BAGpipe: pipeline for
Biodiversity Assessment
using Genbank data

User Manual

Anna Papadopoulou
Animal Biodiversity and Evolution
Institut de Biologia Evolutiva
(CSIC-Univ. Pompeu Fabra)
Barcelona, Spain

Douglas Chesters
Key Laboratory of Zoological Systematics and Evolution
Institute of Zoology
Chinese Academy of Sciences
Beijing, China

&

Jesus GOmez-Zurita
Animal Biodiversity and Evolution
Institut de Biologia Evolutiva
(CSIC-Univ. Pompeu Fabra)
Barcelona, Spain

BAGpipe: pipeline for Biodiversity Assessment
based on Genbank data

User Manual

Contents:

Installing BAGpipe 3
Software Installation - Linux 3
Software Installation - Mac OS X 5

BAGpipe steps 8
Database construction 8
Sequence identification 11

Running BAGpipe 15
Pipelinel_database 15
Pipeline2_identification 18
Main results files 21

Credits, contact us and citation 24

Figures 25

Unix commands

In order to make better use of the pipeline, you will need to be familiar with
some basic Unix/Linux commands. If you are not, there are several web pages
that can help you with this, for example:

http://www.ee.surrey.ac.uk/Teaching/Unix/

http: //www.math.utah.edu/lab /unix/unix-commands.html

http://korflab.ucdavis.edu/Unix and Perl/

You can always refer to the ‘man’ command for command usage and options. For
example, in order to find out how to use the 'tar' command:

$ man tar

System requirements

BAGpipe can be run on any computer under Linux or Mac OS operative systems,
with a minimum of processing memory around 6-8 GB and at least 50 GB of free
space for storage of data retrieved from public repositories of nucleotide
sequences. For some of the pipeline steps a multi-processor system will be very
advantageous.

Installing BAGpipe

The BAGpipe package is distributed as a zipped set of folders, which can be
downloaded from:

http://www.ibe.upf-csic.es/SOFT /Softwareanddata.html

and

http://sourceforge.net/users/dchesters

Unzip and copy the folder anywhere in your system (for example on the Desktop
or Documents folder). It is advisable to keep the original folder structure, which
corresponds to the default paths given in the pipeline. All freely distributed
scripts can be found in two folders: “Scripts1_database” and
“Scripts2_identification”. These folders contain our custom Perl scripts for
different steps of the analysis. Moreover the pipeline depends on external
software (listed below), which needs to be downloaded and installed
independently. Note that the program versions mentioned below are just
examples. In almost all cases (apart from USEARCH), you are advised to
download the latest available version that is suitable for your system, and adjust
the commands accordingly.

Software Installation - Linux

1. NCBI BLAST

- Goto:
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE TYPE=BlastDoc
s&DOC TYPE=Download
Or connect directly as ‘Guest’ to:
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

- Copy the appropriate zipped file for your system (for example, ‘ncbi-blast-
2.2.28+-x64-linux.tar.gz’) to the folder 'NCBI_BLAST' of the BAGpipe
folder structure.

- cd to this folder and extract the downloaded zipped file. Then rename the
resulting folder in order to be able to use the standard path as included in
the pipeline, and clean up if you want. For example (you need to change
the program version accordingly):

cd BAGpipe/NCBI_ BLAST

tar -zxvf ncbi-blast-2.2.28+-x64-linux.tar.gz
mv ncbi-blast-2.2.28+ ncbi-blast

rm ncbi-blast-2.2.28+-x64-1linux.tar.gz

o° o0 o° o°

2. USEARCH

- Go to: http://www.drive5.com/usearch/download.html

- Select the linux platform and the version you want to download. We
currently recommend v4.2.66, as the pipeline has been built using this
version. Newer versions will probably require some changes in the
command line.

- Fill in your email address. You will immediately receive an email with a
link for downloading the requested executable.

- Move the downloaded executable (usearch4.2.66_i86linux32) to the
‘USEARCH’ folder in the folder structure of BAGpipe.

- Change file permissions in order to be able to execute it:

% cd BAGpipe/USEARCH

% chmod u+x usearch4.2.66_1i86linux32

3. EMBOSS

- Go to: http://emboss.sourceforge.net/download/

Or connect directly as ‘Guest’ to:
ftp://emboss.open-bio.org/pub/EMBOSS/

- Copy the current version of the EMBOSS zipped file (for example
‘EMBOSS-6.6.0.tar.gz’) to the folder ‘(EMBOSS’ of the BAGpipe folder
structure.

- cd to this folder and extract the downloaded file. Rename the resulting
folder (in order to be able to use the standard path included in the
pipeline). Compile the program using configure and make. For example
(change the version number accordingly):

d BAGpipe/EMBOSS

% C
% tar -zxvf EMBOSS-6.6.0.tar.gz

rm EMBOSS-6.6.0.tar.gz
mv EMBOSS-6.6.0 EMBOSS
cd EMBOSS

./configure

make

o0 o0 o° oP° o°

4. MAFFT

- Go to: http://mafft.cbrc.jp/alignment/software/linuxportable.html
and download the portable Linux version of the program (for example,
‘mafft-7.123-linux.tgz’).

- Move the downloaded zipped file to the 'MAFFT' folder of the BAGpipe
folder structure. Then cd to this folder, extract the zipped file and rename
one of the two resulting folders (‘mafft-linux64’) which contain the
executable mafft.bat. For example (change the program version
accordingly):

cd BAGpipe/MAFFT

tar -xf mafft-7.123-linux.tgz
rm mafft-7.123-1linux.tgz

mv mafft-linux64 mafft

o® 0% o° o°

5. RAXxML

- Go to: https://github.com/stamatak/standard-RAxML

- Click on the “Download ZIP” button on the right hand side. Move the
downloaded folder into the 'RAXML' folder of BAGpipe.

- cd to this folder and rename the downloaded folder, in order to be able to
use the standard path included in the pipeline. For example (change the
version name accordingly):

% cd BAGpipe/RAXML
% mv standard-RAxML-master standard-RAxXML
% cd standard-RAxXML

- Read the README file included in the downloaded folder, and compile the
version that is more appropriate for your system, according to the
instructions. For example, for the sequential SEE3 version:

make -f Makefile.SSE3.gcc

%
$ rm *.o0

while for the pthreads SEE3 version:

make -f Makefile.SSE3.PTHREADS.gcc

%
$ rm *.o0

Software Installation Mac OS X

1. Xcode

For compiling EMBOSS, RAxML and wget you will need to have Xcode
installed.

- Ifyou do not have Xcode installed, you can download it freely from
https://developer.apple.com/xcode/ after registering.

- After installation, go to the "Downloads" tab in Xcode preferences and
under "Components"” push the "Install" button next to "Command Line
Tools". Note that you need administration privileges for this installation.

- Make sure that the ‘make’ command works, by typing in a terminal
window:

% make --help

2. wget

For the first steps of the pipeline (downloading sequence flatfiles and
taxonomy from NCBI) you will need the command ‘wget’, which is not
provided in Mac OS X. Note that you need administration privileges for this
installation.

- Go to: http://ftp.gnu.org/pub/gnu/wget/ and download the latest
version of wget in .tar.gz format.

- cd to Downloads and extract the downloaded file. For example (adjust
version number accordingly):

% cd Downloads
% tar -xzf wget-1l.1l4.tar.gz

- cd to the extracted folder and compile:

cd wget-1.14

./configure --with-ssl=openssl
make

sudo make install

o° o0 o° o°

- Make sure that the command is working and then clean-up.

% wget --help
% cd ..
% rm -rf wget-*
3. NCBIBLAST
- Go to:
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE TYPE=BlastDoc
s&DOC TYPE=Download
Or connect directly as ‘Guest’ to:
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
- Copy the appropriate zipped file for your system (for example, ‘ncbi-blast-

2.2.28+-universal-macosx.tar.gz’) to the folder 'NCBI_BLAST' of the
BAGpipe folder structure.

cd to this folder and extract the downloaded zipped file. Rename the
resulting folder in order to be able to use the standard path as included in
the pipeline, and clean up if you want. For example (you need to change
the program version accordingly):

cd BAGpipe/NCBI_ BLAST

tar -zxvf ncbi-blast-2.2.28+-universal-
macosx.tar.gz

¢ mv ncbi-blast-2.2.28+ ncbi-blast

% rm ncbi-blast-2.2.28+-universal-macosx.tar.gz

%
%

. USEARCH

Go to: http://www.drive5.com/usearch/download.html

Select the platform and the version you want to download. We currently
recommend v4.2.66, as the pipeline has been built using this version.
Newer versions will probably require some changes in the command line.
Fill in your email address. You will immediately receive an email with a
link for downloading the requested executable.

Move the downloaded executable (‘usearch4.2.66_i860sx32’) to the
‘USEARCH’ folder in the folder structure of BAGpipe.

Change file permissions in order to be able to execute it:

cd BAGpipe/USEARCH

%
% chmod ut+x usearch4.2.66 1i860sx32

. EMBOSS

Go to: http://emboss.sourceforge.net/download/

Or connect directly as ‘Guest’ to:
ftp://emboss.open-bio.org/pub/EMBOSS/

Copy the current version of the EMBOSS zipped file (for example
‘EMBO0SS-6.6.0.tar.gz’) to the folder ‘(EMBOSS’ of the BAGpipe folder
structure.

cd to this folder and extract the downloaded file. Rename the resulting
folder (in order to be able to use the standard path included in the
pipeline). Compile the program using configure and make. For example
(change the version number accordingly):

cd BAGpipe/EMBOSS

tar -zxvf EMBOSS-6.6.0.tar.gz
rm EMBOSS-6.6.0.tar.gz

mv EMBOSS-6.6.0 EMBOSS

cd EMBOSS

./configure

make

0% 00 o0 o° o° oP° o°

. MAFFT

Go to: http://mafft.cbrc.jp/alignment/software/macportable.html
and download the portable mac version of the program (for example,
‘mafft-7.122-mac.zip’). The zipped file should be automatically unzipped.

- Move the downloaded folder ‘mafft-mac’ to the '"MAFFT' folder of the
BAGpipe folder structure. Then cd to this folder, rename the downloaded
folder (‘mafft-mafft’) which contains the executable mafft.bat.

% cd BAGpipe/MAFFT

% mv mafft-mac mafft

7. RAXML

- Go to: https://github.com/stamatak/standard-RAxML

- Click on the “Download zip” button. Move the downloaded folder into the
'RAXML' folder of BAGpipe.

- cd to this folder and rename the downloaded folder, in order to be able to
use the standard path included in the pipeline. For example (adjust the
name of the version accordingly):

% cd BAGpipe/RAXML
% mv standard-RAxML-master standard-RAxXML
% cd standard-RAxXML

- Read the README file included in the downloaded folder, and compile the
version that is more appropriate for your system, according to the
instructions. For example, for the sequential SEE3 version:

make -f Makefile.SSE3.gcc

%
$ rm *.o0

BAGpipe steps

The procedure followed by BAGpipe is divided into two parts: ‘Database
construction’ (steps 1.1 to 1.11) and ‘Identification’ (steps 2.1 to 2.15).

1. Database construction (see Figure 1)

The first part of the pipeline is designed to construct a pshA-trnH database by
retrieving all the sequences homologous to this marker available in GenBank,
and curating them so that they all have the same orientation and are trimmed to
the length of this specific barcode region. With slight modifications it can be
adapted to perform the same task for any other locus of interest. To make sure
that all newly available GenBank sequences and latest updates are incorporated
in the analyses, this procedure should be repeated every time that there is a new
GenBank release, and consists of the following steps:

1.1. Retrieval of sequences and taxonomic information from the NCBI database

This is done by downloading the latest plant release (DNA) flatfiles from
ftp://ftp.ncbi.nih.gov/genbank/ and the NCBI taxonomy database from
ftp://ftp.ncbi.nih.gov/pub/taxonomy/

1.2. Generating taxon IDs for all Magnoliophyta (parse_ncbi_tax_database.pl)

The script parse_ncbi_tax_database.pl reads two files of the NCBI taxonomy
database: 'nodes.dmp’, which contains the tree-like structure of the taxonomic
hierarchy, and 'names.dmp’, which contains naming information for each
taxonomic level, including synonyms, misspellings, etc. The script first reads
'nodes.dmp’ and stores the hierarchy as a hash. It subsequently reads
'names.dmp' and stores the "scientific name" of each node. Next, starting from
the user specified node, it traverses the hierarchy in a recursive manner. For
each node, it builds a unique string based on the taxonomic names (from the
start node) up to that node. The string is built by first discarding atypical
characters (e.g., "(",".", ":", ...) and taxonomic abbreviations (sp., aff., nr.),
followed by taking the shortest unique substring of the current nodes appended
to the string from parent nodes. A number is added when two rank nodes
belonging to the same parent node start with the same letter. The script builds
name strings to the species level, so lower taxonomic levels (e.g. subspecies) are
disregarded. The script outputs a key, giving complete taxonomic information
and NCBI taxon number, for each name string.

EXAMPLE:

A sequence linked to the following taxonomy: Magnoliophyta/
Eudicotyledons/ core_eudicotyledons/ rosids/ fabids/ Malpighiales/
Salicaceae/ Flacourtieae/ Xylosma_oligandra;

would be automatically renamed as: MelerfMSFXyoli

1.3. Create FASTA database from GenBank flatfiles
(create_fasta_database_from_genbank flatfiles.pl)

GenBank DNA data is released in flatfile formatted for different divisions. For
example, the plant division (pln) is (currently) released in approximately 60
zipped files (64 zipped files in October 2013). Using the flatfile format is
advantageous since it contains much additional information about the sequence
entries, but it requires the relevant fields to be extracted. This script parses the
data relevant for the pipeline purposes, and makes a single FASTA formatted file.
The main fields parsed are: accession, NCBI taxon number, and DNA sequence,
all of them used in the resulting FASTA file. Additional information (e.g., year,
country of origin) is given in the log file. Further, and specifically related to our
original implementation of the pipeline, the script looks for the string ‘psbA-
trnH’ or ‘trnH-psbA’ in the gene and product fields of the flatfile, where the
presence or absence of this string can be used for confirmation and protocol
optimization purposes later if necessary. Model species with complete genome
sequences or highly redundant sequence information in GenBank can be also
purged out in this step for storage and computational reasons. The script is
currently set to ignore the following species: Arabidopsis thaliana, Glycine max,
Medicago truncatula, Oryza sativa, Populus trichocarpa, Sorghum bicolor, Vitis
vinifera and Zea mays.

1.4. Assign taxon IDs to Magnoliophyta sequences (parse_taxon_from_fastafile.pl)

This script produces a FASTA file in which the taxon strings generated earlier are
assigned to the FASTA database. Since taxon strings are made usually for a

specific subset (i.e.,, Magnoliophyta), other sequences are thus removed here
(notably, the fungi data is also contained in the pln division).

1.5. Search for sequences homologous to the psbA-trnH fragment (blastn)

This step screens the NCBI database for psbA-trnH by BLAST (blastn) searches
using a representative and phylogenetically diverse set of angiosperm psbA-trnH
query sequences, oriented in the same direction and covering the full length of
the barcode region. In our implementation, a blastn search is performed using
the standalone BLAST+ application and a query file including 967 representative
psbA-trnH sequences, all provided in the same orientation, covering all
Magnoliophyta orders and major families. Search parameter choices have been
made according to the following reasoning: (1) Low complexity filter DUST is
switched off since low complexity regions are abundant in the psbA-trnH marker.
(2) Both strands are searched because there is no consensus for this marker in
the orientation for sequence submission. (3) While many different e-values are
reported for database searching, we found that using a relatively conserved
value (i.e., 1E-6), we retrieved the great majority of the psbA-trnH annotated
sequences. (4) Some default blastn parameters (typically num_descriptions &
num_alignments, or max_target_seqs, depending on version used) had to be
increased to obtain all homologous sequences available in GenBank. (5) The
tabular output was chosen, because it is easier to parse than the standard BLAST
output.

1.6. Retrieve homolog sequences, and reverse and complement them when required
(parse_hits.pl)

This script is written to work on both BLAST and USEARCH (see below) tabular
outputs produced with specific set of user fields (as selected by the relevant
commands of the pipeline). In this step, the script parses the blastn output and
prints the hits in full (without trimming). Not all the psbA-trnH sequences are
submitted to GenBank in the same orientation (roughly, 65% in psbA-trnH
direction and 35% in trnH-psbA), therefore the script automatically reverses and
complements the database sequences that are in an opposite orientation
compared to the queries. This is achieved by parsing the start and end positions
of the BLAST output in relation to the queries.

1.7. Secondary similarity search with global alignment (usearch_global,
usearch_blastout_to_tabular.pl)

An additional similarity search using USEARCH (Edgar, 2010) with global
alignment and the same query file is performed against the BLAST hits retrieved
in the previous step. The primary purpose of this step is to provide global
alignments to be used for the subsequent trimming step (1.8), while it
secondarily filters out some spurious hits (not truly homolog, for example some
long chromosome sequences) retrieved by the BLAST search. Extensive testing
has shown that trimming the sequences to the extent of the queries is much
preferable when based on the usearch_global alignments rather than BLAST local
alignments. The identity threshold is intentionally set to a very low value (0.1),
to avoid losing some psbA-trnH sequences with very long indels. We use
USEARCH version 4.2.66, because in the current version 6.0 there are memory

10

limitations making it unsuitable for the size of typical datasets handled by
BAGpipe. Unfortunately, version 4.2 contains a bug which affects the correct
report of hit start/end positions in the tabular output, which is necessary for the
trimming step. For this reason, we provide an additional custom script
(usearch_blastout_to_tabular.pl) which converts the blast-output format of
usearch_global to tabular format, required in the next step.

1.8. Retrieval of sequences, and trimming when necessary (parse_hits.pl)

This is the same script and procedure as described in step 1.6, but this time
working with the USEARCH tabular output to trim the target sequences when
necessary, according to their start and end positions in relation to the query. As
many queries are used, a given target sequence may be present with a number of
different start/end positions. Two trimming options are implemented, trimming
according to the longest hit, or trimming according to the left-most and right-
most positions over all hits. The latter was found to be problematic for psbA-trnH
due to some long genomic sequences that remained untrimmed. Thus, for our
original use of the pipeline, the former is the default option.

1.9. Filter out redundant sequences of the same species (dereplicate.pl)

This step is considered necessary in order to remove from the reference
database the excess of identical and nearly identical sequences that exist in
GenBank for some species that have been studied extensively at the population
level. For this purpose all sequences belonging to a given species are first
retrieved, then a blastn all-against-all search is performed with the same settings
as described previously. Using the BLAST percent identity values, single linkage
clustering is performed using a separate script (single_linkage_1.02.pl), followed
by random removal of sequences showing similarity above the specified
similarity threshold (our default value is 99.8%). This process is iterated over all
species.

1.10. Removal of sequences with wrong annotations

Errors in the taxonomic annotations of GenBank sequences will affect the
following identification steps of the pipeline. At this stage, we automatically
remove all GenBank accession numbers that we suspect to have wrong
taxonomic annotations. A tentative list of these accession numbers that we
recognized as erroneous is already provided within the pipeline, but this is not
exhaustive and will need to be continuously updated.

1.11. Optional addition of locally available sequences to blastable database

Any other locally available sequences that have not been released in GenBank yet
can be added manually to the database at this stage.

2. Sequence identification (see Figure 2)

In the second part of the pipeline, the user provides a set of query sequences in a
FASTA formatted file (using the same sequence orientation as provided in step

11

1.5) and these are processed for taxonomic assignment. In order to maximise the
efficiency of the process and reduce computational demands of subsequent
steps, the queries are initially clustered into groups of similar sequences (steps
2.1 and 2.2). Each of the resulting ‘query-groups’ (which very roughly
correspond to representatives of the same plant family) is processed iteratively
using a loop structure. The objective of this clustering procedure is to speed up
and facilitate multiple sequence alignment (alignment problems are often
encountered in the psbA-trnH marker) (steps 2.8 and 2.9), but also phylogenetic
inference steps (steps 2.11-2.13), especially in a multi-core system where all
these processes can be parallelised. The sequence identification pipeline consists
of the following steps:

2.1. Similarity search among query sequences (usearch_global)

Similarity searches among the query sequences (all-against-all) are performed
using the usearch algorithm (USEARCH version 4.2.66; Edgar, 2010) with global
alignment and a 0.85 default identity threshold. The USEARCH identity scores
are used in the next step for sequence clustering.

2.2. Clustering of query sequences (single_linkage_1.02.pl)

Query sequences are clustered into ‘query-groups’ at the 0.85 identity level. This
is achieved by means of the average neighbour linkage and the usearch_global
identity scores from the previous step. The following steps are performed
iteratively for each of the retrieved ‘query-groups’ and using a loop structure.

2.3. Similarity search against the reference database (blast_query_clusters.pl)

This step performs similarity searches for each of the query sequences in a
cluster (='query-group') and against the custom psbA-trnH database created in
step 1.11. In brief, the script obtains all sequences from each query-group, uses
them individually as queries against the psbA-trnH database, and retrieves their
respective homolog sequences. The script provides several options to conduct
the homology search, including BLAST, USEARCH v.4 and USEARCH v.6. The
default and recommended option is USEARCH v.4 and using a 0.8 identity
threshold.

2.4. Estimation of p-distances between query sequences and retrieved homologs
(calculate_pairwise_distances.pl)

In this step, pairwise p-distances are calculated between each query sequence in
a query-group and all the homologs retrieved for this group. Considering that
length variation is very common for the default marker used in BAGpipe (psbA-
trnH), distances are estimated taking gaps into account, but counting each string
of gaps as a single event in order to avoid inflating the obtained values. These
distances are obtained for each pair of sequences aligned using the Needleman-
Wunsch pairwise sequence alignment algorithm as implemented in the needle
tool of the EMBOSS v. 6.5.7 package (Rice et al., 2000), under gap opening
penalty of 10 and gap extension penalty of 0.5. Sequence similarity between
aligned pairs is scored by the provided custom script considering (a) each gap as
a single state change, (b) terminal gaps ignored, and (c) ambiguous characters

12

(e.g., NYRMWSKVHDB) ignored.
2.5. Output distance results (process_distance_results.pl)

The results of distance analysis are processed and summarized, producing the
following two outputs:

- Text file summarizing the p-distance results, which includes for each
query sequence: (a) database sequence(s) producing the ‘best match’; and
(b) the common part of the taxonomy IDs in all database sequences which
are within a 1% and 4% divergence threshold relative to each query
sequence (these thresholds were determined analytically as meaningful
for psbA-trnH identifications in Papadopoulou et al., submitted).

- Text file with a list of all database sequences within O<p-distance<0.10
from each query sequence, ranked by increasing distance, including full
species name and taxonomy, as well as sequence length information and
length of pairwise alighment between the query and the database
sequence.

2.6. Retrieval of sequences below a certain p-distance threshold (parse_hits.pl)

The same script as used in steps 1.6 and 1.8 is employed here again for sequence
retrieval. In this case, homolog sequences retrieved in step 2.3 are filtered based
on the calculated p-distances, and using a 10% divergence threshold as default
(in practice this needs to be given as a 0.9 similarity threshold, instead of a
divergence value, since this script works with similarity scores).

2.7. Assessment of data size: tallying number of retrieved sequences per query-
group

While in principle there is no limitation for the size of datasets to be analyzed
using phylogenetic procedure, for the sake of speed and efficiency of the process,
it is recommended to restrict the analyses to manageable data size. Thus, it is
advisable to stop the pipeline in this step and check the number of retrieved
sequences per query-group. The goal would be to have more or less size-
normalized datasets in the range of 10-500 sequences each. To achieve this, the
distance-threshold of the previous step (2.6) can be adjusted increasing it to
augment database sequence retrieval for very small datasets or decreasing it to
reduce the size of very big datasets.

2.8. Multiple sequence alignment (mafft E-INS-i)

In this stage, data compiled in the previous steps, i.e. the queries plus their
respective distance-filtered homolog sequences, are aligned using MAFFT
v7.043b (Katoh et al,, 2002; Katoh & Standley, 2013) with the E-INS-i algorithm
(other options are available, but this proved the better trade-off between
alignment accuracy and speed; Papadopoulou et al,, submitted). Depending on
the size of each dataset, this step may take long to run; thus, if a multi-core
processor is available, it is advisable to run several jobs in parallel (but obviously
limiting the number of concurrent processes to the number of available cores).

2.9. Indel recoding and matrix preparation (2xread.pl, concatenate_vZ2.pl)

13

Indels in the resulting alignment are recoded as binary characters using 'Simple
indel coding' (Simmons & Ochoterena, 2000) as implemented in the ‘2xread.pl’
script (Little, 2005). As a result of this step, the pipeline produces a matrix
including both DNA and binary character data, as well as a partition file for
RAxML (concatenate_vZ2.pl).

2.10. Conversion of FASTA to phylip format for RAxML (format_conversion.pl)

This script simply converts the matrix file from FASTA to relaxed phylip format
(i.e., allowing for taxon names to be longer than ten characters).

2.11. Tree inference (RAXML)

The matrix produced in the previous steps is analyzed with RAxML (Stamatakis,
2006) using a mixed model for binary+DNA data. Tree search is based on 20
independent searches, starting from random stepwise addition parsimony trees.
Moreover, clade support is assessed by rapid bootstrapping (Stamatakis et al.,
2008) with 100 pseudoreplicates. As with the alighment, depending on the size
of each dataset, this step may slow down the process significantly. So it is
important to use the best RAXML version for your system (see RAXML README
file) and explore the possibilities for parallelisation if a multi-core processor is
available.

2.12. Tree rerooting (midpoint_root.pl, gjonewicklib.pm)

Taxonomic assignment based on a tree topology and clade support navigates the
tree from unassigned terminal nodes towards supported inner nodes and parses
the taxonomy of identified members of this clade to extrapolate the subtending
taxonomy. For this reason, it is critical to work with a tree with correct
polarization. The outgroup method is not available in our implementation of
BAGpipe given the dynamic nature of database assemblage for each inference.
Alternatively, we empirically recognized (by contrasting dozens of obtained
trees with the current knowledge of plant systematics) that midpoint rooting is
the best polarization strategy for our automated procedure. Thus, the best ML
tree obtained by RAxML is rerooted using the midpoint strategy as allowed by
the ‘gjonewicklib’ library, part of the SEED toolkit (http: //www.theseed.org/).

2.13. Adding support to the midpoint-rooted tree (CompareToBootstrap.pl,
MOTree.pm)

Bootstrap values obtained after the RAXML analysis are added to the rerooted
tree files using CompareToBootstrap.pl (by Morgan Rice,
http://www.microbesonline.org/fasttree /treecmp.html).

2.14. Parsing clades for taxonomic identification of queries

In this step, the clades to which each query sequence belongs are parsed from
the resulting tree files. The part of the taxonomy (e.g., unique text string from
step 1.2) shared by all database sequences belonging to this clade is used to
assign the taxonomy of the queries. Only supported clades (default: 270%) are
considered in this step. A text file is generated including information of clade
membership for each query sequence. Two tree-based taxonomic assignment

14

strategies are implemented in BAGpipe: ‘outer clade’ (‘strict’ criterion: two

consecutive supported nodes are considered), and ‘inner clade’ (‘liberal’

criterion: supported sister group relationships are considered). The following

information is given for both strategies: (a) bootstrap support value of the clade

used for the assignment, (b) taxonomic ID of the clade (common part of the

taxonomy of all database sequences included in the clade), (c) names of all

database sequences included in the clade, and (d) names of all other query

sequences included in the clade.

2.15 Formatting of taxon labels (format_newick_IDs.pl)

This script reverses the Taxon ID of step 1.2 to produce full species names. Tree
labels of the midpoint-rooted trees with bootstrap values are thus reformatted to

include full species names, for a more user-friendly visualization.

Running BAGpipe

As explained before, BAGpipe is divided into two parts. The first part

(‘pipelinel_database’, steps 1.1 to 1.11) should be run when there is a new
GenBank release (approximately once every 2 months), while the second part
(‘pipeline2_identification’, steps 2.1 to 2.15) applies when there are new query
sequences to identify. Some general suggestions are applicable to both parts:

- Each part can be run in an automatic or semi-automatic mode, but we

strongly recommend that the first time the pipeline is used each

command is run separately (by copying and pasting in terminal) to

make sure that the whole process runs smoothly before trying the

automatic mode and identify possible problems or changes required to

scripts or their parameters beforehand.

- Each step in the pipeline can be used independently of the others by

commenting out the other steps using #

- Every time that the pipeline is run, the files generated in the previous run
will be over-written. If these previous files are to be kept, they should be

moved to another folder beforehand. For example:

mkdir MyFirstDatabase

%
$ mv BAGpipe/Database/all psbAtrnH* MyFirstDatabase
%

mv BAGpipe/Database/key* MyFirstDatabase
or
mkdir MyFirstResults

mv BAGpipe/Identification/*query group*
MyFirstResults

%
%

- Ifjobs are sent remotely to another computer, ‘nohup’ should be used

before executing the pipeline, so that the terminal window can be exited

without stopping the pipeline from running. For example:

15

% nohup ./pipelinel database &

Pipelinel_database

In order to start running the database construction step, cd to the
‘BAGpipe/Database/’ folder.

% cd BAGpipe/Database

There are two files in this folder. The file ‘queries_psbAtrnH.fas’ is a FASTA file
of 967 representative psbA-trnH sequences to be used as queries for the
construction of the psbA-trnH database (it helps to retrieve all homologous
sequences from GenBank and allows trimming them to match the size of the
selected fragment). The example query sequences are all oriented in the same
direction, and they cover all Angiosperm orders and additionally all major taxa
known to occur in Nicaragua (our original geographic scope). Since this query
file has been produced specifically for a project on the Nicaraguan SDTF flora
(see Papadopoulou et al., submitted) it might not be optimal for other projects.
This file can be substituted by an equivalent one with a different set of query
sequences, in which case it can either be given the same file name, or a different
one, but changing the name accordingly in the command lines for steps 1.5 and
1.7 of the pipeline.

The text file ‘pipeline1_database’ contains all the pipeline commands and
relevant comments and instructions. To customize it, it is only required to open
the file in any text editor. All paths assume that the commands for every step are
called from within the ‘BAGpipe/Database/’ folder (it is strongly advised to
preserve this structure). On the top of each command there is a short description
of what the command does, the default names of input and output files, any other
programs that the command depends on, as well as the most common options
that the user may want to change.

Indeed, users may need to change some of the options before running them. If
the pipeline is used specifically for Angiosperm psbA-trnH a good starting point
is revising the following points (1) and (2). Users familiar with the pipeline steps
can make additional changes, but in principle the default parameters of the
pipeline have been specifically optimised for this marker. Users interested in a
different marker or taxon should revise all the points listed in (3) to (5), and
make any relevant changes in order to optimise the settings for the specific
dataset.

Most common changes and points to remember:

(1) The user may want to use a custom query file, in which case the
example file BAGpipe/Database/queries_psbAtrnH.fas has to be
substituted OR alternatively a different file must be placed in the
‘BAGpipe/Database/‘ folder and the name of the query file has to be
changed accordingly in steps 1.5 and 1.7 of the pipeline. These changes are
obviously necessary when using BAGpipe for a different marker (not

16

psbA-trnH). IMPORTANT: the sequences of the query file must be provided
all in the same orientation.

(2) In order to add locally generated sequences (i.e., not submitted to
GenBank) to the database in step 1.11:

These need to be in the same format as the other database sequences,
i.e. with a label containing TaxonID_YourSequencelD, For example a
sequence of the species Xylosma oligandra could be labelled as
MelerfMSFXyoli_<sequence_ID>. Taxon ID codes can be found in the
keyfile ‘’key_Magnoliophyta’ either using the species name
(Xylosma_oligandra), or the NCBI taxon number (681507). The latter
might be advantageous in cases of synonymy, i.e. when a custom
species name does not coincide with the NCBI taxonomy.

If a species is not included in the keyfile, i.e. if it is a new species for
GenBank, then a new code has to be made for it. This can be done
using the code of the genus (or of the next higher taxonomic rank in
GenBank) and creating a unique code (e.g. ‘MelerfMSFXyNew1’ could
be used for Xylosma characantha, since ‘MelerfMSFXy’ is already the
code for the genus Xylosma). A corresponding line has to be added in
the keyfile, copying the format of the existing lines, e.g.:

MeeurfMSFXyNew1 Xylosma_characantha 0000 species no_rank:eudicotyledons
no_rank:eudicotyledons subclass:rosids no_rank:fabids order:Malpighiales
family:Salicaceae tribe:Flacourtieae genus:Xylosma species:characantha

Advice: If there are many taxa to be added, the Linux/Unix ‘grep’
command can be used to retrieve taxon IDs and taxonomy strings
from the keyfile in a batch mode. Additionally, the get_taxonomy.py
Python script (by Robert Lanfear) can be used to help with getting the
NCBI taxon numbers for a list of taxa and directly from GenBank
(please read notes within the script and README file for
instructions). This can help to avoid synonymy problems (e.g., in the
‘taxonomy.txt’ example file included in the ‘get_taxonomy’ folder, the
taxon ‘Stizolobium pruriens’ is identified as synonym of ‘Mucuna
pruriens’). The original ‘get_taxonomy.py’ script works with species
names (i.e., Linnean binomials), but if NCBI taxon numbers for higher
taxonomic ranks (genus or higher) are preferred, then it is possible to
use the modified version of the script: get_taxonomyHigherRank.py.
These scripts are available in our rendering of BAGpipe in the
‘BAGpipe/z_additional_scripts/’ folder.

(3) For users interested in a marker other than psbhA-trnH, the following
changes may be considered:

Step 1.3: change the annotation string within the script
create_fasta_database_from_genbank flatfiles.pl. This change is not
strictly necessary for the pipeline to work correctly; it is only for
confirmation purposes and protocol optimization (see point 7 below
regarding the additional script append_name_matches.pl).

Step 1.5: E-value cut-off for sequence retrieval (default: 1E-6).

17

- Steps 1.6 and 1.8: length cut-off for retaining a sequence (default: 200
nt).

- Step 1.9: filter threshold used to remove nearly identical sequences
(default: 99.8).

- Step 1.10: update of accession numbers to be removed from the
analysis because they correspond to sequences with wrong
taxonomic annotation (these may be detected a posteriori from user
analyses and it is useful to keep track of them in this step to avoid
noise in subsequent BAGpipe runs).

(4) For users interested in a different taxon (not angiosperms), changes
above apply, and additionally:

- Step 1.1: change the name of the flatfiles that are downloaded from
GenBank.

- Step 1.2: change the NCBI_taxonomy_ID (3398 = Magnoliophyta).

- Step 1.3 step: change the name of the flatfiles within the
create_fasta_database_from_genbank flatfiles.pl script (*NOTE: This is
not done in the command line, but changes must be done in the
create_fasta_database_from_genbank flatfiles.pl script itself, found in
the folder ‘Scripts1_database’).

(5) In order to optimise the pipeline for a different marker and/or taxon, it
might be worth using the append_name_matches.pl script (found in the
‘z_additional_scripts’ folder). This script can be used to compare the
sequences that are retrieved by the similarity searches in steps 1.5 and 1.7
with the sequences that would be retrieved using gene annotation. See
instructions for use within the ‘append_name_matches’ folder.

Running BAGpipe database steps in automatic mode

Once the optimization of individual commands is satisfactory, the
‘pipelinel_database’ can be run in an automatic mode, and after changing file
permissions using ‘chmod’:

chmod u+x ./pipelinel database
./pipelinel database

%
%
Pipeline2_identification

Once the reference database has been assembled successfully (the necessary
files for subsequent steps are: ‘all psbAtrnH filtered* and ‘key_Magnoliophyta’), it
is possible to start the sequence identification procedure.

cd to the ‘BAGpipe/Identification/’ folder.
% cd BAGpipe/Identification
There are four files in this folder. The text file ‘pipeline2_identification’

contains all the pipeline commands, and relevant comments and instructions. As

18

before, it is not recommended to run the whole ‘pipeline2_identification’
part for the first time in an automatic mode. It is strongly recommended to go
through each step separately, making any necessary changes and running each
command separately (by copying and pasting in your terminal) in order to be
able to identify easier any problems (see points 3 and 4 below for further
details). All paths assume that commands are called from within the
‘BAGpipe/Identification/’ folder. Custom changes to the ‘pipeline2_identification’
file can be done using any text editor. On the top of each command there is a
short description of what it does, the default names of input and output files, any
other programs that the command depends on and the most common options
that could be changed to optimize its performance.

Most common changes and points to remember:

(1) Input file: The file ‘queriesSeqs.txt’ is an example query file of 21
herbivore diet sequences. It can be used to make a test run and confirm
that the pipeline works fine on the user's system. This file should be
substituted with a user FASTA file of query sequences, but keeping the
same file name. It is critical that all query sequences in the file are in the
same orientation, the same used in the reference database (as in the
'queries_psbAtrnH.fas' of step 1.5), and that sequence names do not contain
any spaces, either within the name or after (*NOTE: if the FASTA file is
exported directly from Geneious, the software adds a blank space at the
end of the sequence name, which will cause problems in step 2.2, so it is
important to remove it).

(2) Steps 2.4 and onwards are performed iteratively for each query-group
using a loop structure. For this purpose, the number of groups is counted in
step 2.3 and given a variable name, which is used in subsequent steps to
form the loop. However, if the pipeline stops running in this step the
name of the variable will not be saved. In order to make it possible to
salvage previous results and continue running later the procedure from the
same point where it stopped, step 2.3 (the second part) has to be
repeated to name the variable again. Alternatively, once the number of
query groups is known, the command line can be edited accordingly (e.g.,
find and replace “for i in %(seq 0 %number)” with “for i in
{0..99}" in pipeline2_identification (or pipelineZa_distances).

(3) For increased efficiency, especially when there are time or
computational resource limitations, we suggest to stop the procedure after
performing steps 2.1 to 2.7 (i.e. all steps included in pipeline2a_distances)
and checking the number of retrieved sequences per query-group (as
printed out in step 2.7). The number of the very big (>500 sequences) or
very small datasets (<10 sequences) can be tuned by altering the applied p-
distance threshold for specific query-groups.

To reduce the number of retrieved homologs, step 2.6 can be repeated with
a lower p-distance threshold (<0.1). As the script parse_hits.pl works on
similarity scores rather than distances, this threshold has to be given as an
increase in similarity score (e.g., >0.9). For example, in order to reduce the

19

number of retrieved sequences for query-groups 1, 35 and 115, one could
run:

$ for i in 1 35 115; do echo "query group %i NW
alignment";

perl ../Scriptsl database/parse hits.pl

query group.%i.homologs

query group.%i.fas.needle distances 0.92 0 200
done

On the contrary, to increase the number of retrieved homologs, step 2.6 has
to be repeated with a higher p-distance threshold (>0.1), i.e. a lower
similarity score. In the specific case of the psbA-trnH marker, we do not
recommend reducing the similarity score below 0.85 (i.e., equivalent of
0.15 p-distance), because this level of divergence often results problematic
for multiple sequence alignment.

(4) As we consider very important to keep the number of retrieved
homologs in a manageable size for efficient multiple alignment and
phylogeny steps, we provide the pipeline in two separate files:
‘pipeline2a_distances’ (steps 2.1 to 2.7) and ‘pipeline2b_phylogeny’
(steps 2.8 to 2.15). Both can be run in automatic mode, but their split in
two processes facilitates an intermediate “manual” controlling step. Note
that in the ‘pipeline2b_phylogeny’ part, by default the user needs to set the
number of groups for the loop structures, by finding and replacing the “for
i in {0..999}" with the correct query-group number. This number
has to consider the total number of groups, including cases that have not
retrieved any homologs from the database.

(5) The multiple alignment (MAFFT in step 2.8) and phylogenetic inference
(RAxML in 2.11) steps should be parallelised if a multi-core processor is
available (but limiting the number of concurrent processes to the number
of available cores). The command 2.8.3 (line 36 of the
pipeline2b_phylogeny file) will count the number of available CPUs on the
system and the jobs will be distributed accordingly in the next steps (2.8.3
and 2.11). These commands should work fine with MAFFT and with the
sequential version of RAxML. However, they will not work with the
PTHREADS version of RAxML. If this version is used, it is recommended to
install and use the ‘parallel’ command from the package ‘moreutils’. On
many Linux systems it can be installed automatically. To check if it is
installed already and, in case it is not, to be questioned about whether to
install it or not:

% parallel —help
Command not found. Install package 'moreutils' to

provide command 'parallel'? [N/y]

When it is installed, it can be used with the PHTREADS version of RAxML as
follows (after adjusting the number of query groupsin {0..999}):

20

% parallel -i ../RAXML/standard-RAxXML/raxmlHPC-
PTHREADS-SSE3 -T 2 -s

query group.{}.all characters.phy -n query group.{}
-m GTRCAT -c 4 -f a -x 12345 -p 12345 -# 100 -g
query group.{}.partitionfile -- {0..999}

Another alternative towards the same end is the GNU-parallel, available
at: http://www.gnu.org/software/parallel /. Note that there is a name
collision between the two ‘parallel’ commands, so in order to keep things
simple, it is better to choose and install only one of them.

(6) If a different marker or taxon are used, the following settings may be
changed:

- Steps 2.1 and 2.2: similarity thresholds in clustering step (default:
85%).

- Step 2.3: similarity threshold to retrieve sequences from database
with usearch_global (default: 80%).

- Step 2.6: p-distance threshold to filter retrieved sequences (default:
0.9 similarity = 0.1 distance).

- Step 2.8: multiple alignment algorithm (default: MAFFT E-INS-i)

- Step 2.9: indel recoding (default: SIC).

Running BAGpipe identification steps in automatic mode

Once individual commands are optimised and selected for the specific analytical
needs, ‘pipeline2a_distances’ can be run in an automatic mode, after changing
file permissions using ‘chmod’:

% chmod u+x ./pipeline2a distances

% ./pipeline2a distances

The final step (2.7) outputs the number of retrieved sequences per query group.
We suggest that you look at these numbers and adjust them as explained in point
(3) above. Then set the correct number of query-groups in
‘pipeline2b_phylogeny’, consider the parallelisation issue and run it, after
changing permissions:

chmod u+x ./pipeline2b phylogeny
./pipeline2b phylogeny

%
%

Alternatively, if you do not want to adjust the number of retrieved sequences in
step 2.7, you can run the whole ‘pipeline2_identification’ (steps 2.1 to 2.15) at
one go (NOT recommended):

chmod u+x ./pipeline2 identification

%
% ./pipeline2 identification

Main results files

21

The following are the main results of BAGpipe presented in four different files
(see Table 1 for details about the column headings of each file):

(1) ALL_DISTANCE_RESULTS.0.1.txt: Text file listing all database sequences
within O<p-distance<0.10 from each query sequence, ranked according
to increasing distance, including full species name and taxonomy, as well
as sequence length information and length of pairwise alignment.

(2) ALL_DISTANCE_RESULTS_SUMMARY.0.1.txt: Text file summarising the
p-distance results, which includes for each query sequence: (a) database
sequence(s) providing the ‘best match’, and (b) the common part of the
taxonomy of all database sequences both within a 1% and a 4%
threshold.

(3) ALL_TREE_BASED_RESULTS.txt: Text file including information of clade
membership for each query sequence. The following information is given
for both ‘outer clade’ (‘strict’ criterion), and ‘inner clade’ (‘liberal’
criterion) (see comments to step 2.14, p. 14): (a) bootstrap support value
for the clade, (b) taxon ID of the clade (i.e., common part of the taxonomy
of all database sequences included in the clade), (c) names of all
database sequences included in the clade, and (d) names of all other
query sequences included in the clade.

(4) RAxXML_bestTree.query_group.$i.rerooted.bootstrap.reformatted:
Midpoint-rooted RAXML best trees with bootstrap values, and
reformatted labels to include full species names.

(*NOTE: Some query sequences may not appear in all or some of the result files.
This will happen when they do not retrieve enough homologs from the database
given the selected thresholds.)

22

Table 1. Explanation of column headings in the main results files.

ALL_DISTANCE_RESULTS

query_ID query sequence label

hit ID database sequence label

p_distance p-distance between query and database
sequence

alignment_length_with_gaps total length of pairwise alignment between

query and database sequence
alignment_length_without_gaps length of pairwise alingment without positions

with gaps

length_of_query_sequence length of query sequence

length_of_target length of database sequence

species_label species to which the database sequence belongs

lineage taxonomy of database sequence

queryID query sequence label

best_match_(distance) database sequence with minimum p-distance
from query (p-distance value)

shared_taxon_at_0.99 common part of the taxonomy of all database
sequences within a 1% p-distance from the
query

shared_taxon_at_0.96 common part of the taxonomy of all database
sequences within a 4% p-distance from the
quer

query_member query sequence label

outer_support bootstrap support of the 'outer’ clade, i.e.
following a 'strict' criterion

outer_taxon_name common part of the taxonomy of all database
sequences belonging to the 'outer' clade

outer_species_list all database species belonging to the 'outer’
clade

outer_nonqueries all database sequences belonging to the 'outer’
clade

outer_queries other query sequences belonging to the 'outer’
clade

inner_support bootstrap support of the 'inner’ clade, i.e.
following a 'liberal’ criterion

inner_taxon_name common part of the taxonomy of all database
sequences belonging to the 'inner’' clade

inner_species_list all database species belonging to the 'inner’
clade

inner_nonqueries all database sequences belonging to the 'inner’
clade

inner_queries other query sequences belonging to the 'inner'
clade

Credits, contact us and citation

LICENSE INFORMATION:
BAGpipe, pipeline for Biodiversity Assessment using Genbank data
Copyright (C) 2013 Anna Papadopoulou, Douglas Chesters & Jesuis GOmez-Zurita

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This suite of programs is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

CONTACTS:
If you have any problems or questions related to BAGpipe, please contact us:

Anna Papadopoulou: a.papadopoulou05@alumni.imperial.ac.uk

Douglas Chesters: dc0357548934@live.co.uk

Jesus Gomez-Zurita: j.gomez-zurita@ibe.upf-csic.es

CITATION:
If you use BAGpipe for your research please cite:

Papadopoulou A, Chesters D, Coronado I, De la Cadena G, Cardoso A, Reyes
JC, Maes J-M, Rueda RM & GOmez-Zurita J. (2014) Automated DNA-based
plant identification for large-scale biodiversity assessment. Mol. Ecol. Res.
(In press)

24

