
  

 
 

The Dream Green 
 

Final Report 
 

Project Number: 
May06-03 

 
 
 

Client: 
Charles Juel 

 
Faculty Advisors: 

Lamont and Patterson 
 

Team Members: 
Ryan Emerson - CPRE, David Goldberg - EE, 
David Moline - EE, Mevan Vijthakumara - ME, 

Brian Wicks - CPRE 
 

DISCLAIMER: This document was developed as a part of the requirements of an Electrical and Computer Engineering course at Iowa State 
University, Ames, Iowa.  This document does not constitute a professional engineering design or a professional land surveying document.  
Although the information is intended to be accurate, the associated students, faculty, and Iowa State University make no claims, promises, or 
guarantees about the accuracy, completeness, quality, or adequacy of the information.  The user of this document shall ensure that any such use 
does not violate any laws with regard to professional licensing and certification requirements.  This use includes any work resulting from this 
student-prepared document that is required to be under the responsible charge of a licensed engineer or surveyor.  This document is copyrighted 
by the students who produced this document and the associated faculty advisors.  No part may be reproduced without the written permission of 
the senior design course coordinator. 
 
 

Date Submitted: 
3/31/2006 

 



 

 Page I 

Table of Contents 

 

TABLE OF FIGURES ______________________________________________________________ IV 

TABLE OF TABLES ________________________________________________________________ V 

DEFINITIONS ____________________________________________________________________ VI 

1 EXECUTIVE SUMMARY ________________________________________________________ 1 

2 ACKNOWLEDGEMENT _________________________________________________________ 2 

3 PROBLEM STATEMENT ________________________________________________________ 2 

4 OPERATING ENVIRONMENT ___________________________________________________ 4 

5 INTENDED USERS ______________________________________________________________ 4 

6 INTENDED USES _______________________________________________________________ 4 

7 ASSUMPTIONS _________________________________________________________________ 5 

8 LIMITATIONS__________________________________________________________________ 5 

9 EXPECTED END PRODUCT AND OTHER DELIVERABLES _________________________ 6 

10 PROJECT APPROACH _________________________________________________________ 6 

10.1 END-PRODUCT FUNCTIONAL REQUIREMENTS ________________________________________ 6 
10.2 DESIGN CONSTRAINTS____________________________________________________________ 6 
10.3 TECHNICAL APPROACH CONSIDERATIONS AND RESULTS _______________________________ 7 
10.4 TESTING APPROACH CONSIDERATIONS______________________________________________ 7 

11 DETAILED DESIGN ____________________________________________________________ 8 

11.1 PREVIOUS DESIGNS ____________________________________________________________ 8 
11.1.1 SIDE LIFT ASSEMBLY __________________________________________________________ 8 
11.1.2 END LIFT ASSEMBLY __________________________________________________________ 8 
11.2 FINAL DESIGNS________________________________________________________________ 9 
11.2.1 SIDE LIFT ASSEMBLY __________________________________________________________ 9 
11.2.2 END LIFT ASSEMBLY _________________________________________________________ 10 



 Page II 

11.3 KEY COMPONENTS____________________________________________________________ 11 
11.3.1 MOTOR ____________________________________________________________________ 11 
11.3.2 WEDGE ____________________________________________________________________ 11 
11.3.3 THREADED SHAFT____________________________________________________________ 11 
11.3.4 THREADED INSERT ___________________________________________________________ 11 
11.3.5 GEARS_____________________________________________________________________ 12 
11.4 MOTOR CONTROLLER CIRCUIT _________________________________________________ 12 
11.4.1 MICROCONTROLLER __________________________________________________________ 12 
11.4.2 H-BRIDGE __________________________________________________________________ 12 
11.4.3 ROTARY ENCODER ___________________________________________________________ 13 
11.5 USER INTERFACE CIRCUIT _____________________________________________________ 13 
11.5.1 MICROCONTROLLER __________________________________________________________ 13 
11.5.2 DISPLAY ___________________________________________________________________ 13 
11.5.3 INPUT _____________________________________________________________________ 14 
11.5.4 EXTERNAL _________________________________________________________________ 14 
11.5.5 COMMUNICATIONS ___________________________________________________________ 14 

12 IMPLEMENTATION PROCESS_________________________________________________ 15 

12.1 MECHANICAL IMPLEMENTATION ________________________________________________ 15 
12.2 ELECTRICAL IMPLEMENTATION_________________________________________________ 16 
12.3 SUGGESTIONS FOR IMPROVEMENT _______________________________________________ 16 

13 END-PRODUCT TESTING _____________________________________________________ 17 

13.1 STRESS TESTING______________________________________________________________ 17 
13.2 GAME PLAY _________________________________________________________________ 17 

14 PROJECT END RESULTS______________________________________________________ 18 

14.1 ASSEMBLY INSTRUCTIONS______________________________________________________ 18 
14.2 END-USER INSTRUCTIONS ______________________________________________________ 18 

15 RESOURCE REQUIREMENTS _________________________________________________ 19 

15.1 PERSONNEL EFFORT REQUIREMENTS ____________________________________________ 19 
15.2 OTHER RESOURCE REQUIREMENTS ______________________________________________ 20 
15.3 FINANCIAL REQUIREMENTS ____________________________________________________ 21 

16 PROJECT GANTT CHARTS____________________________________________________ 24 

17 PROJECT EVALUATION ______________________________________________________ 28 

17.1 PROJECT DEFINITION _________________________________________________________ 28 
17.2 TECHNOLOGY CONSIDERATIONS AND SELECTION __________________________________ 28 
17.3 END-PRODUCT DESIGN ________________________________________________________ 28 



 Page III 

17.4 END-PRODUCT IMPLEMENTATION _______________________________________________ 29 
17.5 END-PRODUCT TESTING _______________________________________________________ 29 
17.6 END-PRODUCT DOCUMENTATION________________________________________________ 29 
17.7 END-PRODUCT DEMONSTRATION ________________________________________________ 29 
17.8 PROJECT REPORTING _________________________________________________________ 30 
17.9 FINAL PROJECT SCORE ________________________________________________________ 30 

18 COMMERCIALIZATION ______________________________________________________ 30 

19 RECOMMENDATIONS FOR ADDITIONAL WORK_______________________________ 30 

20 LESSONS LEARNED __________________________________________________________ 31 

20.1  WHAT WENT WELL ___________________________________________________________ 31 
20.2 WHAT DID NOT GO WELL_______________________________________________________ 31 
20.3 WHAT TECHNICAL KNOWLEDGE WAS GAINED _____________________________________ 31 
20.4 WHAT NON-TECHNICAL KNOWLEDGE WAS GAINED _________________________________ 31 
20.5 WHAT WOULD YOU DO DIFFERENTLY_____________________________________________ 31 

21 RISK & RISK MANAGEMENT _________________________________________________ 32 

21.1 ANTICIPATED POTENTIAL RISKS AND PLANNED MANAGEMENT ________________________ 32 
21.2 ANTICIPATED RISKS ENCOUNTERED AND SUCCESS IN MANAGEMENT ___________________ 32 
21.3 UNANTICIPATED RISKS ENCOUNTERED, ATTEMPTS TO MANAGE AND SUCCESS ___________ 33 
21.4 RESULTANT CHANGES IN RISK MANAGEMENT MADE BECAUSE OF ENCOUNTERED 
UNANTICIPATED RISKS ______________________________________________________________ 33 

22 PROJECT TEAM INFORMATION ______________________________________________ 34 

23 CLOSING SUMMARY _________________________________________________________ 35 

APPENDIX A - CODE _____________________________________________________________ A-1 

DGMASTER.C _____________________________________________________________________ A-1 
DGSLAVE.C ______________________________________________________________________ A-21 
DGCAN.H________________________________________________________________________ A-31 
KEYBOARD.H ____________________________________________________________________ A-32 
KEYBOARD.C ____________________________________________________________________ A-32 

APPENDIX B – SCHEMATICS _____________________________________________________ B-1 

APPENDIX C – CALCULATIONS __________________________________________________ C-1 



 Page IV 

 

Table of Figures 

 
Figure 1: Manual Operation ____________________________________________________________________1 
Figure 2: Dream Green Unit ____________________________________________________________________1 
Figure 3: Motorized Operation of Wedge Adjustment System ___________________________________________2 
Figure 4: Wedge Detail ________________________________________________________________________2 
Figure 5: Previously Considered End Lift __________________________________________________________9 
Figure 6: Side Lift Schematic ____________________________________________________________________9 
Figure 7: End Lift Schematic ___________________________________________________________________10 
Figure 8: Detail of Wedge Positioning Apparatus ___________________________________________________10 
Figure 9: Original Project Gantt Chart ___________________________________________________________24 
Figure 10: Adjusted Project Gantt Chart__________________________________________________________25 
Figure 11: Final Project Gantt Chart ____________________________________________________________26 
Figure 12: Project Deliverables Gantt Chart – Unchanged throughout Project ____________________________27 
Figure 13: Motor Controller Circuit Board _______________________________________________________B-1 
Figure 14: Motor Controller Circuit ____________________________________________________________B-1 
Figure 15: H-Bridge & Rotary Encoder__________________________________________________________B-2 
Figure 16: I/O Connection & Voltage Regulator___________________________________________________B-2 
Figure 17: User Interface Circuit Card __________________________________________________________B-3 
Figure 18: User Interface Circuit_______________________________________________________________B-3 

 

 
 
 
 
 
 
 
 
 
 
 
 

 



 Page V 

 

Table of Tables 

 
Table 1: Initial Estimated Personnel Effort Requirements_____________________________________________19 
Table 2: Revised Estimated Personnel Effort Requirements ___________________________________________19 
Table 3: Final Personnel Effort Requirements______________________________________________________19 
Table 4: Initial Estimated Resource Requirements __________________________________________________20 
Table 5: Adjusted Resource Requirements _________________________________________________________20 
Table 6: Final Resource Requirements ___________________________________________________________20 
Table 7: Motor Controller Board Parts List________________________________________________________21 
Table 8: User Interface Board Parts List __________________________________________________________21 
Table 9: Initial Estimated Financial Budget _______________________________________________________22 
Table 10: Revised Financial Budget______________________________________________________________22 
Table 11: Final Financial Budget _______________________________________________________________23 
Table 12:  Evaluation Scores for Milestone Completion ______________________________________________28 
Table 13: Torque Calculations_________________________________________________________________C-1 

 

 



 Page VI 

 

Definitions 
 
 
SPI (serial peripheral interface) – A serial connection between electron devices, usually a 
processor and peripheral.  Some manufactures refer to it as Microwire. 
 
CAN (controller area network) -  A serial communication protocol originally developed by 
Bosch GmbH for use in vehicle networks. 
 
LCD – liquid crystal display 
 
USART - Universal Synchronous Asynchronous Receiver Transmitter 
 
PIC – Programmable Integrated Circuit 
 
 
 



 

 Page 1 

1 Executive Summary 
The purpose of this project was to finalize the automation of the Dream Green modifiable putting 
surface. The original Dream Green (the version currently for sale) is operated by manually 
sliding these wedges to raise/lower the surface. The break of the putting surface is changed by 
pushing and pulling wedges by motors, implemented by last year’s senior design team. These 
motors move the wedges under a number of bars that support the surface. See Figure 1 for basic 
operating procedures on how to manually raise the surface of the original Dream Green system: 

 
 
 
 

Figure 1: Manual Operation 
Photo courtesy www.dreamgreen.com 

The ends of the surface may also be raised and lowered by the same wedge system to add an 
additional putting challenge. The goal of this project was to complete the current control systems 
necessary to automate these adjustments. Figure 2 shows a complete view of the Dream Green 
apparatus: 

 
Figure 2: Dream Green Unit 

Photo courtesy www.dreamgreen.com 
The design process for this team consisted of making minor modifications to the work of 
previous teams, as well as adding necessary components.  Such modifications included switching 
to a motor designed for robotics due to its greater torque handling capabilities.   
 
Added features include implementation of rotary encoders on all lifts, allowing the 
microcontroller to know the height each wedge.  The overall goal of the team was to provide a 
working prototype to Mr. Juel, the client. 
 

Step 2: Slide Wedge Step 1:Lift Surface 



 

 Page 2 

2 Acknowledgement 
Since there have been several groups who have contributed to the Dream Green, all 
documentation and design work is appreciated.  The current group would like to thank the 
previous design teams for their work.  In addition, gratitude is extended to Mr. Chuck Juel for 
lending the Dream Green for the team’s use.  All of his time and effort in with past groups, as 
well as current and future assistance has and will prove an invaluable asset to this project. 
 

3 Problem Statement 
The Dream Green was designed to help golfers improve their putting skills by practicing on an 
adjustable putting surface.  A series of wedges have been placed under the surface and can be 
adjusted to change the break of the green. Figure 3 shows the basic concept behind the motorized 
adjustment process: 

 
Figure 3: Motorized Operation of Wedge Adjustment System 

 
Notice how the motor drives the “stair-step” wedge under a catch bar, effectively raising the 
surface. Figure 4 below shows a 3D model of the wedge used to deform the putting surface: 

 
Figure 4: Wedge Detail 

 
The client requested an automated, hands-free system to enhance the user experience and 
increase sells. This group’s task was to complete this system. 



 

 Page 3 

3.1 General Problem Statement 
The goal of this project was to finalize the Dream Green putting surface, building on the work of 
previous senior design teams. The original Dream Green required the user to manually adjust a 
sliding wedge system (patented by client Chuck Juel) to change the undulation of the surface 
(see Figure 1). The height of the ends of the green may also be adjusted to add additional 
variables to the apparatus. 
 
The May05-03 senior design team faced the problem of automating these adjustments, making 
the Dream Green easier to use, implementing the system as shown in Figure 2.  This group 
designed a microcontroller-based system using DC motors, making sure to keep the wedge 
system intact as required by the client. 
 
The problem presented to this group was to finish the Dream Green project, and add additional 
features that were requested by the client. The main priority was to complete the basic automated 
functions of the Dream Green.  
 
The end product must have sturdy construction suitable for heavy use, be safe for use by the 
general public, and fit within the space limitations of the current Dream Green. The goal was to 
produce a final product that is easily replicated, allowing Mr. Juel to begin marketing the 
automated Dream Green immediately. 
 
3.2 General Solution Approach  
To begin the Dream Green renovations, a full analysis of May05-03’s materials was conducted. 
The current automation characteristics of the Dream Green were be tested, and notes made on 
several variables such as maximum adjustment time, noise, power consumption, construction 
characteristics, and accuracy of the wedge movement. With special attention paid to the 
limitations in deforming the surface, the Dream Green is unique from any other putting surface. 
 
Because this was the final phase of the Dream Green project, the most important objective was to 
have a finial product ready for the client to test.  The team added those features necessary to 
allow for reliable testing.   
 
The ultimate team goal was to implement features that keep the Dream Green a new and exciting 
experience with every use.  Most importantly, the team maintained the integrity of the original 
product, keeping fabrication and installation time and cost to a minimum.  
 



 

 Page 4 

4 Operating Environment 
The operating environment for the Dream Green is indoors or other relatively controlled 
environments. The putting surface quickly degrades in the presence of ultraviolet light, and the 
Dream Green is not to be used in sunlight. The Dream Green must be able to withstand 
occasional spills and a reasonable amount of abuse. As a result, all electronic and mechanical 
components will have to be protected or located where they will not become damaged. All 
mechanisms must be reasonably protected from corrosion. The Dream Green must be able to 
withstand and operate through a reasonable amount of temperature, humidity and other 
environmental variations without loss of functionality.  It should be feasible to use the Dream 
Green in an outdoor setting so long as it is not exposed to sunlight or moisture (perhaps under a 
tent or canopy). 
 

5 Intended Users 
The Dream Green is designed for use by a multitude of different people.  The age range of the 
Dream Green is for all ages.  The Dream Green is also designed for use by all ability levels.  The 
weight limit of the Dream Green is 350 lbs.  The Dream Green is intended for several types of 
game play including recreation, competition, and professional.  The Dream Green has been 
designed to accommodate these types of play.  Features have been included in the Dream Green 
that will increase the usability for these types of play.  Recreational users desire the Dream 
Green to be enjoyable, easy to use and easy to operate.  These recreational users also desire the 
Dream Green to have a minimal leaning curve.  Competitive users would like consistent results 
in play and repeatable break settings.  Professional users demand an accurate and realistic 
playing experience.  The professional user desires the putting surface to vary in many ways in 
order to accommodate any putting situation.  Each of the different users were considered during 
the design and modification of the Dream Green and its features. 
 

6 Intended Uses 
The Dream Green can be currently found in sports bars, homes, cruise ships, special events, or at 
college and professional sports facilities.  The Dream Green is intended to be used for the 
purposes of putting practice, recreation and friendly tournament competition.  The Dream Green 
is not intended to be moved while players are standing on the elevated portions of the green.  The 
Dream Green is also not designed for people to stand on the elevated portions of the green other 
than the additional platforms provided with the Dream Green.  The automated Dream Green will 
have similar uses.  It can be used in sports bars, homes, cruise ships, special events or 
tournament, and in college and professional facilities.  The automation system is simple enough 
to be assembled and disassembled by almost anyone.  There is no need for a technical 
background to use the Dream Green.  The Dream Green will not be used while the motors are in 
motion.  After the motors have adjusted to their new positions, the Dream Green can be used. 
 



 

 Page 5 

7 Assumptions 
Listed below are the assumptions that were taken into consideration throughout the design and 
redesign of the Dream Green: 
 

1. No additional loads, including people or objects, will be on the Dream Green putting 
surface. 

2. The Dream Green is operated on a flat, level surface. 
3. All automation equipment must be installed at the factory. 
4. Automation does not significantly increase the complexity of assembly and disassembly 

by either the end user or the builder. 
5. Break adjustments are made using end lifts, wedges and other similar devices. 
6. The maximum number of adjustments is the same amount as the current Dream Green. 
7. The Dream Green will not be exposed to direct sunlight. 
8. The Dream Green will be played in an indoor facility or tent like structure and must be 

hooked up to a power source. 
9. All sections of the Dream Green are 4 feet long. 
10. The prototype Dream Green runs off DC power. 
11. The new design is not intended to be a retrofit into existing Dream Greens. 

  

8 Limitations 
Listed below are the limitations in the design and redesign of the Dream Green: 
 

1. Wedges are used in the final design for height adjustment as necessary for patent 
protection. 

2. The Dream Green makes full adjustment transition within 45 seconds. 
3. All mechanical systems do fit within the current Dream Green enclosures, including the 

podium area. 
4. Complexity and difficulty of the manufacturing process is minimized. 
5. The Dream Green is safe in all reasonable operating conditions. 
6. The automation system is reliable and requires minimal conditions. 
7. The manufacturing cost of the automation system is relatively low to provide for 

reasonable profitability. 
8. The automation system is durable enough to withstand a reasonable amount of abuse in 

both the shipping process and during game play. 
9. The additional retail price of the automation system is under $1,000. 

 
 

 



 

 Page 6 

9 Expected End Product and Other Deliverables 
Listed below are the requirements and expected capabilities of the end product delivered to the 
client: 
 

1. An automation system that allows the Dream Green elevation settings to be adjusted 
electronically. 

2. A preprogrammed course that changes holes on demand via user interface in podium unit. 
3. The Design of a mechanical system used in controlling the Dream Green. 
4. The ability to create a course saved in memory. 
5. Instructions, drawings, and bill of materials necessary for the correct manufacturing of 

the Dream Green. 
6. A self-contained unit. 

 

10 Project Approach 
The final phase of this project included consideration of issues from design to manufacturing. 
 

10.1 End-Product Functional Requirements 
Listed below are the requirements that were met to have a successful design: 
 

1. The user operates in one of three modes: random wedge settings, specific wedge settings, 
or pre-set wedge positions. 

2. Smooth, efficient wedge movement. 
 

10.2 Design Constraints 
Listed below are the guidelines for the mechanical and electrical aspects of the Dream Green: 
 

1. All parts fit inside current Dream Green dimensions.  The maximum height (with the 
wedges flat) is 2.5 inches. 

2. The power supply is housed in the control podium. 
3. Electrical and mechanical components will survive for a minimum of 5 years under 

normal conditions. 
4. Electrical and mechanical components will survive occasional exposure to water or other 

liquids. 
5. The entire system uses less than 15 Amps of AC current and is powered from a standard 

120V circuit. 
6. The time required to change positions is 45 seconds or less. 
7. Additional cost are less than $1,000 

 



 

 Page 7 

10.3 Technical Approach Considerations and Results 
The board-to-board communications was changed to CAN.  The previous system using SPI 
wasn’t fully implemented and was unreliable.  Instead of building on SPI, it was decided to 
pursue and different communication standard.  Many options were considered, RS-232, RS-485, 
and CAN.  Each standard was capable of meeting the needs of this project, but CAN was the 
most complete protocol.  CAN also included collision detection and avoidance unlike any of the 
other standards. 
 
The motor position circuit was also seen to be unreliable and was replaced with a more standard 
solution.  The past team’s design used photo-diodes and LEDs to gauge how far the wedge had 
moved.  With too much outside light, the system didn’t work well.  A set of tact switches was 
looked into as a possible solution, but it proved to be more complex to implement than originally 
thought.  Eventually it was decided that a rotary encoder was the least expensive and easiest to 
employment. 
   
The current end lift uses two motor and wedges working in tandem to lift the end.   To eliminate 
the possibility of the motors falling out of sync, the connecting bar was removed. 
 

10.4 Testing Approach Considerations 
The first process was unit testing on the subsystems of the Dream Green.  The end-lift, 
communications protocol, and positioning system will need to be tested individually.  The 
second process was to integrate the subsystems to test the system as a whole.  With all the 
system together, a working prototype was built and tested.   
 



 

 Page 8 

11 Detailed Design 
The flowing is a description of the mechanical and electrical components of the automated 
Dream Green.  
 

11.1 Previous Designs 
This section describes the previous designs considered and/or tested in the project. 
 

11.1.1 Side Lift Assembly 
The side lift assembly originally consisted of a wedge, threaded shaft, coupler, threaded insert 
and motor. The driveshaft of the motor was coupled with the threaded shaft. The threaded shaft 
is then driven through the wedge via a threaded insert. The rotational forces were converted to 
linear motion.  This assembly was designed in its entirety by previous design teams.   
 
Problems that the team encountered with this setup were numerous.  First and foremost, the 
motors used in this design were underpowered.  The wedge was driven directly into the wooden 
crossbeam, resulting in major friction losses.  In addition, the wedge was driven, unguided, into 
the crossbeam which resulted in lateral forces on the drive shaft and motor.  It should also be 
noted that there were no controls in place to control the position of the wedges.   
 
The mechanical concept of this design was correct, but it was felt that there was much to be 
desired in this previously used side lift assembly.  Plus, all controls were still needed to 
automatically sense the position of each wedge. 
 

11.1.2 End Lift Assembly 
The main difference in the end lift is that the entire section must be raised and lowered, as 
opposed to creating a slope at a single point as it is with the side lifts.  This results in a load that 
is far greater than for the side lifts.  The initial end lift assembly was identical to the side lift in 
that each wedge was driven by its own motor.  The main problem that the team noted in the way 
previous groups had with this set up is that the motors were wired in parallel.  In testing, it was 
noticed that this parallel configuration made control nearly impossible because each motor ran at 
slightly different speeds.  This meant that one wedge would always travel farther than the other.  
The group previous to the current team obviously had noted this because they attempted to add 
resistors in series with the faster motor in hopes of choking the current delivered to the motor.  
The team felt this tactic to be an ineffective and impractical solution, and redesign was required. 
 
Because of the problems that were noted with the dual motor design, the team felt that going to a 
single motor would be a far more effective solution from a controls aspect.  The team spent a 
vast amount of time devoted to research of parts and designing an end lift that would lift the 
heavier load with a single motor.  Once a motor capable of handling the load was discovered, it 
was decided to go with a configuration that had the single motor drive a crossbar at its center 
point, with wedges positioned at the ends of the crossbar.  U-shaped aluminum pieces were used 



 

 Page 9 

to guide the wedges while the crossbar was held straight by guide shafts.  The figure below 
shows the design: 
 

 
Figure 5: Previously Considered End Lift 

 
This design, on paper, seemed as if it would work great.  However, the main problem is that is 
was a very difficult part to manufacture.  The most important component of the design was the 
guide shafts on the crossbar which were intended to eliminate twisting.  The bearings that created 
the interface between the shafts and the crossbar had to be a perfect right angle to be effective.  
As it was discovered, that is very difficult to do in practice.  The guide shafts on the crossbar 
were not perfectly parallel, and as a result, did not allow the motor to freely slide the apparatus 
forward and backward.   
 

11.2 Final Designs 
This section describes the final designs used in the final prototype. 
 

11.2.1 Side Lift Assembly 
Once motors were found with a high enough torque capability, the team was able to effectively 
operate the side lifts without making any significant changes to the design of the previous teams.  
The key was finding a motor that had enough power to get the job done. 
 

 
Figure 6: Side Lift Schematic 



 

 Page 10 

 

11.2.2 End Lift Assembly 
After fully re-evaluating the approach to the end lift, the team decided to go back to a two-motor 
approach that was very similar to the design of previous teams.  The main difference is that the 
design ran each motor independent of the other, at least in how it was wired.  By connecting each 
motor separately to the power supply each motor was able to draw maximum current, allowing 
each to operate at close to maximum speed.  The team just configured the controls such that each 
motor would always be going to the same wedge position, which allowed the load to be split.  
Rather than get creative with hardware, the team felt it would be easier and more cost effective to 
get creative on the software side to achieve the proper end result of a functional end lift.  This 
method did prove to be effective, the team are confident that the client will be able to replicate it 
much easier than with the more complex crossbar design. 
 

 
Figure 7: End Lift Schematic 

 
 
 

 
Figure 8: Detail of Wedge Positioning Apparatus 



 

 Page 11 

11.3 Key Components 
Below is a description of the main components used in the final prototype. 

11.3.1 Motor 
Power thread calculations were performed to determine torque requirements. The side-lift motors 
must lift approximately ½” x 2 ¼” x 4’ section of wood. Given the small load requirements of 
the side lifts, the torque requirement for the motor is minimal. Currently, the design incorporates 
motors purchased by previous groups. It would be preferable and more cost effective to research 
smaller geared motors to replace the existing motors. The end lift is expected to lift a sheet of 
plywood, green support material, and the putting surface. Given the large torque necessary to lift 
such heavy loads, a high torque, geared motor was used. Both assemblies will require motor 
protection circuits to prevent burn out. However, for the prototype, four similar motors were 
used. 
 

11.3.2 Wedge 
Ultra-High Molecular Weight (UHMW) plastic was chosen for the wedges due to its frictional 
properties. Sharp edges on the wedge are to be filleted and contact surfaces will be smoothed to 
reduce friction. The wedge may be modified with permission from Mr. Chuck Juel. The 
mechanical advantage of the wedge would be increased by reducing the slope of the inclines. 
This would minimize the required linear force and resulting stresses on the motor. As a result, 
the reliability of the overall system may be increased. In addition, unnecessary and costly 
material can be eliminated to reduce manufacturing costs.   
  

11.3.3 Threaded Shaft 
ACME threaded rods are to be used to transfer power between the motors and the wedges. The 
ACME threaded rods increase power transfer capabilities and reduces the potential for binding 
when compared to traditional threaded rods. Square-cut threaded rods are not suitable because of 
their increased potential for catastrophic binding. The use of a geared motor for the end lift 
reduces the rotational speed of the motor considerably. Therefore, it is desirable to reduce the 
number of threads per inch to reduce the time requirements for adjustment.  
 

11.3.4 Threaded Insert 
The material of the insert is to be determined but will be a metal with natural lubricative 
properties such as red bronze or brass. The length of engagement for the threaded insert is not as 
critical since there are guide rails present in the design. The insert will be tapped to match the 
ACME threaded shaft. Initial lubrication of the threaded insert will be necessary to reduce 
friction between the threaded shaft and the insert. A lubricant will be chosen such that the system 
will require minimal, if at all, reapplication. 
 



 

 Page 12 

11.3.5 Gears 
Previous groups had attempted to utilize external gears to drive the end lift wedges. Instead, 
geared DC motors were chosen because of their simplicity. A motor was chosen that met the 
size, torque, and rotational speed requirements that contained internal gearing. As such, external 
gears are no longer necessary for meeting torque requirements. However, in order to use rotary 
encoders to measure wedge position, gears were mounted to the threaded shaft. This gear was 
meshed with a gear mounted to a rotary encoder. 
 

11.4 Motor Controller Circuit 
Additional circuitry is required to correctly position the wedge using the motor.  This is 
implemented by using a microcontroller, H-bridge circuit, rotary encoder and micro-switch.  The 
schematic for this circuit is shown in Appendix B – Figure 13.  To reduce manufacturing costs 
two motor control circuits are implemented on one printed circuit board. 
 

11.4.1 Microcontroller 
The microcontroller selected is the Microchip PIC18F248 because of it ease of use, built-in CAN 
controller, ADCs, timers, and digital outputs.  To avoid extra costs, this model is most basic that 
meats all of the team’s design criteria.  The PIC18F248 has been used for the testing and 
implantation of The Dream Green, but since selection has been replaced with a new model, 
PIC18F280.  The PIC18F2480 is pin-compatible and has all the features of the PIC18F248.  
However, to use the PIC18F2480 the code must be recompiled in PIC C18 to work correctly.  
 

11.4.2 H-Bridge 
The PIC will be able to enable and change directions through the H-bridge circuit.  Previous 
teams had built their own circuit with relays.  However to reduce space, complexity, and cost it 
has been replaced with an integrated H-bridge controller from National Semiconductor, the 
LMD18200.  The LMD18200 is a 3A H-bridge circuit and includes short circuit protection, 
thermal flag, thermal shutdown, short circuit protection, and current sensor.  The LMD18201 is a 
similar part that is pin compatible to the LMD18200, but doesn’t have the current sensor. 



 

 Page 13 

11.4.3 Rotary Encoder 
The position of the motor is monitored with the PIC using the pulses from a rotary encoder 
mounted on the output shaft of the motor.  The rotary encoder pulses a given number of time of 
each revolution of the motor.  Each pulse is counted using the external interrupt of the PIC.  The 
number of revolutions to each position is known and hard coded into the PIC so it can determine 
where the wedge is at any given time.  There is some uncertainty in using the rotary encoder 
because missed pluses add up over time.  However the motion of the wedge doesn’t have to be 
extremely precise because each stop is approximately an inch.  One inch is translates into many 
revolutions of the motor.  The position of the motor is also zeroed each time the device starts up 
to avoid long term errors. 
 
Then encoder selected is a Panasonic ECG series encoder (EVE-GE1F2012B) with 12 pulses per 
revolution and a 12mm shaft with detent.  This model was selected mainly because of its low 
cost.  Any comparable rotary encoder, vertical or shaft mount, could be used.  However, 
replacing it with an encoder that doesn’t have 12 pulses per revolution will require a change to 
the software.  Using an encoder with a higher resolution, more than 64 pulses per revolution, 
may be more than the PIC microcontroller can handle. 
 

11.5 User Interface Circuit 
The automation of the Dream Green allows the user to easily control the features of the Dream 
Green.  It has an LCD display, keypad for input, and is controlled by a microcontroller.  The user 
uses this to send commands, like moving a motor or sending the break one of pre-defined 
positions, to the Dream Green.  The menus are designed to be user-friendly and hide much of the 
technical implementation from the user.  The schematic for this circuit is shown in Appendix B –  
Figure 15. 

11.5.1 Microcontroller 
Because of the additional I/O requirements of the keypad and LCD, the PIC18F248 is not 
capable of running the user interface.  The PIC18F480 was chosen because it is a member of the 
same family as the PIC18F248 but has additional digital I/0 to accommodate the keypad and 
LCD.  The PIC18F448 also has an integrated USART controller that can but used to interface 
with a computer via RS-232. 
 

11.5.2 Display 
The information the user sees is presented on a 20x4 character LCD made by Lumex (LCM-
S02004DSF).  The LCD is used to prompt the user for input, if they want to play a game, one 
hole, random break, etc.  The model chosen is a standard 20x4 character LCD and models from 
other manufactures should be compatible. 



 

 Page 14 

11.5.3 Input 
The user has a 16-key keypad (Grayhill 96BB2-006-F) is what is user uses to respond to the 
messages displayed on the LCD.  The keypad only has keys labeled 0-9 and A-D, so care has 
been taken simplifies all inputs.  Since the pin-outs for keypads like this aren’t standardized, 
changing models may require changes to software. 

11.5.4 External 
To be able to update the predefined holes from a personal computer and external connection is 
necessary.  Since the PIC includes a USART controller, adding an RS-232 was simple and cost 
effective.  The RS-232 single is regulated with a Maxim MAX233A transceiver. 

11.5.5 Communications 
To enable commutations between the user inter face circuit and the motor controller circuits a 
CAN (Controller Area Network) bus has been implemented.  CAN was selected because of its 
addressing, fault tolerance, and error detection. 
 
Each CAN packet begins with a 10-bit address, allowing 1024 unique devices on the bus.  Since 
this the maximum number of devices need for the largest Dream Green is 32, the address 
segment also includes the packet type for this implementation. 
 

Bit 9 8 7 6 5 4 3 2 1 0 
Use Device Identifier Packet Identifier 

 
Device Identifier 
Master 32 
Slave 0-31 
 
Packet Identifier Description 
Reserved 0 Sent on startup  
ACK 1 Acknowledgement a packet is received. 
PING 2 Sends packet back to the sender. 
MOVE_WEDGE 3 Command to move a wedge to a new position. 
STOP_WEDGES 4 Stops all wedges. 
MOVE_COMPLETE 5 Signal that the wedge has completed its move and is ready for the 

next hole 
POSITION_ERROR 6 The wedge cannot reach the requested position. 
CURRENT_ERROR 7 The motor has drawn too much current and stopped. 
TEMP_ERROR 8 The H-bridge has over-heated and stopped. 
TIME_ERROR 9 The motor has been on longer than the maximum allowed time. 
 
Each device is given an identification number from 0-32, the motor controller boards use IDs 0-
31, and 32 is reserved for the motor control board.  All boards only accept commands that are 
sent to their address, any other packets will be ignored.  When a control board receives a move 
command directed at its address begins moving the wedge.  When the motor stops it sends a 
reply back to the interface telling it that it is done or why it failed. 
 



 

 Page 15 

12 Implementation Process  
In the implementation of the components many problems were encountered in developing a final 
product.  This section breaks down our implementation process into three sections: 

1. Mechanical implementation 
2. Electrical implementation 
3. Suggestions for improvement 

 

12.1 Mechanical Implementation 
There were several problems that the team ran into while implementing the mechanical 
components in the final design.  The first problem the team encountered was handed down by the 
previous design team, and it had to do with a manufacturing error in the wedges.  In order for the 
motor to drive the wedge, the back of the wedge had to be drilled out so a threaded insert could 
be pressed into the plastic.  Ideally, the screw driving the wedge would be parallel with the ends 
of the wedge itself.  However, this was not the case as several of the wedges ran “pigeon toed,” 
meaning that the edges of the wedge were not in alignment with the screw.  This made it very 
difficult to effectively guide the wedges using the aluminum guide rails.   
 
The team could have solved this problem in two ways: one solution would be to mill the sides of 
the wedge to run parallel with the screw, and the other would be to mount the aluminum guide 
rails parallel to the screw anyway, but leaving space so the motion of the wedge would not be 
hindered, but might twist slightly.  The team went with this option, while not ideal, it was felt 
that leaving some space would not be overly detrimental to performance, and may even allow 
some room for error. 
 
A second major problem that the team ran into was in mounting the gears to the screws and 
encoder devices.  The team was left with plastic gears, some of which were warped and had a 
very shallow catching area in the teeth of the gear.  In testing of automation these gears slipped, 
and as a result, the encoders did not get an accurate count.  This caused the controllers to think 
the wedge was in a position that it was not.  
 
To solve this problem, it was necessary to replace the gears.  Rather than use plastic gears that 
were intended for torque generation, the team switched to metal spider gears.  These gears are 
designed to reduce the effects of twisting and slip.  Once these motors were implemented, the 
team noticed an immediate improvement in encoder performance. 
 



 

 Page 16 

12.2 Electrical Implementation 
Implementing the electronics was fairly difficult because the designs left by the previous teams 
were incomplete or unreliable.  To correct this, many components were replaced and the 
software was rewritten from scratch, but the original concept of a central master control board 
with slave boards controlling each pair of motors. 
 
The communications standard used by the previous teams, SPI, could have been used 
successfully, but it was determined that the CAN protocol would be easier to implement and 
would be more immune to noise from the brushless DC motor.  Using CAN required adding and 
additional transceiver, but cost was fairly low and seemed to be justified by the noise protection, 
and collision detection. 
 
The transition to CAN also required a change in microcontroller.  The PIC16F877 was previous 
used because it was a good general purpose microcontroller, but lacked an integrated CAN 
controller.  The PIC 18 series has several models with CAN controllers.  Eventually the 
PIC18F248 and PIC18F448 were chosen because were the least expensive with CAN controllers 
and the other I/0 needed. 
 
The last major change made was to replace the LED/photo-diode positioning system created by 
the previous team.  Since the circuit didn’t react well to changing light conditions, it was decided 
to replace it.  Many other applications have used rotary encoders and it was decided that they 
would work well with this application.  The encoders worked well, they have been more accurate 
and reduced the component count. 
 

12.3 Suggestions for Improvement 
The biggest thing that would have helped the implementation process would be to have 
fabricated the parts specific to the design.  However, the nature of the project was to complete 
the work of previous teams.  When the team used parts that were given by other teams, the team 
may or may not have been using them as intended when they were fabricated.  One example is 
with the wedges, and the fact that the insert was not aligned parallel to the edge of the wedges.  
The previous team was not using rails to guide the wedge, and as a result did not have this in 
mind when drilling out the wedge.  They probably wanted to be straight, but may not have put 
the same attention as the team would have knowing that guide rails would be used.   
 
Overall, if the team would have been able to see the project through from inception, the team 
certainly would have had implementation issues, but likely not the same ones that were 
encountered. 
 



 

 Page 17 

13 End-Product Testing 
In implementing the final design, several tests were conducted to confirm that the team met the 
design requirements laid out by the client.  The following tests were conducted to evaluate the 
quality of the end product: 
 

13.1 Stress Testing 
In order to make sure that the motors can handle the minimal lifting of the surface structure and 
carpet, testing was conducted to make sure each motor could handle the load.  While the team 
wanted to make sure not to overheat the motor, the team did want to get an idea of the actual stall 
current to determine a correct circuit breaker size.  From testing, it was clear that the motors 
could handle the minimum load just fine, but if someone were to stand on the green during 
adjustment the motor would certainly stall.  It was decided through testing that a 2 amp breaker 
would provide sufficient over current protection.  Because the team was extra cautious during 
testing of blowing a motor, this testing was not designed to find out its maximum lifting 
capabilities.  Rather, it was to design the motor protection circuit. 
 

13.2 Game Play 
This was by far the most important part of the testing.  Once the team wa confident in the 
positioning capabilities of the controls, the Dream Green was put to the real test.  The team 
actually used the Dream Green as it would be used by the client and consumer.  Repeated use is 
the most effective way to work out any bugs in the system that may not be immediately apparent.  
From the repeated testing, it was found that it would be necessary to have the Dream Green “re-
zero” itself at startup.  That way, if the encoder gets off by small amounts during extended use, 
the positioning of the wedge would not get progressively worse.  This is a prime example of bugs 
that can only be found when actually using the Dream Green.   
 
End product testing is truly an ongoing process.  The team is available to the client following 
final completion of the project for consultation purposes.  
 
 



 

 Page 18 

14 Project End Results 
Much time and effort went in to discovering what ideas worked and what ideas did not work for 
the automated Dream Green.  The biggest discovery was that a single motor end-lift cannot be 
implemented with the given resources.  The single motor end-lift was not cost effective and 
produced many additional problems.  The final decision for a dual motor end-lift was made when 
the single motor end-lift could not be reproduced.  With the implementation of a two motor end-
lift, all sections of the Dream Green are basically the same.  Since all sections are very similar 
the automated Dream Green will be easier to reproduce.  The two motor end-lifts will be much 
more cost effective and easier to assemble then its one motor counterpart.  Along with the 
completed fully-functional Dream Green, there are several other documents and instructions 
included.  These documents and additional items are as described below.  
 

14.1 Assembly Instructions 
Detailed assembly instructions accompany the Dream Green.  These assembly instructions tell 
our client how to reproduce the automated Dream Green.  This set of assembly instructions 
includes two main sections: 

1. List of Materials 
a. Motors and wedges 
b. Threaded rods/gears/couplers 
c. Various nuts/bolts/nails/screws etc. 
d. Microcontroller parts ie. circuit boards 

2. Step-by-step assembly 
a. Machining parts 
b. Attaching parts 
c. Measurements 

 
These assembly instructions include a detailed step-by-step instruction set for the Dream Green 
including pictures were needed.  The machining section includes all parts that need to be 
machined and how to machine them.  The measurements section includes pictures with exact 
measurements on where to attach the different components of the Dream Green. 
 

14.2 End-user Instructions 
The end-user instructions are a set of instructions for the users of the Dream Green.  This set of 
instructions includes the following: 

1. Game play instructions 
2. Basic assembly 
3. Upkeep and maintenance 
4. Safety precautions 
5. Warnings 
6. Troubleshooting tips 

 
The end-user instructions were designed to provide the end customer with a complete guide on 
how to use and care for their automated Dream Green. 



 

 Page 19 

15 Resource Requirements 

15.1 Personnel Effort Requirements 
The following table lists the projected hours that would be spent by each of the team members.  This is an estimated personnel effort budget only.   
 
Table 1: Initial Estimated Personnel Effort Requirements 
Hours per Job 
per Individual 

Technology 
Evaluation 

End-Product 
Design 

End-Product Prototype 
Implementation 

End-Product 
Testing 

End-Product 
Documentation 

End-Product 
Demonstration 

Project 
Reporting 

Total 

Ryan E 30 20 70 20 20 5 15 180 

David G 30 20 70 20 20 5 15 180 

David M 30 20 70 20 20 5 15 180 

Mevan V 30 20 70 20 20 5 15 180 

Brian W 30 20 70 20 20 5 15 180 

Total 150 100 350 100 100 25 75 900 
 
Table 2: Revised Estimated Personnel Effort Requirements 
Hours per Job 
per Individual 

Technology 
Evaluation 

End-Product 
Design 

End-Product Prototype 
Implementation 

End-Product 
Testing 

End-Product 
Documentation 

End-Product 
Demonstration 

Project 
Reporting 

Total 

Ryan E 30 30 70 20 30 5 15 200 

David G 15 25 35 20 30 5 15 145 

David M 15 15 35 40 30 5 15 155 

Mevan V 30 30 70 20 30 5 10 195 

Brian W 15 25 35 40 30 5 30 180 

Total 105 115 245 140 150 25 85 865 
 
Table 3: Final Personnel Effort Requirements 
Hours per Job 
per Individual 

Technology 
Evaluation 

End-Product 
Design 

End-Product Prototype 
Implementation 

End-Product 
Testing 

End-Product 
Documentation 

End-Product 
Demonstration 

Project 
Reporting 

Total 

Ryan E 30 30 80 20 30 4 15 209 

David G 28 26 75 20 30 5 15 199 

David M 27 26 75 20 30 5 15 198 

Mevan V 25 28 74 20 30 4 10 191 

Brian W 20 20 35 20 30 4 50 179 

Total 130 130 339 100 150 22 105 976 

 



 

 Page 20 

15.2 Other Resource Requirements 
Listed below is a table of outside resources that the team will use. Some resources reoccurring from last year are for additional materials needed to complete the entire prototype. 
 
 
Table 4: Initial Estimated Resource Requirements 
Resource Reason 

Senior Design Lab Space and equipment will be needed for constructing the Dream Green Prototype. 

Dream Green Will be used to implement design and used for testing. 

Parts Additional parts will be needed to replace burnt out parts from previous teams and new parts will be needed for motor 
protection, motor control, user interface, power interface, and circuit board creation. 

Machine Shop Used to make additional parts for the prototype. 

 
Table 5: Adjusted Resource Requirements 
Resource Reason Costs Related 

Senior Design Lab Space and equipment will be needed for constructing the Dream Green Prototype. Part of the Class 

Dream Green Will be used to implement design and used for testing. Donated 

Parts Additional parts will be needed to replace burnt out parts from previous teams and new parts will be needed for motor protection, 
motor control, user interface, power interface, and circuit board creation. 

See Section 14 Other Resource 
Requirements 

Dream Green 
Replacement Parts 

Structural components of the Dream Green needed to be replaced due to past team’s design idea trials. $61.53 

Deliverable Printing Documents will need to be printed to be turned in. $29.74 

Machine Shop Used to make additional parts for the prototype.  See Section 13 – Manufacturing for costs. $21.30 

Total  $112.57 

 
Table 6: Final Resource Requirements 
Resource Reason Costs Related 

Senior Design Lab Space and equipment will be needed for constructing the Dream Green Prototype. Part of the Class 

Dream Green Will be used to implement design and used for testing. Donated 

Parts Additional parts will be needed to replace burnt out parts from previous teams and new parts will be needed for motor protection, 
motor control, user interface, power interface, and circuit board creation. - See Section 15.3, Tables 7 & 8 for details. 

$3675 

Deliverable Printing Documents will need to be printed to be turned in. $30 

Total  $3705 



 

 Page 21 

15.3 Financial Requirements 
Listed below is a table of estimated costs for the components and labor.  Some costs reoccurring from last year are for additional materials needed to complete the entire prototype. 
 
Table 7: Motor Controller Board Parts List 
Motor Controller Board Parts List           

Description Manufacturer Part Number Distributor Qty 
Unit 
Cost Total Cost 

IC LDO V REG W/DELAY TO-220-5 National Semiconductor LM9071T Digi-Key 1 $2.48 $2.48 
IC PIC MCU FLASH 8KX16 40DIP Microchip Technology PIC18F248-I/P Digi-Key 2 $5.99 $11.98 
IC TRANSCEIVER CAN HI-SPD 8-DIP Microchip Technology MCP2551-I/P Digi-Key 2 $1.48 $2.96 
IC H BRIDGE 3A 55V TO-220 National Semiconductor LMD18200 Digi-Key 4 $11.69 $46.76 
CRYSTAL 10.000 MHZ HC49/US Citizen America Corporation  HC49US10.000MABJ Digi-Key 1 $0.70 $0.70 
CAP .1UF 50V 20% CER RADIAL Kemet C315C104M5U5CA Digi-Key 3 $0.16 $0.48 
CAP CERAMIC 18PF 50V NP0 1206 Kemet C1206C180J5GACTU Digi-Key 6 $0.17 $1.03 
RES 1.0M OHM 1/4W 5% CARBON FILM Yageo America CFR-25JB-1M0 Digi-Key 8 $0.28 $2.24 
RES 120 OHM 1/4W 5% CARBON FILM Yageo America CFR-25JB-120R Digi-Key 1 $0.28 $0.28 
RES 10 OHM 1/4W 5% CARBON FILM Yageo America CFR-25JB-10R Digi-Key 1 $0.28 $0.28 
CONN HEADER 4POS 7.5MM R/A TIN Molex 43160-1104 Digi-Key 1 $3.14 $3.14 
CONN HEADER 5POS 7.5MM R/A TIN Molex 43160-1105 Digi-Key 4 $3.62 $14.48 
SWITCH 3 POS DIP RT ANG SLIDE E-Switch KAS2103ET Digi-Key 1 $0.94 $0.94 
BUZZER PIEZO ELEMENT 4.4KHZ 27MM CUI Inc CEB-27D44 Digi-Key 1 $1.10 $1.10 
CUSTOM PRINTED CIRCUIT BOARD Advanced Circuits N/A Advanced Circuits 1 $33.00 $33.00 
ASSEMBLY Screaming Circuits N/A Screaming Circuits 1 $40.00 $40.00 
              
          Total $161.85 

 
 
Table 8: User Interface Board Parts List 
              
User Interface Board Parts List           
Description Manufacturer Part Number Distributor Qty Unit Cost Total Cost 
IC LDO V REG W/DELAY TO-220-5 National Semiconductor LM9071T Digi-Key 1 $2.48 $2.48 
IC PIC MCU FLASH 16KX16 40DIP Microchip Technology PIC18F485-I/P Digi-Key 1 $10.90 $10.90 
IC TRANSCEIVER CAN HI-SPD 8-DIP Microchip Technology MCP2551-I/P Digi-Key 1 $1.48 $1.48 
MAX233ACPP Maxim Integrated Products MAX233ACPP Digi-Key 1 $10.70 $10.70 
CRYSTAL 12.000 MHZ HC49/US Citizen America Corporation  HC49US12.000MABJ Digi-Key 1 $0.70 $0.70 
CAP .1UF 50V 20% CER RADIAL Kemet C315C104M5U5CA Digi-Key 3 $0.16 $0.48 
CAP CERAMIC 18PF 50V NP0 1206 Kemet C1206C180J5GACTU Digi-Key 4 $1.71 $6.84 
RES 1.0M OHM 1/4W 5% CARBON FILM Yageo America CFR-25JB-1M0 Digi-Key 8 $0.28 $2.24 
RES 120 OHM 1/4W 5% CARBON FILM Yageo America CFR-25JB-120R Digi-Key 1 $0.28 $0.28 
RES 10 OHM 1/4W 5% CARBON FILM Yageo America CFR-25JB-10R Digi-Key 1 $0.28 $0.28 
CONN HEADER 4POS 7.5MM R/A TIN Molex/Waldom Electronics Corp 43160-1104 Digi-Key 1 $3.14 $3.14 
CONN USB RT ANG RECPT TYPE B WHT Molex/Waldom Electronics Corp 67068-9000 Digi-Key 1 $2.01 $2.01 
LCD MOLULE 20X4 CHARACTER W/LED Lumex Opto/Components Inc LCM-S02004DSF Digi-Key 1 $31.50 $31.50 
KEYPAD 16 KEY FRONT PANEL MNT Grayhill Inc 96BB2-006-F Digi-Key 1 $12.87 $12.87 
CUSTOM PRINTED CIRCUIT BOARD Advanced Circuits N/A Advanced Circuits 1 $33.00 $33.00 
Assembly Screaming Circuits N/A Screaming Circuits 1 $52.20 $52.20 
              
          Total $171.10 

 
 



 

 Page 22 

Table 9: Initial Estimated Financial Budget 
Item Estimated Cost without Labor Estimated Cost with Labor 

Computer Chips and LCD $100 $100 

Wires $25 $25 

Gears $75 $75 

Motors $50 $50 

Bars $25 $25 

Blocks $125 $125 

Fasteners $25 $25 

Manufacturing – Student 
Workspace 

$50 $50 

Labor at $10/hr  $9000 

Total Cost $475 $9475 

 
Table 10: Revised Financial Budget 
Item Revised Cost without Labor Revised Cost with Labor 

Circuit Boards $954 $954 

Wires $50 $50 

Gears $75 $75 

Motors $90 $90 

Wedge Material $300 $300 

Fasteners $25 $25 

Manufacturing – Student 
Workspace 

$100 $100 

Labor at $10/hr  $8650 

Total Cost $1594 $10244 

 



 

 Page 23 

Table 11: Final Financial Budget 
Item Section Cost 

x5 sections 
Interface 
Costs 

Total without 
Labor 

Total with 
Labor 

Circuit Boards $162 $172 $982 $982 

Wires $26 $18 $148 $148 

Gears $40  $200 $200 

Motors $120  $600 $600 

Wedge Material $54  $270 $270 

Fasteners $10  $50 $50 

Other Parts $35  $175 $100 

Manufacturing $250  $1250 $1250 

Labor at $10/hr    $9760 

Total Cost $697 $190 $3675 $13,435 



ID Task Name Duration Start Finish

1 Problem Definition 17 days? Tue 8/30/05 Wed 9/21/05

2 Problem Definition Completion 14 days? Tue 8/30/05 Fri 9/16/05

3 Confirmation of End-User(s) and End-Use(s) 7 days? Tue 9/13/05 Wed 9/21/05

4 Review and Identification of Project Constraints 7 days? Tue 9/13/05 Wed 9/21/05

5 Technology Considerations and Selection 10 days? Wed 9/14/05 Tue 9/27/05

6 Review and Modification of Technologies 10 days? Wed 9/14/05 Tue 9/27/05

7 Technology Selection 10 days? Wed 9/14/05 Tue 9/27/05

8 End Project Design 23 days? Mon 9/26/05 Wed 10/26/05

9 Review of Design Requirements 13 days? Mon 9/26/05 Wed 10/12/05

10 Design Process 16 days? Wed 10/5/05 Wed 10/26/05

11 Documentation of Design 23 days? Mon 9/26/05 Wed 10/26/05

12 End-Product Prototype Implementation 24 days? Tue 10/18/05 Fri 11/18/05

13 Identification of Prototype Limitations and Substitutions 11 days? Tue 10/18/05 Tue 11/1/05

14 Implementation of Prototype End Product 14 days? Tue 11/1/05 Fri 11/18/05

15 End Product Testing 71 days? Tue 11/29/05 Tue 3/7/06

16 Test Planning 6 days? Tue 11/29/05 Tue 12/6/05

17 Test Development 14 days? Tue 11/29/05 Fri 12/16/05

18 Test Execution 8 days? Wed 12/7/05 Fri 12/16/05

19 Client Testing 53 days? Fri 12/16/05 Tue 2/28/06

20 Test Evaluation 42 days? Mon 1/9/06 Tue 3/7/06

21 Documentation of Testing 56 days? Tue 11/29/05 Tue 3/7/06

22 End Product Documentation 21 days? Tue 3/7/06 Tue 4/4/06

23 Development of End-User Documentation 11 days? Tue 3/7/06 Tue 3/28/06

24 Delopment of Maintenance and Support Documentation 6 days? Tue 3/28/06 Tue 4/4/06

25 End-Product Demonstration 19 days? Tue 4/4/06 Fri 4/28/06

26 Demonstration Planning 6 days? Tue 4/4/06 Tue 4/11/06

27 Faculty Advisor(s) Demonstration 4 days? Tue 4/11/06 Fri 4/14/06

28 Client Demonstration 1 day? Fri 4/21/06 Fri 4/21/06

29 Industrial Review Panel Demonstration 1 day? Fri 4/28/06 Fri 4/28/06

30 Project Reporting 179 days? Tue 8/30/05 Fri 5/5/06

31 Project Plan Development 19 days? Tue 8/30/05 Fri 9/23/05

32 Project Plan Due 1 day? Fri 9/23/05 Fri 9/23/05

33 Bound Project Plan Due 1 day? Tue 10/11/05 Tue 10/11/05

34 End-Product Design Report Development 35 days? Mon 9/26/05 Fri 11/11/05

35 End-Product Design Report Due 1 day? Fri 11/11/05 Fri 11/11/05

36 Bound End-Product Design Report Due 1 day? Wed 12/14/05 Wed 12/14/05

37 Project Poster Devlopment 37 days? Mon 1/9/06 Tue 2/28/06

38 Project Poster Due 1 day? Tue 2/28/06 Tue 2/28/06

39 Project Final Report Development 75 days? Mon 11/14/05 Fri 3/31/06

40 Project Final Report Due 1 day? Fri 3/31/06 Fri 3/31/06

41 Bound Project Final Report Due 1 day? Wed 5/3/06 Wed 5/3/06

42 Weekly Email Reporting 154 days? Tue 8/30/05 Fri 5/5/06

4/11

4/21

4/28

9/23

10/11

11/11

12/14

2/28

3/31

5/3

14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7
Sep '05 Oct '05 Nov '05 Dec '05 Jan '06 Feb '06 Mar '06 Apr '06 May '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

16 Team Gantt Charts
Below are the Gantt charts showing the original Dream Green team project timeline, the adjusted timeline, final timeline and the deliverables timeline.

Figure 9: Original Project Gantt Chart
Page 24

Project: May06-03
Date: Sat 4/29/06



ID Task Name Duration Start Finish

1 Problem Definition 17 days? Tue 8/30/05 Wed 9/21/05

2 Problem Definition Completion 14 days? Tue 8/30/05 Fri 9/16/05

3 Confirmation of End-User(s) and End-Use(s) 7 days? Tue 9/13/05 Wed 9/21/05

4 Review and Identification of Project Constraints 7 days? Tue 9/13/05 Wed 9/21/05

5 Technology Considerations and Selection 10 days? Wed 9/14/05 Tue 9/27/05

6 Review and Modification of Technologies 10 days? Wed 9/14/05 Tue 9/27/05

7 Technology Selection 10 days? Wed 9/14/05 Tue 9/27/05

8 End Project Design 23 days? Mon 9/26/05 Wed 10/26/05

9 Review of Design Requirements 13 days? Mon 9/26/05 Wed 10/12/05

10 Design Process 16 days? Wed 10/5/05 Wed 10/26/05

11 Documentation of Design 23 days? Mon 9/26/05 Wed 10/26/05

12 End-Product Prototype Implementation 44 days? Tue 10/18/05 Fri 12/16/05

13 Identification of Prototype Limitations and Substitutions 11 days? Tue 10/18/05 Tue 11/1/05

14 Implementation of Prototype End Product 29 days? Tue 11/1/05 Fri 12/16/05

15 End Product Testing 60 days? Mon 1/9/06 Fri 3/31/06

16 Test Planning 5 days? Mon 1/9/06 Fri 1/13/06

17 Test Development 5 days? Mon 1/9/06 Fri 1/13/06

18 Test Execution 5 days? Mon 1/9/06 Fri 1/13/06

19 Client Testing 53 days? Mon 1/16/06 Wed 3/29/06

20 Test Evaluation 55 days? Mon 1/9/06 Fri 3/31/06

21 Documentation of Testing 55 days? Mon 1/9/06 Fri 3/31/06

22 End Product Documentation 21 days? Tue 3/7/06 Tue 4/4/06

23 Development of End-User Documentation 11 days? Tue 3/7/06 Tue 3/28/06

24 Delopment of Maintenance and Support Documentation 6 days? Tue 3/28/06 Tue 4/4/06

25 End-Product Demonstration 6 days? Tue 4/4/06 Tue 4/11/06

26 Demonstration Planning 6 days? Tue 4/4/06 Tue 4/11/06

27 Project Reporting 179 days? Tue 8/30/05 Fri 5/5/06

28 Project Plan Development 19 days? Tue 8/30/05 Fri 9/23/05

29 End-Product Design Report Development 35 days? Mon 9/26/05 Fri 11/11/05

30 Project Poster Devlopment 37 days? Mon 1/9/06 Tue 2/28/06

31 Project Final Report Development 55 days? Mon 1/9/06 Fri 3/31/06

32 Weekly Email Reporting 154 days? Tue 8/30/05 Fri 5/5/06

1720232629 1 4 7 10131619222528 1 4 7 1013161922252831 3 6 9 12151821242730 3 6 9 12151821242730 2 5 8 11141720232629 1 4 7 10131619222528 3 6 9 12151821242730 2 5 8 11141720232629 2 5 8
September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006 April 2006 May 20

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Figure 10: Adjusted Project Gantt Chart
Page 25

Project: May06-03
Date: Sat 4/29/06



ID Task Name Duration Start

1 Problem Definition 17 days? Tue 8/30/05

2 Problem Definition Completion 14 days? Tue 8/30/05

3 Confirmation of End-User(s) and End-Use( 7 days? Tue 9/13/05

4 Review and Identification of Project Constr 7 days? Tue 9/13/05

5 Technology Considerations and Selection 10 days? Wed 9/14/05

6 Review and Modification of Technologies 10 days? Wed 9/14/05

7 Technology Selection 10 days? Wed 9/14/05

8 End Project Design 23 days? Mon 9/26/05

9 Review of Design Requirements 13 days? Mon 9/26/05

10 Design Process 16 days? Wed 10/5/05

11 Documentation of Design 23 days? Mon 9/26/05

12 End-Product Prototype Implementation 124 days? Tue 10/18/05

13 Identification of Prototype Limitations and S 11 days? Tue 10/18/05

14 Implementation of Prototype End Product 94 days? Tue 11/1/05

15 End Product Testing 25 days? Mon 4/3/06

16 Test Planning 5 days? Mon 4/3/06

17 Test Development 5 days? Mon 4/3/06

18 Test Execution 2 days? Mon 4/10/06

19 Client Testing 11 days? Tue 4/11/06

20 Test Evaluation 20 days Mon 4/10/06

21 Documentation of Testing 20 days Mon 4/10/06

22 End Product Documentation 20 days? Mon 4/10/06

23 Development of End-User Documentation 20 days? Mon 4/10/06

24 Development of Maintenance and Support 20 days? Mon 4/10/06

25 End-Product Demonstration 6.5 days? Mon 4/3/06

26 Demonstration Planning 6.5 days? Mon 4/3/06

27 Project Reporting 179 days? Tue 8/30/05

28 Project Plan Development 19 days? Tue 8/30/05

29 End-Product Design Report Development 35 days? Mon 9/26/05

30 Project Poster Devlopment 37 days? Mon 1/9/06

31 Project Final Report Development 55 days? Mon 1/9/06

32 Weekly Email Reporting 154 days? Tue 8/30/05

14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7
Sep '05 Oct '05 Nov '05 Dec '05 Jan '06 Feb '06 Mar '06 Apr '06 May '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Figure 11: Final Project Gantt Chart
Page 26

Project: May06-03
Date: Sat 4/29/06



ID Task Name Duration Start Finish Predecessors

1 Project Plan Due 1 day? Fri 9/23/05 Fri 9/23/05

2 Bound Project Plan Due 1 day? Tue 10/11/05 Tue 10/11/05

3 End-Product Design Report Due 1 day? Fri 11/11/05 Fri 11/11/05

4 Bound End-Product Design Rep 1 day? Wed 12/14/05 Wed 12/14/05

5 Project Poster Due 1 day? Tue 2/28/06 Tue 2/28/06

6 Project Final Report Due 1 day? Fri 3/31/06 Fri 3/31/06

7 Faculty Advisor(s) Demonstratio 4 days? Tue 4/11/06 Fri 4/14/06

8 Client Demonstration 1 day? Fri 4/21/06 Fri 4/21/06

9 Industrial Review Panel Demon 1 day? Fri 4/28/06 Fri 4/28/06

10 Bound Project Final Report Due 1 day? Wed 5/3/06 Wed 5/3/06

9/23

10/11

11/11

12/14

2/28

3/31

4/11

4/21

4/28

5/3

11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7
Oct '05 Nov '05 Dec '05 Jan '06 Feb '06 Mar '06 Apr '06 May '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Figure 12: Project Deliverables Gantt Chart - Unchanged throughout project Page 27

Project: The Dream Green - Design Re
Date: Sat 4/29/06



 

 Page 28 

17 Project Evaluation 
The project evaluation describes the milestones for the project and the criteria used to determine 
the success of the project.  For each milestone, the team evaluated the completeness and relative 
success and assigned a score as shown in Table 9. The team used the scores for each individual 
milestone and used a weighting factor to calculate a final score for the project. A final score of 
85% or more was considered a successful project. 

 
Table 12:  Evaluation Scores for Milestone Completion 

 
Description Score 
Exceeded 100% 

Met 100% 
Almost Met 75% 
Partially Met 50% 

Did Not Attempt/Meet 0% 
 

17.1 Project Definition 
Description: The project was defined and the work of previous design teams was reviewed. The 

end-user and end-uses were confirmed. In addition, the project constraints were identified 
and confirmed. 

Evaluation criteria: The project was defined thoroughly and based on the client’s needs in 
reference to the final design. 

Overall importance: 15% 
Milestone score: Met - 100% 
 

17.2 Technology Considerations and Selection 
Description: The project team members initially reviewed the designs of prior teams. The design 

was modified to improve manufacturability and to better meet the needs of the client. 
Technologies were researched and evaluated based on their suitability.  

Evaluation criteria: The technologies considered and selected are applicable to the intent and 
goals of the project. 

Overall importance: 10% 
Milestone score: Met - 100% 
 

17.3 End-product Design 
Description: Initially the design requirements were reviewed. The end-product design included 

the overall design process and component selection for the final product. The design 
changes were documented for future review and implementation.  

Evaluation criteria: The end-product design process and design met the functional, financial, 
and manufacturing requirements of the project.  

Overall importance: 20% 
Milestone score: Met - 100% 



 

 Page 29 

17.4 End-product Implementation 
Description: The end-product implementation is the construction of the end-product design, 

identification of the prototype limitations and substitutions of components. The end-
product design was revised based on lessons learned during implementation. 

Evaluation criteria: Prototype was constructed and conforms to the functional requirements and 
intended design. 

Overall importance: 12% 
Milestone score: Almost Met - 75% 
 

17.5 End-product Testing 
Description: The end-product testing was performed to identify and correct problems in the 

implementation of the design. The end-product testing consists of test planning, test 
development, test execution and client testing. Once the testing was completed, it was 
analyzed and documented. 

Evaluation criteria: Prototype is mechanically functional, software has debugged, and user 
interface has been improved. 

Overall importance: 15% 
Milestone score: Partially Met - 50% 
 

17.6 End-product Documentation 
Description: The end-product documentation includes the development of a user manual for the 

hardware and software, drawings and bill of materials for manufacture, and the 
development of maintenance and support documents. 

Evaluation criteria: End-product documentation includes information necessary for the 
construction, operation, and maintenance of the Dream Green. 

Overall importance: 8% 
Milestone score: Partially Met - 50% 
 

17.7 End-product Demonstration 
Description: The final prototype is presented to the client. Client input was used to finalize the 

design and to further evaluate the success of the project.  
Evaluation criteria: End-product demonstration was useful and met the client’s intended 

purpose of the project. 
Overall importance: 8% 
Milestone score: Met - 100% 
 



 

 Page 30 

17.8 Project Reporting 
Description: The team developed several documents during the duration of this project. These 

documents include the project plan, end-product design report, project poster, and project 
final report. These documents were used to highlight the progress and revisions which led 
up to the completion of the project. 

 
Evaluation criteria: Documentation met the necessary criteria and deliverables met established 

requirements. 
Overall importance: 12% 
Milestone score: Met - 100% 

17.9 Final Project Score 
The result of the project evaluation is an overall final project score of 85.5%. This score is 
calculated by adding the weighted average from each section. As defined above, this score 
exceeds the criteria necessary for a successful project. 
 

18 Commercialization 
Given that the manual Dream Green is currently for sale and has been for quite some time, it has 
been the goal from the start to make the automated Dream Green easily replicable for 
commercialization.  It has been understood that the team had to make additional costs of 
automation minimal in order to allow a greater markup in price for the client, increasing his 
profit margins.  There certainly would have been more expensive ways to accomplish the 
automation features of the Dream Green, but in selecting and purchasing parts cost was always 
considered in hopes that the client would be replicating the design. 
 

19 Recommendations for Additional Work 
Below is a list of features that could be added as future team projects: 
 

1. Touch screen for improved and more user friendly interface. 
2. Motor protection circuits to be implemented. 
3. Convert motors to AC power. 
4. User manual. 
5. Computer interface for uploading/downloading new courses. 
 



 

 Page 31 

20 Lessons Learned 
This section illustrates some of the lessons learned through the two-semesters designing and 
building a prototype Dream Green. 
 

20.1  What went well 
The team was able to successfully implement new technologies and refine existing ones to 
produce a working prototype for client evaluation.  The team streamlined many previous designs, 
such as the end lift and motor positioning circuit, to make them easier to reproduce. 
 

20.2 What did not go well 
The team had a few set backs during this year.  The first attempt to redesign the end lift was 
untimely unsuccessful and took much longer than expected because of the incremental design 
changes and difficulty with machining.  Eventually a more efficient design was reached, but after 
missing the original deadlines. 
 

20.3 What technical knowledge was gained 
Because of there mechanical aspects in addition to the electrical aspects of this project the team 
gained valuable interdisciplinary design experience.  The electrical and computer engineers were 
able to get a taste of fiction calculations, linear bearings, and power treads.  The mechanical 
engineer was exposed to communications protocols and control circuits. 
 

20.4 What non-technical knowledge was gained 
In addition the technical skill the team gained communications experience with the design 
review, poster, project presentation, and industrial review panel.  The team also gained 
knowledge in project planning and dealing with setbacks. 
 

20.5 What would you do differently 
The team would have liked to have met its original prototype deadline.  This could have been 
accomplished by speeding up the design process and setting many smaller more achievable 
milestones.  
 
 



 

 Page 32 

21 Risk & Risk Management 
The subsequent section will describe both risks and the risk management faced throughout the 
completion of the Dream Green project.  The following section will discuss the anticipated 
potential risks and planned management, anticipated risks encountered and success in 
management, unanticipated risks encountered/attempts to manage and success, and the resultant 
changes in risk management made because of encountered unanticipated risks.  Due to the nature 
of the project, there were many potential risks.  This section explains how these risks were 
managed. 
 

21.1 Anticipated potential risks and planned management 
Many risks were anticipated to reduce the amount of problems further into the building of the 
Dream Green.  Below is a list of the potential risks and the management steps taken to ensure 
that these risks would not result in major problems. 
 

1. Motor burnout – The current was constantly monitored to ensure that the burnout 
current was not reached while the motors were being tested. 

2. Microcontroller burnout – The controller boards were constantly monitored to ensure 
that no PIC was burned out. 

3. Power supply fire – The power supply was turned off when no persons were present to 
ensure overheating would not take place. 

4. Bodily injury – Due to the nature of the project, extra caution was taken to ensure that no 
bodily harm occurred while the Dream Green prototype was being constructed.  Special 
precautions were taking in the form of gloves when handling potentially dangerous items.  
Many of the lubricants are dangerous if swallowed, to prevent any accidental ingestion 
regular hand washing took place. 

5. Loss of personal items and Dream Green specifications – Many personal items were 
used throughout the construction of the Dream Green.  To protect these items and the 
highly classified Dream Green information the door to the lab remained locked when 
there was no person present. 

6. Loss of team member – There is always a possibility of a team member getting and 
internship even as a senior in college.  To protect against this, the team shared all 
knowledge and information throughout the project. 

21.2 Anticipated risks encountered and success in management 
Many of the risks that were anticipated were avoided due to the precautions that were taken.  
When the current drawn by the motor reached a value around 3 amps the power supply was 
turned off.  This prevented the accidental burnout of a motor.  On one occasion, the 
microcontroller got warm.  The work was immediately stopped and the microcontroller 
disconnected to ensure that the PIC was not burned out.  No major bodily injury occurred during 
the building of the Dream Green prototype.  A few cuts and scrapes were encountered from the 
sharp metal components of the prototype.  Since the Dream Green lab was locked, no pertinent 
information was lost.  There were also no break-ins to the Dream Green lab that would have lead 
to the loss of important Dream Green information or schematics. 
 



 

 Page 33 

21.3 Unanticipated risks encountered, attempts to manage and 
success  
Although many of the risks were planned for ahead of time, not all risks could be avoided.  
Several unanticipated risks occurred while building the Dream Green prototype.  These risks, the 
attempts to manage, and the success of this management are stated below. 
 

1. Breakage of important components – There were times when important pieces of the 
Dream Green prototype were damaged.  These pieces were damaged because they were 
caught under the Dream Green prototype.  To manage this risk, there were several 
occasions in which the Dream Green lab was organized.  By organizing the Dream Green 
lab these important pieces were not misplaced or damaged. 

2. Loss of important screws/bolts/nuts/etc. – When the Dream Green lab was not 
organized many of the screws, nuts, bolts, and couplers were misplaced.  Much time was 
wasted trying to find these parts.  Once again, the Dream Green lab was organized to 
prevent the loss of these important items.  By organizing the lab, these pieces were not 
lost and could be found easily.  This reduced the time spent looking for parts. 

3. Low internet signal – A risk that was not considered was the lack of wireless interned 
signal.  By not having the internet, important data could not be acquired.  This caused a 
risk in not completing the prototype on time.  To manage this risk a ethernet cable was 
brought in.  The ethernet cable provided a great signal and the internet was used to make 
many important decisions throughout the construction of the Dream Green prototype. 

 

21.4 Resultant changes in risk management made because of 
encountered unanticipated risks 
All unanticipated risks were dealt with on a prompt basis.  These unanticipated risks did not 
become major problems due to the fast action in dealing with those particular risks.  At the same 
time, other potential risks stemming from the unanticipated risk were also dealt with in a prompt 
manner.  In addition, risks closely associated with the unanticipated risks were also thoroughly 
considered.  By being proactive, many other unanticipated risks were avoided.  The proactive 
approached saved much time and expense by dealing with problems before they happened.  For 
instance, if a motor would have burned out it would have cost $30 to replace the motor and the 
time waiting for the motor would be lost.  The anticipation of risks was a major factor in 
completing the Dream Green prototype on time. 
 
 

 



 

 Page 34 

22 Project Team Information 
Listed below is the contact information for the student team members, faculty advisors, and 
client. 
 
Team Members: 
 
Ryan Emerson David Goldberg 
Computer Engineering Electrical Engineering 
2612 Aspen Rd. #3 4113 Frederiksen Ct 
Ames, IA 50010 Ames, IA 50010 
515-290-4277 319-431-1593 
remerson@iastate.edu goldberg@iastate.edu 
 
David Moline Mevan Vijithakumara 
Electrical Engineering Mechanical Engineering 
3411 Polaris Dr. 221 Sheldon #10 
Ames, IA 50010 Ames, IA 50014 
515-231-9113 515-230-7724 
dmoline@iastate.edu mkumara@iastate.edu 
 
Brian Wicks 
Computer Engineering 
3427 Polaris Dr. #2 
Ames, IA 50010 
515-231-2348 
bwicks13@iastate.edu 
 
 
Faculty Advisors: 
 
Professor John Lamont Professor Ralph Patterson, III 
Office Phone: 515-294-3600 Office Phone: 515-294-2428 
Home Phone: 515-292-5541 Home Phone: 515-232-9933 
Fax: 515-294-6760 Fax: 515-294-6760 
jwlamont@iastate.edu repiii@iastate.edu 
 
 
Client: 
 
Charles Juel 
Rt. 2 
Stout, IA 50673 
319-346-1608 



 

 Page 35 

23 Closing Summary 
This team reevaluated the adjustment process and improved upon the internal components 
created from past teams. The team also created all modifications in as close to a “ready to 
manufacture” state as possible. 
 
The team finalized the automation of the Dream Green modifiable putting surface. The team 
completed the current control systems necessary to automate these adjustments. The team made 
minor modifications to the work of previous teams and added necessary components.  Such 
modifications included switching to a motor designed for robotics due to its greater torque 
handling capabilities.  Added features include implementation of rotary encoders on all lifts, 
allowing the microcontroller to know the height each wedge.  The team plans to present a 
working prototype to Mr. Juel, the client, by the project’s end. 
 
 
 
 
 
 
 



 

 Page A-1 

Appendix A - Code 

dgmaster.c 
////////////////////////////////////////////////////////////////////////////// 
// Filename: dgmaster.c 
/////////////////////////////////////////////////////////////////////////////// 
// Author:   Ryan Emerson 
// Company:  Senior Design, Iowa State University 
// Revision: 1.0 
// Date:     9/14/05 
/////////////////////////////////////////////////////////////////////////////// 
 
#include <p18f448.h> 
#include <stdio.h> 
#include <adc.h> 
#include <delays.h> 
#include <portb.h> 
#include <reset.h> 
#include <timers.h> 
#include "can.h" 
#include "UARTIntC.h" 
#include "xlcd.h" 
#include "keypad.h" 
#include "dgcan.h" 
 
//////////////////////// 
// Configuration Data // 
//////////////////////// 
#pragma config OSC = HSPLL 
#pragma config PWRT = ON 
#pragma config BOR = ON 
#pragma config WDT = OFF 
#pragma config WDTPS = 128 
#pragma config LVP = OFF 
#pragma config DEBUG = OFF 
#pragma config CP0 = OFF 
#pragma config CP1 = OFF 
#pragma config WRTB = OFF 
#pragma config WRTC = OFF 
#pragma config WRTD = OFF 
#pragma config EBTR0 = OFF 
#pragma config EBTR1 = OFF 
#pragma config EBTRB = OFF 
 
////////////////////////// 
// Constant Definitions // 
////////////////////////// 
#define NUM_OF_HOLES    18 
#define MAX_MOTORS      18 
#define MAX_PLAYERS     4 
#define MAIN_MENU 0 
#define GAME_OPT_0   1 
#define GAME_OPT_1   2 
#define GAME_OPT_2   3 
#define GAME_OPT_3   4 
#define GAME_0    5 
#define GAME_1    6 
#define GAME_2    7 
#define GAME_3    8 
#define MAINT_MENU   9 
#define NEW_CRS_0 10 
#define NEW_CRS_1 11 
#define NEW_CRS_2 12 
#define NEW_CRS_3 13 
#define RND_CRS      14 



 

 Page A-2 

#define SNEW_CRS_0   15 
#define SNEW_CRS_1   16 
#define SNEW_CRS_2   17 
#define SNEW_CRS_3   18 
#define MDL_MENU_0   19 
#define MDL_MENU_1   20 
#define SAVE_0 21 
#define SAVE_1 22 
#define SAVE_2 23 
#define SAVE_3 24 
#define INST_0 25 
 
/////////////////////// 
// Macro Definitions // 
/////////////////////// 
#define XLCDCursorOnBlinkOn()        XLCDCommand(0x0F) 
#define XLCDCursorOnBlinkOff()       XLCDCommand(0x0E) 
#define XLCDDisplayOnCursorOff()     XLCDCommand(0x0C) 
#define XLCDDisplayOff()             XLCDCommand(0x08) 
#define XLCDCursorMoveLeft()         XLCDCommand(0x10) 
#define XLCDCursorMoveRight()        XLCDCommand(0x14) 
#define XLCDDisplayMoveLeft()        XLCDCommand(0x18) 
#define XLCDDisplayMoveRight()       XLCDCommand(0x1C) 
 
 
 
///////////////////////// 
// Function Prototypes // 
///////////////////////// 
unsigned char main_menu(void); 
unsigned char game_opt0(void); 
unsigned char game_opt1(void); 
unsigned char game_opt2(void); 
unsigned char game_opt3(void); 
unsigned char game0(void); 
unsigned char game1(void); 
unsigned char game2(void); 
unsigned char game3(void); 
unsigned char maint_menu(void); 
unsigned char new_crs0(void); 
unsigned char new_crs1(void); 
unsigned char new_crs2(void); 
unsigned char new_crs3(void); 
unsigned char rnd_crs(void); 
unsigned char snew_crs0(void); 
unsigned char snew_crs1(void); 
unsigned char snew_crs2(void); 
unsigned char snew_crs3(void); 
unsigned char mdl_menu0(void); 
unsigned char mdl_menu1(void); 
unsigned char save_0(void); 
unsigned char save_1(void); 
unsigned char save_2(void); 
unsigned char save_3(void); 
unsigned char inst_0(void); 
 
 
/////////////////////////// 
// Variable Declarations // 
/////////////////////////// 
struct CANMessage TX_Message; 
struct CANMessage RX_Message; 
unsigned char state; 
unsigned char num_players = 1; 
unsigned char hole = 1; 
unsigned isHole = 0; 
unsigned char scores[MAX_PLAYERS] = {0, 0, 0, 0}; 



 

 Page A-3 

unsigned char newhole = 0; 
unsigned char newpos = 0; 
unsigned char newheight = 0; 
unsigned char newcrsdone = 1; 
unsigned char model[2] = {'2','0'}; 
unsigned char motor_count = 18; 
unsigned char coursename[19] = {'L','I','T','T','L','E',' 
','A','U','G','U','S','T','A','\0','\0','\0','\0','\0'}; 
unsigned char crsnamelen = 14; 
unsigned char saveflag = 0; //0 = loaded/saved, 1 = usr, 2 = rnd 
unsigned char course[NUM_OF_HOLES][MAX_MOTORS] =  
{{0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0}, 
 {0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0}, 
 {0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 1, 0, 0, 2, 0, 0, 3, 0}, 
 {0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 0, 3, 0}, 
 {0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0}, 
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 4, 0, 0, 2, 0, 3, 0}, 
 {0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 3, 0}, 
 {0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0}, 
 {0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0}, 
 {0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0}, 
 {0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 3}, 
 {0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3}, 
 {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3}, 
 {0, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3}, 
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; 
 
/////////////////////////// 
// ROM Declarations      // 
/////////////////////////// 
rom unsigned char rndcoursename[19] = {'R','A','N','D','O','M',' 
','C','O','U','R','S','E','\0','\0','\0','\0','\0','\0'}; 
rom unsigned char rndcrsnamelen = 13; 
 
/////////////////////////// 
// Functions             // 
/////////////////////////// 
void XLCDDelay15ms (void) 
{ 
   Delay10KTCYx(16); 
    return; 
} 
 
void XLCDDelay4ms (void) 
{ 
   Delay10KTCYx(60); 
    return; 
} 
 
void XLCD_Delay500ns(void) 
{ 
   Delay10TCYx(2); 
   return; 
} 
 
void XLCDDelay(void) 
    { 
    int i; 
    for(i=0;i<1000;i++) 
        { 
        Nop(); 
        } 
    return; 
    } 



 

 Page A-4 

 
 
/////////////////////////////// 
// Interrupt Service Routine // 
/////////////////////////////// 
void low_isr(void);// serial interrupt taken as low priority interrupt 
#pragma code uart_int_service = 0x18 
void uart_int_service(void) 
{ 
   _asm  goto low_isr   _endasm 
 
} 
#pragma code 
 
#pragma  interruptlow low_isr 
void low_isr(void) 
{ 
   UARTIntISR(); 
   KeypadISR(); 
} 
 
#pragma interrupt HighISR 
void HighISR(void) 
{ 
   CANISR(); 
} 
 
#pragma code highVector=0x08 
void HighVector (void) 
{ 
    _asm goto HighISR _endasm 
} 
#pragma code  /* return to default code section */ 
////////// 
// Main // 
////////// 
void main() 
{ 
   unsigned char i; 
   unsigned char chData; 
   unsigned char last_state = -1; 
 
   //Initialize CAN module 
   CANInit(); 
 
   //Initalize Serial Controller 
   UARTIntInit(); 
   mSetUARTRxIntLowPrior(); 
   mSetUARTTxIntLowPrior(); 
 
   //Initalize LCD 
   ADCON1=0x07; //make PORTA digital as control portpins are from PORTA 
   XLCDInit(); //initialize the LCD module 
 
   state = MAIN_MENU; 
    
   UARTIntPutChar('!'); 
 
   while(1) 
   { 
 
      // Update LCD Display 
      ///////////////////// 
      if(state != last_state) 
      { 
         switch(state) 
         { 



 

 Page A-5 

            case MAIN_MENU: state = main_menu(); break; 
            case GAME_OPT_0: state = game_opt0(); break; 
            case GAME_OPT_1: state =  game_opt1(); break; 
            case GAME_OPT_2: state =  game_opt2(); break; 
            case GAME_OPT_3: state =  game_opt3(); break; 
            case GAME_0: state =  state =  game0(); break; 
            case GAME_1: state =  game1(); break; 
            case GAME_2: state =  game2(); break; 
            case GAME_3: state =  game3(); break; 
            case MAINT_MENU: state =  maint_menu(); break; 
            case NEW_CRS_0: state =  new_crs0(); break; 
            case NEW_CRS_1: state =  new_crs1(); break; 
            case NEW_CRS_2: state =  new_crs2(); break; 
            case NEW_CRS_3: state =  new_crs3(); break; 
            case RND_CRS:  state = rnd_crs(); break; 
            case SNEW_CRS_0: state =  snew_crs0(); break; 
            case SNEW_CRS_1: state =  snew_crs1(); break; 
            case SNEW_CRS_2: state = snew_crs2(); break; 
            case SNEW_CRS_3: state =  snew_crs3(); break; 
            case MDL_MENU_0:  state = mdl_menu0(); break; 
            case MDL_MENU_1:  state = mdl_menu1(); break; 
            case SAVE_0:  state = save_0(); break; 
            case SAVE_1:  state = save_1(); break; 
            case SAVE_2:  state = save_2(); break; 
            case SAVE_3:  state = save_3(); break; 
            case INST_0:  state = inst_0(); break; 
         } 
      } 
 
      // Check for CAN 
      //////////////// 
      if(CANRXMessageIsPending()) 
      { 
         //New CAN, take it. 
         RX_Message = CANGet();  //Get the message 
 
         ///Is it from the master and is it for me? 
         if(RX_Message.Address != 0xFF) 
         { 
            //Write to RS232 for fun 
            UARTIntPutChar('@'); 
            UARTIntPutChar(TX_Message.Address); 
            UARTIntPutChar('|'); 
            for(i=0; i < TX_Message.NoOfBytes; i++) 
               UARTIntPutChar(TX_Message.Data[i]); 
            UARTIntPutChar('|'); 
            UARTIntPutChar('\n'); 
            UARTIntPutChar('\r'); 
 
            //What kind of message is it? 
            switch(RX_Message.Data[1]) 
            { 
               case OVER_CURRENT: 
               case OVER_TEMP: 
               case OVER_TIME: 
//                error(RX_Message.Data[0], RX_Message.Data[1]); 
               break; 
            } 
         } 
      } 
 
      while(!vUARTIntStatus.UARTIntRxBufferEmpty) 
      { 
         UARTIntGetChar(&chData); 
         UARTIntPutChar(chData); //echo 
 
         if(chData == '\r' || chData == '\n') 



 

 Page A-6 

         { 
            for(i=0; i < TX_Message.NoOfBytes; i++) 
               UARTIntPutChar(TX_Message.Data[i]); 
 
            TX_Message.Address = 0xFF; 
            TX_Message.NoOfBytes = 4; 
            TX_Message.Ext = 0; 
            TX_Message.Remote = 0; 
            TX_Message.Priority = 2; 
            CANPut(TX_Message); 
            TX_Message.NoOfBytes = 0; 
         } 
         else 
         { 
            UARTIntPutChar(chData); 
            TX_Message.Data[TX_Message.NoOfBytes] = chData; 
            TX_Message.NoOfBytes++; 
         } 
 
      } 
   } 
 
   return; 
} 
 
unsigned char main_menu(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Main menu           "); 
   XLCDPutRomString((rom char *) "2) Maintanence      "); 
   XLCDPutRomString((rom char *) "1) Play Game        "); 
   XLCDPutRomString((rom char *) "3) Instructions     "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '3') 
   { 
      temp = KeypadGetChar(); 
   } 
   KeypadClose(); 
   if(temp == '1') return GAME_OPT_0; 
   if(temp == '2') return MAINT_MENU; 
   if(temp == '3') return INST_0; 
 
   return MAIN_MENU; 
} 
 
unsigned char game_opt0(void) 
{ 
   unsigned char temp = 0; 
   unsigned char i = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Game Options        "); 
   XLCDPutRomString((rom char *) " "); 
   for(i = 0; i < crsnamelen; i++) 
   { 
      XLCDPut(coursename[i]); 
   } 
   for(i = 0; i < (19 - crsnamelen); i++) 
   { 



 

 Page A-7 

      XLCDPutRomString((rom char *) " "); 
   } 
   XLCDPutRomString((rom char *) "1) Current Course   "); 
   XLCDPutRomString((rom char *) "2) New Course       "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '*') 
      temp = KeypadGetChar(); 
   KeypadClose(); 
 
   if(temp == '1') return GAME_OPT_1; 
   if(temp == '2')  
   { 
      if(saveflag == 0) return NEW_CRS_0; 
      else if(saveflag == 1 || saveflag == 2) return SAVE_1; 
   } 
   if(temp == '*') return MAIN_MENU; 
 
   return MAIN_MENU; 
} 
 
unsigned char game_opt1(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Game Options        "); 
   XLCDPutRomString((rom char *) "2. Play a Hole      "); 
   XLCDPutRomString((rom char *) "1. Play Course      "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '*') 
      temp = KeypadGetChar(); 
   KeypadClose(); 
 
   if(temp == '1') 
   { 
      isHole = 0; 
      return GAME_OPT_3; 
   } 
 
   if(temp == '2') 
   { 
      isHole = 1; 
      return GAME_OPT_2; 
   } 
 
   if(temp == '*') return GAME_OPT_0; 
 
   return MAIN_MENU; 
} 
 
unsigned char game_opt2(void) 
{ 
   unsigned char temp = 0; 
   unsigned char count = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Game Options        "); 
   XLCDPutRomString((rom char *) "                    "); 



 

 Page A-8 

   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Select Hole: "); 
   XLCDCursorOnBlinkOn(); 
 
   hole = 0; 
   KeypadOpen(); 
   while(temp != '#') 
   { 
      temp = KeypadGetChar(); 
      if(temp >= '0' && temp <= '9' && count < 2) 
      { 
         XLCDPut(temp); 
         if(count == 1) 
         { 
            hole = hole * 10; 
         } 
         hole += temp - '0'; 
         count++; 
      } 
      if(temp == '*' && count > 0) 
      { 
         XLCDCursorMoveLeft(); 
         hole = hole / 10; 
         count--; 
      } 
      if(temp == '*' && count == 0) 
      { 
         break; 
      } 
   } 
   KeypadClose(); 
 
   if(temp == '*') 
   { 
      return GAME_OPT_1; 
   } 
   else 
   { 
      return GAME_OPT_3; 
   } 
 
   return MAIN_MENU; 
} 
 
unsigned char game_opt3(void) 
{ 
   unsigned char temp = 0; 
   unsigned char count = 0; 
 
   num_players = 1; 
   if(!isHole) 
   { 
      hole = 1; 
   } 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Game Options        "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Players(1-4): "); 
   XLCDCursorOnBlinkOn(); 
 
   KeypadOpen(); 
   while(temp != '#') 
   { 



 

 Page A-9 

      temp = KeypadGetChar(); 
 
      if(temp >= '1' && temp <= '4' && count == 0) 
      { 
         num_players = temp - '0'; 
         XLCDPut(temp); 
         count++; 
      } 
      if(temp == '*' && count == 1) 
      { 
         XLCDCursorMoveLeft(); 
         count--; 
      } 
      if(temp == '*' && count == 0) 
      { 
         break; 
      } 
   } 
   KeypadClose(); 
 
   if(temp == '*') 
   { 
      return GAME_OPT_1; 
   } 
   else 
   { 
      return GAME_2; 
   } 
 
   return MAIN_MENU; 
} 
 
unsigned char game0(void) 
{ 
   int i; 
   unsigned char temp = 0; 
   unsigned char tempscore = 0; 
   unsigned char count = 0; 
 
   for(i=0; i < num_players; i++) 
   { 
      tempscore = 0; 
      KeypadClose(); 
      XLCDReturnHome(); 
      XLCDClear(); 
      for(i = 0; i < crsnamelen; i++) 
      { 
         XLCDPut(coursename[i]); 
      } 
      for(i = 0; i < (20 - crsnamelen); i++) 
      { 
         XLCDPutRomString((rom char *) " "); 
      } 
      XLCDPutRomString((rom char *) "Player: "); 
      XLCDPut( i + '1'); 
      XLCDPutRomString((rom char *) "           "); 
      XLCDPutRomString((rom char *) "Hole: "); 
      XLCDPut((hole / 10) + '0'); 
      XLCDPut((hole % 10) + '0'); 
      XLCDPutRomString((rom char *) "             "); 
      XLCDPutRomString((rom char *) "Score: "); 
      XLCDCursorOnBlinkOn(); 
 
      KeypadOpen(); 
      while(temp != '#') 
      { 
         temp = KeypadGetChar(); 



 

 Page A-10 

         if(temp >= '2' && temp <= '8' && count == 0) 
         { 
            tempscore = (temp - '0'); 
            XLCDPut(temp); 
            count++; 
         } 
         if(temp == '*' && count == 1) 
         { 
            tempscore = 0; 
            XLCDCursorMoveLeft(); 
            count--; 
         } 
      } 
      scores[i] += tempscore; 
      KeypadClose(); 
   } 
 
   return GAME_1; 
} 
 
unsigned char game1(void) 
{ 
   unsigned char i = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   for(i = 0; i < crsnamelen; i++) 
   { 
      XLCDPut(coursename[i]); 
   } 
   for(i = 0; i < (20 - crsnamelen); i++) 
   { 
      XLCDPutRomString((rom char *) " "); 
   } 
   XLCDPutRomString((rom char *) " P-1 "); 
   XLCDPut((scores[0] / 100) + '0'); 
   XLCDPut(((scores[0] / 10) % 10) + '0'); 
   XLCDPut((scores[0] % 10) + '0'); 
   if(num_players >= 2) 
   { 
      XLCDPutRomString((rom char *) "   P-2 "); 
      XLCDPut((scores[1] / 100) + '0'); 
      XLCDPut(((scores[1] / 10) % 10) + '0'); 
      XLCDPut((scores[1] % 10) + '0'); 
      XLCDPutRomString((rom char *) "  "); 
   } 
   else 
   { 
      XLCDPutRomString((rom char *) "            "); 
   } 
 
   XLCDPutRomString((rom char *) "After Hole "); 
   XLCDPut((hole / 10) + '0'); 
   XLCDPut((hole % 10) + '0'); 
   XLCDPutRomString((rom char *) "       "); 
   if(num_players >= 3) 
   { 
      XLCDPutRomString((rom char *) " P-3 "); 
      XLCDPut((scores[3] / 100) + '0'); 
      XLCDPut(((scores[3] / 10) % 10) + '0'); 
      XLCDPut((scores[3] % 10) + '0'); 
      if(num_players == 4) 
      { 
         XLCDPutRomString((rom char *) "   P-4 "); 
         XLCDPut((scores[4] / 100) + '0'); 
         XLCDPut(((scores[4] / 10) % 10) + '0'); 



 

 Page A-11 

         XLCDPut((scores[4] % 10) + '0'); 
         XLCDPutRomString((rom char *) "  "); 
      } 
      else 
      { 
         XLCDPutRomString((rom char *) "            "); 
      } 
   } 
   else 
   { 
      XLCDPutRomString((rom char *) "                    "); 
   } 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   if(isHole == 1 || hole == 18) 
   { 
      return GAME_3; 
   } 
   else 
   { 
      return GAME_2; 
   } 
 
   return MAIN_MENU; 
} 
 
unsigned char game2(void) 
{ 
   unsigned char i = 0; 
 
   hole++; 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   for(i = 0; i < crsnamelen; i++) 
   { 
      XLCDPut(coursename[i]); 
   } 
   for(i = 0; i < (20 - crsnamelen); i++) 
   { 
      XLCDPutRomString((rom char *) " "); 
   } 
   XLCDPutRomString((rom char *) "Loading Hole "); 
   XLCDPut((hole / 10) + '0'); 
   XLCDPut((hole % 10) + '0'); 
   XLCDPutRomString((rom char *) "     "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Please Wait...      "); 
   XLCDCursorOnBlinkOff(); 
 
   //temp - put course change here 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return GAME_0; 
} 
 
unsigned char game3(void) 
{ 
   unsigned char winner[4] = {0, 0, 0, 0}; 
   unsigned char score = 255; 
   unsigned char tie = 1; 



 

 Page A-12 

   int i; 
 
   for(i = 0; i < num_players; i++) 
   { 
      if(scores[i] < score) 
      { 
         score = scores[i]; 
         winner[0] = i + 1; 
      } 
   } 
 
   for(i = 0; i < num_players; i++) 
   { 
      if(scores[i] == score && winner[0] != (i + 1)) 
      { 
         winner[tie] = i + 1; 
         tie++; 
      } 
   } 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   for(i = 0; i < crsnamelen; i++) 
   { 
      XLCDPut(coursename[i]); 
   } 
   for(i = 0; i < (20 - crsnamelen); i++) 
   { 
      XLCDPutRomString((rom char *) " "); 
   } 
   XLCDPutRomString((rom char *) "  Congrats P-"); 
   XLCDPut(winner[0] + '0'); 
   if(tie > 1) 
   { 
      XLCDPut(winner[1] + '0'); 
      if(tie > 2) 
      { 
         XLCDPut(winner[2] + '0'); 
         if(tie > 3) 
         { 
            XLCDPut(winner[3] + '0'); 
         } 
         else 
         { 
            XLCDPutRomString((rom char *) "  "); 
         } 
      } 
      else 
      { 
         XLCDPutRomString((rom char *) "    "); 
      } 
   } 
   else 
   { 
      XLCDPutRomString((rom char *) "      "); 
   } 
   if(tie == 1) 
   { 
      XLCDPutRomString((rom char *) "WINNER!             "); 
   } 
   else 
   { 
      XLCDPutRomString((rom char *) "WINNERS!            "); 
   } 
   XLCDPutRomString((rom char *) "    Score: "); 
   XLCDPut((score / 100) + '0'); 



 

 Page A-13 

   XLCDPut(((score / 10) % 10) + '0'); 
   XLCDPut((score % 10) + '0'); 
   XLCDPutRomString((rom char *) "       "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return MAIN_MENU; 
} 
 
unsigned char maint_menu(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Maintanence Menu    "); 
   XLCDPutRomString((rom char *) "2) Change Model     "); 
   XLCDPutRomString((rom char *) "1) New Course       "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '*') 
      temp = KeypadGetChar(); 
   KeypadClose(); 
 
   if(temp == '1')  
   { 
      if(saveflag == 0) return NEW_CRS_0; 
      else if(saveflag == 1 || saveflag == 2) return SAVE_1; 
   } 
   if(temp == '2') return MDL_MENU_0; 
   if(temp == '*') return MAIN_MENU; 
 
   return MAIN_MENU; 
} 
 
unsigned char new_crs0(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "New Course Menu     "); 
   XLCDPutRomString((rom char *) "2) Set Your Own     "); 
   XLCDPutRomString((rom char *) "1) Load New Course  "); 
   XLCDPutRomString((rom char *) "3) Random Course    "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '3' && temp != '*') 
   { 
      temp = KeypadGetChar(); 
   } 
   KeypadClose(); 
   if(temp == '1') return NEW_CRS_1;   
   if(temp == '2') return SNEW_CRS_0;  
   if(temp == '3') return RND_CRS;     
   if(temp == '*') return MAIN_MENU; 
 
   return MAIN_MENU; 
} 



 

 Page A-14 

 
unsigned char new_crs1(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "New Course        dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "Connect RS232 device"); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "and Press #         "); 
   XLCDCursorOnBlinkOff(); 
 
   //need connectivity stuff 
   KeypadOpen(); 
   while(temp != '#' && temp != '*') 
   { 
      temp = KeypadGetChar(); 
   } 
   KeypadClose(); 
 
   if(temp == '#') return NEW_CRS_2; 
   if(temp == '*') return NEW_CRS_0; 
 
   return MAIN_MENU; 
} 
 
unsigned char new_crs2(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "New Course      dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "Waiting for PC      "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Confirmation!       "); 
   XLCDCursorOnBlinkOff(); 
 
   //need connectivity stuff 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return NEW_CRS_3; 
} 
 
unsigned char new_crs3(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "New Course      dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "Loading,            "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Please Wait...      "); 
   XLCDCursorOnBlinkOff(); 
 
   //need connectivity stuff 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 



 

 Page A-15 

   KeypadClose(); 
 
   saveflag = 0; 
   return GAME_OPT_0; 
} 
 
unsigned char rnd_crs(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Random Course       "); 
   XLCDPutRomString((rom char *) "Randomizing,        "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Please Wait...      "); 
   XLCDCursorOnBlinkOff(); 
 
   //need course randomizing stuff 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
    
    
   saveflag = 2; 
   return GAME_OPT_0; 
} 
 
unsigned char snew_crs0(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Set New Course      "); 
   XLCDPutRomString((rom char *) "B is to Lower       "); 
   XLCDPutRomString((rom char *) "A is to Raise       "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return SNEW_CRS_1; 
} 
 
unsigned char snew_crs1(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Set New Course      "); 
   XLCDPutRomString((rom char *) "D changes Hole      "); 
   XLCDPutRomString((rom char *) "C changes Position  "); 
   XLCDPutRomString((rom char *) "# Finish            "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return SNEW_CRS_2; 
} 
 
unsigned char snew_crs2(void) 
{ 
   unsigned char temp = 0; 
   unsigned char chars = 0; 



 

 Page A-16 

   unsigned char i = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Set New Course      "); 
   XLCDPutRomString((rom char *) "Course Name         "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDCursorOnBlinkOn(); 
 
   KeypadOpen(); 
   while(temp != '#') 
   { 
      if(temp >= 'A' && temp <= 'Z') 
      { 
         coursename[chars] = temp; 
         chars++; 
      } 
      if(temp == '*' && chars == 0) 
      { 
         return NEW_CRS_0; 
      } 
      if(temp == '*' && chars > 0) 
      { 
         chars--; 
      } 
   } 
   KeypadClose(); 
 
   crsnamelen = chars + 1; 
 
   if(chars == 0) return NEW_CRS_0; 
   else 
   { 
      for(i = chars; i < 19; i++) 
      { 
         coursename[i] = '\0'; 
      } 
   } 
 
   return SNEW_CRS_3; 
} 
 
unsigned char snew_crs3(void) 
{ 
   unsigned char temp = 0; 
 
   if(newcrsdone) 
   { 
      newhole = 1; 
      newpos = 1; 
   } 
 
   //load course 
   newheight = course[newhole + 1][newpos + 1]; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Set New Course      "); 
   XLCDPutRomString((rom char *) "Position: "); 
   XLCDPut(newpos + '0'); 
   XLCDPutRomString((rom char *) "         "); 
   XLCDPutRomString((rom char *) "Hole: "); 
   XLCDPut(newhole + '0'); 
   XLCDPutRomString((rom char *) "             "); 
   XLCDPutRomString((rom char *) "Height (0-4): "); 



 

 Page A-17 

   XLCDPut(newheight + '0'); 
   XLCDPutRomString((rom char *) "     "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '#') 
   { 
      if(temp == 'A') 
      { 
         if(newheight < 4) 
         { 
            newheight++; 
         } 
 
         course[newhole + 1][newpos + 1] = newheight; 
         break; 
      } 
      if(temp == 'B') 
      { 
         if(newheight > 0) 
         { 
            newheight--; 
         } 
 
         course[newhole + 1][newpos + 1] = newheight; 
         break; 
      } 
      if(temp == 'C') 
      { 
         if(newhole == 18) 
         { 
            newhole = 1; 
         } 
         else 
         { 
            newhole++; 
         } 
 
         break; 
      } 
      if(temp == 'D') 
      { 
         if(newpos == motor_count) 
         { 
            newpos = 1; 
         } 
         else 
         { 
            newpos++; 
         } 
 
         break; 
      } 
   } 
   KeypadClose(); 
 
   if(temp == '#') 
   { 
      saveflag = 1; 
      newcrsdone = 1; 
      return GAME_OPT_0; 
   } 
 
   if(temp >= 'A' && temp <= 'D') 
   { 
      return SNEW_CRS_3; 
   } 



 

 Page A-18 

 
   return MAIN_MENU; 
} 
 
unsigned char mdl_menu0(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Model Menu      dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "2) 16' Dream Green  "); 
   XLCDPutRomString((rom char *) "1) 12' Dream Green  "); 
   XLCDPutRomString((rom char *) "3) 20' Dream Green  "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '3' && temp != '*') 
   { 
      temp = KeypadGetChar(); 
   } 
   KeypadClose(); 
 
   if(temp == '*') return MAINT_MENU; 
 
   if(temp == '1') 
   { 
      model[0] = '1'; 
      model[1] = '2'; 
      motor_count = 10; 
   } 
 
   if(temp == '2') 
   { 
      model[0] = '1'; 
      model[1] = '6'; 
      motor_count = 14; 
   } 
 
   if(temp == '3') 
   { 
      model[0] = '2'; 
      model[1] = '0'; 
      motor_count = 18; 
   } 
 
   return MDL_MENU_1; 
} 
 
unsigned char mdl_menu1(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "New Model      dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "course!             "); 
   XLCDPutRomString((rom char *) "You must load a new "); 
   XLCDPutRomString((rom char *) "Press #             "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 



 

 Page A-19 

   KeypadClose(); 
 
   return NEW_CRS_0; 
} 
 
unsigned char save_0(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Your current course "); 
   XLCDPutRomString((rom char *) "1) Save             "); 
   XLCDPutRomString((rom char *) "has not been saved! "); 
   XLCDPutRomString((rom char *) "2) Ignore           "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(temp != '1' && temp != '2' && temp != '3' && temp != '*') 
   { 
      temp = KeypadGetChar(); 
   } 
   KeypadClose(); 
   if(temp == '1') return SAVE_1;   
   if(temp == '2') return NEW_CRS_0;  
   if(temp == '*') return MAIN_MENU; 
 
   return MAIN_MENU; 
} 
 
unsigned char save_1(void) 
{ 
   unsigned char temp = 0; 
 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Save Course     dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "Connect RS232 device"); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "and Press #         "); 
   XLCDCursorOnBlinkOff(); 
 
   //need connectivity stuff 
   KeypadOpen(); 
   while(temp != '#' && temp != '*') 
   { 
      temp = KeypadGetChar(); 
   } 
   KeypadClose(); 
 
   if(temp == '#') return SAVE_2; 
   if(temp == '*') return SAVE_0; 
 
   return MAIN_MENU; 
} 
 
unsigned char save_2(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Save Course     dg"); 
   XLCDPut(model[0]); 



 

 Page A-20 

   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "Waiting for PC      "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Confirmation!       "); 
   XLCDCursorOnBlinkOff(); 
 
   //need connectivity stuff 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return SAVE_3; 
} 
 
unsigned char save_3(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Save Course     dg"); 
   XLCDPut(model[0]); 
   XLCDPut(model[1]); 
   XLCDPutRomString((rom char *) "Saving,             "); 
   XLCDPutRomString((rom char *) "                    "); 
   XLCDPutRomString((rom char *) "Please Wait...      "); 
   XLCDCursorOnBlinkOff(); 
 
   //need connectivity stuff 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   saveflag = 0; 
   return NEW_CRS_0; 
} 
 
unsigned char inst_0(void) 
{ 
   KeypadClose(); 
   XLCDReturnHome(); 
   XLCDClear(); 
   XLCDPutRomString((rom char *) "Instructions        "); 
   XLCDPutRomString((rom char *) "# is Forward/Enter  "); 
   XLCDPutRomString((rom char *) "At any time:        "); 
   XLCDPutRomString((rom char *) "* is Back/Delete    "); 
   XLCDCursorOnBlinkOff(); 
 
   KeypadOpen(); 
   while(KeypadGetChar() != '#'); 
   KeypadClose(); 
 
   return MAIN_MENU; 
} 
 

 



 

 Page A-21 

dgslave.c 
////////////////////////////////////////////////////////////////////////////// 
// Filename: dgslave.c 
/////////////////////////////////////////////////////////////////////////////// 
// Author:   Ryan Emerson 
// Company:  Senior Design, Iowa State University 
// Revision: 1.0 
// Date:     9/14/05 
///////////////////////////////////////////////////////////////////////////////  
 
#include <p18f248.h> 
#include <stdlib.h> 
#include <adc.h> 
#include <delays.h> 
#include <portb.h> 
#include <reset.h> 
#include <timers.h> 
#include "can.h" 
#include "UARTIntC.h" 
#include "dgcan.h" 
 
//////////////////////// 
// Configuration Data // 
//////////////////////// 
#pragma config OSC = HSPLL 
#pragma config PWRT = ON 
#pragma config BOR = ON 
#pragma config BORV = 27 
#pragma config WDT = OFF 
#pragma config WDTPS = 128 
#pragma config STVR = ON 
#pragma config LVP = OFF  
#pragma config DEBUG = OFF 
#pragma config CP0 = OFF  
#pragma config CP1 = OFF 
#pragma config WRTB = OFF  
#pragma config WRTC = OFF  
#pragma config WRTD = OFF  
#pragma config EBTR0 = OFF  
#pragma config EBTR1 = OFF 
#pragma config EBTRB = OFF  
 
///////////////// 
// I/O Mapping // 
///////////////// 
#define CURRENT_SENSE_0 PORTAbits.RA0 
#define CURRENT_SENSE_1 PORTAbits.RA1 
#define ID_BIT_0  PORTAbits.RA2 
#define ID_BIT_1  PORTAbits.RA3 
#define ID_BIT_2  PORTAbits.RA4 
#define ID_BIT_3  PORTAbits.RA5 
#define WEDGE0_ENCODER PORTBbits.RB0 
#define WEDGE1_ENCODER PORTBbits.RB1 
#define WEDGE0_HOME  PORTBbits.RB4 
#define WEDGE1_HOME  PORTBbits.RB5 
#define WEDGE0_END  PORTBbits.RB6 
#define WEDGE1_END  PORTBbits.RB7 
#define ENABLE_0  LATCbits.LATC0 
#define ENABLE_1  LATCbits.LATC1 
#define DIRECTION_0  LATCbits.LATC2 
#define DIRECTION_1  LATCbits.LATC3 
#define THERMAL_FLAG_0 PORTCbits.RC4 
#define THERMAL_FLAG_1 PORTCbits.RC5 
#define BRAKE_0   LATCbits.LATC6 
#define BRAKE_1   LATCbits.LATC7 
 
 
////////////////////////// 
// Constant Definitions // 
////////////////////////// 
#define WEDGE_0  0 
#define WEDGE_A     480 
#define WEDGE_B     780 



 

 Page A-22 

#define WEDGE_C     1080 
#define WEDGE_D     1380 
#define WEDGE_END 1680 
#define TOLERANCE 24 
 
#define MAX_CURRENT 20     //mA 
#define SHUNT_VALUE 2200.0 //Ohms 
#define CS_COFF  377.0  //µA/A. 
#define V_REF       5.0    //Volts 
#define MAX_TIME 26   //Seconds 
 
/////////////////////// 
// Macro Definitions // 
/////////////////////// 
 
 
///////////////////////// 
// Function Prototypes // 
///////////////////////// 
void ISR(void); 
float GetMotor0Current(void); 
float GetMotor1Current(void); 
void ProcessTarget0(void); 
void ProcessTarget1(void); 
void ProcessHome0(void); 
void ProcessHome1(void); 
void ProcessEnd0(void); 
void ProcessEnd1(void); 
void ProcessCurrentError0(unsigned char deciA); 
void ProcessCurrentError1(unsigned char deciA); 
void ProcessTempError0(void); 
void ProcessTempError1(void); 
void ProcessTimeError0(unsigned char deciSec); 
void ProcessTimeError1(unsigned char deciSec); 
void TurnOn_Motor0(void); 
void TurnOff_Motor0(void); 
void TurnOn_Motor1(void); 
void TurnOff_Motor1(void); 
 
/////////////////////////// 
// Variable Declarations // 
/////////////////////////// 
unsigned long device_id; 
unsigned char portB; 
unsigned char motor0_on; 
unsigned char motor1_on; 
unsigned int wedge0_pos; 
unsigned int wedge0_target; 
unsigned int wedge1_pos; 
unsigned int wedge1_target; 
unsigned int motor0_time; 
unsigned int motor1_time; 
struct CANMessage TX_Message; 
struct CANMessage RX_Message; 
 
 
/////////////////////////////// 
// Interrupt Service Routine // 
/////////////////////////////// 
void low_isr(void);// serial interrupt taken as low priority interrupt 
#pragma code uart_int_service = 0x18 
void uart_int_service(void) 
{ 
 _asm goto low_isr _endasm 
  
} 
#pragma code 
 
#pragma interruptlow low_isr 
void low_isr(void) 
{ 
 ISR(); 
} 
 
#pragma interrupt HighISR 
void HighISR(void) 



 

 Page A-23 

{ 
 CANISR(); 
 ISR(); 
} 
 
#pragma code highVector=0x08 
void HighVector (void) 
{ 
    _asm goto HighISR _endasm 
} 
#pragma code  /* return to default code section */ 
 
 
////////// 
// Main // 
////////// 
void main() 
{ 
 /////////////// 
 // Initalize // 
 /////////////// 
 TRISAbits.TRISA0 = 1; // Current Sense 0 
 TRISAbits.TRISA1 = 1; // Current Sense 1 
 TRISAbits.TRISA2 = 1; // ID Bit 0 
 TRISAbits.TRISA3 = 1; // ID Bit 1 
 TRISAbits.TRISA4 = 1; // ID Bit 2 
 TRISAbits.TRISA5 = 1; // ID Bit 3 
 TRISBbits.TRISB0 = 1; // Encoder 0 
 TRISBbits.TRISB1 = 1; // Encoder 1 
 TRISBbits.TRISB4 = 1; // Home 0 
 TRISBbits.TRISB5 = 1; // Home 1 
 TRISBbits.TRISB6 = 1; // End 0 
 TRISBbits.TRISB7 = 1; // End 1 */ 
 TRISCbits.TRISC0 = 0; // Enable 0 
 TRISCbits.TRISC1 = 0; // Enable 1 
 TRISCbits.TRISC2 = 0; // Direction 0 
 TRISCbits.TRISC3 = 0; // Direction 1 
 TRISCbits.TRISC4 = 1; // Thermal Flag 0 
 TRISCbits.TRISC5 = 1; // Thermal Flag 1 
 TRISCbits.TRISC6 = 0; // Brake 0 
 TRISCbits.TRISC7 = 0; // Brake 1 
 
 device_id = 0; 
 portB = PORTB; 
 DIRECTION_0 = 0; 
 DIRECTION_1 = 0; 
 wedge0_pos = 0; 
 wedge0_target = 0; 
 wedge1_pos = 0; 
 wedge1_target = 0; 
 motor0_time = 0; 
 motor1_time = 0; 
 TurnOff_Motor0(); 
 TurnOff_Motor1(); 
 
 //Initialize CAN module  
 CANInit(); 
 INTCON3bits.INT2IP = 1; 
 RCONbits.IPEN = 1;   //Enable priority interrupts   
 INTCONbits.GIEH = 1;  //Enable all interrupts  
 
 //Configure Timer0 
 OpenTimer0( TIMER_INT_ON & 
    T0_16BIT & 
    T0_SOURCE_INT & 
    T0_PS_1_256 ); 
 INTCON2bits.TMR0IP = 1; //High priority 
 
 OpenPORTB( PORTB_CHANGE_INT_ON &  
      PORTB_PULLUPS_OFF); 
 INTCON2bits.RBIP = 0; //Low priority 
 
 OpenRB0INT( PORTB_CHANGE_INT_ON &  
    RISING_EDGE_INT & 
    PORTB_PULLUPS_OFF ); 
 



 

 Page A-24 

 OpenRB1INT( PORTB_CHANGE_INT_ON &  
    RISING_EDGE_INT & 
    PORTB_PULLUPS_OFF ); 
 INTCON3bits.INT1IP = 0; //Low priority 
 
 device_id = (ID_BIT_3 * 8) + 
    (ID_BIT_2 * 4) + 
    (ID_BIT_1 * 2) + 
    (ID_BIT_0 * 1); 
  
 device_id = (unsigned long)(device_id << 5); 
  
 
 //Send ID CAN packet 
 TX_Message.Address = (unsigned long) MASTER_ID | ACK; 
 TX_Message.Data[0] = device_id; 
 TX_Message.NoOfBytes = 1; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0;  
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 
 // Home Wedge 0 
 DIRECTION_0 = 1; 
// TurnOn_Motor0(); 
// wedge0_target = 48; 
// while(!WEDGE0_HOME) Nop(); 
 
 // Home Wedge 1 
 DIRECTION_1 = 1; 
// TurnOn_Motor1(); 
// while(!WEDGE1_HOME) Nop();  
 
 /////////////////////// 
 // Main Program Loop // 
 /////////////////////// 
 while(1) 
 { 
  //////////////////// 
  // Check Position // 
  //////////////////// 
  if(motor0_on) 
  { 
   // Overshoot protection, shouldn’t be necessary 
   //DIRECTION_0 = (wedge0_pos > wedge0_target ? 1 : 0); 
 
   // Are we there yet? 
   if(wedge0_pos < wedge0_target + TOLERANCE  
    && wedge0_pos > wedge0_target - TOLERANCE) 
   if(wedge0_pos > 50) 
    ProcessTarget0(); 
  } 
 
  if(motor1_on) 
  { 
   // Overshoot protection, shouldn’t be necessary 
   DIRECTION_1 = (wedge1_pos > wedge1_target ? 1 : 0); 
  
   // Are we there yet? 
   if(wedge1_pos < wedge1_target + TOLERANCE  
    && wedge1_pos > wedge1_target - TOLERANCE) 
    ProcessTarget1(); 
  } 
 
  ////////////////////// 
  // Check for errors // 
  //////////////////////  
/*   
  // Current 
  ////////// 
  if(GetMotor0Current() > MAX_CURRENT) 
   if(GetMotor0Current() > MAX_CURRENT) 
    ProcessCurrentError0((unsigned char) GetMotor0Current()); 
 
  if(GetMotor1Current() > MAX_CURRENT) 
   if(GetMotor1Current() > MAX_CURRENT) 



 

 Page A-25 

    ProcessCurrentError1((unsigned char) GetMotor1Current()); 
*/ 
  // Temp 
  /////// 
  if(THERMAL_FLAG_0) 
   ProcessTempError0(); 
 
  if(THERMAL_FLAG_1) 
   ProcessTempError1(); 
 
  //////////////////////////// 
  // Check for CAN messages // 
  //////////////////////////// 
  if(CANRXMessageIsPending()) 
  { 
   //New CAN, take it. 
   RX_Message = CANGet(); //Get the message 
    
   //Is it from the master and is it for me? 
   if((RX_Message.Address & 0b1111100000) == device_id) 
   { 
    //What kind of message is it? 
    switch(RX_Message.Address & 0b0000011111) 
    { 
     // Ping 
     /////// 
     case PING: 
      //Send confirmation CAN packet 
      TX_Message.Address = MASTER_ID | ACK; 
      TX_Message.Data[0] = RX_Message.Data[0]; 
      TX_Message.Data[1] = RX_Message.Data[1]; 
      TX_Message.Data[2] = RX_Message.Data[2]; 
      TX_Message.Data[3] = RX_Message.Data[3]; 
      TX_Message.Data[4] = RX_Message.Data[4]; 
      TX_Message.Data[5] = RX_Message.Data[5]; 
      TX_Message.Data[6] = RX_Message.Data[6]; 
      TX_Message.Data[7] = RX_Message.Data[7]; 
      TX_Message.NoOfBytes = RX_Message.NoOfBytes; 
      TX_Message.Ext = 0; 
      TX_Message.Remote = 0;  
      TX_Message.Priority = 2; 
      CANPut(TX_Message); 
      Delay1KTCYx(100); 
     break; 
 
     // Stop Wedges 
     ////////////// 
     case STOP_WEDGES: 
      TurnOff_Motor0(); 
      TurnOff_Motor1(); 
     break; 
 
     // Move Wedge 
     ///////////// 
     case MOVE_WEDGE:  
      if(RX_Message.Data[0] == '0') 
      { 
       switch(RX_Message.Data[1]) 
       { 
        case '0': wedge0_target = WEDGE_0; break; 
        case 'A': wedge0_target = WEDGE_A; break; 
        case 'B': wedge0_target = WEDGE_B; break; 
        case 'C': wedge0_target = WEDGE_C; break; 
        case 'D': wedge0_target = WEDGE_D; break; 
       } 
 
       DIRECTION_0 = (wedge0_pos > wedge0_target ? 1 : 0); 
       TurnOn_Motor0(); 
 
      } 
      else if(RX_Message.Data[0] == '1') 
      { 
       switch(RX_Message.Data[1]) 
       { 
        case '0': wedge1_target = WEDGE_0; break; 
        case 'A': wedge1_target = WEDGE_A; break; 



 

 Page A-26 

        case 'B': wedge1_target = WEDGE_B; break; 
        case 'C': wedge1_target = WEDGE_C; break; 
        case 'D': wedge1_target = WEDGE_D; break; 
       } 
 
       DIRECTION_1 = (wedge1_pos > wedge1_target ? 1 : 0); 
       TurnOn_Motor1(); 
      } 
     break; 
    } 
 
   } 
  }   
 } 
 
 return; 
} 
 
// Interrupt Service Routine 
///////////////////////////////////////////////////////////////////////////////  
void ISR(void) 
{ 
 // Timmer 0 
 if(INTCONbits.TMR0IE && INTCONbits.TMR0IF) 
 { 
  INTCONbits.TMR0IE = 0; 
  INTCONbits.TMR0IF = 0; 
  motor0_time += motor0_on; 
  motor1_time += motor1_on; 
 
  if(motor0_time > MAX_TIME) 
   ProcessTimeError0(motor0_time); 
 
  if(motor1_time > MAX_TIME) 
   ProcessTimeError1(motor1_time); 
 
  WriteTimer0(0); 
  INTCONbits.TMR0IF = 0; 
  INTCONbits.TMR0IE = 1; 
 } 
 
 //Encoder 0 
 if(INTCONbits.INT0IE && INTCONbits.INT0IF) 
 { 
  INTCONbits.INT0IE = 0; 
  INTCONbits.INT0IF = 0; 
TX_Message.Address = MASTER_ID | 68; 
CANPut(TX_Message); 
  if(ENABLE_0 == 1) 
  { 
   if(DIRECTION_0 == 1 && wedge0_pos > 0) 
    wedge0_pos++; 
   else if(DIRECTION_0 == 0 && wedge0_pos < 65536) 
    wedge0_pos++; 
   wedge0_pos += 1; 
  } 
 
  INTCONbits.INT0IF = 0; 
  INTCONbits.INT0IE = 1; 
 } 
 
 //Encoder 1 
 if(INTCON3bits.INT1IE && INTCON3bits.INT1IF) 
 { 
  INTCON3bits.INT1IE = 0; 
  INTCON3bits.INT1IF = 0; 
TX_Message.Address = MASTER_ID | 69; 
CANPut(TX_Message); 
  if(ENABLE_1 == 1) 
  {  
   if(DIRECTION_1 == 1 && wedge1_pos > 0) 
    wedge1_pos--; 
   else if(DIRECTION_1 == 0 && wedge1_pos < 65536) 
    wedge1_pos++; 
  } 
   



 

 Page A-27 

  INTCON3bits.INT1IF = 0; 
  INTCON3bits.INT1IE = 1; 
 } 
  
 //PORTB 
 if(INTCONbits.RBIE && INTCONbits.RBIF) 
  { 
     INTCONbits.RBIF=0; 
 
  //Wedge 0 Home 
     if((portB ^ PORTB) & 0b00010000) 
     { 
   //pin RB4 changed 
   TurnOff_Motor0(); 
   wedge0_pos = 0; 
  } 
  //Wedge 1 Home 
     if((portB ^ PORTB) & 0b00100000) 
     { 
   //pin RB5 changed 
   TurnOff_Motor1(); 
   wedge1_pos = 0; 
  } 
  //Wedge 0 End 
     if((portB ^ PORTB) & 0b01000000) 
     { 
   TurnOff_Motor0(); 
   wedge0_pos = WEDGE_END; 
  } 
  //Wedge 0 Home 
     if((portB ^ PORTB) & 0b10000000) 
     { 
   TurnOff_Motor1(); 
   wedge1_pos = WEDGE_END; 
  } 
 
  portB = PORTB; 
    } 
 
 return; 
} 
 
// Get Motor 0 Current 
///////////////////////////////////////////////////////////////////////////////  
float GetMotor0Current(void) 
{ 
 unsigned int result; 
 float voltage; 
 
 //Configure A/D convertor 
// OpenADC( ADC_FOSC_32 & 
//    ADC_RIGHT_JUST & 
//    ADC_12_TAD, 
//    ADC_CH0 & 
//    ADC_INT_OFF, 15 ); 
 
 Delay10TCYx( 5 ); // Delay for 50TCY 
 ConvertADC(); // Start conversion 
// while( BusyADC() ); // Wait for completion 
 result = ReadADC(); // Read result 
 CloseADC(); // Disable A/D converter 
 
 //Convert to current 
 voltage = ((float) result) / 1023.0 * V_REF; 
 return (float) voltage / SHUNT_VALUE * CS_COFF; // I = V / R 
} 
 
// Get Motor 1 Current 
///////////////////////////////////////////////////////////////////////////////  
float GetMotor1Current(void) 
{ 
 unsigned int result; 
 float voltage; 
 
 //Configure A/D convertor 
// OpenADC( ADC_FOSC_32 & 



 

 Page A-28 

//    ADC_RIGHT_JUST & 
//    ADC_12_TAD, 
//    ADC_CH0 & 
//    ADC_INT_OFF, 15 ); 
 
 Delay10TCYx( 5 ); // Delay for 50TCY 
 ConvertADC(); // Start conversion 
// while( BusyADC() ); // Wait for completion 
 result = ReadADC(); // Read result 
 CloseADC(); // Disable A/D converter 
 
 //Convert to current 
 voltage = ((float) result) / 1023.0 * V_REF; 
 return (float) voltage / SHUNT_VALUE * CS_COFF; // I = V / R 
} 
 
 
// Process Target 0 
///////////////////////////////////////////////////////////////////////////////  
void ProcessTarget0(void) 
{ 
 TurnOff_Motor0(); 
 
 //Send confirmation CAN packet 
 TX_Message.Address = MASTER_ID | MOVE_COMPLETE; 
 TX_Message.NoOfBytes = 3; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0;  
 TX_Message.Data[0] = '0'; 
  
 if(wedge0_pos >= 0 && wedge0_pos < WEDGE_A - TOLERANCE) 
  TX_Message.Data[1] = '0'; 
 else if(wedge0_pos >= WEDGE_A - TOLERANCE &&  
         wedge0_pos < WEDGE_A + TOLERANCE) 
  TX_Message.Data[1] = 'A'; 
 else if(wedge0_pos >= WEDGE_B - TOLERANCE &&  
         wedge0_pos < WEDGE_B + TOLERANCE) 
  TX_Message.Data[1] = 'B'; 
 else if(wedge0_pos >= WEDGE_C - TOLERANCE &&  
         wedge0_pos < WEDGE_C + TOLERANCE) 
  TX_Message.Data[1] = 'C'; 
 else if(wedge0_pos >= WEDGE_D - TOLERANCE &&  
         wedge0_pos <  WEDGE_D + TOLERANCE) 
  TX_Message.Data[1] = 'D'; 
 else if(wedge0_pos >= WEDGE_D) 
  TX_Message.Data[1] = 'E'; 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 Delay1KTCYx(0); 
 return; 
} 
 
// Process Target 1 
///////////////////////////////////////////////////////////////////////////////  
void ProcessTarget1(void) 
{ 
 TurnOff_Motor1(); 
 
 //Send confirmation CAN packet 
 TX_Message.Address = MASTER_ID | MOVE_COMPLETE; 
 TX_Message.NoOfBytes = 3; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0;  
 TX_Message.Data[0] = '1'; 
  
 if(wedge1_pos >= 0 && wedge1_pos < WEDGE_A - TOLERANCE) 
  TX_Message.Data[1] = '0'; 
 else if(wedge1_pos >= WEDGE_A - TOLERANCE &&  
         wedge1_pos < WEDGE_A + TOLERANCE) 
  TX_Message.Data[1] = 'A'; 
 else if(wedge1_pos >= WEDGE_B - TOLERANCE &&  
         wedge1_pos < WEDGE_B + TOLERANCE) 
  TX_Message.Data[1] = 'B'; 
 else if(wedge1_pos >= WEDGE_C - TOLERANCE &&  
         wedge1_pos < WEDGE_C + TOLERANCE) 
  TX_Message.Data[1] = 'C'; 



 

 Page A-29 

 else if(wedge1_pos >= WEDGE_D - TOLERANCE &&  
         wedge1_pos < WEDGE_D + TOLERANCE) 
  TX_Message.Data[1] = 'D'; 
 else if(wedge1_pos >= WEDGE_D) 
  TX_Message.Data[1] = 'E'; 
 
 TX_Message.Data[1] = (wedge1_pos >> 8); 
 TX_Message.Data[2] = (unsigned char) (wedge1_pos && 0xFF); 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 Delay100TCYx(0); 
 return; 
} 
 
 
// Process Current Error 0 
///////////////////////////////////////////////////////////////////////////////  
void ProcessCurrentError0(unsigned char deciA) 
{ 
 TurnOff_Motor0(); 
 
 //Send CAN Error Packet 
 TX_Message.Address = MASTER_ID | CURRENT_ERROR; 
 TX_Message.NoOfBytes = 3; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0;  
 TX_Message.Data[0] = '0'; 
 TX_Message.Data[1] = deciA; 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 return; 
}  
 
// Process Current Error 1 
///////////////////////////////////////////////////////////////////////////////  
void ProcessCurrentError1(unsigned char deciA) 
{ 
 TurnOff_Motor1(); 
  
 //Send CAN Error Packet 
 TX_Message.Address = MASTER_ID | CURRENT_ERROR; 
 TX_Message.NoOfBytes = 3; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0;  
 TX_Message.Data[0] = '1'; 
 TX_Message.Data[1] = deciA; 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 return; 
} 
 
// Process Temperature Error 0 
///////////////////////////////////////////////////////////////////////////////  
void ProcessTempError0(void) 
{ 
 TurnOff_Motor0(); 
  
 //Send CAN Error Packet 
 TX_Message.Address = MASTER_ID | TEMP_ERROR; 
 TX_Message.NoOfBytes = 2; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0; 
 TX_Message.Data[0] = '0'; 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 return; 
} 
 
// Process Temperature Error 1 
///////////////////////////////////////////////////////////////////////////////  
void ProcessTempError1(void) 
{ 
 TurnOff_Motor1(); 
  
 //Send CAN Error Packet 
 TX_Message.Address = MASTER_ID | TEMP_ERROR; 



 

 Page A-30 

 TX_Message.NoOfBytes = 1; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0;  
 TX_Message.Data[0] = '1'; 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 return; 
} 
 
// Process Time Error 0 
///////////////////////////////////////////////////////////////////////////////  
void ProcessTimeError0(unsigned char deciSec) 
{ 
 TurnOff_Motor0(); 
  
 //Send CAN Error Packet 
 TX_Message.Address = MASTER_ID | TIME_ERROR; 
 TX_Message.NoOfBytes = 2; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0; 
 TX_Message.Data[0] = '0'; 
 TX_Message.Data[1] = deciSec; 
 TX_Message.Priority = 0; 
 CANPut(TX_Message); 
 return; 
} 
 
// Process Time Error 1 
///////////////////////////////////////////////////////////////////////////////  
void ProcessTimeError1(unsigned char deciSec) 
{ 
 TurnOff_Motor1(); 
  
 //Send CAN Error Packet 
 TX_Message.Address = MASTER_ID | TIME_ERROR; 
 TX_Message.NoOfBytes = 2; 
 TX_Message.Ext = 0; 
 TX_Message.Remote = 0; 
 TX_Message.Data[0] = '1'; 
 TX_Message.Data[1] = deciSec; 
 TX_Message.Priority = 2; 
 CANPut(TX_Message); 
 return; 
} 
 
// Turn On Motor 0 
///////////////////////////////////////////////////////////////////////////////  
void TurnOn_Motor0(void) 
{ 
 BRAKE_0 = 0; //Disable brake 
 Delay10TCYx(100); 
 motor0_on = 1; 
 ENABLE_0 = 1; //Turn motor on 
 return; 
} 
 
// Turn Off Motor 0 
///////////////////////////////////////////////////////////////////////////////  
void TurnOff_Motor0(void) 
{ 
 ENABLE_0 = 0; //Turn motor off 
 motor0_time = 0; //Reset timmer 
 motor0_on = 0; //Clear flag 
 Delay1KTCYx(1); //Wait for spin down 
 BRAKE_0 = 1; //Enable breake 
 Delay1KTCYx(100); 
 return; 
} 
 
// Turn On Motor 1 
///////////////////////////////////////////////////////////////////////////////  
void TurnOn_Motor1(void) 
{ 
 BRAKE_1 = 0; //Disable brake 
 Delay10TCYx(100); 
 motor1_on = 1; 



 

 Page A-31 

 ENABLE_1 = 1; //Turn motor on 
 return; 
} 
 
 
// Turn Off Motor 1 
///////////////////////////////////////////////////////////////////////////////  
void TurnOff_Motor1(void) 
{ 
 ENABLE_1 = 0; //Turn motor off 
 motor1_time = 0; //Reset timmer 
 motor1_on = 0; //Clear flag 
 Delay1KTCYx(1); //Wait for spin down 
 BRAKE_1 = 1; //Enable breake 
 Delay1KTCYx(100); 
}  
 
 

dgcan.h 
////////////////////////////////////////////////////////////////////////////// 
// Filename: dgcan.h 
/////////////////////////////////////////////////////////////////////////////// 
// Author:   Ryan Emerson 
// Company:  Senior Design, Iowa State University 
// Revision: 1.0 
// Date:     9/14/05 
/////////////////////////////////////////////////////////////////////////////// 
 
 
// Byte  9 8 7 6 5 4 3 2 1 0 
//   [--Destination--]   [--Packet Type--] 
 
 
#define MASTER_ID (unsigned long)((unsigned long)0b010000 << 5) 
 
#define ACK    1 //Acknowledge a successfully received packet 
#define PING     2 //Ping (Send & Receive) 
#define MOVE_WEDGE     3 //Command to move a wedge to a new positon 
#define STOP_WEDGES  4 //Stop all wedges 
#define MOVE_COMPLETE  5 //Can't find position error 
#define POSITION_ERROR  6 //Request/Reply for current wedge position 
#define CURRENT_ERROR   7 //Over-current error 
#define TEMP_ERROR    8 //Over-temperature error 
#define TIME_ERROR  9 //Over-time error 
 
 



 

 Page A-32 

keyboard.h 
////////////////////////////////////////////////////////////////////////////// 
// Filename: keypad.h 
/////////////////////////////////////////////////////////////////////////////// 
// Author:   Ryan Emerson 
// Company:  Senior Design, Iowa State University 
// Revision: 1.0 
// Date:     9/14/05 
/////////////////////////////////////////////////////////////////////////////// 
 
#ifndef __KEYPAD_H__ 
#define __KEYPAD_H__ 
 
#define COL_0 LATCbits.LATC0 
#define COL_1 LATCbits.LATC1 
#define COL_2 LATCbits.LATC2 
#define COL_3 LATCbits.LATC3 
#define ROW_0 PORTBbits.RB4 
#define ROW_1 PORTBbits.RB5 
#define ROW_2 PORTBbits.RB6 
#define ROW_3 PORTBbits.RB7 
 
#define KEYPAD_BUFFER_SIZE 8 
 
 
void KeypadOpen(void); 
void KeypadClose(void); 
void KeypadClearCols(void); 
void KeypadSetCols(void); 
void KeypadPush(unsigned char chData); 
unsigned char KeypadGetChar(void); 
void KeypadISR(void); 
 
 
#endif 
 
 

keyboard.c 
 
////////////////////////////////////////////////////////////////////////////// 
// Filename: keypad.c 
/////////////////////////////////////////////////////////////////////////////// 
// Author:   Ryan Emerson 
// Company:  Senior Design, Iowa State University 
// Revision: 1.0 
// Date:     9/14/05 
/////////////////////////////////////////////////////////////////////////////// 
#include <p18f448.h> 
#include <stdio.h> 
#include <delays.h> 
#include "keypad.h" 
 
unsigned char keypadBuffer; 
 
unsigned char KeypadTable[4][4] = { {'D', '#', '0', '*'}, 
         {'C', '9', '8', '7'}, 
         {'B', '6', '5', '4'}, 
         {'A', '3', '2', '1'} }; 
 
void KeypadOpen(void) 
{ 
 keypadBuffer = NULL; 
 
 TRISCbits.TRISC0 = 0; 
 TRISCbits.TRISC1 = 0; 
 TRISCbits.TRISC2 = 0; 
 TRISCbits.TRISC3 = 0; 
 TRISBbits.TRISB4 = 1; 
 TRISBbits.TRISB5 = 1; 
 TRISBbits.TRISB6 = 1; 
 TRISBbits.TRISB7 = 1; 



 

 Page A-33 

 KeypadSetCols(); 
 
 INTCON2bits.RBPU = 1; //All PORTB pull-ups are disabled 
 INTCONbits.RBIE = 1; //Enables the RB port change interrupt 
 INTCONbits.RBIF = 0; 
 INTCON2bits.RBIP = 0; //Low priority 
} 
 
void KeypadClose(void) 
{ 
 INTCONbits.RBIE = 0; 
 KeypadClearCols(); 
 keypadBuffer = NULL; 
} 
 
void KeypadClearCols(void) 
{ 
 COL_0 = 0; 
 COL_1 = 0; 
 COL_2 = 0; 
 COL_3 = 0; 
 Delay100TCYx (2); 
} 
 
void KeypadSetCols(void) 
{ 
 COL_0 = 1; 
 COL_1 = 1; 
 COL_2 = 1; 
 COL_3 = 1; 
 Delay100TCYx (2); 
} 
 
void KeypadPush(unsigned char chData) 
{  
 keypadBuffer = chData; 
} 
 
unsigned char KeypadGetChar(void) 
{ 
 int i; 
 unsigned char result = keypadBuffer; 
  
 keypadBuffer = NULL; 
 
 return result; 
} 
   
   
void KeypadISR(void) 
{ 
 char temp; 
 
 if(INTCONbits.RBIE && INTCONbits.RBIF) 
 { 
  INTCONbits.RBIE = 0; 
  INTCONbits.RBIF = 0; 
   
  if(ROW_0) 
  { 
   KeypadClearCols();  
   COL_0 = 1; 
   Delay100TCYx (1); 
   if(ROW_0) KeypadPush(KeypadTable[0][0]); 
   KeypadClearCols(); 
   COL_1 = 1; 
   Delay100TCYx (1); 
   if(ROW_0) KeypadPush(KeypadTable[0][1]); 
   KeypadClearCols(); 
   COL_2 = 1; 
   Delay100TCYx (1); 
   if(ROW_0) KeypadPush(KeypadTable[0][2]); 
   KeypadClearCols(); 
   COL_3 = 1; 
   Delay100TCYx (1); 
   if(ROW_0) KeypadPush(KeypadTable[0][3]); 



 

 Page A-34 

   KeypadSetCols(); 
  } 
  if(ROW_1) 
  { 
   KeypadClearCols();  
   COL_0 = 1; 
   Delay100TCYx (1); 
   if(ROW_1) KeypadPush(KeypadTable[1][0]); 
   KeypadClearCols(); 
   COL_1 = 1; 
   Delay100TCYx (1); 
   if(ROW_1) KeypadPush(KeypadTable[1][1]); 
   KeypadClearCols(); 
   COL_2 = 1; 
   Delay100TCYx (1); 
   if(ROW_1) KeypadPush(KeypadTable[1][2]); 
   KeypadClearCols(); 
   COL_3 = 1; 
   Delay100TCYx (1); 
   if(ROW_1) KeypadPush(KeypadTable[1][3]); 
   KeypadSetCols(); 
  } 
  if(ROW_2) 
  { 
   KeypadClearCols();  
   COL_0 = 1; 
   Delay100TCYx (1); 
   if(ROW_2) KeypadPush(KeypadTable[2][0]); 
   KeypadClearCols(); 
   COL_1 = 1; 
   Delay100TCYx (1); 
   if(ROW_2) KeypadPush(KeypadTable[2][1]); 
   KeypadClearCols(); 
   COL_2 = 1; 
   Delay100TCYx (1); 
   if(ROW_2) KeypadPush(KeypadTable[2][2]); 
   KeypadClearCols(); 
   COL_3 = 1; 
   Delay100TCYx (1); 
   if(ROW_2) KeypadPush(KeypadTable[2][3]); 
   KeypadSetCols(); 
  } 
  if(ROW_3) 
  { 
   KeypadClearCols();  
   COL_0 = 1; 
   Delay100TCYx (1); 
   if(ROW_3) KeypadPush(KeypadTable[3][0]); 
   KeypadClearCols(); 
   COL_1 = 1; 
   Delay100TCYx (1); 
   if(ROW_3) KeypadPush(KeypadTable[3][1]); 
   KeypadClearCols(); 
   COL_2 = 1; 
   Delay100TCYx (1); 
   if(ROW_3) KeypadPush(KeypadTable[3][2]); 
   KeypadClearCols(); 
   COL_3 = 1; 
   Delay100TCYx (1); 
   if(ROW_3) KeypadPush(KeypadTable[3][3]); 
   KeypadSetCols(); 
  } 
   
  INTCONbits.RBIF = 0; 
  INTCONbits.RBIE = 1; 
 } 
 
 temp = PORTB; 
 return; 
} 
 



 

 Page B-1 

Appendix B – Schematics 
 

 
Figure 13: Motor Controller Circuit Board 
 

 
Figure 14: Motor Controller Circuit 



 

 Page B-2 

 
Figure 15: H-Bridge & Rotary Encoder 
 

 
Figure 16: I/O Connection & Voltage Regulator 
 



 

 Page B-3 

 
Figure 17: User Interface Circuit Card 
 

 
Figure 18: User Interface Circuit 
 



 

 Page C-1 

Appendix C – Calculations 
Table 13: Torque Calculations 

L1 mu1 L2 mu2 FOS Fa d p mu3 Tr Tl 

35 0.35 36 0.15 2 35.3 0.375 0.0833 0.5 62.66 43.91

35 0.4 36 0.2 1.5 31.8 0.375 0.0833 0.5 56.44 39.55

35 0.4 36 0.4 2 56.8 0.250 0.0625 0.74 98.93 70.85

35 0.4 36 0.3 2 49.6 0.313 0.0714 0.74 106.52 78.51

35 0.4 36 0.08 2 33.76 0.375 0.0833 0.5 59.92 41.99

           

L1 Weight Applied         

L2 
Weight Applied and 
Wedge Weight       

mu1 Wood - Wedge         

mu2 Wedge - Guides         

mu3 
Screw - Threaded 
Insert        

           

Thread/in Length Time Rpm        

20 7.500 0.7500 200        

20 7.000 0.5700 245.614        

16 7.000 0.5000 224        
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


