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Abstract

Background: Cross-species comparisons of gene neighborhoods (also called genomic contexts) in microbes may
provide insight into determining functionally related or co-regulated sets of genes, suggest annotations of
previously un-annotated genes, and help to identify horizontal gene transfer events across microbial species.
Existing tools to investigate genomic contexts, however, lack features for dynamically comparing and exploring
genomic regions from multiple species. As DNA sequencing technologies improve and the number of whole
sequenced microbial genomes increases, a user-friendly genome context comparison platform designed for use by
a broad range of users promises to satisfy a growing need in the biological community.

Results: Here we present JContextExplorer: a tool that organizes genomic contexts into branching diagrams. We
implement several alternative context-comparison and tree rendering algorithms, and allow for easy transitioning
between different clustering algorithms. To facilitate genomic context analysis, our tool implements GUI features,
such as text search filtering, point-and-click interrogation of individual contexts, and genomic visualization via a
multi-genome browser. We demonstrate a use case of our tool by attempting to resolve annotation ambiguities
between two highly homologous yet functionally distinct genes in a set of 22 alpha and gamma proteobacteria.

Conclusions: JContextExplorer should enable a broad range of users to analyze and explore genomic contexts. The
program has been tested on Windows, Mac, and Linux operating systems, and is implemented both as an
executable JAR file and java WebStart. Program executables, source code, and documentation is available at
http://www.bme.ucdavis.edu/facciotti/resources_data/software/.
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Background
As genomic sequencing becomes increasingly accurate,
cheaper, and widespread, the need for tools to meaningfully
interpret whole-organism genomic sequence data has
increased. While a large collection of tools are devoted to
sequence homology and phylogenetic analyses [1,2], far less
attention has been paid to tools designed to meaningfully
compare gene neighborhoods, or genomic contexts, across
species. Differences among genomic contexts across spe-
cies may indicate changes in the organization of functional

transcription units [3,4], which ultimately result in differ-
ences among gene regulatory networks [5]. Genomic con-
text may also be helpful in elucidating details of horizontal
gene transfer and duplication events [6-8], and has been
used to improve upon sequence-based gene annotation
algorithms [9-11] and aid in the construction of protein-
protein association networks [12]. In each of these investi-
gations, a new method was created to meaningfully define
and compare genomic contexts. The existence of a fast, ac-
curate, user-friendly context comparison tool could have
aided these investigations, and could encourage future
researchers to incorporate genomic context analyses into
their investigations.
In plant and animal species, a number of tools interro-

gating synteny (the degree that genes remain on corre-
sponding chromosomes) and collinearity (the degree that
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genes remain on corresponding chromosomes and in
order) [13] have been developed, such as MCScanX [14]
and i-ADHoRe [15]). The Ensembl project [16] also utilizes
syntenic data. These tools have many useful features, how-
ever lack a powerful visualization methods. Additionally,
they do not focus on microbial species. In general, genomic
context comparison methods applied to microbial species
[3-11] have been highly customized, non-GUI based, and
not readily extendable to other investigations. However, a
number of rudimentary GUI platforms for exploration of
annotated microbial genomes have been developed, such
as the Integrated Microbial Genome system (IMG) [17],
which has developed a system that allows clickable naviga-
tion of one or more genomes [18]. While the tool offers
several alternative homology-based clustering methods, it
does not have much flexibility in other aspects - for ex-
ample, genes may only be organized into groups called
“chromosomal cassettes” according to a hard-coded 300-
bp intergenic distance threshold, and there is no way to ex-
port graphical representations of genome contexts.
Several tools have focused on visualization of syntenic

and collinear regions, such as the plant genome duplication
database [12], PLAZA [19], and Genomicus [20]. These
tools are most appropriate when investigating plant and
animal species, however, and could benefit from additional
user flexibility and control in their visualization and inter-
rogation of genomic segments. A number of genome nav-
igable interfaces have been developed (such as the UCSC
genome browser [21], the Gaggle genome browser [22],
and JBrowse [23]). Many genome browsers have been
developed with a focus of interrogating one or a few model
organism(s) of interest, such as EcoCyc, (interrogating
Escherichia coli [24]) and the Yeast Gene Order Browser
(interrogating various species of yeast [25]). While these
tools are sophisticated in their visualization schemes, they
are limited in the species available for cross-species com-
parisons. MicrobesOnline [26] has developed a “domain
browser” tool, which allows one to analyze the domain
content of homologous proteins across microbial species.
However, this tool compares the domain content of one
gene at a time (rather than the organization of groups of
genes) and so is not appropriate for studying changes in
genomic context.
A tool with broad applicability, powerful multi-genome

visualization tools, and a high degree of user control could
complement the existing set of synteny and genomic con-
text comparison tools well. To bridge the gap in genomic
context comparison and visualization software, we have
developed a new tool: JContextExplorer. Our tool extends
the Java Multidendrograms package [27], which allows for
flexible computation, re-analysis, and export of multiden-
drograms. We apply the multidendrogram approach to a
set of user-supplied annotated genomes to create “context
trees”: genomic contexts (which form the leaves of the

tree) are assembled into a multidendrogram using variable
group agglomerative hierarchical clustering. Previous gen-
omic context investigations often determined the genomic
contexts of interest in a set of species, and compared the
observable differences in genomic contexts to a phylogen-
etic tree of the organisms [28-30]. However, genomic con-
texts do not always differ in ways that match species
phylogeny, especially when a number of horizontal gene
transfer events have taken place [30]. Our context tree ap-
proach offers an alternative to whole-species or even single
gene phylogenetic trees that emphasizes the arrangement,
size, and spacing of individual genetic elements within a
contextual region of DNA instead of nucleotide-specific
differences in the DNA.
The genomic contexts used to assemble context trees

may be interrogated in an intuitive context viewer win-
dow, and information associated with individual genes
may be retrieved by button clicks. Our software facilitates
easy modification of parameters, and enables interrogation
of several alternative genomic contexts of interest simultan-
eously. A balance of automation and manual control is
essential for any software tool; we have attempted to auto-
mate only essential processes (such as tree computation
and tree rendering), and leave a great deal of control to the
user. Our motivation was to develop a novel, general-
purpose genomic context comparison platform to both (1)
generate context trees, and (2) facilitate genomic explor-
ation through our multi-genome browser interface. We
demonstrate a use case for our tool by resolving annotation
ambiguities between ggt and hpxW genes among 22 species
of alpha and gamma proteobacteria. Though in the use case
provided here we focus on microbial species, we emphasize
that analyses are not limited to microbial species.

Implementation
JContextExplorer is a platform-independent pure Java ap-
plication, requiring Java 1.6 or higher. The software
extends the MultiDendrograms software package [27], and
also uses BioJava [31] and the Java EPS Graphics2D API
(version 0.1) [32]. The software has been tested to func-
tionally equally on MacOS X, Windows 7, and Linux
Ubuntu environments. Input data is read in via a series of
tab-delimited text files. We provide instructions and exam-
ples in the user manual (Additional file 1) to help fam-
iliarize new users to the tool. The look and feel of all GUI
components has been set to match the default look and
feel of the operating system running the program. Program
development was undertaken over several platforms to en-
sure an intuitive look and feel on all major platforms.
JContextExplorer has the ability to output JPG, PNG, and

EPS representations of context tress and multi-genome
browsable contexts. EPS representations of genomic contexts
were achieved using the Java EPS Graphics2D API [32]. It
took approximately 35 seconds to launch the program with
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a set of 22 annotated microbial genomes, computationally
predict operons in all organisms using an intergenic distance
threshold of 20 nucleotides, and load pre-computed hom-
ology cluster information for 81,102 annotated genes on a 2
x 2.8 GHz Quad-Core Intel Xeon processor, with 16 GB of
RAM and total memory of 2 TB.

Results
JContextExplorer software usage
JContextExplorer may be launched via downloadable exe-
cutable JAR file, or directly through the Internet via Java

WebStart at http://www.bme.ucdavis.edu/facciotti/resour-
ces_data/software/. The program is organized as a series of
major and minor windows laid out in a semi-hierarchical
manner (Figure 1). An initial welcome window invites the
user to (1) specify the genomic working set (the set of gen-
omes to investigate, see Figure 2) and (2) include cross-
species homologous gene cluster information. Individual
annotated genomes should be formatted as tab-delimited .
GFF files (version 2). This information is imported into
JContextExplorer by selecting either a directory containing
a set of .GFF files or an additional tab-delimited mapping

Figure 1 Layout of JContextExplorer windows. (A) JContextExplorer operates via usage of an initial data-loading frame, followed by
coordination of a main window and multi-genome browser context viewer window (top). These frames have several associated child windows
(second row): from the main window, a scrollable list of gene annotations (Annotations) and a window to facilitate multiple loading and
switching between alternative context sets (Add/Remove Context Sets); from the context viewer window, an alphabetized gene color legend
(Color Legend), and pop-up window of information relating to a specific gene (Gene Information). An enlarged view of the context viewer
window (B) reveals a scrollable viewing area, where genes are rendered as colors rectangles appearing above or below a centerline, depending
on their strandedness. Genes are colored according to homology or associated annotation. The Gene Information panel (lower left-hand corner)
describes information to be delivered upon click (Gene Information window). Toggling checkboxes in the Genome Display panel (lower center)
modifies the display of all rendered genomic segments. The range of the displayed region may be easily changed in the Range Around Context
Segment panel (lower right-hand corner).
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file listing the system locations of all individual annotated
genomes files and corresponding species names. The user
may also include tab-delimited cross-species gene cluster-
ing information, which could be computed using a com-
bination of BLAST [33] and MCL [34], for example, or
one of a number of various other gene clustering pipelines
[35,36]. Homology cluster information may be entered in 5
alternative tab-delimited file formats (please see the user
manual for a more detailed description). Once these files
have been loaded, the user pushes a “submit” button to
close the starting window and open the main window.
Once in the main window of the system, the user may

search all loaded genomes by (1) gene annotation or (2)
common homology group ID number. All computed
genomic groupings in all organisms that contain one or
more genes that match the search query are retrieved
and organized in to a multidendrogram, according to a
dissimilarity measure and linkage function. As a default,
the starting context set defines genomic groupings only as
the annotated features that match a search query (called
the “SingleGene” context set), however 6 additional con-
text sets are available, and may be accessed by clicking the
“Add/Remove” button in the starting frame. Available gen-
omic grouping schemes include organizing genes into
operons, taking a range of nucleotides or genes around a
query match, and loading a customized set of genomic
groupings from file (for a complete description, please see
the user manual). In this program, we have implemented 4
genomic grouping comparison metrics (or dissimilarity
measures), each of which are appropriate for different use
cases. If the genomic groupings that comprise a given con-
text set are large, we suggest using either “Common Genes
– Dice” or “Common Genes – Jaccard” metrics, which im-
plement the set-based Dice and Jaccard dissimilarity
approaches [37], with the individual annotated features
within each grouping acting as elements and the whole

genomic grouping acting as the set. If genomic groupings
contain the same annotated features, however vary in the
intergenic spacing between features, we recommend using
the “Moving Distances” approach, which uses gene order
and intergenic spacing to describe differences between
contexts. Changes in intergenic spacing between genes
within an operon has been experimentally shown to be
related to gene co-expression in E. coli and B. subilits) [4],
and may be a reflection of microbial gene regulatory net-
works changing over evolutionary time [3,4]. Finally, if the
context set under investigation does not appear to change
significantly except in the size of one or more genes, the
“Total Length” dissimilarity metric may be effective (this is
especially useful in for genomic groupings that consist of
only one or a few genes). A more detailed description of
these dissimilarity metrics is available in the user manual.
Linkage methods and display options available in the ori-

ginal multidendrograms package [27] are re-implemented
here, which allows for easy re-computation of the context
tree. All generated trees appear as individual internal
frames; the user may therefore work on several alternative
contexts at once (changes in tree computation and render-
ing will affect only the tree in focus). Individual leaves on
the tree (which each represent a single context set group-
ing) are named by concatenating the name of the organism
from which they derive to a serial number of the instance
that a query match was found within that organism. Indi-
vidual leaves on the tree may be selected by clicking on
their name, clicking the “select all” button, or entering a
leaf name search filter in the genomic context viewer tool
search bar (located below the tree). Subsequent mouse
clicks may bring up child windows either for (1) annota-
tions of the query matches for selected, or (2) a multi-
genome browser window (context viewer window). As
depicted in (Figure 1A), the start window, main window,
and context viewer window are the central components of

Figure 2 JContextExplorer technical terminology. Technical terms relevant to the JContextExplorer program (column 1) are defined
(column 2) and demonstrated via graphical representation (column 3).
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the tool, and various child windows are available within the
main window and context viewer windows.
The context viewer window (Figure 1B) is a multi-

genome browser specifically designed to interrogate analo-
gous gene groupings across many species (or multiple
genomic regions within a single species), rather than ex-
plore the genome of a single species. Individual genes are
rendered as colored rectangles, oriented above or below a
centerline to represent their placement on the forward
(above centerline) or reverse (below centerline) strand.
Each segment is centered about the center of each gene
grouping. Below all rendered contexts, a “genomic display”
sub-panel contains check box options to (1) show/hide
genomic coordinates, (2) normalize displayed contexts
according to strand (which may allow for easier visual in-
spection of analogous contexts), (3) display genes sur-
rounding each context that are not a part of the context,
and (4) color the genes surrounding the context (if this is
unchecked, surrounding genes are displayed as gray).
Genes are colored according to homology or common an-
notation, depending on the method used to generate the
context tree. Left clicking on individual genes within a
rendered context brings up a pop-up window displaying
biological information related to each gene (this informa-
tion may be modified in a “gene information sub-panel”).
Right clicking enables exporting rendered contexts as an
image and offers the option to display a gene color legend.
Middle clicking selects the clicked gene as well as all hom-
ologous genes or genes that with the same annotation
(depending on the initial search type) displayed in the
frame. Finally, the rendered range of each context may be
easily changed using the “range around context segment”
sub-panel, and clicking an “update contexts” button. The
context viewer window and main window are actively
linked; modifying selected leaves in the tree, for example,
will add or remove these leaves in the context viewer win-
dow after clicking the “update contexts” button. The tool
is designed to facilitate coordination of the context tree
and the context viewer window – such coordination may
inspire re-investigation of the same gene of interest using
alternative context groupings, or re-computation of the
context tree using a different clustering algorithm.

Analysis of the hpxW and ggt genes in 22 alpha and
gamma proteobacteria
In the gamma-proteobacterial species Klebsiella oxytoca
M5a1, the hpxW gene is known to form an operon with
hpxW, hpxY, and hpxZ [38]. The hpxW gene, however, is
highly homologous to another gene encoding gamma-
glutamyl transpeptidase (ggt). A sequence alignment of
K. oxytoca hpxW and Escherichia coli ggt revealed that
their amino acid sequences are almost co-linear and
share 30% identity. This high degree of homology con-
fuses automated annotation programs, which often

misannotate hpxW as ggt. Fortunately, the ggt enzyme
has been characterized in several microbial organisms,
[39] and has a genomic context very different from the
hpxW context (ggt occurs as a single gene, hpxW in an
operon with at least 3 other genes). Therefore, by taking
into account context as well as homology, it is possible
to accurately separate ggt genes from hpxW genes.
We used JContextExplorer to attempt to separate ggt

genes from hpxW genes in 22 alpha and gamma proteo-
bacterial species based on differences between ggt and
hpxW contexts. We found that ggt and hpxW grouped
into two major out-branches (Figure 3). Interestingly, we
discovered a third group, where manual investigation
revealed that it was unclear if these genes were ggt or
hpxW (data not shown). Visualization of the contexts in
the hpxW group revealed agreement with previously
described hpxWXYZ structures, and a comparison of a
whole-genome phylogenetic tree with the ggt / hpxW con-
text tree (Additional file 2) revealed good agreement
among closely related organisms. Details relating to the
methods associated with the above analyses are also avail-
able (Additional file 3). This investigation highlights the
utility of combining automation (generating the ggt/hpxW
context tree) with manual interrogation (investigation
using the multi-genome browser context viewer tool).

Conclusion
Comparing genomic contexts across organisms is an ef-
fective but underutilized technique. While a handful of
custom approaches have been developed, no universal plat-
form for cross-species genomic context analyses has yet
been produced. We have developed JContextExplorer to
address this need. We have attempted to make JContex-
tExplorer easy to install and use by offering our program
as a GUI WebStart application (launching is as simple as
navigating to a website, and clicking on the appropriate
button). Additionally, our program is organized in a way
that does not require a steep learning curve among pro-
spective users. To help new users, we provide an extensive
user manual and a series of video tutorials (Additional file
1) along with the program executable (Additional file 4).
We hope that JContextExplorer may find use in the bio-
informatics community with its emphases of producing a
positive user experience and simultaneously offering a nav-
igable tool of high quality and portability.

Availability and requirements
Project Name: JContextExplorer
Operating System: Platform independent
Programming language: Java
Other requirements: None.
License: Source code and binary executable are available
under terms of the GPL free software license (ver-
sion 2 or later) at http://www.bme.ucdavis.edu/facciotti/
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Figure 3 hpxW and ggt context tree. Clusters of all homologous gene clusters in 22 alpha and gamma proteobacterial species were
constructed using BLAST [33] and tribe-MCL [34]. All ggt and hpxW genes naturally grouped into the same homology cluster. Using
JContextExplorer, we defined a context set, which we named “D75”, that placed all genes on the same strand within 75 nucleotides of each
other into common gene groupings. We constructed a context tree of the ggt/hpxW homology cluster using the “Common Genes – Dice”
dissimilarity metric and “Joint Between-Within” linkage function (above). The data segmented into two branches, one of which corresponded to
the previously described hpxW context (green box), and the other into a combination of the ggt context (blue box) and an undetermined third
group. Manual inspection of individual contexts in the third group might reveal that some members of this group belong with the ggt group,
and some with the hpxW group. Additionally, some members in this third unknown group could represent “transitional” cases between the
hpxW and ggt gene (a gene that performs the functions of both hpxW and ggt, for example). JContextExplorer’s context viewer tool proved
helpful in manually interrogating this third group.
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resources_data/software/. Incorporation into commercial
software under non-GPL terms is possible by obtaining a
custom license from the University of California.
URL: http://www.bme.ucdavis.edu/facciotti/resources_-
data/software/.

Additional files

Additional file 1: ContextExplorer User Manual. Comprehensive
user manual, including installation / use instructions, examples,
diagrams, contact information, and links to website, tutorial videos,
source code, and other resources.

Additional file 2: Supplementary Figures and Methods related to
separating hpxW from ggt in 22 alpha and gamma proteobacteria.
Visualization of hpxW contexts, comparison of whole-species phylogeny
to hpxW sub-portion of JContextExplorer-generated context tree, and
detailed description of methods associated with hpxW/ggt analysis.

Additional file 3: Alpha and Gamma proteobacteria biological
information. Annotated genomes of 22 alpha and gamma
proteobacterial species, whole-species phylogenetic tree for 22 alpha and
gamma proteobacterial species, and MCL-tribe determined homology
clusters for 22 alpha and gamma proteobacterial species.

Additional file 4: JContextExplorer version 1.07. Executable JAR file
of the latest version of the JContextExplorer program. Program may
be launched on any computer with the Java runtime environment (JRE)
installed. The program may be launched either from a command line or
by double-clicking on the program icon.
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