.	Here	it	is	possible	that	the	software	is	not	stable.		

For	documentation	we	use	https://trac.onexp‐dev.textstrukturen.uni‐goettingen.de.	The	
revisions	are	stored	in	subversion	https://svn.onexp‐dev.textstrukturen.uni‐goettingen.de.	If	
you	need	an	account	for	these	please	send	an	email	to	crcedv@zentr.uni‐goettingen.de.	

Yes,	you	are	allowed	to	change	and	redistribute	OnExp,	but	always	include	a	link	to	the	official	
homepage.	

If	you	are	a	developer	and	you	created	some	more	features,	please	let	me	know.	We	might	
include	it	in	the	official	distribution.		

	 	

6.	OTHER	NOTES	
1.	Be	aware	of	potential	network	lags	if	you	want	to	do	experiments	with	OnExp	in	which	time	
plays	a	crucial	role.	This	is	especially	problematic,	if	you	have	large	picture	files	or	audio	stimuli,	
as	their	load	time	may	vary	from	repetition	to	repetition.	If	you	have	simple	text	stimuli,	the	lag	
may	not	be	relevant	after	all.	

2.	If	anyone	wants	to	do	some	serious	testing	on	the	useage	of	OnExp	for	timed	experiments,	I	
would	like	to	know	the	results.	

	

	

	

	

	

Copyright	©	Edgar	Onea,	2011.	

Thanks	to	Alexander	Syring	for	lots	of	help	in	the	development	of	OnExp.	

