
Computer-Aided Catalan Learning Application

Toni Sagristà

Final Year Project Report
2006/07

PART 1 of 2

Supervisor: Dr Ehud Reiter

Department of Computing Science
University of Aberdeen

King's College
Aberdeen AB24 3UE



Declaration

I declare that this document and the accompanying code has been composed by myself, 

and describes my own work, unless otherwise acknowledged in the text. It has not been 

accepted  in  any  previous  application  for  a  degree.  All  verbatim  extracts  have  been 

distinguished by quotation marks, and all  sources of information have been specifically 

acknowledged.

Signed:

Toni Sagristà

Date:

- ii -



Acknowledgements

I  would like to thank first and foremost my supervisor, Dr. E. Reiter for his advice and 

guidance, that surely helped me during the development of this project.

I'd also like to thank Francesc Alias from the university of La Salle for kindly giving me a 

hand with the Catalan text-to-speech. I would also like to give my thanks to Paula, Joseto 

and all the others that agreed to become testers of the project. Their feedback has been 

both useful and helpful.

Finally, I'd like to thank Paula again for always being there.

- iii -



Abstract

Sometimes learning a new language from scratch using the traditional method (academy, 

school...) may become a boring or even a tough activity, specially when the student is on 

his first steps and must deal with loads of new vocabulary and grammatical rules. 

The  Computer-Aided  Catalan  Learning  Application puts  the  student  in  a  virtual  world 

where he must manage fully in the target language, performing actions, looking at the 

world around, speaking to people,  etc.  This way the student is forced to wise up in a 

motivating  user-friendly  graphical  environment  whose  purpose  is  to  take  the  most 

advantage of the time. The more motivated the student, the quicker his learning.

Such learning tools are not aimed to replace the traditional methods but to complement 

them in the sense that they may help prevent the student's language skills from decaying.

- iv -



Table of Contents

Declaration...................................................................................................................................... ii

Acknowledgements....................................................................................................................... iii

Abstract.......................................................................................................................................... iv

1    Introduction.............................................................................................................................. 1
1.1    Project overview............................................................................................................. 1
1.2    Objectives...................................................................................................................... 3

1.2.1    Primary objectives.................................................................................................. 3
1.2.2    Secondary objectives.............................................................................................. 4

1.3    Motivations..................................................................................................................... 5
1.3.1    Interests in NLP...................................................................................................... 5
1.3.2    Getting knowledge on game programming............................................................. 5
1.3.3    Explore new ways to learn languages..................................................................... 6
1.3.4    The Catalan language background......................................................................... 6

1.4    Structure of this document.............................................................................................. 7

2    Background and related work................................................................................................. 8
2.1    CALL and ICALL systems.............................................................................................. 8

2.1.1    Text-based tutors.................................................................................................... 8
2.1.1.1    ALICE-chan – Japanese................................................................................. 9
2.1.1.2    CALLE – Spanish............................................................................................ 9
2.1.1.3    BRIDGE – German and Arabic...................................................................... 10

2.1.2    Dialogue-based language games......................................................................... 11
2.1.2.1    Spion – An AI Spy Game............................................................................... 11
2.1.2.2    Herr Kommissar............................................................................................ 12
2.1.2.3    A.L.I.C.E. Bot................................................................................................ 13

2.1.3    Graphic-based tutors............................................................................................ 13
2.1.3.1    FLUENT........................................................................................................ 14
2.1.3.2    Ling Worlds................................................................................................... 14
2.1.3.3    Slime Forest Adventure................................................................................. 15

2.2    Game engines.............................................................................................................. 16
2.2.1    Allegro.................................................................................................................. 17
2.2.2    DarkBasic............................................................................................................. 17
2.2.3    Easy Way Game Engine....................................................................................... 18

3    Application design model...................................................................................................... 19
3.1    Functional requirements and use cases....................................................................... 19
3.2    Non-functional requirements........................................................................................ 21
3.3    Overall system architecture.......................................................................................... 22
3.4    Module design.............................................................................................................. 24

3.4.1    GUI module design............................................................................................... 24
3.4.2    Language module................................................................................................. 26

3.4.2.1    Functionalities............................................................................................... 26
3.4.2.2    Design model................................................................................................ 27

3.4.3    Action module design............................................................................................ 28
3.4.3.1    Functionalities............................................................................................... 29
3.4.3.2    Design model................................................................................................ 29

3.4.4    Rendering module design..................................................................................... 32



3.4.4.1    Functionalities............................................................................................... 34
3.4.4.2    Design model................................................................................................ 34

3.4.5    Sound module design........................................................................................... 35

4    Implementation and technical issues................................................................................... 36
4.1    Technical decisions...................................................................................................... 36

4.1.1    Programming language......................................................................................... 36
4.1.2    Rendering engine................................................................................................. 37
4.1.3    Language recognition tool..................................................................................... 38
4.1.4    Lexicon format...................................................................................................... 38

4.2    Implementation............................................................................................................. 39
4.2.1    Graphical User Interface implementation.............................................................. 39
4.2.2    Natural Language Processing implementation...................................................... 40

4.2.2.1    Using ANTLR for Natural Language Processing........................................... 41
4.2.2.2    The grammar................................................................................................. 42
4.2.2.3    The lexical analysis problem......................................................................... 44
4.2.2.4    The creation of the lexicon............................................................................ 46
4.2.2.5    The spell checker.......................................................................................... 46
4.2.2.6    Semantic analysis......................................................................................... 48
4.2.2.7    Error feedback............................................................................................... 48

4.2.3    Action module implementation.............................................................................. 49
4.2.3.1    Tree translation............................................................................................. 49
4.2.3.2    Action interpretation and action queue.......................................................... 51

4.2.4    Game engine implementation............................................................................... 51
4.2.4.1    Sprites and animations.................................................................................. 52
4.2.4.2    Entities and scenes....................................................................................... 52
4.2.4.3    The rendering loop........................................................................................ 53
4.2.4.4    The difference object..................................................................................... 54
4.2.4.5    Drawing the graphics..................................................................................... 55

4.2.5    Music and sound................................................................................................... 55
4.2.5.1    Text-to-speech.............................................................................................. 55

4.2.6    Final implementation notes................................................................................... 56

5    Evaluation and testing........................................................................................................... 58
5.1    Testing......................................................................................................................... 58

5.1.1    Reliability testing................................................................................................... 58
5.1.2    User testing........................................................................................................... 59

5.2    Evaluation.................................................................................................................... 60
5.2.1    Sentence parsing and error feedback................................................................... 60
5.2.2    Error and dialogues console................................................................................. 61
5.2.3    The on-line help.................................................................................................... 61
5.2.4    Platform-independent system............................................................................... 61

6    Conclusions and future work................................................................................................ 62
6.1    Directions for future work.............................................................................................. 62

6.1.1    Improve the grammar............................................................................................ 62
6.1.2    Adding context to sentence interpretation............................................................. 62
6.1.3    Extending the lexicon............................................................................................ 63
6.1.4    Referring to entities depending on their position................................................... 63
6.1.5    Adding more actions............................................................................................. 64
6.1.6    Path finding........................................................................................................... 64
6.1.7    Adding scroll......................................................................................................... 64

6.2    Final conclusions.......................................................................................................... 65

Appendix A -    User Manual........................................................................................................ 66
A.I    Introduction................................................................................................................... 66
A.II    Installation and Uninstallation...................................................................................... 66



A.III    The Intelligent Catalan Tutor....................................................................................... 67
A.III.I    Run the application............................................................................................... 67
A.III.II    The main screen.................................................................................................. 67
A.III.III    Preferences menu – adjust volume.................................................................... 68
A.III.IV    Help menu.......................................................................................................... 69

A.IV    Tutorial....................................................................................................................... 69
A.IV.I    Basic actions........................................................................................................ 70

Appendix B -    Mainenance Manual............................................................................................ 73
B.I    Introduction................................................................................................................... 73
B.II    Previous requirements................................................................................................. 73

B.II.I    Linux version notes – Important for Linux users.................................................... 74
B.III    Installation and Uninstallation instructions................................................................... 74

B.III.I    Windows installation............................................................................................. 75
B.III.II    Linux installation.................................................................................................. 75
B.III.III    Uninstall the application...................................................................................... 76

B.IV    Building the application............................................................................................... 76
B.IV.I    Building the application in Linux........................................................................... 77

B.V    Dependencies.............................................................................................................. 78
B.V.I    Software dependencies......................................................................................... 78
B.V.II    Hardware dependencies...................................................................................... 79

B.VI    Hardware requirements.............................................................................................. 80
B.VI.I    Disk space........................................................................................................... 80
B.VI.II    Memory requirements......................................................................................... 80

B.VII    Directory structure..................................................................................................... 80
B.VII.I    Source files and packages.................................................................................. 82

B.VIII    Known bugs.............................................................................................................. 92

Appendix C -    Glossary.............................................................................................................. 93

References.................................................................................................................................... 95



List of Figures

Figure 1: Screenshot of the application............................................................................................ 2

Figure 2: Slime Forest battle.......................................................................................................... 16

Figure 3: The use case diagram..................................................................................................... 20

Figure 4: Architecture diagram....................................................................................................... 22

Figure 5: GUI Module class diagram.............................................................................................. 25

Figure 6: Language module class diagram..................................................................................... 27

Figure 7: Action module class diagram........................................................................................... 31

Figure 8: Rendering model class diagram...................................................................................... 33

Figure 9: View of the error console showing some error feedback................................................. 48

Figure 10: Outside scene background and its difference image..................................................... 54

Figure 11: Tutor's animation sequence........................................................................................... 55

Figure 12: Main window parts......................................................................................................... 68

Figure 13: Movement and errors.................................................................................................... 71

Figure 14: Installation window........................................................................................................ 75

Figure 15: Importing the project...................................................................................................... 77

List of Code extractions

Code 1: Embedding OpenGL into SWT.......................................................................................... 40

Code 2: The Catalan grammar....................................................................................................... 43

Code 3: Possible token definition for Pascal in ANTLR.................................................................. 45

Code 4: Example of lexical analysis for Catalan using ANTLR....................................................... 45

Code 5: Sample code from the lexicon........................................................................................... 47

Code 6: Extract from the actions file............................................................................................... 49

Code 7: Pseudo code of the rendering loop................................................................................... 54

- viii -



Computer-Aided Catalan Learning Application  -  Introduction

1 Introduction

This introductory chapter tries to give the reader a bird's eye view at the whole project, 

without entering in too much detail in any issue, discusses its objectives and goals and 

finally presents my motivations for taking it on.

1.1 Project overview

Learning a new language may become a boring or even a tough activity for the student, 

who has to deal with loads of new words and new grammatical rules. Traditional computer-

based  systems  for  helping  people  learn  new  languages  (formally  called  Computer-

Assisted Language Learning systems, CALL)  just replaced the exercises one can find in 

any workbook intended for students learning a language and consisted, mostly, of fill-the-

blanks or tick-the-correct-answer like exercises. However, there's still a newer set of CALL 

systems other than the traditional, called  ICALL (which stands for  Intelligent Computer-

Assisted Language Learning),  and that try to put more imagination and find better and 

more effective ways to teach a language.

The Computer-Aided Catalan Learning Application is located in the latter set of systems, 

and its aim is to immerse the user into a world where everything is designed for helping 

him learn the target language (see screenshot of Figure 1). The user will play a role in an 

adventure  game (I  like  to  call  it  a  language  game)  where  everything  is  in  the  target 

language, in our case, Catalan; everyone speaks to him in Catalan and even the character 

- 1 -



Computer-Aided Catalan Learning Application  -  Introduction

he's controlling produces only Catalan speech. This should be at least challenging for the 

student and he should feel motivated to advance through the game while he learns, since 

games are viewed as intrinsically motivating.

To become fluent in a language, one should exercise both the comprehension (whose 

main activities are listening and reading) and the production (which involves speaking and 

writing). This application helps the student get a bit used to Catalan with three of them: 

listening, reading and writing.

Of course, I don't pretend to say Computer Tutors will replace classroom communication 

or real immersion experience, but at least can help submitting a new learning experience.

- 2 -

Figure 1: Screenshot of the application



Computer-Aided Catalan Learning Application  -  Introduction

1.2 Objectives

The  Computer-Aided  Catalan  Learning  Application abstract  objective  is  basically  to 

become a helpful tool for language students, specially those that are leaning Catalan. But 

there's a very important  part  that must be taken into account.  The application and the 

process of learning must appear attractive to the student and he must feel motivated to 

use it. That's why the graphical stuff is as important as the error feedback or the spell 

checking themselves. Basically, the project aims to build a virtual world where the user can 

immerse himself and live in it completely in Catalan. Primary and secondary objectives are 

discussed in depth in the following subsections.

1.2.1 Primary objectives

The main primary objective is, basically, to build an application composed by mainly two 

parts (the graphical scene and the user interface) with the basic functionality described 

below.  The  user  interface must  have  at  least  a  field  that  allows  the  user  to  input 

commands and an output console. The scene must actively react to the sentences the 

user type in, as long as their correctness has been checked and ensured. If the sentence 

is not correct,  then error feedback must be given to the user informing him of what is 

wrong.

We can also set as a primary objective the completeness of the graphical engine. Let me 

explain myself.  Completeness means that  anything reacting in the scene must appear 

attractive to the user so that using good-looking animations, sequences of animations or 

even sequences of actions might be a good practice. Each entity must appear live in the 

scene and should have, if possible, at least one idle animation. This is mandatory since a 

good-looking scene is deemed to attract the interest of students. The interest for seeing 

how the scene reacts to what one types in should keep one's motivation high.

Another important primary objective is to build the application in such a manner that the 

language it is actually teaching can be easily changed. It would be great to be able to 

adapt the application for teaching languages other than Catalan such as Italian, French or 

- 3 -



Computer-Aided Catalan Learning Application  -  Introduction

Portuguese. Obviously one can do that given any design, even the worst, but the objective 

is to minimize the work needed to port the application to another target language.

1.2.2 Secondary objectives

Secondary objectives mainly consist  of  additional  features that  may be included in the 

system to improve the user experience and the teaching effectiveness. However, there are 

another set  of  secondary objectives that  would imply a radical  change in the way the 

application is actually working and that could now be classified as future work. These are, 

for example, reverting the flow of information, in the sense that it would be now the system 

who tells the user what to do and not vice versa (the system takes the initiative, in few 

words). Another example for this would imply a graphical interaction between the user and 

the scene so that the user would be allowed to perform some actions directly on the scene 

(like moving things around with the mouse) and the system would print a message in the 

target language describing the action the user just took.

The additional features set as secondary objectives are:

● Including a help window in the graphical user interface that displays some basics in 

Catalan  grammar  and  vocabulary  useful  for  the  user  to  get  in  touch  with  the 

language.

● Including speech output so that the user can improve his listening skills too. If this 

objective is accomplished, some way to control the volume would be useful. Some 

background music may also be included to get a fancier application and enhance 

the user experience.

● Split  the output console into two consoles,  one for  the dialogues the characters 

produce and another for the error feedback.

● Add a goal to the adventure. This means that the adventure game has a goal that 

must be achieved to clear it. It would give the user some extra motivation.

- 4 -



Computer-Aided Catalan Learning Application  -  Introduction

● Add a spell  checker displaying some candidates in the output console when the 

user mistakes writing a word.

● As  long  as  the  project  is  programmed  using  Java and  Java is  a  platform-

independent language (code is compiled to an intermediate code which is later run 

by the Java Virtual Machine), the application should run in both Windows and Linux 

systems. It would also be useful to be able to run it on  Macintosh systems (from 

Mac OS X on) but I won't include it in the secondary goals because I don't have 

access to any MAC machine to create the installation for it.

1.3 Motivations

In this section I'll discuss the motivations that brought me to take on this project.

1.3.1 Interests in NLP

In my home university in Barcelona I  took a couple of subjects about compilers. They 

taught me the basics on building a compiler for a programming language. Actually,  the 

practical for this subject took the student through the stages involved in building a fully-

featured compiler for a functional programming language similar to Pascal. Soon I realized 

that  the  same  background  philosophy  could  be  applied  to  build  a  parser  for  natural 

language recognition. Moreover, I think this area is quite interesting and a lot of research 

must still be done due to the indeterministic nature of the natural language. Researching 

on this field is the only way to get computers being able to understand human language 

and, who knows, maybe we could expect programming languages to become much similar 

to human language than they are now in the future.

1.3.2 Getting knowledge on game programming

Game programming has always interested me as well. The application takes the form of a 

- 5 -



Computer-Aided Catalan Learning Application  -  Introduction

very simple adventure game so that most of the concepts involving the development of 

such games appear in some sense in this project. Timing control, animations, sequences 

of actions, music and sound control and other features are also nice subjects to explore for 

me.

Furthermore,  I  consider  I'm not  bad  at  drawing  and  I  think  I  can  create  good-looking 

graphics and images for the application.

1.3.3 Explore new ways to learn languages

Personally, I really reckon that there must be other ways to teach a language better than 

the traditional ones, or, at least, complementary ways to complete the traditional teaching. 

Such ways should be more motivating for the student and should get him involved with the 

target language. I emphasize this because keeping the student motivated is essential from 

my point of view and from my experience as a foreign language student at both school and 

academy.

1.3.4 The Catalan language background

The Catalan is a small language in terms of number of speakers. It is reported to have 

about 10 million of  possible speakers (people who can understand, write and speak it 

correctly)  spread  throughout  the  territories  of  Catalonia,  the  Valencian  Country,  the 

Balearic  Islands,  the  south  of  France,  Andorra,  the  Aragonese  border  with  Catalonia 

(called  La franja  de  ponent)  and the  Alghero,  a  town in  north-western  Sardinia,  Italy. 

However, the number of regular Catalan speakers is much lower since most of those 10 

million persons have the Spanish as their first language. Nowadays Catalan is not being 

protected by the Spanish government and it is not even recognized by the European Union 

as an official language. So when my supervisor told me I could chose the language my 

application would be teaching I didn't think twice. I really think Catalan must be protected 

and any initiative to help it is welcome.

- 6 -



Computer-Aided Catalan Learning Application  -  Introduction

1.4 Structure of this document

The second chapter of this document aims to provide a broad vision of existing CALL and 

ICALL systems, as well as game engines, having a deep view on their functionalities. The 

third chapter discusses the design of the application and some important decisions made 

referring  to  it.  The  fourth  chapter  provides  a  deep  view  of  the  system  itself  and  its 

implementation. It also speaks about relevant technical issues related to the development 

of  the  system.  Finally,  the  fifth  chapter  provides  a  detailed  look  at  the  testing  and 

evaluation of the system in relation to the goals described in this chapter and the sixth one 

contains the conclusions and some directions and ideas for future work. 

- 7 -



Computer-Aided Catalan Learning Application  -  Background and related work

2 Background and related work

In  this  section  we'll  discuss some related  work  previously  done in  this  topic.  We'll  be 

discussing existing  CALL and  ICALL systems trying to classify them depending on their 

features and their approach to language learning. The languages and skill levels targeted, 

the NLP technology used and the teaching approaches differ widely from one to another. 

Additionally, we will also discuss some previous work done in other areas involved with the 

project such as game engines.

2.1 CALL and ICALL systems

The purpose of these systems varies from strictly research to strictly teaching passing 

through joint goals but this chapter is organized not in terms of purpose but in terms of 

type of learning approach, being either text-based tutors, text-based language games or 

graphics-based tutors. 

2.1.1 Text-based tutors

This section presents some systems that have been influenced mostly by linguistic theory 

and that are mostly text-based with no images, both in terms of what the user types in and 

how the  system prompts  and  reacts  to  it.  They  usually  provide  conventional  kinds  of 

exercises similar to those one can find in language workbooks, giving some grammatical 

- 8 -



Computer-Aided Catalan Learning Application  -  Background and related work

feedback. Since such systems are not supported by visual aids, the emphasis is put on the 

parser and the lexicon.

Text-based  ICALL systems vary widely  in  goals  and  methods,  ranging in  pedagogical 

methods from directed tutors to explanatory learning tools.

2.1.1.1 ALICE-chan – Japanese

ALICE is an acronym for  Automated Language-Instruction/Curriculum Environment, and 

chan is a diminutive suffix  in Japanese. It  is used for first  and second year  Japanese 

instruction.  ALICE-chan is a language-training environment for Japanese that uses  NLP 

as a basis both for assisting instructors in preparing exercises  and for evaluating student 

responses to exercises.

The  ALICE project  mission  is  to  develop  a  multimedia  foreign-language  learning 

environment  that  supports  the  development  and  evaluation  of  many different  types  of 

language learning activities. The primary function of ALICE is to be a tool for research in 

second language acquisition, with the requirement that the research must be carried out in 

the context of normal language-learning activities, not in separate laboratory experiments.

Users need to have only basic linguistic knowledge such as the amount typically presented 

in beginning-level language textbooks. 

ALICE-chan is modular so that it can easily be adapted to different languages and different 

levels  of  instruction.  Changing  the  system  involves  changing  the  grammar  rules  and 

lexicons used by the NLP software. The rest of the software remains the same.

2.1.1.2 CALLE – Spanish

CALLE stands for Computer-Assisted Language Learning Environment and is a prototype 

language learning tool. CALLE supports foreign language learning by giving assistance in 

understanding and analyzing foreign language texts, such as documents and articles on a 

given  topic.  The  system  offers  a  window-based  environment  in  which  learners  are 

- 9 -



Computer-Aided Catalan Learning Application  -  Background and related work

presented a text for translation, analysis or some other practical task. Learners can query 

text at word or sentence level to morphological, syntactic and semantic information. 

CALLE's  original  language  is  Spanish  at  the  level  of  an  intermediate  college  course. 

CALLE differs from many of the existing language tutoring systems in the sense that it 

focuses not on students' production, but in their comprehension.

2.1.1.3 BRIDGE – German and Arabic

This system was born in the post-cold war era when U.S.  Soldiers had to be able to 

communicate with both their  friends and their  foes. Usually,  military personnel needing 

foreign language skills are usually formally schooled in a classroom setting but later on it is 

up to the soldiers to maintain their  language level during their  off-duty hours.  Training 

installations have classes for self-study but it was found out that soldier's skills, particularly 

production skills, got worse during this advanced training period.

The aim of the BRIDGE project was to develop a way to use NLP to analyze student input 

that is not in correct form, analyze multiple grammatical errors in the sentence and analyze 

the student's weaknesses and strengths to finally use this information to drive a lesson 

progression and remediation. This project was developed fully for German, with a parser 

extension to Arabic.

Main features

The  BRIDGE is  based in  multimedia  lessons which have to challenge the students in 

listening, reading and writing and adapt to student's individual capabilities. A variety of 

exercise types are available as building blocks for lessons. These include multiple choice, 

point-and-click on a graphic, fill-the-blanks, free responses and sorting text items under 

appropriate  columns.  Students  receive  feedback  on  the  correctness  of  their  exercise 

types.  This  feedback  is  produced  as  a  result  of  those  exercises  sent  to  the  natural 

language processor. Errors are classified into primary or secondary depending on their 

relevance. The progression from one exercise set to another can be in a fixed sequence or 

- 10 -



Computer-Aided Catalan Learning Application  -  Background and related work

based on the student's performance.

There is also an on-line help which is available to the student from a drop-down menu 

item.  This  provides explanations of  the tutor's  capabilities  and information on exercise 

procedures.  For  vocabulary  help,  there  is  a  German-English  dictionary  that  can  be 

accessed either alphabetically or through search items.

2.1.2 Dialogue-based language games

This section covers the systems that link the text-based nature of systems discussed in the 

first  section of  this chapter  and the graphic  nature of  the tutors discussed in the next 

section. These are dialogue-based language teaching games. Their main goal is to give 

students  conversation-like  practice  in  the  target  language.  We will  also  discuss  some 

system whose aim is not teaching but that can be used for that purpose too. They are all 

systems based mainly on text, like those in the first section, but some use the convention 

of a mistery scenario to constraint the dialogue, following the model of old commercial 

electronic adventure games, and the scenario exposed limits the language expected of 

students and simplifies the job of the natural  language processor. Others, backed with 

powerful and compete databases, just offer general conversation about any topic. None 

has the linguistic theoretical considerations of the tools discussed earlier.

Notable  in  the dialogue-based tutors  is  the creative  use of  game conventions both  to 

achieve pedagogical goals and to reduce computational complexity. For example most of 

those systems labels as  forbidden to students those words that are not available in the 

lexicon and semantic network.

2.1.2.1 Spion – An AI Spy Game

Spion  is  a  German-language  adventure  game  for  college  language  students,  first 

programmed  in  1981.  Its  designers  intended  to  use  its  parser   as  a  platform for  the 

- 11 -



Computer-Aided Catalan Learning Application  -  Background and related work

development of more extensive and more sophisticated tutorial German parsers. Although 

Spion and its daughter versions were indeed used by many college students of German, 

the program's phrase-structure-based syntactic element and its lexical-semantic element 

ultimately proved impractical for further development.

A syntactic parser and a semantic network are the basis of Spion, whose plot concerns 

spies in the East and West Berlin of pre-unification Germany. To play the game, students 

communicate  by  means  of  written  commands  or  requests  to  the  spy,  Robotky,  who 

describes events and objects through messages on the screen (with place names and 

locations of the real Berlin). The player must question Robotky for information, move him 

to various locations and tell him what actions to take. To win, the player must find secret 

information in a West Berlin chocolate shop, cross the border into East Berlin, exchange 

information with Frieda, a second spy, for other information, and return to the spy master, 

Max. Spion lacks a visual graphics context so that all the information the student can deal 

with is given by any of the characters as a text.

2.1.2.2 Herr Kommissar

Herr  Kommissar  (“Mr.  Inspector”)  is  a  German-language  intelligent  computer-assisted 

language learning environment  hiding a role-playing detective game.  On entering Herr 

Kommissar's microworld, intermediate German students assume the identity of a visiting 

police inspector asked to solve a murder mistery by interrogating five simulated German-

speaking suspects. 

Immersed in this task, the learner has the experience of carrying on a natural dialogue, 

free from constraints on style or subject matter, entirely in the target language. Behind the 

scenes,  however,  Herr  kommissar  uses  a  full-functioned  natural  language  processing 

(NLP) system to holding up the simulated conversation.

● Lexical analysis: The game looks up each word of the input in its on-line German 

lexicon and corrects most misspellings. When the word simply does not exist in the 

lexicon Herr Kommissar specifies the word was not found

- 12 -



Computer-Aided Catalan Learning Application  -  Background and related work

● Syntactic  analysis: The  game performs a  full-sentence  parse  on  the  learner's 

input.  This  parsing  covers  most  aspects  of  basic  and  intermediate  German 

grammar. If  during the syntactic  analysis  one or more errors are detected, Herr 

Kommissar identifies the problem to the user and continues the conversation.

● Semantic interpretation: Herr Kommissar then maps the results of the lexical and 

syntactic  analysis  onto  an  internal  model  of  the  input's  meaning.  Semantic 

interpretations and error detection are done in this stage, such as the use of the 

verb drink with a non liquid object.

● Response formulation: The results of this check are then projected onto a new 

semantic structure and finally a response is generated.

2.1.2.3 A.L.I.C.E. Bot

The A.L.I.C.E. (Artificial Linguistic Internet Computer Entity, which is different from ALICE-

chan discussed in section 2.1.1.1)  is a free natural  language artificial  intelligence chat 

robot from the  A.L.I.C.E. Artificial  Intelligence Foundation.  The software used to create 

A.L.I.C.E. is available as open source. A.L.I.C.E.'s Alicebot engine utilizes AIML (Artificial  

Intelligence Markup Language)  to form responses to your  questions and inputs.  It  is a 

project with hundreds of contributors worldwide.

Although it is not a teaching-purpose project, the Alicebot may also be used by English 

students wishing to practice English conversation.

2.1.3 Graphic-based tutors

This section presents systems that seek to integrate language with the physical,  visual 

world  that  is  its  context.  That  world  is  represented  mainly  by  computer  graphics  and 

digitized sound. Some of the earlier discussed systems used static graphics but they did 

not react to student's input. In contrast, we'll discuss now systems where graphics are an 

essential part of the learning experience and they are used to create micro worlds in which 

- 13 -



Computer-Aided Catalan Learning Application  -  Background and related work

animated  objects  respond  to  requests,  descriptions  or  actions  by  the  student.  These 

systems  are  shaped  by  theories  of  language  learning  that  stress  engagement  in 

motivating, authentic communicative activity.

Those  systems  described  in  this  section  use  various  communicative  approaches  to 

language teaching, whose common premise is that language is best learned by using it to 

solve authentic and interesting problems. Moreover, most of the systems presented here 

are in an unfinished status, so that little information about their effectiveness is provided.

2.1.3.1 FLUENT

FLUENT is a complex conversational intelligent CALL system that presents many options 

for tutorial strategies. Its objective is to provide one essential form of foreign language 

learning  experience.  It  offers  conversation  in  the  target  language,  uninterrupted  by 

discussions of grammar, use of first language and difficulties of other students. Because 

conversation  relates  to  situations,  typically  with  visual  components,  the  medium  of 

language interaction in  FLUENT is tightly integrated with a visual medium consisting of 

partially animated graphics under shared control of the tutor and student. A scene in fluent 

typically consists of a set of graphics which can be commented on states of objects by the 

user or also on relevant actions. For example, in the kitchen scene, the user can either 

type in sentences like the cup is full or pick up the cup.

2.1.3.2 Ling Worlds

The central problem addressed by this research project was to design a computer assisted 

language instruction system that  could help beginning language learners develop their 

comprehension abilities. Ling Worlds is an instructional system that involves the student  in 

solving communicative problems interactively with the system. The student participates  in 

problem-solving  simulations  that  allow the  student  to  manipulate  objects  in  a  physical 

scenario or micro world. Information about the problem to be solved and information about 

the micro world are given orally in the second language. Metalevel commentary by the 

tutor is also in the second language. The teaching intervention in these simulations can 

- 14 -



Computer-Aided Catalan Learning Application  -  Background and related work

vary from highly directed tutoring, where the tutor issues directions for action, to coaching, 

to purely student-controlled exploration. Ling Worlds uses dynamically generated speech 

from a digitized  phrasal  lexicon  to  produce its  side  of  the tutor-student  dialogue.  The 

student's part of the dialogue consists of acts in the micro world. 

The  pedagogical  model  behind  Ling  Worlds  requires  many  small  problem-solving 

environments as well as many simple tutoring control strategies. 

An example scene in Ling Worlds is called Provisioning the lifeboat. In this simulation the 

student is faced with the nonlinguistic task of provisioning a lifeboat before an ocean liner 

sinks. The computer displays an introductory animation showing an ocean liner colliding 

with an iceberg. A sample oral narrative accompanies the animation: “Your ship has hit an 

iceberg. It is sinking.” An on-deck scene of equipment and people near a lifeboat is then 

presented.  At  this  point,  the student  interaction begins.  In  tutoring mode,  the system 

directs  the student  actions  through spoken language and the student  responds to the 

instructions by pointing at or dragging objects with the mouse. In exploratory mode, the 

student can use the mouse to single-click objects and hear their names or double-click 

objects  to  hear  a  linguistic  description  of  their  locations  in  relation  to  another  object. 

Finally,  the  coaching mode  uses  a  game format  with  oral  commands  that  direct  the 

student to locations of provisions an equipment needed to stock the lifeboat successfully, 

but the system does not otherwise intervene. 

2.1.3.3 Slime Forest Adventure

The Slime Forest Adventure is a classic role-playing game which is basically intended to 

learn the Japanese alphabet. Actually it can teach effectively both  Katakana (Japanese 

use  it  for  writing  foreign  words)  and  Hiragana (used  for  writing  Japanese  itself,  in 

combination with  Kanji chinese characters). Since it is not teaching Japanese grammar, 

this  application does not  contain  any  NLP module  like most  of  the existing language-

learning applications do. The teaching method is simple. The student must wander around 

the virtual world, trading and buying items as in any other role game but it is in the fights 

when the student practices and learns the Japanese alphabets.

- 15 -



Computer-Aided Catalan Learning Application  -  Background and related work

The student must fight and beat the bad guys, the slimes, and to achieve that purpose the 

Hiragana and Katakana are used in a very ingenious way. Every time the character is to 

strike, a Japanese character appears over the target slime(see Figure 2). Then the user 

must write its pronunciation translation (usually no more than three letters) and hit  the 

enter key. If the answer was correct, the character will strike the poor slime. Otherwise, the 

correct translation will appear over the character's head so that the user can type in the 

right letters. In battles time is crucial, since the slimes don't cease to attack the character 

so the quicker the user the lower the damage he receives.

2.2 Game engines

A game engine is the core component of any computer videogame or other interactive 

application  with  real-time  graphics.  It  provides  the  underlying  technology,  simplifies 

development  and often enables  the game to run on multiple  platforms such as game 

consoles  and  desktop  operating  systems  such  as  Linux,  Mac  OS  X and  Microsoft  

Windows.  The  core  functionality  typically  provided  by  a  game  engine  includes  the 

rendering  engine  (for  rendering  2D  or  3D  graphics),  the  physics  engine  or  collision 

- 16 -

Figure 2: Slime Forest battle



Computer-Aided Catalan Learning Application  -  Background and related work

detection,  sound,  scripting,  animation,  artificial  intelligence,  memory  management  and 

threading.  The  process  of  game development  is  usually  economized  by  in  large  part 

reusing the same game engine to create several different games. In this section we could 

now start to speak about brand-new game engines1 such as the Quake III Arena engine, 

but in relation to this project it would be pointless. However, we will shortly describe some 

libraries or game engines that are nearer to the scope of this project, and that offer some 

similar functionality that the one built during its development.

2.2.1 Allegro

Allegro is a game programming library for C/C++ developers distributed freely, supporting 

the following platforms: DOS, Unix (Linux, FreeBSD, Irix, Solaris, Darwin), Windows, QNX, 

BeOS and  Mac OS X. It provides many functions for graphics (including sprites, vector 

drawing, color palettes and text management), sounds (supports midi and wave formats), 

player input (keyboard, mouse and joystick) and timers. It also provides fixed and floating 

point  mathematical  functions,  3D  functions,  file  management  functions,  compressed 

datafile and a GUI.

Allegro is a recursive acronym and stands for Allegro Low LEvel Game ROutines .

2.2.2 DarkBasic

DarkBasic is a game engine written in C++ and that makes use of DirectX. It is basically a 

basic compiler with some fancy and useful add ons that make the task of programming a 

game easier.  It  supports both 2D and 3D graphics, it  incorporates primitives to control 

animations and sounds and, although it has been used to create some commercial games, 

its most extended use is to create game prototypes.

1 Check www.devmaster.net/engines/ for wide information about the newest 3D engines available.

- 17 -

http://www.devmaster.net/engines/
http://www.devmaster.net/engines/
http://www.devmaster.net/engines/


Computer-Aided Catalan Learning Application  -  Background and related work

2.2.3 Easy Way Game Engine

The Easy Way Game Engine is a last generation open-source Java game engine. It is 

written  in  Java but,  as its  web claims,  it  can reach performances similar  to  2D game 

engines written in  C. It is based in the LightWeight Java Gaming Library (the same one 

used  by  the  Computer-Aided  Catalan  Learning  Application),  which  is  a  professional 

binding of OpenGL, OpenAL and other cross-platform libraries to Java.

It is a multi-platform game engine (can run on  Windows,  Linux and  Mac), and its main 

principle is to keep it simple to use. It provides sprite management, collision detection and 

rendering and data loops. 

- 18 -



Computer-Aided Catalan Learning Application  -  Application design model

3 Application design model

Since the Computer-Aided Catalan Learning Application is a complex system with several 

components interacting together, it is necessary to have an initial view on how the project 

works, without entering in too much detail. Each one of these components has its own 

architecture and purpose within the application. In this chapter we'll  discuss the overall 

system architecture (what are the components and how they work together) and then we'll 

have a closer view at the design of each of the modules.

3.1 Functional requirements and use cases

As defined in requirements engineering, functional requirements specify specific behaviors 

of a system. They define the internal workings of the software, that is, the calculations, 

technical details, data manipulation and processing, and other specific functionality that 

show how the use cases are to  be satisfied.  In our  case,  since the system is mainly 

focused  on  teaching  a  language  using  a  graphical  game as  a  vehicle,  the  use  case 

diagram is quite straightforward. Practically the whole system is hidden behind the graphic 

scene and one simple use case like “type in sentence” (see   Figure 3 below) can actually 

be  encapsulating  a  lot  of  functionality.  Usually  use  cases  are  to  match  functionalities 

accessible through the GUI, and in our case the GUI is only destined to take in user inputs 

in form of text, to display the help and to show some error feedback.

● Type  in  sentence –  This  use  case  is  actually  hiding  most  of  the  system 

- 19 -



Computer-Aided Catalan Learning Application  -  Application design model

functionality. The user may type in any kind of sentence in Catalan in the input field. 

Then, either the graphical scene will react to what the student typed in or some 

error feedback will be produced by the system and shown in the error console. This 

use case is actually highly complex since when the user types in a sentence a long 

process starts, beginning by the parsing of the sentence. This sentence must go 

through the lexical  analysis  (divides the sentence into tokens, each one with its 

type),  the  syntactic  analysis  (applies  a  grammar  to  the  outcome  of  the  lexical 

analysis and build a tree) and finally to the semantic analysis, which parses the tree 

and  looks  for  semantical  incoherences.  This  process  may have been  produced 

some errors. If so, they are given to the error processing module which will list them 

to the user. Otherwise, the tree is sent to the action module in order to update the 

scene.

● Check errors – The user can always scroll up and down the error console in order 

to have a review of his grammar or spelling mistakes.

● Check help – The user must be able to check the on-line help if he needs some 

kind of guidance on the Catalan language.

- 20 -

Figure 3: The use case diagram



Computer-Aided Catalan Learning Application  -  Application design model

● Control volume – Finally, the user must also be able to control the volume of the 

voices that the application plays.

3.2 Non-functional requirements

The most important non-functional requirements that have been set are listed below:

● The on-line help must be short, simple and useful.

● The system must be able to run in both Windows and Linux systems.

● The system must be able to run in old machines, and 2D graphics will be used, 

trying  to  keep  resource  consuming  at  the  minimum possible.  See maintenance 

manual for more details on system requirements.

● The graphical user interface must also be very simple, and must not overshadow 

the game scene.

● The system response time (time the system needs to update the scene or produce 

error feedback after the user types in a command) must be the shortest possible. It 

must never be longer than 0.5 seconds. This requirement must be ensured at all 

costs. Otherwise, execution fluency may be affected and the overall feeling the user 

gets may weaken.

● Loading time between scenes must also be kept short if possible.

● It must be possible to change the target language (the language the application is 

actually  teaching)  easily.  This  must  be  achieved  by  building  the  application 

modularly and its objective is to keep the application easy to maintain at all costs.

● All the software resources used (libraries, programs -IDE-) must be freely available 

and, if possible, open source. This is a tough decision, but I think it is always better 

to rely on free open source software that can be checked and fixed if anything goes 

wrong. Another reason is that I don't really like to pay for something when I know 

- 21 -



Computer-Aided Catalan Learning Application  -  Application design model

there is another similar solution which is as good as the proprietary one but free.

3.3 Overall system architecture

The application is composed by several modules that work together but that may also be 

replaced by other implementations intended for doing the same job. The Figure 4 below 

shows the main modules and their interaction. If you keep following the lines you'll trace 

the way that input string data takes to be converted into either an error output message or 

a scene update.

As  you  can  see  in  the  Figure  4 there  are  four  main  modules:  the  GUI  module,  the 

Language module, the Action module and the Rendering module. Finally, there is one last 

- 22 -

Figure 4: Architecture diagram



Computer-Aided Catalan Learning Application  -  Application design model

module which is quite small, the Sound module, but does not appear in the diagram.

I  used  the  module  separation  approach  which  is  based  on  component  functionality 

(elements contributing to the main general functionality are in the same module) because 

this is a way to keep the whole system organized and structured, and it permits to build 

scalable systems (each module is scalable as a unit of functionality so that it is possible to 

add more features or functionalities to one module without the other ones noticing) and 

reduces further efforts in maintenance. Also, keeping the system structured and modular 

helps bug fixing be easier.

Now   each module will be discussed separately in terms of how it communicates with the 

others so that the reader can understand the overall architecture and what are the units of 

information the modules are managing and passing forward.

● The GUI module is the GUI itself and is aimed to control all the necessary widgets 

in the main application window and the other dialogue shells such as the  volume 

window or the about window. It is to be responsible for gathering the user input data 

and for passing it to the language module and for triggering its parsing and, at the 

end, it must also write in the dialogue console and shows error feedback in the error 

console. This module must ensure the usability of the system since it is a key point 

in any application designed for any kind of end-user.

● The  Language  module should  contain  the  sentence  parsing  and  the  lexicon 

parsing. The sentence parsing should use the lexicon parsing as a tool for parsing 

user input strings. It  gets the user input data from the  GUI module, and takes it 

through  a  process  that  will  produce  the  syntactical  tree  of  the  sentence  as  an 

outcome. Then it is passed to the Action module.

● The  Action  module,  as  said,  should  the  tree  and  convert  it  into  something 

“understandable” for it. This step would allow the system to be independent from 

the language module, so that if the target language must be changed, only some 

parts of the  Language module and this last step should be modified. The Action 

module, basically, is the module that contains the queue of actions that is populated 

using the results of the conversion of the tree. Then, those actions are sent to a 

- 23 -



Computer-Aided Catalan Learning Application  -  Application design model

functional unit called Scene Controller, which is the link between the Action module 

and the Rendering module. 

● The Rendering module is thought to control everything that is in the scene. As you 

can see in the Figure 4, there are two clearly differenced parts in this module, the 

Scene Controller and the Scene Rendering. The Scene Controller takes the output 

of  the previous module as an input  and uses it  to “make things happen” in the 

scene. The  Scene Rendering is basically in charge of drawing the scene in the 

canvas of the GUI module.

● Finally, the  Sound module is a very small piece of software which contains the 

functionality needed to play both wave and midi files. It is in charge, obviously, for 

controlling the musics and sounds played during the application execution.

3.4 Module design

This section will discuss in depth each one of the modules that compose the system. All 

the  class  diagrams  shown  in  this  section  are  UML design  diagrams.  Specification 

diagrams are in all cases quite similar to the former ones, with some minor differences 

arising from the normalization process. Those differences are not substantial enough to 

show those diagrams in this document, and, I consider, attaching them would be a waste 

of space and time. Moreover, only the most important operations and attributes are shown 

in each object. Otherwise, some diagrams would not display correctly due to page size.

This section will  also discuss and give arguments explaining the design decisions and 

issues taken, and why have they been taken.

3.4.1 GUI module design

This is a quite simple and straightforward module, whose objective is only to control and 

- 24 -



Computer-Aided Catalan Learning Application  -  Application design model

build the graphical user interface using the SWT2 library.

The decision to include an Operating System driven Graphical  User Interface was not 

easy. Actually, most current games do not use the Operating System libraries to build their 

interfaces, but they build their own customized ones. However, this is not just a game but 

also a learning tool,  which has some special  requirements.  First,  it  must  display large 

amounts of text in form of both dialogues and error feedback. Second, some kind of help 

must also be displayed in order to aid the student through its Catalan journey and, in 

addition, the student must be able to navigate freely through these help pages. It seems 

pretty obvious, then, that  for achieving this purpose there is no better  technology than 

HTML. For all these reasons I decided to embed the game scene in a window depending 

on the operating system “standard look'n'feel”, having some useful and necessary widgets 

surrounding it.

The EntryPoint class acts only as an entry point to the application. This one triggers the 

MainApplication which is responsible for coordinating the creation of the main window 

and  the  parsing  of  the  lexicon3.  The  BuildShell builds  the  main  window and  should 

2 Standard Widget Toolkit, from the Eclipse project (http://www.eclispe.org).
3 The lexicon is parsed just once at the application startup.

- 25 -

Figure 5: GUI Module class diagram

http://www.eclispe.org/
http://www.eclispe.org/
http://www.eclispe.org/


Computer-Aided Catalan Learning Application  -  Application design model

initialize all the widgets and menus. It would be also responsible for creating and initializing 

the  help  browser  and  for  setting  up  the  scene  canvas.  As  you  can  see,  the  relation 

between the classes is only a usage relation since all of them are singletons.

The design idea in this module is one controller per view (usually a view is a window of the 

GUI).  Actually,  there is  only one view in  the application (the main  window) and every 

functionality can be accessed from there. In this case the controller is the BuildShell and it 

deals with usability aspects, which are quite important in any application of this kind. I tried 

to keep the GUI simple, easy to use and effective.

3.4.2 Language module

Since the importance of  this  module in the whole  project  is  quite  high,  this  section is 

divided into two subsections. Firstly we'll be speaking about the functionalities that have 

been added to the module and those that have been discarded, explaining the reasons for 

doing so. Then, we'll have a close look at the final design itself, explaining some important 

issues concerning the planning and design of this module.

3.4.2.1 Functionalities

The main goal  of  the  Language module is  to  provide the system with a  reliable  NLP 

system for a basic subset of the Catalan language. Its functionality has been split  into 

three  separate  stages:  The  lexical  analysis,  the  syntactic  analysis  and  the  semantic 

analysis. This has been done so because it's the way humans use to do syntactic analysis 

of a phrase and it is the approach used by linguistics and most NLP systems. However, 

the actual things the parser checks may vary from one system to another. Actually, this is 

the same approach used by compiler designers when they design and develop a new 

compiler. The process of compiling a source code to machine or intermediate code has a 

lot of similarities with the process carried out to “understand” a sentence and to update the 

scene.

The lexical analysis just splits the input sentence into a sequence of tokens and typifies 

- 26 -



Computer-Aided Catalan Learning Application  -  Application design model

them,  this  is,  assigns  a  predefined type to  each of  them (noun,  determiner,  transitive 

verb...). The output of the lexical analysis is used as input to the syntactic analysis, which, 

using a grammar (more details on the grammar can be found in the chapter 4), builds an 

AST (Abstract  Syntax Tree) which is the syntactical tree of the sentence. Thus, we get a 

tree which is similar to those that we were taught at school. Finally, and since the sentence 

may be grammatically correct (well built) but may not actually make sense, a final stage 

called semantic analysis is added. This basically go round the tree checking for some 

grammatical and semantic issues such as gender/number concordance, preposition usage 

or verb time. All of this stages may produce errors, which are to be then sent back to the 

user in the form of error feedback.

3.4.2.2 Design model

This is also a module that basically contributes with functionality. This means that classes 

are rather used by other classes (actually, most of the classes in this module are deemed 

to contain pieces of functionality that, joined with the others, produce a higher functionality 

unit which is the module itself) than contained in aggregations or inheritance hierarchies.

- 27 -

Figure 6: Language module class diagram



Computer-Aided Catalan Learning Application  -  Application design model

The main object of the module is the LanguageRecognitionManager, which is intended 

to act as an interface class through which the rest of the application should access the 

parsing facilities.  It  uses the classes  CatalanParser (generated by the  ANTLR from a 

grammar)  and  the  CatalanLexerModified,  which  communicates  with  the 

LexiconManager in order to look up words in the lexicon. The LexiconParser parses the 

lexicon,  and  builds  a  map with  Word objects,  each  one representing  an  entry  in  the 

lexicon. Finally, the two classes at the bottom provide the functionality of the spell checker. 

As you can see most of the relations between classes are usages, which is normal due to 

the fact that most of those classes are actually singletons (classes with only one instance 

in the whole system) whose methods are static.

This module illustrates perfectly the design principle chosen for designing the responsibility 

allotment.  As  you  can  see,  the  functionality  responsibilities  of  this  module  are  shared 

between all the classes, owning each one of them a very particular and independent piece 

of “work to do” to achieve the final result. I chose this approach rather than putting it all in 

the same class or in two classes (i.e. Analysis and Parsing) because it helps keep the 

application structure modular, organized and built with replaceable pieces. You may want 

to change, for example, the way you parse the XML lexicon. This means you don't have to 

throw away the existing  LexiconParser (which uses the commons-digester library from 

the Jakarta project) but provide another implementation for it. The same thing may happen 

with the other classes, you may want to change,for example, the semantic analysis but 

keep the lexical and syntactic the same. This is the main advantage this design approach 

provides. Moreover, it also helps in maintenance easiness and bug finding and fixing.

3.4.3 Action module design

The Action module is the one that controls everything that happens in the scene. It is in 

charge of translating the tree that comes from the Language module into a data structure 

understandable for the rest of the components of this module so that it can be treated and 

- 28 -



Computer-Aided Catalan Learning Application  -  Application design model

processed.

3.4.3.1 Functionalities

This  module  is  maybe the  cleverest  in  the  whole  system.  Its  basic  functionality  is  to 

translate  trees  into  sequences  of  actions.  The  principal  decisions  were  made  on 

determining what is translated into actions and what is not, since the language module is 

much more generic and can parse any kind of sentence whose words are in the lexicon. 

However, the step taken in this module implies that the scene must actually support the 

actions specified in the sentence in order to update correctly. So, the key point is that 

adding words to the lexicon to extend the range of language covered is a straightforward 

task, but adding action support to the new language may imply a lot of effort (means new 

actions, new graphics, new animations, new scene entity behaviours...). Hence, a set of 

actions were predefined at the planning stage of this module so that the system would 

allow anything to be parsed by the language module (as long as the lexicon covered it) but 

only a particular set of actions would actually be translated by the action module in order to 

be processed by the scene. Some of these actions are open, close, run, walk, speak, ask, 

look, behold, push and move. More information about technical issues and implementation 

aspects bout this can be found in the chapter 4.

3.4.3.2 Design model

The object ActionModel is a generic class that can represent any action to be taken in the 

scene. It has an action type (which actually bears the information of the action itself) and a 

set  of  modifiers  and  attributes.  Most  of  these  attributes  are  Identifiers.  An  Identifier 
represents a nominal syntagm, must have a noun (which is the core of the syntagm) and a 

set of adjectives or modifiers. As you can see, the object  Word appears in this module 

again since it is one of the links between the  Language module and the  Action module. 

The  class  that  does  the  translation  job,  from a  tree  to  a  list  of  ActionModels,  is  the 

ActionTranslator.  This  translation  may  eventually  produce  some  OutputMessages, 

which are messages that are to be displayed in one of the two consoles.

- 29 -



Computer-Aided Catalan Learning Application  -  Application design model

Finally,  we've got  the  SceneController,  which is  the class that  actually  interprets  and 

takes the actions. This class speaks to the entities of next module, the Rendering module, 

and contains a queue of ActionModel. These ActionModels must be processed one at a 

time by the SceneController, in order, so that the scene updates properly.

- 30 -



Computer-Aided Catalan Learning Application  -  Application design model

- 31 -

Figure 7: Action module class diagram



Computer-Aided Catalan Learning Application  -  Application design model

3.4.4 Rendering module design

The Rendering module, at its time, contains the necessary infrastructure to keep the scene 

up to date. It contains the classes that drive and steer all  the entities appearing in the 

scene, and, in addition, it also holds the class which implements the main rendering loop. 

This loop is executed in a separate thread, so that it keeps executing without worrying 

about the other modules processing.

- 32 -



Computer-Aided Catalan Learning Application  -  Application design model

- 33 -

Figure 8: Rendering model class diagram



Computer-Aided Catalan Learning Application  -  Application design model

3.4.4.1 Functionalities

Actually, this module can be considered as the game engine. It is an own, personalized 

and totally adapted to the system needs game engine. It does exactly what the application 

requires, no more. This engine offers sprite, animation and animation sequence (sequence 

of  animations  that  are  to  be displayed in  a  row) management,  background and entity 

support, user collision support (means that there's a mechanism to define where the user 

can and where the user can not step on, defines “forbidden” zones in the screen. It is done 

via the  Difference object, see chapter 4), and an automated mechanism to control the 

scenes. However,  it  does not  support  entity  collision (usually a useless functionality  in 

adventure games, where the character  is not  controlled directly by the player)  or  path 

finding (this would have been a very interesting feature to be added, but due to a lack of 

time the character's movement is based in straight vectors).

I chose to build my own engine because the existing engines usually provide too much 

functionality or are too much complicated to create a game of this scope. Moreover, writing 

my own engine allows me to adapt it totally to the application's requirements, and not vice 

versa.

3.4.4.2 Design model

The Rendering model class diagram shown in the Figure 8 has been highly simplified due 

to space reasons. The DrawScene is an abstract object that represents any scene. Each 

particular scene is represented by a class extending DrawScene. The SceneRendering 
class contains at all time a reference to a DrawScene. This reference may change every 

time the  scene that  is  being  displayed changes.  It  is  the  class  SceneRendering that 

implements the main rendering loop as an asynchronous execution thread.  

Every  concrete  DrawScene contains  a  vector  of  Entities,  which  are  actual  objects  or 

things that appear in the scene. Anything which is to be drawn in the scene is an Entity. 

There is a class hierarchy hanging from entity, so that we can have  Openable entities, 

Takable entities or LivingEntities. 

- 34 -



Computer-Aided Catalan Learning Application  -  Application design model

The Inventory and InvObject objects are used to manage the inventory and the objects 

that are in it. The rest of the classes,  Sprite,  Animation,  AnimationSequence and the 

interface  MotionEntity are  used  as  a  low-level  support  to  manage  the  graphical 

environment in the scene, to represent a graphic (sprite) an animation or a sequence or 

animations.

3.4.5 Sound module design

This module contains only two classes, so its design is quite straightforward. The class 

WavPlayer is used to play wave sound files, and the  MidiPlayer, obviously, is used to 

synthesize midi sound files. Basically, the former is used for the speech voices and is to be 

triggered from the Action module and the latter is used for the background music and is 

triggered by a scene itself (class inheriting from DrawScene) when it is initialized. Actually 

it would usually be part of the game engine, but here it appears as a separate module 

because it was designed late in the development process as an “extra” feature.

- 35 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

4 Implementation and technical issues

The  previous  chapter  provided  an  overview  of  the  project,  introducing  the  modules 

involved and their expected functionality. In this chapter we'll try to give the reader a depth 

and  wide  view  on  how  the  system  was  done,  detailing  procedures,  specific  design 

decisions taken at later stages and implementation issues and we will  be arguing why 

some technical  and implementation decisions were taken and what  were the possible 

alternatives. 

We  will  start  discussing  some  important  technical  issues  such  as  the  programming 

language used and the existing libraries that helped achieve our purpose with this project. 

Then, we'll have a closer view at the system itself, detailing important classes, methods, 

functions and other relevant implementation decisions.

4.1 Technical decisions

This section argues some technical decisions made mostly at the beginning of the project, 

explaining the choice between several technology options.

4.1.1 Programming language

At the very beginning of the project, two alternatives were considered on this matter. Using 

an object-oriented  programming language (such as  Java or  C++)  or  using the  Adobe 

- 36 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

Flash4 technology.  I  chose to  use a  conventional  programming language because the 

Adobe Flash is proprietary software and I had to pay if I wanted to use it. Moreover, I do 

not have any experience with it and I don't really know what it can offer.

Once  decided  the  Computer-Aided  Catalan  Learning  Application would  be  developed 

using a conventional programming language, the question of “which one?” came. The first 

indispensable requisite was that it had to be object-oriented. Amongst them, the two most 

important,  Java and  C++,  were  chosen.  The  main  features  that  must  have  a  good 

programming language to write a game are, basically, that it must allow the user to control 

threads of execution easily, it must have access to some rendering engine, it must have 

easy access to some sound library and finally, in our case, as I said, it must be object-

oriented. If we look at Java and C++ we see that both of them have the features described 

above.  However,  the  main  difference  between  them  is  that  Java  is  a  multi  platform 

language (since it is compiled to an intermediate code which is then executed by the JVM), 

so that it should work correctly over any system. One of the non-functional requirements 

for this project is that it must run on both Windows and Linux systems, so the one that had 

to be chosen was clear. Moreover, the author has larger experience in Java programming 

than in C++.

4.1.2 Rendering engine

The  rendering  engine  is  the  piece  of  software  (usually  a  library)  which  provides  the 

functionality of drawing graphics to a particular section of the screen. In our application this 

is a crucial element, since a bad choice may become a performance bottleneck for the rest 

of  the system functions.  Actually,  since the beginning,  only one rendering engine was 

considered.  OpenGL is a cross-platform high performance 2D/3D  API and it is used in 

several  commercial  applications and games, so that  its  reliability and performance are 

largely ensured. It was initially written for C++, but the LWJGL5 provides Java developers 

access to high performance cross-platform libraries, among them, OpenGL.

4 http://www.adobe.com/products/flash/  
5 Stands for Lightweight Java Gaming Library. For more information visit http://www.lwjgl.org.

- 37 -

http://www.lwjgl.org/
http://www.lwjgl.org/
http://www.lwjgl.org/
http://www.adobe.com/products/flash/


Computer-Aided Catalan Learning Application  -  Implementation and technical issues

OpenGL competes with  Direct3D, which is part of Microsoft's  DirectX6 API.  Direct3D is 

only available for Microsoft's various Windows operating systems, so it was ruled out since 

the beginning. However, performance tests comparing the two solutions are always hard 

to be reliable,  since loads of  other  elements are involved in the process,  such as the 

graphic card or the system memory.

Referring to the game engine, after considering various solutions, I decided I didn't really 

need  them,  since  the  features  they  offered,  although  great,  were  too  much  for  the 

Computer-Aided Catalan Learning Application, since it just needs animation management 

and some other particular features useful for adventure games. Moreover, writing my own 

engine would allow me to design it  to adapt completely to my purposes.  I  didn't  even 

consider using some of the most used engines nowadays such as the  Quake III engine 

(released under the GPL recently) or the Unreal Tournament one.

4.1.3 Language recognition tool

The two most important language recognition tools at the moment for the Java platform 

are  ANTLR7 (Another  Tool  for  Language  Recognition) and  JavaCC8 (Java  Compiler  

Compiler). As long as I know, both of them are quite similar in functionality, both of them 

are  parser  generators  and  are  extensively  used  in  the  creation  of  compilers  for 

programming languages.  As I  had been using  PCCTS9 (Purdue Compiler Construction 

Toolset), the earlier C version of ANTLR, previously, I decided to choose it only because of 

my previous knowledge, which would presumably save me time on research and learning.

4.1.4 Lexicon format

There is not much to say about the choice of the format that I would use for the lexicon. 

XML10 (eXtensible Markup Language) was always the first and only option. It is great to 

6 http://www.microsoft.com/windows/directx/default.mspx  
7 http://www.antlr.org  
8 https://javacc.dev.java.net/  
9 http://www.antlr.org/pccts133.html  
10 http://en.wikipedia.org/wiki/XML  

- 38 -

http://en.wikipedia.org/wiki/XML
http://www.antlr.org/pccts133.html
https://javacc.dev.java.net/
http://www.antlr.org/
http://www.microsoft.com/windows/directx/default.mspx


Computer-Aided Catalan Learning Application  -  Implementation and technical issues

store structured data, and the format may be completely customized. In addition, there is a 

broad variety of solutions to parse  XML files which make the task of writing a parser to 

load a file quicker and easier. Actually, my previous experience with the commons-digester 

library from the Jakarta project added another good reason to the choice.

4.2 Implementation

This section will discuss how the technologies mentioned above were used to realize the 

design  and  satisfy  the  project  requirements.  Also,  the  problems  encountered  while 

implementing and the possible solutions, as well as the decisions made, will be covered.

Documenting the implementation of a software system in detail is always a tough work that 

must be faced carefully. This section, however, is not intended to be a detailed description 

of the software developed, but it should highlight the most important issues concerning this 

topic.

4.2.1 Graphical User Interface implementation

In order to build the Graphical User Interface for the application, the most serious problem 

I had to face was to find a way to embed an  OpenGL scene from the binding to  Java 

offered by the Lightweight Java Gaming Library into an  SWT11 widget.  SWT is an open 

source widget toolkit for Java designed, unlike Java Swing12, to provide efficient, portable 

access to the user interface facilities of the operating systems on which it is implemented.

So, back to the problem, I could not find any example anywhere of an  OpenGL scene 

embedded in an SWT application, so that I decided to explore it myself. Finally I found out 

that I could actually achieve it by creating an object GLCanvas and then setting the context 

to the OpenGL binding to this canvas.

11 http://www.eclipse.org/swt/  
12 http://java.sun.com/docs/books/tutorial/uiswing/index.html  

- 39 -

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://www.eclipse.org/swt/


Computer-Aided Catalan Learning Application  -  Implementation and technical issues

Composite comp = new Composite(shell, SWT.NONE);
comp.setLayout(new FillLayout());
GLData data = new GLData ();
//We use double buffering strategy
data.doubleBuffer = true;
canvas = new GLCanvas(comp, SWT.NONE, data);
canvas.setCurrent();
try {

GLContext.useContext(canvas);
} catch(LWJGLException e){ 

e.printStackTrace(); 
}

Code 1: Embedding OpenGL into SWT

For the rest of the GUI, all widgets are organized into groups, having 3 groups in total: two 

in  the  right  pane,  the  Hints  and  Help and  the  Inventory,  and  one at  the  bottom,  the 

Dialogues/Output console.  The  Hints and Help group contains a Browser object, which 

creates a browser  window using the Mozilla  rendering  engine.  The user  can navigate 

freely through pages (the typical 'back' and 'forward' buttons are provided), but every time 

the displaying scene changes, the content of the help also changes in order to adapt better 

to the vocabulary and actions involved in the current scene.

Finally, the class BuildShell contains a set of public methods other than the one used to 

initialize the main window, that are intended to be used as external widget-state modifiers. 

For example, there is a method that sets the browser page, or another one that writes 

something in one of the two consoles in a particular format (usually dialogues and error 

feedback are the two elements that are to be written in consoles). This way, the rest of the 

application can access those methods and interact with the few elements that are in the 

GUI.

4.2.2 Natural Language Processing implementation

The Natural Language Processing system (Language module) is, together with the action 

module, the core of the application. In order to build this module, as explained before, the 

ANTLR library has been used, and it turned out that it worked pretty fine.

- 40 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

4.2.2.1 Using ANTLR for Natural Language Processing

The decision of using a parser generator such  ANTLR for a  NLP and not developing it 

from scratch was a tough decision, but at last, and due to time restrictions, I was forced to 

use one of these tools. Probably, if I had not, I would still be programming this module at 

this time. The main problem is that all these parser generators like ANTLR or JavaCC are 

intended to create programming language compilers. Programming languages are slightly 

different from natural languages in several senses. The most important, probably, is that 

they are deterministic, while the natural languages are not. This means that programming 

languages can be recognized and parsed by a computer without possible interpretation 

mistake, leading to only one translation13 for the same input. However, natural languages 

are indeterministic, so that the same single sentence can be interpreted in many different 

ways depending on the context, the emotions, the dialect and a large set of other factors. 

This presents a real and challenging problem for the NLP developer. ANTLR, of course, is 

designed for parsing deterministic languages only, so that the solution taken was to use a 

subset of the Catalan language where no possible alternative interpretation could lead the 

parser to a mistake. Actually,  for our purposes, and since the application teaches only 

some very basic Catalan to English speakers, this solution was deemed to be the right 

one.

However, Catalan's got another problem if you intend to write it with an English keyboard. 

At the beginning me and my supervisor decided that the user had to be able to write the 

input  text  using  an  English  keyboard  (rule  that  otherwise  is  pretty  obvious  given  the 

application target students are English speakers).  This meant that accents (`´) or other 

characters  or  other  signs  used  widely  in  Catalan  had  to  be  banned.  This  presented 

another severe problem because now, two words that must actually be written differently 

(such as sòl -ground- and sol -sun-, or mes -month- and més -more-) and with completely 

different meanings had to be written the same way. This time, the solution taken was to 

use synonyms for the words written with accents so that no spelling errors would ever be 

produced. Although for teaching basic Catalan it is not a bad solution, anyone aspiring to 

become fluent in such language should really learn the use of accents and other symbols 

and letters that the English alphabet does not have (ñ, ç, ¨, l·l).
13 Actually a compiler is no more than a translator from one language to another.

- 41 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

4.2.2.2 The grammar

The grammar is  the core of  any  NLP system.  It  defines what  subset  of  language the 

system actually recognizes and is able to translate. Trying to write a grammar covering the 

whole Catalan language would be a pretty difficult task, and it is out of the scope of this 

project. However, a simplified version is perfect for this project and helps us achieve our 

purpose.

- 42 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

sentence: bsentence (CONJUNCTION^ bsentence)*
{ 

//Here we parse the tree and initialize the types 
//for each node
SemanticAnalysis.initializeTypes(#sentence);

}
;

bsentence: (
(subject)? 
(vt:VERBT^ (ADVERB)? directObject (indirectObject)*
| vi:VERBI^ (ADVERB)? (directObject|indirectObject)*)
);

indirectObject: PREPOSITION^  (PREPOSITION|)  nominalSyntagm
;

directObject: nominalSyntagm
{

ActionTranslator.addASTType(#directObject,  
ActionTranslator.DO);

}
;

subject: nominalSyntagm
{

ActionTranslator.addASTType(#subject, 
ActionTranslator.SUBJ);

}
;

nominalSyntagm: nominalGroup
;

nominalGroup: (DETERMINER)? NOUN^ (complements)?
;

complements: ADJECTIVE (CONJUNCTION^ ADJECTIVE)*
;

Code 2: The Catalan grammar

Elements in lower case are nonterminal symbols that must have derivation rules. Elements 

written in upper case are tokens, or terminal symbols, and determine a type of word. As 

you can see, a symbol may derivate in symbols or tokens, all of them put together using 

the normal CFG14 notation. So, a question mark, '?', after a symbol means that the element 

may or may not appear. A star '*' means that the element may not appear or may appear 

one, two or several times. The '^' symbol is used to define that the token it accompanies 

will be the root of the current tree, and the tree built by the elements at its right and left will 

14 Context Free Grammar

- 43 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

be children.  When there's  something  between {}  means that  this  code will  be directly 

ported to the generated parser file.

As you can see, a sentence is a conjunction of basic sentences. A basic sentence is a 

subject (optional, remember imperative sentences do not have explicit subject), and then a 

transitive verb followed by (possibly) an adverb,  a direct  object  (this  is  a must)  and a 

possible list of indirect objects, or an intransitive verb followed by (possibly) an adverb and 

a set of complements. The only difference between the direct and the indirect object is the 

preposition so that a direct object is just a nominal syntagm and an indirect object is a 

nominal syntagm preceded by a preposition (actually, a set of prepositions because in 

Catalan there are prepositions formed by groups of prepositions, as we will find out later).

Finally, a nominal syntagm is just a nominal group, which is just a determiner (optional), a 

noun  and  a  set  of  optional  complements.  A  complement  is  just  a  conjuncted  list  of 

adjectives.

As you can see, the grammar is pretty simple but will serve us to achieve our purposes. 

Subordinate sentences are not recognized.

But, how do you know a word is actually a preposition, a noun or an adverb? This leads us 

to  the next  section,  where we will  explain  the problem faced with  the lexical  analysis 

provided  by  these  automatic  parser  generators  such  as  ANTLR or  JavaCC  and  the 

solution found.

4.2.2.3 The lexical analysis problem

Automatic parser generators usually expect the tokens to be recognized as words as a 

whole or using a regular language. So that, for example, if you are building a compiler for 

pascal you could use the lexical analysis provided by  ANTLR, having a token definition 

similar to this:

- 44 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

#token IF           "IF"           
#token THEN         "THEN"         
#token ELSE         "ELSE"         
#token ENDIF        "ENDIF"        
#token WHILE        "WHILE"        
#token DO           "DO"           
#token ENDWHILE     "ENDWHILE"     
#token PROCEDURE    "PROCEDURE"
[...]
#token IDENT        "[a-zA-Z][a-zA-Z0-9]*"
#token STRING       "\"~[\"]*\""
#token INTCONST     "[0-9]+"
#token REALCONST    "[0-9]*.[0-9]+"
#token COMMENT      "\{~[\}]*\}"    

Code 3: Possible token definition for Pascal in ANTLR

As you can see in Code 3 above, tokens are both complete words or patterns defined by a 

regular language. So that “WHILE” is a token for the reserved word 'WHILE' in Pascal, or 

any string starting by a letter  (in  upper  or  lower case)  is  a  token for  any identifier.  A 

comment  is,  then,  anything  between  '{'  and  '}'.  As  you  can  see,  in  this  case,  token 

definition is pretty straightforward.

However, when we try to use the same system for recognizing any word and typify it, the 

whole thing goes down. In Catalan, as well as in any other language, words are formed by 

concatenating several elements: the lexeme and the morphemes. The first clear thing we 

see is that if we want to put the whole of words the system is to recognize, the grammar 

file will grow up too much. Moreover, each time we want a new word to be recognized we 

will have to modify the grammar file, then use ANTLR to generate the Java files and then 

compile the project again. This is neither scalable nor handy. In addition, to create a lexical 

analysis for a natural language using the lexical analysis provided by  ANTLR is a very 

tough and complex work, because you need to group words splitting them depending on 

their starting. With an example it will be clearer.

#token VERB    ('o'('b'('rir'|'scurar'|'turar')
|'m'('plir'|'etre)
)

      );

Code 4: Example of lexical analysis for Catalan using ANTLR

- 45 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

The code shown in  Code 4 recognizes the verbs 'obrir', 'obscurar', 'obturar', 'omplir' and 

'ometre'. As you can see, having to do this for any word may become an extremely boring 

and unnecessarily complex task. The solution was to write the lexical  analysis  myself, 

using  the same format  used by the one  ANTLR generates,  so  that  I  could  use mine 

instead of their, but still use their syntactic analysis (generated from the grammar) at the 

same time.

4.2.2.4 The creation of the lexicon

So then I decided to create a lexicon in an XML file where anyone could add new words in 

an easy way.  This lexicon should also provide grammatical information about the word 

such as its gender, its number or its grammatical type. Once having the lexicon, to write 

the lexical analysis would only be a matter of splitting the input string into words (blank 

spaces delimit words) and then look the particular word up in the lexicon. 

4.2.2.5 The spell checker

The lexicon described in the previous section, an extract of which you can find in the Code

5 also simplifies the creation of the spell checker, in the sense that if the lexical analysis 

throws  a  “token  not  recognized”  exception,  then  catching  it  we  can  look  for  possible 

candidates using the Levenshtein distance algorithm and display them to the student to 

help him correct  his spelling.  The distance required between the written word and the 

lexicon word, for the latter to be considered a possible candidate varies depending on the 

length of the word. For example, for words with less than 5 characters the distance must 

be 2 or less. For words between five and eight characters, the distance should be between 

less than 4. For larger words distance should be less than 5.

- 46 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

<determiner>
<lexeme>un</lexeme>
<masc> 

<sing></sing>
<plur>s</plur>

</masc>
<fem>

<sing>a</sing>
<plur>es</plur>

</fem>
</determiner>

<noun>
<lexeme>plat</lexeme>
<fem>

<sing>ja</sing>
<plur>ges</plur>

</fem>
</noun>

<transitive>
<lexeme>to</lexeme>
<present>

<sing>ca</sing>
<plur>quen</plur>

</present>
<imperative>

<reflexive>
<sing>ca't</sing>
<plur>queu-vos</plur>

</reflexive>
<sing>ca</sing>
<plur>queu</plur>

</imperative>
<action>17</action>

</transitive>

Code 5: Sample code from the lexicon

As  you  can  see,  there  are  several  types  of  word  (determiners,  nouns,  adjectives, 

prepositions, adverbs, transitive verbs and intransitive verbs). Each one has its own format 

in the lexicon, since different information is required for each type. The formation of each 

word is built concatenating the lexeme with the rest of terminations. For example, in the 

noun whose lexeme is 'plat' we can form two different words, 'platja' -beach- and 'platges' 

-beaches-.  In addition,  the lexicon tells us that  'platja'  is  a feminine singular noun and 

'platges' is a feminine plural one. This will allow us to check the concordance later in the 

semantic analysis, as explained in the next section.

- 47 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

4.2.2.6 Semantic analysis

The semantic analysis is a piece of code that parses the tree the syntactic analysis outputs 

and checks basically determiner-noun concordance, noun-verb concordance, preposition 

usage  and construction  and determiner  usage  (for  example,  the  “l'”  rule).  It  does  not 

actually check the action the sentence can be executed, but it ensures the sentence to be 

totally correct from the grammatical point of view. Semantic issues (such as “open the dog 

does not make sense!”) ,  are tested later in the action module.

4.2.2.7 Error feedback

Error feedback may be produced at any stage of the NLP system. The lexical analysis, as 

we  discussed,  produces  spelling  error  feedback,  the  grammar  or  syntactic  analysis 

produces phrase construction error feedback, and we capture it by catching the exceptions 

thrown by the generated parser. Finally,  the semantic analysis also provides high level 

error feedback in some grammatical  issues that  have  been discussed in the previous 

section. All these errors are captured by the NLP manager, the class which manages it all. 

It is actually told to parse a sentence and it returns a list of parsing errors. If this list is not 

empty then the errors are printed in in the error console and no further action is taken (the 

action module is not triggered until the sentence is correct). The error console, as you can 

see in the Figure 9, displays errors preceded by a red symbol, and correctly typed inputs 

with a green one. It improves usability.

- 48 -

Figure 9: View of the error console showing some error feedback



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

4.2.3 Action module implementation

This module basically translates the tree from the previous module into an action model 

and then adds it to the queue of actions. It is responsible also to process the actions in the 

queue.

4.2.3.1 Tree translation

The translation from the tree into an action model takes advantage of some information 

stored in the lexicon for both transitive and intransitive verbs. As you can appreciate at the 

bottom of the Code 5, verbs have a tag called action (<action>17</action>) which is used 

for the action translator to determine which is the action the particular verb implies. This 

number matches a number in a constants file (Actions.java) which bears the information of 

the actual action.

[...]
public static final int GO = 0;
public static final int TALK = 1;
public static final int LOOKAT = 2;
public static final int ASKFOR = 3;
public static final int OPEN = 4;
public static final int CLOSE = 5;
[...]

Code 6: Extract from the actions file

It is used by the action translator to decide what action is it dealing with and to decide what 

elements the sentence may have, what of them are mandatory and what of them can not 

appear,  following the  below.  This  table  contains  more  actions  than  the  ones  that  are 

actually recognized and hence translated and interpreted  by the  Rendering  module in 

order to update the scene. It is because the table was done before anything and it has the 

whole set of actions that could possibly be recognized. It sets the restrictions to simplify 

the translation  process so that  anything  that  is  out  of  the table  will  be recognized as 

semantically incorrect and hence the appropriate error message will be displayed.

- 49 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

'X' means that can not have this element, 'V' means that must have it and '?' means that it 

is optional.

Action Direct 
object

To Through From Quantity With

GO X V ? ? ? X

TALK X V X X X V

LOOK AT V X X X X ?

ASK FOR V V X X X X

OPEN V X X X X ?

CLOSE V X X X X ?

STOP V X X X X ?

RUN X V ? ? X ?

TAKE V V X X X X

DROP V ? ? ? X X

MOVE V ? ? ? X ?

JUMP X X X X ? X

CLIMB V X X X X ?

PLAY X X X X X V

SWIM X X X X X X

EAT V X X X X X

TOUCH V X X X X ?

USE V ? ? X X ?

LISTEN V X X X X ?

SAY V ? X X X ?

TRY V ? X X X ?

BREAK V X X X X ?

SCREAM ? ? X X X X

BRING V V X X X X

PUSH V X X X X X

PULL V X X X X X

Table 1: Action properties

Finally, as mentioned in the third chapter, note that a tree can be translated into more than 

one action model. Usually, any sentence that specifies the interaction of the character with 

- 50 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

an entity implies two actions to be created. The  GO action to the entity, and then the 

proper action.

4.2.3.2 Action interpretation and action queue

The action queue and the message queue are simply  FIFO15 queues that are used to 

organize the actions to be taken in the scene and the messages to be displayed.

The actions usually refer to entities in the scene. The matching between the entity and the 

sentence is done by name (every entity has a list of names by which it can be referred to). 

The action models are then interpreted and the pertinent actions are taken and output 

messages are created and put in the message queue. Usually, when an action is put out 

from the queue and interpreted, the message queue is populated with the messages that 

need  to  be  displayed  to  the  user.  The  interpretation  of  actions  is  done  in  the  scene 

controller,  class  that  triggers  directly  some  parameters  or  methods  of  the  entities 

appearing  in  the  current  scene,  so,  if  there's  an  action  “GO TO THE  DOOR”  to  be 

translated, the scene controller will look for an entity named “DOOR” in the current scene, 

and then it  will  tell  the main character  (the Tutor)  to move to the position of  the door 

(executes a method similar to walk(door.x, door.y);). Once an entity has finished an action, 

it notifies the scene controller so that the next action can be taken.

To control when an entity is active and when it is not, a state variable is maintained. The 

state specifies if the entity is in an animation or not. A scene may receive a new sentence 

to parse only if all of its entities are not active, this means, if there's an animation going on 

in the scene,  the user must  wait  for  it  to finish until  being allowed to type  in another 

sentence.

4.2.4 Game engine implementation

This module is responsible for drawing and updating the scene, as well as implementing 

the entity behaviour and infrastructure. The module has two different parts: the low-level 

15 First In First Out

- 51 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

engine, in charge of controlling images, animations and sequences of animations, and the 

high-level engine, in charge of controlling scenes and objects that appear in them.

4.2.4.1 Sprites and animations

In order to load and represent sprites I found a sample game in the Internet with two useful 

classes. One was intended to load textures (image fies) and the other one to represent a 

texture itself. I needed to modify them, in order to add the capability to load textures from 

absolute  paths.  From there,  I  took  another  very  simple  class,  Sprite,  and  extensively 

completed it in order to be able to draw the sprite in my environment. Additionally, I also 

added the capability to draw sprites flipped vertically or horizontally, and to draw them 

scaled using a float scale factor. This is the base object of the whole engine.

Then, some higher level functionalities were added, such as animations (sequences of 

sprites that can be repeated several times until the finish flag is triggered) and sequences 

of animations (in order to be able to play together existing animations).

Both animations and animation sequences implement the interface defined by the motion 

entity, which defines methods for, for example, drawing the next sprite (possibly flipping 

and scaling it) in the sequence or knowing if the animation is over.

4.2.4.2 Entities and scenes

However, the core of this module is the abstract class entity. Any object which displays in 

the scene is an entity. The entity defines the graphics, animations and behaviour of any 

object. There can be living  entities (the user can talk to them),  movable entities (can be 

moved or pushed),   'takable'  entities (can be taken),  openable entities (can be open or 

close) and so on. The background is also an entity which defines a list of  background 

entities, that represent each one an object in the background (mountains, path, city...). 

A scene is represented by an object which extends a draw scene, which is the responsible 

for sorting out the entities and drawing them. The depth of an entity is controlled by the z 

attribute, and before drawing the entities of a scene, they are sorted so that the ones with 

- 52 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

a greater depth are drawn first so that the nearer entities cover the further ones. Also, in 

some scenes the user character (the tutor) is scaled depending on his depth, so that when 

he's  moving away his sprite  gets  smaller  and when he's  moving to  us his sprite  gets 

bigger. This is a nice effect that helps to produce the perspective and depth illusion.

All this stuff is very technical and boring, but the global purpose of this module was to 

create an attractive scene with some fancy features so that the student feels motivated to 

keep on trying.

To go into a bit  more detail  we will  discuss the movement of the main character. The 

movement of the main character, called tutor, is based in vectors. When he's required to 

move to a particular point (from x0, y0 to x, y), the vector between the two points is worked 

out (x-x0, y-y0), made unitary (dividing by its length) and its coordinates are put in the state 

of  the  tutor  entity,  as  a  target  for  the  current  movement.  Then,  at  each  step  of  the 

rendering loop, when the tutor is updated, the unitary vector we got is added to the current 

position of the tutor and then multiplied for the current velocity (which is different if the user 

walks or runs). This allows us to work out at each step of the loop the next position the 

tutor must take. 

4.2.4.3 The rendering loop

An entity is not driven by a separate thread of execution. This means that everything is 

synchronized  and  executed  sequentially.  Hence,  we  need  a  rendering  system  where 

everything  must  be  very  carefully  designed  so  that  it  all  works  fine.  There  is  a  main 

rendering loop which is responsible for actually “talk” to the OpenGL machine in order to 

draw things. At each step of this loop all the entities are updated, sequentially, and then 

sorted and drawn. It is quite straightforward, as you can see in the pseudo code below: 

- 53 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

DrawScene ds = new HouseScene();
while(true){

ds.updateEntities();

[PREPARE OPENGL]

ds.sortEntities();
ds.drawEntities();

sleep(animationSpeed*1000);
}

Code 7: Pseudo code of the rendering loop

4.2.4.4 The difference object

In order to determine where the user can and where he can't  move to,  a very simple 

method has been used. For each scene a difference image was created. A difference 

image is an image composed of only two colors, red and black. The red parts determine 

where the user can move, and the black parts determine 'forbidden' zones. This image is 

actually scaled down to ¼ of the actual scene size, so that to work out if a zone is allowed, 

you  just  need  to  have  its  coordinates,  scale  them and  then  check  the  colour  in  the 

difference image. If this colour is red, the movement is allowed. Otherwise, the character 

must stop.

- 54 -

Figure 10: Outside scene background and its difference image



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

4.2.4.5 Drawing the graphics

Finally, I'd like to add some notes on the graphics. Absolutely all the graphics displayed in 

the scene but the camera that appears when an animation is going on are original. I used 

the  GIMP16 and my mouse to draw them. This allowed me to practice computer-aided 

drawing. However, drawing the animations was a tedious and boring work but at last the 

results were not that bad.

4.2.5 Music and sound

In order to play the wave files the OpenAL17 binding for Java offered by the LWJGL has 

been used. It works pretty good and there are loads of examples about how to use it. For 

the midi background music the javax.sound library was used. The implementation of those 

two players does not have any secret, they are quite small classes and most of their code 

comes from sample examples I found in the LWJGL website. However, there's a little story 

behind it I would like to tell.

4.2.5.1 Text-to-speech

Having voice sound is a very good way to improve listening, so we decided it would be one 

of the first secondary goals to be added to the application.

For playing the voices there were initially two options. Using a text-to-speech in Catalan to 

16 GNU Image Manipulation Program. http://www.gimp.org/.
17 Open Audio Library. http://www.openal.org/.

- 55 -

Figure 11: Tutor's animation sequence

http://www.openal.org/
http://www.openal.org/
http://www.openal.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/


Computer-Aided Catalan Learning Application  -  Implementation and technical issues

create  the  voices  from a  text  automatically  in  execution  time  or  recording  the  voices 

myself. I soon discarded the latter option, since I could not waste my time trying to record 

voices for the application. We had a quick look at the Internet and found that there's a NLP 

group in La Salle university, in Barcelona, that has a Catalan text-to-speech accessible via 

web (you actually write your sentence in a web form and in a few seconds the wave file is 

created and ready to download). I sent them an email telling them about my project and 

asked them if it would be possible to use their system in my application. They answered 

me very kindly that if  the application did not have any commercial purpose, they could 

indeed lend me the software. However, they didn't have a Java version, so the solution 

they game me was to connect to their web server via HTTP protocol and then parse the 

response to be able to fetch the file from their server. I also discarded this option, since by 

the  time  the  file  had  been  created,  published  and  downloaded  the  characters  of  my 

application  would  have  finished  their  speech.  Otherwise,  if  I  tried  to  synchronize  the 

graphics with the speech it would slow down the application critically. 

Finally,  the  solution  adopted  was  to  pre-create  the  wave  files  using  their  system and 

include them in the application so that they can be accessed locally. This is not as cool as 

using a text-to-speech software, but the effects achieved are pretty similar.

However,  and  since  the  speech  was  added  after  the  whole  graphics  engine  was 

programmed and running, there's sometimes synchronization problems between the voice 

and the character's movement of the mouth. This is because the animations aren't actually 

waiting for the sound to finish to stop. It could have certainly be done, but I had not much 

time left and I preferred to focus my efforts in other aspects.

4.2.6 Final implementation notes

Every text in the application is in a properties file (catalanlearning.properties), so that the 

application can easily be internationalized and ported to several other languages. This file 

contains all the speech produced by entities, all the GUI text, image and file locations and 

error messages.

- 56 -



Computer-Aided Catalan Learning Application  -  Implementation and technical issues

Also, the application has been built with logging capabilities, using the Log4j18 library, so 

that  you  can  create  log  files  with  everything  the  application  writes  as  output  (errors, 

speech...) by modifying the log4j.properties file. The default log output is the console but it 

is easily modifiable.

Finally, the lexicon parsed by the application at startup is not compressed or packed as a 

data archive. It is accessible and modifiable by any user, so that any user or student can 

complete it adding new words.

18 Stands for Log For Java.

- 57 -



Computer-Aided Catalan Learning Application  -  Evaluation and testing

5 Evaluation and testing

This chapter will discuss how the system has been tested. It is usually a difficult task to 

test the reliability of such systems and, specially, to test “how good they are”. The principal 

objective of our application is clear, teach Catalan basics to novices with some notions of 

English. However, it is always a good practice with such systems to have some people 

trying to do things and see what they achieve or what is their feedback referring to the user 

experience.

Also,  this  chapter  will  evaluate  the  whole  application  in  terms  of  in  what  grade  the 

requirements set at the beginning have been met.

5.1 Testing

The following subsections describe the various tests that have been carried out.

5.1.1 Reliability testing

The key point that needs to be tested is the NLP system, or the Language module, to be 

sure  that  it  works  as  expected and the  correct  error  feedback  is  produced.  This  was 

achieved  via  feeding  the  language  module with  a  battery  of  inputs  together  with  the 

expected error feedback. Since the language module is a complex system, where several 

stages take place, even defined in automatically generated files, the best way to locate 

- 58 -



Computer-Aided Catalan Learning Application  -  Evaluation and testing

errors and thus fix them was to use the debugging tool of the Eclipse IDE, which allows the 

developer  to  stop  the  execution  of  any  thread  (remember  our  application  splits  its 

execution line in several threads when it is running -GUI thread, Rendering thread, Music 

thread...-) and inspect a complete picture of the state of any variable at that moment. This 

feature was particularly useful for testing in depth the behaviour of the lexical analysis, 

which,  as explained in  the design  and implementation  chapters,  had  to  be  developed 

producing its output in a way the rest of ANTLR auto-generated files understood it.

These tests were also carried out to prove reliability of other components such as the 

action translator or the lexicon parser. However, since it is a game, most of its output is 

represented in the graphical scene and, eventually, in the consoles, so that you can find 

out the system works correctly for a particular set of inputs just by typing them in and 

check if the system's behaviour is the expected.

5.1.2 User testing

This test is much more interesting and useful than the previous one. It consisted in putting 

non-Catalan speakers in front of the application and see what they did, what they tried to 

do, what they did understand and what they did not, and, in general, what they expected of 

the application and what they could actually learn at the end.

The tests were done with three Galicians and a guy from Madrid. One of them has a good 

Catalan level. All the others, except the guy from Madrid, barely know how to say the basic 

sentences such as “good morning” or “see you”. The Madrid guy knew practically nothing 

about Catalan. All of them showed some interest in the application and felt open to learn 

some more Catalan. Their first impression was quite good, in the sense they actually liked 

the  look'n'feel  of  the  graphics  and the  whole  application.  Some of  them told  that  the 

sensations they got were similar to those of being in a foreign country where you have to 

actually make an effort to understand anything or speak a word.

However, they found the error feedback very useful, specially the spell checker, since they 

knew some words in Catalan but they didn't actually know how to write them properly. In 

- 59 -



Computer-Aided Catalan Learning Application  -  Evaluation and testing

addition, they could also learn some basic grammar issues such as the use of l', and some 

vocabulary. However, the adventure is kind of short and they could reach the end easily.

The one whose Catalan level is quite good eventually tried to type in complex sentences 

the system didn't respond to, which indicated that maybe the Catalan level the application 

is intended to teach was not suitable for her.

Also, they produced a lot of useful feedback about the on-line help. For example, they 

suggested that it could actually adapt to the current scene, showing vocabulary and tips on 

how to behave or what actions to take. Also, they suggested to add some grammar pages 

on prepositions, articles and actions. Mostly, the final version of the help was based in 

their comments and feelings. Moreover, I am really convinced the final version of the help 

pages is really useful  to the student and may provide hints on how to proceed in the 

adventure, which is also quite helpful if someone gets stuck.

5.2 Evaluation

Our  evaluation  will  be  based  in  discussing  how good  the  requirements  stated  at  the 

beginning of the document have been met.  It  also discusses how effective the current 

implementation described in the chapter 4 has been in fulfilling the goals.

5.2.1 Sentence parsing and error feedback

Obviously  this  is  the  most  basic  functional  requirement  and  it  has  been  achieved. 

However,  the  error  feedback  actually  locates  and  reports  some errors  but  not  all  the 

possible errors. It  is because a natural  language is often a complex and pretending to 

catch all the errors in a project of this scope would be a suicide. However, the current 

system has set  the base for  future  improvements  that  could  lead  to  a  more  powerful 

grammar or semantic analysis.

- 60 -



Computer-Aided Catalan Learning Application  -  Evaluation and testing

5.2.2 Error and dialogues console

Both dialogue and error consoles are located right under the input field, below the scene. 

Moreover, the dialogues console shows, for each piece of text, the character that produces 

it printed just before the text in a different color. The error console shows errors preceded 

by a red mark and right  inputs  preceded  by a green one.  Both  of  the consoles  are 

scrollable.

5.2.3 The on-line help

As we have said in this same chapter, the on-line help has been largely based on user 

comments. It displays in a browser window embedded in the application window itself, in 

the right of the scene. It is colorful and easy to navigate from one page to another, since 

every page contains links  to  all  the rest.  However,  could  have been improved by, for 

example,  allowing it  to  connect  to  the Internet  for  looking up words in  a  dictionary  or 

searching for extra help.

5.2.4 Platform-independent system

I have tried my best to submit equally functional Linux and Windows versions. However, 

and given the application has been developed in a Windows environment, at the end I 

can't guarantee that all the functionalities work correctly under Linux. In the Ubuntu Linux I 

have installed in my laptop at the moment, for example, the help didn't display correctly 

due to a problem with the Mozilla engine, and it could not locate the OpenAL library to play 

voices. However, the Windows version works perfectly.

- 61 -



Computer-Aided Catalan Learning Application  -  Conclusions and future work

6 Conclusions and future work

This last chapter will discuss potential future work that could be done on the project. Then, 

the final conclusions are presented.

6.1 Directions for future work

This section details the improvements that could be carried out in order to enhance the 

current Computer-Aided Catalan Learning Application.

6.1.1 Improve the grammar

Obviously, it is easy to say but not that easy to carry out. The current grammar does not 

cover subordinate sentences, weak pronouns and other constructions. A good starting for 

future work would be improving the grammar so that it covers a greater set of Catalan. 

Actually, this is not a hard task indeed, but it is kind of worthless if the action and graphical 

support is not added. 

6.1.2 Adding context to sentence interpretation

Another  interesting  improvement  would  be  to  add  a  context  to  the  dialogues  the 

application and the student maintain. For example, if the user writes:

- 62 -



Computer-Aided Catalan Learning Application  -  Conclusions and future work

 Entra a la casa (Get in the house)

The system's response would probably be:

 TUTOR: Per on he d'entrar? (Where should I get in through?)

Then, in the current system, you must write the complete correct sentence again:

 Entra a la casa per la finestra (Get in the house through the window)

It would be great if the system just kept some information of the last sentences the user 

typed in, so that instead of writing the whole phrase above, the user could only write:

 Per la finestra (Through the window)

6.1.3 Extending the lexicon

This work can be done by anyone, it is just a matter of editing an XML file. The idea is just 

to add more nouns, verbs, adjectives and adverbs. Determiners and prepositions are all 

already there. This work could be done along with the addition of new scenes.

6.1.4 Referring to entities depending on their position

The main idea of this improvement is that every entity would have a relative position to any 

other entity in the scene (right, left, behind, in front...). This can be done by just making 

some processing over the x, y and z attributes of a couple of entities (the reference and 

the referred one). For example, the user should be able to write sentences like “open the 

- 63 -



Computer-Aided Catalan Learning Application  -  Conclusions and future work

door that  is on your  left”  or “take the paper under the table”.  Obviously, these kind of 

sentences  make sense  when there's  more  than  one  door  and  more  than  one  paper, 

because the subordinate sentence is actually determining what paper and what door the 

character must interact with.

6.1.5 Adding more actions

This  is  a  very generic  improvement,  since you can spend the rest  of  your  life  adding 

actions or improving the current ones. The ideal goal is to have a game which reacts to 

anything the user types in, but this is a lot of work indeed, and since the natural language 

is indeterministic, a much more powerful and intelligent  NLP system would be required. 

However,  some  more  actions  may  be  added  such  as  'eat',  'play',  'break',  'smash'... 

Actually, there are infinite possibilities.

6.1.6 Path finding

A very fancy improvement would be to implement a path finding algorithm for the user's 

character movements. It would result in the character being able to dodge objects in the 

scene, so that the movements should not be only driven by straight vectors as they are 

currently. This would be particularly useful with bigger scenes.

6.1.7 Adding scroll

This is the solution to having greater scenes. Currently, scenes are static, in the way that 

they can not be scrolled right or left depending on the character's movements. However, it 

would be a very good enhance to add the support for scrollable backgrounds in the game 

engine so that bigger scenes could be used.

- 64 -



Computer-Aided Catalan Learning Application  -  Conclusions and future work

6.2 Final conclusions

Having the possibility to take on, develop and finish a project like the  Computer-Aided

Catalan Learning Application has given me a lot of satisfaction. However, it is still work in 

progress and, regarding to its current state, we could say it is a prototype of a possible 

future real Catalan learning application that might be used by Catalan students. Moreover, 

and given its graphic-based nature, each step I took in the project produced immediate 

and tangible results which helped keeping me motivated to go on.

I really think that converting a game, and specially a graphic game, into a learning tool is a 

very good way to keep students 'on the work' due to the intrinsically motivating nature of 

games. Moreover, this game is designed to exercise listening, reading and writing and 

could be used, as stated in the introduction, for both preventing student's language skills 

from decaying and for pure teaching purposes.

Finally, this project has given me loads of new knowledge. Although I had done something 

in game programming before, I never designed and developed a game engine almost from 

scratch, and I think I did pretty well in this sense. Also, I never ever used a tool for creating 

computer language compilers to build a natural language processing system, and I had to 

face with several problems that gave me an idea of how complex this area of computing 

science can turn out to be.

- 65 -



Appendix A - User Manual

A.I Introduction

This User Manual is intended to help the user get started with the Intelligent Catalan Tutor 

application. Since the application is quite self-explanatory and simple to use, one should 

be able to proceed without this document, having it only as a reference to check if some 

problem arises. The User Manual is neither a Catalan help document nor a maintenance 

one. A first steps tutorial is included at the end of this document though. Once said this, 

you can find a proper on-line Catalan help in the application itself  and a maintenance 

document in the doc folder of the software package you just got. In this document we will 

refer to the application base folder as $APP_HOME.

A.II Installation and Uninstallation

For the information about how to install  or uninstall  the application please refer to the 

Maintenance Manual, chapter 3.

- 66 -



A.III The Intelligent Catalan Tutor

A.III.I Run the application

The Intelligent Catalan Tutor is an application intended to help people learn basic Catalan 

in a friendly and motivating environment such is that of an adventure game. To run it you 

just  need  to  execute  the  CatalanLearningTool.bat file  in  Windows  or  to  execute  the 

CatalanLearningTool-linux script provided in any Linux flavour. You may also need to give 

execution permissions to it. If so, just proceed as explained before.

Since it is a game-like application with some minimal GUI (Graphical User Interface), its 

usage should not give the user too many headaches. However,  here below is a short 

guide to explain most of the functions of the application.

A.III.II The main screen

The main screen is composed by four main zones: the scene canvas, the right pane, the 

input/output pane at the bottom and the menu bar. 

The scene canvas is the zone used to display the graphics. Everything happens there, so 

that when you type in some text in the input field and this text contains no errors, the 

feedback is given through the scene canvas.

The right pane contains two elements. The on-line help, which is in HTML so that the user 

is able to navigate forward and back through links and look for the information he needs 

about  various useful  language issues.  It  also contains the inventory,  which is  a list  of 

objects the user has and can use at the moment.

The input/output bottom pane includes the input form (where the user types in the text in 

Catalan), the dialogues console and the output console are intended to give text feedback 

to the user. The dialogues console shows the written speech the characters produce. The 

output console shows some error feedback and the spell checking outputs.

Finally, the  menu bar is a menu intended to control the user preferences and perform 

- 67 -



some minor actions.

A.III.III Preferences menu – adjust volume

There are two types of sound output. The background music, which is in a midi format and 

the output speech. To control the volume of the output speech, just click on Adjust sound 

in the menu Preferences. This will prompt a new window with a scale which controls the 

volume.  To do the same with the background music you've got  to use your  operating 

system volume control centre and adjust the Midi synthesizer scale. 

- 68 -

Figure 12: Main window parts



A.III.IV Help menu

The help menu has two menu items: User Manual and About. By clicking on User Manual 

you'll be able to check this document, the User Manual. If you click on About a message 

window with some information about the author will display.

A.IV Tutorial

First of all you should know that the aim -goal- of the game itself is to find the shelter of the 

house  and  figure  out  how  to  get  in  since  they  forecasted  an  earthquake  for  today. 

However, the purpose of the application is to help the English-speaker user learn some 

Catalan basics in an entertaining and motivating way.  With the help provided, the user 

should be able to sort it out and make his way to the shelter. If you got stuck with the 

Catalan, just think of what would you write in English and then check the grammar section 

in the help pane.

We'll start off with some grammar basics and then we'll introduce the basic actions that will 

allow you to move around and interact with things. All the sentences the user can type in 

and  that  make  something  happen  in  the  scene  are  in  imperative.  All  sentences  are 

processed and, if they're wrong, error feedback is displayed in the output console. The 

idea is that you give orders to your character (the guy with the orange shirt). You can also 

write other types of sentences, but the effect in the scene will be reduced to the character 

advising you to write something in imperative. However, if you type in a proper sentence 

(Subject + Verb + Complements) the system still will give you the error feedback.

The normal sentence structure in Catalan is the following:

> Transitive verb (imperative) + Direct Object + Complements

> Intransitive verb (imp) + Complements

For a complete list of actions please refer to the on-line help displayed in the right pane in 

- 69 -



the application main window. You can have all sorts of complements in any order, but to 

get into more detail just look at the examples below. They're a very good starting point for 

any novice in Catalan.

A.IV.I Basic actions

The first main action you should learn is to move around. You can make your character to 

walk or run right or left, or to walk or run to entities in the scene. Usually, everything you 

see in the scene is an entity and you can tell the character to interact with. For example, in 

the first scene, the house, you can type in:

 Ves a la porta

Which means literally “Go to the door”. This will result, after you press the Intro key, in the 

character walking to the door. If you now type:

 Corre a la finestra

You'll  see the user move to the window running.  Corre a la finestra means “Run to the 

window”. Notice that if you type in:

 Corre a el finestra

 

The bottom left panel shows an error message informing that the determiner genre does 

not  match that  of  the noun (since  “el” is  the article  for  masculine  singular  nouns and 

“finestra” is feminine). You can find a whole vocabulary list for each scene in the on-line 

help in the right pane. If you have any problem just check it out.

- 70 -



Then you can also make the character behold things or look at entities. For example, if 

we want the character to look at the landscape:

 Mira el paisatge

Then, he'll move to the window and will have a look through it.  Mira el paisatge means 

“Look at the landscape”. Then he'll say what he sees. You'll be able to hear him speaking 

and you'll also have the text written in the Dialogues console.

You can also talk to living entities (which means human beings and animals). To do so, 

just type something like:

- 71 -

Figure 13: Movement and errors



 Parla amb la rata

Which means “Talk to the mouse”. Then some animations and speech will trigger. To ask 

someone for something:

 Demana la clau al noi

With this, we'll have the character asking the guy for the key, since Demana la clau al noi 

means “Ask the guy for the key”.

You may also want to open or close things. For example, to open or close the window:

 Obre la finestra

 Tanca la finestra

Obre  la  finestra means  “Open  the  window”  and  Tanca  la  finestra means  “Close  the 

window”.

And finally, to end this short tutorial, we'll show you how to get in places or get out from 

places. For example, to get out the house through the door:

 Surt de la casa per la porta

And in order to get in the house through the window:

 Entra a la casa per la finestra

- 72 -



Appendix B - Mainenance Manual

B.I Introduction

Every application may need to be improved, debugged or even studied. In order to help 

people  do so the maintenance manual  covers  a wide range of  technical  aspects  and 

particular details concerning the development of the Intelligent Catalan Tutor application. 

This document is intended to be used by anyone wishing to install, modify or debug the 

program. It is also suitable for people wanting to understand its internal structure. Although 

in this document there's an installation/uninstallation guide, most of the chapters of this 

manual go into much detail and some previous knowledge in computer science is advised.

B.II Previous requirements

In order to be able to install and use the Java SE Runtime Environment (JRE) version 1.5 

release 5 or above (if you also want to compile or debug the program, you should install 

the Java SE Development Kit, the JDK). The application may work in previous releases, 

but it has not been tested so it is not guaranteed it works well with them. The installer does 

NOT perform any system checking in this direction, so it will simply crash if you don't have 

it  in  your  PC.  To  install  the  latest  JRE or  JDK just  download  it  from  the  Java  SE 

- 73 -



Downloads page (http://java.sun.com/javase/downloads/index.jsp). 

The Intelligent Catalan Tutor is a kind of 2D Adventure Game and although the rendering 

engine used is OpenGL, no 3D graphics are used at all, so old computers equipped with 

no brand-new graphic cards shouldn't have any problem in running it.

B.II.I Linux version notes – Important for Linux users

The system's been developed entirely in WindowsXP™ and every feature it contains has 

been tested to work properly in such system. However, it also works considerably well in 

any Linux or Unix-like platform with the X11 system installed on it.  It  needs the multi-

platform toolkit GTK and the OpenAL Library (package libopenal). I tried my best to get it 

working in Linux but I faced some problems with the Mozilla HTML rendering engine for 

the help or with the speech sound.

It's been tested in  Ubuntu 6.10 and the application executed properly but some features 

just didn't work. For example, it neither displayed the on-line help nor played the speech 

sounds. Although I didn't have enough time to fix all these bugs and decided to spend my 

time improving the application itself,  a Linux version is  also included since it  executes 

correctly and you've got all the rest of features (complete interaction with the scene via 

text,  OpenGL scene, background music, error feedback...) working, which makes it quite 

usable. Finally, to be able to launch this user manual from the application itself, you should 

have the Evince Document Viewer software installed.

B.III Installation and Uninstallation instructions

Here are the installation procedures for both Windows and Linux. Remember you must 

install the correct version of the software. Otherwise it wont work, logically.

- 74 -

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp


B.III.I Windows installation

Just double click on the  Installation-win32.bat file provided with the application package. 

This  will  make  the  installation  wizard  to  start.  Then  choose  the  language  (English  or 

Catalan) and proceed following the instructions given. You will be prompted to select the 

installation folder and the packages. The only essential  package is the  Base package, 

which contains all the files and folders needed for the application to execute properly, but 

you  can  also  tick  the  Docs package  (contains  some  useful  documentation)  and  the 

Sources package, which contains the source code. If you are not interested in extending 

the application or understanding how it was done, you shouldn't tick the Sources package.

Alternatively, you can also open the Windows console (Start->Execute->”cmd”), change to 

the folder where you unzipped the application package and type the following:

$  java -jar CatalanTutorInstall.jar

B.III.II Linux installation

The process to install the application in a Linux system is quite similar. You just need to 

- 75 -

Figure 14: Installation window



run the Installation-linux script provided in a shell and the installation wizard will show up. 

You may need to add execution permissions to the file to be able to run it:

$  chmod u+x Installation-linux
$  ./Installation-linux

B.III.III Uninstall the application

To uninstall the application just go to the $APP_HOME/Uninstaller folder and execute the 

uninstaller.jar file the same way you did with the installer. 

$  java -jar uninstaller.jar

B.IV Building the application

To  build  and  compile  the  system  you'll  need  the  Eclipse  IDE  3.1  or  greater 

(http://www.eclipse.org/downloads/). Firstly you need to download it and extract it in your 

local disk. If you need information about how to configure the Eclipse IDE just take a look 

at its documentation in the same web page.

- 76 -

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/


Now  we'll  start  by  setting  up  the 

project  into  the  IDE,  so  run  the 

Eclipse  and  select  a  workspace 

location  when  prompted  for  it  (any 

location in your disk should be fine). 

Now  you  need  to  create  a  new 

project from an existing source. Just 

go  to  the  File  >  New >  Project..., 

select   Java Project and click Next. 

Write  the  project  name  (usually 

CatalanLearningTool),  tick  Select  

project  from  existing  source and 

select  the  CatalanLearningTool 

folder  which  is  inside  the 

EclipseWorkspace  folder from  the 

project  CD.  Note  that  inside  this 

folder  there's  an Eclipse project  file 

called .  Now, if  everything went right,  you should have a new project  in  the  Package 

Explorer window in your Eclipse.

Moreover, the project should be totally configured and you should even be able to run it. 

To do so, just open out the project folder and select the file EntryPoint.java in the package 

com.abdn.project.start. Remember that all sources are under the src/ folder.  Right click on 

it  and  then  Run as >  SWT Application.  This  should  make the  application  to  execute 

properly.

B.IV.I Building the application in Linux

If you are in Linux, you'll need to change a few parameters. First, go to the Run menu and 

then select  Run....  Then, select  EntryPoint under the SWT Application group and in the 

Arguments tab, in VM Arguments change the line -Djava.library.path=library/win32 for this 

one: 

- 77 -

Figure 15: Importing the project



-Djava.library.path=library/linux

Once done this, you just need to change the current  SWT package which is the win32 

version  for  the  GTK one intended  for  Linux.  To do  so,  just  remove the  current  SWT 

package (whose name is org.eclipse.swt.win32.win32.x86_3.2.1.v3235.jar) from the build 

path (right click > Build path > Remove from build path) and add the proper one for your 

system. Your Eclipse distribution should have it among its plugins, so just right click on 

your project,  Build path >  Configure build path... This will display the Build path window. 

Here go to the  Libraries tab and click  on  Add Variable...  button.  Now double click on 

ECLIPSE_HOME and select the proper file under the plugins folder. The file should be 

something like org.eclipse.swt.gtk.[version].jar. 

If you've reached this point you have configured the project correctly and you are now in 

position to start working with it. What you need now is to gain some base knowledge on 

the project itself, where to find the correct file to change something.

B.V Dependencies

The project package prepared to be imported into the Eclipse contains all the necessary 

libraries to execute the project properly. However, it is always a good practice to offer a 

complete  list  of  software  and  hardware  dependencies  so  that  future  developers  can 

replace some of those libraries with newer versions.

B.V.I Software dependencies

The libraries used in the development of the application, in alphabetical order, are:

● ANTLR (www.antlr.org).

● From the project Jakarta-commons (http://jakarta.apache.org/commons/) of Apache:

○ BeanUtils (http://jakarta.apache.org/commons/beanutils/).

○ Digester (http://jakarta.apache.org/commons/digester/).

○ Logging (http://jakarta.apache.org/commons/logging/).

- 78 -

http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/digester/
http://jakarta.apache.org/commons/digester/
http://jakarta.apache.org/commons/digester/
http://jakarta.apache.org/commons/beanutils/
http://jakarta.apache.org/commons/beanutils/
http://jakarta.apache.org/commons/beanutils/
http://jakarta.apache.org/commons/
http://jakarta.apache.org/commons/
http://jakarta.apache.org/commons/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/


● Log4j (http://logging.apache.org/log4j/docs/).

● Lightweight Java Gaming Library (LWJGL, http://www.lwjgl.org/).

● Standard Widget Toolkit, SWT, from the Eclipse project (http://www.eclipse.org/swt/).

Briefly, the ANTLR library is used in the language parsing, to build the lexical analysis and 

the  grammar.  The  jakarta-commons libraries  are  used  as  various  resource  libraries. 

Specifically,  the  commons-digester is used to parse the lexicon file which contains the 

words. Finally, the LWJGL allows access to cross platform libraries used in the application 

such as  OpenGL and OpenAL from Java applications.

For the project to run without crashing you'll also need some operating system dependant 

libraries (basically needed for the  SWT and the  LWJGL modules to work). In the folder 

/library -as explained below- are the libraries for both Windows and Linux.

B.V.II Hardware dependencies

In order to run the application properly you just need a PC with Windows XP or any Linux-

like operating system (with a desktop environment and the GTK). Your graphic card must 

support OpenGL and you need a compatible sound card able to synthesize midi tracks, or, 

if not possible, any synthesizer emulation by software.

- 79 -

http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.lwjgl.org/
http://www.lwjgl.org/
http://www.lwjgl.org/
http://logging.apache.org/log4j/docs/
http://logging.apache.org/log4j/docs/
http://logging.apache.org/log4j/docs/


B.VI Hardware requirements

This section details the minimum hardware necessary to run the application.

B.VI.I Disk space

The installed base package requires 18,94 MB of disk space. If you choose to install the 

documentation and the sources, it will require about 20 MB more or less.

B.VI.II Memory requirements

The RAM memory required to run the application varies from one computer to another 

(depending on the type of graphic card, the sound card...), but having seen the results I 

got in my tests, it should fluctuate between 48 and 55MB, being 48 the minimum and 55 

the maximum required. Once said this, it should work perfectly fine in any modern laptop 

or desktop computer, since mine is 4 years old -2003- and works pretty well on it.

I think the system should work in a computer with at least 128MB of RAM, but I have not 

tried. Anyway, the graphical stuff is the part that needs more computing power and any PC 

with a reasonably good graphic card (the scene is OpenGL) shouldn't have any problem.

B.VII Directory structure

The project files are organized into several subfolders inside the main project folder. Most 

of the folders have an intuitive name which clearly represents what they contain, but some 

may have at their turn more subfolders, leading us to a tree structure.

- 80 -



● /src:  Contains   the  source  code  of  the  whole 

application.  It  also  contains  the  property  files 

log4j.properties and  the  catalanlearning.properties. 

The  former  is  related  to  the  log4j library  and 

describes how the logger outputs must be produced 

among other things. The latter is strongly bound to 

the application and contains image and sound files 

locations,  output  data,  captions  and  a  lot  of 

information  which  must  not  be  hard-coded.  The 

packages  and  the  source  codes  are  explained 

deeply in subsequent sections.

● /doc:  The  doc  folder  contains,  obviously,  the 

documentation. It contains the User Manual and the 

current document. 

● /help: Contains the HTML help that is displayed in 

the right pane, whose purpose is to help and guide 

the  user  through  the  learning  of  the  Catalan 

language.  It  contains  a file  for  each scene in  the 

game  and  some  other  additional  pages  the  user 

may look up to find more help in grammar or other issues.

● /icons:  This folder contains some windows icons and images that are no longer 

used in the final version of the  CatalanLearningTool but that are included in case 

someone wished to use them.

● /images: Here is located the bulk of the images used in the project. 

○ /images/icons: Some windows icons.

○ /images/scenes:  The game graphics,  divided and organized by scenes. The 

inventory images are in the /images/scenes/inventory folder.

○ /images/screenshots:  Some  screenshots  taken  during  the  project 

development.  You  can  see  here  the  state  of  the  application  at  earlier 

- 81 -



development stages.

○ /images/shellImages: The image that appears in the upper-left corner of the 

application window.

○ /images/splashScreen: A couple of images used as a splash screen.

● /lexicon: Contains the lexicon.cat.xml file containing the lexicon.

● /lib: All the libraries (.jar files) used in the project must be placed in this folder.

● /library:  Operating System dependant  libraries (.dll files in Windows,  .so files in 

Linux). Those comprise OpenAL libraries, SWT libraries and some others.

● /META-INF: Contains the Manifest.mf file used to build the application .jar file.

● /music: Contains sound and music files.

○ /music/speech:  Contains  the  wave  files  with  the  speech  produced  by  the 

characters in the application.

○ /music/backgroundmusic: Contains the midi files with the background music.

The rest of the non-directory files that are located in the application base folder are various 

configuration files such as the XML file used to create the installation, the scripts that run 

the application, or the readme file.

B.VII.I Source files and packages

The source files in Java are usually grouped in packages. In this section all the packages 

and the source files of the project are described and summarized so that anyone quickly 

find the particular file responsible for something.

- 82 -



B.VII.I.I Package com.abdn.project.examples

This package was usually intended to hold general examples concerning any topic, but at 

last it was decided to put the specific examples inside the test package of every specific 

package.

● Game.java – Thats an example of a basic scene rendered in OpenGL. It displays a 

white square rotating over a black background. It is useful to study the main parts of 

a scene rendering: the main loop, the update and the rendering (OpenGL calls).

B.VII.I.II Package com.abdn.project.gui

This package holds the files responsible for building and controlling the graphical  user 

interface. In the classes belonging to this packages we usually find calls and objects of the 

Standard Widget Toolkit (SWT), library we use to build the GUI.

● BuildShell.java – Builds the main application window and initializes all the widgets. 

It also controls option windows such as the Speech volume control window or the 

About window. That's the class responsible for controlling the  Dialogues and the 

Output consoles. 

● MainApplication.java – This class controls the rendering of the splash screen and 

launches the application afterwards.  The time the splash screen is  displayed is 

used to parse the lexicon and to initialize the main window.

B.VII.I.III Package com.abdn.project.language.model

The package model inside language holds all the classes (in this case just one) needed to 

represent a word in a sentence.

● Word.java – This class is used to represent directly a word in the lexicon. When the 

XML lexicon is parsed, each word in the lexicon becomes an instance of this class. 

Then, the instances are put in a list in order to have the lexicon in memory.

- 83 -



B.VII.I.IV Package com.abdn.project.language.module

This package contains classes that deal with the language module, the one that deals with 

the  inputs  the  user  type  and  produces  the  proper  output  feedback.  It  contains 

subpackages that are explained below.

● LanguageRecognitionManager.java –  All  the  operations  dealing  with  the 

language module called by the main program are supposed to pass through this 

class since it acts as an interface class.

● ParsingError.java –  It  just  represents  a  parsing  error  and  is  produced  by  the 

syntactic analysis.

B.VII.I.V Package com.abdn.project.language.module.semantic

This package has the class that implements the semantic analysis and some other that 

have utilities.

● AstUtil.java – It contains a method that writes a given AST (Abstract Syntax Tree) 

into a  String. It is only used for debugging purposes.

● SemanticAnalysis.java – As the name claims, this class implements the semantic 

analysis that parses the AST that comes out from the syntactic analysis. It checks 

the  prepositions  are  used  well  and  the  concordance  of  noun-determiner-verb, 

amongst other things.

B.VII.I.VI Package com.abdn.project.language.module.syntactic

This has the classes needed for both the lexical analysis and the syntactic analysis. It also 

contains the grammar file, which will be translate into the syntactic analysis.

● CatalanLexerModified.java – This file implements the lexical analysis. Normally, it 

would be produced by ANTLR, but as I needed more features that those ANTLR 

offers, I had to write it myself.

● CatalanParser.java – This file is just the translation of the grammar contained in 

- 84 -



the CatalanParser.g. It's an automatically generated file.

● CatalanParserTokenTypes.java –  Contains  the token type constants.  It  is  also 

generated automatically.

● TestCatalanGrammar.java – It is just a main class that tests the grammar itself 

atomically. Calls the lexer and the parser.

● CatalanParser.g –  Contains  the  grammar  in  the  ANTLR  language.  For  more 

information about this language just check www.antlr.org.

B.VII.I.VII Package com.abdn.project.language.module.translation

This  package  contains  the  necessary  files  for  converting  the  AST  that  produces  the 

syntactic analysis into an Action Model suitable for updating the scene.

● ActionModel.java – Represents  an action to  be taken in  the scene with all  its 

complements, and it will be processed by the SceneController in order to update the 

scene.

● Actions.java – Constants representing the actions that can be carried out in the 

scene.

● ActionTranslator.java – This class contains only one public static function whose 

target is to split an AST (usually the outcome from the semantic analysis) into one 

or more actions describing only one action each and put them in the action queue in 

order to be processed.

● Identifier.java – The identifier class represents a nominal syntagm. It is used in the 

ActionModel to store the direct object, the actor, the subject...

B.VII.I.VIII Package com.abdn.project.language.module.xmlparser

This package contains the classes that perform the parser of the XML lexicon file.

● LexiconManager.java – This class is intended to be used as a manager for the 

- 85 -

http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/


lexicon so that all the operations over the lexicon should be done through this class.

● LexiconParser.java – The lexicon parser parses the lexicon. Thats quite obvious. It 

is  done  just  once  and  it  loads  the  lexicon  contained  in  the  XML  file  into  a 

Map<Integer,  List<Word>>,  which is  the data structure used to hold  the lexicon 

during the execution.

● ParsingTest.java  – This class loads the lexicon and halts. It is used for test and 

debugging purposes only.

● RearrangeLists.java – This class performs some useful operations over the parsed 

lexicon. It looks for entries with the same word and mixes their properties into one 

word, which adds to the lexicon. The two source words are deleted.

B.VII.I.IX Package com.abdn.project.language.spelling

Contains the necessary classes to perform the spell checking.

● Distance.java – This class contains the algorithm that implements the method that 

works out the distance between two words.

● SpellingChecker.java – Implements the spell checking. It takes a word as an input 

and uses the distance algorithm to find possible candidates amongst the lexicon 

that may be similar to the given word.

B.VII.I.X Package com.abdn.project.language.test

This package contains a couple of ANTLR examples with all the generated classes in the 

sub-packages expr and token respectively.

B.VII.I.XI Package com.abdn.project.rendering

This package contains classes and sub-packages whose purpose is to build the structure 

necessary to be able to render the scene and to animate the graphics.

- 86 -



● SceneRendering.java –  This  class  builds  the  canvas  where  the  scene  will  be 

displayed and calls  the  DrawScene class properly. Contains the main rendering 

loop and the resizing algorithm.

B.VII.I.XII Package com.abdn.project.rendering.graphics

This sub-package contains classes useful to deal with graphic stuff and animations.

● Animation.java – This file represents a basic animation usually composed by a 

sequence of sprites which may be displayed sequentially.

● AnimationSequence.java –  This  package  is  intended  to  group  a  sequence  of 

MotionEntities and run them sequentially.

● MotionEntity.java – This may represent  either  an animation or  a sprite.  It's  an 

abstract class.

● Sprite.java – Represents  an image which has been loaded and is  ready to  be 

drawn on the scene.

● Texture.java – It also represents an image but without the necessary infrastructure 

to draw it. Just contains the image data.

● TextureLoader.java – This class loads any image file on disk into a Texture object.

B.VII.I.XIII Package com.abdn.project.scene.basic

This package contains some basic classes that will  help us to manage the scene in a 

higher level. We've got a class hierarchy so that most of the functionalities of a concrete 

class are implemented in parent classes.

● BackEnt.java – Represents an entity that's  in the background of  the scene but 

does not have an image itself. However, it can be beheld by the user and referred 

to.

● Background.java – This class represents a background.

- 87 -



● BasementBackground.java – Represents the background of the shelter.

● Bird.java – Represents the bird flying from right to left and from left to right in the 

Garden scene.

● Difference.java – This class represents the difference image which every scene 

must have so that the system can work out where the user character may step on 

and where may not. More information about this class and how the system works 

can be found in the project report.

● Dog.java – Represents and defines the behaviour of the green dog standing by the 

house in the Garden scene.

● Entity.java –  Represents  ANY  entity.  This  means  that  all  the  classes  in  this 

package inherit  from  Entity.   This abstract  class defines the methods any entity 

should implement.

● Exit.java – Represents the exit of the shelter in the Basement scene.

● Fence.java – Represents the fence that's on the Foreground in the Garden scene.

● Finestra.java – Represents the window of the house in the House scene.

● GardenBackground.java – Represents the background of the Garden scene.

● GroundDoor.java – Represents the door that leads to the basement in the Outside 

scene. It inherits form Openable.

● GuardiaClau.java –  Represents  the  weird  guy  standing  by  the  window  in  the 

House scene. This guy is the key holder.

● HouseBackground.java – The background of the House scene.

● Lever.java – Represents the lever the user can take from the ground of the Garden 

scene.

● LivingEntity.java – Represents  any living entity,  animals  or  persons.  If  a class 

inherits from LivingEntity, the user character will be able to speak to it.

- 88 -



● Mouse.java – Represents the running mouse which is inside the room in the House 

scene.

● Moveable.java – Any object that can be moved should inherit from this class.

● Notice.java – Represents the notice advising to beware the dog which is on the 

foreground in the Garden scene.

● Openable.java –  Describes  the  methods  and  properties  any  entity  that  can  be 

opened or closed should have.

● OutsideBackground.java – The background of the Outside scene.

● OutsideDoor.java – The door to enter the house in the Outside scene.

● Porta.java – The door to get out in the House scene.

● ScConst.java – Contains some important  constants concerning the state of  the 

entities.

● Statue.java – Represents the statue blocking the shelter door in the Outside scene.

● Takeable.java – Represents any entity that can be taken by the user character.

● Tree.java – Represents a tree.

● Tutor.java – Represents the user character, the tutor in the game.

● WindowOut.java –  Represents  the  window to  get  in  the  house  in  the  Garden 

scene.

B.VII.I.XIV Package com.abdn.project.scene.controller

This package contains some classes that control and update the scene. 

● Ents.java – Contains a list for each scene with the entities that should be drawn 

when the scene is active. It also defines all of the entities (that otherwise are in any 

of the previous lists) so that they can be accessed directly.

- 89 -



● OutputMessage.java – Represents a message that should be displayed in one of 

the two consoles. The  OutputMessages for a particular action are displayed just 

after that action has been triggered and processed.

● SceneController.java –  This  is  one  of  the  most  important  classes  in  the 

application. It contains a queue of ActionModels and it is responsible for parsing this 

action model and triggering the proper animations in the scene so that it updates 

correctly.

B.VII.I.XV Package com.abdn.project.scene.draw

This package contains a class for each scene named Draw[name-of-scene].java and that 

are called when their scene must display. It updates the entities the scene contains and 

changes  the  background,  the  difference,  the  background  music  and  some  other 

parameters.

● DrawBasement.java – Implements the DrawScene for the basement scene.

● DrawGarden.java – Implements the DrawScene for the garden scene.

● DrawHouse.java – Implements the DrawScene for the house scene.

● DrawOutside.java – Implements the DrawScene for the outside scene.

● DrawScene.java – This is the main class, from which all others inherit, and defines 

the methods that  shall  be called at each iteration of the main rendering loop to 

update and draw the whole scene. 

B.VII.I.XVI Package com.abdn.project.scene.inventory

Contains the classes that control the inventory.

● Inventory.java – Contains a list  of  InvObjects representing the objects  that  are 

currently in the inventory and the methods to add and delete items from the list.

● InvObject.java – Represents an object in the inventory. It has a name and a path to 

- 90 -



an image which will be displayed for this object in the inventory zone of the main 

application window.

B.VII.I.XVII Package com.abdn.project.sound.basic

Contains the two classes used to play both the background music and the speech sounds.

● MidiPlayer.java – This class creates a thread that plays a midi song until it is told to 

stop. It is responsible for playing the background music.

● WavPlayer.java – This class is able to play a wave file or more than one at once. It 

is used to play the speech sounds.

B.VII.I.XVIII Package com.abdn.project.sound.test

Contains some sound test classes.

B.VII.I.XIX Package com.abdn.project.start

Contains the entry point to the application.

● EntryPoint.java – This class contains a main method that must be called in order 

to run the application.

B.VII.I.XX Package com.abdn.project.util

The  util  package  contains  some  utility  classes  that  are  used  from  any  part  in  the 

application.

● Constants.java – This is a global constants file.

● ResourceManager.java – This class helps us deal with the properties file. It is able 

to retrieve a string from this file given a key.

- 91 -



B.VIII Known bugs

Here is the list of the known bugs of the system.

● In some rare occasions it may occur that the character, the tutor, is drawn in front of 

an entity that is closer to the camera. This is due to some entities have a drawing 

canvas bigger than others so that it  may appear they are closer when they are 

actually  further.  Moreover,  in  the  garden  and  outside  scenes,  the  character  is 

scaled down when he walks away and he's scaled up when he walks to the camera. 

This may produce this depth bug as well.

● Sometimes the speaking animation and the voice are not synchronized very well. 

This is due to the speech voice was added after building the rest of the system, 

and, specifically, after designing the animation system. So the mouth animation of 

characters should depend on the voice but it does not.

● In Linux the application may crash at startup or may not play any sound if the sound 

device is busy. This may happen when there's any music or video player running in 

the system. It is not a bug of the application itself but of the operating system.

● Finally, it has happened that sometimes the application gets stuck and everything 

gets slower, animations, rendering and even the GUI. It has only happened in my 

laptop, which is a bit old, when resizing the application. However, in my desktop 

computer works fine and this problem never occurs.

- 92 -



Appendix C - Glossary

Terminology Meaning

CALL Computer-Assisted Language 

Learning

ICALL Intelligent CALL

XML Extensible Markup Language

LWJGL Lightweight Java Gaming Library

OpenGL Open Graphics Library

OpenAL Open Audio Library

SWT Standard Widget Toolkit

FIFO First In First Out

ALICE-chan Automated Language-

Instruction/Curriculum Environment

ALICE (bot) Artificial Linguistic Internet Computer 

Entity

CALLE Computer-Assisted Language 

Learning Environment

- 93 -



NLP Natural Language Processing

ANTLR Another Tool for Language 

Recognition

PCCTS Purdue Compiler Construction 

Toolset

JavaCC Java Compiler Compiler

Log4j Log For Java

UML Unified Modeling Language

GUI Graphical User Interface

AST Abstract Syntax Tree

GIMP GNU Image Manipulation Program

GPL General Public License

- 94 -



References

 [1]  Claude Frasson, Gilles Gauthier, Alan Lesgold (Eds.), Intelligent Tutoring Systems, 

Third International Conference, ITS '96, Montréal, Canada, June 1996. Springer.

 [2]  V. Melissa Holland, Jonathan D. Kaplan, Michelle R. Sams, Intelligent Language 

Tutors – Theory Shaping Technology – 1995, Lawrence Erlabaum Associates.

 [3]  Lightweight Java Gaming Library.

http://www.lwjgl.org

 [4]  OpenGL. Graphics library specification.

http://www.opengl.org

 [5]  OpenAL. Audio library specification.

http://www.openal.org

 [6]  Argo UML. UML modeling tool.

http://argouml.tigris.org/

 [7]  Standard Widget Toolkit. GUI toolkit from eclipse.

http://www.eclipse.org/swt/

 [8]  ANTLR. Language recognition tool specification.

http://www.antlr.org/

 [9]  The Digester component. XML to Java mapping component.

http://jakarta.apache.org/commons/digester/

 [10]  GIMP. Image manipulation program.

http://www.gimp.org/

 [11]  Computer-Assisted Language Learning. An introduction.

- 95 -

http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://jakarta.apache.org/commons/digester/
http://jakarta.apache.org/commons/digester/
http://jakarta.apache.org/commons/digester/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://argouml.tigris.org/
http://argouml.tigris.org/
http://argouml.tigris.org/
http://www.openal.org/
http://www.openal.org/
http://www.openal.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.lwjgl.org/
http://www.lwjgl.org/
http://www.lwjgl.org/


http://www.gse.uci.edu/faculty/markw/call.html

 [12]  Computer-Aided Language Learning at International Computer Science Institute.

http://www.icsi.berkeley.edu/~gelbart/call/

 [13]  Slime Forest Adventure. Learning the Japanese alphabets in a game.

http://lrnj.com/

 [14]  Tactical Language & Culture Training System. Advanced ICALL system.

http://www.tacticallanguage.com/tacticaliraqi/

 [15]  Log4j. A logging library for java.

http://logging.apache.org/log4j/docs/

 [16]  Catalan grammar. Comprehensive grammar of the Catalan language.

http://www.sola-sole.com/gramat.htm 

 [17]  Quake III Game Engine.

http://ioquake3.org/, http://en.wikipedia.org/wiki/Quake_III_engine

- 96 -

http://en.wikipedia.org/wiki/Quake_III_engine
http://en.wikipedia.org/wiki/Quake_III_engine
http://en.wikipedia.org/wiki/Quake_III_engine
http://ioquake3.org/
http://ioquake3.org/
http://ioquake3.org/
http://www.sola-sole.com/gramat.htm
http://www.sola-sole.com/gramat.htm
http://www.sola-sole.com/gramat.htm
http://logging.apache.org/log4j/docs/
http://logging.apache.org/log4j/docs/
http://logging.apache.org/log4j/docs/
http://www.tacticallanguage.com/tacticaliraqi/
http://www.tacticallanguage.com/tacticaliraqi/
http://www.tacticallanguage.com/tacticaliraqi/
http://lrnj.com/
http://lrnj.com/
http://lrnj.com/
http://www.icsi.berkeley.edu/~gelbart/call/
http://www.icsi.berkeley.edu/~gelbart/call/
http://www.icsi.berkeley.edu/~gelbart/call/
http://www.gse.uci.edu/faculty/markw/call.html
http://www.gse.uci.edu/faculty/markw/call.html
http://www.gse.uci.edu/faculty/markw/call.html

	1Introduction
	1.1Project overview
	1.2Objectives
	1.2.1Primary objectives
	1.2.2Secondary objectives

	1.3Motivations
	1.3.1Interests in NLP
	1.3.2Getting knowledge on game programming
	1.3.3Explore new ways to learn languages
	1.3.4The Catalan language background

	1.4Structure of this document

	2Background and related work
	2.1CALL and ICALL systems
	2.1.1Text-based tutors
	2.1.1.1ALICE-chan – Japanese
	2.1.1.2CALLE – Spanish
	2.1.1.3BRIDGE – German and Arabic

	2.1.2Dialogue-based language games
	2.1.2.1Spion – An AI Spy Game
	2.1.2.2Herr Kommissar
	2.1.2.3A.L.I.C.E. Bot

	2.1.3Graphic-based tutors
	2.1.3.1FLUENT
	2.1.3.2Ling Worlds
	2.1.3.3Slime Forest Adventure


	2.2Game engines
	2.2.1Allegro
	2.2.2DarkBasic
	2.2.3Easy Way Game Engine


	3Application design model
	3.1Functional requirements and use cases
	3.2Non-functional requirements
	3.3Overall system architecture
	3.4Module design
	3.4.1GUI module design
	3.4.2Language module
	3.4.2.1Functionalities
	3.4.2.2Design model

	3.4.3Action module design
	3.4.3.1Functionalities
	3.4.3.2Design model

	3.4.4Rendering module design
	3.4.4.1Functionalities
	3.4.4.2Design model

	3.4.5Sound module design


	4Implementation and technical issues
	4.1Technical decisions
	4.1.1Programming language
	4.1.2Rendering engine
	4.1.3Language recognition tool
	4.1.4Lexicon format

	4.2Implementation
	4.2.1Graphical User Interface implementation
	4.2.2Natural Language Processing implementation
	4.2.2.1Using ANTLR for Natural Language Processing
	4.2.2.2The grammar
	4.2.2.3The lexical analysis problem
	4.2.2.4The creation of the lexicon
	4.2.2.5The spell checker
	4.2.2.6Semantic analysis
	4.2.2.7Error feedback

	4.2.3Action module implementation
	4.2.3.1Tree translation
	4.2.3.2Action interpretation and action queue

	4.2.4Game engine implementation
	4.2.4.1Sprites and animations
	4.2.4.2Entities and scenes
	4.2.4.3The rendering loop
	4.2.4.4The difference object
	4.2.4.5Drawing the graphics

	4.2.5Music and sound
	4.2.5.1Text-to-speech

	4.2.6Final implementation notes


	5Evaluation and testing
	5.1Testing
	5.1.1Reliability testing
	5.1.2User testing

	5.2Evaluation
	5.2.1Sentence parsing and error feedback
	5.2.2Error and dialogues console
	5.2.3The on-line help
	5.2.4Platform-independent system


	6Conclusions and future work
	6.1Directions for future work
	6.1.1Improve the grammar
	6.1.2Adding context to sentence interpretation
	6.1.3Extending the lexicon
	6.1.4Referring to entities depending on their position
	6.1.5Adding more actions
	6.1.6Path finding
	6.1.7Adding scroll

	6.2Final conclusions
	Appendix A -User Manual
	A.IIntroduction
	A.IIInstallation and Uninstallation
	A.IIIThe Intelligent Catalan Tutor
	A.III.IRun the application
	A.III.IIThe main screen
	A.III.IIIPreferences menu – adjust volume
	A.III.IVHelp menu

	A.IVTutorial
	A.IV.IBasic actions


	Appendix B -Mainenance Manual
	B.IIntroduction
	B.IIPrevious requirements
	B.II.ILinux version notes – Important for Linux users

	B.IIIInstallation and Uninstallation instructions
	B.III.IWindows installation
	B.III.IILinux installation
	B.III.IIIUninstall the application

	B.IVBuilding the application
	B.IV.IBuilding the application in Linux

	B.VDependencies
	B.V.ISoftware dependencies
	B.V.IIHardware dependencies

	B.VIHardware requirements
	B.VI.IDisk space
	B.VI.IIMemory requirements

	B.VIIDirectory structure
	B.VII.ISource files and packages
	B.VII.I.IPackage com.abdn.project.examples
	B.VII.I.IIPackage com.abdn.project.gui
	B.VII.I.IIIPackage com.abdn.project.language.model
	B.VII.I.IVPackage com.abdn.project.language.module
	B.VII.I.VPackage com.abdn.project.language.module.semantic
	B.VII.I.VIPackage com.abdn.project.language.module.syntactic
	B.VII.I.VIIPackage com.abdn.project.language.module.translation
	B.VII.I.VIIIPackage com.abdn.project.language.module.xmlparser
	B.VII.I.IXPackage com.abdn.project.language.spelling
	B.VII.I.XPackage com.abdn.project.language.test
	B.VII.I.XIPackage com.abdn.project.rendering
	B.VII.I.XIIPackage com.abdn.project.rendering.graphics
	B.VII.I.XIIIPackage com.abdn.project.scene.basic
	B.VII.I.XIVPackage com.abdn.project.scene.controller
	B.VII.I.XVPackage com.abdn.project.scene.draw
	B.VII.I.XVIPackage com.abdn.project.scene.inventory
	B.VII.I.XVIIPackage com.abdn.project.sound.basic
	B.VII.I.XVIIIPackage com.abdn.project.sound.test
	B.VII.I.XIXPackage com.abdn.project.start
	B.VII.I.XXPackage com.abdn.project.util


	B.VIIIKnown bugs

	Appendix C -Glossary



