

Project Number. GFP1003

DESIGN OF A ROBITICS DSL

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Terry Tata

Ethan Truong

Date: December 16, 2010

Approved:

Professor Gary F. Pollice, Major Advisor

1. domain specific language

2. robotics

3. language translation

Abstract

Our MQP focused on building a domain specific language (DSL) to be used with Neuron

Robotics‟ flagship product, the DyIO (Dynamic Input/Ouput). Devices, such as sensors

and servos, connected to the DyIO can be manipulated through Java, but there is a steep

learning curve for those with no prior programming experience which we sought to

eliminate.

Our DSL, Fez, is developed in Ruby and ANTLR and interacts with Neuron Robotics

Java libraries as a façade. We define a class hierarchy of the DyIO, abstractions for

common devices that can be connected, and functionality for such devices. We develop a

grammar and parser for our DSL which translates Fez to Ruby and execute the resulting

code interactively.

Fez is a fully functional language that properly translates all supported statements into

Ruby. It was designed to somewhat mirror writing English as opposed to writing in a

programming language. The main interface to Fez is a Read-Eval-Print-Loop (REPL) and

it is run in a terminal window.

Acknowledgements

We would like to thank Bob Breznak and Kevin Harrington of Neuron Robotics for

agreeing to let us develop this Domain Specific Language on their product, the DyIO. We

would also like to thank them for all of the resources they provided, as well as valuable

insight and guidance, to make this project a success. We would also like to thank our

advisor, Gary Pollice, for everything he has done in helping progress our thinking to the

point where we were able to develop a successful DSL prototype.

Table of Contents

Abstract .. i

Acknowledgements ... ii
List of Illustrations .. 1
List of Tables .. 2
Introduction ... 3
Background ... 6

Domain Specific Languages ... 6
Neuron Robotics ... 9
Similar Products .. 10

Methodology ... 12

Iterations ... 12
Inception ... 12

Design ... 13
Choosing Our Language ... 15

Developing the DSL ... 15
Translation from Fez to Ruby ... 16
Tools ... 18

Results and Analysis ... 19
Comparing the NRSDK with Fez ... 19
Extending Fez ... 22

Peripheral Creation ... 22
Peripheral Extension ... 22

Robotics Modules ... 23

Metrics .. 24

Analysis... 25
Future Work and Conclusions .. 26

Appendix A : ANTLR Grammar .. 29
Appendix B: User Manual .. 37

Fez ... 37

User Manual .. 37
Developer Documentation .. 43

JRuby Interface ... 45
Connecting to DyIO and Peripherals .. 45
Creating code for a Peripheral .. 46
Extending a Peripheral .. 47

Setting Up Asynchronous Events ... 48
Setting Up Robotics Modules ... 48

Appendix C: Metrics Calculation ... 50

Comparison 1 .. 50
NRSDK ... 50
Fez ... 50
Measurements ... 50

Comparison 2 .. 51
NRSDK ... 51

Fez ... 51

Measurements ... 51
Comparison 3 .. 51

NRSDK ... 51

Fez ... 52
Measurements ... 52

Comparison 4 .. 53
NRSDK ... 53
Fez ... 53

Comparison 5 .. 54
NRSDK ... 54
Fez ... 54

Glossary .. 55

References ... 57

 1

List of Illustrations

Figure 1. Interface Flow Pages 3-4

Figure 2. DyIO Page 9

Figure 3. Class Hierarchy Page 14

 2

List of Tables

Table 1. Comparison of Fez to NRDSK Page 25

 3

Introduction

The task of developing and using software and hardware cannot be taken lightly.

Developers take time and energy in the precise and delicate construction of a product that

suits the customer's needs. The difficulty is how the consumer responds to using the

actual product. Most importantly, does it suit their interests and fulfill their needs? A big

obstacle to overcome is the prerequisite amount of technical experience required to use

certain types of interesting technologies. For example, commercial appeal may be altered

if a staggering amount of programming knowledge is necessary to use a technology.

Neuron Robotics, a robotics development system manufacturer and retailer, focuses

on the use of robotics for educational purposes. The DyIO, their flagship device, focuses

on giving robotics enthusiasts, educators, and newcomers an easier way to build a system

and see results. It has 24 small pin channels which allow the user to plug in various

peripherals with each channel embodying different capabilities. The DyIO is plugged into

a computer and the user interfaces with it and the peripherals by writing Java code. With

this approach, they have "lowered the cost into entry level robotics and cyber-physical

systems development to within the ability range to that of an average person" (Neuron

Robotics, 2010). However, there is another layer of abstraction that can be attained to

make the DyIO much more appealing. If targeted DyIO users are those with relatively

little programming experience, the ability to program in Java might deter users from

using the DyIO. The solution is simply to give the user a more intuitive interface to the

DyIO.

 4

 This MQP develops a domain specific language for Neuron Robotics‟ Bowler

Communication System, primarily on the DyIO. A truly useful domain specific language

for this domain must satisfy several requirements. Functionality that allows the user to

develop for robots must be exposed in a manner that is simple and intuitive to those with

very little programming experience. Developers also need the ability to extend this

language in the future with new libraries or capabilities. Most importantly, it must fit

Neuron Robotics' vision.

 A new language was successfully developed to interface with the DyIO and its

peripherals. The actual syntax of the language was developed using ANTLR in the

Eclipse development environment. ANTLR is a language tool that provides a framework

for constructing recognizers, interpreters, compilers, and translators from grammatical

descriptions (Parr, 2010). It was developed as more of a translation/interpretation

language rather than a standalone with its own full compiler. Necessary functionality was

abstracted out of Neuron Robotics Java libraries and developed in Ruby. This allowed us

to define methods and function calls such as led.on()without going through the 10-20

lines of Java that is actually being called, and also gave the language a simple and

intuitive experience of a scripting interface. The main interface worked on is a Read Eval

Print Loop (REPL) interface, which gives the user a very dynamic experience. The

following sequence describes this process.

Figure 1a.

Main Fez

interface

module/program

Fez Compiler

Translated Ruby from Fez

User

 5

Step 1: Read: The user writes code in Fez. This is passed to the Fez compiler, parsed,

translated to Ruby and returned to the main interface

Figure 1b.

Step 2: Eval: The main interface passed the interpreted Ruby code to our Ruby libraries

which in turn call Neuron Robotics libraries. All errors are evaluated on the level they are

received.

Figure 1c.

Step 3: Print: The result of the user‟s input is returned to the user and the cycle begins

anew.

The rest of the document contains specifics about our project. The background section

goes into research we did on domain specific languages, their usefulness, and

development. The methodology section goes into how we developed the language, tools

we used and decisions that had to be made. The results and analysis section contains

sample code and a comparison between the coding efficiency of Fez as opposed to the

original Java libraries. Finally, the future work and conclusions section describes how we

envision Fez being used and developed in the future and possible next steps and future

projects.

Ruby libraries Neuron Robotics

Java libraries

Main Fez

interface

module/program

Main Fez

interface

module/program

User

 6

Background

Domain Specific Languages

A domain specific language (DSL) is a special purpose programming language

targeting a specific recurring problem or domain. According to Martin Fowler, it is“…a

computer language that's targeted to a particular kind of problem, rather than a general

purpose language that's aimed at any kind of software problem”(Fowler, 2010). An

example of a general purpose language is Java or C while a DSL is something along the

lines of an instruction set used to operate a particular robot or SQL. There are a myriad of

uses for domain specific languages which makes them valuable to those who develop and

use such languages.

The decision to develop a DSL is not trivial. The development of most DSLs

somewhat mirrors the development of a general purpose language such as having a lexer

and parser. The combined function of a lexer and parser is to analyze a line or group of

lines in a given language and determine if it is a valid expression. One must determine

the utility and applicability of the DSL before deciding to continue with its development.

If developed and maintained correctly, however, a DSL could prove

invaluable.Wikipedia identifies three important design goals of a DSL contrasted with a

general purpose language:

 domain-specific languages are less comprehensive.

 domain-specific languages are much more expressive in their domain.

 domain-specific languages should exhibit minimum redundancy (Wikipedia,

2010)

 7

Targeting a particular problem domain allows this problem to be more clearly understood

and attacked. Likewise, the solutions to problems in this domain are easier to develop in a

less complicated fashion than if the solution were implemented in a general purpose

programming language. This saves time because the recurring domain problem(s)

become part of the DSL. The most important factor in developing a DSL is reducing the

learning curve for users. If a DSL is more complicated than a general purpose language

for addressing issues in the target domain then the DSL is a failure. Both experienced and

novice programmers should be able to address some problem in the domain using the

language. This lets those with no significant programming experience to dabble in

programming.

Variations come with a DSL such as its development or its instruction set. Martin

Fowler differentiates DSLs that address such variations differently into internal and

external DSLs:

“Internal DSLs are particular ways of using a host language to give the host language the

feel of a particular language. This approach has recently been popularized by the Ruby

community although it's had a long heritage in other languages - in particular Lisp.

Although it's usually easier in low-ceremony languages like that, you can do effective

internal DSLs in more mainstream languages like Java and C#. Internal DSLs are also

referred to as embedded DSLs…External DSLs have their own custom syntax and you

write a full parser to process them” (Fowler, 2010).

 8

Internal DSLs are easier to create because they do not require a special purpose parser.

They are parsed like any other code written in the underlying language. This means the

DSL is constrained by the limitations of the underlying language. External DSLs remove

this constraint. The downside of external DSLs is the requirement to write and use a

reliable custom compiler.

Probably the most difficult decisions in designing a DSL are choosing the tools to

use to build it and determining the internal architecture. Some languages like Ruby,

Groovy, Scala or Clojure have extensive literature written about building a domain

specific language. We reference some sources on our blog detailing development in these

languages (http://rdsl2010.wordpress.com/2010/09/30/resources/). This does not mean

that languages such as Java, Python, or C/C++ are unsuitable for such tasks. There are

also tools such as JetBrains Meta Programming System (MPS) or the Eclipse Modeling

Framework that aid in constructing a DSL. Subjects of meta-programming, reflection,

efficiency, extendibility, supporting libraries, internal DSL or external DSL come into the

choice of language.

There are further questions that arise from the internal or external debate.

Decisions concerning external DSLs such as what tools to use writing the parser or

compilation efficiency need to be addressed. Internal DSLs need to determine exactly

what its instructions invoke in the underlying language. There is also the possibility for a

hybrid between the two – custom syntax that generates code in an underlying language –

that can be considered. This functions more along the lines of an interpreter.

Building a DSL requires careful planning and consideration just like any major

software engineering project and perhaps at an increased sense of urgency depending on

http://rdsl2010.wordpress.com/2010/09/30/resources/

 9

its uses.If the planning and architecture of all related activities to DSL development is

handled carefully, the finished product could be a wondrous tool uniting programming

veterans and novices in a cornucopia of computing efficiency and reliability.

Neuron Robotics

Neuron Robotics, LLC founded in 2008 by Bob Breznak, Kevin Harrington, and

Alex Camilo strives to provide developers an easy, powerful means to program

microcontrollers which power physical devices. Inspired by repeated exposure to a

common problem, they set out to build a system linking software to hardware. As a

result, they produced the Bowler Communications System and eventually the Dynamic

Input Output Device (DyIO).

The DyIO is a general purpose module that allows users to dynamically change

the function of any of the 24 channels during standard operation. All channels are capable

of the standard Digital I/O functionality while some channels are capable of extended

 10

functionality (Neuron Robotics, 2010).

Figure 2.DyIO

The DyIO is plugged into a computer via a USB connection. A peripheral is connected

into a channel in either of the channel banks. Each channel has different capabilities and

thus each device plugged into a channel needs to have some capability in common with

that channel. A user interacts with peripherals by coding in Java. More information about

the DyIO and the Bowler Communication Protocol can be found on the Neuron Robotics

wiki (http://neuronrobotics.com/wiki/).

Similar Products

 DSLs exist for other robotics devices, most notably Arduino

(http://arduino.cc/en/) and EasyC by Vex® (http://www.vexrobotics.com/) . There are

various ways to implement a DSL and these two implementations are quite different.

http://neuronrobotics.com/wiki/

 11

 Arduino works with a piece of hardware called the Arduino board. The language

is very similar to C/C++ with some additions and modifications to provide better ease of

use. The key of the language and the translation is in the IDE. The code the user writes is

passed through a C++ compiler, even though their code isn't actually C/C++. The IDE

maps Arduino 1:1 to C/C++ after a user presses a button. The program is then compiled

and executed. The work of their language is just translation or interpretation to C/C++.

They still achieve the desired effect of giving the user a different language interface using

the same product they could have just programmed in C/C++ (Wikipedia, 2010).

 EasyC by Vex is very innovative. It works with products made by Vex and is a

graphical, drag and drop interface of programming. Vex's website claims : "EasyC is a

drag-and-drop programming interface, designed to make it easy for students to program

Vex Robots in C while learning C syntax at the same time" (Vex, 2010).

 12

Methodology

We decided on our MQP topic around May of 2010 and started work in August 2010.

During the summer, we researched DSLs and what building one entails. We had not yet

been in contact with Neuron Robotics, so we did not have any time to adequately

understand our DSL's domain. During our MQP, we kept a blog of our progress and

milestones at http://rdsl2010.wordpress.com/.

Iterations

The duration of our iterations was one week, in order to coincide with our weekly

meetings with Professor Pollice, Bob Breznak, and Kevin Harrington.

Inception

In order to understand our domain we contacted Neuron Robotics. Kevin

Harrington and Bob Breznak, NR founders, made a DyIO and various servos and sensors

available to us.

We formed a vision of our project by laying out our goals and requirements. We

used two iteration periods: one iteration to research and roughly form our vision and a

second iteration to hone that vision and establish its scope. Our primary goal is to create a

comprehensible robotics domain specific language (RDSL). For the purposes of this

MQP, we use Neuron Robotics Dynamic Input Output (DyIO) program as a proof of

concept for our DSL.

Our initial steps to meeting these goals included identifying the problem domain

and its scope. One possible consideration is to have the scope include robotics

functionality in general. This was far too large of scope, so we focused instead on just the

http://rdsl2010.wordpress.com/

 13

DyIO. Even though the focus is limited to DyIO, we made a language that is clean,

robust, maintainable, and extensible so that it may account for changes and new features

of DyIO.

Design

 Our next order of business was to design the application. We started perusing the

design of the Neuron Robotics Standard Development Kit (NRSDK), and we based a lot

of our design off of that. We proceeded to establish the domain objects that our DSL

utilizes. Our analysis identified the following domain objects:

 DyIO

o Channel[24]

 Channel

o Peripheral

 Peripheral

o Channel

 Input (subclass Device)

 Output (subclass Device)

 SpecificInput (subclass Acuator)

 SpecificOuput (subclass Sensor)

The DyIO in this case is a concrete DyIO object with 24 channels, although any type of

Bowler device with any number of channels is possible. These base objects eventually

spawned our model. However, our application quickly obsoleted this model as we were

in an object oriented mode of thinking while in the design phase. This is very different

from the metaprogramming thinking that is extremely useful, if not required, when

 14

making a DSL. Our different peripherals are all separate objects, but the actual

implementation is not hierarchal as our model presents:

Figure 3. Class hierarchy

 15

Choosing Our Language

We did not want to stay at the conceptualizing stage of our project for too long

and shortchange our development time, so we moved on to deciding what language to

base our DSL. The primary choices that we considered were Ruby and Python. We knew

that this DSL would integrate with the Java-based NRSDK, and so we knew that JRuby

and Jython would be indispensible elements of the solution. JRuby and Jython are Ruby

and Python, respectively, written in Java. The main advantage of these languages over

their vanilla versions is the ability to integrate Java libraries and applications.

So with some research into the two languages, we found a wealth of resources for

coding a domain specific language in Ruby. We also found the community, support, and

general resources for Ruby to be more available and abundant in general. These finds

swayed us, and we decided to use Ruby and JRuby.

Developing the DSL

 Our initial start into development was painfully slow as we familiarized ourselves

with the NRSDK and JRuby and tried to integrate them. Our first step was to simply call

NRSDK functions in a JRuby script. Although we had so many resources on Ruby,

JRuby, developing a DSL in Ruby and JRuby, and importing Java classes into JRuby,

this first step proved to be an annoyance.

 As we started to expose the NRSDK functionality that our DSL is built upon, we

delved more deeply into the dynamic and metaprogramming aspects of Ruby. This

proved to be extremely powerful as we could use the NRSDK as our base but manipulate

it dynamically with Ruby‟s duck typing and reflection. Duck typing is a style of

programming that is more concerned with what an object does rather than what it actually

 16

is. We immediately saw great potential in developing a powerful user experience with a

much smaller development time than using a strongly typed language like Java.

Once the scripts were running, we developed a read-eval-print-loop (REPL) so

that the end-user can quickly interact with the DyIO using a shell interface. We struggled

for a time to evaluate multi-line commands. These multi-line commands are vital since

many Ruby control functionalities (such as if statements and loops) are parsed using

newlines. With the REPL working, we could finally demo much of the end user

experience in our weekly meetings.

Translation from Fez to Ruby

A major tool and design decision was how to build and define our language. The first

and most important thing we did was define the grammar that built the language. The

goal was to make Fez very intuitive for the user and almost like writing English. Thus,

we were constantly seeking feedback from Neuron Robotics, our advisor, and most

importantly people with no background in programming. We had to make sure that even

novices had an idea of what was going in one line of Fez. Throughout development, the

grammar constantly evolved to provide more functionality.

We also had to make a decision about how to run our programs. Based on the

success of Arduino, we decided on translation/interpretation to Ruby. This is really the

only course of action that made sense in hindsight. The libraries we drew upon were

written in Java. There is no reason to write a complete compiler including lexer, parser,

symbol table, semantic analysis and code emission to just call Java libraries at the end. It

also takes substantially more time to write a complete compiler, rather than just the lexer

and parser with code emission. This is another area that made Ruby‟s simple scripting

 17

interface so important. Translating a line of Fez into a line of Ruby is much simpler than

generating a .java file as well as compiling through the JVM.

Now we had to decide on a way to parse and interpret a line of Fez into Ruby. The

only parts of a compiler that are needed are the lexer and parser. If a line is a valid line of

Fez, it has a correspondence to a Ruby statement. We decided on using ANTLR, a parser

generator, with a plug-in to Eclipse. Our group had experience using ANTLR previously

and knew that adding code emission is relatively simple. Emitting code is our process of

inputting a line of Fez and translating that to Ruby. Our ANTLR grammar can be found

in Appendix A, complete with statements that lead to the emission of Ruby. ANTLR

grammars are written using EBNF syntax. EBNF is one type of notation that is used in

defining the grammars for programming languages. ANTLR lets the programmer add

lines of actual Java to be executed in the exact context they are found. This means that if

you place a line of Java in the middle of a grammar rule, that line is executed as the line

is being parsed.

During the actual parse of Fez, a lot of tokens are discarded when it comes to the

actual generation of Ruby. The reason for many of the languages tokens is just to make

the syntax and statements more intuitive for the user. Some tokens, such as “break, true,

false,” are translated just as they are into Ruby. The same goes for arithmetic operators

and literals. The user still provides everything that a normal Ruby line needs to be

executed; they just present it in a different syntax. We were, however, able to add some

keywords that Ruby doesn‟t directly offer by manipulating Ruby. For example, we added

the “every” keyword which is a looping statement where the body of the loop is executed

at an interval the user specifies in the loop. This is simply a while loop with a sleep

 18

statement inside in Ruby. We also were able to add functionality between the grammar

and our actual Ruby library of a “when” statement through the use of lambda statements

and multithreading in Ruby.

A design decision had to be made having to do with loops and the REPL interface.

Because the experience is dynamic, the system cannot afford to rob the user of a prompt

if an “every” or “while” statement is being executed. All loops are spawned in a new

thread by default as of the initial release of Fez. In the future, this functionality may be

changed as we support a statement to spawn a thread manually. This statement, the

“start” statement, has the user give an identifier to a block of code to be run in a new

thread. It could be argued that the default multithread support is not needed if the user

can always spawn a multithreaded version. However, there is no reason to make users

type the extra “start” statement if they always want a loop to be a new thread, which in

most cases they would have to so they can get their prompt back.

Tools

1. Eclipse& Subclipse – We started out developing in Eclipse using the Subclipse

plugin for Subversion programming version control. This quickly proved to be a

cumbersome environment for this project‟s Ruby development and we moved to

basic text editors. Eclipse still served a vital role in developing the Fez parser

using ANTLR as described in the previous section.

2. Dropbox – Dropbox replaced Subversion for our version control system as it

quickly and automatically pushed changes for us. As a two person team, this

minimal collaboration tool was more than sufficient.

 19

Results and Analysis

Comparing the NRSDK with Fez

One of the primary attractions of Fez over the NRSDK which it is built upon is ease of

coding. To see how different, and hopefully easier, it is to program a robot in Fez, we

will compare some basic, common DyIO program structure.

Pinging the DyIO: NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.serial.SerialConnection;

public class SimpleMethod {

 public static void main(String[] args) {

 DyIO dyio = new DyIO(new SerialConnection("COM3"));

 dyio.connect();

 dyio.ping();

 dyio.disconnect();

 System.exit(0);

 }

}

Pinging the DyIO: Fez

add Dyio dyio using “COM3”

dyio ping

exit

As one can see, the language of Fez is far more natural and succinct than the NRSDK.

Just for a comparison, here is how these statements are translated to Ruby:

d1 = Dyio.new("COM3")

d1.ping()

exit()

Here are some more examples.

Synchronous Input: NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.dyio.peripherals.AnalogInputChannel;

import com.neuronrobotics.sdk.serial.SerialConnectionDialog;

public class AnalogInputChannelSynchronous {

 public static void main(String[] args) throws

InterruptedException {

 20

 DyIO dyio=new DyIO();

 SerialConnectionDialog ser = new SerialConnectionDialog();

 if (!ser.getBowlerDevice(dyio)){

 System.exit(0);

 }

 AnalogInputChannel ana = new

AnalogInputChannel(dyio.getChannel(11));

 //Loop forever printing out the voltage on the pin

 while(true){

 System.out.println(ana.getVoltage());

 Thread.sleep(10);

 }

 }

}

Synchronous Input: Fez

add Dyio dyio

add Dial dial to dyio using channel 11

every 10 ms dial printvoltage

Ruby

dyio = Dyio.new()

dial = Dial.new(dyio.channel(11))

Thread.new{

while true

sleep((10)/1000)

dial.printvoltage()

end

}

Asynchronous Input: NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.dyio.peripherals.AnalogInputChannel;

import com.neuronrobotics.sdk.dyio.peripherals.IAnalogInputListener;

import com.neuronrobotics.sdk.serial.SerialConnectionDialog;

//Tester class implements the analog event listener

"IAnalogInputListener"

public class AnalogInputChannelAsynchronous implements

IAnalogInputListener{

 //The analog channel is a property of the class

 private AnalogInputChannel ana;

 public AnalogInputChannelAsynchronous() throws

InterruptedException{

 //Start the dyio with serial dialog

 DyIO dyio=new DyIO();

 SerialConnectionDialog ser = new SerialConnectionDialog();

 if (!ser.getBowlerDevice(dyio)){

 System.exit(0);

 }

 21

 //Instantiate a new analog channel

 //The second parameter tells the analog channel that is it

an asynchronous channel

 ana = new AnalogInputChannel(dyio.getChannel(11),true);

 //Add this instance of the Tester class to the analog

channel

 ana.addAnalogInputListener(this);

 //Run forever printing out analog events

 while (true){

 Thread.sleep(100);

 }

 }

 @Override

 public void onAnalogValueChange(AnalogInputChannel channel,double

value) {

 //Check the source of the event

 if (channel == ana)

 System.out.println("Analog

event:"+channel.getVoltage());

 }

 public static void main(String[] args) throws

InterruptedException {

 //Start the tester class

 new AnalogInputChannelAsynchronous();

 }

}

Asynchronous Input: Fez

add Dyio dyio using “COM3”

add Dial dial to dyio using channel 11

when dial changes then dial printvoltage

Ruby

dyio = Dyio.new("COM3")

dial = Dial.new(dyio.channel(11))

Thread.new{

dial.changes(lambda{

dial.printvoltage()

})}

 22

Extending Fez

Peripheral Creation

Using the API that the NRSDK provides, a programmer can extend the functionality of

the DSL by adding another peripheral. Let us examine an addition of an LCD class that

will allow us to add LCDs to our programs.

#import the necessary NRSDK classes which

#we will build the Lcd class

java_import com.neuronrobotics.sdk.dyio.peripherals.UARTChannel

java_import com.neuronrobotics.sdk.common.ByteList

class Lcd

#make a constructor that will take what is

#needed to make an Lcd, in this case, a DyIO

def initialize(dyio)

@dyio = dyio

@cur = UARTChannel.new(@dyio.d)

@cur.setUARTBaudrate(19200)

end

#make a print method that prints to the LCD

#the string that is entered

def print(str)

 stream = ByteList.new(str)

@cur.sendBytes(stream)

end

end

The possible peripherals one can create are nearly limitless as a developer can create as

many as needed in order to fulfill the requirements of any application using a Bowler

device.

Peripheral Extension

Another feature that our Ruby libraries add is the ability to extend the functionality of

existing peripherals. Let us examine the creation of a Superlcd class that will build upon

the Lcd class in the previous section by adding a “clear” function to the Lcd.

java_import com.neuronrobotics.sdk.common.ByteList

java_import java.lang.Byte

 23

class Superlcd<Lcd

def clear

 print "\n\n"

bl = ByteList.new(Byte.new(Byte.decode("0001")))

@cur.sendBytes(bl);

end

end

Since much of the functionality already existed, the code needed to add another function

was minimal. This feature will also be useful when components like LCDs have very

similar base functions but widely varying execution of more complex functions as op

codes vary from product to product. This way, a developer can code the base peripheral

and extend that base peripheral to suit the specific product he/she is working with.

Robotics Modules

With the ability to create and extend peripherals, the next logical step is to combine the

functions of peripherals so that they may act like a cohesive unit and basic interactions

among different peripherals do not have to be recoded multiple times. Instead, the

developer codes the behavior once and associates that behavior with a group of

peripherals. Let us examine the creation of a LightSwitch behavior where an LED is on

when a button is low and off when it is high.

require "led.rb"

require "button.rb"

class LightSwitch

def initialize(*periphs)

#set up peripherals: Led and Button

if(periphs[0].class == Led)

@led = periphs[0]

elsif(periphs[0].class == Button)

@button = periphs[0]

end

if(periphs[1].class == Button)

@button = periphs[1]

elsif(periphs[1].class == Led)

@led = periphs[1]

end

 24

if(@led == nil || @button == nil)

raise "Bad LightSwitch parameters"

end

#set up default behavior

#on button high, led on

#on button low, led off

@bp = Proc.new{

if(@button.state == true)

@led.on

else

@led.off

end

 };

@button.onChange(@bp)

end

end

Here, we used Ruby‟s reflective nature to allow the constructor to accept a button and an

LED in any order. Once the LightSwitch has determined that the entered parameters are

indeed a button and an LED, it creates that behavior between the two peripherals. This

feature can become increasingly useful as applications grow in scope when there are

many peripherals which act cohesively as a robotics module. This feature will foster code

reuse and this behavior can be further extended just as the functionality of a peripheral

can be further extended.

Metrics

The team derived the following numbers of lines and charactersof the NRSDK from code

posted on the Neuron Robotics wiki on how to program using the DyIO. We ignored

comments when deriving these numbers and used the same name scheme when recreating

the program in Fez. Refer to Appendix C to see the actual NRSDK code, the Fez and

Ruby recreations.

 25

Table 1. Comparison of Fez to NRSDK

Column1

Number of
Characters for
Fez

Number
of Lines
for Fez

Number of
Characters for
NRSDK

Number
of Lines
for
NRSDK

Number of
Characters for
Translated
Ruby

Number
of Lines
for
Translated
Ruby

1 39 3 286 12 41 3

2 17 2 341 14 37 2

3 87 3 962 28 121 7

4 81 3 573 18 110 5

5 54 3 701 25 56 3

Total 278 14 2863 97 365 20

89.7% reduction of characters when using Fez instead of the original NRSDK

86.5% reduction of lines of code.

23.8% reduction of characters between Fez and Ruby

30% reduction of lines between Fez and Ruby

Analysis

The example code that Neuron Robotics posted consists of very basic programs. We

expect that as the program grows in complexity, the percent reduction in code (keystrokes

or lines) will not be as dramatic. However, these basic programs also execute some of the

most common functionalities of the DyIO, so we find that streamlining the calls for these

most basic functions has the most effect across DyIO programs.

 26

Future Work and Conclusions

 We were able to successfully prototype and implement a DSL for the DyIO. It has

all of the base features that were required and still leaves room for future work. Other

features can be added to the DSL. Some of the following features may be too sparse for

an MQP, but they all provide nice added functionality to the language and its capabilities.

 Allow the language to run in a non-REPL environment

Fez's only real interface to run programs is with the REPL. While this is

obviously very nice, it is also be nice to write a program and execute it. This also

increases the portability of the language because saved files could be executed

rather than forcing the user to type out commands. Fez has limited support for this

already. Our Java source code has a method that writes the Ruby translated from

Fez into a file. This was our primary way to see if translation was properly

occurring. The future project has to introduce a user interface as well as execute a

generated Ruby file. Fez could turn into a Ruby-like coding style with the user

opting for either REPL or text editor.

 Error handling

Fez currently has very limited error handling. It is not a very easy problem to

address during the limited time we had to develop the languages and its libraries.

There are three possible levels of failure in Fez: the Fez language, the Ruby

libraries, and Neuron Robotics Java libraries. This could include an invalid line of

Fez, an invalid parameter to a function, calling a function that doesn't exist etc.

Each one of these can have its own failures during the parse, translation, or

 27

execution of a single line of Fez. Fez currently can decipher what most errors

mean and trace it to the level where it occurs. Intended Fez users may find current

error messages confusing making debugging harder. Delivering precise and

correct error messages is an important and difficult feature to fully implement.

 More language features

The syntax of Fez could be extended and add new functionality. This has to be

addressed if non-REPL environment development started. For example, every

loop runs as a new thread currently, regardless of whether the "start" command is

specified or not, because it is a REPL environment and the user should never lose

the prompt. In a file execution, running something as a thread could completely

change the program. There are also other functionality that could be added. This

could include new loops, new syntax, or new Ruby features that forces some new

development in Fez.

 More Ruby features

Not every peripheral was addressed in the initial development of the DSL. If a

user wants to add a robot arm to the DyIO, there is no support in Ruby to

currently add one. Existing peripherals could also be extended too. For example,

two LEDs could have functionality added to make them operate like a police

light. One could add Ruby support for another Bowler device to make it

compatible with Fez. Extending the Ruby libraries is most likely where the bulk

of future development should take place. This is because Ruby development

directly leads to new functionality and more capabilities for users to enjoy.

 Eclipse plugin/Text editor

 28

This is a slight extension of the non-REPL environment suggestion. If an Eclipse

plugin or separate text editor was developed it is a huge step for Fez in general

with easy access and installation.

All of these possible extensions to Fez are worthwhile. Future projects are not limited to

these suggestions. Fez has a good foundation as a language that is easy for new users to

understand and has enough capabilities for more experienced users to utilize.

 29

Appendix A : ANTLR Grammar

// Header options and definitions emitted

// ------------------------- Parser Rules -----------------------

/** Fez is a collection of statements

 */
program : {emitter.emitProlog();} startStatement+

{emitter.emitRuby();} ;

startStatement:

(START ID {emitter.emitAssign($ID.getText());} LBRACE

{emitter.emitThread();})? statement+ (RBRACE

{emitter.emitEndB();})? ;

/** This is the basic building block of Fez, everything meaningful

 * is derived from this

 */
statement:

assignment END? {emitter.emitNewline();} |

functionCall END? {emitter.emitNewline();} |

expression |

ifStatement {emitter.emitEnd();} |

waitStatement END? {emitter.emitNewline();} |

{emitter.emitThread();} everyStatement {emitter.emitEnd();

emitter.emitEndB();emitter.emitNewline();} |

{emitter.emitThread();} whileStatement {emitter.emitEnd();

emitter.emitEndB();emitter.emitNewline();} |

{emitter.emitThread();} whenStatement {emitter.emitEndB();

emitter.emitNewline();} |

removeEvents {emitter.emitNewline();} ;

assignment : variableAssignment | objectAssignment|

functionAssignment ;

/** Basic assignment such as a = 5 or three = "three", this gets translated to Ruby just

how it is written

 */
variableAssignment : ID ASSIGN

{emitter.emitAssign($ID.getText());} expression ;

/** Used for adding objects such as DyIOs, LEDs, Buttons etc.

 * Different rules are for objects being added TO a DyIO or USING other parameters

 * add DyIO d1 using "COM5"

 */

 30

objectAssignment : ADD obj=ID var=ID TO host=ID

{emitter.emitObjectAssignHost($obj.getText(),

$var.getText(), $host.getText());} USING CHANNEL expression

{emitter.emitEndP();} {emitter.emitEndP();}

 | ADD obj=ID var=ID TO host=ID

{emitter.emitObjectAssignHostNoChan($obj.getText(),

$var.getText(), $host.getText());} (USING expression

({emitter.emitComma();} expression)*)?

{emitter.emitEndP();}

 | ADD obj=ID var=ID

{emitter.emitObjectAssign($obj.getText(), $var.getText());}

(USING expression ({emitter.emitComma();} expression)*)?

{emitter.emitEndP();} ;

/** Subroutine definition

 */
functionAssignment : DEF var=ID

{emitter.emitFunctionAssign($var.getText());} (LPAR call=ID

{emitter.emitMain($call.getText());}

({emitter.emitComma();} call=ID

{emitter.emitMain($call.getText());})* RPAR)?

{emitter.emitEndP(); emitter.emitNewline();} LBRACE

statement+ RBRACE{emitter.emitEnd();} ;

/** Calling a function, either belonging to a class (1st option) or something user defined

or something

 * not requiring a class such as gets()

 */
functionCall : obj=ID call=ID

{emitter.emitObjectFunction($obj.getText(),

$call.getText());} (USING expression

({emitter.emitComma();} expression)*)?

{emitter.emitEndP();}

 | call=ID

{emitter.emitFunction($call.getText());} (USING expression

({emitter.emitComma();} expression)*)?

{emitter.emitEndP();} ;

/** Building block for if/when clauses. This is for function calls. These did not always

get translated correctly

 * when they were expressions

 */
clause : obj=ID call=ID

{emitter.emitObjectFunction($obj.getText(),

$call.getText());} (USING? expression

({emitter.emitComma();} expression)*)? ;

 31

ifStatement : {emitter.emitIf();}IF

(clause{emitter.emitEndP();}|expression) THEN

{emitter.emitNewline();} (statement | LBRACE statement+

RBRACE);

waitStatement: {emitter.emitWait();}WAIT

expression{emitter.emitEndP();}

time=TIME{emitter.emitTime($time.getText());}

 | {emitter.emitWait();}WAIT

expression{emitter.emitEndP();emitter.emitEndP();} ;

everyStatement: {emitter.emitEvery();}EVERY expression

{emitter.emitEndP();emitter.emitEndP();emitter.emitNewline(

);} (statement | LBRACE statement+ RBRACE)

 | {emitter.emitEvery();}EVERY

expression{emitter.emitEndP();}

time=TIME{emitter.emitTime($time.getText());emitter.emitNew

line();} (statement | LBRACE statement+ RBRACE)

 | {emitter.emitEvery();}EVERY expression

{emitter.emitEndP();emitter.emitEndP();emitter.emitNewline(

);emitter.emitUntil();} UNTIL expression

{emitter.emitNewline();} (statement | LBRACE statement+

RBRACE)

 | {emitter.emitEvery();}EVERY

expression{emitter.emitEndP();}

time=TIME{emitter.emitTime($time.getText());emitter.emitNew

line();emitter.emitUntil();} UNTIL expression

{emitter.emitNewline();} (statement | LBRACE statement+

RBRACE);

whileStatement : {emitter.emitWhile();}WHILE expression

{emitter.emitNewline();} (statement | LBRACE statement+

RBRACE);

whenStatement: WHEN (clause|expression) THEN

{emitter.emitLambda();} (statement | LBRACE statement+

RBRACE) {emitter.emitEndB(); emitter.emitEndP();} ;

/** Special statement to remove events attached to when statements

 * when b1 on then ...

 * remove b1 events

 */
removeEvents : REMOVE obj=ID

EVENTS{emitter.emitRemove($obj.getText());};

/**

 * Expression = LogicalOrExpression

 32

 * <p>

 * The Expression is the root of the most complex part of the grammar. It is

 * the most used rule in any real program. The Expression hierarchy ensures that

 * the appropriate associative and precedence of the operators and their operands

 * is correct. When converting a parse tree to an AST, most of the expression

 * hierarchy is removed since the value they add is strictly during the parsing.

 * </p>

 */
expression : logicalOrExpression ;

/**

 * LogicalOrExpression = LogicalAndExpression

 * | LogicalAndExpression '|' | 'or' LogicalOrExpression

 * <p>

 * The logical OR expression has the lowest precedence of all expressions.

 * </p>

 */
logicalOrExpression : logicalAndExpression (op=LOR^

{emitter.emitMain($op.getText());} logicalOrExpression)? ;

/**

 * LogicalAndExpression = EqualityExpression

 * | EqualityExpression '&'|'and' LogicalANDExpression

 * <p>

 * The logical AND expression binds more tightly than the logical OR expression;

 * much the same way that multiplicative expressions have a higher precedence

 * than additive expressions.

 * </p>

 */
logicalAndExpression : equalityExpression (op=LAND^

{emitter.emitMain($op.getText());} logicalAndExpression)? ;

/**

 * EqualityExpression = RelationalExpression

 * | RelationalExpressionEqualityOperatorRelationalExpression

 * <p>

 * Equality expressions bind less tightly than any other type of expression except

 * for logical expressions.

 * </p>

 */
equalityExpression : relationalExpression (op=(EQ|NEQ)

{emitter.emitMain($op.getText());} relationalExpression)? ;

/**

 * RelationalExpression = AdditiveExpression

 * | AdditiveExpressionRelationalOperatorAdditiveExpression

 * <p>

 33

 * The relational expressions bind the <, >, <=, and >= operators tighter than

 * equality and logical operators. Notice that unlike the additive and multiplicative

 * expressions, relational expressions do not propagate to the right.

 * </p>

 */
relationalExpression : additiveExpression

(op=(LT|GT|LEQ|GEQ) {emitter.emitMain($op.getText());}

additiveExpression)? ;

/**

 * AdditiveExpression = MultiplicativeExpression

 * | MultiplicativeExpressionAdditiveOperatorAdditiveExpression

 * <p>

 * Binds addition and subtraction tighter than relational and logical operations.

 * </p>

 */
additiveExpression : multiplicativeExpression

(op=(PLUS|MINUS) {emitter.emitMain($op.getText());}

additiveExpression)? ;

/**

 * MultiplicativeExpression = UnaryExpression

 * | UnaryExpressionMultiplicativeOperatorMultiplicativeExpression

 * <p>

 * Handles all binary multiplicative expressions, binding the operators tighter than

additive,

 * relational, and logical expressions.

 * </p>

 */
multiplicativeExpression : exponentialExpression (op=(STAR

| SLASH | MOD) {emitter.emitMain($op.getText());}

multiplicativeExpression)? ;

/**

 * exponentialExpression = unaryExpression

 * | unaryExpression '^' exponentialExpression

 * <p>

 * Binds an exponenent to the expression, perhaps multiple times

 * </p>

 */
exponentialExpression : unaryExpression (op=EXP^

{emitter.emitMain($op.getText());} exponentialExpression)?

;

/**

 * UnaryExpression = '-' UnaryExpression

 * | '!' UnaryExpression

 34

 * | PrimaryExpression

 * <p>

 * The unary expressions bind a leading operator to the expression.

 * </p>

 */
unaryExpression

 : op=(MINUS|NOT) {emitter.emitMain($op.getText());}

unaryExpression

 | primaryExpression ;

/**

 * PrimaryExpression = '(' Expression ')' | integer | floating | 'true' | 'false' | ID |

methodCall

 * <p>

 * This is the lowest level of the expression hierarchy. Parenthesized expressions are

 * processed at this level. This ensures the proper precedence of such expressions.

 * </p>

 */
primaryExpression : LPAR expression RPAR -> expression

 | INTEGER {emitter.emitMain($INTEGER.getText());}

 | FLOAT {emitter.emitMain($FLOAT.getText());}

 | ID {emitter.emitMain($ID.getText());}

 | LITERAL {emitter.emitMain($LITERAL.getText());}

 | TRUE {emitter.emitMain("true");}

 | FALSE {emitter.emitMain("false");}

 | BREAK {emitter.emitMain("break");}

 | functionCall END? ;

//----------Lexical Rules ---------

COMMENT : '#' (~'\n')* {skip();} ;

NEWLINE : '\n' {skip();};

WHITESPACE : (' ' | NEWLINE | '\t' | '\r' | '\u000C')

{skip();} ;

//reserved words

TRUE : 'true' ;

FALSE : 'false' ;

TIME : 'seconds' | 'second' | 'milliseconds' |

'millisecond' | 's' | 'ms' ;

IF : 'if' ;

 35

WHEN : 'when' ;

WHILE : 'while' ;

EVERY : 'every' ;

WAIT: 'wait' ;

USING : 'using' ;

UNTIL : 'until' ;

TO : 'to';

THEN : 'then';

ADD : 'add';

DEF : 'def' ;

CHANNEL : 'channel' ;

BREAK : 'break' ;

REMOVE: 'remove' ;

EVENTS : 'events' ;

START : 'start' ;

// Operators

// Logical
LOR : '|' | 'or' ;

LAND : '&' | 'and' ;

NOT : '!' | 'not' ;

// Relational
EQ : '==' | '.equal?' | '.eql?' ;

NEQ : '!=' ;

LT : '<' ;

LEQ : '<=' ;

 36

GT : '>' ;

GEQ : '>=' ;

// Arithmetic
PLUS : '+' ;

MINUS : '-' ;

STAR : '*' ;

SLASH : '/' ;

MOD : '%' ;

EXP : '**' ;

// Other
ASSIGN : '=' ;

//Separators
LPAR : '(' ;

RPAR : ')' ;

LBRACE : '{' ;

RBRACE : '}';

DOT : '.';

COMMA : ',';

SEMICOLON : ';';

//constants and other things

INTEGER : ('0'..'9')+ ;

FLOAT : INTEGER DOT INTEGER ;

ID : ('a'..'z'|'A'..'Z') ('a'..'z'|'A'..'Z'|'0'..'9')* ;

END : 'end' DOT;

LITERAL : '"' (~'"')* '"' ;

 37

Appendix B: User Manual

Fez

 Fez is a language developed to be used with the Neuron Robotics DyIO. It was

developed using ANTLR in Eclipse and interfaces with class definitions developed in

Ruby. If you just want to understand how to use Fez, read the user manual. Developers

wishing to extend the work done will have a section devoted to them.

User Manual

1. Where do I start?

Accessing interactive REPL module and how it works.

2. Basic Fez

So now that you have your interactive window into Fez set up, it's time to start using it!

First plug your DyIO into your computer via a USB cable. Your computer knows that

you plugged your DyIO in but Fez doesn't. In Fez you have to tell it exactly what is

plugged in and what it's working with. However, it isn't as simple as typing into the

window "I just plugged in a DyIO." Fez is its own language and has a certain way to say

that you just plugged in a DyIO or that you want to turn a LED on.

To add a new DyIO, you would type this line:

add DyIO d1 using "COM3"

DyIO is the type of the device or object that you're adding and d1 is the name of that

particular DyIO. For example, now that you have told Fez a DyIO named d1 exists on

"COM3", you can just refer to it as d1 throughout the rest of the program. Note that

"COM3" may not work, you may have to use "COM4" or "COM5". So if you wanted to

ping the DyIO, you would type:

d1 ping

The other part of adding the DyIO is the using clause. In most cases, adding a new device

or object takes more than just saying you want to add it. You may have to tell it what

 38

channel to add the new device to or something similar. For example, if I plugged an LED

into channel 1 on the d1 I would have to type this:

add LED l1 to d1 using channel 1

In the same vain as before, if I wanted to do something to the LED I just added, such as

turn it on, I would type :

led1 on

3. Summary of Language and Commands

Fez is a language with its own syntax, but everything is actually run as code from the

language Ruby. If you understand Ruby, you will probably better understand Fez.

However, no Ruby experience is needed to program in Fez. Fez currently supports

integers, floating point numbers, strings and booleans.

KEYWORDS AND OPERATORS:
//reserved words

TRUE : 'true'

FALSE : 'false'

TIME : 'seconds' | 'second' | 'milliseconds' | 'millisecond' | 's' |

'ms'

IF : 'if'

WHEN : 'when'

WHILE : 'while'

EVERY : 'every'

WAIT: 'wait'

USING : 'using'

UNTIL : 'until'

TO : 'to'

THEN : 'then'

ADD : 'add'

DEF : 'def'

CHANNEL : 'channel'

BREAK : 'break'

 39

REMOVE: 'remove'

EVENTS : 'events'

START : 'start'

// Operators

// Logical

OR : '|' | 'or'

AND : '&' | 'and'

NOT : '!' | 'not'

// Relational

EQUALS : '==' | '.equal?' | '.eql?'

NOT EQUALS : '!='

LESS THAN : '<'

LESS THAN OR EQUAL TO : '<='

GREATER THAN : '>'

GREATER THAN OR EQUAL TO : '>='

// Arithmetic

PLUS : '+'

MINUS : '-'

MULTIPLICATION : '*'

DIVISION : '/'

MODULO : '%'

EXPONENT : '**'

ASSIGN : '='

IMPORTANT: READ BEFORE USING LOOPS!

 If writing Fez in a repl interface, you are going to want to use the start statement

using loops. The start statement encloses any other statement in Fez and runs the

statement(s) in the background. For example:

start loops{

while true led1 switch

}

 40

After entering this statement, the repl prompt will return and you will be able to input

more commands. However, you can use the start statement to proceed any number of

statements. For example this is perfectly valid:

start test{

a = 2

add Dyio d1 using "COM3"

a = 5

if a == 5 add led l1 to d1 using channel 4

}

Now, the task you created using the start statement will run in the background until you

tell it to stop. It is important that you manage these because there may be unintended side

effects from your code running for a good amount of time. To end a task type in : <id

used to create task> exit. For example, ending my start statements above would look like:

loops exit

test exit

ASSIGNMENT:

a = 5

hello = a + 2

add Dyio d1 using "COM3"

add LED l1 to d1 using channel 1

add LCD lcd1 to d1

FUNCTIONS/FUNCTION CALLS:

You can define your own functions in Fez. You can call the function at a later time and

everything you wrote in the definition will be executed:

def <name>(<parameters>){

<any number of statements>

To call:

<name> using <parameters>

For example:

def startup(dname lname){

add Dyio dname using "COM3"

 41

add LED lname to dname using channel 1

}

startup using dname lname

dname and lname are parameters passed into the function. You have full access to these

parameters while inside the function. You can define a function with no parameters if you

wish:

def startup {

...

}

IF STATEMENT:

if <condition> then <statements>

Checks to see if a condition is true before executing statement(s). To group multiple

statements together, use brackets. This is the same way many programming languages

implement if statements.

Examples:

if led1 on then{

led1 off

led1 disconnect

}

if a == 5 then led1 on

WHILE STATEMENT:

while <condition><statements>

This statement is always run as a new thread or task. While a condition is true execute

statement. This can loop infinitely if the condition is never false which could be

dangerous. To group multiple statements together, use brackets. This is the same way

many programming languages implement while statements.

Examples:

while a < 5 led1 switch

NOTE: Here is an example of an infinite loop. These should be avoided unless you know

what you're doing!

while true led1 switch

 42

WHEN STATEMENT:

when<condition> then <statements>

This statement is always run as a new thread or task. A when statement is an event

associated with an object. Statements are executed ONCE when the condition evaluates

to true. To group multiple statements together, use brackets. This is currently only

supported for objects calling methods which require a lambda statement.

Example:

when button1 changes then led1 switch

Invalid:

when a == 5 then led1 switch

To remove events from an object use the remove command:

remove button1 events

EVERY STATEMENT:

every <number> seconds <statements>

every <number> milliseconds <statements>

This statement is always run as a new thread or task. Every specified number of seconds

or milliseconds, statements will be executed. This is an infinite loop unless a condition

checks for an escape in the body of the loop.

every <number> seconds until <condition><statements>

every <number> milliseconds until <condition><statements>

Same as above but you can set the condition to check in the until clause.

4. Ruby Interface

The way Ruby works is that each line is translated to Ruby on the fly and executed as

Ruby code. This means that each line of Fez has a 1 : 1 correspondence in Ruby. When

you type "l1 on" in Fez, it is translated to "l1.on()" in Ruby. What this means is that all

functionality is already built in to Ruby, so if you wanted to permanently add a new

function to an LED, such as a function called blink, you would have to define this in the

Ruby class LED. You could achieve the same thing in your active Fez session by

defining a new function:

 43

def blink(times){

while times > 0{

l1 on

wait 2 seconds

l1 off

times = times - 1

}

}

Times would represent the number of times to blink the LED, and you would decrement

the counter every time you performed a blink. Obviously, the LED l1 used in the function

would have to already be defined before calling this function.

Developer Documentation

Most functionality for Fez will have to be extended through the Ruby libraries built upon

the NRDSK. What is important is that while adding new functionality, you are aware of

how Fez will translate to your new function.

Fez is written using ANTLR (http://www.antlr.org/) in Eclipse

(http://antlrv3ide.sourceforge.net/). If you don‟t have experience using ANTLR, changing

grammar rules and code emission should probably be avoided. However, here is a brief

sample of an ANTLR grammar rule and what it actually does. In order for the changes to

be seen while writing Fez after making edits to the translation the project must be written

to Fezparser.jar, and put in the directory relative to all of the Ruby source.

objectAssignment :

ADD obj=ID var=ID TO host=ID

{emitter.emitObjectAssignHost($obj.getText(), $var.getText(),

$host.getText());} USING CHANNEL expression {emitter.emitEndP();}

{emitter.emitEndP();}

| ADD obj=ID var=ID TO host=ID

{emitter.emitObjectAssignHostNoChan($obj.getText(), $var.getText(),

$host.getText());} (USING expression ({emitter.emitComma();}

expression)*)? {emitter.emitEndP();}

| ADD obj=ID var=ID {emitter.emitObjectAssign($obj.getText(),

$var.getText());} (USING expression ({emitter.emitComma();}

expression)*)? {emitter.emitEndP();} ;

 44

This is a typical grammar rule in ANTLR. This is specifically a rule from Fez. The rule

has multiple variations as indicated by the vertical bar (|). This means the rule

objectAssignment is recognized and parsed if any one of the three statements separated

by vertical lines are recognized. The most confusing part is how this corresponds to what

is emitted.

First of all, anything enclosed in brackets {} is java code. This code is executed in the

parser AS A LINE IS BEING PARSED. Anything in all capital letters is a lexical rule,

which corresponds to some identifier. For example ADD refers to the word “add”, TO

refers to “to”, ID refers to anything starting with a letter and then having any number of

letters and numbers afterwards. These rules are all specified inside of the grammar file.

Grammar rules always start with a lowercase letter and can be referenced in any other

grammar rule, such as “expression” in the above rule. Any lowercase identifier followed

by an equals is a variable. All of these things relate to the parsing an emitting of a line of

Fez. Let‟s walk through this line:

add Led led1 to d1 using channel 4

This will invoke the following rule:

ADD obj=ID var=ID TO host=ID

{emitter.emitObjectAssignHost($obj.getText(), $var.getText(),

$host.getText());} USING CHANNEL expression {emitter.emitEndP();}

{emitter.emitEndP();}

add is parsed.

Led is parsed and stored in the obj variable.

led1 is parsed and stored in the var variable.

to is parsed

d1 is parsed and stored in the host variable.

The bracketed expression starts the code generation and, as you can see, the words “add”

and “to” are ignored when emitting valid Ruby. The actual translation is defined in

FezEmitter.java. If you look at the parameters passed in, you see how a valid Ruby

statement is starting to be built: the name of the object being instantiated, variable name

of said object, and variable name of the host are all being passed in to the emitter. Later

in the grammar rule, ANOTHER grammar rule is referenced, expression. This rule has its

own emission which is invoked. Afterwards the statement is concluded with the emission

of two closing parentheses.

Again, this is a very rough introduction to ANTLR, but it is important to know exactly

how a Fez statement is translated to Ruby to fully understand how to extend the Ruby

library.

 To fully understand the ANTLR portion of Ruby, it is recommended to look at the

source code. When writing Fez, the translated Ruby code can be viewed in order to better

understand how the translation occurs.

 45

 Currently, while, every, and when statements spawn a new thread no matter what.

This is because the main interface to Fez is a repl interface and we want the users to

always be able to get the prompt back. Now, if Fez is ever going to be written to a file

and then executed, you will want to either remove the base functionality or perhaps check

what kind of Ruby code to emit based on the interface to Fez.

JRuby Interface

Connecting to DyIO and Peripherals

Unless the machine already has JRuby installed, install JRuby

1. Extract JRuby into a directory.

2. Add that directory‟s bin subdirectory to the end of your path.

3. Test it: jruby -v

Download and unzip Fez

Open your command prompt and navigate to the unzipped Fez folder

Run “Fez.bat”

This is the Read-eval-print-loop that our DSL is using to load all of the necessary files,

classes, and modules in order to interpret jRuby commands line by line.

Then run in JRuby mode by entering “jruby” into the console.

Attach your DyIO device to your machine.

Now we can start connecting to our DyIO by entering the following line:

dyio = Dyio.new

“dyio” is our identifier. We can use any name we like, such as “dyio1″, “d1″, or “fred”.

By running this line, a dialog box will appear asking for the serial connection port and

baud rate. Leave the baud rate at its default 115200 and select the serial connection port

that your DyIO is connected. If you do not know what connection port your DyIO device

is attached to (on Windows, the naming scheme is „COMx‟ where „x‟ is a natural

number), you can check your device manager and look for the COM port with the device

named “DyIO”. You can also try the different ports until one works. If it works, it will

return some packet information from the DyIO. If it does not, it will raise an exception.

If you do know the serial connection port name (e.g. COM3), then you can enter it via

command-line by entering the following line instead:

dyio = Dyio.new(“COM3″)

http://jruby.org/download
http://jruby.org/download

 46

Now we will connect to some peripherals. Let‟s start by attaching an LED to channel 4

on our dyio. We can now connect to it on our console by entering the following:

led = Led.new(dyio.channel(4))

“led” is the identifier, and unlike before, our new Led requires a parameter; in this case,

that parameter is the DyIO channel it is on. We use the DyIO identifier from before

(“dyio”) and calling channel(4).

Now we can interact with the LED. To turn it on, call its „on‟ function by entering:

led.on

You can also turn it off by calling its „off‟ function. Other functions include „switch‟

which turns the LED on if it is not on and turns it off if it is on.

Creating code for a Peripheral

This is probably the most difficult usage of the RDSL as it requires knowledge on the

NRSDK and the appropriate calls to what you want to do. We will go over the steps in

creating a SimpleButton peripheral, although one is already included in Fez v0.1. The one

we are about to make is stripped down and does not handle asynchronicity (just to keep

things simple).

Create the Ruby Class

Create a new Ruby file. For this example, let‟s name it simple_button.rb.

Open config.ini and add the following line

load “directory\simple_button.rb”

where „directory‟ is the directory in which you created simple_button.rb. You can use

relative addressing which is relative to the repl.rb file in the Fez folder.

The file will contain the following:

java_importcom.neuronrobotics.sdk.dyio.peripherals.DigitalInputChannel

class SimpleButton

 #set button to a dyio channel

 def initialize(channel)

 @chan = channel

 @type = DigitalInputChannel.new(@chan)

 end

 #returns button state, true is high (5v), false is low (0v)

 def state

 return @type.isHigh

 47

 end

end

The first line in the code imports the Java code from the NRSDK which allows a digital

input device to connect to the DyIO.

We name this class "SimpleButton", and this class will contain all of the behavior we

want for a button.

Everything following a '#' is a comment and does not execute. We use this to describe our

code.

We define our 'initialize' method. We place all the parameters that a button will need in

order to function in this method, which in this case is the DyIO channel to which our

button to connected.

We make a class variable called @chan to store the DyIO channel.

We make a class variable called @type to wrap the channel into a particular type of

channel; in this case, that channel type is a Digital Input Channel.

We created on method of actual functionality called 'state', which return which of two

states a button is actually in.

Extending a Peripheral

Let's extend the button by creating another peripheral which contains all of functionality

of the original button. We can easily increase functionality to suit our needs by adding to

or changing an established peripheral. We will name our new button CrazyButton.

Create a new Ruby. Let's name it crazy_button.rb.

Open config.ini and add a line like before in order to tell the DSL where you have placed

the new file.

The put the following into the file:

class CrazyButton<SimpleButton

 def antiState

 return !state

 end

end

 48

You have now created a new peripheral which (rather trivially) extends an established

peripheral!

Protip: The config.ini file is simply a default loading whenever you start repl.rb. You can

manually load a file when you run 'jrubyrepl.rb' by calling

load "whatever.rb"

in the actual REPL of our DSL.

Setting Up Asynchronous Events

All input peripherals in the basic package (button, dial, etc) have the option of setting up

an asynchronous event which will fire every time the device changes state. Setting these

up are extremely easy. First, let‟s set up our DyIO. For this example, let‟s attach a button

to channel 0 and an LED to channel 4. Now run the following:

dyio = Dyio.new #this will bring up a dialog box asking what channel

the DyIO is connected to

button = Button.new(dyio.channel(0))

led = Led.new(dyio.channel(4))

This will set up all the devices. Now let‟s add an event that will fire every time the button

changes state. We do this by calling onChange on the button and putting in a lambda

function as a parameter. This lambda function will execute whatever we want executed.

In this example, it will call switch on the LED (this will cause the LED to turn on if it is

not on and off if it is on).

button.onChange(lambda{led.switch})

Setting Up Robotics Modules

Suppose you have a set of peripherals which act very cohesively as a unit. It could be a

set of LEDs, sensors, etc. Much like how we extended a peripheral by creating a new one

which contained all of the functionality of the original, we will create a robotics module

which will take in a set of peripherals. This is a natural progression of the power of this

DSL that makes its extensibility far-reaching.

 49

Here, we will set up a basic light switch which will accept an LED and a button as

parameters. Instead of having to set up the interaction between these devices repeatedly,

we can code this association once and simply link our devices.

class LightSwitch

def initialize(*periphs)

#set up peripherals: Led and Button

if(periphs[0].class == Led)

@led = periphs[0]

elsif(periphs[0].class == Button)

@button = periphs[0]

end

if(periphs[1].class == Button)

@button = periphs[1]

elsif(periphs[1].class == Led)

@led = periphs[1]

end

if(@led == nil || @button == nil)

#TODO: cleanup exception handling

raise"Bad LightSwitch parameters"

end

#set up default behavior

#on button high, led on

#on button low, led off

@bp = Proc.new{

if(@button.state == true)

@led.on

else

@led.off

end

 };

@button.onChange(@bp)

end

end

The module builder has many aspects which he/she can alter, including the way the

peripherals are entered, the behavior, and mutability of the behavior. The possible

variations and modifications here are nearly limitless.

 50

Appendix C: Metrics Calculation

Comparison 1

NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.serial.SerialConnection;

public class SimpleMethod {

 public static void main(String[] args) {

 DyIOd yio = new DyIO(new SerialConnection("COM3"));

 dyio.connect();

 dyio.ping();

 dyio.disconnect();

 System.exit(0);

 }

Fez

add Dyio dyio using "COM3"

dyio ping

exit

Ruby

d1 = Dyio.new("COM3")

d1.ping()

exit()

Measurements

NRSDK: 286 characters; 12 lines

Fez: 39 characters; 3 lines

Ruby: 41 characters, 3 lines

 51

Comparison 2

NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.serial.SerialConnectionDialog;

public class DemoApp {

 public static void main(String[] args) {

 DyIO dyio=new DyIO();

 SerialConnectionDialog ser = new SerialConnectionDialog();

 if (!ser.getBowlerDevice(dyio)){

 System.exit(0);

 }

 dyio.disconnect();

 System.exit(0);

 }

Fez

add Dyio dyio

exit

Ruby

dyio = Dyio.new()

exit()

Measurements

NRSDK: 341 characters; 14 lines

Fez: 17 characters; 2 lines

Ruby: 27 characters, 2 lines

Comparison 3

NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.dyio.peripherals.AnalogInputChannel;

import com.neuronrobotics.sdk.dyio.peripherals.IAnalogInputListener;

import com.neuronrobotics.sdk.serial.SerialConnectionDialog;

 52

public class AnalogInputChannelAsynchronous implements

IAnalogInputListener{

 private AnalogInputChannel ana;

 public AnalogInputChannelAsynchronous() throws

InterruptedException{

 DyIO dyio =new DyIO();

 SerialConnectionDialog ser = new SerialConnectionDialog();

 if (!ser.getBowlerDevice(dyio)){

 System.exit(0);

 }

 ana = new AnalogInputChannel(dyio.getChannel(11),true);

 ana.addAnalogInputListener(this);

 while (true){

 Thread.sleep(100);

 }

 }

 @Override

 public void onAnalogValueChange(AnalogInputChannel channel,double

value) {

 if (channel == ana)

 System.out.println("Analog

event:"+channel.getVoltage());

 }

 public static void main(String[] args) throws

InterruptedException {

 new AnalogInputChannelAsynchronous();

 }

}

Fez

add Dyio dyio

add Dial dial to dyio using channel 11

when dial changes then dial printvoltage

Ruby

dyio = Dyio.new()

dial = Dial.new(dyio.channel(11))

Thread.new{

while true

sleep((10)/1000)

dial.printvoltage()

end

}

Measurements

NRSDK: 962 characters; 28 lines

Fez: 87 characters; 3 lines

 53

Ruby: 121 characters, 7 lines

Comparison 4

NRSDK

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.dyio.peripherals.AnalogInputChannel;

import com.neuronrobotics.sdk.serial.SerialConnectionDialog;

public class AnalogInputChannelSynchronous {

 public static void main(String[] args) throws

InterruptedException {

 DyIO dyio = new DyIO();

 SerialConnectionDialog ser = new SerialConnectionDialog();

 if (!ser.getBowlerDevice(dyio)) {

 System.exit(0);

 }

 AnalogInputChannel ana = new

AnalogInputChannel(dyio.getChannel(11));

 while (true) {

 System.out.println(ana.getVoltage());

 Thread.sleep(10);

 }

}

Fez

add Dyio dyio

add Dial dial to dyio using channel 11

every 10 ms dial printvoltage

Ruby

dyio = Dyio.new()

dial = Dial.new(dyio.channel(11))

Thread.new{

dial.changes(lambda{

dial.printvoltage()

})}

Measurements

NRSDK: 573 characters; 18 lines

Fez: 81 characters; 3 lines

Ruby: 110 characters, 5 lines

 54

Comparison 5

NRSDK

import com.neuronrobotics.sdk.common.ByteList;

import com.neuronrobotics.sdk.dyio.DyIO;

import com.neuronrobotics.sdk.dyio.peripherals.UARTChannel;

import com.neuronrobotics.sdk.serial.SerialConnectionDialog;

public class UARTPassThroughChannel{

 public static void main(String [] args) throws

InterruptedException {

 DyIO dyio=new DyIO();

 SerialConnectionDialog ser = new SerialConnectionDialog();

 if (!ser.getBowlerDevice(dyio)){

 System.exit(0);

 }

 UARTChannel uart = new UARTChannel(dyio);

 uart.setUARTBaudrate(19200);

 ByteList stream = newByteList("test");

 try{

 uart.sendBytes(stream);

 }catch(Exception e){

 e.printStackTrace();

 System.exit(1);

 }

 dyio.disconnect();

 System.exit(0);

 }

Fez

add Dyio dyio

add Lcd lcd to dyio

lcd print using "test"

Ruby

dyio = Dyio.new()

lcd = Lcd.new(dyio)

lcd.print("test")

Measurements

NRSDK: 701 characters; 25 lines

Fez: 54 characters; 3 lines

Ruby: 56 characters, 3 lines

 55

Glossary

7-Zip an open source archiver which can operate with the 7z and zip archive formats and

generate self extracting archives

ANTLR aka ANother Tool for Language Recognition is the name of a parser generator

that takes as input a grammar that specifies a language and generates as output, source

code for a recognizer for that language.

Bowler Communication a network protocol developed by Neuron Robotics used in their

devices. Read more http://neuronrobotics.com/wiki/Bowler_Communications_System

Fez a domain specific language built by Terry Tata and Ethan Truong to represent

robotics coding using the NRSDK as its foundation

DyIO aka Dynamic Input/Output a Bowler protocol device developed by Neuron

Robotics which allows sensors and servos to be plugged in and operated. Read more

http://neuronrobotics.com/wiki/DyIO_module

Domain Specific Language a programming language dedicated to a particular domain

Dropbox a Web-based file hosting service operated by Dropbox, Inc. which enables

users to store and share files and folders with others across the Internet using file

synchronization

DSL acronym for Domain Specific Language (see Domain Specific Language)

Duck typing a style of dynamic typing in which an object's current set of methods and

properties determines the valid semantics, rather than its inheritance from a particular

class or implementation of a specific interface

Eclipse a multi-language software development environment comprising an integrated

development environment (IDE) and an extensible plug-in system

JRuby a Java implementation of the Ruby programming language which allows full two-

way access between the Java and the Ruby code

Neuron Robotics robotics company founded by WPI alumni. Developers of the DyIO

and Bowler Communication Protocol. Their website http://neuronrobotics.com/

Neuron Robotics Standard Development Kita development package that allows users

to quickly develop with the DyIO and other products compatible with the Bowler

Communications Systems

http://neuronrobotics.com/wiki/Bowler_Communications_System
http://neuronrobotics.com/wiki/DyIO_module
http://neuronrobotics.com/

 56

NRSDK aka Neuron Robotics Standard Development Kit (see Neuron Robotics

Standard Development Kit)

Peripheral a device which connects to the DyIO which expands the DyIO‟s capabilities -

examples included previously in this document are LEDs and buttons

RDSL Acronym for Robotics Domain Specific Language (see Domain Specific

Language)

Read-Eval-Print-Loop a simple, command-line, interactive computer programming

environment where users enter expressions to be evaluated and executed with the results

shown

REPL aka Read-Eval-Print-Loop (see Read-Eval-Print-Loop)

Robotics Module a group of peripherals whose functionality should combine to serve a

more complex purpose

Ruby a dynamic, reflective, general purpose object-oriented programming languagefirst

developed and designed by Yukihiro Matsumoto

Sensor a device that measures a physical quantity and converts it into a signal which can

be read by an observer or by an instrument e.g. button, thermometer, and voltmeter

Servo short for servomechanism, an automatic device used to correct the performance of

a mechanism by means of an error-sensing feedback

 57

References

Breznak, Bob, and Kevin Harrington. Neuron Robotics - Better Tools for Better Ideas. Web. 08

Dec. 2010. <http://neuronrobotics.com>.

Fowler, Martin. "MF Bliki: DomainSpecificLanguage." Martin Fowler. Web. 08 Dec. 2010.

<http://martinfowler.com/bliki/DomainSpecificLanguage.html>.

Chapter 11. Domain-Specific Languages in Scala. Web. 08 Dec. 2010. <http://programming-

scala.labs.oreilly.com/ch11.html>.

"InfoQ: An Approach to Internal Domain-Specific Languages in Java." InfoQ: Tracking Change

and Innovation in the Enterprise Software Development Community. Web. 08 Dec. 2010.

<http://www.infoq.com/articles/internal-dsls-java>.

Parr, Terrance. ANTLR Parser Generator. Web. 09 Dec. 2010. <http://www.antlr.org/>.

Domain-specific language. (2010, November 22). In Wikipedia, The Free Encyclopedia.

Retrieved 03:38, November 23, 2010,

from http://en.wikipedia.org/w/index.php?title=Domain-

specific_language&oldid=398339404

Arduino. (2010, November 22). In Wikipedia, The Free Encyclopedia. Retrieved 03:37,

November 23, 2010,

from http://en.wikipedia.org/w/index.php?title=Arduino&oldid=398168536

http://en.wikipedia.org/w/index.php?title=Domain-specific_language&oldid=398339404
http://en.wikipedia.org/w/index.php?title=Domain-specific_language&oldid=398339404
http://en.wikipedia.org/w/index.php?title=Arduino&oldid=398168536

 58

VEX Robotics Design System - VEX Robotics. Web. 10 Dec. 2010.

<http://www.vexrobotics.com/>.

Arduino - HomePage. Web. 11 Dec. 2010. <http://arduino.cc/en/>.

