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Abstract

The Dataflow Design Tool is a software tool for selecting a multiprocessor
scheduling solution for a class of computational problems. The problems of interest
are those that can be described with a dataflow graph and are intended to be executed
repetitively on a set of identical processors. Typical applications include signal pro-
cessing and control law problems. The software tool implements graph-search algo-
rithms and analysis techniques based on the dataflow paradigm. Dataflow analyses
provided by the software are introduced and shown to effectively determine perfor-
mance bounds, scheduling constraints, and resource requirements. The software tool
provides performance optimization through the inclusion of artificial precedence con-
straints among the schedulable tasks. The user interface and tool capabilities are
described. Examples are provided to demonstrate the analysis, scheduling, and opti-
mization functions facilitated by the tool.

1. Introduction 2. The algorithm task dependencies, preferably due to

o ] ] the inherent data dependencies, must be modeled
For years, digital signal processing (DSP) systems by a directed graph.

have been used to realize digital filters, compute Fourier

transforms, execute data compression algorithms, and 3. The directed graph must be deterministic as defined
run a vast amount of other computationally intensive below.

algorithms. Today, both government and industry are
finding that computational requirements, especially in
real-time systems, are becoming increasingly challeng-
ing. As a result, many users are relying on multiprocess- 5. The algorithm must be executed on identical
ing to solve these problems. To take advantage of processors.

multiprocessor architectures, novel methods are needed

to facilitate the mapping of DSP applications onto multi- When the directed graph is a result of inherent data
ple processors. Consequently, the DSP market haglependencies within the problem, the directed graph is
exploded with new and innovative hardware and soft- €quivalent to a dataflow graph. Dataflow graphs are gen-
ware architectures that efficiently exploit the parallelism eralized models of computation capable of exposing
inherent in many DSP applications. The dataflow para-inherent parallelism in algorithms ranging from fine to
digm has also been getting considerable attention in thdarge grain. This paper assumes an understanding of both
areas of DSP and real-time systems. The commerciadataflow graph theory as described by a Petri net
products offered today utilize the dataflow paradigm as a(marked graph) and the fundamental problem of task
graphical programming language but do not incorporatescheduling onto multiple processors. The Dataflow
dataflow analyses in designing a multiprocessing solu-Design Tool is a Microsoft Windows application, and
tion. Although there are many advantages to graphicalthus a working knowledge of Microsoft Windows (i.e.,
programming, the full potential of the dataflow represen- launching programs, using menus, window scroll bars) is
tation is lost by not utilizing it analytically as well. In the @lso assumed.

absence of the analysis and/or design offered by the soft- |, the context of this paper, graph nodes represent

ware tool described in this paper, programmers must relygepeqylable tasks, and graph edges represent the data
on approximate compile time solutions (heuristics) or yependencies between the tasks. Because the data depen-
run-time implementations, which often utilize ad hoc yencies imply a precedence relationship, the tasks make
design approaches. up a partial-order set. That is, some tasks must execute in
This paper describes the Dataflow Design Tool, & particular order, whereas other tasks may execute inde-

which is capable of determining and evaluating the P€ndently. When a computational problem or algorithm
steady-state behavior of a class of computational prob-can be described with a dataflow graph, the inherent par-
lems for iterative parallel execution on multiple proces- 2/lelism present in the algorithm can be readily observed

sors. The computational problems must meet all the@nd exploite_d. The determini;tic modeling methods pre-
following criteria: sented in this paper are applicable to a class of dataflow

graphs where the time to execute tasks are assumed con-
1. An algorithm decomposition into primitive opera- stant from iteration to iteration when executed on a set of
tions or tasks must be known. identical processors. Also, the dataflow graph is assumed

4. The algorithm execution must be repetitive for an
infinite input data stream.



data independent; that is, any decisions present withinvide an overview of the user interface and the capabilities
the computational problem are contained within the of the Dataflow Design Tool version 3.0. Further discus-
graph nodes rather than described at the graph level. Theions of the models implemented by the Design Tool are
dataflow graph provides both a graphical model and aprovided in section 10 for a few case studies. Enhance-
mathematical model capable of determining run-time ments planned for the tool are discussed in section 11.
behavior and resource requirements at compile time. In

particular, dataflow graph analysis can determine the2. Dataflow Graphs

exploitable parallelism, theoretical performance bounds, . . . .
speedup, and resource requirements of the system. A generalized description of a multiprocessing prob-

Because the graph edges imply data storage, the resourc8M @nd how it can be modeled by a directed graph is
requirement specifies the minimum amount of memory presented. Such formalism is useful in defining the mod-

needed for data buffers as well as the processor require€!S @nd_graph analysis procedures supported by the

ments. This information allows the user to match the P€SIIN TOOI'.A computational problem can often be
resource requirements with resource availability. In addi- 9€c0mposed into a set of tasks to be scheduled for execu-

tion, the nonpreemptive scheduling and synchronizationtion (réf. 4). If the tasks are not independent of one
of the tasks that are sufficient to obtain the theoretical 2"0ther, a precedence relationship will be imposed on the

performance are specified by the dataflow graph. Thistasks in order to obtain correct computational results.
property allows the user to direct the run-time execution A task system can be represented formally as a
according to the dataflow firing rules (i.e., when tasks are5-tuple ~<,L,D,M). The sel ={Ty, Ty, T5,..., T,}
enabled for execution) so that the run-time effort is sim- js a nonempty set af tasks to be executed, arl  is the
ply reduced to allocating an idle processor to an enabledyrecedence relationship dnsuch thafl; < T, signifies
task (refs. 1 and 2). When resource availability is not suf-that T; cannot execute until the completionTof The set
ficient to achieve optimum performance, a technique of | ={Ly, Ly, Lg,..., L} is @ nonempty, strictly positive
optimizing the dataflow graph with artificial data depen- set of run-time latencies such that taskakesL; amount
dencies called “control edges” is utilized. of time to execute. The s€={d;j, dc |, dm_ pn---,
dy, y is a strictly positive set of |atencies associated
with each precedence relationship. A latedgy; in D
that is associated with the precedefice< T; represents
the time required to communicate the data ffgrto T;.
'Finally, M, is the initial state of the system as indicated
by the presence of initial data.

An efficient software tool that applies the mathemat-
ical models presented is desirable for solving problems in
a timely manner. A software tool developed for design
and analysis is introduced. The software program
referred to hereafter as the “Dataflow Design Tool” or
“Design Tool,” provides automatic and interactive analy-
sis capabilities applicable to the design of a multiprocess-  Such task systems can be described by a directed
ing solution. The development of the Design Tool was graph where nodes (vertices) represent the tasks and
motivated by a need to adapt multiprocessing computa-edges (arcs) describe the precedence relationship
tions to emerging very-high-speed integrated circuit between the tasks. When the precedence constraints
(VHSIC) space-qualified hardware for aerospace appli- given by< are a result of the dataflow between the
cations. In addition to the Design Tool, a multiprocessing tasks, the directed graph is equivalent to a dataflow graph
operating system based on a directed-graph approacfiDFG) as shown in figure 1. Special transitions called
called the "ATAMM multicomputer operating system”

(AMOS) was developed. AMOS executes the rules of the

algorithm to architecture mapping model (ATAMM) and Latency — 390

has been successfully demonstrated on a generic VHSIC
spaceborne computer (GVSC) consisting of four proces-

sors loosely coupled on a parallel-interface (PI) bus

(refs. 1 and 2). The Design Tool was developed not only Source
for the AMOS and GVSC application development envi-
ronment presented in references 1 and 3 but also for
other potential dataflow applications. For example, infor-
mation provided by the Design Tool could be used for
scheduling constraints to aid heuristic scheduling
algorithms.

Sink

A formal discussion of dataflow graph modeling is
presented in section 2 along with definitions of graph-
theoretic performance metrics. Sections 3 through 9 pro- Figure 1. Dataflow graph example.

2



sources and sinks are also provided to model the inputake to execute all tasks sequentially can be a good mea-
and output data streams of the task system. The presencure of the parallel concurrency inherent within a DFG.
of data is indicated within the DFG by the placement of If there are no initial tokens present in the DFG, TBIO
tokens. The DFG is initially in the state indicated by the can be determined by using the traditional critical path
markingM,. The graph transitions through other mark- analysis, where TBIO is given as the sum of node laten-
ings as a result of a sequence of node firings. That iscies inL and data communication delaysDn(modeled
when a token is available on every input edge of a nodeby edge latency) contained in the critical path. Wkin

and sufficient resources are available for the execution ofdefines initial tokens in the forward direction, the graph
the task represented by the node, the node fires. Whetiakes on a different behavior (ref.5). This occurs in
the node associated with tagkfires, it consumes one many signal processing and control algorithms where ini-
token from each of its input edges, delays an amount oftial tokens are expected to provide previous state infor-
time equal td_;, and then deposits one token on each of mation (history) or to provide delays within the
its output edges. Sources and sinks have special firingalgorithm. A general equation is used by the Design Tool
rules in that sources are unconditionally enabled for fir- to calculate the critical path, and thus TBIO, as a function
ing and sinks consume tokens but do not produce any. Byof TBO when initial tokens are present along forward
analyzing the DFG in terms of its critical path, critical paths:

circuit, dataflow schedule, and the token bounds within

the graph, the performance characteristics and resource

requirements can be determined a priori. The DesignTBIO = DZ Lnode™* DZ Lnode™ (Deritcal pat? (TBO) (1)

Tool uses this dataflow representation of a task system 1 nodeCi critical path [ edgelf critical path

and the graph-theoretic performance metrics presentedvhere L4 are the node latenciekeqqe are the edge
herein. The Design Tool relies heavily on the dataflow latencies, an®yiical pathiS the total delay along the crit-
graph for its functionality and interface. However, when cal path (ref. 5). The critical path, defined as the path
the abstraction of representing the task dependenciesvithout slack, is the path that maximizes equation (1).
(T; < T)) by an edge is used so often, one may adopt theincluding edge latency as a model parameter provides a
terminology of saying a “node executes” on a processorsimple, but effective, means of modeling the cost of com-
even though a node only represents task instructions thaiunicating data between nodes. This communication
get executed. Nevertheless, depending on the context ofnodel assumes that nodes with multiple output edges can
the discussion, the terms “node” and “task” are usedcommunicate the data for each edge simultaneously.

interchangeably in this paper. Of particular interest are the cases when the algo-

rithm modeled by the DFG is executed repetitively for
different data sets (data samples in DSP terminology).
The two types of concurrency that can be exploited Pipeline concurrency is associated with the repetitive
in dataflow algorithms can be classified as parallel and execution of the algorithm for successive data sets with-
pipeline. Two graph-theoretic metrics are measured byout waiting for the completion of earlier data sets. The
the Design Tool as indicators of the degree of concur-iteration period and thus throughput (inverse of the itera-
rency that may be exploited. The metrics are referred totion period) is characterized by the metric TBO (time
as TBIO (time between input and output) and TBO (time between outputs), defined as the time between consecu-
between outputs) and reflect the degree of parallel andive consumptions of output tokens by a sink. Because of
pipeline concurrency, respectively. the consistency property of deterministic dataflow

parallel . iated with th i graphs, all tasks execute with period TBO (refs. 6 and 7).
araflel concurrency Is associated wi € execulion ;g implies that if input data are injected into the graph

of tasks that are independent (no precedence relationshl%ith eriod TBI (time between inbuts) then output data
imposed by ). The extent to which parallel concur- il Fl;e generaEed at the gragh )sink withpperiod

rer:ﬁy cgtr;].betﬁx%?:ltgd dgp:ﬁnds onbthe rf1umber of paral!le BO =TBI. The minimum graph-theoretic iteration
pSl StW' 'T it ?h al? i € r_1|_uhm elr 0 rgstpurcgstaval “period T, due to recurrence loops is given by the largest
aple 1o exploit the paralielism. The elapsed Ume DEWEeEN, 5, loop timeL,q, to the initial tokens within the

the production of an input token by the source and the L
consumption of the corresponding output token by thel(cr)gfg 2'389 for all recurrence loops within the DFG

sink is defined as the time between input and output, or
TBIO. TBIO is frequently equivalent to the scheduling
length w, defined as the minimum time to execute all
tasks for a given data set. However, when initial tokens
are present, the scheduling length may be greater than
TBIO. The TBIO metric in relation to the time it would

2.1. Measuring and Constraining Parallelism

I-node"' Z Ledg%

a
T =ma IZ,"OOPD: ma ||;r|hodeD loop __edgell loop [] (2)
° XDD u XS DIoop B




Given a finite number of processors, the actual lowerinjection rate to the graph. Adding a delay loop around

bound on the iteration period (or TBPis given by the source makes the source no longer unconditionally
enabled (ref. 1). It is important to determine the appropri-
_ TCEQ ate lower bound on TBO for a given graph and number
TBO,, = maxd , —= 3 given grap
Ib o™ RO ®) of resources.

where TCE is the total computing effort aRdis the
available number of processors. If communication effort
modeled by edge delays is ignored, TCE can be calcu- The scheduling techniques offered in this paper are

2.2. Run-Time Memory Requirements

lated from the latencies Inas intended for modeling the periodic execution of algo-
rithms. In many instances, the algorithms may execute

TCE = ;Li (4) indefinitely on an unlimited stream of input data; this is

i typically true for DSP algorithms. To achieve a high

degree of pipeline concurrency, a task may be required to
begin processing the next data sets before completing the
execution of the current data set, resulting in multiple

and the theoretically optimum value Bf for a given
TBO period, referred to as the calculaRdan be com-

puted as instantiations of a task. Multiple instantiations of a task
_[TCE require that a task execute on different processors simul-
Re = [T_BO_—‘ () taneously for different, sequential data sets. System

memory requirements increase with the instantiation
where the ceiling functidn[ 7 is applied to the ratio of ~ requirements of tasks, since multiply instantiated tasks
TCE to TBO. Since every task executes once within anmust be redundantly allocated on multiple processors.
iteration period of TBO witlR processors and takes TCE For deterministic algorithms executing at constant itera-
amount of time with one processor, spee@upan be  tion periods, the bound on the number of task instantia-

defined by Amdahl’'s Law as tions can be calculated as
TCE . L.
= =5 (6) Instantiations off; = [___'_—‘ 8
TBO i~ 786 (8)

and processor utilizatiob ranging from 0 to 1 can be Even though the multiprocessor schedules deter-

defined as mined by the Design Tool are periodic, it is important to
S determine whether the memory requirement for the data

Uu=s (7) is bounded. However, just knowing that the memory
requirement is bounded may not be enough. One may

for a processor requiremeRt also wish to calculate the maximum memory require-

ments a priori. By knowing the upper bound on memory,
the memory can be allocated statically at compile time to
avoid the run-time overhead of dynamic memory man-

agement. Dataflow graph edges model a FIFO manage-

dataflow graph_s is to accept data tokens as quickly as thtTanent of tokens migrating through a graph and thus imply
graph and available resources (processors and memory hysical storage of the data shared among tasks. Using

will aIIow_. When this occurs, the graph becomes con- graph-theoretic rules, the Design Tool is capable of
gested with tokens waiting on the edges for processmgdetermining the bound on memory required for the
because of the finite resources available, without result-shareol data as a function of the dataflow schedule
ing in throughput above the graph-imposed upper bound '
(refs. 10 and 11). However, when tokens wait on the crit- 2 3. Control Edaes
ical path for execution because of token congestion "~ 9
within the graph, an increase in TBIO above the lower When resource requirements for a given dataflow
bound occurs. This increase in TBIO can be undesirablegraph schedule are greater than resource availability,
for many real-time applications. Therefore, to prevent imposing additional precedence constraints or artificial
saturation, constraining the parallelism that can bedata dependencies onfo(thereby changing the sched-
exploited becomes necessary. The parallelism in datawule) is a viable way to improve performance (refs. 1, 5,
flow graphs can be constrained by limiting the input and 12). These artificial data dependencies are referred to
as “control edges.” The Design Tool allows the user to
1The ceiling of a real number denoted a$ X | , is equal to the  alter the dataflow schedule by choosing that a given task
smallest integer greater than or equal.to be delayed until the execution of another task. The

By definition, the critical path does not contain
slack; thus, critical path tokens will not wait on edges for
noncritical path tokens, ideally. The inherent nature of
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Task system (T, L, <, M): Performance bounds:;

T Setof tasks Schedule length w
L Fixed-task latencies |:> Dataflow Time between input and output TBIOy,
~< Partial orderonT graph (DFG) Minimum iteration period T
My Initial state Time between outputs TBO,
Slack
Processor utilization
Run-time requirements:
Task instantiations
/ %{ j‘r;{ jc Processor requirement
o Data buffers
Artificial <, control edges
Dataflow graph:
Nodes represent T Graphical displays:
Edges describe < Gantt chart task execution
Tokensindicate presence of data Single iteration (SGP)
Initial marking = M Periodic execution (TGP)

Resource envelopes

Figure 2. Dataflow Design Tool information flow.

Design Tool automatically models this additional prece- be hosted on an i386/486 personal computer or a compat-
dence constraint as a control edge and initializes the edgéle type. The various displays and features are presented
with tokens (positive or negative), as needed, to providein this section. As a convention, menu commands are
proper synchronization. That is, as a function of the newdenoted with thé] symbol.

schedule, the precedence constraint may impusa-
iteration dependencies for the same data set, which do
not require an initial token. On the other hand, the prece-
dence relationship may imposeter-iteration depen-
dency for different data sets, which requires initial tokens
to occur.

Figure 2 provides an overview of the input and out-
put process flow of the Design Tool. After a DFG is
loaded, the Design Tool will search the DFG for recur-
rence loops (circuits) and determine the minimum itera-
tion periodT, by using equation (2), whefg, is zero if
no circuits are present. TBO will initially be set to the
) largest task latency dr,, whichever is larger. The calcu-
3. Dataflow Design Tool lated processor requiremeRy is initially given by equa-

; : . tion (5). TBIO is determined from equation (1). Any

The dataflow paradigm presented in the previous changes taR will result in an update of the optimum

section is useful for exposing inherent parallelism con- ) ;
strained only by the data precedences. Such a hardwaré’—alue for TBO (TBG) from equation (3). For a given

independent analysis can indicate whether a givenvalue ofR, TBO may be changed to a value greater than

algorithm decomposition has too little or too much paral- or e_qual to TB@. When the schedule is _alt_ered (result-
lelism early on in the development stage before the usefnd I ‘:f‘dded control edges), the ana_ll_yS|s IS re_peated to
attempts to map the algorithm onto hardware. The Data_determlne the new critical path, critical circuits, and
flow Design Tool version 3.0, described in the remaining
sections, analyzes dataflow graphs and applies the design The dataflow graph example shown in figure 1 is

principles discussed herein to multiprocessor applica-used to present the displays and capabilities of the tool.
tions. The software was written in C3and executes in  The format for the graph description file is described in

Microsoft Windows or Windows NT. The software can section 3.1.1, and the complete graph text description
used for figure 1 is provided in the appendix. The node
2Version 3.1 by Borland International, Inc. latencies shown in figure 1 are interpreted generally as

Sversion 3.1 by Microsoft Corporation. time units so that “real time” can be user interpreted.

modifications to the performance bounds.
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That is, if the clock used to measure or derive the task  3.1.1. Graph Text File
durations has a resolution of 1€ec, the latency of
node A can be interpreted to b@$ec. To maintain the
resolution of time when applying the equations of sec-
tion 2, the Design Tool always rounds (applies the ceil-
ing function) to the next highest clock tick.

The Design Tool allows the user to describe a data-
flow graph with a text file. The file may only describe a
single graph. Updates to the file (node instantiations,
gueue sizes, input injection rate, and added control
edges) for a given analysis or design are done automati-
. cally by the tool by using thepdate Graph menu com-

3.1. File Input/Output mand within the Operating Point window (defined in

The Design Tool takes input fromgmaph text file section 9). The format of the file is given below. Key-
that specifies the topology and attributes of the DFG. Thewords are not case sensitive, items shown in brackets [ ]
graph text file format is given in this section. Updates to are optional,name specifies a character string with a
the graph text file (e.g., GRAPHFILE.GTF) with design maximum of 20 characters and no spacesjraeder
attributes and artificial dependencies are made directlyspecifies a number from 0 to 32767. Optional parameters
by the Design Tool, with the original version saved as athat are omitted have a default value of zero. Blank lines
backup (graphfile.bak). In addition to this graph text file, separating statements are allowed. See appendix for
the Design Tool can accept input from the ATAMM examples.
graph-entry todi developed for the AMOS system at the . .

Langley Research Center. Updates to the graph file arel he firstline in the file must be

made via dynamic data exchange (DDE) messages to the GRAPH name specifies the name of the
graph-entry tool for a given design poifR, (TBO, and graph

TBIO). Changes to the graph topology due to added con-
trol edges appear in real time. The graph-entry tool is
responsible for writing the graph updates to the graph To specify a node transition:
file.

Following theGRAPHstatement (in any order) are

_ _ NODE name specifies a node with a
The Design Tool also makes use of other files. An unique name

.RTT file is created automatically for each graph file
(GRAPHFILE.RTT) and contains performance informa-
tion needed for follow-up design sessions of previously
updated graphs. Two .TMP files are also created for pro- [READ integer] time to read input data
cessing paths (PATHS.TMP) and circuits (CIRCS.TMP)

[PRIORITY integer] task priority for information
only

o . PROCESS int time t dat
within the graph. An .INI file (DESIGN.INI) stores meger Imé 1o process data
(1) the graph file used in the last session; (2) the default  [WRITE integer] time to write output data or
graph file extension to search for when opening a file; set up for communication
(3) the Iocatlor_1 of the ATAMM graph-entry tool, if gsed;_ INST integer task instantiations
and (4) the editor to be used to display the notes file (dis- .
cussed in section 3.1.2). An example of the .INI file is END NODE end of node object
shown in figure 3. Note that the statements betwé¢®DEandEND NODE
may be in any order.
[DesignTool] To specify a source transition:
Extension = *.GTF SOURCE name specifies a source with a
unique name
Model =0 . . . .
TBI integer time between inputs, i.e., the
Graph = D\WIN16\ ATAMM\DEMO\DFG.GRF input injection period
GraphTool = D:\WIN16\ATAMM\GRAPH\GRAPHGEN.EXE END SOURCE end of source object
Editor = C:\WINNT\NOTEPAD.EXE To specify a sink transition:
Figure 3. Example of DESIGN.INI file. SINK name specifies a sink with a unique
name
END SINK end of sink object
To specify an edge (edges must be specified following
“Written by Asa M. Andrews, CTA, Inc. the NODESOURCEandSINK statements):
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Invokes on-line help
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on DesignTool.

Setup
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graph windows, and
desired metrics window

Select architecture
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view DFG file

Select multiple graph

Name and view strategy

notesfile

Select color or
black and white display

Exit program

Figure 4. Design Tool main window.

EDGE type type can béATAor mands provided by the main window are defined in this
CONTROL section.
INITIAL name name of node producing

tokens to edge 3.2.1. File Menu

TERMINAL name The File menu includes commands that enable the
user to open a graph file, create and view a notes file for
the current session, or exit the program. A description of

each command is given as follows:

name of node consuming
tokens from edge

TOKENS integer number of initial tokens

QUEUE integer minimum FIFO queue size

of edge

[DELAY integer] edge delay used to model

communication time
END EDGE end of edge object
Note that théNITIAL andTERMINALstatements must
precede the remainirgDGEstatements.
3.1.2. Notes File

A notes file is a file designated by the user via the
save Notescommand for the saving of performance
results or personal notes during the design session. After
creation, the file can be viewed at any time viaNlotes
menu command. The following windows can save infor-
mation to this file:

Graph window
Performance window
Parallel Execution window

Time Multiplex window

3.2. Main Program Overview

Upon invoking the Design Tool (DESIGN.EXE), the
main window will appear at the top of the screen with a
caption and menus as shown in figure 4. The menu com-

O Open—nvokes the dialogue box shown in figure 5
to allow the user to select a graph file to open as
input.

O Close—Ends the current session for a particular
graph file without exiting the program.

O View File—Invokes the editor (e.g., NOTE-
PAD.EXE) specified in the DESIGN.INI file for
displaying the current graph file.

0 Get Info—Shows information on the current graph
file.

O Save Info—nvokes a dialogue box to allow the
user to specify a notes file in which to save infor-
mation regarding the current design session.

O Notes—nvokes the editor (e.g., NOTEPAD.EXE)
specified in the DESIGN.INI file for viewing and
updating the notes file with personal notes.

0 Exit—Exits the program. Upon exiting the pro-
gram, the dialogue box shown in figure 6 will be
displayed. Clicking the OK button will exit the pro-
gram whereas clicking Cancel will return to previ-
ous state. By checking the Save Setup box, the
program will remember the current graph file and
automatically load it upon reexecution of the
program.
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Figure 5. Dialogue box for opening graph file.

O Architecture Model—Invokes the dialogue box
shown in figure 7 to allow the user to select a gen-
eral model of the target architecture.

Dataflow Desi gn Tool

w This will end the session. The architectural models are defined as
[ Save Setup Shared Memory/No Contention—This architecture
model assumes the processors are completely
O ———— connected to shared memory with enough paths to
UK | Cancel avoid contention. In effect, this model provides an

architecture-independent model that exposes the par-
allelism inherent within the algorithm, constrained
Figure 6. Dialogue box for exiting Design Tool program. only by the algorithm decomposition.

Network with Com Controller— This architecture
model assumes the processors are completely con-
nected via communication paths. Unlike Network
without Com Controller option, each processing unit

is paired with a communication (com) controller that
handles the transfer of information after the processor
sets up for the transfer. Thus, the processors will not
be burdened with the communication transfers to
neighboring processors.

® Shared Memony | No Contention

) Network with Com Controller

) Network without Com Controller

[T pr

Figure 7. Dialogue box for selection of architecture model.

Network without Com Controller— This architec-
ture model assumes the processors are completely
connected via communication paths. Unlike the
Network with Com Controller option, this model
does not assume that each processing unit is paired
with a communication (com) controller that handles
the transfer of information after the processor sets up
for the transfer. Thus, each processor will be burdened
3.2.2. Setup Menu with the communication transfers to neighboring
processors.

Cancel -

The Setup menu includes commands that enable the
user to select the architecture model and the type of mul- [ Multiple Graph Strategy—Invokes the dialogue
tiple graph execution strategy. A description of each box shown in figure 8 to allow the user to choose
command is given as follows. multiple graph execution strategy. The user simply
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Multiple Graphs

M Parallel Execution— ~ lime Multiplex Execution

Graph_1 Graph_2
r Graph_3

Figure 8. Dialogue box for selection of multiple graph strategy.

clicks on a graph and chooses to move it to the left [ show Time Multiplex Execution—nvokes the

for Parallel Executioror to the right foiTime Mul- Time Multiplex Graph window displaying the time
tiplex Execution The strategies are defined as multiplex graph execution analysis.
follows.
' _ O show Operating Points—nvokes the Operating
Parallel Graph Execution—Multiple graph execu- Point window displaying a plot of TBO versus
tion strategy where graphs are independent; that is, TBIO with the required processors.

there is no control over the graph phasing. This type

of strategy requires more processors than if the phas- U Draw in Color/BW—Toggles between color or
ing between graphs is controlled. Because the peak  black and white displays.

processor requirements within the system may overlap

at a given time, a worst-case processor requirement  3.2.4. Help Menu

must be utilized in the design. The Help menu allows the user to invoke the Win-

Time Multiplex Execution—Multiple graph execu-  dows Help program for on-screen help and information
tion strategy where graphs are dependent on eaclabout the Dataflow Design Tool. A description of each
other, in that the phasing between graphs is controlled.command follows.

This type of strategy can require fewer processors
than if the phasing between graphs is not controlled.
The intent is to phase the graphs in a way that idle
time is filled in as processors migrate from graph to 5 Apout Design Tool—Displays information about
graph, but the peak processor requirement is limited to the tool as shown in figure 10.

system availability.

0 Help—Invokes the help window as shown in fig-
ure 9. (Pressing F1 also invokes the help window.)

3.2.3. Window Menu 4. Metrics Window

The Window menu includes commands that enable ~ The Metrics window displays the numerical perfor-
the user to view the overall performance of the systemmance characteristics of a graph and allows the user to
based on a particular strategy, view a particular graphinvoke the graphical performance displays. The graph
window, or draw in color or black and white. A descrip- name is shown in the window title. A Metrics window as

tion of each command is given as follows. shown in figure 11 is created for each graph in the graph

i file. Performance metrics include
0 show Parallel Execution—nvokes the Parallel

Graph window displaying parallel graph execution TCE total computing effort; equal to the
analysis. sum of all task latencies
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Design Tool
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Commands
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The Index contains & list of all Help topics evailable for the Halp Example
For information on how to use Help, press F1 or choose Using Help from the Help manu

Figure 9. ChoosEklelp menu in main window (or press F1) to invoke on-screen Help window.

 Abeut. | =] DFG |
Dataflow Design Tool Display Set
w Version 2.6 Graph
by ve 2R 340
Raber L. Jones T8I0l p—
MASA Langley Research Cenfer
Hampton, Virginia TBOIb 280
TBIO 570
| Processors 4
Figure 10. About box. .
Graph Play
TBIO |, lower bound time between input and .
output Concurrency
TBOy, lower bound time between outputs Performance
TBIO time between input and output

Figure 11. Metrics window.
Schedule length minimum time to execute all tasks for

a given computation The number of Processors shown in the Metrics
window will not necessarily equal the number of proces-
sors required for a cyclic dataflow schedule. The number
Processors calculated processor requirement of Processors shown here is the optimum number of

TBO time between outputs
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Figure 12. TCE dialogue box for each architecture model.

processors for the current TBO setting from equation (5) chart is constructed by allowing tasks to start at an
and is referred to as the calculated processor require- earliest time equal to the ES times (given by the
ment. The actual processor requirement may be greater SGP) modulo TBO with infinite resources
than the calculated requirement because of the partial assumed. The chart is plotted similar to the SGP
ordering of tasks. The job of scheduling partially ordered except only over a TBO time interval. Multiple
tasks to processors is known to be NP-complete (ref. 4). instantiations of a task are shown by creating multi-
This implies that an exhaustive search (rescheduling ple rows per task; this allows the bars to overlap.

tasks with start times greater than the earliest start times
given by the dataflow analysis) is required to find an
optimum solution that achieves the timing criteria (e.g.,
minimum TBO and/or schedule length) with only the cal- [ Total Resource Envelope (TRE)-A plot of the
culated processor requirement. However, one cannot processor requirement for the TGP.

guarantee that a solution even exists when both TBO and
R are held constant (ref. 9). In such cases, one must
choose a heuristic that relaxes the criteria, fixing one
parameter (e.g., processors) and allowing the other (e.g., The following buttons, when clicked on, provide
TBO) to vary until a solution is found. numerical data on DFG attributes, computing effort, and
allow the user to select a sink (for graphs with multiple
sinks) to measure TBIO.

O Single Resource Envelope (SRE)A-plot of the
processor requirement for the SGP.

O Performance—Plots speedup versus processors
given by equation (6).

The graphical windows provided by the Design Tool
are briefly described below. A more detailed description
of each is provided in later sections. The windows can be [0 Graph Summary—Displays a window summariz-

invoked from the Metrics window by clicking on the but- ing the DFG attributes: node names, latencies, ear-
tons defined below. liest start, latest finish, instantiations, and FIFO
gueue sizes.

O Single Graph Play (SGP)-A Gantt chart display-
ing the steady-state task schedule for a single com- [0 TCE—Invokes the dialogue box shown in fig-

putation. The chart is constructed by allowing tasks ure 12, which shows a breakdown of computing
to start at the earliest possible time (referred to as effort. The TCE dialogue box is discussed in more
the earliest start (ES) time) with infinite resources detail in section 4.2.

assumed. The chart is plotted with tasks names
shown vertically, task execution duration given by
bars, and a horizontal time axis equal to the sched-
ule length.

O Total Graph Play (TGP)—A Gantt chart display-
ing the steady-state task schedule for multiple com-
putations executed simultaneously over one [ TBO—Allows the user to increment (+) or decre-
scheduling period (which repeats indefinitely). The ment £) TBO or set it (=) to a desired value.

O TBIO py—Invokes the dialogue box shown in fig-
ure 13 to select the desired sink in which to mea-
sure TBIO.

O TBIO/Schedule Length—Toggles between dis-
playing TBIQy, or the schedule length.

11
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Figure 13. Dialogue box to select desired sink for TBIO
calculations.
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Figure 14. Dialogue box to set TBO value.
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Figure 15. Dialogue box to set processor limit.

Clicking on the = button invokes the dialogue box
shown in figure 14. The minimum TBO value per-
missible is determined from equation (3) for the

current calculated processor setting.

O Processors—Allows the user to increment (+) or
decrement+) the calculated processor limit. Each

4.1. Metrics Window Menus

The previous section presented the buttons used to
invoke displays and set parameters. The Metrics window
also provides two menuBlisplay andSet, as shown in
figure 11, that can be used instead of the buttons. The
commands for th®isplay andSet menus are described
as follows.

4.1.1. Display Menu

The Display menu includes commands that enable
the user to view and arrange the previously described
window displays. The first six commands

O Graph

0 TCE

0 Schedule length / TBIO
O Graph Play

0 Concurrency

0 Performance

are equivalent to the button definitions given previously.
The following three commands allow the user to refresh
and arrange the displays currently on the screen.

O Tile—Tiles the currently active windows invoked
by the Metrics window.

0 Cascade—Cascades the currently active windows
invoked by the Metrics window.

0 Reset—Refreshes the currently active windows
invoked by the Metrics window.
4.1.2. Set Menu

The Set menu includes commands that enable the
user to define the calculated processor value, set TBO,
and change the graph name.

O Processors—vokes the dialogue box in figure 15
to set the calculated processor limit.

0 TBO—Invokes the dialogue box in figure 14 to set
the desired TBO period.

0 Sink —Invokes the dialogue box in figure 13 to set
the desired sink for TBIO calculations.

O Graph Name—Invokes the dialogue box in fig-
ure 16 to allow the user to rename the graph for dis-
play purposes.

4.2. Total Computing Effort

time the calculated processors count is changed, The total computing effort (TCE) value given by the
TBO is set to the optimum value determined from Metrics window depends on the chosen architecture

equation (3).

12

model defined in section 3. Figure 12 shows the dialogue



INPUT this purpose, the total graph play (TGP) shows the
I I steady-state, periodic schedule of the graph for multiple

computations or data packets over a schedule cycle of

“Graph Name period TBO, which is assumed to repeat indefinitely. The
TGP is also constructed by assuming infinite resources

DFG so that the parallelism inherent in the algorithm is
g exposed. The TGP determines the maximum number of

processors sufficient to execute the algorithm periodi-
cally and, as mentioned in section 4, that number may be
@ I | Cancel I greater than the calculated number of processors given
by equation (5). When processor requirements exceed
— processor availability, the Design Tool provides a tech-
nigue of inserting artificial data dependencies, called
“control edges,” to alter the dataflow-derived schedule in
hopes of reducing the processor requirement. Insertion of
box displayed for each of the three architecture models.control edges is explained in more detail later in this sec-
The difference between ttghared Memorynodel and  tion and in section 10.1.
the Network with Com Controllemodel is in the inter-
pretation of graph attributerite time. For the network 5.1. Single Graph Play Window
models write time is assumed to repressetuptime for
the transfer of information and is denoted as such. The  The single graph play window for the DFG of fig-
Network without Com Controllenodel displays the time  ure 1 is shown in figure 17. The task (node) names are
spent communicating (defined by edge delays) becausghown vertically, and time is represented along the hori-
the processor will be burdened with the effort. Since the zontal axis. Node latencies are represented by the length
graph described by DFG.GTF does not define edgeof the red (shaded) bars. Slack time, defined as the maxi-
delays, the communication effort is shown to be zero.  mum time a task can be delayed without degrading the
TBIOy, performance or violating inter-iteration prece-
5. Graph Play dence relationships, is represented by unshaded bars
(fig. 17(a)). Intra-iteration control edges can be inserted
The Graph Play windows provide Gantt charts by utilizing the SGP window. It is often useful to observe
describing the dataflow-derived task schedules of thethe location of slack time displayed by the SGP and
algorithm graph. The single graph play (SGP) shows theinsert control edges to take advantage of the slack time
steady-state time schedule of the graph for a single comWwhile rescheduling nodes.
putation, referred to as “data packet” or “data set.” The i )
tasks are shown scheduled at the earliest start times 1ime measurements can be taken with the left and
determined by the dataflow graph analysis. If tasks arefght cursors displayed as vertical lines (fig. 17(b)). The
scheduled this way and infinite resources are assumed',eft and right cursors are controlled with the left and right
all the inherent parallelism present within the algorithm Mouse buttons, respectively. The left cursor can also be
decomposition is exposed and limited only by the datacontr_olled with t_he left and right arrows key_s alone, and
precedences. The SGP shows the task schedule over € right cursor in the same way while holding down the
time axis equal to the schedule lengtiTask executions ~ <Shift> key. There are also commands to enable the user
are represented by bars with lengths proportional to thel® Z00m into time intervals between the left and right
task latencies. The SGP determines the minimum num-Cursors. Information can be obtained on any node by

ber of processors sufficient to execute the algorithm for POINting to a node and clicking the left mouse button
the schedule length shown. while holding the <Shift> key down, as shown in fig-

ure 18(a). Figure 18(b) shows information that can also

For digital signal processing and control law algo- be obtained on the event associated with the current left
rithms, the algorithm represented by the DFG is assumedtursor position by pressing <Shift + Enter>. Moving the
to execute repetitively on an infinite input stream. In cursors with the keyboard automatically updates the
such instances, the user does not have to wait until thénformation window.
algorithm finishes the computations for a given data
packet before starting on the next. Thus, it is of interest 51 1. Display Menu
to determine a cyclic schedule that permits the simulta-
neous execution of multiple data packets which exploits The Display menu includes commands that enable
pipeline concurrency while assuring data integrity. For the user to zoom into and view internal transitions, slack

Figure 16. Dialogue box to change graph name.
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Figure 17. Single graph play window. Shaded bars indicate task execution duration; unshaded bars indicate slack time.
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Mame: E
Priority: ]
Max Instances: 1
Latency: 1]
Hend: 1]
Process: Fill]
Write: 1n

Earlie=st Start: 280

Latest Finish: 404
Slack: 34

Inpuls: D—»
Outputs: -3
>

F
D

(a) Click on a node bar while holding down <Shift> key.

MName: ;
Event: Head
Time: a0

(b) Move left time cursor with left and right arrow keys.

Figure 18. Two ways to display information about a node.

time, paths, circuits, and legends. A description of each
command is given as follows.

the information box for the node, as shown in
figure 18.

O Show Transitions—Turns on and off the display O Legend—Displays the legend for the given display

of internal transitionsread process and write
(setup time as shown in figure 19.

0 show Segments—Furns on and off the display of
TBO-width segments (separated by dotted lines)
that indicate the multiple computations for
successive data packets shown by the TGP win-
dow. In fact, the TGP window can be constructed
by superimposing the TBO-width segments.

O Show Slack—Turns on and off the display of slack
time by using unshaded bars.

O Paths...—Shows none of the paths, all of the paths,
or just the critical paths within the graph by denot-
ing member nodes with gray bars (fig. 20(a)).

O Circuits...—Shows none of the circuits, all of the
circuits, or just the critical circuits within the graph
by denoting member nodes with gray bars
(fig. 20(b)).

O Select Node—Allows the user to highlight selected
nodes (bars) in gray by clicking on a bar or using
the up and down arrow keys to obtain information
on the selected node. Given a selected (gray-
shaded) node, all nodes independent of it will be
highlighted in yellow. Pressing the <Enter> key
while holding down the <Shift> key will display

mode.

Add Edge—Allows the user to insert an intra-
iteration control edge between two nodes, for
example,N; < N,. Selecting this command will
display at the bottom of the window the following
prompt for the terminal side of the edge:

Initial Node --> Terminal Node?

The terminal nodeN;, node receiving data from
edge) is prompted for first, since the intent is to
delay a particular node behind another. Point and
click the left mouse button on the terminal node.
The display will be updated and show all nodes
independent of the terminal node highlighted in
yellow—these highlighted nodes are the only
options for the terminal node to create an intra-
iteration control edge. At this point the text display
will prompt the user for the initial nodél:

Initial Node? -->N;

Upon clicking the left mouse button on the initial
nodeN;, all displays will be automatically updated
and show the new performance based on this newly
inserted edge. This procedure can be canceled
before selecting the initial node by pressing the
<Esc> key. After the edge has been inserted, it can

15
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Figure 19. Single graph play window showing internal transitions associated with reading, processing, and writing data.

be removed by thBelete Edgecommand or by the and right time cursors to the left and right margins,
Undo command. respectively.
Delete Edge—Allows the user to delete a previ-

ously inserted control edge by prompting for the 5.1.2. Select Menu

rminal and initial n nein in n- .
e al and initial nodes as done in adding a co The Selectmenu includes commands that enable the

trol edge. Control edges already present within the user to display only selected nodes, force the cursors to
graph file cannot be deleted. A beep indicates . piay only ’ .
jump to selected nodes and/or events, or set the time step

success. .
for the horizontal scroll bar.

Undo—Deletes the most recently inserted control
edge. Repeating the Undo command will continue O Display...—nvokes the dialogue box shown in fig-
to remove the most recently inserted control edges ure 21, allowing the user to choose which nodes to
until none remain. A beep indicates success. include and the vertical ordering within the display.

. . L ! Double click the node name shown in the list to
Sllce—Zo_oms_lnto the time mtgrval _deflned by the toggle betweefx] show and]_] don't show. Click
left and right time cursors (vertical lines). once on a node and press the Top, Up, Down, or
Previous Slice—Zooms into the time interval Bottom buttons to move its position relative to
defined by the left and right time cursors (vertical other nodes.

lines). After zooming into a time slice, the user can
move left or right of the time interval by using the
horizontal scroll bar.

0 Jump by...—Invokes the dialogue box shown in
figure 22, allowing the user to choose which node
or event to have the cursors jump by. Check the

Whole—Displays the entire SGP schedule over the box for the desired node and/or event condition and
schedule length. select the node and/or event of interest.
Redraw—Refreshes the display without changing

O Scroll Step—nvokes the dialogue box shown in

figure 23, allowing the user to select the jump
Reset—Refreshes the display by returning to the interval for the horizontal scroll bar. The range is 0
entire picture (removes zoom) and positions the left to 32767.

the current zoom or time cursor positions.
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Figure 20. SeledDisplay:Paths...menu command to display all paths or just critical pathBigplay:Circuits... menu command to dis-
play same for circuits. Paths and circuits are denoted with gray-shaded bars.
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~ Scroll Step

lmn _ J

Figure 23. Choos8croll Stepcommand fronSelectmenu to set
amount to increment when using horizontal scroll bar with a
zoomed interval.

width segments in figure 17, one can observe that the
construction of the TGP from the ES module TBO map-
ping function is equivalent to superimposing the TBO-
width segments onto the SGP. The numbers above the
node bars indicate the relative data packet (data set) num-
bers of the scheduled task. That is, data pankei
denotes a data packet injected into the graph one TBO
interval after data packet The overlapped execution of
multiple node instantiations is represented by multiple
rows for the same node, as is the case for node B requir-
ing two instantiations.

Figure 21. ChoosBisplay...command fronSelectmenu to cus-
tomize display of nodes within Graph Play windows.

Referring to the scheduled effort of nodes D and E,
which form a recurrence loop (circuit), one can observe
some idle time from the completion time of E to the ear-
liest start of D, which shows up as slack in figure 25.
Since this slack time is a result of inter-iteration depen-
dencies, it is also a function of TBO; this can be demon-
strated by reducing the TBO of the DFG by changing the
number of processors to four. Doing this causes the
Design Tool to apply aR of 4 in equation (3), and to
Figure 22. Choosdump by... command fromSelect menu to find that TBO is limited by the recurrence loop<0 E,

choose nodes or events to jump to when moving time cursorshaving a time per token ratio of 280 time units, as shown

with arrow keys. in figure 26. At TBO = TBQ, = 280 time units, there is
no longer idle (slack) time in the recurrence loop, since
node D begins as soon as node E completes.

5.2. Total Graph Play Window

This section discusses the TGP window, offers some  Before we discuss menu commands, one difference
comments and observations, and defines the men etween the SGP and TGP windows involves insertion of

commands. control edges. As mentioned in the previous section, one
can impose only intra-iteration control edges with the
The Total Graph Play window for the DFG of SGP window. However, with the TGP window, both
figure 1 is shown in figure 24 for a TBO of 314 time intra- and inter-iteration control edges may be imposed.
units. Just as in the SGP, task (node) names are showimtra- and inter-iteration edges (data or control) can be
vertically and time is represented along the horizontal distinguished from one another by the fact that intra-
axis. Node latencies are represented by the length of théeration edges have no initial tokens whereas inter-
red (shaded) bars. Comparing figure 24 with the TBO- iteration edges do. Whether an imposed control edge has

18



Total Graph Play

Display Select

Figure 24. Total Graph Play window for DFG of figure 1 at TBO = 314 time units. Numbers over bars indicate relative data packet
numbers.

[ single Graph Play
Display Select
DFG

E

Figure 25. Single Graph Play window view can be customizedSiiitk andDisplay... menu commands. Left and right time cursors (ver-
tical lines) are shown measuring processing time of task C, which begins at time 100 time units and has a duration oftg0 time u
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Figure 26. Lower bound on TBO (TRgis limited inherently by recurrence loop of algorithm, composed of nodes D and E.

one or more initial tokens is schedule dependent. The 5.2.1. Display Menu
Design Tool automatically calculates the proper number
of initial tokens (if any) needed on a control edge (at the
time of insertion) to model the proper synchronization
between the nodes. Once a control edge is inserted with
determined number of initial tokens, the initial token
count will not change as the schedule is altered by adding
more control edges or changing TBO. Thus, the favored
schedule resulting from the initialized control edges at
one TBO period may not be favorable at a different TBO There is noShow Slackcommand, since the dis-
period. play would become messy because of the over-
lapped task schedules shown within the TGP.

Most of the features offered by the SGP window are The TGP window includes a command not offered by the
also offered by the Total Graph Play window. Rather SGP window. which is

than redefining the shared functionality, only the added

or missing features are discussed in this section. Refer to 0 Show Packets—Shows the relative data packet
section 5.1.1. for detailed descriptions of the common (data set) numbers above the associated node exe-
menu commands. cution bars.

The commands offered by tHeisplay menu are
equivalent to that of the SGP window except for the fol-
(ljpwing omissions:

There is nosShow Segmentcommand, since the
TGP displays the superimposed TBO-width seg-
ments shown by the SGP window.
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Figure 27. Single Resource Envelope window displays processor utilization associated with Single Graph Play window.

5.2.2. Select Menu (TRE) shows the steady-state, periodic processor
requirements for multiple computations of data packets
ver a schedule cycle of period TBO, which is assumed

repeat indefinitely. The TRE for the dataflow schedule
f figure 24 is shown in figure 28. The TRE determines
the maximum number of processors sufficient to execute
the algorithm periodically with period TBO. Like the
SRE, the TRE is equivalent to counting the number of
overlapped execution bars in the TGP when not using the
Network without Com Controller model. Processor utili-
zation measurements can be taken from the TRE
window.

The Selectmenu includes commands that enable the
user to display only selected nodes, force the cursors td
jump to selected nodes and/or events, or set the time ste
for the horizontal scroll. Since the commands are func-
tionally equivalent to the Select menu commands pro-
vided by the SGP window, see section 5.1.2. for a
description of each command.

6. Measuring Concurrency and Processor
Utilization

The Concurrency windows plot processor require-
ments and utilization over time for the DFG schedules. 6.1. Display Menu
The plots are referred to as resource envelopes, and the
area under the curve is equal to the computing effort
required of the processors. The single resource envelope O Slice
(SRE) shows the steady-state processor requirements of
the DFG for the execution of a single computation or
data packet. The SRE for the dataflow schedule of fig- [ Whole
ure 17 is shown in figure 27. For the Shared Memory/No
Contention and the Network with Com Controller mod- U Redraw
els the SRE is equivalent to counting the number of [ Reset
overlapped execution bars within the SGP over the
schedule length time interval. The SRE determines thethat enable the user to zoom in, zoom out, or refresh the
minimum number of processors sufficient to execute thepicture. These are functionally equivalent to the same
algorithm for a desired schedule length and TBIO. For commands provided in the graph play windows, so an
the Network without Com Controller model, the SRE explanation of each will not be given here. Refer instead
includes the effort required for communication as mod- to section 5.1.1 for detailed explanations of each
eled by the edge delays. The total resource envelope&ommand.

TheDisplay menu includes the commands:

0O Previous Slice
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Figure 28. Total Resource Envelope window displays processor utilization associated with Total Graph Play window.

—] 6.2. Select Menu

Utilization

The Select menu includes the commands
4 Processors... 28.7 %

3 Processors.., 70.7 % 0 Jump by...
2 Processors... 100.0 %
1 Processors... 100.0 % 0 Scroll Step

U-Froceasarg.., 00 that enable the user to force the cursors to jump to

selected nodes and/or events and set the time step for the
horizontal scroll just as in the graph play windows. Refer
to section 5.1.2 for detailed explanation of each
command.

Computing Effort = 940

Total Utilization = 74.8 %

Figure 29. Selecttilization command fromDisplay menu in 6.3. Utilization Window Overview

Total Resource Envelope window to measure utilization of pro- e . . e
cessors. Utilization depicted is associated with one TBO interval The Utilization window d'SP'ayS the utilization of
of 314 time units as shown in figure 28. the processors and the computing effort (area under the

envelope) for the interval defined by the left and right
time cursors. Note that the computing effort shown in
figure 29 for an entire TBO interval is equal to the TCE
measurement (sum of all node latencies) given by the
fMetrics window in figure 11. The Utilization window is
automatically updated based on current cursor positions
each time thdJtilization command is selected from the
O Utilization—Invokes the window shown in fig- Display menu in the TRE window. An example is shown
ure 29, which displays processor utilization mea- in figure 30. Not only is the total processor utilization
surements. The measurements are based on theneasured, but the incremental processor utilization as
time interval defined by the current left and right well, that is, the utilization of 1 processor, 2 processors,
time cursor positions. 3 processors, etc.

The Total Resource Envelope window provides an

processor utilization within a scheduling period:
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(a) Time interval starting at 90 time units (within a given TBO period) of width 166 time units is defined.

d Processars,,, 54,7 %
3 Processars... 100.0 %
2 Processors... 100.0 %
1 Processors.., 1000 %
0 Processors.., 0.0 %

Computing Effort = 588

Total Udlizatlon = BB.6 %

(b) Utilization within time interval is measured to be 88.6 percent. Area under curve within interval is 588 time units.

Figure 30. TRE window time cursors define time interval for utilization measurements.

6.4. Portraying Processor Utilization of Multiple assumes that the phasing of the graphs (and hence the
Graphs overlap of the individual TRE’s) cannot be controlled,
the system must provide for the worst-case processor
requirements, that is, summation of the processor
requirements of the individual graphs. In the Time Multi-
plex model, the overall processor requirement is a func-
tion of the overlap between graphs (determined by the
user). Thus, the determinism provided by the Time Mul-
etiplex model can result in fewer processors.

This section describes the Concurrency window,
provided to analyze multiple graph execution under the
multiple graph execution strategies. As discussed in
section 3.2.2, the Design Tool provides two models for
multiple graph analysis: Parallel Execution and Time
Multiplex Execution. In the Parallel model, the phasing
between the graphs is nondeterministic, whereas in th
Time Multiplex model, the phasing between the graphs is
known a priori. Figure 31 portrays the differences There are two window displays for the multiple
between the two models and the effect on the total pro-graph models, one for each model. The window displays
cessor requirements. Since the Parallel Execution modelnd user-interface to each are discussed in this section.
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Parallel

Graph 1 Graph 2 Graph 3

o

Riotal =R1*Ro+ R3

Time Multiplex

Riotal = MaX(Ry, Ryp, Ry, Rog, Rg, Ray)

Figure 31. Parallel Execution model assumes no control over graph phasing, which requires worst-case processor desidultijpielime
Execution model, phasing between graphs is fixed to particular values by user. This deterministic phasing, and hencetoeernap, b
graph reduces processor requirements based on amount of graph overlap.

6.4.1. Parallel Execution Model Window requirements, calculated to be 16 in this example. The
_ _ ' total processor utilizationdyaraliel mode) Of the system is
6.4.1.1. OverviewThe Parallel Execution window calculated by summing the individual graph speedup val-

displays the processor requirements and utilization per-ues (eq. (6)) and dividing by the total number of proces-
formance for all graphs analyzed by the Parallel Execu-sors, as shown in equation (9):

tion model. An example for three graphs is shown in

figure 32. This window is invoked by selecting gteow S
Parallel Execution command from thevindow menu in U
the main window (section 3.2.3). Thetal Computing
Effort shown in the window will be the summation of the
TCE values for all graphs. For each individual graph, thewhere§ is the speedup of thiéh graph andR4 is the
processor requirements are equal to the peak of the corrgotal processor requirement. Further discussion of the
sponding TRE curve, and processor utilization is calcu- Parallel Execution model and the calculation of total pro-
lated as before from equation (7). The total processorcessor utilization by using a collection of example graphs
requirement is the sum of the individual processor is deferred until section 10.3.

— Oigraphs
parallel model — Rt al 9
ota
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Display

Total Computing Effort = 1950

Graph_1

Processors = 4

Processor Utilization = 100.0 %%
Graph 2

Processors = 7

Processor Utilization = 85.7 %
Graph_3

Processors = 5
Processor Utilization = 80.0 %

Total Processors = 16
Total Processor Utilization = 87.5 %

exact delays are portrayed in the Phasing window shown
in figure 33(b).

The Phasing window is used to define the phase
between the graphs. The phase between two graphs (G
and G) is determined by the amount of delay between
injecting input data into Gand G. A given graph may
be required to receive input data more than once in a sin-
gle scheduling cycle, and hence execute more often than
others within a given sequence. Such a graph is said to be
multiply instantiated or replicated. In effect, this is equiv-
alent to having multiple sampling rates within the multi-
ple graph system. The resulting TBO for a given graph is
the total amount of delay in a sequence cycle divided by
the number of instantiations for the graph. In the example
of figure 33, all graphs have the same TBO, which is
d; + dy + d3 = 600 time units. Since TBO is a function of
the phase delays and the total processor requirement
depends on the resulting overlaps of graphs, the TBO and
Processors button and menu commands are disabled.

These two parameters cannot be changed independently
by the user. Instead, these parameters reflect the resulting
time multiplex characteristics. As in measuring utiliza-
tion for individual graphs, the overall processor utiliza-
tion is displayed via the Utilization window shown in
figure 33(c). The computing effort (area under the curve)
6.4.1.2. Display menuThe Display menu includes is equal to the sum of all computing efforts for the indi-
commands that enable the user to change display optiongidual graphs.
and save results. The commands are defined below.

—_—

Figure 32. Parallel Graph Execution window displays processor
requirements and utilization under Parallel Execution model.

6.4.2.1. Display menulhe Display menu includes
commands that enable the user to view processor utiliza-
tion, show input injection intervals, and zoom into a time
interval. For more information, select tBésplay menu
command name.

O Show...—Allows the user to change viewing
options.

0 Save Results—Saves the utilization measurements
shown in the window to the notes file. The name of
the notes file can be defined with tBave Info
command from th&ile menu in the main window.
(See section 3.2.1.)

O Utilization— Displays the Utilization window of
figure 33(c), which shows the overall processor uti-
lization. See section 6.3 for further discussion of

) the Utilization window.
0 Redraw—Refreshes the display.

O Show Segments-Bisplays dotted lines indicating

6.4.2. Time Multiplex Model Window the graph phase delays.

0 save Results—Saves the information shown in the
Utilization window in the notes file (section 3.1.2),
as shown in figure 34. In addition to naming the
notes file from the Design Tool main window, the
Utilization window must be opened (the Utilization

The Time Multiplex window portrays the processor
requirements and utilization for the algorithm graphs
analyzed with the Time Multiplex model. A sample dis-
play is shown in figure 33(a) for three graphs. The win-
dow displays the overall resource envelope due to the ! -
overlap of the resource envelopes of the individual window does the actual calculation of processor
graphs. The display portrays the processor utilization, utilization when opened).
which is dependent on the phase delays between graphgpq following commands:
for a single periodic scheduling cycle. The graph
sequence and phasing determines the amount of overlap U Slice
and thus the peak processor requirements for all time ; :
multiplex graphs. The dotted lines in figure 33(a) indi- 1 Previous Slice
cate the graph phase delays. The sequence order and 0O Whole
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Display Select
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(a) Total Resource Envelope shows processor requirement of three parallel executing graphs.

Graph seguence

m_ Phasing
Graph_1 Utilization
| 150 d
.__[,l.gl.a_s: — 3 4 Processors... 41.F %
Graph_2 1 Processors... B3.3 %
————— 2 Processors... 100.0 %
~ Delay | 200 dq 1 Processors... 100.0 %
0 Processars... 0.0 % i
Graph_3 |
15"& *“.j 1 250 d, Computing Effart = 1950
] Total Utilization = 81.7 %
J|

(b) Phase between graphs is controlled with Phasing window. (c) Overall processor utilization is displayed via Utilizition win

Figure 33. Time Multiplex window portrays processor requirements and utilization for algorithm graphs analyzed with TiphexMulti
model.
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Figure 34. Seledtave Resultzommand fronDisplay menu of Time Multiplex window to save contents of Utilization window. Utilization

window must be opened to save results.

0 Redraw
0O Reset

are identical to the commands provided by the graph play
windows. See section 5.1.1 for definitions.

6.4.2.2. Select menl:he Select menu includes
commands that enable the user to force the cursors to
jump to selected events and to set the time step for the
horizontal scroll bar.

O Edit Graph Sequence—vokes the dialogue box
shown in figure 35 that allows the user to change
the sequential ordering of graphs. Graphs can be
replicated for multiple sampling rates by clicking
on a graph name and pressing the Replicate button.
The edited sequence and graph replications will be

O Reset Graph Delays—Resets the phase delays

between graphs such that graphs are separated by
the respective scheduling length times of the indi-
vidual graphs.

Reset Graph SequenceResets the graph
sequence such that each graph appears only once in
the sequence cycle. The resulting sequence will
reflect the order in which the graphs were saved in
the graph file created by the ATAMM graph-entry
tool. The order of the sequence is depicted in the
Phasing window.

The remaining Select menu commands
0 Jump by...
O Scroll Step

depicted in the Phasing window upon selecting the are identical to the commands provided by the graph play

OK button.

windows. See section 5.1.2. for definitions.
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Graph 1 => 150 : ..
Graph_2 => 200 Top
Graph_3 => 250
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Replicate
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Figure 35. SeledEdit Graph Sequencefrom Selectmenu to define order in which graphs should execute within scheduling cycle. Repli-
cating graphm times allows multiple sampling rates within graph system. That is, a given graph will ex¢icoés more often within
scheduling cycle than other graphs.

6.4.3. Phasing Window Overview each time the number of processors is changed from the
Metrics window. Figure 36 shows the theoretical

The Phasing window (fig. 33(b)) determines the ; -
sequential ordering and delays of the graphs for the TimeSpeedulo for the DFG of figure 1. The speedup curve indi-

Multiplex model. The ordering of the graph sequence is cates that maximum speedup performance is attainable

represented by a top-down list of graph names. TheW'th four processors; additional processors will not result

graph at the top is the first graph in the sequence; thd" any further speedup. This leveling-off of performance
graph at the bottom is last. The Phasing window also,dis-'s attributable to the recurrence loop (circuit) within the
plays the time delays between the graphs (phase delay): FG. W'th9Ut thls_cwcmt, th_e graph—;heoretlc sp_eedup
The delay time is the delay from when the previous graph ould continue to Increase ".”ea”y .W'th the "’.‘dd't'on of
in the sequence receives its input data to when the giverprocessors. However, this linear increase n speedup
graph receives input data. This delay can be changed b)‘/VOUId ultimately break off beca_use_ of operating system
pressing the Delay button. overhead, such as synchronization costs and inter-

processor communication.

7. Measuring Graph-Theoretic Speedup _
Performance 7.2. Display Menu

The Display menu includes commands that enable
the user to select display options and save results.

The Performance window displays the number of
processors versus speedup based on equation (6). The O Values—Turns on or off the display of the actual
display automatically increases or decreases the abscissa  speedup values above the blocks.

7.1. Overview
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Figure 36. Performance window displays theoretical speedup performance of DFG. Shown is speedup limit associated with DFG of
figure 1.

O Lines—Turns on or off major grid lines on the dia- OE output empty—number of initially empty
gram for ordinate (speedup) values. gueue slots (memory buffers)

0 save Results—Saves the speedup performance OF output full—number of initially full queue
information to the notes file. The name of the notes slots (memory buffers) due to initial
file can be defined by using tigave Info com- tokens. Initial tokens are a result of either
mand from theFile display in the main window initial conditions (data values) represented
(see section 3.1.2). Selecting this command will by data edges or initial tokens on control
update the speedup performance data in the file as edges required to impose inter-iteration
shown in figure 37. dependencies.

0 Redraw—Refreshes the display window. QUEUE output queue size = OE + OF

Control edges are distinguished from data edges by using

8. Summarizing Dataflow Graph Attributes blue text in the window display and an asterisk in the
notes file. The display is updated automatically as the
8.1. Overview modeling parameters or characteristics change during the

. o design session.
The Graph Summary window shown in figure 38

displays the DFG attributes and scheduling criteria for 8.2. Display Menu
the current design or operating point (processors, TBO,

and TBIO). The characteristics include The Display menu includes commands that enable

the user to select display options and save results.

NAME node names . L
0 Show...—nvokes the dialogue box shown in fig-
LATENCY node latencies ure 39 to allow the user to change the viewing
i . options. Simply check or uncheck the boxes to
ES earliest start imes show or hide the graph attributes, respectively.
LF latest finish times 0 save Results-Saves the graph information to the

notes file. The name of the notes file can be defined
with theSave Infocommand from th&ile menu in
INST maximum node instantiations the main window (see section 3.1.2). Selecting this

SLACK slack times
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Figure 37. Seledave Resultxommand fronDisplay menu in Performance window to update notes file with speedup data.

r DFG Summary @E

D
MNAME LATENCY ES LF SLACK INST OEJOF QUEUE
A 90 0 a0 0 1 1j0->D 1->D
1Ja0—>C 1->C
1J0->B 1->B
B 390 a0 480 ] 2 210—>F 2->F
C 90 90 480 ano 1 210-=>F 2=>F
D 190 90 314 34 1 1]0—>E 1—>E
E 90 280 404 34 1 1/0—>F 1->F
0/}1-—>D 1->D
F 90 480 570 0 1 1J0-> Snk 1->Snk
Src 1/0->A 1-2>A

Figure 38. Graph Summary window displays DFG attributes associated with current dataflow schedule.
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Figure 39. Selecdhow...command fronDisplay menu in Graph
Summary window to select amount of information to display.

File Edit Search Help

command will update the speedup performance
data in the file as shown in figure 40.

O Redraw—Refreshes the display window.
9. Operating Points

9.1. Overview

The term “operating point” is used to define a partic-
ular multiprocessing design that results in a level of per-
formance and processor requirement, for example, TBO,
TBIO, andR (processors). The user may select multipro-
cessing schedules that have operating points within a
plane TBOx TBIO that has a graph-theoretic lower
bound (bottom left of the plane) defined by TB@nd
TBIOy,. The Operating Point window displays the plot of
TBO versus TBIO, with the number of required proces-
sors as a parameter. An example of an Operating Point
window displaying four operating points associated with
one to four processors is shown in figure 41. The dashed

Notepad - DFG.TXT

Total Computing Effort = 940
Processing = 820
Read/Write = 128

Overhead = 12.8 %

Schedule Length = 578
TBD = 314
Processors = 4

DFGE GRAPH SUMHARY

SIHK TBID g
->Snk 570

HAME LATEHCY ES LF SLACK IHST DE/DF QUELE 5
A 90 (] 08 ] 1 1/8 1 -=» D

1/8 1 -=>» C 5

1/8 1 -=> 8 i

B 398 0@ w80 ] 2 2/8 2 -=> F i

C 90 90 480 300 1 2/0 2 --» F
D 198 9@ 314 an 1 1/0 1 --» E
E o0 280 50l ah 1 178 1 -=> F
/1 1 -=» D

F 98 4RO 578 1 178 1 --» Snk i
src = 2 = o = 1/8 1 -=> A

+

1 h DR ] L I

Figure 40. Seledave Resultzommand fronDisplay menu in Graph Summary window to update notes file with DFG attributes for cur-
rent scheduling solution.

31



= |~
Display
TBO
) 1
=] _Point
: TBO = 334
THID = bbb
: R=13
g
3
TBOMY sssmiisvznsnss i s S R AT SRR TR
TBIOalh
TRIO }
|

Figure 41. Operating Point window plots TBO versus TBIO. Number above each point represents number of processors i@geired to a
that level of performance. Subscriglb denotes absolute lower bound.

lines indicate the absolute lower bound of the perfor- [ update Graph
mance plane. The displayed plot is associated with only, )
. . s are defined next.
one graph and index at a time. The term “index” is used
to distinguish different options for the same number of
processors. The Design Tool can utilize multiple graph
and index options when using graph files generated by =~ The Display menu includes commands that enable
the ATAMM Graph-Entry Tool. The user can select the the user to select the graph and the index to view, get
graph and option (index) to view by using tBhow... information (TBO, TBIO, andR) for an operating point,
command from th®isplay menu. If the graph has multi- refresh the display, and update the graph file with the
ple sinks, the TBIO metric is equal to the maximum necessary modifications and characteristics to model (or
TBIO for all paths within the graph. achieve) the desired operating point:

9.2. Display Menu

O Show...—nvokes the dialogue box shown in fig-
ure 42, which allows the user to choose the desired
graph and index for viewing.

The current undefined (user has not updated the
graph file for an operating point) design point is colored
red, operating points already defined (updated graph file)
are colored green, and a coincident undefined and [ get Point—Displays the TBO, TBIO, and proces-

defined point is colored magenta. When the user is sor requirement for the operating point colored in
searching the TBO/TBI® information box for a patrtic- blue. After the command is selected and before the
ular operating point (seeext Point command), the dialogue box is closed, the command name changes
selected point is colored blue. THeisplay menu to next Point.

commands

0 next Point—This command is created in the menu
after theget Point command is selected. TBO,

O Show... TBIO, and processor requirement information for a
. different operating point is displayed each time this

1 get Point command is selected.

0 Redraw 0 Redraw—Refreshes the display.
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by the dataflow may not lend themselves to this theoreti-
cal solution in terms of requiring three processors at a
TBO of 314 time units. The dataflow analysis provided
by the tool only guarantees the scheduling solution with
sufficient resources (processors). When resource require-
ments extend beyond resource availability, trade-offs
may be necessary betweBnTBO, and TBIO, in addi-
tion to optimization of the dataflow schedule with artifi-
cial precedence constraints.

The inclusion of additional precedence constraints in
the form of control edges may reduce the processor
requirements of a DFG for a desired level of perfor-
mance. Since the problem of finding this optimum solu-
tion is NP-complete and requires an exhaustive search,
the Design Tool was developed to help the user find
appropriate control edges when needed and to make
Figure 42. Selecghow...command fronDisplay menu in Oper- trade-offs when the optimum solution cannot be found or

ating Point window to select graph and option (index) to view. does not exist (ref. 9). The solution for a particular TBO,
TBIO, andR is ultimately application dependent. That is,
one application may dictate that suboptimal graph
O update Graph—Allows the user to update the latency (TBIO > TBIQ,) may be traded for maximum
dataflow graph file for the current operating point. throughput (1/TB@) while another application may dic-
A dialogue box will appear, reminding the user of tate just the opposite. An application may also specify a
the total processor requirement for the operating control or signal-processing sampling period (TBO) and
point and allowing the user to cancel the update. A the time lag between graph inpy() and graph output
detailed discussion of updating the graph file is g(t — TBIO) that is greater than the lower bounds deter-
given in the next section 10.1. Since the graph files mined from graph analysis, possibly making it easier to
do not store performance information (only data- find a scheduling solution. The use of the Design Tool
flow graph topology and attributes), TBO, TBIO, for solving the optimum three-processor solution is pre-
andR values are saved in a separate file (same file-sented in this section.
name as graph file but with the extension .rtt) cre- ] ) )
ated by the Design Tool. When the graph file is . With reference to figure 43, node C has intra-
reopened, the information in this file is read so that itération slack time that may be utilized (by delaying
the Operating Point window can be redrawn to node C) without degradation in TBIO performance.

show operating points defined in previous sessions.Selécting theAdd Edge command from theDisplay
menu in the SGP window and clicking on the execution

: bar of node C immediately highlights the nodes indepen-

10. Case Studies dent of node C. These highlighted nodes are the only
For the purposes of presenting and demonstrating thedptions for an intra-iteration control edge. By using the

remaining Design Tool features, a few case examplestime cursors, one can easily determined that node C can
will be discussed. First, optimization of the DFG exam- be delayed behind node E without extending beyond its
ple in figure 1 will be demonstrated by inserting control slack time. Clicking on node E results in the inclusion of
edges. Second, the effect of communication delays, modthe E< C constraint, thereby eliminating the needless
eled as edge delays, on the performance and displays prg-arallelism for a single iteration, as shown in figure 44.
viously presented will be demonstrated. And third, the Even though the computing effort is smaller than before
capability of the Design Tool in modeling multiple graph adding the EX C constraint, there is still some comput-
execution scenarios will be demonstrated. ing effort requiring four processors. Additional prece-
dence constraints may exist that could effectively

10.1. Optimization of Dataflow-Derived Schedule ~ reallocate the computing effort requiring four processors
o ) to fill in the underutilized idle time requiring only two
The DFG example in figure 1 has the potential of processors.

having a speedup performance of 3 with three processors
as indicated by equations (5) and (6) and portrayed in By using the time cursors, the user can locate the
figure 36. However, the precedence relationships givenfour-processor effort in the TGP (note cursor position in
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Figure 43. Dataflow schedule for desired number of processors (three for example) and TBO (314 time units) may in fenequire
cessors (four in this case). User may wish to eliminate needless parallelism and fill in underutilized processor tinteowgunte st to
delay node C behind nodes B, D, or E.

the TGP and TRE of fig. 44). Referring to the TGP of its slack time, increasing TBIO above the TRIOf 570
figure 44, one can determine that the likely candidate istime units to 626 time units, as shown by the Metrics
to delay node D behind either node C or node B. Selectwindow of figure 46.

ing node C, which imposes the€€ D constraint, creates

an artificial recurrence loop with a timing violation; that

is, the time per token ratio of the loop€ B E The Graph Summary window in figure 47 also dis-
exceeds the current TBO of 314 time units. When such aplays the control edges added for the three-processor
situation arises, the Design Tool will warn the user by schedule, indicated by asterisks. With reference to the
displaying the dialogue box shown in figure 45. Attempt- B < D control edge, OF =1 (representing the presence
ing the other option and imposing the<B D constraint of one initial token) characterizes the inter-iteration rela-
produces the results shown in figure 46, a three-tionship required between B and D (TBO delay of 1) to
processor scheduling solution having optimum through-assure the desired schedule in figure 46. This inter-
put. However, the solution is not optimum in terms of iteration dependency is implied by the relative data
TBIO performance. Imposing B D effectively delayed packet numbers assigned to the node execution bars in
node D 76 time units. Before the-B D constraint was figure 46. If data packet 2 representsitieiteration of a
imposed, node D had 20 time units of slack. As a resultnode, notice that node D is enabled for execution by the
of B< D, node D is now pushed 56 time units beyond (n — 1)th iteration of node B.
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Figure 44. Imposing intra-iteration control edgeE  C delays node C within its slack time so that TBIO is not increasediliRgsched
node C eliminates needless parallelism so same TBIO can be obtained with two processors, rather than three.

ERROR

A timing violation has heen detected in circoit: C->D->E->
The last control edge inserted will be deleted!

Figure 45. The Design Tool prevents insertion of artificial precedence relationships not permissible as steady-state schedules
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Figure 46. Imposing control edge<B D delays node D behind node B. Since nodes B and D belong to different iterationdgeontrol e
imposes inter-iteration dependency requiring initial tokens (one, in this example). Design Tool automatically calculatéstepprop
ber of initial tokens.

10.1.1. Initialization of Control Edges desired iteration period. Implementation of this function
would required, initial tokens on thg(n —d,) edge and

d, initial tokens on thev(n — d,) edge in order to create
the desired delays. In such cases, the critical path, and
thus TBIO, is also dependent on the iteration period TBO
(ref. 5).

The three-processor scheduling solution in the previ-
ous section required an inter-iteration control edge with
an initial token. Even though this initial token is deter-
mined automatically by the Design Tool, a brief explana-
tion of inter-iteration dependency is provided in this

section. For example, given that a node fires when all input

As discussed in section 2, many signal processingtokens are available, if sufficient resources are present,
and control algorithms require previous state information the earliest time at which the node shown in figure 48
(history) or delays within the algorithm. These delays could fire would depend on the longest path latency lead-
can be modeled by initial tokens on edges. With refer-ing to thex(n) or y(n - d;) edges. Assuming that tlug
ence to figure 48, the node outm(h) associated with  andd, tokens are the only initial tokens within the graph,
the nth iteration is dependent on the current ingn), the time for a token associated with tith iteration to
input y(n — d;) provided by ther(-dq)th iteration, and  reach thex(n) edge would equal the path latency leading
inputw(n — d,) produced by then(- d,)th iteration. But, to thex(n) edge. Likewise, the minimum time at which
the initial tokens necessary to obtain a desired algorithmthe “token” firing thenth iteration on the/(n — d;) edge
function affect the permissible schedule of tasks for acould arrive from the source equals the path latency
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NAME LATENCY ES LF SLACK INST OEOF QUEUE

A 90 0 a0 1 1/0—>D 1-—>D
210->C Sy
1/0->B 1—>8

B 390 90 480 2 1}11=>D 2->D*®
2i10->F 2->F

C 90 446 536 1 1/0—>F 1->F

D 1390 166 356 1 1]0—>E 1->E

E 90 356 446 1 1/0->C 1->C *
1{0—F 1->F
0}1-—>D 1->D

F 90 536 626 1 1/0=> Snk 1-=» 5Snk

Src 1/0->A 1->A

Figure 47. Dataflow graph attributes and timing are displayed in Graph Summary window. Edge added between nodes B asdrd requir
tial token (OF = 1).

z(n) =x(n) * y(n—d4) * w(n—d>)

leading to they(n-d;) edge. However, since this
“token” is associated with then ¢ d,)th iteration (pro-

Figure 48. Algorithm function example.

tokens is equal to the summation of the associated node
latencies less the producteb&ind TBO. Thus, the critical
path (and TBIO) is a function of TBO and is given as the
path from source to sink that maximizes equation (1),
whered is the total number of initial tokens along the
path.

Although initial tokens defined by the algorithm
functions tend to complicate the dataflow analysis, they
become useful when the user attempts to optimize the
dataflow schedule by introducing artificial data depen-
dencies. The options the user has for rescheduling a task
are bounded by the number of task end times in a Total
Graph Play diagram when the reschedule is a result of a
new precedence constraint. As mentioned in section 5,
the Total Graph Play is equivalent to the superposition of
TBO-width segments dividing up a Single Graph Play
diagram. Such an equivalent view of the steady-state
dataflow schedule will be used to generalize the potential
precedence relationships between nodes.

Figure 49 shows a generalized Single Graph Play
diagram divided into segments of TBO width. The num-

ducedd; TBO intervals earlier), the actual path latency bers above the segments refer to the relative iteration
referenced to the same iteration is reduced by the producoumbers or data packet numbers for each segment. The

of d; and TBO.

figure shows that the bounded rescheduling options can
actually be divided into three regions. The three cases

From this example, it is easy to infer that the actual assume that the user wishes to reschedule Hipolehind

path latency along any path with a collectiordanitial

the completion of one of the three nodBg:T,, or Ts.
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Control edges created from nodes in this region would require
initialization with rokens, e.g., T3 < T,, would require three tokens

Packet numbers

\.

Time

Control edges created from nodes in this region
do not require initialization with tokens, e.g., T2-< T,

Control edges created from nodes in this region would require
initialization with antitokens, e.g., T1-< T’1

Figure 49. Inter-iteration control edges may be initialized with tokens, depending on iteration number separation.

If the user decided to impose the constr@ink T, instead be separated by a single iteration. What is strange
the two nodes would belong to the same iterati@mtra- about this is that thé&h iteration of nodel,, would be
iteration dependency). Thus, the control edge imposingtriggered by thei(+ 1)th iteration of nodd,, a data set
T,< T,would not require an initial token. injected into the graph in the future. This implies that

) ) ] during the transient state of execution, ndgewould
If the user decided to impose the constrain Tp,  have to throw away the first token received frérand
the two nodes would not belong to the same iterafion ot fire until receiving the second (and subsequent)

but would instead be separated by three iterations. Thatokens. This type of synchronization can be modeled
is, theith iteration of nodd, would be triggered by the  yith “negative” token counts. These “negative” token

(i — 3)th iteration of nod&g. This implies that during the  counts are referred to as antitokens. By permitting initial
transient state of execution, nodg would fire three  ioken counts to be negative as well as positive, more
times on three consecutive data sets before Mgfiesd rescheduling options (corresponding to segments to the

even once. The only way this could happen is if the edgeeft of the node to reschedule) are available to the user.
T3 < T, had three initial tokens.

The last case may seem strange at first. If the user 10.1.2. Updating Dataflow Graph
imposed the constraint; < T, the two nodes would A multiprocessor solution of the dataflow graph in
again not belong to the same iteratipnbut would figure 1 was designed in the previous section. The
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Figure 50. Operating Point plane for three-processor design.

dataflow graph characterizes not only the partial ordering

of tasks for correct results, but also the communication, ] Update Graph
synchronization, and memory requirements at run time.
As discussed in section 9, the Design Tool allows the New Operating Point!
user to update the dataflow graph file with the appropri- Modity graph[s] for the Operating Point:
ate attributes that characterize a multiprocessor solution. Total Processors = 3
This section presents the update procedures required for Index =1
the three-processor design example.
Once the design is finalized as shown in the previous IE_I | No
section, the user can review the performance plane (TBO -
versus TBIO) by selecting th&éhow Operating Points
command from th&indow menu in the main window. Figure 51. Updating dataflow graph with design attributes.

Having done this, the Operating Point window in fig-

ure 50 will be displayed showing the TBO =314 time _ _ _

units and TBIO =626 time units performance of the DFG.GTF with the appropriate graph attributes. The
three-processorR = 3) scheduling solution. Figure 50 updated file can be viewed by selecting tiew com-
shows that this design will result in optimum mand from thd=ile menu in the main window, as shown
throughput (1/TBQ) but suboptimal graph latency in figure 52 (approximately a three-page view). The
(TBIO > TBIOy,). updated attributes (referenced to the appendix) shown in

. i figure 52 can be compared with those of figure 47. Note
The dataflow graph described by the file DFG.GTF na¢ the required instantiations of node B (left window)

can be updated with the design attributes summarized i35 peen set to 2. two control edges (middle window)
figure 47 by selecting thepdate Graph command from  ,5ve peen added, the control edge/B D has been ini-

the Displa_ly menu in th_e Operating Point window. (See iglized with a single token, and data edgexA C and
also section 9.) Invoking thepdate Graph command B < F require two queue slots each.

will prompt the user with the dialogue box shown in fig-

ure 51. In addition to reminding the user of the processor  The user may alter an updated graph as many times
requirements, the dialogue box allows the user to accepts required, overwriting the current design. For example,

or cancel the update to the graph. Refer to section 9 forone may decide later that TBO may be sacrificed for an

the meaning of the “Index = 1” statement in tipelate improvement in TBIO for the same number of processors

Graph box. SelectingYes will update the graph file (three in this case). Increasing TBO to 350 time units
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Figure 52. Seled¥iew command fronfile menu in main window to view graph file. Updated graph for three-processor design is shown.
Note added control edges in middle window.

happens to decrease TBIO to 590 time units in this exam-  10.2. Modeling Communication Delays

ple, as shown in figure 53. The current “updated graph”

design point is still shown (in green), whereas the new Up to now, the dataflow model has assumed a shared
(possibly alternative) design point is shown (in red) with memory architecture without processor contention. This
the information “Point” box. Selecting thepdate section will briefly discuss the effect of communication
Graph command for a previously updated graph for the delays on the two network models discussed in sec-
same number of processors will result in the dialoguetion 3.2.2. The communication delays that are not negli-
box shown in figure 54, reminding the user that this gible between synchronized nodes can be modeled with
design point already exists. edge delays in the dataflow graph. To simplify the
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Figure 53. After dataflow graph has been updated, current design may be overwritten. Alternate design is shown with saofi@rmimbe
cessors: TBO increases to 350 time units and TBIO decreases to 590 time units. Subsigigites absolute lower bound.

~ Update Graph

Operating Point already exists!
Drverwrite graph|s] modifications for the Operating Point:
Total Processors = 3

(s (e

Figure 54. Design Tool warns user when updating a dataflow graph for same number of processors will overwrite a pravious desig

Index = 1

demonstration, the dataflow graph of figure 1 will be computed number of processors set to three, JBO

used except that the edge delays shown in figure 55 aregemains 314 time units. This is only because the total
added. The dataflow analysis via the Design Tool net-communication delay of 20 time units added to the recur-
work model with and without communication processors rence loop results in a time/token ratio of 300 time units,

will be demonstrated. still less than TCE/3 = 940R 314 time units. Note, that
. o TCE remains 940 time units, since the communication
10.2.1. Network with Communication Controller effort does not consume processor time. The significant

The Network with Com Controller model assumes difference between this dataflow analysis and the previ-
that each processing element is paired with a communi-0us one (Shared Memory/No Contention) is the finite
cations processor, controller, or state machine. In thisdaps between the dependent node execution bars and the
way, the burden of transferring information between pro- corresponding processor idle time.
cessors is removed from the processing elements. The
effect of edge delays on the dataflow analysis conducted It should be mentioned here that this model assumes
before can be seen by examining figure 56. With the that the communications required of all edges can occur
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Figure 55. Dataflow graph with communication delays modeled
by edge delays.

in parallel. Thus, the minimum time required to transfer

results of a node with multiple output edges is equal to
the maximum of all output edge delays. The processor

idle time that occurs during communications (which may

result in O-percent processor utilization at times) is nec-

cessor to do in this graph during this time, but maybe
there is something for it to do elsewhere, especially in the
multiple graph execution scenarios. Note that the over-
head is the same as the shared memory model.

The edge delays not only affect the calculation of
earliest start times but also the calculation of inherent
slack time. With reference to figure 57, it is apparent that
the intra-iteration slack of node C (which was 300 time
units before) has been reduced to 265 time units. Edge
delay also affects the inter-iteration slack. The slack
within the recurrence loop was 24 time units without the
edge delays, and the slack of node E in figure 57 is now
14 time units. This slack can be calculated as the differ-
ence between the iteration period, TBO = 314 time units,
and the total loop time including edge delay, 300 time
units. The difference is equal to the slack within the loop,
in this case 14 time units.

10.2.2. Network without Communication
Controller

The Network without Com Controller model

essary to assure data integrity. There is nothing for a proassumes that each processing elensembtpaired with a

Total Graph Play
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Figure 56. Dataflow analysis of DFG of figure 55 with communication delays and Network with Com Controller model.
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Figure 57. Effect of edge delays on node slack time. Intra-iteration slack of node C is reduc€d by C  F edge delay ofit80 Ititee-un
iteration slack of node E is reduced by<c D edge delay of 10 time units.

communications processor. In this case the processor is 10.3. Multiple Graph Models
responsible for the communications burden as well as the 114 Design Tool provides two models of parallel

computing effort required by the algorithm tasks. The gr55h execution. The first model, called the Parallel Exe-
effect that e'dge delays under this model 'have on the datag tion model, is applicable when multiple, independent
flow analysis conducted under the previous models can,|gqrithms are executing in the system simultaneously.
be seen by examining figure 58. With the added commu-the model assumes that the phasing of one algorithm
nications effort, indicated by the increase in TCE to graph with another is not known and cannot be con-
1110 time units, TB{3 for a computed processor nUM- yjled. The second model, called the Time Multiplex
ber of three is now 370 time units. One would expect the ,nqel handles the cases where the graph phasing is
earliest start times shown by the SGP to remain the sam&nq\yn 4 priori and can be controlled deterministically.
and the SRE would remain the same as well except foryg you will see in this section, the processor require-

the filling in of idle time due to the communication ments of the Parallel Execution model tend to be greater
requirements. Since the TBO has changed, however, thgnany those of the Time Multiplex model. The three
TGP and TRE should be d|fferent..Refe'rr|ng to the TR'E, raphs shown in figure 59 will be used to demonstrate
one can see that even though the idle time has been fille esign Tool features that apply both multiple graph
in under this model, the processor requirement remaingyagels, At present, the multiple graph model features of
four with slightly less utilization. This can be attributed 4 Design Tool can only be used with graph files gener-
to the fact thatomputing poweis the product of TBO  ateq by the ATAMM Graph-Entry Tool, since the Graph
and the number of processors. Thus, computing powefrey; File format only accommodates a single graph.

can be incre'ased to meet the added computing effort of Figure 60 shows the capture of the three graphs by the
problem by increasing TBO, processors, or both. In th'SGraph-Entry Tool. The user chooses which multiple
case, the increase in TBO has accommodated the add aph model gets applied to which graphs by using the

effort incurred by the communication requirements, dialogue box shown in figure 8.

keeping the processor requirement at four. The one major

difference in the two network models is seen in over- 10.3.1. Parallel Execution of Multiple Graphs

head, in this case measured to be 26.1 percent due to the \yhen multiple graphs are defined in a graph file

added 170 time units of communication effort. generated by the ATAMM graph-entry tool, the Design
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Figure 58. Dataflow analysis of DFG of figure 55 with communication delays and Network without Com Controller model.

Tool creates a Metrics window for each graph. The first Given the individual scheduling solutions portrayed
graph found in the file will be opened along with the in figures 61 to 63, the overall processor requirements
SGP window. All other Metrics windows will be mini- and utilization are displayed by the Parallel Graph Exe-
mized to icons, as shown beside the Parallel Executioncution window in figure 64. The total computing effort is
window icon at the bottom of figure 61. computed as 1950 time units by summing the TCE val-
) o ] ues for all graphs. For each individual graph, the proces-
Figure 61 also indicates that Graph 1 requires a four-gq requirement is equal to the peak of the corresponding
processor schedule for an iteration period of 200 timeTRE curve and processor utilization is calculated from
units. This is an optimum four-processor solution for eqyation (7). To provide for the worst-case overlap of the
both TBIO and TBO, since there is no idle time in the i iqual TRE’s, the total processor requirement is the
periodic schedule. At this level of throughput (1/TBO), gym of the individual processor requirements, calculated
three data sets would execute simultaneously in they, pe 16 in this example. As defined in section 6.4, the
graph. Figure 62 shows the Metrics window, SGP Win- (o5 processor utilization of the system is calculated
dow, and TGP window of Graph 2; eight processors areom equation (9), where the individual graph speedup

required at an iteration period of 108 time units. The 5 65 are summed together and divided by the total
TGP shows that five data sets would be processed in the,,mper of processors. In this example, utilization of all

graph simultaneously at this level of throughput. The processors is computed to be (800/200 + 750/108 + 400/
dataflow analysis of Graph 3, portrayed in figure 63, 134)/16 = 87.1 percent.

indicates that four processors would suffice for an itera-

tion period of 134 time units. Since the dataflow sched-

ules of Graph 2 and Graph 3 have idle time, the solutions
are not optimal. Nonetheless, a search for a better solu-
tion will not be shown here, since the intent of this dis- This section demonstrates the idea of deterministi-
cussion is to demonstrate the multiple graph analysiscally controlling the phasing between graphs, which can
features. produce scheduling solutions with fewer processors. The

10.3.2. Time Multiplex Execution of Multiple
Graphs
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Graph 1 The time multiplex performance of the three graphs

400 periodically executed with the sequence {Graph 1,
Graph 2, Graph 3, Graph 1,...} is shown in figure 65. By
e comparing the delays shown in the Phasing window

(fig. 65(b)) with the TBIO values (fig. 65(a)), one can
100 100 infer that the graphs are spaced out by the respective

Gy ° ° Sink TBIO values (which are equal to the respective schedule

lengths) such that the processing of graphs does not over-
lap. Thus, the dashed lines in the resource envelope win-
dow actually indicate when the processing of one graph
ends and that of another begins. Also, since neither graph
is replicated (i.e., the system operates by a single sam-
pling rate in DSP terminology), the time between graph
executions (TBO) equals the sum of the phase delays,
1350 time units in this case. The disablement of the TBO
and Processors buttons is indicated by the grayed button
text in figure 65(a). The calculated processor require-
ment shown next to the Processors button is one for each
graph. This is expected, since in each case TCE is less
Sink than TBO. However, the system requires two processors
to exploit the parallel concurrency in the individual
graphs with an overall processors utilization of
72.2 percent. In this example, the area under the resource
envelope, as indicated by the Computing Effort value
shown in the Utilization window, is the sum of the indi-
vidual graph TCE values.

Graph 3 Assume in the remaining discussions that this multi-
200 ple graph problem is to be mapped onto a three-processor
Q system and that one can arbitrarily define the sampling

outy) rates of the system. The intent would be to fully utilize
(minimize idle time) the three processors in a way that
@ overall system speedup is maximized. One can see from

figure 65 that for an overall speedup of 1.44 (TCE/
5 TBO = 1950/1350), there is significant idle time in the
e Ut periodic dataflow schedule. By adjusting the relative
phase delays between the graphs, the user can fill in this
100 ! ; . . -
idle time by allowing just the right amount of graph
Figure 59. Three graph examples used in demonstrating multipleoverlap.
graph analysis and design.

For demonstration purposes, two different sampling

rates can be allowed in the system by replicating Graph 2
procedures involved in analyzing graphs with the Time twice. That is, Graph 2 will receive, process, and produce
Multiplex model are slightly different from the proce- data twice as often as Graphs 1 and 3 within a cycle. To
dures discussed up to this point. As with the Parallel Exe-do this, click on theEdit Graph Sequencecommand
cution model, a Metric window is created for each graph. from the Selectmenu in the Multiple Graph window to
But, as discussed in section 6.4.2, the user cannot indeinvoke the dialogue box shown in figure 66. Clicking on
pendently control the TBO and processd®y fjarame-  Graph 2, pressing theeplicate button, and then clicking
ters for each graph. These parameters depend on then the Down button will produce the sequence shown in
periodic graph sequence and phasing, which are porthe dialogue list box. Figure 67 shows the resulting per-
trayed and controlled by the Time Multiplex and Phasing formance of the new sequence {Graph 1, Graph 2,
windows described in section 6.4.2. This section will Graph 3, Graph 2, Graph 1, ...}. Notice that the graphs
demonstrate the performance behavior of the individualhave been separated by the respective TBIO values. As
graphs shown in figure 59 under a time multiplex graph before, the TBO values for Graph 1 and Graph 3 equal
scenario. the total amount of phase delay in this new sequence,
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Metrics windows (Graphs 2 and 3 in this figure) hides all opened window displays pertaining to the graphs. Dataflow aBadysislof
shows four processors are required for an iteration period of 200 time units.
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Figure 62. Dataflow analysis of Graph 2 shows eight processors are required for iteration period of 108 time units.
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(500 time units) along both paths converging onto

Farallel Graph Execution 1] Graph 2. Hence, Graph 2 will always produce output
Display every 500 time units in this solution. Noting the results in
the Utilization window, the processor utilization has
Total Computing Effort = 1950 increased to 90 percent with an overall speedup of 2.7
(2700/1000).
Graph_1
Processors = 4 The dataflow analysis shown by this example pre-
Processor Utilization = 100.0 % dicts the performance and resource requirements of a
multiple graph execution scenario, assuming that the
Graph_2 graphs are phased as shown in figure 68. In the same way
" Processors = 8 that graph edges describe the communication and syn-
Processor Ltilization = 86.8 % chronization required of partially ordered tasks, the
graph edges can also be used to describe a multiple graph
Graph_3 execution sequence. Just as edge delays can be used to
Processors = 4 model communication delays between synchronized
Processor Utilization = T4.6 % tasks, edge delays can model the phase delays between
synchronized graphs. To do this, the Design Tool
Total Processors = 16 imposes control edges (with edge delay) onto sources
Total Processar Lhilization = 87.1 % normally unconditionally enabled. The control edges are
added to the sources along with the usual graph attributes
| as a result of updating the graph, as discussed in sec-

tion 10.1.2. For the Parallel Execution model (which is
Figure 64._Para||e| Graph Executic_m window summarizgs proces-the model of choice for a single graph), sources are
sor requ_lrements for all graphs intended to execute in parallel.updated with a self-loop control edge with a delay equal
Since it is assumed that phasing between graphs cannot be cofy, 1o gesired TBO of the graph. This prevents the source
trolled inparallel graph strategytotal processor requirementis ¢, yaing unconditionally enabled and instead injects
worst case, or sum of individual processor requirements. input periodically with period TBO when desired. For
the Time Multiplex model, the sources are updated with
a network of edges that describe the desired graph
1800 time units. However, since Graph 2 produces out-sequence and phase. Figure 69(a) shows the resulting
put twice in this period, it has twice the throughput as the ATAMM Graph-Entry Tool display after the graphs have
other graphs. Consequently, its TBO value is 900 timebeen updated. Not apparent in the picture, because the
units. Whether a replicated graph produces output with aedges overlap one another, are two edges forming a loop
fixed period depends on the total phase delay that conbetween Graph 1 and Graph 2 and between Graph 2 and
verges on the graph in a given sequence. With referenc&raph 3, as portrayed in figure 69(b). An initial token
to the Phasing window of figure 67, notice that Graph 2 marks the edge incident on Graph 1 to indicate that it
will receive input (and produce output) after 1050 time fires first. The firing of Graph 1 will encumber the token
units (Graph 1 to Graph 2), and then after 750 time unitsand deposit output tokens for node A and the source G2.
(Graph 3 to Graph 2), and then after 1050 time units, andHowever, the token destined for G2 will not appear for
so on. This means that within a cycle of 1800 time units, 250 time units, which imposes the desired phase delay
Graph 2 actually has two TBO intervals. However, over between Graph 1 and Graph 2. After 250 time units,
the 1800 time unit cycle, the average TBO interval for source G2 will encumber the token and deposit a token
Graph 2 is 900 time units, the value always displayed infor source G3 (and node N1), which takes 350 time units
the Metrics window. to arrive. The sequence of firings continues delaying
Graph 2 after G3 by 150 time units and Graph 1 after

A three-processor, dual-sampling-rate solution that Graph 2 by 250 time units, returning the token back to
fills in as much idle time as possible (any further overlap the initial marking and allowing the sequence to repeat
of graphs will require four or more processors) is shown indefinitely.
in figure 68. The phase delays have been reduced such
that the overall scheduling cycle is now 1000 time units. 11. Future Enhancements
Unlike the two-processor example where Graph 2 pro-
duced output in an oscillating fashion due to the unbal- Extensions to the Design Tool planned in the near
anced phase delay, this solution has equal phase delafuture include incorporating heuristics to automate the
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Figure 65. Time multiplex strateggssumes phasing between graphs can be controlled by defining a finite delay between inputs to graphs.
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Graph Execution Sequence

|Graph_2 =» BODO
Graph_3 =» 450
Graph_2 = GO0

Figure 66. SeledEdit Graph Sequencecommand fronSelectmenu in Multiple Graph window to edit periodic graph sequence. User can
also replicate graphs so that they execdtienes as often as other graphs within scheduling cycle. Figure shows Graph 2 has been repli-
cated twice.

selection of control edges and static processor assigntasks (nodes) to processors with fixed start times will
ments for optimal or near-optimal scheduling solutions. prevent this behavior, since the independent nodes will
Also planned are enhancements to the underlying modebe prevented from moving and altering the resource
and control edge heuristics to permit the design of real-envelope in a way that exceeds the worst-case processors
time multiprocessing applications for both hard and soft requirements. However, such anomalies can also be
deadlines (ref. 13). avoided by inserting additional control edges that impose
stability criteria (ref. 14). Incorporating a stability crite-

For hard real-time modeling, the design would ia algorithm similar to that of reference 14 would allow

: r
assume worst-case task. Iatenmes.' It has been obser_vqﬂz Design Tool to not only determine control edges for
that under such assumptions, run-time dataflow behavior.

. X . increased performance, but also to guarantee hard

may result in anomalous behavior such as requiring more :
L —deadlines.

processors than indicated from the worst-case scenario

(ref. 14). This is a result of the nondeterministic overlap

of computing effort required of independent tasks (both In the context of DSP systems, the Design Tool can

intra-iteration and inter-iteration dependencies). That is, support only a single sampling rate per graph. Many DSP

when tasks finish earlier than the worst-case executionalgorithms require multiple sampling rates, which is

times (and they frequently will), predecessor tasks haveequivalent to graph nodes encumbering and depositing

the potential of starting earlier, altering the resource multiple tokens per firing, as opposed to only one token.

envelope predicted by the worst-case analysis, and conEnhancements are planned to the graph analysis tech-

suming processing power away from other tasks, whichniques that will support multiple sampling rates within a

may result in missed deadlines. Static assignment ofDSP algorithm.
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Figure 67. TBO for a given graph undiene multiplex strateggepends on phase delays.
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12. Concluding Remarks synchronization, communication, shared memory
requirements, and iteration period. The dataflow graph

_, The Dataflow Design Tool, a software tool that pro- ,qeq as input is updated by the Design Tool so that the
vides automatic graph analysis of algorithm decomposi-,, ime scheduling solution is represented by the data-

tions, was presented. The graph analysis is based on thg, graph. However, the dataflow model used and

Qataflow paradigm, Whi_Ch Is very good at expos?ng updated by the Design Tool at compile time does not
inherent pa_lrallellsm within a_Igorlthms. The functlon_a}hty imply that a dataflow graph implementation must be used
of the Design Tool was defined and shown to facilitate 4 time. If the user has a dataflow machine (hardware
the selection of graph-theoretic multiprocessing solu- 56y software implementation), the dataflow graph can
tions. The addition of artificial data dependencies (con- p, avecuted as is to achieve the solution predicted by the

trol edges) \;]Vaj Ishown fto be a \t/)iabled tephniﬂue foro0l. Alternatively, the user may wish to implement a
Improving scheduling performance by reducing the pro- giaiic scheduling solution with a heuristically chosen

cessor requirements. The selection of an optimum solucpeqyle. In this case, the static scheduling algorithms

tion is b"?‘SEdbO” user.-selecte((jj criteria: tlrge beéwee?could be tailored to use the dataflow analysis (e.g., earli-
outputs, time between Input and output, and number Olggt giart and slack times of nodes) as criteria to obtain a

processors (or trade-offs among these parameters When gqic solution that also assures for data integrity that pre-
solution optimizing all three cannot be found or may not -.4ance constraints are not violated.

exist). Case studies demonstrated the ability of the tool to

optimize a dataflow-derived scheduling solution by using

control edges, to model communication delays between

synchronized tasks, and accommodate multiple graphyasa Langley Research Center
modeling. The dataflow graph actually describes all the Hampton, VA 23681-0001
pertinent run-time criteria such as task instantiations, September 21, 1995
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Appendix

Graph Text Description

Graph text file of figure 1

Graph DFG
Node A
Read 10
Process 70
Write 10
Inst 1

End Node

Node B
Read 10
Process 370
Write 10
Inst 1

End Node

Node C
Read 10
Process 70
Write 10
Inst 1

End Node

Node D
Read 10
Process 170
Write 10
Inst 1

End Node

Node E

Read 10
Process 70
Write 10
Inst 1

End Node

Node F
Read 10
Process 70

Write 10

Inst 1

End Node

Source Src
TBI O
End Source

Sink Snk
End Sink

Edge Data
Initial Src
Terminal A
Tokens 0
Queue 1
End Edge

Edge Data
Initial A
Terminal B
Tokens 0
Queue 1
End Edge

Edge Data
Initial B
Terminal F
Tokens 0

Queue 1
End Edge

Edge Data

Initial F
Terminal Snk
Tokens 0

Queue 1

End Edge

Edge Data
Initial A
Terminal C
Tokens 0
Queue 1
End Edge

Edge Data
Initial C
Terminal F
Tokens 0
Queue 1
End Edge

Edge Data
Initial A
Terminal D
Tokens 0
Queue 1
End Edge

Edge Data
Initial D
Terminal E
Tokens 0
Queue 1
End Edge

Edge Data
Initial E
Terminal D
Tokens 1
Queue 1
End Edge

Edge Data
Initial E
Terminal F
Tokens 0
Queue 1
End Edge
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Graph text file of figure 1 updated for three-processor schedule

Graph DFG
Node A
Read 10
Process 70
Write 10
Inst 1

End Node

Node B
Read 10
Process 370
Write 10
Inst 2

End Node

Node C
Read 10
Process 70
Write 10
Inst 1

End Node

Node D
Read 10
Process 170
Write 10
Inst 1

End Node

Node E
Read 10
Process 70
Write 10
Inst 1

End Node

56

Node F
Read 10
Process 70
Write 10
Inst 1

End Node

Source Src
TBI 314
End Source

Sink Snk
End Sink

Edge Data
Initial Src
Terminal A
Tokens O
Queue 1
End Edge

EDGE
CONTROL
INITIAL E

TERMINAL C

TOKENS 0
QUEUE 1
END EDGE

EDGE
CONTROL
INITIAL B
TERMINAL D
TOKENS 1
QUEUE 2

END EDGE

Edge Data
Initial A
Terminal B
Tokens 0
Queue 1
End Edge

Edge Data
Initial B
Terminal F
Tokens 0
Queue 2
End Edge

Edge Data

Initial F

Terminal Snk
Tokens O

Queue 1

End Edge

Edge Data
Initial A
Terminal C
Tokens 0
Queue 2
End Edge

Edge Data
Initial C
Terminal F
Tokens 0
Queue 1
End Edge

Edge Data
Initial A
Terminal D
Tokens 0
Queue 1
End Edge

Edge Data
Initial D
Terminal E
Tokens 0
Queue 1
End Edge

Edge Data

Initial E
Terminal D
Tokens 1
Queue 1
End Edge

Edge Data
Initial E
Terminal F
Tokens 0

Queue 1
End Edge



Graph text file of figure 55 with communication delays modeled by edge delays

Graph DFG
Node A
Read 10
Process 70
Write 10
Inst 1

End Node

Node B
Read 10
Process 370
Write 10
Inst 1

End Node

Node C
Read 10
Process 70
Write 10
Inst 1

End Node

Node D
Read 10
Process 170
Write 10
Inst 1

End Node

Node E

Read 10
Process 70
Write 10
Inst 1

End Node

Node F
Read 10
Process 70

Write 10

Inst 1

End Node

Source Src
TBI 400
End Source

Sink Snk
End Sink

Edge Data
Initial Src
Terminal A
Tokens 0
Queue 1
End Edge

Edge Data
Initial A
Terminal B
Tokens 0
Queue 1
DELAY 10
End Edge

Edge Data
Initial B

Terminal F

Tokens 0
Queue 1
DELAY 25
End Edge

Edge Data
Initial F

Terminal Snk

Tokens 0
Queue 1
End Edge

Edge Data
Initial A
Terminal C
Tokens 0
Queue 1
DELAY 50
End Edge

Edge Data
Initial C
Terminal F
Tokens 0
Queue 1
DELAY 20
End Edge

Edge Data
Initial A

Terminal D

Tokens 0
Queue 1
DELAY 30
End Edge

Edge Data
Initial D
Terminal E
Tokens 0
Queue 1
DELAY 10
End Edge

Edge Data
Initial E
Terminal D
Tokens 1
Queue 2
DELAY 10
End Edge

Edge Data
Initial E
Terminal F
Tokens 0
Queue 1
DELAY 15
End Edge
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