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FPGA implementation of a hybrid on-line process 
monitoring in PC based Real-Time systems* 

Bojan Jovanović1, Milun Jevtić 1 

Abstract: This paper presents one way of FPGA implementation of hybrid 
(hardware-software based) on-line process monitoring in Real-Time systems 
(RTS). The reasons for RTS monitoring are presented at the beginning. The 
summary of different RTS monitoring approaches along with its advantages and 
drawbacks are also exposed. Finally, monitoring module is described in details. 
Also, FPGA implementation results and some useful monitoring system 
applications are mentioned.  
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1 Introduction 
Monitoring system is the process or set of possible distributed processes 

whose main function is dynamic acquisition, interpretation and participation in 
information concerning application, during the application execution [1]. 
Therefore can be said that monitoring system improve vitality, security, fault 
tolerance and adaptability of RTS. For proper functionality of RTS it is 
necessary not only to give the correct results on the outputs, but to give them in 
exactly defined time interval. This is especially true for hard real-time systems 
(HRTS), because untimely execution of the tasks can lead to disaster. Tracking 
the course of events in RTS while it running we can make conclusions about 
meeting the timing requirements. Therefore, can be said with good reason that 
on-line monitoring (monitoring while system is running) of processes and events 
in HRTS is of enormous importance because it provides its predictable behavior. 
Implementing on-line monitoring we can check the execution time of every 
process/task or defined program code segments, both from upper (maximum 
execution time) and lower (minimum execution time) side.  

                                                
1University of Niš, Faculty of Electronic Engineering, E-mail: {bojan,milun.jevtic}@elfak.ni.ac.rs 
*Award for the best paper presented in section Electronics, at Conference ETRAN 2010, June 07-11, Donji 
Milanovac, Serbia 



B. Jovanović, M. Jevtić 
 

 2 

2 RTS monitoring strategies 
Monitoring system is intrusive if it requires the use of application resources 

(CPU time, I/O devices, communication channels etc.). Monitoring systems are 
mainly intrusive in some level. Completely non-invasive monitoring system use 
specialized hardware designed for monitoring. Ideal monitoring system which is 
completely transparent to the target system is very difficult to achieve in 
practice. There are three basic approaches in implementation of RTS monitoring: 
Software, Hardware and Hybrid. 

Software implementation of RTS monitoring is flexible, but largely 
intrusive and therefore significantly disturb RTS timing characteristics. 

Hardware based approach in implementation of RTS monitoring is non-
invasive in some level but requires specialized hardware. Whereas the target 
system must support the possibility of its installation, the use of this approach is 
inflexible and clumsy. It should be planned during the design of the target 
system.  

Hybrid monitoring enables both, non-invasive nature of a hardware 
approach and the flexibility of a software approach. That’s why the hybrid 
monitoring system is some kind of trade-off between pure hardware and pure 
software monitoring approaches. 

3 RT tasks and events 
Total correctness of an RTS operation depends not only upon its logical 

correctness, but also upon the time in which it is performed. This is especially 
true for HRTS where the completion of a task after its deadline is considered 
useless. Ultimately, this may cause a critical failure of the complete system. 
Dasarathy gave a classification of timing constraints for a RTS [2]. In general, 
there are two categories of timing constraints: 
 Performance constraints that set limits on the response time of a system 

and 
 Behavior constraints that make demands on the rates at which users apply 

stimuli to the system. 
Checking the timing parameters of RT task and events, on-line monitoring 
checks correctness of their execution.  

RT task τi can be characterized with the following timing parameters (Fig. 
1): r – moment of occurence of the request for task execution; B – maximum 
delay to the start of task execution; C – task execution time (needed CPU time); 
D – time limit for task execution; T – period of occurence  of periodic tasks. 
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Fig. 1 – Timing parameters of RT task 

3.1. RT task monitoring scenarios 

According to importance they have in RTS as well as according to their 
timing parameters, RT tasks can be divided into pre-emptive and non pre-
emptive tasks. 

Concerning its execution time, pre-emptive tasks, unlike the non pre-
emptive ones, do not have strict limits. Also, their possible failure in execution 
would not affect significantly the proper functioning of RTS. Therefore, 
scheduler can pause the execution of such tasks when receiving execution 
request from some higher priority RT task. After the execution of high priority 
task scheduler continues the execution of previously paused task. On the other 
hand, non pre-emptive tasks execution failure, or execution outside given time 
limits can lead to whole RTS failure. Because of this, high priorities are assigned 
to these tasks. Furthermore, they can not be paused while running. 

Non pre-emptive RT tasks: Possible course of non pre-emptive task (τi) 
execution is shown on Fig. 2. 

 
Fig. 2 – Monitoring scenario of non pre-emptive task execution 

From the moment – event rk when request for task τi execution occured, 
allowed delay to starting the task execution can be checked at first. This is 
important for the tasks that do not initiate with some external interrupt event. 
These tasks are „set“ in the queue for execution by some internal event. In the 
case of exceeding the interval Bi, monitoring timer-counter generates a hardware 
interrupt request, and error Error_B is detected. Another monitored time interval 
is task execution time (CPU time). For task execution time which is shorter than 
Ci (minimum required time for correct task execution), marker Error_C- is set. 
In the case of exceeding the task execution time Ci + Δi (maximum time for 
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correct task execution) monitoring module generates interrupt request to detect 
error Error_C+. 

Such monitor performs over each RT task. Upon detection of any of these 
errors, it is the policy of the planner and available time what will be taken. 
Restarting of the same task or starting some alternative task (λi) execution which 
will overcome given situation can be done. For each task, deadline Di for his 
execution should also be monitored. Special counter-timer is most suitable for 
this purpose. In the case of his exceeding, interrupt request is generated and 
hardware-software security task (τsi) is started. This security task should recover 
RTS or place it in a safe condition. 

Pre-emptive RT tasks: Monitoring of pre-emptive tasks τi (Fig. 3) differs 
from the previous monitoring scenario. While his execution is stopped because 
of higher priority task τj, its monitoring timer-counter should be stopped (during 
Cj). 

 
Fig. 3 – Monitoring scenario of pre-emptive task execution 

4 Hybrid on-line process monitoring module 
Depending on the application and environment, timing constraints imposed 

on a RTS vary widely. Here presented FPGA based monitoring module would 
be applicable to each RTS determined to meet strict timing constraints imposed 
by the real-world processes. FPGAs are chosen because of their low cost and 
ability of reconfiguration.  

4.1. General descriptions 

Posing the demand that on-line monitoring do not require significant CPU 
time and clumsy additional specialized hardware, this paper presents one way of 
FPGA implementation of hybrid on-line RTS monitoring. It is intended for RTS 
based on an industrial PC and Linux operating system which is widely accepted 
and available open source system in RTS. 

Implemented system monitors up to 32 processes i.e. RT tasks and events 
that execute in parallel. The number of monitored processes is relatively small, 
but it should be said that HRTS in industrial applications do not have a lot of 
processes. However, since our monitoring module for 32 processes requires only 
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23% of FPGA resources, as will be seen later, number of monitored processes 
can be easily expanded up to 150. The system is based on additional hardware 
module with 32 programmable timer-counters and interrupt logic [3]. Each 
monitored process has assigned his own timer-counter. Timers-counters are used 
as devices for defining the moments of events’ time occurrence as well as 
watchdog i.e. monitoring timers for checking the correct timing execution of the 
processes. For minimal intrusion and using of CPU time during monitoring, 
hardware module for PCs PCI slot is realized as shown on Fig. 4. 
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Fig. 4 – PCI card with hybrid on-line monitoring module 

From Fig. 4 can be seen that the interface from monitoring module to RTS 
consists of the following signals: Data Bus, Read, Write, INTR, INTA, sl and clr. 

DataBus is a 16 bit bidirectional bus. It transmits the data from RTS to 
monitoring module and vice versa. RTS activates Read (Write) signals each time 
when need to read data from (write data to) monitoring module. 

Monitoring module sets INTR (Interrupt request) signal each time when any 
of currently executing tasks do not execute properly or execute outside of 
required time interval. As a response, RTS reads the message from Data Bus and 
sets INTA (Interrupt Acknowledge) signal. Message contains information about 
the interrupt nature and the ID of the task that caused interrupt. It is now 
scheduler policy to determine the actions that will be taken. When receiving 
Interrupt Acknowledge, monitoring module resets INTR signal and continues to 
monitor RTS. 
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Sl signal is 3 bit select used by RTS when selecting the register from which 
want to read data (or selecting the register to write data to). The use of this signal 
will be later explained with more details. 

Clr signal has a function of clear signal and it is used by RTS to reset 
monitoring module. 

Monitoring module is controlled by software primitives from RTS and has 
the following functions: 
 Setting the working mode of the timers-counters, 
 Setting the time constraints, 
 Enabling the timers-counters, 
 Disabling the timers-counters, 
 Reading the timers-counters, 
 Timers-counters interrupt processing and 
 Comparison of the timers-counters state with time constraints. 

During the system verification phase monitoring system provides 
information about system timing characteristics and creates a log file. During the 
system operation it should detect deviations from predicted timing behaviour. 
These deviations could be the possible consequence of a failure in RTS. 
Thereby, monitoring system has two working modes. First mode refers to the 
system analysis. It performs with the purpose to measure the execution time of 
every RT task. Obtained information can be used for the future control of the 
RTS. In the second mode monitoring module has the function of built-in self-
testing based on a watchdog function. It checks the upper and lower time limit at 
the tasks and periodic and quasi-periodic events level. The activation of each 
task initiates the procedure of starting his assigned timer-counter. Monitoring 
timer-counter sets to previously defined maximum task execution time and starts 
its countdown. If excess of the time interval happens, monitoring module sets 
interrupt request. If the task is complete before time excess, timer-counter stops 
its countdown with the end of task execution. Monitoring module reads its state 
and checks whether the task is executed before the minimum needed execution 
time. If the task is executed in regular time intervals RTS continues to work. 
Otherwise, scheduler starts provided procedure for system recovery from 
detected error. In this way, predicted behaviour of HRTS is ensured. 

4.2. Monitoring module architecture 

In monitoring module architecture we can clearly distinguish Data-path and 
Control Unit. But before we describe them both separately, let’s still consider 
communication interface between monitoring module and RTS. From Fig. 5 can 
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be seen that monitoring module communicates with RTS using four different 16 
bits registers: DataRegRead, DataRegWrite, CommandReg and StatusReg. All 
four registers have enable (EN) signals for activation.  

 
Fig. 5 – Communication interface between monitoring module and RTS 

DataRegRead and DataRegWrite are registers for data storage. Using 
DataRegRead RTS reads data from monitoring module while using 
DataRegWrite register RTS sends data to monitoring module. For sending 
command to monitoring module CommandReg is used. Monitoring module 
status can be read from StatusReg. To access any of these registers RTS uses 
Read, Write and sl signals as shown in Table 1. 

Table 1 
RTS – Monitoring module communication 

sl Read Write Selected 
register  Action 

000 1 0 DataRegRead Reg to DataBus  
001 0 1 DataRegWrite DataBus to Reg  
010 0 1 CommandReg DataBus to Reg  
011 1 0 StatusReg Reg to DataBus  

Fig. 6 shows bit-level structure of CommandReg and StatusReg registers. 
10 MSB bits of StatusReg are not used. StatusReg(5) stores TCmin bit. 
This bit is set to 1 each time when RT task is executed faster than 
minimal required time for proper task execution. The meaning of this bit 
will be explained with more details when considering monitoring module 
Data-path. Since module monitors up to 32 processes it is necessary 
minimum 5 bits for indentify each of them. So, 5 LSB bits of StatusReg 
store the identification of the RT task (process) which caused the interrupt 
– Interrupt ID. Concerning CommandReg, his 5 MSB bit are not used. 
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CommandReg(10..9) bits store information about the time quantum which is 
used when measuring different time intervals. This two pace bits will be 
considered later. CommandReg(8..5) bits contain the code of the command while 
5 LSB bits of this register address the task the command applies to. 

 
Fig. 6 – Bit-level structures of Status and Command registers 

Monitoring module Data-path: To show the whole monitoring module Data-path 
on a single figure would be complicated. Therefore, Fig. 7 shows the part of the 
Data-path needed for a single RT process. Each of 32 processes has the same 
architecture. Data-paths of all processes are wired to 16 bits wide DataIn and 
DataOut buses so they could communicate with RTS. All wires attached to 
DataIn and DataOut buses are in high-impedance state except one which in this 
moment uses the bus for communication. 1MHz clock and frequency divider are 
common for Data-paths of all processes. 

 
Fig. 7 – The part of the data-path needed for a single RT task 
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As shown on Fig. 7, single process Data-path consists of one 3 bits wide 
CmdReg, one 4in1 multiplexer, one 16 bit counting-down counter, two 16 bits 
wide registers for storing constants Cmax and Cmin and one RS flip-flop.  

CmdReg MSB bit is used to enable/disable counter while 2 LSB bits are 
attached to multiplexer select signal in order to determine counter clock 
frequency (pace bits). By setting Lr to 1 CmdReg can be loaded from DataIn 
bus. Similarly, by setting OEr his content is available through DataOut bus. 
After reset, CmdReg content is 000. Using 1MHz clock source time quantum for 
time measuring can be 1, 4, 16 or 64 µs. Accordingly, maximum time for task 
execution can be 65.5, 262, 1048 or 4194 ms.  It should be noted that by 
changing clock source we can obtain different time quantum and different 
maximum task execution times.  

CmaxReg and CminReg are 16 bits registers intended for storing the 
constants that determine maximum and minimum task execution time, 
respectively. They are also wired to DataIn and DataOut buses so they can be 
loaded through DataIn bus by setting Lmax (Lmin) or its content can be read 
through DataOut bus by setting OEmax (OEmin). They are also connected to 
counter.  

Counter is 16 bit and of counting-down type. Its starting value can be set 
either from DataIn bus (by setting Lc to 1) or from CmaxReg (by setting LCmax 
to 1). Through DataOut bus his current state can be read (by setting OEc to 1). 
TC bit is set to 1 when counter, counting backward, reach the zero. This means 
that maximum allowed task execution time has expired. In all other counter 
states TC bit is 0. Being S input of RS flip-flop, TC bit controls his TCreq 
output. When TC=1, TCreq which, as will be seen later, has a direct impact to 
INTR bit, is also set to 1. TCmin counter output gives us the information whether 
or not minimum task execution time has expired. Since the counter can monitor 
both CmaxReg and CminReg registers, it can measure time expired from task 
execution beginning (Eq. 1) and compare it with minimum needed one stored in 
CminReg. 
 expired_time=CmaxReg – counter_state (1)  
While expired time is less than minimum required task execution time 
(expired_time<CminReg value), TCmin is set to 1, else to 0. After reset, 
counter is in 111...111 state. The part of the monitoring module Data-path 
which is common to all tasks is shown on Fig. 8. Decoder which is on the 
right-hand part of the Fig. 8 is used to decode the way in which the inputs (Load, 
OE, INTA and R) are connected to the outputs. This is all done using 8 bits wide 
SEL signal. Load input signal can be connected on the following outputs:  one of 
32 different Lr signals, one of 32 different Lc signals, one of 32 different LCmax 
signals, one of 32 different Lmax signals or on one of 32 different Lmin signals.  
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Fig. 8 – The part of the Data-path common to all RT tasks 

OE input signal can be connected on the following outputs: one of 32 different 
OEr signals, one of 32 different OEc signals, one of 32 different OEmax signals 
or one of 32 different OEmin signals. INTA input signal can be connected on one 
of 32 different INTAx outputs while input R can be connected on one of 32 
different Rc output signals. To select which of the 32 different outputs will be 
connected with the input 5 LSB bits of SEL signal are used. In the case of Load 
and OE signals, since they can be connected on different types of Load and OE 
outputs, 3 MSB bits of SEL signal are used to determine its connection to the 
output. The way of determination is shown in Table 2. 

Table 2 
Load and OE signal connection protocol 

SEL(7..5) bits Load connects to OE connects to 
000 Lc OEc 
001 LCmax  
010 Lr OEr 
011 Lmax OEmax 
100 Lmin OEmin 

With 32in1 multiplexer and using 5 LSB bits of SEL signal, one of the 32 
different TCmin bits is connected to unique TCmin output. 

32 different TCreq signals are connected to the priority coder inputs. 
Priority coder gives 5 bits identification of the process that caused the interrupt. 
In the case when two or more processes require interrupt, priority coder will 
identify the process with the highest priority. 32 TCreq signals are also 
connected to 32 inputs of OR logic gate with INTR output. 

So, if maximum allowed task execution time has expired, TCreg is set to 1. 
Consequently, INTR is also set to 1, and priority coder gives us the 5 bits 
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identification of the task that caused the interrupt. These 5 bits are stored in 
Interrupt ID register. 
Monitoring module Control Unit: For monitoring module Control Unit 
finite state machine (FSM) is used. FSM clock source is equal to 50MHz. 
Consequently, FSM moves from current to the next state every 20ns. First 
part of algorithmic state mashine (ASM) chart of FSM is presented on 
Fig. 9. After reset in s0 state, next state is s1. In the s1 state FSM 
monitors whether interrupt occurred. If so (INTR=1) FSM goes to 
Interrupt state for interrupt processing. If there is no interrupt (INTR=0), 
FSM waits for the command to be received. If the command is received 
next state is s2, else s1. In s2 state FSM reads the command and moves to 
the next state according to received command stored into CommandReg 
(Fig. 6). Pace bits from this register determine 2 LSB bits of CmdReg, thus 
defining counter clock frequency. Process ID bits determine RT task the 
command applies to, while 4 Command Code bits from CommandReg define 
desired command. 

 
Fig. 9 – The first part of ASM chart 

In interrupt state FSM loads Interrupt ID (En ID=1) and status registers 
(LoadStatusReg=1) as well as reset counter. Also, by writing 0xx (xx are pace 
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bits) into CmdReg counter is disabled. From interrupt state FSM goes to s1 state 
after receiving interrupt acknowledge (INTA) from RTS. Depending on the 
received command, FSM can move from s2 to any state shown on Fig. 10. 

 
Fig. 10 – The rest of the ASM chart 

When Command Code is 0000, FSM moves to Start Process state. In this 
state FSM loads the counter with Cmax value from CmaxReg (LCmax=1) 
and enables counter to start counting down (CmdReg=1xx). For 0001 
Command Code FSM is in Pause state. Here, FSM disables counter by 
writing 0xx to CmdReg. In End Process state (Command Code=0010) 
counter is disabled and the value of TCmin bit is stored to StatusReg. If 
TCmin=1 RTS knows that task was executed faster than minimum 
required time for correct task execution. When in Start Measuring Time 
state (0011), FSM resets the counter (Rc=1) and enables its counting 
down. Continue state (0100) is opposite with Pause state. Here, FSM 
enables previously disabled counter. Similarly, Stop Measuring Time 
(0101) state is opposite with Start Measuring Time. Here, counter is 
disabled and its current state is loaded to DataRegRead 
(LoadDataRegR=1) register through DataOut bus (OEc=1). From here, it 
is available to RTS. In Load Counter state (0110) data is loaded from DataIn 
bus to counter, in LoadRegMax (0111) from DataIn to CmaxReg, while in 
LoadRegMin state (1000) from DataIn to CminReg register. FSM in Read 
Counter state (1001) stores counter state through DataOut bus to DataRegRead 
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register. When in ReadRegMax (1010) or ReadRegMin (1011) state, FSM stores 
data from CmaxReg or CminReg to DataRegRead register. 

5 FPGA implementation 
Each part of monitoring module communication interface as well as of 

Data-path and Control Unit is described in VHDL programming language and 
implemented in EP2C35F672C6N FPGA chip on Altera DE2 board [4]. The 
results of implementation are shown in Table 3. 

Table 3 
FPGA implementation results 

 Total logic elem. % FPGA Clock setup 
Interface 165/33216 < 1% 241.25MHz 
Data-path 7169/33216 22% 78.47MHz 
FSM 172/33216 < 1% 280.50MHz 
Σ 7506/33216 23%  

From the Table can be seen that Data-path is the most critical part of FPGA 
implementation. It requires the most of FPGA resources and also determines 
maximal operating frequency. 

In order to prove its correct functionality monitoring module was tested 
using DE2 board. From the board commands were sent to the module and its 
response was observed using registers of monitoring module communication 
interface. For all possible commands monitoring module responded as expected. 
Since monitoring module was successsfully tested it is now needed to choose 
one of many possible development boards with PCI interface to implement it in. 
As a low cost solution authors propose some of the Raggedstone1 PCI 
development boards [5]. PCI core for communication can be additionaly ordered 
or found as an open core on [6]. 

6 Monitoring module applications 
Some possible monitoring module applications were not mentioned so far. 

That is because the monitoring module was not developed for some particular 
applications. Author’s intention was to make it appropriate, with less or more 
changes, to as much different RTS applications as possible.  

The online monitor realization as quite independent system of the objective 
HRTS, may result in very complex and expensive real-time system (whose 
affect to the system reliability would be very interesting for considering), or in 
system that would have a weak access to the events inside the HRTS. Here, the 
realization of the event monitoring in time is considered, and the attention is 
paid on monitoring realization and application as a system for checking the 
HRTS behavior in time. Through the monitoring of the running tasks, faults in 
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software running can be detected and predictive behavior of HRTS can be 
provided. 

Much greater number (up to one thousand) of timers can be placed on a 
single FPGA integrated circuit. On that way, even one thousand processes 
(internet links) in some server computer, can be monitored. 

7 Conclusion 
The need for an effective RTS monitoring is obvious, especially in the case 

of HRTS. In order to be as less intrusive as possible and as much flexible as 
possible, one hybrid approach on RTS monitoring is proposed. Intended for PC 
based RTS, monitoring module uses PCI slot. Monitoring module is described in 
details, along with its FPGA implementation and some possible applications. It 
should be said that with PCI Express standard emerging proposed monitoring 
module can be less intrusive and more efficient. 
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