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Abstract

A good foreign-language interface is crucial for the success
of any modern programming language implementation. Al-
though all serious compilers for functional languages have
some facility for interlanguage working, these are often lim-
ited and awkward to use.

This article describes the features for bidirectional inter-
language working with Java that are built into the latest
version of the MLj compiler. Because the MLj foreign inter-
face is to another high-level typed language which shares a
garbage collector with compiled ML code, and because we
are willing to extend the ML language, we are able to pro-
vide unusually powerful, safe and easy to use interlanguage
working features. Indeed, rather then being a traditional
foreign interface, our language extensions are more a partial
integration of Java features into SML.

We describe this integration of Standard ML and Java,
first informally with example program fragments, and then
formally in the notation used by The Definition of Standard
ML.

1 Introduction

Functional language implementations nearly all provide
some way to call external C functions [4, 9, 12], but direct in-
terworking with a low-level, non-typesafe, language with no
garbage collection is never going to be easy or pretty. Most
functional programmers never use the foreign interface ex-
cept via functionally-wrapped libraries written by compiler
experts.

The importance of good foreign language interfaces for
functional languages is now widely recognised, particularly
given the wider trend towards mixed-language component-
based programming. Recent years have seen a number
of functional interfaces to language-independent component
architectures, notably COM (see, for example, [6, 11]) and
CORBA [10]. To quote [6]:

“Programming languages that do not supply a
foreign-language interface die a slow, lingering
death – good languages die more slowly than bad
ones, but they all die in the end.”
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One of the main motivations for the design of MLj [1],
a compiler for Standard ML that generates Java bytecodes,
was to provide a foreign-language interface that would give
ML programmers access to the extensive libraries available
in Java. We expected to be able to implement a much more
useful and convenient foreign language interface to Java than
is possible for C because the ‘semantic gap’ between ML and
Java is comparatively small:

• Both languages are strongly typed, and there are some
good correspondences between the basic types in the
two languages. For example:

– The numeric types are a close match;

– Strings are immutable vectors of (possibly-null)
characters in both languages;

– Array bounds are checked in both languages;

– Neither language has explicit pointer types.

• Both languages have automatic storage management.
Furthermore, because we compile ML code to Java
bytecodes, we actually use the same garbage collector
for ML and Java objects so there is no need to deal with
references between independently managed heaps.

• Exception handling in the two languages is similar.

There are, however, still significant differences between the
two languages; the concepts of objects, classes, inheritance
and dynamic method dispatch which are at the heart of
Java have no natural counterparts in ML, and Java lacks
many features of ML, such as parametric polymorphism and
higher-order functions. We did not wish to burden users
with the complexities of a separate Interface Definition Lan-
guage (IDL), as is used for COM and CORBA, so the natural
(if unusually bold) approach was to extend SML with types
and terms corresponding to Java constructs. Doing this well
is a very tricky language design problem: the (unattainable)
ideal would be an object-oriented conservative extension of
ML which still maintains the spirit of ML but which also
corresponds naturally and predictably to the type system of
Java.

The first version of MLj (release 0.1) extended SML with
types and syntax which covered essentially all of Java. How-
ever, the two worlds were kept fairly separate. For exam-
ple, the type Java.int represented Java language integers
(passed to or from external Java code) and converting be-
tween this type and ML’s int type required an explicit



open javax.swing java.awt java.awt.event
_classtype SampleApplet () : JApplet ()
with local

val prefix = "Counter: "
val count = ref 0
val label = JLabel(prefix ^ "0", JLabel.CENTER)
fun makeButton (title, increment) =
let

val button = JButton (title:string)
val listener =

ActionListener ()
with

actionPerformed(e : ActionEvent option) =
(count := !count + increment;
label.#setText(prefix ^ Int.toString(!count)))

end
in

button.#addActionListener(listener);
button

end
in

init () =
let

val SOME pane = this.#getContentPane ()
val button1 = makeButton ("Add One", 1)
val button2 = makeButton ("Add Two", 2)

in
pane.#add(button1, BorderLayout.WEST);
pane.#add(label, BorderLayout.CENTER);
pane.#add(button2, BorderLayout.EAST);

end
end

Figure 1: A sample applet in MLj

Java.fromInt or Java.toInt coercion, which would actu-
ally disappear during compilation because ML’s int is rep-
resented as Java’s int in the compiled code. The extensions
for creating classes from within ML included new keywords
for all Java class and method attributes, even where these
overlapped conceptually with existing ML concepts. For
example, the namespace management of Java’s static final
fields and static methods provided by classes overlaps the
scoping of ML value bindings provided by the module sys-
tem, and mutable fields are similar to ML refs.

Experience with the MLj 0.1 extensions showed that they
were extremely useful, but that there was plenty of scope for
improvement. Amongst other things, the strict separation
of primitive types was unnecessarily annoying, there was too
much baroque syntax associated with the embedding of Java
in ML (some of which was rarely used because there were
better ways of using existing ML constructs to achieve the
same effect) and one often wished to treat Java fields and
methods in a more first-class way.

This article describes the revised design of the inter-
language working extensions that is being implemented for
the next version of MLj and the rationale for that design.
The new extensions are much more of an integration of
Java concepts within ML than an interface between the
two languages, though for compatability with SML, we have
stopped short of trying to design a fully-fledged ‘natural’
object-oriented extension of ML. We also sketch a formali-
sation in the style of the Definition of Standard ML [13].

We assume a knowledge of ML and a passing familiarity
with Java. Note that for clarity of presentation we omit
certain features of the ML-Java interface, in particular, the

use and definition of Java interfaces, and the formalisation
of certain aspects.

2 Design goals

We wanted ML code to be able to read and write exter-
nal Java fields, call external Java methods and treat exter-
nal Java objects in a first-class way – storing them in ML
data structures, passing and returning them from ML func-
tions. We also wanted ML code to be able to define new
Java classes which extend existing external classes (and im-
plement external interfaces) with methods written in ML.
These classes should be accessible and usable either from
within the ML program or by other external Java code.

In addition to these basic goals, we wanted the interface
to have a certain ‘flavour’. At first we took the view that
the interface could be slightly ugly when compared with ML
itself, as it would only be used by library-writers to provide
a functional wrapper around an existing Java package; in-
deed, the strangeness of any new syntax would serve as re-
minder that the programmer was doing something reserved
for experts. However, once we discovered how useful and
pleasant it was to have straightforward, safe interoperabil-
ity with Java’s standard library code and third-party Java
applications (and sometimes even to develop new mixed-
language applications from scratch), we began to think that
this should be made as convenient and natural as possible.
Therefore in the most recent version of the foreign-language
interface we have aimed to provide:

• Simplicity : the syntax used to access Java classes and
to create new ones should be as lightweight as possi-
ble so that a programmer can use it without to much
of a mental context-switch. To attain simplicity as
many ML concepts as possible were re-used (for ex-
ample, packages are identified with structures and sub-
packages with substructures) but this was done only
where it makes sense semantically (for example, static
methods are like ML functions but non-static (virtual)
methods are not).

• Compatibility : correct programs written using SML’97
should typecheck and execute without alteration. This
severely constrained the syntax extensions that we
could use, but we believe that our design is tasteful
and unobtrusive. We have not quite managed to pre-
serve all the equations which hold in SML’97 since, for
example

("h"^"i","h"^"i") and
let val x="h"^"i" in (x,x) end

are not contextually equivalent (as Java can check ob-
ject identity).

• Safety : one pleasant aspect of Java is that type safety
is built-in. In contrast to C, programs cannot cor-
rupt the store, leave pointers dangling, and so on.
However, ML goes further, insisting that values are
bound explicitly at their definition, whereas in Java
the possiblity of a default null value can lead to a
NullPointerException. To retain the spirit of ML, we
are quite strict about values of Java class and array
types, insisting that null values are checked for explic-
itly.
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Java notion ML notion/new syntax
primitive type base type
class name type identifier
array type array type
null value NONE
void type unit type
multiple arguments single tuple argument
mutable fields ref type
package structure
subpackage substructure
importing a package opening a structure
static field value binding
static method function binding
non-static field access .#
non-static method invocation .# and .##
object creation function binding
casts :> in expressions
instanceof :> in patterns
class definition _classtype
private fields local declarations
private/package access methods signature matching

Table 1: Analogies between ML and Java

• Power : Many of the constructs that we provide corre-
spond quite closely with those found in the Java lan-
guage, both syntactically and semantically, but there
were a few places where we were able easily to improve
on Java, for example making methods and fields first-
class, and by introducing a type-case construct.

Just as important as our goals is one of our non-goals.
We decided that, at least at this stage, we would not al-
low arbitrary ML values (such as closures or values of user-
defined datatypes) to be passed to external Java code. This
(a) seemed less useful than the ability to pass values the
other way (any external Java code that could do anything
interesting with an ML value would be better written in
MLj), (b) would potentially compromise safety by, for ex-
ample, allowing Java code to mutate supposedly immutable
ML values, and (c) would require us to use a predictable
uniform representation for ML values, which would inhibit
many of the optimisations performed by our compiler. How-
ever, it seemed unduly restrictive to prevent classes created
from within an MLj program but which do not get exported
to the external Java world from making free use of values of
arbitrary ML types. This introduces a slight complication
into our model, as some MLj classes are now regarded as
exportable and others as purely internal – the details are
explained later.

Table 1 summarizes the correspondence between Java
concepts and existing SML concepts or new features that
we introduced. The code in Figure 1 illustrates many of
these, and we will use it as a running example throughout.
Two buttons control the incrementing of a common counter
that is displayed in the centre. The code is for JavaSoft’s
Swing GUI framework.

3 Types

3.1 Primitive and class types

The Definition of Standard ML [13] does not specify the base
types of the language, and the Standard Basis library speci-

Java type ML type
boolean bool
byte Int8.int
char char
double real
float Real32.real
int int
long Int64.int
short Int16.int
java.lang.String string
java.lang.Exception exn
java.math.BigInteger IntInf.int
java.util.Calendar Date.date

Table 2: Correspondence between types in Java and ML

fication does not prescribe particular sizes for numeric types,
instead leaving it up to the implemention. Hence we were
able to match ML base types to Java primitive types, avoid-
ing the need for unpleasant coercions when passing values of
base type to and from Java.1 Table 2 gives the correspon-
dence that we used.

The first eight entries in the table are the Java primitive
types. The remainder are class types, which can be referred
to from within ML using the same syntax as in the Java
language, so for example java.lang.StringBuffer is a Java
string buffer and java.awt.Color is a Java colour. This
syntax works because of the interpretation of Java packages
as structures and subpackages as substructures, discussed
later.

There arises the question of which Java types should be
given equality status within ML, that is, permitted as ar-
guments to ML’s polymorphic equality operator =. For the
base types listed in Table 2, the Basis Library forces the
issue: all are equality types except for real, Real32.real,
exn and Date.date. For other class types, there are three
alternatives: equality by identity (Java’s == operator), user-
defined equality (Java’s equals method), or no equality at
all. The first can be rejected as being outside the spirit of
ML, and would in any case conflict with equality-by-value
on strings and big integers; the second also does not have
the right flavour, as = is an equivalence relation for all appli-
cable types in ML, and user-definability would break this;
therefore, we decided to exclude general class types from
having equality status.

3.2 Arrays

Java arrays have virtually identical semantics to ML arrays:
their size is fixed at creation-time, indexing starts at zero,
equality is based on identity not value, and an exception
is raised upon out-of-bounds access or update. Therefore
the ML array type constructor array corresponds to Java’s
array type constructor [].

The single glitch is Java’s unsound covariant subtyping
on arrays, and its corresponding dynamic check on array
update to fix up the unsoundness. For ML arrays imple-
mented using Java arrays, this check always succeeds and
is therefore unnecessary, but unfortunately must introduce
some performance overhead.

1In fact, we depart slightly from the basis specification in adopting
Java’s use of Unicode for characters and strings; the basis prescribes
ASCII 8-bit characters.
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3.3 Null values

In the Java language, variables with class or array types
(known collectively in the Java literature as reference types),
are allowed to take on the value null in addition to object
or array instances. Operations such as method invocation,
field access and update, and array access and update, raise
NullPointerException if their main operand is null.

ML does not have this notion, and values must be bound
explicitly when created. Thus operations such as assign-
ment, indirection, and array access and update are inher-
ently safer than the corresponding operations in Java. We
wished to retain this safety in our Java extensions to ML,
and so interpret a value of Java reference type as “non-null
instance”.

Nevertheless, when a Java field of reference type is ac-
cessed from ML or a value of reference type is returned from
an external Java method invoked by ML, it may have the
value null and this must be dealt with by the ML code.
Also, it should be possible to pass null values to Java meth-
ods and to update Java fields with the null value. Fortu-
nately the ML basis library already defines a type that suits
this purpose perfectly:

datatype ’a option = NONE | SOME of ’a

The valOf function (of type ’a option -> ’a) can be used
to extract the underlying value, raising Option when passed
NONE.

We interpret values of Java reference type that cross the
border between ML and Java as values of an option type.
For example, a stand-alone Java application must have a
method main with the following prototype:

public static void main(java.lang.String []);

Inside ML, the single argument to this method is treated as
a value of type

string option array option

meaning “a possibly-null array containing possibly-null
strings”.

3.4 Field types

Java fields qualified by the keyword final are immutable
and their types are interpreted as indicated above, us-
ing option to denote the possibility of null values for ob-
jects or arrays. For example, the field declared in the
java.lang.System class as

public static final java.io.InputStream in;

is interpreted as having type java.io.InputStream option.
Fields not qualified by final are mutable and their types

are interpreted using ML’s ref type constructor. So a field
declared by

public static byte[] b;

is given the ML type Int8.int array option ref.

3.5 Method types

Java method types are interpreted as follows. First, void
methods are considered as having unit result type; similarly
methods that take zero arguments have unit argument type.
Second, Java has a syntax for multiple arguments but ML

does not, so methods with multiple arguments are given a
single tuple argument type. (The alternative, a curried func-
tion type, presents no problems but the syntax of method
invocation inside ML would then be very different from the
syntax in Java). Finally, when arguments and results are ob-
jects or arrays, their types are interpreted using the option
type constructor as described earlier.

Consider the following two prototypes taken from the
system class java.lang.String:

public static java.lang.String
copyValueOf(char[], int, int);

public java.lang.String toString();

Their types are interpreted respectively as

char array option * int * int -> string option

and unit -> string option.

3.6 Overloading and implicit coercions

Java permits the overloading of methods: the definition
of multiple methods with the same name within a single
class. The methods are distinguished by their argument
types. Furthermore, method invocations implicitly coerce
arguments up through the class hierarchy. The combination
of these features can lead to ambiguity, which Java com-
pilers resolve statically by picking the most specific method
with respect to an ordering on argument types, rejecting a
program if there is no unique such method.

MLj allows implicit coercions on method invocation us-
ing Java’s reference widening coercions together with an ad-
ditional coercion from τ to τoption for any Java reference
type τ . We do not allow Java’s numeric widening coercions
to be implicit as the ‘spirit of ML’ is to use explicit conver-
sions such as Int64.fromInt for these.

We do not allow ambiguity to be resolved by Java-style
most specific method rules, as these interact unpleasantly
with type inference: our intention is to have typing rules
and an inference algorithm such that a program is accepted
iff there is a unique resolution of all the method invocations
(with respect to the rules). Use of the ‘most specific’ rule
during inference can lead to type variables becoming bound,
and hence ambiguities far from the point of the rule’s appli-
cation being resolved in unexpected ways.

4 Accessing Java from ML

4.1 Packages, subpackages, and classes

If one ignores the class hierarchy and non-static fields and
methods (i.e. a non-object-oriented fragment of Java), then
Java packages and classes can be seen (and are used) as a
minimal module system, providing a way of carving up the
namespace for fields and methods into manageable chunks.
We therefore chose to model them using the SML module
system.

Top-level packages in the Java world are reflected in ML
as a collection of top-level structures, with subpackages as
substructures. Classes are reflected as three separate bind-
ings: as type identifiers, as values of function type used
to construct instances of the class (discussed later), and as
structures containing value bindings that reflect static fields
and methods. For example, within the package java.lang
(reflected as a structure lang inside a top-level structure
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java), the class Integer is mapped to an ML type identi-
fier Integer, to a value identifier Integer, and to a struc-
ture Integer. There is no problem having types, values and
structures sharing a name as they inhabit different names-
paces in SML.

4.2 Import as open
open package
open class-name

Packages and classes interpreted as structures can be manip-
ulated like any other structure in SML: they can be rebound,
constrained by a signature, passed to functors, and opened.

Opening of packages-as-structures is analogous to Java’s
import package.* construct; for example, the declaration
open javax.swing in Figure 1 is roughly equivalent to
import javax.swing.*. However, when used with classes-
as-structures the open mechanism is more powerful, permit-
ting unqualified access to static fields and methods. Also,
subpackages become visible as structures: the sample pro-
gram opens java.awt and then uses event.ActionEvent to
refer to the java.awt.event.ActionEvent class.

4.3 Fields
class-name.field-name
exp.#field-name

Static fields are mapped to ML value bindings. Fields quali-
fied by final really are treated as simple values; an example
of this is the BorderLayout.WEST constant used in Figure 1.
Non-final fields are interpreted as ML value bindings with
ref types. The implementation permits these to be used
in a first-class way, improving on Java. To make this pos-
sible, values of Java reference type are compiled as objects
with ‘reader’ and ‘writer’ methods; immediate assignment or
dereferencing compiles to code as efficient as that produced
by a Java compiler. There is however a small performance
hit for ordinary ML ref values that have Java types, as if it
wasn’t for Java these could be implemented more efficiently
by performing access and update inline.

As mentioned earlier, we provide explicit provision for
null values through the use of option types. For example,
the colour constants provided in the java.awt.Color class
have Java declarations such as

public static final java.awt.Color pink;

and might be accessed in ML by

val SOME pink = java.awt.Color.pink

Non-static fields (instance variables) are accessed by the
new exp.#field-name syntax. (It is not possible to use a
simple dot notation because there would be no means of
distinguishing such expressions from those used for static
field access). Here exp is an ML expression of class type
and field-name is a Java field name. As with static fields,
non-final fields can be used as first-class ref values.

4.4 Methods
class-name.method-name
exp.#method-name

Static methods are mapped to ML value bindings of func-
tion type. Again, we improve on Java, and permit such
functions to be used in a first-class way, by eta-expanding
where necessary:

val colours =
map (valOf o java.awt.Color.getColor)

["red", "green", "blue"]

Here we have made use of the automatic insertion of the
SOME coercion as discussed in Section 3.6, as the getColor
method is interpreted as having the type

string option -> java.awt.Color option

but values of type string are passed to it.
Non-static (virtual) method invocation uses the syntax

exp.#method-name, where exp is an expression of class type
and method-name is a method defined or inherited by that
class. There are many examples of this in Figure 1: the
label.#setText invocation again illustrates a coercion from
string to SOME string, and the pane.#add invocation il-
lustrates class coercions (to Component option) and over-
loading (as the add method has many alternative argument
types).

4.5 Object creation class-name exp

In Java, new instances of a class are created using the syn-
tax newclass-name(arg1, . . . , argn), where argi are the argu-
ments to one of the constructors defined by the class.

We avoid the need for any new syntax in MLj by binding
the class name itself to the constructor function. If there is
more than one constructor, then the binding is overloaded.
For example, the constructors for javax.swing.JButton ap-
pear as bindings to the identifier JButton inside the struc-
ture javax.swing. This is illustrated in Figure 1 in the
construction of JLabel and JButton objects.

As with methods, constructors can be used as first-class
values, and implicit coercions are applied using the same
rules. For example:

val labels = map javax.swing.JLabel ["A", "B"]

4.6 Casts and typecase
(expression) exp :> ty
(pattern) id :> ty

A new syntax is introduced (borrowed from O’Caml [14, 12])
to denote Java-style casts. It can be used to cast an object
up to a superclass:

val c = (JButton "My button") :> Component

Explicit coercions are sometimes required when passing Java
objects to ML functions, as coercions are only applied im-
plicitly when invoking Java methods.

The same syntax can also be used to cast an object down
to a subclass, with Java’s ClassCastException thrown if the
actual class of the object is not compatible. A safer alter-
native that combines downcasting with Java’s instanceof
is the use of :> inside ML patterns. This can be used to
provide a construct similar to the TYPECASE of Modula-3 [3]
and other languages. Suppose that a parser was written in
Java and used subclassing of a class Expr to represent differ-
ent node types. Then we could traverse the parse tree using
case analysis:

case (expr : Expr) of
ce :> CondExpr => ...code for conditionals...

| ae :> AssignExpr => ...code for assignment...
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The pattern id :> ty matches only when the examined ex-
pression has the class type ty, in which case the identifier id
is bound to the expression casted down to type ty.

The new construct is a pattern like any other. It can be
used in val bindings, such as

val x :> java.awt.Window = y

to give an effect similar to downcasting in expressions but
raising ML’s Bind exception when the match fails. It can
also be used in exception handlers, such as

val result = (f y)
handle e :> java.lang.SecurityException => 0

in order to handle (and possibly deconstruct) Java ex-
ceptions. The order in which handlers appear is impor-
tant. In the example below, IllegalArgExn subclasses
RuntimeException so if the handlers were switched the sec-
ond handler would never be reached.

fun test x = (do_some_java x)
handle y :> IllegalArgExn => f y

| _ :> RuntimeException => g x

Finally, the behaviour of Java’s e instanceof c can be
emulated by case e of _ :> c => true | _ => false.

5 Creating Java classes in ML

So far we have seen how to access external Java code from
ML. We now turn to the problem of creating new Java
classes inside ML.

5.1 Static classes

As we have observed already, static fields and methods are
orthogonal to the object-oriented nature of Java, and are
reflected as bindings in SML structures. We follow this cor-
respondence in allowing the export of SML structures as
Java classes containing only static members. This requires
no new language constructs – instead, a compiler directive is
used to specify which top-level structures are to be exported
as named classes.

The signature of the structure is interpreted in the fol-
lowing way:

• Value bindings with function types are exported as
public static methods with the same name, provided
that the function type is exportable.

• Other bindings are exported as static final fields with
the same name, provided that the value type is ex-
portable.

In essence, an exportable type is one that safely captures the
way in which a field or method can be used from the Java
world. Thus, pure ML types (such as int list) are not
permitted, as Java programs have no way of knowing how
these are represented. For Java reference types, the option
type constructor must be applied whenever it is possible
for Java to construct null values. This is true for method
arguments (because a Java program could pass in null) but
not for method results or fields.

We do not provide for the export of mutable fields.
Whilst Java’s mutable fields can be modelled using ML’s
first-class refs, the converse is not true, as the following
example demonstrates:

structure S =
struct

val x = ref 5
val y = x

end

It is not possible to express this kind of aliasing using Java
mutable fields. Methodologically, the absence of static non-
final fields is no great loss, as it is poor object-oriented style
to provide direct read-write access to what is essentially a
global variable.

5.2 Creating instantiable classes from ML

_classtype 〈cmod〉 class-name pat 〈: ty exp〉
with 〈local dec in〉 method-dec end

The export of structures as classes provides a means for Java
to call ML, but it does not allow for the creation of class
libraries with an object-oriented interface, neither does it
allow for the specialisation of existing Java classes with new
instance methods coded in ML. For this we introduce a new
construct whose syntax is shown above. This introduces a
new class type class-name defined by the following elements:

• The optional class modifier in cmod can be abstract
or final and has the same meaning as in Java.

• The expression class-name pat acts as a ‘constructor
header’, with pat specifying the formal argument (or
tuple of arguments) to the constructor. Any variables
bound in pat are available throughout the remainder of
the class type construct, an idea that is borrowed from
O’Caml [14, 12].

Unlike Java, multiple constructors are not supported;
a future enhancement might allow additional construc-
tors to be expressed as invocations of a ‘principal’ con-
structor.

• The optional ty exp specifies a superclass type ty and
an argument (or tuple of arguments) exp to pass to the
superclass constructor.

• dec is a set of SML declarations that are local to a
single instance of the class.

• method-dec is set of instance method declarations, de-
fined using the syntax already used for ordinary func-
tions, but with optional qualifiers abstract, final and
protected preceding the method identifiers.

• We follow Java in allowing several classes to be defined
simultaneously by mutual recursion, using the keyword
and to separate the declarations.

In keeping with tradition, and to demonstrate that classes
are usable in MLj without reference to Java, Figure 2
presents a variation on the classic coloured-point example.

A striking aspect of the new construct is the absence of
any direct support for field declarations. Instead, the decla-
rations following local are evaluated when a class instance
is created but are accessible from the method declarations
for the lifetime of the object. In this example we have mim-
icked private mutable fields using ref bindings (x and y),
with initial values provided by arguments to the construc-
tor (xinit and yinit). The methods, which may be mutu-
ally recursive (as suggested by the and separator), can refer
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structure PointStr =
struct

_classtype Point(xinit, yinit)
with local

val x = ref xinit
val y = ref yinit

in
getX () = !x

and getY () = !y
and move (xinc,yinc) = (x := !x+xinc; y := !y+yinc)
and moveHoriz xinc = this.#move (xinc, 0)
and moveVert yinc = this.#move (0, yinc)

end

_classtype ColouredPoint(x, y, c) : Point(x, y)
with

getColour () = c : java.awt.Color
and move (xinc, yinc) = this.##move (xinc*2, yinc*2)

end
end

Figure 2: Coloured points in MLj

both to these arguments and to the bindings introduced by
local.

The ColouredPoint class derives from the Point class,
passing two of its constructor arguments straight on to its
superclass constructor. It has no local declarations and a
new method that simply returns its colour. In order to im-
plement this method using Java’s class mechanism, the com-
piler will probably store c in a Java field, but note that the
only means of accessing it from MLj is through the method
provided.

Because the declarations are local to the class instance,
it is not possible to gain access to the corresponding dec-
larations for other instances of the class. In Java, private
fields for other instances can be accessed directly, for exam-
ple, to implement an equals method. In MLj, this can be
emulated by providing appropriate ‘get’ and ‘set’ methods
for the fields, then hiding these by a signature as explained
below.

The special identifier this has the same meaning as in
Java, referring to the object on which a method was invoked.
It is used in Point to define horizontal and vertical move-
ment using the more general move method. However, we do
not support super as its semantics in Java confusingly differs
depending on whether it is used to access a field (in which
case it has the same meaning as a cast up to the superclass
and so is superfluous) or to invoke a method (where it has
a different run-time semantics, namely to ignore the over-
riding of the method in the subclass). Instead, we provide
a syntax

exp.##method-name

that can be used only within a class definition on objects of
that same class, and means “invoke method method-name in
the superclass, ignoring any over-riding of the method in the
current class”. It is used in ColouredPoint to redefine move
using the move method defined in Point, making coloured
points “faster movers” than plain points. By the magic of
virtual method dispatch, the moveHoriz and moveVert in-
herited by coloured points also inherit this speed increase.

We allow references to this in the superclass construc-
tor arguments and in the local declarations. Unfortunately,
this opens up a type loophole as methods invoked on this

_classtype C ()
with

m () = this.#m2 ()
and m2 () = 0

end

_classtype D () : C ()
with local

val x = [this.#m ()]
in

m2 () = hd x
end

val dobj = D ()

Figure 3: A small type loophole

may make use of local identifiers not yet bound. Outlaw-
ing this completely is too strong a restriction (as many
classes set up initial state through methods in the super-
class), and the weaker restriction of allowing only methods
in the superclass to be invoked does not fix the situation
as the example in Figure 3 demonstrates. The behaviour of
this program is ill-defined; in fact, it is likely that the ex-
ception List.Empty will be raised when m2 attempts to take
the head of a list that has yet to be defined. The root of
the problem is the combination of object initialisation and
dynamic method dispatch on the object being initialised.
The same problem exists in Java [8, §12.5], and enforcing
strong restrictions would have reduced expressivity without
completely closing the hole because of virtual method invo-
cations inside an external superclass constructor.

As mentioned in Section 3.6, Java allows overloading of
methods. We support this in _classtype declarations in
order to extend existing Java classes that include overloaded
methods. No special syntax is required: the method name is
simply repeated in separate declarations, as in the example
below:

_classtype C ()
with

m(x:int) = ...process ints...
and m(x:string option) = ...process Strings...

end

5.3 Class types in signatures

_classtype 〈cmod〉 class-name ty1 〈: ty2〉
with method-spec end

Corresponding to the class type declaration there is a class
type specification construct for SML signatures. Here ty1 is
the type of the constructor argument(s) bound by the pat-
tern expression pat in the corresponding class type declara-
tion, and ty2 is the superclass. The method specifications
method-spec list function types for each method.

The types in the signature must correspond exactly to
those in the corresponding declaration, but methods can be
omitted in the same way as value bindings can be omitted
from an ordinary SML signature. This lets the programmer
hide methods from users of a class (corresponding to private
methods in Java), or to share methods amongst a number of
classes in a single module but to hide them from clients of the
module (corresponding roughly to package access in Java).
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signature POINTSIG =
sig

_classtype Point (int*int)
with

getX : unit -> int
and getY : unit -> int

end
_classtype ColouredPoint (int*int*java.awt.Color) : Point
with

getColour : unit -> java.awt.Color
end

end

Figure 4: A signature for coloured points

A similar treatment of privacy is used in Moby, another ML-
style language with OO features [7].

Figure 4 presents a signature that might be used to con-
strain Point to be an ‘immovable point’ when used by clients
of the module. In the specification for ColouredPoint, the
methods inherited from Point are not listed explicitly, but
are still accessible. It is not possible to over-ride or inherit a
method and at the same time reduce access to it, in keeping
with Java’s own rules.

5.4 Inner classes

There are no restrictions on the scope in which a _classtype
declaration can appear. As with Java 1.1, classes can be
nested inside functions, or even inside methods defined in
other class declarations. Variables ‘captured’ by such decla-
rations are implemented using the same mechanism as used
for inner classes in Java – the compiler generates instance
variables that are filled in when objects are constructed.

Java also extends its new construct for object creation to
allow the definition of a new unnamed class and at the same
time create an instance. This provides a kind of first-class
function mechanism and is used extensively for ‘callbacks’
in GUI programming. MLj supports a similar syntax:

class-name exp with method-dec end

It is used in Figure 1 to create an ActionListener object in
which the actionPerformed method is over-ridden to pro-
vide functionality specific to a button component. (In fact,
ActionListener is an interface; for conciseness we have
omitted discussion of interfaces in this article).

5.5 Class types and functors

The Java language and the JVM do not currently support
parametric polymorphism. Therefore we restrict the types
of methods in classes to be monomorphic. However, by using
SML’s powerful functor construct it is possible to parame-
terise classes on types and values. Figure 5 gives an example.
When applied to a particular type T, the functor provides a
new class type J and functions wrap and unwrap that con-
vert values between T and J. The specification of J in the
signature of the result hides both the class constructor and
its method, and thus is exportable in the sense described
in the previous section. The class types IntListWrapper.J
and IntFunWrapper.J can then be used in Java code to pass
around objects that wrap up ML values of type int list
and int->int. (If one wished to use these wrapper classes
to, for example, store ML values in Java collections, one
would also have to include a hash function in the class.)

functor Wrapper(type T) :>
sig

_classtype J
val wrap : T -> J
val unwrap : J -> T

end =
struct

_classtype J(x : T)
with

get() = x
end
fun wrap (x : T) = J(x)
fun unwrap (j : J) = j.#get()

end

structure IntListWrapper = Wrapper(int list)
structure IntFunWrapper = Wrapper(int->int)

Figure 5: Using functors

5.6 Exporting classes

To make a class visible to the Java world, it is exported us-
ing a compiler directive. Its methods must be exportable ac-
cording to the same rules that were described in Section 5.1.

Non-exported classes are used only within an MLj pro-
gram, so no restrictions are placed on the types of their
methods. Note, however, that when a class overrides a
method from a superclass its types must match exactly; a
method in a non-exported class that over-rides an external
Java class (or an exported MLj class) must therefore also
have exportable type.

There is another restriction on what may be exported,
caused by the fact that exporting classes and overriding im-
ported methods both fix the actual class and/or method
names used in the generated bytecode, which the compiler
is otherwise free to choose. An ML class type may be bound
to multiple type identifiers, for example via structure re-
binding. However, two ML class types with the same stamp
(generated when the class is defined or a functor is applied)
may not both be exported. Together with the requirement
that the superclass of an exported class must be external or
exported, we believe that this allows the compiler to pick
method names so as to avoid the accidental or unsound
overrides which might otherwise happen when a superclass
method was hidden by a signature and a subclass then ‘over-
rode’ that method. This potential conflict between object
extension and width subtyping is well-known; see [15] for
example.

6 Formalisation

A complete formalisation of the ML-Java interface would
end up specifying the static and dynamic semantics for a
substantial part of the Java language. We do not attempt
to do this (the interested reader should consult [5]). Rather,
we give only the static semantics (the typing rules) for our
language extensions; moreover, we omit certain details such
as access control and checking of class and method qualifiers.

6.1 Types and translations

We start by extending ML types with a new category of
class types, ranged over by c and specified formally in the
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PrimType =

{
bool, int, char, real, Real32.real,
Int8.int, Int16.int, Int64.int

}
τ ∈ PrimType ∪ ClassType

τ ∈ JavaType

c ∈ ClassType

c option ∈ JavaType

τ ∈ JavaType

τ array ∈ JavaType

τ ∈ JavaType

τ array option ∈ JavaType

JavaType ⊆ Type

Figure 6: Java types

ml(bool) = bool
ml(byte) = Int8.int
ml(char) = char
ml(double) = real
ml(float) = Real32.real
ml(int) = int
ml(long) = Int64.int
ml(short) = Int16.int
ml(c) = c option
ml(T []) = ml(T ) array option

ml(T (T1, . . . ,Tn)) = ml(T1)× · · · ×ml(Tn) → ml(T )
ml(void (T1, . . . ,Tn)) = ml(T1)× · · · ×ml(Tn) → unit

Figure 7: Translation from Java types

style used by The Definition [13, §4.2]:

c ∈ ClassType = ExtClass ∪MLClass
τ ∈ Type = TyVar ∪ RowType ∪ FunType

∪ConsType ∪ ClassType

Class types are either external (obtained from existing Java
code and represented by the fully-qualified name of the class)
or are internal (introduced through _classtype):

ic ∈ MLClass = TyName×ClassType×TypeSet×MethEnv

We write class(t, c, ~τ ,ME) for elements of MLClass. Here t
is a stamp that identifies the class and allows recursive ref-
erence in its definition, c is the superclass, ~τ is a set of con-
structor types (with zero or one elements), and ME specifies
the methods as a set of bindings of the form (id : τ). The
set of classes that are exported by means of a compiler direc-
tive is given by ExpClass ⊆ MLClass. We let ec range over
ExpClass ∪ ExtClass. Finally we define JavaType ⊆ Type
by the inductive definition presented in Figure 6.

Figure 7 defines a total function ml that maps syntactic
Java types onto their ML interpretation. It is extended to a
function that maps Java method prototypes to ML function
types.

The mapping from ML types to Java types is given in
Figure 8. It is necessarily partial and splits into two variants:
j+ is used to translate types for values that are exported (re-
sults of functions and final fields) and j− for values that are
imported (arguments to functions). (The notation j± just
indicates simultaneous definition of both maps at primitive
type, where they coincide). The difference between the two

j±(boolean) = boolean

j±(Int8.int) = byte

j±(char) = char

j±(real) = double

j±(Real32.real) = float

j±(int) = int

j±(Int64.int) = long

j±(Int16.int) = short

j+(ec) = ec
j+(ec option) = ec
j+(τ array) = j+(τ) []

j+(τ array option) = j+(τ) []

j−(ec option) = ec
j−(τ array option) = j−(τ) []

j+→(τ1 × · · · × τn → unit) = void (j−(τ1), . . . ,j−(τn))
j+→(τ1 × · · · × τn → τ) = j+(τ) (j−(τ1), . . . ,j−(τn))

Figure 8: Translation from ML types

is that the option tag on a non-primitive type is permitted
for export but required for import. Java does not make the
distinction between non-null and possibly-null values so we
have to assume the worst when importing values from Java.
Observe that ml ◦ j+ and ml ◦ j− are the identity on Java
types.

The two maps are used to define a mapping j+→ from
function types to Java method prototypes. Note that only
one version of this map is required as functions can only
be exported; however if Java supported first-class methods
then it would make sense to define its dual j−→ that reversed
the polarities for argument and result types.

With these definitions we can formalise the exportable
ML types as dom(j+) (for fields) and domj+→ (for methods).

6.2 Relations

For two Java types τ and τ ′ we write τ 6w τ ′ whenever
values of type τ can be converted by a widening reference
conversion [8, §5.1.4] to type τ ′, or by the identity, or by the
injection represented by SOME : ’a -> ’a option. This re-
lation is defined inductively in Figure 9. Likewise we write
τ >n τ ′ whenever values of type τ can be converted by a
narrowing reference conversion [8, §5.1.5] to type τ ′ or by
the identity, as defined in Figure 10.

We write τ 6a τ ′ whenever argument values of type τ
can be converted by method invocation conversion to type
τ ′, which we define to mean either widening reference con-
version on Java type or the identity. Finally, for method
types of the form τ1 × · · · × τn → τ we write τ 6m τ ′ when-
ever method type τ can be converted to method type τ ′.
Following Java, we support contravariance in the argument
types but no variance in the result. These last two relations
are given in Figure 11.

6.3 Class lookup

We define various helper functions on classes. Their formal-
isation is straightforward but tedious, so for conciseness we
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τ 6w τ

τ 6w τ ′′ τ ′′ 6w τ ′

τ 6w τ ′ c 6w super(c)

τ array 6w java.lang.Object τ 6w τ option

τ 6w τ ′

τ array 6w τ ′ array

τ 6w τ ′

τ option 6w τ ′ option

6w ⊆ JavaType× JavaType

Figure 9: Reference widening for Java types

τ >n τ

τ >n τ ′′ τ ′′ >n τ ′

τ >n τ ′ super(c) >n c

java.lang.Object >n τ array

τ >n τ ′

τ array >n τ ′ array

τ >n τ ′

τ option >n τ ′ option

>n ⊆ JavaType× JavaType

Figure 10: Reference narrowing for Java types

omit it.

• super(c) gives the superclass of c, if it exists.

• staticfields(c) and fields(c) give the static fields and non-
static fields of c as a set of elements each of the form
id : τ .

• staticmethods(c) and methods(c) give the static meth-
ods and non-static methods of c as a set of elements
each of the form id : τ for function type τ . Constructors
are treated as static methods with the name <init>.

Note that for fields and methods (but not for constructors)
all inherited members are included. For external classes it is
assumed that there is a ‘pervasive’ environment from which
the information can be gathered. For internal classes the
type c itself includes sufficient information, though it should
be noted that occurrences of the type name t ∈ TyName in
types of methods and constructors must be expanded to the
class definition c itself.

6.4 Classes as structures

To formalise the use of qualified identifiers for static fields
and methods, we extend the range of a value environment
to include a static member reference, written member(c, id),
where c is a class and id the name of a field or method. Con-
structors for class c are represented by member(c, <init>).

The initial environment E under which a program is
typed is extended to include packages and classes as struc-
tures, using the member references to fill in variable envi-
ronments with appropriate bindings for fields, methods and
constructors.

τ 6w τ ′ or τ = τ ′

τ 6a τ ′

τ ′1 6a τ1 · · · τ ′n 6a τn

τ1 × · · · × τn → τ 6m τ ′1 × · · · × τ ′n → τ ′

Figure 11: Method type conversion

6.5 Typing rules for language extensions

The typing rules are presented in Figure 12 in the style of
the Definition. First note that TE ranges over type envi-
ronments that map type identifiers to types (paired with
datatype constructor environments), VE ranges over value
environments, E ranges over environments that include type
and value environments, and C ranges over contexts that in-
clude environments amongst other information.

Rules statfld and fld assign types to field access expres-
sions. Rules statmth and mth do the same for methods and
incorporate subsumption on method types. Rule supmth is
similar to mth but starts the search at the superclass. Rule
cast allows an expression to be cast up or down according
to the widening and narrowing relations defined earlier.

Rule patcast deals with cast patterns. The first premise
simply ensures that constructors are not rebound. As with
other pattern expressions in ML, the pattern elaborates to
a value environment that gives types to variables bound to
the pattern (in this case, the type specified in the cast), and
a type for the match itself (in this case, a type from which
a value is cast).

Rule class-dec elaborates a class type declaration to pro-
duce a type environment TE with the new type and a value
environment VE with the constructor. The first premise
deals with the formal arguments to the constructor, with
TE present in the context so that type constraints can re-
fer to the new class type c. The second premise elaborates
the superclass type c′. The next two premises elaborate the
arguments to the superclass constructor exp and local decla-
rations dec respectively, both typed in a context C′ contain-
ing value bindings for the constructor arguments (VEp), the
constructor for the new class (VE), and this. Finally, the
method declarations method-dec are elaborated in the pres-
ence of the environment E built up by the local declarations,
to produce a method environment ME.

In the corresponding rule class-spec for signatures, notice
that the constructor type ty1 is optional, allowing for the
hiding of constructors in signature matching.

7 Conclusions and further work

One immediate area for further work is improving the type
inference process for our extended language. The main prob-
lem with is in resolving method overloading (the typing rules
above do not specify just how and where the resolution is
done). We do not wish to insist on explicit type constraints
being added all over the place, but it does not seem possi-
ble to use the usual syntax-directed inference system with
constraints solved on the fly by unification, because ambi-
guities are sometimes only resolvable by considering a whole
compilation unit. The right thing to do is to gather up the
constraints generated by the above rules and try to solve
them all together for each top-level structure, and this is
what we plan to do. Our current working version, however,
uses essentially the same algorithm as we use for SML; this
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Expressions

(statfld)

C(longvid) = member(c, id)
(id : τ) ∈ staticfields(c)

C ` longvid ⇒ τ

(fld)

C ` exp ⇒ c
(id : τ) ∈ fields(c)

C ` exp.#id ⇒ τ

(statmth)

C(longvid) = member(c, id)
(id : τ) ∈ staticmethods(c)

τ 6m τ ′

C ` longvid ⇒ τ ′
(mth)

C ` exp ⇒ c
(id : τ) ∈ methods(c)

τ 6m τ ′

C ` exp.#id ⇒ τ ′

(supmth)

C ` exp ⇒ c
(id : τ) ∈ methods(super(c))

τ 6m τ ′

C ` exp.##id ⇒ τ ′
(cast)

C ` exp ⇒ τ C ` ty ⇒ τ ′ τ 6w τ ′ or τ >n τ ′

C ` exp :> ty ⇒ τ ′

Patterns
(patcast)

vid /∈ Dom(C) or is of C(vid) = v C ` ty ⇒ τ τ 6w τ ′ or τ >n τ ′

C ` vid :> ty ⇒ ({vid 7→ (τ, v)}, τ ′)

Declarations

(class-dec)

C + TE ` pat ⇒ (VEp, τ)
C ` ty ⇒ c′

C′ ` exp ⇒ τ ′

C′ ` dec ⇒ E
C′ + E ` method-dec ⇒ ME
τ ′′ 6m τ ′ → c′

C ` _classtype id pat : ty exp with local dec in method-dec end ⇒ (TE,VE) in Env

where

c = class(t, c′, {τ → t},ME) for fresh t
TE = {id 7→ (c, {})}
VE = {id 7→ member(c, <init>)}
(<init> : τ ′′) ∈ staticmethods(c′)
C′ = C + TE + VE + VEp + {this 7→ (c, v)}

(method-dec)
C ` exp ⇒ τ 〈C ` method-dec ⇒ ME 〉

C ` id = exp 〈and method-dec〉 ⇒ (id : τ) 〈+ME 〉

Specifications

(class-spec)

〈C + TE ` ty1 ⇒ τ〉
C ` ty2 ⇒ c′

C + TE ` method-spec ⇒ ME

C ` _classtype id 〈ty1〉 : ty2 with method-spec end ⇒ (TE,VE) in Env

where
c = class(t, c′, {〈τ → t〉},ME) for fresh t
TE = {id 7→ (c, {})}
VE = {id 7→ member(c, <init>)}

(method-spec)
C ` ty ⇒ τ 〈C ` method-spec ⇒ ME 〉

C ` id : ty 〈and method-spec〉 ⇒ (id : τ) 〈+ME 〉

Figure 12: The typing rules
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sometimes requires type constraints to be added in unpre-
dictable (algorithm-dependent) places.

More speculative further work might include adding pa-
rameterized classes in the style of GJ [2] or defining uni-
form representations of ML types, to be enforced only on
the ML/Java interface, so that ML values could be passed
to Java code for purposes such as serialization for persis-
tence or mobility. It might also be interesting to take the
object-oriented aspects of MLj further, for example by al-
lowing more general subtyping and overloading on ML val-
ues. Such a language would no longer be SML, however, and
would probably be less natural as an object-oriented version
of ML than, say, OCaml [14] because of the need to match
Java. Indeed, our extensions have already become more like
an object-oriented extension of SML than we originally in-
tended.

The main limitation of our approach is that the exten-
sions are non-standard and specific to Java. Foreign in-
terfaces based on COM or CORBA, by contrast, allow in-
terworking with components written in many different lan-
guages. We did try using our extensions plus a Java ORB
to make ML interface to CORBA components; this was suc-
cessful, but the CORBA bindings for Java were a great deal
more unpleasant to use than a direct mapping of CORBA
to ML would be.

Nevertheless, the interlanguage working extensions de-
scribed here are (we modestly believe!) far more pleasant
to use than any comparable system. There is no need to
worry about linkers, interface definition languages, stubs,
marshalling and unmarshalling or memory management –
working with Java from ML is much like working with Java
from Java, and sometimes better. In particular, our deci-
sion to map Java constructs to ML ones where possible, but
not to be afraid to extend ML where such a mapping is not
natural seems to be have been a good one.

The latest version of the MLj compiler is available from
http://www.dcs.ed.ac.uk/home/mlj.
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