
1

TAMU ECEN 751 Spring 2014

Project 1: Matlab Circuit Parser User’s Manual

The purpose of our Matlab parser is to parse in the SPICE like input circuit deck, and store

information in Matlab arrays.

1. The circuit description

1.1 Circuit elements

The syntax for the circuit elements is SPICE-like for all elements except MOSFET’s, for

which a simplified description is used.

Resistors:

Rxxx <N1> <N2> <VALUE>

Yxxx <N1> <N2> <VALUE>

Capacitor:

Cxxx <N1> <N2> <VALUE> [<INIT_VOLTAGE>]

Inductors:

Lxxx <N1> <N2> <VALUE> [<INIT_CURRENT>]

Kxxx <L1> <L2> <VALUE> {mutual inductor}

(Note: the value of a K element is NOT the mutual inductance. It’s defined in this way: sup-

pose a K element represents the mutual inductance L12 between two inductors with self induc-

tance L1 and L2, then the value of this K element is
21

12

LL

L
K = . This is consistent with the

convention for mutual inductor elements in HSPICE.)

Susceptors:

Sxxx <N1> <N2> <VALUE> [<INIT_CURRENT>]

Wxxx <S1> <S2> <VALUE> {mutual susceptor}

2

(Note: the W elements follow the similar convention as the K elements, which is: suppose a

W element represents the mutual susceptance S12 between two susceptors with self susceptance

S1 and S2, then the value of this W element is
21

12

SS

S
W = .)

Independent sources:

Vxxx <N1> <N2> <SOURCE DESCRIPTION>

Ixxx <N1> <N2> <SOURCE DESCRIPTION>

Our parser accept three types of independent sources (V_TYPE_ or I_TYPE_):

1. DC source:

DC <VALUE>

2. AC source:

AC <MAGNITUDE> <PHASE>

3. PWL (piecewise linear) source:

PWL <VOLTAGE> <TIME> <VOLTAGE> <TIME> <VOLTAGE>...

(Note: There is a small difference between the syntax of our PWL source and SPICE PWL

source. Our PWL source start at time = 0 by default, therefore, the first value after PWL keyword

is the voltage at time = 0 instead of starting point time as in SPICE. The number of time-value

pairs except the initial one is specified in elem(V_POINTS_) or elem(I_POINTS_), where elem

is the row in LINELEM corresponding to a PWL voltage or current source.)

Controlled sources:

Exxx <N1> <N2> <CN1> <CN2> <VALUE> {Voltage Controlled Voltage

Source}

Gxxx <N1> <N2> <CN1> <CN2> <VALUE> {Voltage Controlled Current

Source}

Fxxx <N1> <N2> <ELEM_NAME> <VALUE> {Current Controlled Current

Source}

Hxxx <N1> <N2> <ELEM_NAME> <VALUE> {Current Controlled Voltage

Source}

The MOSFET’s are described by the ‘M’ card:

Mxxx <ND> <NG> <NS> <MOS_TYPE> <WIDTH> <LENGTH> <MODEL_ID>

3

Here, ND, NG and NS are the Drain, Gate and Source nodes respectively. MOS_TYPE is ‘n’ or

‘N’ for NMOS and ‘p’ or ‘P’ for PMOS. The MODEL_ID is an integer (>= 1) which indicates

the model card to be used for this MOSFET. The model cards begin with a ‘.MODEL’ (as in

SPICE) and have the following syntax:

.MODEL <MODEL_ID> VT <VT> MU <μ> LAMBDA <λ> COX <COX> CJ0 <CJ0>

VT is the threshold voltage, μ is the mobility, λ is the channel-width modulator, Cox is the oxide

capacitance, and CJ0 is the junction capacitance.

1.2 Control cards

The syntax of the analysis cards are similar to SPICE syntax except for the ‘.TRAN’ card

which is modified to include model order reduction analysis.

For dc analysis use

.DC

For ac analysis use

.AC <points per decade> <starting frequency> <final frequency>

For transient analysis use

.TRAN <algorithm> <time step> <stop time> <AWE order>

Here, the algorithm specifies the algorithm to use for transient analysis. It should be one of the

following:

For numerical integration:

FE -- Forward Euler

BE -- Backward Euler

TR -- Trapezoidal

For model order reduction:

AWE -- Use AWE algorithm

PRIMA -- Use PRIMA algorithm

When using model order reduction algorithms, the AWEorder specifies the order for the

reduced model.

The netlist PRINT directives do not follow the SPICE convention and are greatly simplified.

There are only three types, all beginning with the ‘.’, and they are listed below.

.PRINTNV <NODE1> <NODE2> {Node voltages}

4

.PRINTBV <ELEM1> <ELEM2> {Branch voltages}

.PRINTBI <ELEM1> <ELEM2> {Branch currents}

For MOSFET’s, the current is the Drain-Source current. Note that the PRINT commands have to

appear at the end of the circuit description.

The netlist PLOT directives are quite similar to the PRINT directives and are listed below.

.PLOTNV <NODE1> <NODE2> {Node voltages}

.PLOTBV <ELEM1> <ELEM2> {Branch voltages}

.PLOTBI <ELEM1> <ELEM2> {Branch currents}

2. Parsing the circuit

A parser for parsing the circuit can be downloaded from the class website:

http://dropzone.tamu.edu/~pli/751Spring14/Project1/. You need either to copy the parser to your

matlab working directory or add the directory where you put the parser to your matlab path. You

can add the path by executing the following at the Unix prompt before invoking Matlab:

setenv MATLABPATH Directory_of_the_Parser:${MATLABPATH}

Alternately, you can give the command: path(path, ‘Directory_of_the_Parser’) or addpath

Directory_of_the_Parser within the Matlab environment.

Note: To get help about any function (including the ones that we provide you), type “help

<function_name>” within Matlab. To see what the function actually does, type “type

<function_name>”.

2.1 Initializing constants for the parser

Before using the parser, it is convenient to predefine some constants. From within Matlab,

type:

>> parser_init

Short Cuts for Circuit Parsing Loaded

This function will set some constants that you will use later to manipulate the data. You can also

find the parser_init.m file at http://dropzone.tamu.edu/~pli/751Spring14/Project1/. For example,

the value of R_ (refers to the resistor type) is defined to be abs(‘R’) which is 82. There are also

other variables defined within this function for easy access to the entries of an element card. The

6

parser will parse the input file and store the results in several matrics, and each element will be

represented by a vector (let us call this vector ‘elem’). For example, a resister can appear as

follows:

82 20 1 2

which corresponds to the following definition in the input file:

Rxxx 1 2 20

The type of the element can be checked by accessing the ‘TYPE_’ entry of the ‘elem’ vector and

comparing it with that for the resistor, (R_), so the comparison would look like

if (elem(TYPE_)==R_)

The node numbers and values for the elements can be accessed in a similar fashion:

elem(R_N1_) gives the first node for that resistor, elem(R_N2_) gives the second node, and

elem(R_VALUE_) gives the value of the resistance itself.

Parameters for other elements can be accessed in a similar fashion. See the file parser_init.m

for a complete listing.

Note: 1. DO NOT access the individual entries of a data card using the corresponding indices.

Always use the variables described above so that the indices can be changed later

without affecting any of your code.

 2. Let us suppose the ‘elem’ vector corresponds to a capacitor. When the initial value of

this capacitor is not specified, elem(C_IC_) is set to be NaN. The same rule applies to

inductors and susceptors.

2.2 Using the parser

A Matlab script function ‘parser.m’ has been written to handle the circuit parsing. You never

need look at the parsing function (or any other functions which the parser may call). The parser

can be invoked by calling parser() with the appropriate arguments:

[LINELEM,NLNELEM,INFO,NODES,LNAME,NNAME,PRINTNV,PRINTBV,PRINTB

I,PLOTNV,PLOTBV,PLOTBI] = parser(CIRC)

The input argument CIRC is the name of a circuit file. Each of the output arguments

corresponds to some part of the information contained in the circuit netlist file.

LINELEM = Array of Linear elements (each row corresponds to one element)

NLNELEM = Nonlinear elements (in our case, it will be the list of MOSFET’s)

7

INFO = Auxiliary information on the simulation

NODES = Actual numbers (“names”) of the nodes as given in the circuit file

LNAME = Names of the linear elements as given in the circuit file

NNAME = Names of the nonlinear elements as given in the circuit file

PRINTNV = Node voltages to be printed

PRINTBV = Branch voltages to be printed

PRINTBI = Branch currents to be printed

PLOTNV = Node voltages to be plotted

PLOTBV = Branch voltages to be plotted

PLOTBI = Branch currents to be plotted

The LINELEM array contains the data for all the elements except the MOSFET’s. The

NLNELEM array contains all the relevant information about MOSFET’s. Each row of this array

corresponds to a MOSFET and contains all the information about the MOSFET. The following

lines describe the method for accessing the various parameters of that MOSFET:

elem(M_TYPE_) : Type of the MOSFET (either NMOS_ or PMOS_)

elem(M_ND_) : Drain node

elem(M_NG_) : Gate node

elem(M_NS_) : Source node

elem(M_W_) : Width of the MOSFET

elem(M_L_) : Channel length of the MOSFET

elem(M_LAMBDA_) : Channel length modulation parameter

elem(M_VT_) : Threshold voltage

elem(M_MU_) : Mobility of the carriers.

elem(M_COX_) : Gate oxide capacitance per unit area.

elem(M_CJ0_) : The drain-ground and source-ground capacitances.

The array NODES gives the mapping between the internal nodes (“names”) of the circuit

netlist and the numbers that the parser assigns them to:

NODES(int) = ext

8

The arrays LINNAME and NLNNAME contain the actual names of the elements in the

LINELEM and NLNELEM arrays. This information is required to print out branch currents or

voltages because only the element names are provided in the PRINT cards.

The INFO matrix gives the information on the analysis. Type of simulation is determined by

checking METHOD_ entry of INFO. The list of analysis types are given in Table 1.

Table 1: Types of Simulation Analysis

Analysis Type INFO(METHOD_)

DC Analysis DC_

AC Analysis AC_

FE (Forward Euler) transient analysis FE_

BE (Backward Euler) transient analysis BE_

TR (Trapezoidal) transient analysis TR_

AWE, Transient or frequency analysis by using AWE AWE_

PRIMA, Transient or frequency analysis by using PRIMA PRIMA_

If transient analysis will be performed, one can obtain the timestep and timestop variables with

the values in TSTEP_ and TSTOP_ indices of INFO array. If transient analysis will be

performed by model order reduction, the ORDER_ entry of INFO array will give you the order

of the reduced-order model. For ac analysis, the AC_PPD_, AC_FSTART_, AC_FSTOP_

entries will hold the number of point per decade, starting frequency and stop frequency

respectively.

Since we have two kinds of representations for the magnetic components, the LSTYPE_

entry of INFO matrix tells you whether the circuit is a RLMC circuit or a RSWC circuit. If only

L’s and K’s (inductors and mutual inductors) appear in the input file, INFO(LSTYPE_) is

L_CIR_. On the other hand, if only S’s and W’s (susceptors and mutual susceptors) appear in the

input file, INFO(LSTYPE_) is S_CIR_.

The PRINTNV, PRINTBV and PRINTBI arrays contain information about which node

voltages or branch voltages or branch currents need to be printed. PRINTNV gives the internal

9

nodes that were referenced in a .PRINTNV control card. PRINTBV records the indices of the

elements that were referenced .PRINTBV control card. For each row of PRINTBV, a branch

voltage will be a simulation output. One can determine whether the branch element belongs to

LINELEM or NLNELEM by checking the second entry in that row. An entry 1 in that second

position represents a linear branch element and 2 represents a nonlinear element. The first entry

in that row records the index of the element in its proper list. PRINTBI is very similar to

PRINTBV, it holds the information of branch currents requested in the input deck. It is

referenced with .PRINTBI control card. The PLOTNV, PLOTBV and PLOTBI arrays follow

the conventions as their PRINT counterparts.

2.3 An Example

The example is an inverter with a complex load: (filename: test_inv)

VDD 103 0 DC 3

Vin 101 0 PWL 0 5.0e-10 3.0 1.0e-9 3.0

Rin 101 102 10

M1 104 102 103 p 30e-6 0.35e-6 1

M2 104 102 0 n 10e-6 0.35e-6 2

C1 104 0 0.1e-12 0

R2 104 105 25

L1 105 106 0.1e-9 0

C2 106 0 0.5e-12 0

.MODEL 1 VT -0.75 MU 5e-2 COX 0.3e-4 LAMBDA 0.05 CJ0 4.0e-14

.MODEL 2 VT 0.83 MU 1.5e-1 COX 0.3e-4 LAMBDA 0.05 CJ0 4.0e-14

.TRAN TR 1.0e-11 2.0e-9

.PRINTNV 102 104 106

.PRINTBI C1 M2

.PLOTNV 102 104 106

.PLOTBV L1

.end

After calling parser routines.

parser_init;

10

[LINELEM, NLNELEM, INFO, NODES, LINNAME, NLNNAME, PRINTNV, PRINTBV,

PRINTBI, PLOTNV, PLOTBV, PLOTBI] = parser(‘test_inv’);

We get a lot of variables in the workspace (You can check the list by typing who). Our main

data is already stored in the matrices LINELEM, NLNELEM, INFO, NODES, LINNAME,

NLNNAME, PRINTN, PRINTB, PRINTI, PLOTN, PLOTB, PLOTI.

LINELEM =

 86.0000 3.0000 1.0000 -1.0000 0 0 0 0 0 0

 86.0000 0 2.0000 -1.0000 2.0000 2.0000 0.0000 3.0000 0.0000 3.0000

 82.0000 10.0000 2.0000 3.0000 0 0 0 0 0 0

 67.0000 0.0000 4.0000 -1.0000 0 0 0 0 0 0

 82.0000 25.0000 4.0000 5.0000 0 0 0 0 0 0

 76.0000 0.0000 5.0000 6.0000 0 0 0 0 0 0

 67.0000 0.0000 6.0000 -1.0000 0 0 0 0 0 0

NLNELEM =

 Columns 1 through 6

 7.7000e+01 0 4.0000e+00 3.0000e+00 1.0000e+00 3.0000e-05

 7.7000e+01 1.0000e+00 4.0000e+00 3.0000e+00 -1.0000e+00 1.0000e-05

 Columns 7 through 12

 3.5000e-07 -7.5000e-01 5.0000e-02 3.0000e-05 5.0000e-02 4.0000e-14

 3.5000e-07 8.3000e-01 1.5000e-01 3.0000e-05 5.0000e-02 4.0000e-14

INFO’ =

 3.0000e+00 1.0000e-11 2.0000e-09 0 0 0 0 1.0000e+00 0 0

NODES’ =

 103 101 102 104 105 106

LINNAME =

 86 68 68 32 32 32

11

 86 73 78 32 32 32

 82 73 78 32 32 32

 67 49 32 32 32 32

 82 50 32 32 32 32

 76 49 32 32 32 32

 67 50 32 32 32 32

NLNNAME =

 77 49 32 32 32 32

 77 50 32 32 32 32

PRINTNV ‘=

 6 4 3

PRINTBV =

 []

RINTBI =

 2 2

 4 1

PLOTNV’ =

 6 4 3

PLOTBV =

 6 1

PLOTBI =

 []

12

(Note: The format of a row in LINELEM corresponding to a PWL voltage source is the

following: ElemType Init_Value Node1 Node2 V_TYPE_ V_POINTS_ time1 value1

time2 value2 ... timeN valueN. V_POINTS_ represents the number of time-value pairs

following it. The voltage value will be valueN for the simulation time beyond timeN. A similar

rule applied to PWL current sources.)

3. Stamping values into the MNA matrix

To reduce the work-load for programming, you have been provided with two example

routines for stamping conductances and ideal voltage sources into the MNA formulaion. These

two routines are given in the appendix of this manual. The syntax and usage of the stamping

functions is given below.

[new_M] = stamp_conductance(old_M,D)

Here, new_M and old_M represent the new and old MNA matrices. D is the data vector corre-

sponding to the conductance. This data vector is just one row of the array LINELEM, which is

output from the parser function.

The syntax for independent voltage sources is:

[new_M,new_I,new_row] = stamp_ind_vsource(old_M,old_I,D)

new_M, old_M and D are similar to that explained above. new_I and old_I are the current

matrices or the right hand side of the MNA equations. new_row is the row number corresponding

to this voltage source and is returned to the main function so that values corresponding to this

voltage source can be accessed using this row number.

Note: Those functions are just some sample code. You can handle these elements in

whatever way you like. Also, for other elements, you still need to write your functions to do

stamping

4. Appendix -- samples of stamping functions (non-optimized)

function [new_M]=stamp_conductance(old_M,D);
%STAMP_CONDUCTANCE : Stamps conductances into the MNA matrix
%

13

% syntax : [new_M]=stamp_conductance(old_M,D)
%
% new_M,old_M are self-explanatory
% D is the data vector corresponding to the conductance or resistance.

global Y_N1_ Y_N2_ Y_ Y_VALUE_;
new_M=old_M;
n1 = D(Y_N1_);
n2 = D(Y_N2_);

if n1>length(new_M), new_M(n1,n1)=0;end;
if n2>length(new_M), new_M(n2,n2)=0;end;

value=D(Y_VALUE_);

if (n1>0) & (n2>0),
 new_M(n1,n1) = new_M(n1,n1) + value;
 new_M(n1,n2) = new_M(n1,n2) - value;
 new_M(n2,n1) = new_M(n2,n1) - value;
 new_M(n2,n2) = new_M(n2,n2) + value;
elseif (n1<0)
 new_M(n2,n2) = new_M(n2,n2) + value;
elseif (n2<0)
 new_M(n1,n1) = new_M(n1,n1) + value;
end

function [new_M,new_I,new_row] = stamp_ind_vsource(old_M,old_I,D);
%STAMP_IND_VSOURCE : stamps entries corresponding to an independent voltage source.
%
% syntax : [new_M,new_I,new_row] = stamp_ind_vsource(old_M,old_I,D)
%
% new_M,old_M are the new and old MNA matrices
% new_I,old_I,are the new and old current matrices (right hand side)
% D is the data vector corresponding to the source
% "new_row" is the row number corresponding to this new source
% (This number has to be returned to the main function so that
% the row corresponding to this voltage source can be accessed later.)

global V_N1_ V_N2_ V_ V_VALUE_
new_M=old_M;
new_I=old_I;
length_M=length(old_M);
n1 = D(V_N1_);
n2 = D(V_N2_);

if n1>length_M, new_M(n1,n1)=0;end;

14

if n2>length_M, new_M(n2,n2)=0;end;

if n1>0, new_M(length_M+1,n1)=1;new_M(n1,length_M+1)=1;end;
if n2>0, new_M(length_M+1,n2)=-1;new_M(n2,length_M+1)=-1;end;
new_I(length_M+1)=D(V_VALUE_);
new_row=length_M+1;

