Using as

The GNU Assembler

January 1992

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some
work done.

Dean Elsner, Jay Fenlason & friends

Revision: 1.1.6.1
TEXinfo 2.196

Edited by Roland Pesch for Cygnus Support.

Copyright (© 1991 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the Free
Software Foundation instead of in the original English.

Chapter 1: Overview 1

1 Overview

This manual is a user guide to the GNU assembler as.

Here is a brief summary of how to invoke as. For details, see Chapter 2 [Comand-Line
Options], page 5.
as [-a | -al | -as 1 [-D1 [-f]
[-Ipath] [-k1 [-L]
[oobjfile]l] [-R]1 [-v]1I[-wl
[-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC]
[-b] [-norelax]
[-1] [-mc68000 | -mc68010 | -mc68020]
[- | files ...]

-a | -al | -as
Turn on assembly listings; ‘~al’, listing only, ‘~as’, symbols only, ‘-a’, every-
thing.

-D This option is accepted only for script compatibility with calls to other assem-
blers; it has no effect on as.

-f “fast”—skip preprocessing (assume source is compiler output)

-I path Add path to the search list for .include directives

-k Issue warnings when difference tables altered for long displacements.
-L Keep (in symbol table) local symbols, starting with ‘L’

-o objfile Name the object-file output from as

-R Fold data section into text section

-v Announce as version

-W Suppress warning messages

-ACA | ~ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
(When configured for Intel 960). Specify which variant of the 960 architecture
is the target.

-b (When configured for Intel 960). Add code to collect statistics about branches
taken.

-norelax (When configured for Intel 960). Do not alter compare-and-branch instructions
for long displacements; error if necessary.

-1 (When configured for Motorola 68000). Shorten references to undefined sym-
bols, to one word instead of two

-mc68000 | -mc68010 | -mc68020
(When configured for Motorola 68000). Specify what processor in the 68000
family is the target (default 68020)

-- | files ...
Standard input, or source files to assemble

2 Using as

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use GNU as. We cover the
syntax expected in source files, including notation for symbols, constants, and expressions;
the directives that as understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of various flavors of
the assembler.

On the other hand, this manual is not intended as an introduction to programming
in assembly language—let alone programming in general! In a similar vein, we make no
attempt to introduce the machine architecture; we do not describe the instruction set,
standard mnemonics, registers or addressing modes that are standard to a particular archi-
tecture. You may want to consult the manufacturer’s machine architecture manual for this
information.

1.2 as, the GNU Assembler

GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on
one architecture, you should find a fairly similar environment when you use it on another
architecture. FEach version has much in common with the others, including object file
formats, most assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the GNU C compiler gcc for use by
the linker 1d. Nevertheless, we’ve tried to make as assemble correctly everything that the
native assembler would. Any exceptions are documented explicitly (see Chapter 8 [Machine
Dependent], page 37). This doesn’t mean as always uses the same syntax as another
assembler for the same architecture; for example, we know of several incompatible versions
of 680x0 assembly language syntax.

Unlike older assemblers, as is designed to assemble a source program in one pass of the
source file. This has a subtle impact on the . org directive (see Section 7.38 [.org]|, page 31).

1.3 Object File Formats

The GNU assembler can be configured to produce several alternative object file for-
mats. For the most part, this does not affect how you write assembly language programs;
but directives for debugging symbols are typically different in different file formats. See
Section 5.5 [Symbol Attributes], page 20.

1.4 Command Line

After the program name as, the command line may contain options and file names.
Options may appear in any order, and may be before, after, or between file names. The
order of file names is significant.

‘==’ (two hyphens) by itself names the standard input file explicitly, as one of the files
for as to assemble.

Except for ‘-=" any command line argument that begins with a hyphen (‘-’) is an option.
Each option changes the behavior of as. No option changes the way another option works.

Chapter 1: Overview 3

An option is a ‘=’ followed by one or more letters; the case of the letter is important. All

options are optional.

Some options expect exactly one file name to follow them. The file name may either
immediately follow the option’s letter (compatible with older assemblers) or it may be the
next command argument (GNU standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as —omy-object-file.o mumble.s

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program input
to one run of as. The program may be in one or more files; how the source is partitioned
into files doesn’t change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

Each time you run as it assembles exactly one source program. The source program is
made up of one or more files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are
read (from left file name to right). A command line argument (in any position) that has no
special meaning is taken to be an input file name.

If you give as no file names it attempts to read one input file from the as standard input,
which is normally your terminal. You may have to type to tell as there is no more
program to assemble.

Use ‘-=" if you need to explicitly name the standard input file in your command line.

If the source is empty, as will produce a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used
in reporting error messages. One way refers to a line number in a physical file; the other
refers to a line number in a “logical” file. See Section 1.7 [Error and Warning Messages],
page 4.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler directives; they bear no
relation to physical files. Logical file names help error messages reflect the original source
file, when as source is itself synthesized from other files. See Section 7.4 [.app-file],
page 25.

1.6 Output (Object) File

Every time you run as it produces an output file, which is your assembly language
program translated into numbers. This file is the object file, named a.out unless you tell
as to give it another name by using the -o option. Conventionally, object file names end
with ‘.0’. The default name of ‘a.out’ is used for historical reasons: older assemblers were
capable of assembling self-contained programs directly into a runnable program.

4 Using as

The object file is meant for input to the linker 1d. It contains assembled program code,
information to help 1d integrate the assembled program into a runnable file, and (optionally)
symbolic information for the debugger.

1.7 Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your ter-
minal). This should not happen when a compiler runs as automatically. Warnings report
an assumption made so that as could keep assembling a flawed program; errors report a
grave problem that stops the assembly.

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see Section 7.4
[.app-file], page 25) it is used for the filename, otherwise the name of the current input
file is used. If a logical line number was given (see Section 7.32 [.1n], page 30) then it is
used to calculate the number printed, otherwise the actual line in the current source file is
printed. The message text is intended to be self explanatory (in the grand Unix tradition).

Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message
text may be rather less explanatory because many of them aren’t supposed to happen.

Chapter 2: Command-Line Options)

2 Command-Line Options

This chapter describes command-line options available in all versions of the GNU assem-
bler; see Chapter 8 [Machine Dependent], page 37, for options specific to particular machine
architectures.

2.1 Enable Listings: -a, -al, -as

These options enable listing output from the assembler. ‘-a’ by itself requests all listing
output; ‘-al’ requests only the output-program listing, and ‘-as’ requests only a symbol
table listing.

Once you have specified one of these options, you can further control listing output and
its appearance using the directives .1list, .nolist, .psize, .eject, .title, and .sbttl.

If you do not request listing output with one of the

directives have no effect.

-a’ options, the listing-control

2.2 -D

This option has no effect whatsoever, but it is accepted to make it more likely that
scripts written for other assemblers will also work with as.

2.3 Work Faster: -f

‘~f’ should only be used when assembling programs written by a (trusted) compiler.
‘~f’ stops the assembler from pre-processing the input file(s) before assembling them. See
Section 3.1 [Pre-processing], page 7.

Warning: if the files actually need to be pre-processed (if they contain com-
ments, for example), as will not work correctly if ‘£’ is used.

2.4 .include search path: -I path

Use this option to add a path to the list of directories as will search for files specified
in .include directives (see Section 7.27 [.include], page 29). You may use -I as many
times as necessary to include a variety of paths. The current working directory is always
searched first; after that, as searches any ‘-I’ directories in the same order as they were
specified (left to right) on the command line.

2.5 Difference Tables: -k

as sometimes alters the code emitted for directives of the form ‘.word syml-sym2’; see
Section 7.56 [.word], page 35. You can use the ‘-k’ option if you want a warning issued
when this is done.

6 Using as

2.6 Include Local Labels: -L

Labels beginning with ‘L’ (upper case only) are called local labels. See Section 5.3
[Symbol Names]|, page 19. Normally you don’t see such labels when debugging, because they
are intended for the use of programs (like compilers) that compose assembler programs, not
for your notice. Normally both as and 1d discard such labels, so you don’t normally debug
with them.

This option tells as to retain those ‘L...” symbols in the object file. Usually if you do
this you also tell the linker 1d to preserve symbols whose names begin with ‘L’.

b

2.7 Name the Object File: -o

There is always one object file output when you run as. By default it has the name
‘a.out’. You use this option (which takes exactly one filename) to give the object file a
different name.

Whatever the object file is called, as will overwrite any existing file of the same name.

2.8 Join Data and Text Sections: -R

-R tells as to write the object file as if all data-section data lives in the text section. This
is only done at the very last moment: your binary data are the same, but data section parts
are relocated differently. The data section part of your object file is zero bytes long because
all it bytes are appended to the text section. (See Chapter 4 [Sections and Relocation],
page 13.)

When you specify -R it would be possible to generate shorter address displacements
(because we don’t have to cross between text and data section). We refrain from doing this
simply for compatibility with older versions of as. In future, -R may work this way.

When as is configured for COFF output, this option is only useful if you use sections
named ‘.text’ and ‘.data’.

2.9 Announce Version: -v

You can find out what version of as is running by including the option ‘-v’ (which you
can also spell as ‘-version’) on the command line.

2.10 Suppress Warnings: -W

as should never give a warning or error message when assembling compiler output. But
programs written by people often cause as to give a warning that a particular assumption
was made. All such warnings are directed to the standard error file. If you use this option,
no warnings are issued. This option only affects the warning messages: it does not change
any particular of how as assembles your file. Errors, which stop the assembly, are still
reported.

Chapter 3: Syntax 7

3 Syntax

This chapter describes the machine-independent syntax allowed in a source file. as
syntax is similar to what many other assemblers use; it is inspired in BSD 4.2 assembler,
except that as does not assemble Vax bit-fields.

3.1 Pre-Processing

The pre-processor:

e adjusts and removes extra whitespace. It leaves one space or tab before the keywords
on a line, and turns any other whitespace on the line into a single space.

e removes all comments, replacing them with a single space, or an appropriate number
of newlines.

e converts character constants into the appropriate numeric values.

Excess whitespace, comments, and character constants cannot be used in the portions
of the input text that are not pre-processed.

If the first line of an input file is #NO_APP or the ‘-f’ option is given, the input file will
not be pre-processed. Within such an input file, parts of the file can be pre-processed by
putting a line that says #APP before the text that should be pre-processed, and putting a
line that says #NO_APP after them. This feature is mainly intend to support asm statements
in compilers whose output normally does not need to be pre-processed.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(see Section 3.6.1 [Character Constants], page 9), any whitespace means the same as exactly
one space.

3.3 Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent
to one space.
Anything from ‘/*’ through the next ‘*/’ is a comment. This means you may not nest
these comments.
/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a comment
and is ignored. The line comment character is ‘#’ on the Vax; ‘#’ on the i960; ‘|’ on the

8 Using as

680x0; ‘;’ for the AMD 29K family; ¢;’ for the machine specific family; see Chapter 8
[Machine Dependent], page 37.

On some machines there are two different line comment characters. One will only begin
a comment if it is the first non-whitespace character on a line, while the other will always
begin a comment.

To be compatible with past assemblers, a special interpretation is given to lines that begin
with ‘#’. Following the ‘#’ an absolute expression (see Chapter 6 [Expressions|, page 23)
is expected: this will be the logical line number of the next line. Then a string (See
Section 3.6.1.1 [Strings], page 9.) is allowed: if present it is a new logical file name. The
rest of the line, if any, should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)
This is an ordinary comment.
42-6 "new_file_name" # New logical file name
This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and
lower case), digits and the two characters ‘_.” On most machines, you can also use $
in symbol names; exceptions are noted in Chapter 8 [Machine Dependent], page 37. No
symbol may begin with a digit. Case is significant. There is no length limit: all characters
are significant. Symbols are delimited by characters not in that set, or by the beginning of
a file (since the source program must end with a newline, the end of a file is not a possible
symbol delimiter). See Chapter 5 [Symbols], page 19.

3.5 Statements

A statement ends at a newline character (‘\n’) or line separator character. (The line
separator is usually ‘;’, unless this conflicts with the comment character; see Chapter 8
[Machine Dependent|, page 37.) The newline or separator character is considered part
of the preceding statement. Newlines and separators within character constants are an

exception: they don’t end statements.

It is an error to end any statement with end-of-file: the last character of any input file
should be a newline.

You may write a statement on more than one line if you put a backslash (\) immediately
in front of any newlines within the statement. When as reads a backslashed newline both
characters are ignored. You can even put backslashed newlines in the middle of symbol
names without changing the meaning of your source program.

An empty statement is allowed, and may include whitespace. It is ignored.

A statement begins with zero or more labels, optionally followed by a key symbol which
determines what kind of statement it is. The key symbol determines the syntax of the rest
of the statement. If the symbol begins with a dot ‘.’ then the statement is an assembler

Chapter 3: Syntax 9

directive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it will assemble into a machine language instruction.
Different versions of as for different computers will recognize different instructions. In fact,
the same symbol may represent a different instruction in a different computer’s assembly
language.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or
after a colon is permitted, but you may not have whitespace between a label’s symbol and
its colon. See Section 5.1 [Labels], page 19.

label: .directive followed by something
another_label: # This is an empty statement.
instruction operand_1, operand_2, ...

3.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:

.byte 74, 0112, 092, O0x4A, O0X4a, ’J, ’\J # All the same value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEFO # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null charac-
ters. The way to get special characters into a string is to escape these characters: precede
them with a backslash ‘\’ character. For example ‘\\’ represents one backslash: the first \
is an escape which tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The complete list of
escapes follows.

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.

\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.

Using as

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility
with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has
the value 010, and \009 the value 011.

\\ Represents one ‘\’ character.

\" Represents one ‘"’ character. Needed in strings to represent this character,
because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ will give a warning, but assemble as if
the ‘\’ was not present. The idea is that if you used an escape sequence you
clearly didn’t want the literal interpretation of the following character. However
as has no other interpretation, so as knows it is giving you the wrong code and
warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is
a subset of what most C compilers recognize. If you are in doubt, don’t use an escape
sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by that char-
acter. The same escapes apply to characters as to strings. So if you want to write the
character backslash, you must write >\ \ where the first \ escapes the second \. As you can
see, the quote is an acute accent, not a grave accent. A newline immediately following an
acute accent is taken as a literal character and does not count as the end of a statement.
The value of a character constant in a numeric expression is the machine’s byte-wide code
for that character. as assumes your character code is ASCII: 4 means 65, B means 66,
and so on.

3.6.2 Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target
machine. Integers are numbers that would fit into an int in the C language. Bignums are
integers, but they are stored in more than 32 bits. Flonums are floating point numbers,
described below.

3.6.2.1 Integers

A binary integer is ‘Ob’ or ‘OB’ followed by zero or more of the binary digits ‘01’.
An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567").
A decimal integer starts with a non-zero digit followed by zero or more digits (‘0123456789’).

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen
from ‘0123456789abcdefABCDEF’.

Integers have the usual values. To denote a negative integer, use the prefix operator ‘-’
discussed under expressions (see Section 6.2.3 [Prefix Operators], page 23).

Chapter 3: Syntax

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or
its negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a decimal
floating point number from the text is converted by as to a generic binary floating point
number of more than sufficient precision. This generic floating point number is converted
to a particular computer’s floating point format (or formats) by a portion of as specialized
to that computer.

A flonum is written by writing (in order)
e The digit ‘0’
e A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not
important. On the AMD 29K and H8/300 architectures, the letter must be: One of

the letters ‘DFPRSX’ (in upper or lower case). On the Intel 960 architecture, the letter
must be: One of the letters ‘DFT’ (in upper or lower case).

e An optional sign: either ‘+’ or ‘-,
e An optional integer part: zero or more decimal digits.
e An optional fractional part: ‘.’ followed by zero or more decimal digits.
e An optional exponent, consisting of:
e An ‘E’or ‘e’.
e Optional sign: either ‘+” or ‘-’
e One or more decimal digits.
At least one of the integer part or the fractional part must be present. The floating point
number has the usual base-10 value.

as does all processing using integers. Flonums are computed independently of any
floating point hardware in the computer running as.

Using as

Chapter 4: Sections and Relocation

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those addresses
is treated the same for some particular purpose. For example there may be a “read only”
section.

The linker 1d reads many object files (partial programs) and combines their contents to
form a runnable program. When as emits an object file, the partial program is assumed to
start at address 0. 1d will assign the final addresses the partial program occupies, so that
different partial programs don’t overlap. This is actually an over-simplification, but it will
suffice to explain how as uses sections.

1d moves blocks of bytes of your program to their run-time addresses. These blocks
slide to their run-time addresses as rigid units; their length does not change and neither
does the order of bytes within them. Such a rigid unit is called a section. Assigning run-
time addresses to sections is called relocation. It includes the task of adjusting mentions
of object-file addresses so they refer to the proper run-time addresses. For the H8/300, as
pads sections if needed to ensure they end on a word (sixteen bit) boundary.

An object file written by as has at least three sections, any of which may be empty.
These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever other named sections
you specify using the ‘.section’ directive (see Section 7.43 [.section], page 32). If you
don’t use any directives that place output in the ‘.text’ or ‘.data’ sections, these sections
will still exist, but will be empty.

Within the object file, the text section starts at address 0, the data section follows, and
the bss section follows the data section.

To let 1d know which data will change when the sections are relocated, and how to
change that data, as also writes to the object file details of the relocation needed. To
perform relocation 1d must know, each time an address in the object file is mentioned:

e Where in the object file is the beginning of this reference to an address?

e How long (in bytes) is this reference?

e Which section does the address refer to? What is the numeric value of
(address) — (start-address of section)?

e Is the reference to an address “Program-Counter relative”?

In fact, every address as ever uses is expressed as
(section) + (offset into section)

Further, every expression as computes is of this section-relative nature. Absolute expression
means an expression with section “absolute” (see Section 4.2 [l1d Sections|, page 14). A passl
expression means an expression with section “passl” (see Section 4.3 [as Internal Sections],
page 15). In this manual we use the notation {secname N3} to mean “offset N into section
secname” .

Using as

Apart from text, data and bss sections you need to know about the absolute section.
When 1d mixes partial programs, addresses in the absolute section remain unchanged. For
example, address {absolute 0} is “relocated” to run-time address 0 by 1d. Although two
partial programs’ data sections will not overlap addresses after linking, by definition their
absolute sections will overlap. Address {absolute 239} in one partial program will always
be the same address when the program is running as address {absolute 239} in any other
partial program.

The idea of sections is extended to the undefined section. Any address whose section is
unknown at assembly time is by definition rendered {undefined U}—where U will be filled
in later. Since numbers are always defined, the only way to generate an undefined address
is to mention an undefined symbol. A reference to a named common block would be such
a symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program.
1d puts all partial programs’ text sections in contiguous addresses in the linked program.
It is customary to refer to the text section of a program, meaning all the addresses of all
partial program’s text sections. Likewise for data and bss sections.

Some sections are manipulated by 1d; others are invented for use of as and have no
meaning except during assembly.

4.2 1d Sections
1d deals with just four kinds of sections, summarized below.

named sections

text section

data section
These sections hold your program. as and 1d treat them as separate but equal
sections. Anything you can say of one section is true another. When the pro-
gram is running, however, it is customary for the text section to be unalterable.
The text section is often shared among processes: it will contain instructions,
constants and the like. The data section of a running program is usually alter-
able: for example, C variables would be stored in the data section.

bss section
This section contains zeroed bytes when your program begins running. It is
used to hold unitialized variables or common storage. The length of each partial
program’s bss section is important, but because it starts out containing zeroed
bytes there is no need to store explicit zero bytes in the object file. The bss
section was invented to eliminate those explicit zeros from object files.

absolute section
Address 0 of this section is always “relocated” to runtime address 0. This
is useful if you want to refer to an address that 1d must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they don’t change during relocation.

Chapter 4: Sections and Relocation

undefined section
This “section” is a catch-all for address references to objects not in the preceding
sections.

An idealized example of three relocatable sections follows. The example uses the tradi-
tional section names ‘.text’ and ‘.data’. Memory addresses are on the horizontal axis.
Partial program #1:
text data bss
| tttet | aaaa | oo |

Partial program #2:
text data bss
| trT | poop | 000 |

linked program:

text data bss
B | | ddaa | ooop | 00000
addresses:

0...

4.3 as Internal Sections

These sections are meant only for the internal use of as. They have no meaning at
run-time. You don’t really need to know about these sections for most purposes; but they
can be mentioned in as warning messages, so it might be helpful to have an idea of their
meanings to as. These sections are used to permit the value of every expression in your
assembly language program to be a section-relative address.

absent An expression was expected and none was found.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in
the assembler.

bignum /flonum

If a number can’t be written as a C int constant (a bignum or a flonum,
but not an integer), it is recorded as belonging to this “section”. as has to
remember that a flonum or a bignum does not fit into 32 bits, and cannot be
an argument (see Section 6.2.1 [Arguments], page 23) in an expression: this is
done by making a flonum or bignum be in a separate internal section. This is
purely for internal as convenience; bignum/flonum section behaves similarly to
absolute section.

passl section
The expression was impossible to evaluate in the first pass. The assembler will
attempt a second pass (second reading of the source) to evaluate the expression.
Your expression mentioned an undefined symbol in a way that defies the one-
pass (section + offset in section) assembly process. No compiler need emit such
an expression.

Using as

Warning: the second pass is currently not implemented. as will
abort with an error message if one is required.

difference section
As an assist to the C compiler, expressions of the forms
(undefined symbol) — (expression)
something — (undefined symbol)
(undefined symbol) — (undefined symbol)

are permitted, and belong to the difference section. as re-evaluates such ex-
pressions after the source file has been read and the symbol table built. If by
that time there are no undefined symbols in the expression then the expres-
sion assumes a new section. The intention is to permit statements like ‘.word
label - base_of_table’ to be assembled in one pass where both label and
base_of_table are undefined. This is useful for compiling C and Algol switch
statements, Pascal case statements, FORTRAN computed goto statements and
the like.

4.4 Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have
separate groups of data in named sections that you want to end up near to each other in
the object file, even though they are not contiguous in the assembler source. as allows you
to use subsections for this purpose. Within each section, there can be numbered subsections
with values from 0 to 8192. Objects assembled into the same subsection will be grouped
with other objects in the same subsection when they are all put into the object file. For
example, a compiler might want to store constants in the text section, but might not want
to have them interspersed with the program being assembled. In this case, the compiler
could issue a ‘.text 0’ before each section of code being output, and a ‘.text 1’ before
each group of constants being output.

Subsections are optional. If you don’t use subsections, everything will be stored in
subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be
padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest.
(A1l this to be compatible with other people’s assemblers.) The object file contains no
representation of subsections; 1d and other programs that manipulate object files will see
no trace of them. They just see all your text subsections as a text section, and all your
data subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a nu-
meric argument to specify it, in a ‘.text expression’ or a ‘.data expression’ statement.
When generating COFF output, you can also use an extra subsection argument with ar-
bitrary named sections: ‘.section name, expression’. Expression should be an absolute
expression. (See Chapter 6 [Expressions], page 23.) If you just say ‘.text’ then ‘.text 0’
is assumed. Likewise ‘.data’ means ‘.data 0’. Assembly begins in text 0. For instance:

.text O # The default subsection is text O anyway.

Chapter 4: Sections and Relocation

.ascii "This lives in the first text subsection. *"
.text 1

.ascii "But this lives in the second text subsection."
.data 0O

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text O

.ascii "This lives in the first text sectiomn,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into
that section. Because subsections are merely a convenience restricted to as there is no
concept of a subsection location counter. There is no way to directly manipulate a location
counter—but the .align directive will change it, and any label definition will capture its
current value. The location counter of the section that statements are being assembled into
is said to be the active location counter.

4.5 bss Section

The bss section is used for local common variable storage. You may allocate address
space in the bss section, but you may not dictate data to load into it before your program
executes. When your program starts running, all the contents of the bss section are zeroed
bytes.

Addresses in the bss section are allocated with special directives; you may not assemble
anything directly into the bss section. Hence there are no bss subsections. See Section 7.8
[.comm|, page 26, see Section 7.29 [.1lcomm|, page 29.

Using as

Chapter 5: Symbols

5 Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker
uses symbols to link, and the debugger uses symbols to debug.

Warning: as does not place symbols in the object file in the same order they
were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals
sign ‘=, followed by an expression (see Chapter 6 [Expressions], page 23). This is equivalent
to using the .set directive. See Section 7.44 [.set], page 32.

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘_.” (On most machines, you can also use
$ in symbol names; exceptions are noted in Chapter 8 [Machine Dependent], page 37.) That
character may be followed by any string of digits, letters, dollar signs (unless otherwise noted
in Chapter 8 [Machine Dependent|, page 37), and underscores. Case of letters is significant:
foo is a different symbol name than Foo.

For the AMD 29K family, ‘?’ is also allowed in the body of a symbol name, though not
at its beginning.

Each symbol has exactly one name. Each name in an assembly language program refers
to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily. There are ten
local symbol names, which are re-used throughout the program. You may refer to them
using the names ‘0’ ‘1’ ... ‘9’. To define a local symbol, write a label of the form ‘N:’ (where
N represents any digit). To refer to the most recent previous definition of that symbol write
‘Nb’, using the same digit as when you defined the label. To refer to the next definition
of a local label, write ‘Nf’—where N gives you a choice of 10 forward references. The ‘b’
stands for “backwards” and the ‘f’ stands for “forwards”.

Local symbols are not emitted by the current GNU C compiler.

There is no restriction on how you can use these labels, but remember that at any point
in the assembly you can refer to at most 10 prior local labels and to at most 10 forward
local labels.

Using as

Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names stored
in the symbol table, appearing in error messages and optionally emitted to the object file
have these parts:

L All local labels begin with ‘L’. Normally both as and 14 forget symbols that
start with ‘L’. These labels are used for symbols you are never intended to see.
If you give the ‘L’ option then as will retain these symbols in the object file.
If you also instruct 1d to retain these symbols, you may use them in debugging.

digit If the label is written ‘0:” then the digit is ‘0’. If the label is written ‘1:’ then
the digit is ‘1’. And so on up through “9:’.

C-A This unusual character is included so you don’t accidentally invent a symbol of
the same name. The character has ASCII value ‘\001’.

ordinal number
This is a serial number to keep the labels distinct. The first ‘0:’ gets the number
‘1’; The 15th ‘0:’ gets the number ‘15’; etc.. Likewise for the other labels ‘1:’
through ‘9:°.

For instance, the first 1: is named L1C-A1, the 44th 3: is named L3C-444.

5.4 The Special Dot Symbol

The special symbol .’ refers to the current address that as is assembling into. Thus,
the expression ‘melvin: .long .’ will cause melvin to contain its own address. Assigning
a value to . is treated the same as a .org directive. Thus, the expression ‘.=.+4’ is the
same as saying ‘.block 4’.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. Depending
on output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for all these attributes, and
probably won’t warn you. This makes the symbol an externally defined symbol, which is
generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the
text, data, bss or absolute sections the value is the number of addresses from the start of
that section to the label. Naturally for text, data and bss sections the value of a symbol
changes as 1d changes section base addresses during linking. Absolute symbols’ values do
not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol
is not defined in this assembler source program, and 14 will try to determine its value from
other programs it is linked with. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a . comm common declaration.

Chapter 5: Symbols

The value is how much common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any flag settings
indicating that a symbol is external, and (optionally), other information for linkers and
debuggers. The exact format depends on the object-code output format in use.

5.5.3 Symbol Attributes: a.out

5.5.3.1 Descriptor

This is an arbitrary 16-bit value. You may establish a symbol’s descriptor value by using
a .desc statement (see Section 7.11 [.desc], page 26). A descriptor value means nothing
to as.

5.5.3.2 Other

This is an arbitrary 8-bit value. It means nothing to as.

5.5.4 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary
symbol attributes, they are set between .def and .endef directives.

5.5.4.1 Primary Attributes

The symbol name is set with .def; the value and type, respectively, with .val and
.type.

5.5.4.2 Auxiliary Attributes

The as directives .dim, .line, .scl, .size, and .tag can generate auxiliary symbol
table information for COFF.

Using as

Chapter 6: Expressions

6 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or
follow an expression.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute
expression is required, you may omit the expression and as will assume a value of (absolute)
0. This is compatible with other assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are
sometimes called “arithmetic operands”. In this manual, to avoid confusing them with the
“instruction operands” of the machine language, we use the term “argument” to refer to
parts of expressions only, reserving the word “operand” to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss,
absolute, or undefined. NNN is a signed, 2’s complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the low
order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-
manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘(’ followed by an integer expression, followed by a
right parenthesis ‘)’; or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be preceded
and/or followed by whitespace.

6.2.3 Prefix Operator

as has the following prefix operators. They each take one argument, which must be
absolute.

- Negation. Two’s complement negation.

Complementation. Bitwise not.

Using as

6.2.4 Infix Operators

1.

Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or -, both
arguments must be absolute, and the result is absolute.

Highest Precedence

*

/
h

<
<<

>
>>

Multiplication.
Division. Truncation is the same as the C operator ‘/’

Remainder.

Shift Left. Same as the C operator ‘<<’

Shift Right. Same as the C operator ‘>>’

Intermediate precedence

&

~

Bitwise Inclusive Or.
Bitwise And.
Bitwise Exclusive Or.

Bitwise Or Not.

Lowest Precedence

+

Addition. If either argument is absolute, the result has the section of the
other argument. If either argument is passl or undefined, the result is
passl. Otherwise + is illegal.

Subtraction. If the right argument is absolute, the result has the section of
the left argument. If either argument is passl the result is passl. If either
argument is undefined the result is difference section. If both arguments
are in the same section, the result is absolute—provided that section is one
of text, data or bss. Otherwise subtraction is illegal.

The sense of the rule for addition is that it’s only meaningful to add the offsets in an
address; you can only have a defined section in one of the two arguments.

Similarly, you can’t subtract quantities from two different sections.

Chapter 7: Assembler Directives

7 Assembler Directives

All assembler directives have names that begin with a period (‘.”). The rest of the name
is letters, usually in lower case.

This chapter discusses directives present regardless of the target machine configuration
for the GNU assembler.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assem-
blers. The original idea was that the assembly language source would be piped into the
assembler. If the sender of the source quit, it could use this directive tells as to quit also.
One day .abort will not be supported.

7.2 .ABORT

When producing COFF output, as accepts this directive as a synonym for ‘.abort’.
When producing b.out output, as accepts this directive, but ignores it.

7.3 .align abs-expr , abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary.
The first expression (which must be absolute) is the number of low-order zero bits the
location counter will have after advancement. For example ‘.align 3’ will advance the
location counter until it a multiple of 8. If the location counter is already a multiple of 8,
no change is needed.

The second expression (also absolute) gives the value to be stored in the padding bytes.
It (and the comma) may be omitted. If it is omitted, the padding bytes are zero.

7.4 .app-file string

.app-file tells as that we are about to start a new logical file. string is the new file
name. In general, the filename is recognized whether or not it is surrounded by quotes ‘"’;
but if you wish to specify an empty file name is permitted, you must give the quotes—"".
This statement may go away in future: it is only recognized to be compatible with old as

programs.

7.5 .ascii "string"...

.ascii expects zero or more string literals (see Section 3.6.1.1 [Strings], page 9) separated
by commas. It assembles each string (with no automatic trailing zero byte) into consecutive
addresses.

7.6 .asciz "string"...

.asciz is just like .ascii, but each string is followed by a zero byte. The “z” in ‘.asciz’

stands for “zero”.

Using as

7.7 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is as-
sembled into the next byte.

7.8 .comm symbol , length

.comm declares a named common area in the bss section. Normally 1d reserves memory
addresses for it during linking, so no partial program defines the location of the symbol.
Use .comm to tell 1d that it must be at least Iength bytes long. 1d will allocate space for
each .comm symbol that is at least as long as the longest .comm request in any of the partial
programs linked. length is an absolute expression.

7.9 .data subsection

.data tells as to assemble the following statements onto the end of the data subsection
numbered subsection (which is an absolute expression). If subsection is omitted, it defaults
to zero.

7.10 .def name

Begin defining debugging information for a symbol name; the definition extends until
the .endef directive is encountered.

This directive is only observed when as is configured for COFF format output; when
producing b.out, ‘.def’ is recognized, but ignored.

7.11 .desc symbol, abs-expression

This directive sets the descriptor of the symbol (see Section 5.5 [Symbol Attributes],
page 20) to the low 16 bits of an absolute expression.

The ‘.desc’ directive is not available when as is configured for COFF output; it is only
for a.out or b.out object format. For the sake of compatibility, as will accept it, but
produce no output, when configured for COFF.

7.12 .dim

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs.

‘.dim’ is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignores it.

7.13 .double flonums

.double expects zero or more flonums, separated by commas. It assembles floating
point numbers. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependent], page 37.

Chapter 7: Assembler Directives

7.14 .eject

Force a page break at this point, when generating assembly listings.

7.15 .else

.else is part of the as support for conditional assembly; see Section 7.26 [.1if], page 28.
It marks the beginning of a section of code to be assembled if the condition for the preceding
.if was false.

7.16 .endef

This directive flags the end of a symbol definition begun with .def.

‘.endef’ is only meaningful when generating COFF format output; if as is configured
to generate b.out, it accepts this directive but ignores it.

7.17 .endif

.endif is part of the as support for conditional assembly; it marks the end of a block
of code that is only assembled conditionally. See Section 7.26 [.if], page 28.

7.18 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with ‘.set’; see
Section 7.44 [.set], page 32.

7.19 .extern

.extern is accepted in the source program—for compatibility with other assemblers—
but it is ignored. as treats all undefined symbols as external.

7.20 .file string

.file (which may also be spelled ‘.app-file’) tells as that we are about to start a new
logical file. string is the new file name. In general, the filename is recognized whether or not
it is surrounded by quotes ‘"’; but if you wish to specify an empty file name, you must give
the quotes—"". This statement may go away in future: it is only recognized to be compatible
with old as programs. In some configurations of as, .file has already been removed to
avoid conflicts with other assemblers. See Chapter 8 [Machine Dependent], page 37.

Using as

7.21 .fill repeat , size , value

result, size and value are absolute expressions. This emits repeat copies of size bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it
is deemed to have the value 8, compatible with other people’s assemblers. The contents of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer as
is assembling for. Each size bytes in a repetition is taken from the lowest order size bytes
of this number. Again, this bizarre behavior is compatible with other people’s assemblers.

size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

7.22 .float Aonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .single. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependent], page 37.

7.23 .global symbol, .globl symbol

.global makes the symbol visible to 1d. If you define symbol in your partial program, its
value is made available to other partial programs that are linked with it. Otherwise, symbol
will take its attributes from a symbol of the same name from another partial program it is
linked with.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility with other as-
semblers.

7.24 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

‘

This directive is a synonym for ‘.short’; depending on the target architecture, it may

also be a synonym for ‘.word’.

7.25 .ident

This directive is used by some assemblers to place tags in object files. as simply accepts
the directive for source-file compatibility with such assemblers, but does not actually emit
anything for it.

7.26 .if absolute expression

.if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditional section of code must be marked by .endif (see Section 7.17
[.endif], page 27); optionally, you may include code for the alternative condition, flagged
by .else (see Section 7.15 [.else], page 27.

Chapter 7: Assembler Directives

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.

.ifndef symbol

ifnotdef symbol
Assembles the following section of code if the specified symbol has not been
defined. Both spelling variants are equivalent.

7.27 .include "file"

This directive provides a way to include supporting files at specified points in your source
program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the original file continues. You can control
the search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line
Options|, page 5). Quotation marks are required around file.

7.28 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each expres-
sion, emit a 32-bit number that will, at run time, be the value of that expression. The byte
order of the expression depends on what kind of computer will run the program.

7.29 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common denoted by symbol.
The section and value of symbol are those of the new local common. The addresses are
allocated in the bss section, so at run-time the bytes will start off zeroed. Symbol is not
declared global (see Section 7.23 [.global], page 28), so is normally not visible to 1d.

7.30 .1flags

as accepts this directive, for compatibility with other assemblers, but ignores it.

7.31 .line line-number

Tell as to change the logical line number. line-number must be an absolute expression.
The next line will have that logical line number. So any other statements on the current
line (after a statement separator character) will be reported as on logical line number line-
number — 1. One day this directive will be unsupported: it is used only for compatibility
with existing assembler programs.

Warning: In the AMD29K configuration of as, this command is only available with the
name .1n, rather than as either .line or .1n.

Even though this is a directive associated with the a.out or b.out object-code formats,
as will still recognize it when producing COFF output, and will treat ‘.1ine’ as though it
were the COFF ¢.1n’ if it is found outside a .def/.endef pair.

Using as

Inside a .def, ‘.line’ is, instead, one of the directives used by compilers to generate
auxiliary symbol information for debugging.

7.32 .1n line-number

‘.1n’ is a synonym for ‘.line’.

7.33 .list

Control (in conjunction with the .nolist directive) whether or not assembly listings
are generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’ command line
option; see Chapter 2 [Command-Line Options|, page 5), the initial value of the listing
counter is one.

7.34 .long expressions

.long is the same as ‘.int’, see Section 7.28 [.int], page 29.

7.35 .lsym symbol, expression

.1sym creates a new symbol named symbol, but does not put it in the hash table,
ensuring it cannot be referenced by name during the rest of the assembly. This sets the
attributes of the symbol to be the same as the expression value:

other = descriptor = 0

type = (section of expression)
value = expression

The new symbol is not flagged as external.

7.36 .nolist

Control (in conjunction with the .1list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

7.37 .octa bignums

This directive expects zero or more bignums, separated by commas. For each bignum,
it emits a 16-byte integer.

The term “octa” comes from contexts in which a *

for 16 bytes.

‘word” is two bytes; hence octa-word

Chapter 7: Assembler Directives

7.38 .org new-Ic , fill

.org will advance the location counter of the current section to new-Ic. new-Ic is either
an absolute expression or an expression with the same section as the current subsection.
That is, you can’t use .org to cross sections: if new-Ic has the wrong section, the .org
directive is ignored. To be compatible with former assemblers, if the section of new-Ic is
absolute, as will issue a warning, then pretend the section of new-Ic is the same as the
current subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org
to move the location counter backwards.

Because as tries to assemble programs in one pass new-Ic may not be undefined. If you
really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of the
subsection. This is compatible with other people’s assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes
are filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaults to zero.

7.39 .psize lines , columns

Use this directive to declare the number of lines—and, optionally, the number of
columns—to use for each page, when generating listings.

If you don’t use .psize, listings will use a default line-count of 60. You may omit the
comma and columns specification; the default width is 200 columns.

as will generate formfeeds whenever the specified number of lines is exceeded (or when-
ever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with
.eject.

7.40 .quad bignums

.quad expects zero or more bignums, separated by commas. For each bignum, it emits
an 8-byte integer. If the bignum won’t fit in 8 bytes, it prints a warning message; and just
takes the lowest order 8 bytes of the bignum.

The term “quad” comes from contexts in which a “word” is two bytes; hence quad-word
for 8 bytes.

7.41 .sbttl "subheading"

Use subheading as the title (third line, immediately after the title line) when generating
assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

Using as

7.42 .scl class

Set the storage-class value for a symbol. This directive may only be used inside a
.def/.endef pair. Storage class may flag whether a symbol is static or external, or it may
record further symbolic debugging information.

The ‘.scl’ directive is primarily associated with COFF output; when configured to
generate b.out output format, as will accept this directive but ignore it.

7.43 .section name, subsection

Assemble the following code into end of subsection numbered subsection in the COFF
named section name. If you omit subsection, as uses subsection number zero. ‘.section
.text’ is equivalent to the .text directive; ‘.section .data’ is equivalent to the .data
directive.

7.44 .set symbol, expression

This directive sets the value of symbol to expression. This will change symbol’s value
and type to conform to expression. If symbol was flagged as external, it remains flagged.
(See Section 5.5 [Symbol Attributes], page 20.)

You may .set a symbol many times in the same assembly. If the expression’s section
is unknowable during pass 1, a second pass over the source program will be forced. The
second pass is currently not implemented. as will abort with an error message if one is
required.

If you .set a global symbol, the value stored in the object file is the last value stored
into it.
7.45 .short expressions

.short is the same as ‘.word’. See Section 7.56 [.word], page 35.

7.46 .single flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .float. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependent], page 37.

7.47 .size

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs.

‘.size’ is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignores it.

Chapter 7: Assembler Directives

7.48 .space size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expres-
sions. If the comma and fill are omitted, fill is assumed to be zero.

7.49 .space

On the AMD 29K, this directive is ignored; it is accepted for compatibility with other
AMD 29K assemblers.

Warning: In other versions of the GNU assembler, the directive .space has the
effect of .block See Chapter 8 [Machine Dependent], page 37.

7.50 .stabd, .stabn, .stabs

There are three directives that begin ‘. stab’. All emit symbols (see Chapter 5 [Symbols],
page 19), for use by symbolic debuggers. The symbols are not entered in the as hash table:
they cannot be referenced elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character except ‘\000’, so
is more general than ordinary symbol names. Some debuggers used to code
arbitrarily complex structures into symbol names using this field.

type An absolute expression. The symbol’s type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but 1d and debuggers will choke on
silly bit patterns.

other An absolute expression. The symbol’s “other” attribute is set to the low 8 bits
of this expression.

desc An absolute expression. The symbol’s descriptor is set to the low 16 bits of this
expression.
value An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs statement, the
symbol has probably already been created and you will get a half-formed symbol in your
object file. This is compatible with earlier assemblers!

.stabd type , other , desc
The “name” of the symbol generated is not even an empty string. It is a null
pointer, for compatibility. Older assemblers used a null pointer so they didn'’t
waste space in object files with empty strings.

The symbol’s value is set to the location counter, relocatably. When your
program is linked, the value of this symbol will be where the location counter
was when the .stabd was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

Using as

7.51 .tag structname

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs. Tags are used to link
structure definitions in the symbol table with instances of those structures.

‘.tag’ is only used when generating COFF format output; when as is generating b.out,
it accepts this directive but ignores it.

7.52 .text subsection

Tells as to assemble the following statements onto the end of the text subsection num-
bered subsection, which is an absolute expression. If subsection is omitted, subsection
number zero is used.

7.53 .title "heading"

Use heading as the title (second line, immediately after the source file name and pa-
genumber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.54 .type int

This directive, permitted only within .def/.endef pairs, records the integer int as the
type attribute of a symbol table entry.

‘.type’ is associated only with COFF format output; when as is configured for b.out
output, it accepts this directive but ignores it.

7.55 .val addr

This directive, permitted only within .def/.endef pairs, records the address addr as
the value attribute of a symbol table entry.

‘.val’ is used only for COFF output; when as is configured for b.out, it accepts this
directive but ignores it.

7.56 .word expressions

This directive expects zero or more expressions, of any section, separated by commas.

The size of the number emitted, and its byte order, depends on what kind of computer
will run the program.
Warning: Special Treatment to support Compilers
Machines with a 32-bit address space, but that do less than 32-bit addressing, require
the following special treatment. If the machine of interest to you does 32-bit addressing (or
doesn’t require it; see Chapter 8 [Machine Dependent|, page 37), you can ignore this issue.

Chapter 7: Assembler Directives

In order to assemble compiler output into something that will work, as will occasionlly
do strange things to ‘.word’ directives. Directives of the form ‘.word syml-sym2’ are often
emitted by compilers as part of jump tables. Therefore, when as assembles a directive of the
form ‘.word syml-sym2’, and the difference between syml and sym2 does not fit in 16 bits,
as will create a secondary jump table, immediately before the next label. This secondary
jump table will be preceded by a short-jump to the first byte after the secondary table.
This short-jump prevents the flow of control from accidentally falling into the new table.
Inside the table will be a long-jump to sym2. The original ‘.word’ will contain syml minus
the address of the long-jump to sym2.

If there were several occurrences of ‘.word sym1-sym2’ before the secondary jump table,
all of them will be adjusted. If there was a ‘.word sym3-sym4’, that also did not fit in
sixteen bits, a long-jump to sym4 will be included in the secondary jump table, and the
.word directives will be adjusted to contain sym3 minus the address of the long-jump to
sym4; and so on, for as many entries in the original jump table as necessary.

7.57 Deprecated Directives

One day these directives won’t work. They are included for compatibility with older
assemblers.

.abort
.app-file

.line

Using as

Chapter 8: Machine Dependent Features

8 Machine Dependent Features

The machine instruction sets are (almost by definition) different on each machine where
as runs. Floating point representations vary as well, and as often supports a few additional
directives or command-line options for compatibility with other assemblers on a particu-
lar platform. Finally, some versions of as support special pseudo-instructions for branch
optimization.

This chapter discusses most of these differences, though it does not include details on
any machine’s instruction set. For details on that subject, see the hardware manufacturer’s
manual.

8.1 VAX Dependent Features

8.1.1 VAX Command-Line Options

The Vax version of as accepts any of the following options, gives a warning message
that the option was ignored and proceeds. These options are for compatibility with scripts
designed for other people’s assemblers.

-D (Debug)
=S (Symbol Table)
-T (Token Trace)
These are obsolete options used to debug old assemblers.

-d (Displacement size for JUMPs)
This option expects a number following the -d. Like options that expect file-
names, the number may immediately follow the -d (old standard) or constitute
the whole of the command line argument that follows -d (GNU standard).

-V (Virtualize Interpass Temporary File)
Some other assemblers use a temporary file. This option commanded them to
keep the information in active memory rather than in a disk file. as always
does this, so this option is redundant.

-J (JUMPify Longer Branches)
Many 32-bit computers permit a variety of branch instructions to do the same
job. Some of these instructions are short (and fast) but have a limited range;
others are long (and slow) but can branch anywhere in virtual memory. Often
there are 3 flavors of branch: short, medium and long. Some other assemblers
would emit short and medium branches, unless told by this option to emit short
and long branches.

-t (Temporary File Directory)
Some other assemblers may use a temporary file, and this option takes a filename
being the directory to site the temporary file. as does not use a temporary disk
file, so this option makes no difference. -t needs exactly one filename.

The Vax version of the assembler accepts two options when compiled for VMS. They are
-h, and —+. The -h option prevents as from modifying the symbol-table entries for symbols

Using as

that contain lowercase characters (I think). The -+ option causes as to print warning
messages if the FILENAME part of the object file, or any symbol name is larger than 31
characters. The —+ option also insertes some code following the ‘_main’ symbol so that the
object file will be compatible with Vax-11 "C".

8.1.2 VAX Floating Point

Conversion of flonums to floating point is correct, and compatible with previous as-
semblers. Rounding is towards zero if the remainder is exactly half the least significant
bit.

D, F, G and H floating point formats are understood.

Immediate floating literals (e.g. ‘S‘$6.9’) are rendered correctly. Again, rounding is
towards zero in the boundary case.

The .float directive produces f format numbers. The .double directive produces d
format numbers.

8.1.3 Vax Machine Directives

The Vax version of the assembler supports four directives for generating Vax floating
point constants. They are described in the table below.

.dfloat This expects zero or more flonums, separated by commas, and assembles Vax
d format 64-bit floating point constants.

.ffloat This expects zero or more flonums, separated by commas, and assembles Vax
f format 32-bit floating point constants.

.gfloat This expects zero or more flonums, separated by commas, and assembles Vax
g format 64-bit floating point constants.

.hfloat This expects zero or more flonums, separated by commas, and assembles Vax
h format 128-bit floating point constants.

8.1.4 VAX Opcodes

All DEC mnemonics are supported. Beware that case... instructions have exactly 3
operands. The dispatch table that follows the case... instruction should be made with
.word statements. This is compatible with all unix assemblers we know of.

8.1.5 VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch instructions. They expand
to the shortest branch instruction that will reach the target. Generally these mnemonics are
made by substituting ‘j’ for ‘b’ at the start of a DEC mnemonic. This feature is included
both for compatibility and to help compilers. If you don’t need this feature, don’t use these
opcodes. Here are the mnemonics, and the code they can expand into.

jbsb ‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.

Chapter 8: Machine Dependent Features

(byte displacement,)
bsbb ...

(word displacement)
bsbw ...

(long displacement)
jsb...
jbr
jr Unconditional branch.

(byte displacement)
brb ...

(word displacement)
brw ...

(long displacement)

Jjmp ...
jCOND COND may be any one of the conditional branches neq nequ eql eqlu gtr
geq 1lss gtru lequ vc vs gequ cc 1ssu cs. COND may also be one of the bit

tests bs bc bss bes bsc bee bssi beei 1bs 1bc. NOTCOND is the opposite
condition to COND.

(byte displacement)
bCOND ...

(word displacement)
bNOTCOND foo ; brw... ; foo:

(long displacement)
bNOTCOND foo ; jmp ... ; foo:

jacbX X may beoneofbdf ghlw.

(word displacement)
OPCODE ...

(long displacement)
OPCODE ..., foo ;

brb bar ;
foo: jmp ... ;
bar:

jaobYYY YYY may be one of 1ss leq.
jsobZZZ ZZZ may be one of geq gtr.

(byte displacement,)
OPCODE ...

(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw destination ;
bar:

Using as

(long displacement)
OPCODE ..., foo ;

brb bar ;
foo: jmp destination ;
bar:

aobleq

aoblss

sobgeq

sobgtr

(byte displacement,)
OPCODE ...

(word displacement)
OPCODE ..., foo ;

brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;

brb bar ;
foo: jmp destination ;
bar:

8.1.6 VAX Operands

The immediate character is ‘$’ for Unix compatibility, not ‘#’ as DEC writes it.
The indirect character is ‘*’ for Unix compatibility, not ‘@ as DEC writes it.

The displacement sizing character is ‘¢’ (an accent grave) for Unix compatibility, not ‘~’

as DEC writes it. The letter preceding ‘¢’ may have either case. ‘G’ is not understood, but
all other letters (b 1 1 s w) are understood.

Register names understood are rO rl1 r2 ... r15 ap fp sp pc. Any case of letters will
do.

For instance
tstb *w $4(r5)

Any expression is permitted in an operand. Operands are comma separated.

8.1.7 Not Supported on VAX

Vax bit fields can not be assembled with as. Someone can add the required code if they
really need it.

8.2 AMD 29K Dependent Features

8.2.1 Options

as has no additional command-line options for the AMD 29K family.

Chapter 8: Machine Dependent Features

8.2.2 Syntax

8.2.2.1 Special Characters

‘;7 1s the line comment character.
‘@’ can be used instead of a newline to separate statements.

The character ‘?’ is permitted in identifiers (but may not begin an identifier).

8.2.2.2 Register Names

General-purpose registers are represented by predefined symbols of the form ‘GRnnn’ (for
global registers) or ‘LRnnn’ (for local registers), where nnn represents a number between 0
and 127, written with no leading zeros. The leading letters may be in either upper or lower
case; for example, ‘gr13’ and ‘LR7’ are both valid register names.

You may also refer to general-purpose registers by specifying the register number as the
result of an expression (prefixed with ‘%%’ to flag the expression as a register number):
hhexpression
—where expression must be an absolute expression evaluating to a number between 0 and
255. The range [0, 127] refers to global registers, and the range [128, 255] to local registers.
In addition, as understands the following protected special-purpose register names for
the AMD 29K family:

vab chd pcO
ops chc pcl
cps rbp pc2
cfg tmc mmu
cha tmr lru

These unprotected special-purpose register names are also recognized:
ipc alu fpe

ipa bp inte
ipb fc fps
q cr exop

8.2.3 Floating Point

The AMD 29K family uses IEEE floating-point numbers.

8.2.4 AMD 29K Machine Directives

.block size , fill
This directive emits size bytes, each of value fill. Both size and fill are absolute
expressions. If the comma and fill are omitted, fill is assumed to be zero.

In other versions of the GNU assembler, this directive is called ‘. space’.

.cputype This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.

Using as

.file This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.
Warning: in other versions of the GNU assembler, .file is used
for the directive called .app-file in the AMD 29K support.
.line This directive is ignored; it is accepted for compatibility with other AMD 29K

assemblers.

.reg symbol, expression

.sect

.reg has the same effect as .1sym; see Section 7.35 [.1sym], page 30.

This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.

.use section name

Establishes the section and subsection for the following code; section name may
be one of .text, .data, .datal, or .1it. With one of the first three section

name options, ‘.use’ is equivalent to the machine directive section name; the

4

remaining case, ‘.use .1it’, is the same as ‘.data 200’.

8.2.5 Opcodes

as implements all the standard AMD 29K opcodes. No additional pseudo-instructions

are needed on this family.

For information on the 29K machine instruction set, see Am29000 User’s Manual, Ad-

vanced Micro Devices, Inc.

8.3 H8/300 Dependent Features

8.3.1 Options

as has no additional command-line options for the Hitachi H8/300 family.

8.3.2 Syntax

8.3.2.1 Special Characters

‘;’ is the line comment character.

‘$’ can be used instead of a newline to separate statements. Therefore you may not use

‘¢’ in symbol names on the H8/300.

8.3.2.2 Register Names

You can use predefined symbols of the form ‘rnh’ and ‘rnl’ to refer to the H8/300
registers as sixteen 8-bit general-purpose registers. n is a digit from ‘0’ to ‘7’); for instance,

both ‘rOh’ and ‘r71’ are valid register names.

You can also use the eight predefined symbols ‘rn’ to refer to the H8/300 registers as

16-bit registers (you must use this form for addressing).

Chapter 8: Machine Dependent Features

The two control registers are called pc (program counter; a 16-bit register) and ccr
(condition code register; an 8-bit register). r7 is used as the stack pointer, and can also be
called sp.

8.3.2.3 Addressing Modes

as understands the following addressing modes for the H8/300:

rn Register direct
Orn Register indirect
e(d, rn)

e(d:16, rn)

Register indirect: 16-bit displacement d from register n. (You may specify the
‘:16’ for clarity if you wish, but it is not required and has no effect.)

Qrn+ Register indirect with post-increment
Q@-rn Register indirect with pre-decrement
Qaa

Qaa:8

Qaa:16 Absolute address aa. You may specify the ‘:8” or ‘:16’ for clarity, if you wish;
but as neither requires this nor uses it—the address size required is taken from

context.

#xx

#xx:8

#xx:16 Immediate data xx. You may specify the ‘:8” or ‘:16’ for clarity, if you wish;
but as neither requires this nor uses it—the data size required is taken from
context.

00aa

@Qaa:8 Memory indirect. You may specify the ‘:8’ for clarity, if you wish; but as
neither requires this nor uses it.

8.3.3 Floating Point

The H8/300 family uses IEEE floating-point numbers.

8.3.4 H8/300 Machine Directives

as has no machine-dependent directives for the H8/300. However, on this platform the
‘.int’ and ‘.word’ directives generate 16-bit numbers.

8.3.5 Opcodes

For detailed information on the H8/300 machine instruction set, see H8/300 Series Pro-
gramming Manual (Hitachi ADE-602-025).

as implements all the standard H8/300 opcodes. No additional pseudo-instructions are
needed on this family.

The following table summarizes the opcodes and their arguments:

bra

brn
bf
bhi
bls
bcc
bhs
bcs
blo
bne
beq
bvc
bvs
bpl
bmi
bge
blt
bgt
ble
bclr
bclr
bclr
bclr
bclr

Rs source register
Rd destination register
imm immediate data

x:3 a bit (as a number between 0 and 7)
d:8 eight bit displacement from pc
d:16 sixteen bit displacement from Rs

Rs,Rd biand
#imm:8,Rd biand
Rs,Rd biand
#1,Rd bild
#2,Rd bild
#imm:8,Rd bild
Rs,Rd bior
#imm:8,Rd bior
Rs,Rd bior
#imm:8,ccr bist
#x:3,Rd bist
#x:3,0Rd bist
d:8 bixor
d:8 bixor
d:8 bixor
d:8 bld
d:8 bld
d:8 bld
d:8 bnot
d:8 bnot
d:8 bnot
d:8 bnot
d:8 bnot
d:8 bnot
d:8 bor
d:8 bor
d:8 bor
d:8 bset
d:8 bset
d:8 bset
d:8 bset
d:8 bset
#x:3,Rd bsr
#x:3,0Rd bst
#x:3,0aa:8 bst
Rs,Rd bst
Rs,@Rd btst

+*
)
[oN)

-

*H
ol

=)
Q.

-

3+
™

-

3+
™

3+
™
D Qo
Q.

-

3+
™

-

++
™

+*
)
o Qe

-

+*
)

-

+*
)
[oN)

-

++
™

-

++
™

-

*H

ol
WWWWWWWWWwwWwwWwwWwwwWwwwwwwoww
@ O I OO IO I ODOI LI LI GBX

:un-mg

++
™
Q.

o
n M
=]
Q. v

-

++
™

-

++
™

+*
e
o Qe

-

+*
e

-

+*
e
[oN)

-

*H
ol

=)
Q.

-

=]
0

,ORd
Rs,@aa:8
#x:3,Rd
#x:3,0Rd

#x:3,0aa:

#x:3,0Rd

#x:3,0aa:

Rs,Rd
Rs,@Rd
Rs,@aa:8
d:8
#x:3,Rd
#x:3,0Rd

#x:3,0aa:

#x:3,Rd

o
Q. [+ [+ o Q. [+ [+

o
)

)
)

Using as

Chapter 8: Machine Dependent Features

btst #x:3,0Rd mov.w @(d:16, Rs),Rd
btst #x:3,0aa:8 mov.w ORs+,Rd
btst Rs,Rd mov.w ©@aa:16,Rd
btst Rs,@Rd mov.w Rs,@Rd
btst Rs,0aa:8 mov.w Rs,0@(d:16, Rd)
bxor #x:3,Rd mov.w Rs,©@-Rd
bxor #x:3,0Rd mov.w Rs,Qaa:16
bxor #x:3,0aa:8 movifpe @aa:16,Rd
cmp.b #imm:8,Rd movtpe Rs,Qaa:16
cmp.b Rs,Rd mulxu Rs,Rd
cmp.w Rs,Rd neg Rs

daa Rs nop

das Rs not Rs

dec Rs or #imm:8,Rd
divxu Rs,Rd or Rs,Rd
eepmov orc #imm:8,ccr
inc Rs pop Rs

jmp ORs push Rs

jmp Qaa:16 rotl Rs

jmp Q@Qaa rotr Rs

jsr ORs rotxl Rs

jsr QGaa:16 rotxr Rs

jsr 00aa:8 rte

1ldc #imm:8,ccr rts

1ldc Rs,ccr shal Rs

mov.b Rs,Rd shar Rs

mov.b #imm:8,Rd shll Rs

mov.b ORs,Rd shlr Rs

mov.b @(d:16, Rs),Rd sleep

mov.b ORs+,Rd stc ccr,Rd
mov.b @aa:16,Rd sub.b Rs,Rd
mov.b @aa:8,Rd sub.w Rs,Rd
mov.b Rs,@Rd subs #1,Rd
mov.b Rs,@(d:16, Rd) subs #2,Rd
mov.b Rs,@-Rd subx #imm:8,Rd
mov.b Rs,Qaa: 16 subx Rs,Rd
mov.b Rs,0aa:8 x0T #imm:8,Rd
mov.w Rs,Rd x0T Rs,Rd
mov.w #imm:16,Rd x0rc #imm:8,ccr

mov.w ORs,Rd

Four H8/300 instructions (add, cmp, mov, sub) are defined with variants using the suffixes
‘.b’ and ‘.w’ to specify the size of a memory operand. as supports these suffixes, but does
not require them; since one of the operands is always a register, as can deduce the correct
size.

For example, since r0 refers to a 16-bit register,

mov r0,Q@foo
is equivalent to
mov.w r0,Q@fo0

Using as

If you use the size suffixes, as will issue a warning if there’s a mismatch between the

suffix and the register size.

8.4 Intel 80960 Dependent Features

8.4.1 1960 Command-line Options

-ACA | ~ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC

Select the 80960 architecture. Instructions or features not supported by the
selected architecture cause fatal errors.

‘=ACA’ is equivalent to ‘~ACA_A’; ‘~AKC’ is equivalent to ‘~AMC’. Synonyms are
provided for compatibility with other tools.

If none of these options is specified, as will generate code for any instruction or
feature that is supported by some version of the 960 (even if this means mixing
architectures!). In principle, as will attempt to deduce the minimal sufficient
processor type if none is specified; depending on the object code format, the
processor type may be recorded in the object file. If it is critical that the as
output match a specific architecture, specify that architecture explicitly.

Add code to collect information about conditional branches taken, for later
optimization using branch prediction bits. (The conditional branch instructions
have branch prediction bits in the CA, CB, and CC architectures.) If BR
represents a conditional branch instruction, the following represents the code
generated by the assembler when ‘-b’ is specified:

call increment routine

.word O # pre-counter
Label: BR

call increment routine

.word O # post-counter

The counter following a branch records the number of times that branch was
not taken; the differenc between the two counters is the number of times the
branch was taken.

A table of every such Label is also generated, so that the external postprocessor
gbr960 (supplied by Intel) can locate all the counters. This table is always la-
belled ‘__BRANCH_TABLE__’; this is a local symbol to permit collecting statistics
for many separate object files. The table is word aligned, and begins with a
two-word header. The first word, initialized to 0, is used in maintaining linked
lists of branch tables. The second word is a count of the number of entries
in the table, which follow immediately: each is a word, pointing to one of the
labels illustrated above.

*NEXT COUNT: N | *BRLAB 1 ‘ *BRLAB N

__BRANCH_TABLE__ layout

The first word of the header is used to locate multiple branch tables, since each
object file may contain one. Normally the links are maintained with a call to

Chapter 8: Machine Dependent Features

an initialization routine, placed at the beginning of each function in the file.
The GNU C compiler will generate these calls automatically when you give it
a ‘-b’ option. For further details, see the documentation of ‘gbr960’.

-norelax Normally, Compare-and-Branch instructions with targets that require displace-
ments greater than 13 bits (or that have external targets) are replaced with
the corresponding compare (or ‘chkbit’) and branch instructions. You can use
the ‘-norelax’ option to specify that as should generate errors instead, if the
target displacement is larger than 13 bits.

This option does not affect the Compare-and-Jump instructions; the code emit-
ted for them is always adjusted when necessary (depending on displacement
size), regardless of whether you use ‘-norelax’.

8.4.2 Floating Point

as generates IEEE floating-point numbers for the directives ‘. float’, ‘. double’, ‘. extended’,
and ‘.single’.

8.4.3 1960 Machine Directives

.bss symbol, length, align
Reserve length bytes in the bss section for a local symbol, aligned to the power
of two specified by align. length and align must be positive absolute expressions.
This directive differs from ‘.1lcomm’ only in that it permits you to specify an
alignment. See Section 7.29 [.1lcomm|, page 29.

.extended flonums
.extended expects zero or more flonums, separated by commas; for each
flonum, ‘.extended’ emits an IEEE extended-format (80-bit) floating-point
number.

.leafproc call-lab, bal-lab

You can use the ‘.leafproc’ directive in conjunction with the optimized callj
instruction to enable faster calls of leaf procedures. If a procedure is known to
call no other procedures, you may define an entry point that skips procedure
prolog code (and that does not depend on system-supplied saved context), and
declare it as the bal-lab using ‘.leafproc’. If the procedure also has an entry
point that goes through the normal prolog, you can specify that entry point as
call-1ab.

A ‘.leafproc’ declaration is meant for use in conjunction with the optimized
call instruction ‘callj’; the directive records the data needed later to choose
between converting the ‘callj’ into a bal or a call.

call-1ab is optional; if only one argument is present, or if the two arguments are
identical, the single argument is assumed to be the bal entry point.

.sysproc name, index
The ‘.sysproc’ directive defines a name for a system procedure. After you
define it using ‘. sysproc’, you can use name to refer to the system procedure

Using as

identified by index when calling procedures with the optimized call instruction
‘callj’.

Both arguments are required; index must be between 0 and 31 (inclusive).

8.4.4 1960 Opcodes

All Intel 960 machine instructions are supported; see Section 8.4.1 [i960 Command-line
Options], page 46 for a discussion of selecting the instruction subset for a particular 960
architecture.

Some opcodes are processed beyond simply emitting a single corresponding instruction:
‘callj’, and Compare-and-Branch or Compare-and-Jump instructions with target displace-
ments larger than 13 bits.

8.4.4.1 callj

You can write callj to have the assembler or the linker determine the most appropriate
form of subroutine call: ‘call’, ‘bal’, or ‘calls’. If the assembly source contains enough
information—a ‘.leafproc’ or ‘.sysproc’ directive defining the operand—then as will
translate the callj; if not, it will simply emit the callj, leaving it for the linker to resolve.

8.4.4.2 Compare-and-Branch

The 960 architectures provide combined Compare-and-Branch instructions that permit
you to store the branch target in the lower 13 bits of the instruction word itself. However,
if you specify a branch target far enough away that its address won’t fit in 13 bits, the
assembler can either issue an error, or convert your Compare-and-Branch instruction into
separate instructions to do the compare and the branch.

Whether as gives an error or expands the instruction depends on two choices you can
make: whether you use the ‘-norelax’ option, and whether you use a “Compare and
Branch” instruction or a “Compare and Jump” instruction. The “Jump” instructions are
always expanded if necessary; the “Branch” instructions are expanded when necessary un-
less you specify -norelax—in which case as gives an error instead.

These are the Compare-and-Branch instructions, their “Jump” variants, and the instruc-
tion pairs they may expand into:

Compare and
Branch Jump FExpanded to

bbc chkbit; bno
bbs chkbit; bo
cmpibe cmpije cmpi; be

cmpibg cmpijg cmpi; bg
cmpibge cmpijge cmpi; bge
cmpibl cmpijl cmpi; bl
cmpible cmpijle cmpi; ble
cmpibno cmpijno cmpi; bno
cmpibne cmpijne cmpi; bne

Chapter 8: Machine Dependent Features

cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be
cmpobg cmpojg cmpo; bg
cmpobge cmpojge cmpo; bge
cmpobl cmpojl cmpo; bl
cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne

8.5 M680x0 Dependent Features

8.5.1 M680x0 Options

The Motorola 680x0 version of as has two machine dependent options. One shortens
undefined references from 32 to 16 bits, while the other is used to tell as what kind of
machine it is assembling for.

You can use the -1 option to shorten the size of references to undefined symbols. If the
-1 option is not given, references to undefined symbols will be a full long (32 bits) wide.
(Since as cannot know where these symbols will end up, as can only allocate space for the
linker to fill in later. Since as doesn’t know how far away these symbols will be, it allocates
as much space as it can.) If this option is given, the references will only be one word wide
(16 bits). This may be useful if you want the object file to be as small as possible, and you
know that the relevant symbols will be less than 17 bits away.

The 680x0 version of as is most frequently used to assemble programs for the Motorola
MC68020 microprocessor. Occasionally it is used to assemble programs for the mostly
similar, but slightly different MC68000 or MC68010 microprocessors. You can give as the
options ‘-m68000’, ‘-mc68000’, ‘-m68010’°, ‘-mc68010°, ‘~m68020’, and ‘-mc68020’ to tell it
what processor is the target.

8.5.2 Syntax

The 680x0 version of as uses syntax similar to the Sun assembler. Size modifiers are
appended directly to the end of the opcode without an intervening period. For example,
write ‘movl’ rather than ‘move.l’.

In the following table apc stands for any of the address registers (‘a0’ through ‘a7’), noth-
ing, (), the Program Counter (‘pc’), or the zero-address relative to the program counter
(‘zpc?).

The following addressing modes are understood:

Immediate
‘#digits’
Data Register
‘d0’ through ‘d7’

Address Register
‘a0’ through ‘a7’

Using as

Address Register Indirect
‘a0@’ through ‘a7@’

Address Register Postincrement
‘a0@+’ through ‘a70+’

Address Register Predecrement
‘a0@-’ through ‘a7@-’

Indirect Plus Offset
‘apc@(digits)’

Index ‘apc@(digits, register : size : scale)’
or ‘apc@(register : size:scale)’

Postindex ‘apc@(digits)@(digits, register : size : scale)’

or ‘apc@(digits) @ (register : size : scale)’

Preindex ‘apc@(digits, register : size : scale) @ (digits)’

or ‘apc@(register : size : scale) @ (digits)’

Memory Indirect
‘apc@(digits) @ (digits)’

Absolute ‘symbol’, or ‘digits’

8.5.3 Floating Point

The floating point code is not too well tested, and may have subtle bugs in it.
Packed decimal (P) format floating literals are not supported. Feel free to add the code!
The floating point formats generated by directives are these.

.float Single precision floating point constants.

.double Double precision floating point constants.

There is no directive to produce regions of memory holding extended precision numbers,
however they can be used as immediate operands to floating-point instructions. Adding a
directive to create extended precision numbers would not be hard, but it has not yet seemed
necessary.

8.5.4 680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler understands the
following directives.

.datal This directive is identical to a .data 1 directive.
.data2 This directive is identical to a .data 2 directive.
.even This directive is identical to a .align 1 directive.

.skip This directive is identical to a .space directive.

Chapter 8: Machine Dependent Features

8.5.5 Opcodes

8.5.5.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They expand to the
shortest branch instruction that will reach the target. Generally these mnemonics are made
by substituting ‘j’ for ‘b’ at the start of a Motorola mnemonic.

The following table summarizes the pseudo-operations. A * flags cases that are more
fully described after the table:

Displacement

| 68020 68000/10

Pseudo-0p |BYTE WORD LONG LONG non-PC relative

XX:
NX:

jbsr
jra

jXX

db XX

jbsr |bsrs bsr bsrl jsr jsr

jra |bras bra bral jmp jmp

jXX |bXXs bXX bXX1 bNXs;jmpl bNXs;jmp
dbXX |dbXX dbXX dbXX; bra; jmpl

£fjXX |fbXXw fbXXw fbXX1 fbNXw; jmp

condition
negative of condition XX

x—see full description below

These are the simplest jump pseudo-operations; they always map to one partic-
ular machine instruction, depending on the displacement to the branch target.

Here, ‘3 XX’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this
family is:
jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle
For the cases of non-PC relative displacements and long displacements on the
68000 or 68010, as will issue a longer code fragment in terms of NX, the opposite
condition to XX:
jXX foo
gives
bNXs oof
jmp foo
oof:

The full family of pseudo-operations covered here is

dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Using as

Other than for word and byte displacements, when the source reads ‘dbXX
foo’, as will emit

dbXX ool

bra 002
ool:jmpl foo
002:

fjXX This family includes

fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge £fjngl £fjngle fjngt
fjnle fjnlt fjoge fjogl f£fjogt fjole £fjolt
fjor fjseq fjsf fjsne f£fjst fjueq fjuge
fjugt fjule fjult £fjun

For branch targets that are not PC relative, as emits

fbNX oof
jmp foo
oof:

when it encounters ‘fjXX foo’.

8.5.5.2 Special Characters

The immediate character is ‘4’ for Sun compatibility. The line-comment character is ‘| .
If a ‘#’ appears at the beginning of a line, it is treated as a comment unless it looks like ‘#
line file’, in which case it is treated normally.

8.6 SPARC Dependent Features

8.6.1 Options

The Sparc has no machine dependent options.

8.6.2 Floating Point

The Sparc uses IEEE floating-point numbers.

8.6.3 Sparc Machine Directives

The Sparc version of as supports the following additional machine directives:

.common This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like . comm, but the syntax is different.

.half This is functionally identical to .short.
.proc This directive is ignored. Any text following it on the same line is also ignored.

.reserve This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like .1comm, but the syntax is different.

Chapter 8: Machine Dependent Features

.seg This must be followed by "text", "data", or "datal". It behaves like .text,
.data, or .data 1.

.skip This is functionally identical to the .space directive.

.word On the Sparc, the .word directive produces 32 bit values, instead of the 16 bit

values it produces on many other machines.

8.7 80386 Dependent Features

8.7.1 Options

The 80386 has no machine dependent options.

8.7.2 AT&T Syntax versus Intel Syntax

In order to maintain compatibility with the output of gcc, as supports AT&T System
V/386 assembler syntax. This is quite different from Intel syntax. We mention these
differences because almost all 80386 documents used only Intel syntax. Notable differences
between the two syntaxes are:

e AT&T immediate operands are preceded by ‘$’; Intel immediate operands are undelim-
ited (Intel ‘push 4’ is AT& T ‘pushl $4’). AT&T register operands are preceded by ‘%’;
Intel register operands are undelimited. AT&T absolute (as opposed to PC relative)
jump/call operands are prefixed by ‘*’; they are undelimited in Intel syntax.

e AT&T and Intel syntax use the opposite order for source and destination operands.
Intel ‘add eax, 4’ is ‘addl $4, %eax’. The ‘source, dest’ convention is maintained
for compatibility with previous Unix assemblers.

e In AT&T syntax the size of memory operands is determined from the last character of
the opcode name. Opcode suffixes of ‘b’, ‘w’, and ‘1’ specify byte (8-bit), word (16-bit),
and long (32-bit) memory references. Intel syntax accomplishes this by prefixes memory
operands (not the opcodes themselves) with ‘byte ptr’, ‘word ptr’, and ‘dword ptr’.
Thus, Intel ‘mov al, byte ptr foo’ is ‘movb foo, %al’ in AT&T syntax.

e Immediate form long jumps and calls are ‘1call/1jmp $section, $offset’ in AT&T syn-
tax; the Intel syntax is ‘call/jmp far section:offset’. Also, the far return instruction
is ‘lret $stack-adjust’ in AT&T syntax; Intel syntax is ‘ret far stack-adjust’.

e The AT&T assembler does not provide support for multiple section programs. Unix
style systems expect all programs to be single sections.

8.7.3 Opcode Naming

Opcode names are suffixed with one character modifiers which specify the size of
operands. The letters ‘b’, ‘w’, and ‘1’ specify byte, word, and long operands. If no suffix is
specified by an instruction and it contains no memory operands then as tries to fill in the
missing suffix based on the destination register operand (the last one by convention). Thus,
‘mov %ax, %bx’ is equivalent to ‘movw %ax, %bx’; also, ‘mov $1, %bx’ is equivalent to ‘movw
$1, %bx’. Note that this is incompatible with the AT&T Unix assembler which assumes

Using as

that a missing opcode suffix implies long operand size. (This incompatibility does not affect
compiler output since compilers always explicitly specify the opcode suffix.)

Almost all opcodes have the same names in AT&T and Intel format. There are a few
exceptions. The sign extend and zero extend instructions need two sizes to specify them.
They need a size to sign/zero extend from and a size to zero extend to. This is accomplished
by using two opcode suffixes in AT&T syntax. Base names for sign extend and zero extend
are ‘movs...” and ‘movz...” in AT&T syntax (‘movsx’ and ‘movzx’ in Intel syntax). The
opcode suffixes are tacked on to this base name, the from suffix before the to suffix. Thus,
‘movsbl %al, %edx’ is AT&T syntax for “move sign extend from %al to %edx.” Possible
suffixes, thus, are ‘b1’ (from byte to long), ‘bw’ (from byte to word), and ‘w1’ (from word
to long).

The Intel-syntax conversion instructions

e ‘cbw’ — sign-extend byte in ‘%al’ to word in ‘}%ax’,

e ‘cwde’ — sign-extend word in ‘4ax’ to long in ‘%eax’,

e ‘cwd’ — sign-extend word in ‘%ax’ to long in ‘%dx:%ax’,

e ‘cdq’ — sign-extend dword in ‘%eax’ to quad in ‘%edx:%eax’,

are called ‘cbtw’, ‘cwtl’, ‘cwtd’, and ‘c1td’ in AT&T naming. as accepts either naming for
these instructions.

Far call/jump instructions are ‘lcall’ and ‘1jmp’ in AT&T syntax, but are ‘call far’
and ‘jump far’ in Intel convention.

8.7.4 Register Naming

Register operands are always prefixes with ‘%’. The 80386 registers consist of

e the 8 32-bit registers ‘,eax’ (the accumulator), ‘%ebx’, ‘hecx’, ‘%edx’, ‘hedi’, ‘%hesi’,
‘%ebp’ (the frame pointer), and ‘%esp’ (the stack pointer).

e the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘%hcx’, “hdx’, ‘%di’, ‘%si’, ‘%bp’, and ‘%sp’.

e the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%4bh’, ‘%bl’, ‘%ch’, ‘%cl’, ‘%dh’, and ‘%dl’ (These are
the high-bytes and low-bytes of ‘}%ax’, ‘%bx’, ‘%cx’, and ‘%dx’)

e the 6 section registers ‘%cs’ (code section), ‘%ds’ (data section), ‘%ss’ (stack section),
‘hes’, ‘hfs’, and ‘%gs’.

e the 3 processor control registers ‘/%cr0’, ‘%cr2’, and ‘%cr3’.

e the 6 debug registers ‘%db0’, ‘%db1’, ‘%db2’, ‘%db3’, ‘%db6’, and ‘%db7’.

e the 2 test registers ‘%tr6’ and ‘%tr7’.

e the 8 floating point register stack ‘%st’ or equivalently ‘%st(0)’, ‘%st(1)’, ‘%st(2)’,
“hst(3)7, “hst(4)’, ‘%hst(5)’, ‘%st(6)’, and ‘%st (7).

8.7.5 Opcode Prefixes

Opcode prefixes are used to modify the following opcode. They are used to repeat
string instructions, to provide section overrides, to perform bus lock operations, and to give
operand and address size (16-bit operands are specified in an instruction by prefixing what
would normally be 32-bit operands with a “operand size” opcode prefix). Opcode prefixes

Chapter 8: Machine Dependent Features

are usually given as single-line instructions with no operands, and must directly precede
the instruction they act upon. For example, the ‘scas’ (scan string) instruction is repeated
with:

repne

scas

Here is a list of opcode prefixes:

e Section override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’. These are automatically added

by specifying using the section:memory-operand form for memory references.

e Operand/Address size prefixes ‘datal6’ and ‘addr16’ change 32-bit operands/addresses
into 16-bit operands/addresses. Note that 16-bit addressing modes (i.e. 8086 and 80286
addressing modes) are not supported (yet).

e The bus lock prefix ‘lock’ inhibits interrupts during execution of the instruction it
precedes. (This is only valid with certain instructions; see a 80386 manual for details).

e The wait for coprocessor prefix ‘wait’ waits for the coprocessor to complete the current
instruction. This should never be needed for the 80386/80387 combination.

e The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string instructions to make them
repeat ‘iecx’ times.

8.7.6 Memory References

An Intel syntax indirect memory reference of the form
section: [base + indexx*scale + disp]
is translated into the AT&T syntax
section: disp (base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional
displacement, and scale, taking the values 1, 2, 4, and 8, multiplies index to calculate the
address of the operand. If no scale is specified, scale is taken to be 1. section specifies
the optional section register for the memory operand, and may override the default section
register (see a 80386 manual for section register defaults). Note that section overrides in
AT&T syntax must have be preceded by a ‘%’. If you specify a section override which
coincides with the default section register, as will not output any section register override
prefixes to assemble the given instruction. Thus, section overrides can be specified to
emphasize which section register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4 (%ebp)’, Intel: ‘[ebp - 4]’
base is ‘%ebp’; disp is ‘-4’. section is missing, and the default section is used
(‘hss’ for addressing with ‘%ebp’ as the base register). index, scale are both
missing.

AT&T: ‘foo(,heax,4)’, Intel: ‘[foo + eax*4]’
index is ‘%eax’ (scaled by a scale 4); disp is ‘foo’. All other fields are missing.
The section register here defaults to ‘%ds’.

Using as

AT&T: ‘foo(,1)’; Intel ‘[fool’
This uses the value pointed to by ‘foo’ as a memory operand. Note that base
and index are both missing, but there is only one ‘,”. This is a syntactic

exception.

AT&T: ‘Ygs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with section register section being
Uy 9’
hgs’.

Absolute (as opposed to PC relative) call and jump operands must be prefixed with ‘*’.
If no ‘*’ is specified, as will always choose PC relative addressing for jump/call labels.

Any instruction that has a memory operand must specify its size (byte, word, or long)
with an opcode suffix (‘v’, ‘w’, or ‘1’, respectively).

8.7.7 Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements. This
is accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently
close. If a byte displacement is insufficient a long (32-bit) displacement is used. We do
not support word (16-bit) displacement jumps (i.e. prefixing the jump instruction with the
‘addr16’ opcode prefix), since the 80386 insists upon masking ‘%eip’ to 16 bits after the
word displacement is added.

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’ and ‘loopne’ instruc-

tions only come in byte displacements, so that it is possible that use of these instructions
(gcc does not use them) will cause the assembler to print an error message (and generate
incorrect code). The AT&T 80386 assembler tries to get around this problem by expanding
‘jcxz foo’ to

jcxz cx_zero

jmp cx_nonzero
cx_zero: jmp foo
CX_Nonzero:

8.7.8 Floating Point

All 80387 floating point types except packed BCD are supported. (BCD support may
be added without much difficulty). These data types are 16-, 32-, and 64- bit integers,
and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each
supported type has an opcode suffix and a constructor associated with it. Opcode suffixes
specify operand’s data types. Constructors build these data types into memory.

e Floating point constructors are ‘.float’ or ‘.single’, ‘.double’, and ‘.tfloat’ for

32-, 64-, and 80-bit formats. These correspond to opcode suffixes ‘s’, ‘1’, and ‘t’. ‘t’
stands for temporary real, and that the 80387 only supports this format via the ‘f1dt’
(load temporary real to stack top) and ‘fstpt’ (store temporary real and pop stack)
instructions.

e Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’ for the 16-, 32-, and

64-bit integer formats. The corresponding opcode suffixes are ‘s’ (single), ‘1’ (long),
and ‘q’ (quad). As with the temporary real format the 64-bit ‘g’ format is only present

Chapter 8: Machine Dependent Features

in the ‘fildq’ (load quad integer to stack top) and ‘fistpq’ (store quad integer and
pop stack) instructions.

Register to register operations do not require opcode suffixes, so that ‘fst %st, %st(1)’
is equivalent to ‘fstl %st, %st(1)’.

Since the 80387 automatically synchronizes with the 80386 ‘fwait’ instructions are al-
most never needed (this is not the case for the 80286/80287 and 8086/8087 combinations).
Therefore, as suppresses the ‘fwait’ instruction whenever it is implicitly selected by one
of the ‘fn...” instructions. For example, ‘fsave’ and ‘fnsave’ are treated identically. In
general, all the ‘fn...” instructions are made equivalent to ‘f...” instructions. If ‘fwait’ is
desired it must be explicitly coded.

8.7.9 Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions that deserves mention.
The 16-, 32-, and 64-bit expanding multiplies (base opcode ‘0x£6’; extension 4 for ‘mul’ and
5 for ‘imul’) can be output only in the one operand form. Thus, ‘imul %ebx, %eax’ does not
select the expanding multiply; the expanding multiply would clobber the ‘%edx’ register, and
this would confuse gcc output. Use ‘imul %ebx’ to get the 64-bit product in ‘%edx:%eax’.

We have added a two operand form of ‘imul’ when the first operand is an immediate
mode expression and the second operand is a register. This is just a shorthand, so that,
multiplying ‘%eax’ by 69, for example, can be done with ‘imul $69, %eax’ rather than ‘imul
$69, %eax, heax’.

Using as

GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Using as

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,

10.

Using as

by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a

GNU GENERAL PUBLIC LICENSE

version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Using as

Applying These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the

Free Software Foundation, Inc., 675 Mass Ave,

Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in

the program ‘Gnomovision’ (which makes passes at compilers)
written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Using as

Index

Index

(Index is nonexistent)

Using as

Short Contents

) O T 1o 1
2 Command-Line OptionS. s e v oo v v v v v eeseeeoooooossss 5
T 117 b 7
4 Sections and Relocation .o oo v eeeeeeeeeeeeooocoaons 13
5 Symbols «oveiii ittt i i i i i 19
6 EXPIreSSIONS o oo oo o oo oeooooososocssooscssossossss 23
7 Assembler DireCtivesS o v o e o oo oo oo oo sooeeossssossss 25
8 Machine Dependent Features « o o o o oo v v v vveeevoeesss 37
GNU GENERAL PUBLICLICENSE .+ o o o o s vt v e e nnesss 59

il

Using as

Table of Contents

1 OVeIVIEW ..ottt ittt it enneeeneeenneonns 1
1.1 Structure of this Manual.............. 2

1.2 as, the GNU Assembler......... 2

1.3 Object File Formats............o ... 2

14 Command Line 2

1.5 Imput Files..... ..o 3

1.6 Output (Object) File ... 3

1.7 Error and Warning Messagescooooiiio... 4

2 Command-Line Options 5
2.1 Enable Listings: =a, =al, =asovunriiinnnennan.)

2.2 D 5

2.3 Work Faster: —f. 5

2.4 .include search path: -I path........................... 5

2.5 Difference Tables: =k, 5

2.6 Include Local Labels: =L........... 6

2.7 Name the Object File: =o........o ... 6

2.8 Join Data and Text Sections: -R.......................... 6

2.9 Announce Version: —v............ciiuiiiii. 6

2.10 Suppress Warnings: =Wcoooviiiiinian... 6

3 Syntaxiiiiiiiiii i i 7
3.1 Pre-Processing 7

3.2 WHhitesSpace ovou et 7

3.3 Commentsottt 7

3.4 Symbols.o 8

3.0 Statements 8

3.6 Constantsiiiiii 9

3.6.1 Character Constants 9

3.6.1.1 Strings......coooviiiiiiiiiiii, 9

3.6.1.2 Characterscovviiiiin.... 10

3.6.2 Number Constants............................. 10

3.6.21 Integers............., 10

3.6.2.2 Bignums 11

3.6.2.3 Flonums.............coiiiiiin. ... 11

4 Sections and Relocation................... 13
4.1 Background....... 13

4.2 1d SectionsS.oovi i 14

4.3 asInternal Sections............ i 15

4.4 Sub-Sectionscouirii 16

4.5 DSS SECLION . oottt 17

i1

v

5 Symbols.............iiiiiiiiiiiiiii... 19
5.1 Labels......ooi 19
5.2 Giving Symbols Other Values 19
5.3 Symbol Names......... ... 19
5.4 The Special Dot Symbol 20
5.5 Symbol Attributes................ 20

5.5.1 Value..... ..o 20
B.5.2 TYPe et 21
5.5.3 Symbol Attributes: a.out...................... 21
5.5.3.1 Descriptor........... 21
5.5.3.2 Other....... 21
5.5.4 Symbol Attributes for COFF 21
5.5.4.1 Primary Attributes.................... 21
5.5.4.2 Auxiliary Attributes................... 21

6 EXpressionsciiiiiiiiinnnaas 23
6.1 Empty Expressions...............coiiiiiiiiiiiii... 23
6.2 Integer Expressions.................oiiiiiiiiii... 23

6.2.1 Arguments................. i 23
6.2.2 Operators..........coouiiiiiiiiiiiii ., 23
6.2.3 Prefix Operator 23
6.2.4 Infix Operators............ ..., 24

7 Assembler Directives...................... 25
7.1 @bOTt oot 25
7.2 ABORT ..ottt 25
7.3 .align abs-expr , abs-eXpr................iiiiiiiiiii 25
74 .app-file Stringcououiiiiiiininn... 25
7.5 .ascii Mstring"... ... 25
7.6 .asciz "String".......... .. 25
T.7 .Dyte eXpressionsc.cooeeeiiiiiiiineeennn... 26
7.8 .comm symbol , length, 26
7.9 .data subsection................ ...l 26
710 .def name ...t 26
7.11 .desc symbol, abs-expression.......................... 26
T A2 ddm .o 26
7.13 .double lONUIIS vttt 26
T14 ejeCt ... 27
0 T = Y- PP 27
716 cendefo 27
TAT Lendif ... 27
7.18 .equ symbol, expression................. ..., 27
719 LeXberm. ..ot 27
720 file Stringo 27
7.21 .fill repeat , size , value 28
722 .float flonums it 28
7.23 .global symbol, .globl symbol 28

Using as

7.24 . hword eXpPreSSiOnSouueeueeenneenneennennnen. 28
720 cident 28
7.26 .if absolute expression.................c.coiiiiiinan... 28
7.27 .include "fle" 29
7.28 ANt @XPIreSSIONS . .o v oot tie ettt e 29
7.29 .lcomm symbol , length 29
730 JLflags......ovviii 29
7.31 .line line-number, 29
7.32 .1n line-number 30
83 1 T I - 30
7.34 .1ODE @XPIESSIONS ... eee et ettt iiiieeie e 30
7.35 .lsym symbol, expression................... ... 30
7.36 cnOLASt ..ot e 30
7.37 .octa bignums..........l 30
738 orgmew-lc , fill................... L. 31
7.39 .psizelines, columns........... ... 31
740 .quad bignums............. .. 31
7.41 .sbttl "subheading" 31
742 0SCL ClaSS o vt 32
7.43 .section name, SUbSeCtion.................ccouiiniii.. 32
7.44 .set symbol, expression................ ..., 32
7.45 .ShOrt eXpressions.............oeuueeuneeineennennnnn. 32
746 .single lonUMSttt 32
O - P 32
748 .spacesize , fill............ .. . i 33
TA49 L SpaACE .. 33
7.50 .stabd, .stabn, .stabs.............. ... 33
751 .tagstructname.................... i 34
7.52 .text subsection.............. ..., 34
7.53 .title "heading".......... ..ot 34
754 ctypeint..... ... 34
755 oval addr ... 34
7.56 .WOrd eXPreSSionsSoouumiininneiinennenn.. 34
7.57 Deprecated Directives it 35
8 Machine Dependent Features.............. 37
8.1 VAX Dependent Features............................... 37
8.1.1 VAX Command-Line Options................... 37

8.1.2 VAX Floating Point 38

8.1.3 Vax Machine Directives 38

814 VAX Opcodes.......coovueieeiniiiiininannna .. 38

8.1.5 VAX Branch Improvement 38

8.1.6 VAX Operands..........coouiiiiiinneeinnna.. 40

8.1.7 Not Supportedon VAX 40

8.2 AMD 29K Dependent Features.......................... 40
8.2.1 Options.......coouiiiii i 40

8.2.2 Symbtax. ... 41

8.2.2.1 Special Characters 41

vi

8.2.2.2 Register Names....................... 41

8.2.3 Floating Point................. ..., 41

8.2.4 AMD 29K Machine Directives 41

8.25 Opcodes.......cooiiiiiii 42

8.3 H8/300 Dependent Features............................. 42

8.3.1 Options......oviuiie 42

8.3.2 Synmtax........oiiiiii e 42

8.3.2.1 Special Characters 42

8.3.2.2 Register Names....................... 42

8.3.2.3 Addressing Modes..................... 43

8.3.3 Floating Point........ 43

8.3.4 HS8/300 Machine Directives..................... 43

8.3.0 Opcodes ... 43

8.4 Intel 80960 Dependent Features 46

8.4.1 1960 Command-line Options 46

8.4.2 Floating Point..............., 47

8.4.3 1960 Machine Directives........................ 47

8.4.4 1960 Opcodes.........oiiiiiiiii ... 48

8.4.41 callj...ovuuiiiin i 48

8.4.4.2 Compare-and-Branch.................. 48

8.5 M680x0 Dependent Features 49

8.5.1 M680x0 Options........coovveiiinneinenn... 49

8.5.2 Symbax. ... 49

8.5.3 Floating Point............... 50

8.5.4 680x0 Machine Directives 50

8.5.0 Opcodes.......ooouiiiiiii i 51

8.5.5.1 Branch Improvement o1

8.5.5.2 Special Characters 52

8.6 SPARC Dependent Features 52

8.6.1 Options.......oouiiiiii i 52

8.6.2 Floating Point........ 52

8.6.3 Sparc Machine Directives....................... 52

8.7 80386 Dependent Features 53

8.7.1 Options.o 53

8.7.2 AT&T Syntax versus Intel Syntax 53

8.7.3 Opcode Naming................. ..., 53

8.7.4 Register Naming........... 54

8.7.5 Opcode Prefixesot 54

8.7.6 Memory References............................ 95

8.7.7 Handling of Jump Instructions.................. 56

8.7.8 Floating Point................. ..., 56

8.79 Notes. ...t e o7

GNU GENERAL PUBLIC LICENSE 59

Preamble. 59
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION 60

Applying These Terms to Your New Programs 64

Using as

vil

viii Using as

