
IS
S

N
 0

24
9-

63
99

ap por t

 t e ch n i qu e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The FCTOOLS User Manual
(Version 1.0)

Amar Bouali, Annie Ressouche, Valérie Roy, Robert de Simone

N˚ 191

Avril 1996

THÈME 1

The FCTOOLS User Manual(Version 1.0)Amar Bouali, Annie Ressouche, Valérie Roy, Robert de SimoneThème 1 � Réseaux et systèmesProjet MeijeRapport technique n�191 � Avril 1996 � 34 pages
Abstract: We describe a set of modular extensions to our Auto/Graph veri�cation toolsetfor networks of communicating processes. These software additions operate from a common�le exchange format for automata and networks, called fc2. Tool functionalities comprisegraphical depiction of objects, global model construction from hierarchical descriptions, var�ious types of model reductions and of veri�cation of simple modal properties by observers,counterexample production and visualisation. We illustrate typical veri�cation sessions con�ducted on usual academic examples: dining philosophers, mutual exclusion algorithms andround-robin schedulers.Based on previous experience of drastic state explosion problems we aim here at e�ciencyin implementation. We use both explicit representation techniques and implicit techniquessuch as BDDs, with functional overlap at places.Key-words: Veri�cation tools, networks of communicating processes, automata, algo�rithms, data structures, BDDs, common format fc2 (Résumé : tsvp)ENSMP-CMA, B.P. 207 F-06904 Sophia Antipolis cedexINRIA, B.P. 93 F-06902 Sophia Antipolis cedex

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)

Téléphone : (33) 93 65 77 77 – Télécopie : (33) 93 65 77 65

Manuel de l'utilisateur de FCTOOLS(Version 1.0)Résumé : On décrit un ensemble d'extensions modulaires à nos systèmes Auto/Graphde véri�cation des réseaux de processus communicants. Ces nouveaux logiciels opèrent surla base d'un format commun d'échange pour les automates et les réseaux, appelé fc2. Lesfonctionnalités de ces outils comprennent la description graphique d'objets, la constructionde modèle global depuis des description hiérarchiques, plusieurs types de réductions demodèle et de véri�cation de propriétés modales simples par observateurs, la production etla visualisation de contre-exemples. On illustre des sessions de véri�cation conduites surdes exemples académiques classiques: le problème du dîner des philosophes, des algorithmesd'exclusion mutuels et les schedulers �round-robin�.Basé sur les expériences précédentes se heurtant au problème de l'explosion de l'espaced'états, nous avons pour but ici une implantation e�cace. Nous utilisons deux modes dereprésentation, explicite et implicite par BDDs, en ayant une redondance des fonctionnalitésdans chaque mode.Mots-clé : Outils de véri�cation, réseaux de processus communicants, automates, algo�rithmes, structures de données, BDDs, format commun fc2

The FCTOOLS User Manual (Version 1.0) 31 PresentationSystems of communicating and synchronising entities are usually hard to specify in a correctfashion, due to problems of distributed control and parallelism. In the last decade a numberof veri�cation softwares were implemented to provide computer assistance in the design andcorrectness checking of such system descriptions, and used to study distributed algorithms,protocols and embedded systems. Most commonly these toolsets are based on �nite statemodeling of underlying global con�gurations, and graph-theoretic algorithms.Our pioneering Auto/Graph toolset was exploring the power of so-called �proof-by-re-duction� techniques, where methods for compositional reductions of �nite state structurestry to suppress as much as possible the combinatorial explosion problem. Functions such asstate quotient (with respect to behavioural equivalences), behavioural abstraction or context�ltering were at the heart of the system, in addition to graphical or textual process algebraichierarchical description facilities, and other practical auxiliary functions.The present User Manual describes basically the �next generation� Auto/Graph im�plementation. Decision for this reimplementation was based on a number of facts. First,as functionalities were progressively added the old implementation grew larger and harderto maintain; the new one had to be modular, consisting in a set of carefully chosen func�tions which could be combined together for e�cient veri�cation. Second,due to nationaland international collaborative projects we wanted the new toolset to be open for joint usewith other �foreign� veri�cation tools, which could nicely complement its functionalities; a�low-level� �le exchange format (covering automata and hierarchical networks of such) calledfc2 was then designed, and used in particular in between various software modules. Last,new symbolic techniques for implicit representation of �nite state machines by so-called Bi�nary Decision Diagrams had appeared, and were becoming prominent in the neighboringdomain of synchronous reactive systems (real-time systems and synchronous hardware forinstance). We adapted our veri�cation techniques to this type of implementation structuresand the relevant algorithmic style, in the scope of asynchronous processes communicatingby rendez-vous synchronisation.The result is a new set of construction/reduction/analysis/diagnostics functions, corres�ponding to a number of Unix commands working from and to fc2 �les. The three mainsoftware modules are: Autograph, for graphical edition and display; fc2explicit, for ma�nipulation of enumerated �nite state machines; fc2implicit, for manipulation of symbolic�nite state machines. Each ful�lls several distinct functions, sometimes with redundancybetween fc2explicit and fc2implicit. Other auxiliary modules exist as well.By nature fcTools is in perpetual ongoing expansion, as more useful analysis functionsare identi�ed and characterised as e�cient algorithms. This manual describes only the cur�rent state, which may already be obsolete by the time of reading in case a next version is al�ready out. Information on system availability and documentation can be obtained on requestfrom fc2team@cma.cma.fr, or from URL http://cma.cma.fr/Veri�cation/verif-eng.html.The next section describes the overall architecture of software modules comprised in thetoolset, with an informal description of their individual functionalities and how they can becombined. Then a working description of Unix commands and options is given, followed byRT n�191

4 A.Bouali,A.Ressouche,V.Roy,R.de Simonea small session example. Each veri�cation module is then further presented and explained,with insights on its internal algorithms, and indications on how-to-use for best e�ciency.2 Modular Software ArchitectureThe veri�cation toolset comprises a number of stand-alone tools, each implementing somewell-de�ned functionalities. Tools may be used in succession through the common fc2 �ledescription format. At a deeper programming level, most of our tools use identical internalrepresentation (in terms of C++ classes), so that combination of code is also possible there.See the appended Implementation Manual for details.Figure 1 sketches the overall software architecture, with tools/functions �gured in ovalshapes and objects/data in rectangular frames. Explicit mention is made to fc2 formatwhere available for objects (for instance, there is no direct representation of BDDs in fc2).In the sequel we present the fc2 format and the individual veri�cation tools at veryabstract level. Each tool will be extensively presented later on.2.1 The fc2 formatThe fc2 format was originally designed to interface several preexisting veri�cation tools. Inthis way these heterogeneous tools could be further developed independently, while used incooperation for their complementary features.The format allows for description of labeled transition systems and networks of such.While the format is not �syntax-friendly� (as it represent objects which are supposedly ob�tained by translation or compilation), it is still reasonably natural: automata are tables ofstates, states being each in turn a table of outgoing transitions with target indexes; networksare vectors of references to subcomponents (i.e., to other tables), together with synchroni�sation vectors (legible combinations of subcomponent behaviours acting in synchronisedfashion). Subcomponents can be networks themselves, allowing hierarchical descriptions.In addition a permissive labeling discipline allows a variety of annotations on all dis�tinct elements: states, transitions, automata and networks as a whole. It is through thislabeling that behavioural action labels are provided of course, but also structural informa�tion for source code retrieval, logical model-checking annotation and even private hookedinformations. Processes augmented with time, value or probability informations could cer�tainly bene�t from that, and this is not limitative. Annotative labels are dealt with asregularly as possible in syntax, in simple form at predictable location, so that they can betreated smoothly at parsing time by any tool, often by simply disregarding them if theydo not address the tool's speci�c functionalities. The actual labeling contents are storedin tables forming the objects headers, so that only integers references to table entries areactually present in the object bodies themselves (automata or networks). Finally, labelscan be structured by simple operators (sum, product and several others) to allow richerinformation.More about the fc2 format can be found in [3].
INRIA

The FCTOOLS User Manual (Version 1.0) 52.2 Functional ModulesA typical case-study analysis will contain a number of typical design steps, correspondingto successive application of distinct functional modules from our toolset. The main suchfunctions are:description of the network of communicating agents (possibly graphically) The gra�phical editor Autograph allows to draw such descriptions much in the usual fashionof process-algebraic terms, and then produces fc2 format representations. It alsocontains the annotation labeling facilities. See autograph description in this manualfor details.linking of multi�le descriptions Large hierarchical system descriptions can be split bet�ween di�erent �les (for instance as di�erent Autograph windows). The tabulatednaming informations in resulting fc22 �les need not be consistent across �les, andso merging these partial descriptions into a single �le for later analysis takes somebookkeeping care.construction of �some form of� global model Model-based automatic veri�cation re�lies on expansion of network into a global state-transition model. Two main imple�mentation techniques can be used here: the extensional approach with a classical repre�sentation of expanded automata with enumerated states and transitions; the symbolicapproach, based on implicit representation by Binary Decision Diagrams of sets ofstates (only), while representation of the full transition relation is avoided, and remainparted by possible events, somehow in the Petri net fashion. Our tools cover bothmodes of implementation with large mutual redundancy, so that best e�ciency can bethought according to each given speci�cation.Of course global models can su�er state or bdd size explosion problems, leading tothe well-known bottleneck of the approach. Several methods can be used to refrainthis explosion, like abstracting or minimizing (explicit) subnetworks at intermediatelevel of hierarchical descriptions. In all cases the global model expansion remains afundamental part of veri�cation systems, even if applied in particular settings or ontransformed objects to cope with complexity.reduction/abstraction of the model Smaller models can be obtained in roughly twoways. First, one can abstract the actual concrete behaviours into new ones of a moreconcise nature; it corresponds to the converse of action re�nement, where more beha�vioural details are progressively added (here they are abstracted away). Second, stateswith equivalent potential behaviours can be merged (using bisimulation for instance).Note that behaviour abstraction paves the way to state reduction, as it usually re�moves di�erences between otherwise similar states (consider for instance observationalbehaviours, including tau invisible steps inside visible ones).These techniques can be even more bene�cial when applied in a compositional fashion,minimising intermediate level descriptions.RT n�191

6 A.Bouali,A.Ressouche,V.Roy,R.de Simone

CONSTRUCTION

h "automaton

nets 2

net 0

V 2

v0 E1

EXPLICIT AUTOMATON

net

Implicit Automata

Representation

fc2glob

Other textual

input

SOURCE
RECOVERY

FC2 FILE LINKAGE

SOURCE
RECOVERY

fc2link

nets 2

net 0

h "automaton

V 2

v0 E1

Sets of States (Fc2)

nets 2

net 0

h "automaton

V 2

v0 E1

Counter Example Path (Fc2)

net 0

h "automaton

V 2

v0 E1

atg

net 0

nets 2

V 2

v0 E1

REDUCTION
ABSTRACTION

fc2min,fc2abst

IMPLICIT STATE SPACE
CONSTRUCTION

fc2isp

ENUMERATION
fc2iglob

ABSTRACTION

fc2imin,fc2iabst
fc2iobs

REDUCTION
OBSERVERS

Representation

Explicit Automata

111 0 00
2

τ

a

b

0

1

3

τ

c

nets 2

net 0

h "automaton

V 2

v0 E1

EXTRACTION
ANALYSIS

TRANSLATION

nets 2

Result in Fc2 Format

FORMAT

h "automaton

Graphical Description Fc2 Files Descriptions

Hierarchical Fc2 Description

fc2idead,fc2write

Figure 1: Software hierarchy INRIA

The FCTOOLS User Manual (Version 1.0) 7Another way of reducing the model is by taking into consideration a given contextlimiting the state-space exploration. This context can for instance be extracted froma given property to check.speci�cation of properties and model-checking There are several ways of specifyingcorrectness properties. Some basic obvious properties can be stated directly as charac�teristics of the �nite state model, and checked by simple analysis on it: existence ofdeadlock, livelock or divergent states for instance. More re�ned properties can be expres�sed either as modal temporal logic formulae or as speci�cation automata. Distinctionsare usually made according to visions of time: in linear time frameworks properties ofbehavioural sequences are considered, while in arborescent branching time frameworksone gets interested in properties of states through their past and future neighbours.An abundant literature was devoted to comparison of expressiveness and design ofalgorithmic methods best adapted in various cases. Our tools focus on speci�cation ofproperties as speci�cation automata, given that the temporal logic approach seemedwell treated elsewhere.Again, there are two approaches to compare two �nite state models, one being thespeci�cation of some (maybe partial) intended behaviour of the other. The �rst oneis bisimulation comparison; it works well when �partial� means �abstract�, when timeis �branching� and the processes may both exhibit nondeterministic behaviours. Thesecond one considers the speci�cation automaton as an observer, and performs somekind of product machine construction to deduce whether (un)desirable joint con�gu�rations can be attained; this approach, known as �on-the-�y� technique, works wellunder determinism assumptions on the speci�cation automaton. Also, as a rule ofthumb, �explicit representation� methods win in the �rst approach, while �implicitrepresentation� are best suited to the second one.Another dimension to the property speci�cation problem depends on whether theanalysed process is viewed as a transparent or a black box, that is whether the propertymay explicitly refer to control points (states) in it, or only through behavioural abilities(leading to or possible from the states in question). For instance a mutual exclusionproperty can most naturally be stated by the fact that no global con�guration maycontain speci�c local states in parallel subcomponents. Thus the toolset will have toprovide ways of composing this type of property from the system description, and thiswithout a�ecting the latter for each property to prove.counterexample production at the network level Diagnostics from analysis and mo�del-checking on incorrect descriptions usually result in either sets of (undesirable)states, or counterexample paths. Typically, deadlock or divergent states are of the �rstform, while runs without bisimilar counterpart are of the second form.With the addition of prior reduction phases these results are produced on smallerautomata, and are themselves usually smaller than the corresponding ones on originalnetworks. But these now have to be retrieved, if the user is to be informed at a level of
RT n�191

8 A.Bouali,A.Ressouche,V.Roy,R.de Simonedescription he/she can understand. The struct annotation �eld of the fc2 format wasin fact used to carry exactly that minimal information which allows reconstruction.For instance, if weak bisimulation minimisation was used and hidden transitions thusremoved, these transitory behaviours may have to be rediscovered to glue actual visiblesteps back together.Diagnostic reconstruction may be a time penalty, but is only necessary in case ofproperty failure, and avoids storing much extra information at all times, which couldabort veri�cation for lack of space.Figure 1 displays our global software architecture, with tool names and functionalities andtypes of arguments and results. Next section will provide a synthetic overview of each tooland ways to use it in practice.

INRIA

The FCTOOLS User Manual (Version 1.0) 92.3 Tools and CommandsWe now describe the di�erent software modules at the level of Unix commands, with namesand options.Remark: most of the transformation tools generate single fc2 description, dumped onscreen (Unix standard output). In order to save the result in a �le, one has to redirect theoutput of the command to that �le.� atg:synopsis:Unix command for Autograph, the graphical editor and display system for fc2descriptions. Autograph uses usual process algebra conventions for graphicalrepresentation of automata and networks, and provides translation into fc2 for�mat. Autograph currently reads only plain automata from this format, whilea dedicated .atg �le format can be loaded and written on �le for any drawing,even ill-structured or incomplete.usage:atg [�les.fc2][�les.atg]result:A menu bar for graphical edition and a speci�c window for each loaded �le (from.fc2 automata only initial states are displayed at �rst). Autograph and itsfunctionalities are further described in section 3.� fc2link:synopsis:Linker of (partial) fc2 �les produced by Atg. It redirects references to a sub�components to its actual description (found from another �le), and matches thelabeling indexes.usage:fc2link -main [-nodebug] �le.fc2 [�le1.fc2...[�leN.fc2]...]result:The result is a single fc2 �le containing the complete hierarchical fc2 descriptionof net0 in �le �le.fc2 together with all its subcomponents found in any �le men�tioned. Default resulting �le contains veri�cation debugging information used bysource recovery functions, such as the �le names of individual fc2 componentsgiven under an fc2 expression recalling the hierarchy of the network. This extrainformation can be discarded from the result by setting the -nodebug option.Misformed descriptions end up in so-called �consistency errors�. The result isoutput on screen.
RT n�191

10 A.Bouali,A.Ressouche,V.Roy,R.de Simone� fc2min:synopsis:(Explicit) Automata minimizer with respect to strong, weak and branching bisi�mulation.usage1:fc2min -bisimulation [-fc2] [-debug] �le.fc2The option bisimulation can be one of the options s, w or b for strong, weak andbranching bisimulation respectively.result:If option -fc2 is set, the result is the quotient automaton in fc2 format. Other�wise it is a partition of the state space into equivalence classes. The -debug sourcerecovery option adds, for each quotient state or partition element, a descriptionof its content as sum (union) of state references from the initial automaton. Thisinformation is stored in the struct �eld of the new states in the fc2 structure.� fc2implicit:synopsis:Symbolic manipulation of labeled synchronized automata vectors (fc2 networks).It contains several functionalities, selected by options.usage: The command can be invoked with either one or two argument �les:1. One �le mode:fc2implicit [-reach | -dead | -live | -dive][-s | -w | -b [-itau]] [-debug] [-fc2] �le.fc2where-reach: computes the set of reachable global states.-dead, -live, -dive: computes the set of deadlock, livelock and divergentglobal states of the network respectively. If option -fc2 is set in addi�tion, fc2implicit generates a counterexample path in fc2 (as a stringautomaton), leading from the initial state to one of the computed states.-s, -w, -b: computes the strong, weak and branching equivalence parti�tion respectively. If option -fc2 is set, then generates an fc2 descriptionof the quotient automaton. Option -itau can be added for branchingbisimulation to turn o� the � -closure memorization, replaced by a localrecomputation at need.-debug: adds extra information for source recovery in the structlabels ofglobal nets, states and transitions.1�le.fc2 must contain a single automaton. Otherwise, an error message is generated. If minimizationis asked for the global automaton of a network described in a fc2 �le, fc2explicit/fc2implicit processorsshould be used instead. INRIA

The FCTOOLS User Manual (Version 1.0) 112. Two �les mode:fc2implicit {-seq | -weq } [-debug] [-fc2] �le1.fc2 �le2.fc2where-seq, -weq: performs the strong and weak bisimulation comparison bet�ween the topmost nets of both �les.-debug: produces a counterexample path in fc2 leading to a state withoutequivalent in the other automaton, with other infos (iteration level in thepartitioning, ...).shorthand commands:The following Unix commands are equivalent to the general fc2implicit com�mand with particular options. The i letter following fc2 here stands for implicit.fc2ireach = fc2implicit -reachfc2idead = fc2implicit -dead -fc2fc2ilive = fc2implicit -live -fc2fc2idive = fc2implicit -dive -fc2fc2istrong = fc2implicit -sfc2iweak = fc2implicit -wfc2ibranch = fc2implicit -bfc2iglob = fc2implicit -reach -fc2result :Whenever option -fc2 is set, generates an fc2 description of the result. Other�wise produces information messages (result size, existence of deadlocks for ins�tance).

RT n�191

12 A.Bouali,A.Ressouche,V.Roy,R.de Simone� fc2explicitsynopsis:Explicit manipulation of labeled synchronized automata vectors (fc2 networks).It contains several functionalities, selected by options.usage: The command can be invoked with either one or two argument �les. Currentlyonly the -abstract option uses two �les.fc2explicit [-s | -w | -b | -abstract] [-comp | -global] [-bitset][-fc2] [-debug] [-o file.fc2] �le1.fc2 [�le2.fc2]where-abstract: Assumes one �le contains a net description and the other an abs�traction criterion. Performs the abstraction of the global automaton of netw.r.t. the abstraction criterion. Further description of abstraction use canbe found in section 7.-seq, -weq: Requires two fc2 �les containing two networks. Performs thecomparison of the two systems with respect to strong (-seq) or weak (-weq)bisimulation. In case of non equivalence potential states without match aresearched for as early as possible, and a path leading to such a state is providedas result.-comp: Computes the global automaton from the network contained in the ar�gument �le in a compositional way, following the hierarchical description innested subnets. Used in conjunction with -s, -w, -b options to alternateminimisation and construction phases.-global: Computes the global automaton from the network contained in the�le argument in its ��attened� version (non hierarchical). Default value.-s, -w, -b Applies strong, weak or branching bisimulation minimisation onnetwork contained in �le argument. Can be combined with -comp option.Internally invokes fc2min (see above) on each intermediate automaton.-bitset Computes the state space by applying action events under a bitsetscheme algorithm for replacement of local states in the vector. Used bestwith the -global option, on large vectors of small individual automata com�ponents. See further fc2explicit description in 5.1.-o: provides a �lename for output.-fc2: if set, result is the fc2 description of the quotient automaton; otherwiseonly size �gures are printed. Prints on standard output, except if -o optionis used.-debug: if set, automata states are decorated with structure information forsource recovery on original network description.
INRIA

The FCTOOLS User Manual (Version 1.0) 13shorthand commands:The following Unix commands are equivalent to the general fc2explicit com�mand with particular options.fc2glob = fc2explicit -global -fc2fc2strong = fc2explicit -global -s -fc2fc2weak = fc2explicit -global -w -fc2fc2branch = fc2explicit -global -b -fc2fc2compstrong = fc2explicit -comp -s -fc2fc2compweak = fc2explicit -comp -w -fc2fc2compbranch = fc2explicit -comp -b -fc2fc2abst = fc2explicit -abstract -fc2fc2abststrong = fc2explicit -abstract -s -fc2fc2abstweak = fc2explicit -abstract -w -fc2fc2abstbranch = fc2explicit -abstract -b -fc2result :Whenever option -fc2 is set, generates an fc2 description of the result. Other�wise produces information messages (result size for instance).

RT n�191

14 A.Bouali,A.Ressouche,V.Roy,R.de Simone� fc2viewsynopsis :Source recovery viewer. When a path is given as argument (the path must beretrieved from a global automaton of a network), fc2view pops up two windows,one containing the graphical tree representing the hierarchy of nets forming thenetwork from which the path has been recovered, and a control panel to simulatethe path. Nodes and leaves of the tree are labeled by the names of the corres�ponding nets. In the control panel, buttons are provided to �re transitions inthe path going back and forth, and step by step, plus a graphical scale allowingthe user to access directly at some depth in the path and �re the transition atthat depth. Each time a transition is �red, its (global) label is displayed in adedicated zone (near the name of the path) and so are in the graphical tree thelocal ones that have produce the global label: these labels are displayed in thegraphical tree, near the components that have o�ered them, which are themselveshighlighted. An extra feature allows the user to visualise the fc2 description ofany net appearing in the tree by clicking on its displayed name. Actives part (ifany) of the text are also highlighted (source and target states of current activetransition) as well as the text background when the component is active.usage :fc2view �le.fc22where �le.fc2 is assumed to contain a path synthesized from a network using the-debug option, so that it can be displayed as a distributed run on the range ofcorresponding fc2 �les. Creates as many (slave) windows as there are automatacomponents in the network, in their fc2 syntax. Each window displays currentlocal share of transition in a graphical header, and fc2 text below on demand.Simulation can travel back and forth under control of a graphical panel.result :See above� fc2hidesynopsis :When a fc2 network is given in input, pops up a window showing the list ofaction labels the network can perform at the global level. Mouse clicking onlabels permits selection of labels to hide. When selection is �nished, the user cansave the result in a new fc2 �le as a new network where the selected global labelhas been renamed into the silent action � . This allows to restrict the range ofvisible behaviours, and thus to increase observational reduction.2The argument �le must contain a single string automaton containing a path (obtained by fc2idead forinstance), and containing debug informations
INRIA

The FCTOOLS User Manual (Version 1.0) 15usage :fc2hide �le.fc2Assumes �le.fc2 contains a network.result :A new network where selected labels of synchronisation vectors of the main netare renamed into � .2.4 First steps: a session exampleWe now illustrate the basic veri�cation features on the famous dining philosophers problem.More advanced features will be demonstrated later on.The graphical Atg description of the system (in the case of 3 philosophers) is displayedin �gure 2 (in its Postscript output form). It consists essentially of the automata describingthe possible behaviours of the forks and of halfbrains for philosophers. A full philosopheris obtained by synchronising these halves on eating and thinking (each half deals withone fork). The full synchronisation network is also displayed, with visible actions becomingindexed by a philosopher's rank.We now suppose these three parts (the fork, halfbrain automata and the network)have been translated (by Atg) into distinct fc2 �les, say fork.fc2, halfbrain.fc2 andphilonet.fc2. The fc2 version of the fork automaton is displayed in �gure 3. The par�tial description of the network, with only component interface declaration for the fork andhalfbrain, is displayed in �gure 4.Linking these �les will produce the appropriate correspondence between these �subsystemcalls� and their automata contents from the other �les.0-duick$ fc2link -main philonet.fc2 fork.fc2 halfbrain.fc2 > philo.fc2�- fc2link: education version v0�- fc2tool: parsing fc2 file: philonet.fc2.�- fc2tool: file: philonet.fc2 parsed successfully�- fc2tool: parsing fc2 file: fork.fc2.�- fc2tool: file: fork.fc2 parsed successfully�- fc2tool: parsing fc2 file: halfbrain.fc2.�- fc2tool: file: halfbrain.fc2 parsed successfully�- fc2link: File "philonet.fc2"�- fc2link: net number 0 has struct "philonet"�- fc2link: net number 1 has struct "fork"�- fc2link: net number 2 has struct "halfbrain"�- fc2link: File "fork.fc2"�- fc2link: net number 0 has struct "fork"�- fc2link: File "halfbrain.fc2"�- fc2link: net number 0 has struct "halfbrain"�- fc2link: Check consistency on class of net 0, file philonet�- fc2link: Check consistency on class of net 0, file fork�- fc2link: Check consistency on class of net 0, file halfbrain>0-duick$RT n�191

16 A.Bouali,A.Ressouche,V.Roy,R.de Simone
dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketakefork dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

eateateateateateateateateateateateateateateateateat

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

halfbrain

think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3

eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1

think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1

drop
dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateat

eateateateateateateateateateateateateateateateateat

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake
take

eateateateateateateateateateateateateateateateateatthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateatthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateat

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateat

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake
take

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

forkforkforkforkforkforkforkforkforkforkforkforkforkforkforkforkfork

forkforkforkforkforkforkforkforkforkforkforkforkforkforkforkforkfork
forkforkforkforkforkforkforkforkforkforkforkforkforkforkforkforkfork

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

philonetFigure 2: The 3 dining philosophers speci�cationThe result is displayed in �gure 5Now the description can be submitted to our analysis and veri�cation tools.2.4.1 Implicit evaluation of the global systemWe �rst evaluate the global system to have an idea of the size of the state space. We use forthat symbolic methods based on BDDs that allow easy evaluation of global state spaces.0-duick$ fc2implicit -reach philo.fc2�- fc2implicit: education version v0 INRIA

The FCTOOLS User Manual (Version 1.0) 17nets 1hook"main" > 0struct"fork"net 0behavs 2:0 "take":1 "drop"logic "initial">0hook "automaton"vertice 2vertex0edges 1edge0behav 0-> 1vertex1edges 1edge0behav 1-> 0 Figure 3: �le fork.fc2�- fc2tool: parsing fc2 file: philo.fc2.�- fc2tool: file: philo.fc2 parsed successfully�- fc2implicit: Making reachable state space�- fc2implicit: Reachable states: �214� � BDD nodes: �85�0-duick$The global automaton has 214 states. The BDD that represents it has 85 nodes only.2.4.2 Finding and Recovering the DeadlocksThis academical problem is known to have deadlocks. We have a way to detect them andto extract an example path leading to a deadlock from the global initial state. Here is thesession using fc2implicit:0-duick$ fc2implicit -dead -fc2 philo.fc2 > deadpath.fc2�- fc2implicit: education version v0�- fc2tool: parsing fc2 file: philo.fc2.�- fc2tool: file: philo.fc2 parsed successfully�- fc2implicit: Making reachable state space�- fc2implicit: State space depth: 13�- fc2implicit: First deadlock(s) detected at depth 7�- fc2implicit: Reachable states: �214� � BDD nodes: �85��- fc2implicit: Global automaton has 2 DEADLOCKS state(s) � BDD nodes:�27�0-duick$The �rst detected deadlocks have been found at depth 7 in the global automaton, thatis the shortest path leading to a deadlock has 7 states and 6 transitions. As we have set theoption -fc2, an example path has been extracted and written in fc2 in deadpath.fc2.RT n�191

18 A.Bouali,A.Ressouche,V.Roy,R.de Simonenets 3hook"main" > 0struct"philonet"net 1structs 1:0 "fork"behavs 2:0 "take":1 "drop"struct 0behav 1+0hook "synch_vector"net 2structs 1:0 "halfbrain"behavs 4:0 "eat":1 "take":2 "drop":3 "think"struct 0behav 2+1+0+3hook "synch_vector"net 0behavs 6:0 "eat1":1 "eat2":2 "eat3":3 "think1":4 "think2":5 "think3"struct _< 1,2,2,2,1,2,2,2,1hook "synch_vector"vertice 1vertex 0edges 18edge 0behav 3 < *,*,*,3,*,3,*,*,* ->0edge 1behav 0 < *,*,*,0,*,0,*,*,* ->0edge 2behav 5 < *,3,3,*,*,*,*,*,* ->0edge 3behav 2 < *,0,0,*,*,*,*,*,* ->0edge 4behav 1 < *,*,*,*,*,*,0,0,* ->0edge 5behav 4 < *,*,*,*,*,*,3,3,* ->0edge 6behav tau < *,*,*,*,*,2,*,*,1 ->0edge 7behav tau < *,*,*,*,*,1,*,*,0 ->0edge 8behav tau < 1,*,*,2,*,*,*,*,* ->0edge 9behav tau < 0,*,*,1,*,*,*,*,* ->0edge 10behav tau < 1,*,2,*,*,*,*,*,* ->0edge 11behav tau < 0,*,1,*,*,*,*,*,* ->0edge 12behav tau < *,2,*,*,1,*,*,*,* ->0edge 13behav tau < *,1,*,*,0,*,*,*,* ->0edge 14behav tau < *,*,*,*,*,*,2,*,1 ->0edge 15behav tau < *,*,*,*,*,*,1,*,0 ->0edge 16behav tau < *,*,*,*,1,*,*,2,* ->0edge 17behav tau < *,*,*,*,0,*,*,1,* ->0 Figure 4: �le philonet.fc2
INRIA

The FCTOOLS User Manual (Version 1.0) 19% FC2 file generated by fc2link from FC2 files:% philonet.fc2 (main) fork.fc2 halfbrain.fc2Dprefix file(any any) -> anynets 3h "main">0s file("philonet",0) < file("fork",0),file("halfbrain",0),file("halfbrain",0),file("halfbrain",0),file("fork",0),file("halfbrain",0),file("halfbrain",0),file("halfbrain",0),file("fork",0)net 1B2:0 "take":1 "drop"s "fork" l "initial">0 h "automaton"V2v0 E1e0 b 0 r 1v1 E1e0 b 1 r 0net 2B4:0 "eat":1 "take":2 "drop":3 "think"s "halfbrain" l "initial">0 h "automaton"V4v0 E1e0 b 3 r 1v1 E1e0 b 1 r 2v2 E1e0 b 0 r 3v3 E1e0 b 2 r 0net 0B6:0 "eat1":1 "eat2":2 "eat3":3 "think1":4 "think2":5 "think3"s "philonet"<1,2,2,2,1,2,2,2,1 h "synch_vector"V1v0 E18e0 b 3<*,*,*,3,*,3,*,*,* r 0e1 b 0<*,*,*,0,*,0,*,*,* r 0e2 b 5<*,3,3,*,*,*,*,*,* r 0e3 b 2<*,0,0,*,*,*,*,*,* r 0e4 b 1<*,*,*,*,*,*,0,0,* r 0e5 b 4<*,*,*,*,*,*,3,3,* r 0e6 b tau<*,*,*,*,*,2,*,*,1 r 0e7 b tau<*,*,*,*,*,1,*,*,0 r 0e8 b tau<1,*,*,2,*,*,*,*,* r 0e9 b tau<0,*,*,1,*,*,*,*,* r 0e10 b tau<1,*,2,*,*,*,*,*,* r 0e11 b tau<0,*,1,*,*,*,*,*,* r 0e12 b tau<*,2,*,*,1,*,*,*,* r 0e13 b tau<*,1,*,*,0,*,*,*,* r 0e14 b tau<*,*,*,*,*,*,2,*,1 r 0e15 b tau<*,*,*,*,*,*,1,*,0 r 0e16 b tau<*,*,*,*,1,*,*,2,* r 0e17 b tau<*,*,*,*,0,*,*,1,* r 0 Figure 5: The 3 philosophers in fc2 formatNow we visualize back in Atg this result that we picture out in �gure 6.
RT n�191

20 A.Bouali,A.Ressouche,V.Roy,R.de Simone
tautautautautautautautautautautautautautautautautauthink1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1tautautautautautautautautautautautautautautautautauthink3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3tautautautautautautautautautautautautautautautautauthink2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2 Figure 6: A deadlock pathThe deadlock corresponds to the case where each philosopher takes a fork (the � actionafter each think action): then no action can be further enabled from any of them.

Figure 7: Fc2view displayNow if -debug option was added to the fc2implicit command, further annotationswere appended to the path example so as to allow source recovery. Then the path can besimulated as a run on fc2 �les using fc2view, or even visualised graphically on an originaldisplayed network with Autograph.In the former case, a graphical view of the network treeis displayed with a control panel that allows the user simulate the path: active componentsare highlighted on the way as well as the action label they perform. A speci�c zone isdedicated for the path name and the global realised action name: fc2 textual descriptionof the path and components can be displayed by clicking on appropriate names. Activecomponent's text is also highlighted as well as active source and target states (see �gure 7).INRIA

The FCTOOLS User Manual (Version 1.0) 21In the latter case one needs only load the path in fc2 to Autograph, and then selects theDebug:Edge button from the menu bar. Then each selection of an edge will highlight thesource and target states at all components in their respective Autograph windows, andactive communications at ports in the synchronisation network (see �gure 8).

RT n�191

22 A.Bouali,A.Ressouche,V.Roy,R.de Simone

Figure 8: Autograph display3 The Graphical Editor AutographAutograph (invoked under the Unix command atg under X-windows) is a graphical dis�play system for both labeled transition graphs and networks of communicating systems.Lay-out is very much in the tradition of process algebra graphical depiction, as shown in�gure 8. Objects in Autograph can also be extensively annotated so as to match thefc2 format standards. In section 2.4, �gure 2 was produced from Autograph graphicaldisplays.Autograph can be used to graphically edit systems but also to visualise automatathat were produced elsewhere, typically as an output of veri�cation. Then when readingan fc2 �le Autograph prompts the user for interactive unfolding and positioning of suc�cessive states. An automaton can also be automatically drawn (using a spring-like attrac�tion/repulsion algorithm between states). Visualisation of networks is under construction,as is visualisation of counterexample runs on existing networks.
INRIA

The FCTOOLS User Manual (Version 1.0) 233.1 General FeaturesIn practice Autograph is a multi-window, unstructured editor: system descriptions arechecked for structural coherency only at translation into fc2 format, and subsystem partscontained in di�erent windows are translated independently in separate �les and not linkedtogether. This allows the user freedom to work temporarily with incomplete descriptions,and to reuse system parts in various compositions. Therefore Autograph is based on two�le representation formats: fc2 for structured objects, and atg for possibly inconsistentdrawing descriptions, containing additional graphical positioning data.3.1.1 Menu BarAutograph fronts the user with a single menu bar, from which all editing functions appli�cable to all graphical windows are selected. As a result some functions may need an extramouse click in the window(s) to be concerned (like in the Save to File function). The Files,Windows, ObjectsEdit and Labels menus deal with management of the respective types ofobjects. While rather self-explanatory they are described in more details in the sequel. TheGlobals menu deals basically with cut-and-paste and miscellaneous functions to be appliedundistinctively on all editable objects. Placing deals with positioning of folded objects, andAttributes allows to play with fonts and colors. The Abstract Action menu deals with edi�tion of an automaton representing an abstract criterion. The Help menu contains usefulinformation on how to use Atg.3.1.2 Mouse ButtonsThe three mouse buttons are di�erent bindings: the functions selected from menus have tobe applied using the left mouse button, while the middle button moves any kind of objects,and the right button (pre)selects a number of objects, or all objects in a given rectangularzone, typically to be applied the next function as a whole.3.1.3 Editable objectsConsisting of graphical editable objects Autograph o�ers vertices for states, boxes for sub�systems, ports for signal interface, edges for both automata transitions and port connections,and �webs� for multipoint extended connections. All such objects can be annotated withsemantic informations as allowed in the fc2 format. Behavioural labeling of automata tran�sitions form their action abilities as usual. The only structural requirement of autograph isthat ports only occur on boxes and edges in between vertices, ports and webs altogether (nofree end to an edge).3.2 File ManagementThis menu contains in addition the quit menu button.
RT n�191

24 A.Bouali,A.Ressouche,V.Roy,R.de SimoneAutograph saves �les in .atg, .fc2 or .ps formats. Postscript format is not scaled to�t (a given page size).Autograph reloads �les from .atg format, and reads from .fc2 format in case the �lecontains a single automaton (in the current version). In the second case the user must unfoldsuccessive states to provide the actual lay-out. At �rst only the initial state is pictured.Then, by dragging a phantom line to any point in the drawing zone the user indicates botha main direction and a minimal distance from which to place new vertices.3.3 Window managementWindows can be created and deleted from the corresponding menu. In addition they can beresized to �t the actual drawing, or given a title name. Such names are important as theywill become the fc2 name of the window content (network or automaton).In general drawings may exceed the window size (with usual scrollbar facilities). TheWindow:See/Hide Global menu button allows to pop up a global view spanning the wholeobject. Such windows cannot be edited, but unexplored vertices can easily be spotted fromtheir highlighting, and the regular view from the editable window can be repositioned by itsphantom.Each window keeps the memory of its last operation, which can be undone by the Win�dow:Undo button.3.4 EditionObjects can be edited from general functions in the ObjectsEdit menu. Shorthands key�board bindings allow fast selection of editing functions. All types of objects can be created,moved, deleted. In addition boxes can be resized, edges can be added or removed inter�mediate points (called �nails�) for broken arrows, states can be declared initial and can beexplored/unexplored (folded/unfolded).There is no structural consistency requirement on edited objects. Only at translationinto fc2 are such consistency rules checked.3.5 Labeling and AnnotatingAll object types can be labeled. Following the fc2 syntactic conventions these labels aresplit in four distinct �elds: behav, struct, logic and hook according to intention. Ofcourse labeling is mostly optional. The Label:Create/Edit All menu button selects the fulleditor which is popped at each further mouse click on objects. There are four edition areas,corresponding to the four labeling �elds above. As a shorthand the Label:Create/Edit Defaultmenu button allows one-�eld edition, of behav labels for edges, webs and ports, of structlabels for vertices and boxes. This simpler function covers 90Labels are displayed on the same drawing area as objects, which can be overwhelmingsometimes. Other buttons from the Label: menu allow to hide or unmask labels globally orindividually (or as a selection set), from speci�c labeling �elds or indistinctly. INRIA

The FCTOOLS User Manual (Version 1.0) 25Finally the Label:Show Label/Object highlights the bindings from labels and objects toone another.3.6 Automatic PlacingThe Placing:Explore button allows to start or resume unfolding on states/vertices. Stateswith incomplete display of outgoing transitions are identi�ed by a smaller circle inside them.Placing:Unexplore allows to fold back states or transitions out of sight.From the Placing:Align submenu sets of selected objects (right mouse button, remem�ber?) can be aligned horizontally or vertically, from their centers, their left, right, upper orlower corners. They can also be projected on a circle: drag the mouse from the intendedcenter to any point to lay on the circle itself.Placing:Align:Spring calls an automatic layout algorithm called Spring (courtesy ofMichel Baudoin-Lafond, from LRI/Université d'Orsay), based on minimisation of a certainattraction/repulsion function amongst states.3.7 Debug (diagnostic recovery)Provided a diagnostic information (a path usually) was obtained in fc2 using the -debugoption of fc2explicit or fc2implicit, it can be explored and mapped on the originaldistributed network representation. To do this, �rst load the .fc2 �le and explore it. Noticebehaviours are now vectors of references. Then by selecting the Debug:Edge/Vertex mode,any click on an edge or vertex in this path will highlight corresponding elements in otherwindows containing the original network.Warning: A number of assumptions are made here, for proper use. These are notchecked by autograph and may result in error. First, it is supposed that all �les comprisedin the network are present, even if iconi�ed windows. Second, autograph windows shouldnot have been changed by edition (other than harmless small moves) since last translatedinto fc2 �les. Third, the basename of the basename.fc2 �le should be identical to thebasename.atg �le in which the graphical description was stored.In the current version the path is displayed both on transitions of individual automata ,and on ports of boxes containing them. Vertices, edges, ports and the corresponding labelsare highlighted. As the same component can occur several times in the description, boxesare assigned integer references and these integer are used everywhere to record to which boxthe behavioural element is tied. While this requires information deciphering to get used to,it was found preferable to the other option where windows were duplicated (to the point ofsubmerging the screen ability for display).3.8 Abstract ActionWith this menu one can add annotation on an automaton to provide relevant informationsso that it can be interpreted and translated as an abstract action.The AbstractAction:begin menu button selects the abstract action initial state.RT n�191

26 A.Bouali,A.Ressouche,V.Roy,R.de SimoneThe AbstractAction:end menu opens a vertex as successful terminal state of an abstractaction, whose name has to be provided then in a textual editor.The AbstractAction:save translates the window content in fc2 format as an abstractaction. The net contains a hook "abstract_action", the begin state have a logic "initial"and the end state have a behav giving the name of the abstract action.3.9 Translation into fc2Translation from graphical representations to fc2 �les is quite straightforward, specially onautomata. There is a number of consistency checks to insure safe interpretation (in fact justcommon sense considerations):� Automata must have an initial state;� Boxes may not overlap (proper nesting);� Innermost boxes must have all their ports labeled, and contain either a struct name(the subcomponent to be instantiated later from another source description) or anautomaton;� Edges should not link a vertex to a port/web, and not two ports apart from neighbou�ring boxes (siblings or �mother/daughter� in the containment tree).� Connections should not contain more than one external port (without external port,the connection is called internal to the subnetwork represented by the mother box,and correspond to an action hidden at this level).Connections here are sets of ports bound together by being linked to the same webs (so thefc2 format allows multipoint synchronisation). As a shorthand two ports can be directlylinked by an edge for a binary synchronisation. Each connection will produce a synchronisa�tion vector describing a possible behaviour of the (subnetwork translated from their) motherbox. Synchronisation vectors will be labeled (or internal) according to the external port ofthe connections.Globally visible actions are formed by outermost webs, ports and edges bearing an explicitlabel (a box is said to be outermost if not nested inside another one, outermost ports areports on outermost boxes, and outermost webs/edges are tied only to outermost ports).The previous example from section 2.4 already showed Atg drawings and their fc2counterpart.
INRIA

The FCTOOLS User Manual (Version 1.0) 274 The fc2 �le linker fc2linkA complete network description may be split amongst several actual �les, possibly originatedfrom di�erent sources, textual or graphical. This allows components reuse and modularity.On the other hand most veri�cation tools will only accept a single �le input. Linking �lestogether consists mainly in ensuring a proper correspondence in label references, betweenthe locations where subcomponents are de�ned and their invocation in a larger network.Example of this is provided in �gure 5, where the fork description in �gure 3 is substitutedto its reference inside previous network of �gure 4. Tabular references must be merged, andso usually shifted to avoid con�icts.fc2link requires a -main �lename, whose topmost network (net0) will be taken tobecome the global network. Hierarchical subcomponents are only selected from the set offc2 �les provided as arguments as they are needed, through dependency analysis. Ambiguityresults in errors.5 Global System GenerationThe global model construction/expansion is a main part of model-based veri�cation tools.States in such a model are vectors of component (local) states, and behavioural transitionsare obtained by interleaving or synchronization of local behaviours. Of course this meanspotential combinatorial explosion, and methods for compact representation of global statespaces are at the core of all approaches to model-based veri�cation techniques.fcTools o�ers two alternative implementations of the product construction: fc2glob,classically based on enumerated representation of states and transitions; fc2iglob, a symbo�lic version based on Binary Decision Diagrams for implicit representation of (sets of) states.Both are embedded in the respective commands fc2explicit and fc2implicit.While the explicit product construction yields naturally a full automaton (with transi�tions), the implicit BDD implementation produces rather a symbolic version of the globalreachable state space, so that producing a full global fc2 automaton requires more e�ort tolist transitions for �le printing. On the other hand many subsequent analysis do not requirethe actual automaton at this stage.5.1 The Explicit Global System Generator fc2globThe construction algorithm is rather straightforward. Hash tables are used to keep the setof already reached states represented as bit vectors, and new discovered states are given aninteger reference and stored in a list of �states to explore�. Target states are stored as partof the source state description together with the labeled transition reaching them.When invoked recursively on a multi-level hierarchical network the explicit implemen�tation can be alternated with reduction functions at intermediate stages with the -compoption. One recovers then the compositional model reduction approach popularized throughthe original Auto tool.
RT n�191

28 A.Bouali,A.Ressouche,V.Roy,R.de SimoneSynchronisation vectors can be applied in any of two ways. When the -bitset �ag is on,a bitvector mask selects applicability on any (bitvector) state, and other bitvector functionsthen actually compute the target state. The other way is more traditional. It was foundexperimentally that the bitset approach works better for large vectors with componentsof few states (the uncompositional, �at approach), while traditional transition applicationretains e�ciency when components put in parallel were themselves large automata.5.2 The Implicit Global System Generator fc2iglobfc2iglob (or fc2implicit -reach) computes the (BDD characteristic formula given anordered boolean encoding of) the set of global reachable states of the system. No com�positional speed-up method is foreseen, so that the network is �attened to a single-levelvector of individual automata. The reachable state space is of course evaluated in a breadth�rst search strategy, applying event synchronisation vectors individually until �xpoint. Thisgains e�ciency as the symbolic representation of a given synchronisation vector does notdeal with idle components.Fixpoint reachable state computation can be re�ned to allow for on-line deadlock de�tection (states without behaviours), and followed by livelock or divergent states detectionon the result (a divergent state may perform in�nite sequences of hidden �tau� actions, alivelock state can exhibit only such behaviours).The tool only enumerates states if asked to produce the fc2 automaton on �le withthe -fc2 option (otherwise it provides size �gures). If deadlock/livelock/divergent stateswere queried and found, it provides a diagnostic path. If -debug option is used, additionalinformation is inserted about the origin of transitions in terms of network components.6 Bisimulation minimisation and equivalence checkingThese functionalities are implemented both with implicit and explicit representation tech�nologies. In the former case the algorithm assumes a network description as argument (andnot a single automaton, so as to bene�t from cleaver encoding using boolean variables); inthe latter case a global automaton is built prior to minimisation, but compositional reduc�tions can be applied on hierarchical network descriptions. Experience showed that explicitmethods can run substantially faster when the size of the considered automaton is still ma�nageable for them. On the other hand symbolic methods are sometimes applicable on largesystems, provided the number of classes remain low (for instance in weak bisimulation whenonly a few signals are left visible to distinguish between states). Also they have a clear usewhen only comparing two distinct networks (the equivalence checking problem).The tools deal with all three standard variants, namely strong, weak and branchingbisimulation. The Relational Coarsest Partitioning Algorithm of Kanellakis and Smolka [2]is used to re�ne a partition of the states, until �xpoint. In case of equivalence checking oftwo distinct automata the re�nement can possibly be aborted before �xpoint, when it isfound that some state has no match left from the other automaton.
INRIA

The FCTOOLS User Manual (Version 1.0) 296.1 The Implicit AlgorithmSymbolic algorithms for the computation of (strong, weak or branching) bisimulation equi�valence classes were described in [1].The quotient automaton can be produced in fc2 through symbolic projection functions,to the e�ect of replacing any (symbolic) state by a uniquely determined representative, andthen providing integer representations of such representative to be used as new target states.When checking for equivalence between two distinct networks the synchronous productis built so that only couple of states reached in some common behavioural path are triedfor bisimulation. This instills some �on-the-�y� �avor to the approach. A path leading to amatchless state with minimal splitting iteration index is produced when debug �ag is on.See section 2.3 for Unix command syntax.6.2 The Explicit AlgorithmCan be iteratively applied on automata resulting from subprocesses for compositional reduc�tions (using the -comp �ag). Builds a global automaton,then reduces it into another explicitautomaton, minimal in states and with only transitions explicit in the former ones (no �transitive closure in case of observational bisimulation).Warning: under development. When checking for equivalence between two distinctnetworks the disjoint union of the two state spaces is built, and then partitioned as awhole. The algorithm then possibly aborts because a class contains no states from one ofthe automata, before reaching �xpoint. Then a list of states without match is provided ascounterexample.See section 2.3 for Unix command syntax.7 The Model AbstractionAbstract Actions allow to observe an automaton with a coarser atomicity level. So it ap�pears as the opposite of re�nement, and as such takes an important role in analysis, wherepreservation of some prior less detailed version can be a useful check. The idea is to collapsea number of sequences of concrete behaviours as �abstractly equivalent� and atomic, callingsuch a set an abstract action. Any concrete behaviour sequence somehow �implements� theabstract behaviour then. For �niteness reasons and e�cient automatic veri�cation we res�trict to the case where abstract actions correspond to regular expressions of (alternative)concrete behaviours, and thus to �nite automata.Reducing a global system with respect to a set of abstract actions results in a systemconceptually simpler, where meaningful activities have been isolated as coarser-grain atomsand named. A practical subcase arises when a single abstract action consisting of thecomplement of the desired behavioural trace language is provided. Then �nitary traceinclusion is obtained by checking the non admission of the abstract action by the system. Inany case, determinism is a desirable property for abstract actions, concerning algorithmic
RT n�191

30 A.Bouali,A.Ressouche,V.Roy,R.de Simone
enterenterenterenterenterenterenterenterenterenterenterenterenterenterenterenterenter

~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter~enter

exitexitexitexitexitexitexitexitexitexitexitexitexitexitexitexitexit

enterenterenterenterenterenterenterenterenterenterenterenterenterenterenterenterenter

tautautautautautautautautautautautautautautautautau

AbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstActAbstAct

Figure 9: philosophers abstract-actione�ciency. In general abstraction is not compositional w.r.t. network operators such asparallelism.Abstract actions are gathered in a new alphabet, to be labels of new transitions. Newstates are based on concrete ones (only that some may usually become unreachable). Wecurrently input abstract actions as automata in the fc2 format, using the following syntaxto represent sequence of concrete actions:single� action = IDj?IDj#IDj!IDj ?abstract� action = � single� actionjsingle� action:abstract� action? is the �true� wildcard action and and represents any concrete action while the �false�action is � ?. To match any path that contains the concrete action ?a.#b.!c, we have toprovide in the abstract action automaton a transition labeled by ?a.#b.!c.?.For instance, in �gure 9 we use the Atg abstract-action feature to describe an abstractbehaviour refuting mutual exclusion.The fc2 description below corresponds to the translated form of the �gure 9.nets 1hook"main" > 0struct"AbstAct"net 0behavs 3:0 "exit":1 "enter":2 "AbstAct"logic "initial">0hook "abstract_action"vertice 3vertex0edges 2edge0behav ~1-> 0edge1 INRIA

The FCTOOLS User Manual (Version 1.0) 31behav 1-> 1vertex1edges 3edge0behav tau-> 1edge1behav 1-> 2edge2behav 0-> 0vertex2behav 27.1 The Explicit Abstractor fc2abstFrom the description above each abstract action is in essence an automaton with transitionlabeled by (expressions on) concrete behaviours, with a dedicated terminal state itself labeledby the abstract name. Then a criterion is a collection of such automata, to be gathered ina single one by classical union.The abstracted automaton is built by constructing some synchronous product of thenetwork with this structure, and setting new states and transitions in the result only whenterminal criteria states are reached (bearing their name to become the new transition la�bel, while the target state correspond to the one produced from the network alone). Thisprocedure has to be applied for each new created state facing the whole criterion.7.2 The Implicit Abstractor fc2iabstWarning: under development. From the transition relation of the global automaton andthe abstraction criterion, an abstract transition relation is built. Then, to get the abstractmodel, we compute the reachable states from the initial state with the new transition rela�tion. The command fc2iabst is actually a restricted use of the tool command fc2implicit.One has in fact to give two fc2 �les as input to the command, the �rst being the networkdescription and the second the abstract criterion. Result output option is automatically set.See section 2.3 for Unix command syntax.8 Veri�cation by ObserversA great deal of practical veri�cation is usually conducted by compiling an automaton-likestructure from the property to establish, with possibly additional annotations on statesand transitions of various sorts (success, failure or recur states, don't care transitions,...).
RT n�191

32 A.Bouali,A.Ressouche,V.Roy,R.de SimoneVeri�cation then starts by constructing a synchronised product of the (usually large) networkstate space with the (usually smaller) state space of the observer structure. One can attemptto introduce the actual veri�cation algorithms in the middle of this construction, to getpotential negative results as early as possible (known as �on the �y� or �local� techniques).Here again the distinction between implementations based on explicit and implicit staterepresentation are relevant. Symbolic techniques are usually a clear winner, specially whenno representation of subsets of transitions are required, and only forward search acrossstates is needed (since backward search may exit the reachable state space and needs to becontroled). This is the case for safety properties.In the current version of fc2implicit one can only specify deadlocks, livelocks, and di�vergent states as particular con�gurations. A dealock is a state without outgoing transitions,a livelock is a state from which there will never eventually be produced any visible action,a divergent state is one from which there is an in�nite behavioural sequence without visiblelabel content. In practice what this means is that special recognizing states in observersshould be deadlocks, inducing deadlocks in product machines also, for safety properties. Forliveness properties the unwanted nonprogress loops should correspond to hidden behaviours.In all case this is awkward and the current situation is not as expressive as should be. Weplan to extend this with far more �exible descriptions of particular states and transitions asthe fc2 format made special provision for that.The combined construction poses little problem and can actually be described insidethe formalism, by setting the network and the observer in �regular� parallel. Accordingto �ag options selecting which particular feature is looked for, one discovers symbolicallythese states/loops from the network which can be coupled (in the synchronous product) toparticular states of the observers. Then a (shortest) path from initial state to one of thestate identi�ed as such is produced. Finally, if -debug option is set, source recovery functionsquery the state structural �elds to uplift this diagnostic back to the original multi�le networkdescription, and to autograph display.

INRIA

The FCTOOLS User Manual (Version 1.0) 339 Source Information RecoveryWhen invoked with -debug option, both fc2implicit and fc2explicit preserve a structuralcorrespondence between states: a global state obtained by product is a (comma separated)list of local states in the innermost components of the network from which the global auto�maton originated ;a reduced state in a quotient automaton is a union/sum of states in theunreduced former automaton. In case of compositional alternated products and reductionsone gets corresponding alternation of parenthesized sum and list expressions. In additionthe fc2 �les contains in its header a description of the current structure (in terms of �leswhere constitutive elements were found).The previous elements allow at any time to retrieve how states distribute on the originaldescriptions. No such information is kept for transition labels, but the mapping of global be�haviours into local ones, once known the source and target states, is usually straightforward(and if several cases apply, they are all valid anyway). Such a reconstruction is performedafter observational minimisation in the -debugcase. It should be noted that preservation ofdebug information can be space and time consuming, which is why it is turned on only onexplicit �ag option.When -fc2and -debug option �ags are set, potential counterexample paths are comple�ted with transition behaviour label mapping down to components. In this way the counte�rexample �les can be loaded to autograph or fc2view for display on distributed networks,where local state changes and behaviours are highlighted. See further description in auto�graph and fc2view sections.

RT n�191

34 A.Bouali,A.Ressouche,V.Roy,R.de SimoneReferences[1] A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Fourth Workshopon Computer-Aided Veri�cation, volume 663 of LNCS, pages 96�108, Montreal, 1992.Springer-Verlag.[2] P.C. Kanellakis and S.A. Smolka. CCS expressions, �nite state processes, and threeproblems of equivalence. Information and Computation, 86:43�68, 1990.[3] E. Madelaine and R. De Simone. The FC2 Reference Manual. Technical report, INRIA,1993. available by ftp from cma.cma.fr:pub/verif as �le fc2refman.ps.gz.[4] J.K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series. Addi�son-Wesley, 1994.

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

