PRODUCT MANUAL

ynamic C

Integrated C Development System
For Rabbit Microprocessors

Function Reference
Manual

019-0113 « 090409-M

The latest revision of this manual is available on the Rabbit web site,
www.rabbit.com, for free, unregistered download.

http://www.rabbit.com/

Dynamic C Function Reference Manual

Part Number 019-0113 « 090409-M « Printed in U.S.A.
Digi International Inc.© 2007-2008 « All rights reserved.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International Inc.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International Inc.

Digi International Inc reservesthe right to make changes and
improvements to its products without providing notice.

Trademarks
RabhitSys™ is atrademark of Digi Internationa Inc.

Rabbit and Dynamic c® are registered trademarks of Digi International Inc.

Windows® isa registered trademark of Microsoft Corporation

RABBIT.—Sung=

PRODUCT MANUAL

Table of Contents

Alphabetical Listing of Dynamic C Functions %
Group Listing of Dynamic C Functions XV
Arithmetic XV Logging Subsystem XX
Bit Manipulation XV MD5 XXi
Bus Operation (Rabbit 3000, 4000) XV MicroC/OS-ll XXi
Character XV Miscellaneous XXii
Data Encryption XV Multitasking XXii
Direct Memory Access (Rabbit 4000, 5000) xv Number-to-String Conversion XXii
Dynamic Memory Allocation XVi Partitions XXii
ECC XVi Pulse Width Modulation (Rabbit 3000, 4000, 5000)
Error Handling XVi XXii

Extended Memory Xvii Quadrature Decoder (Rabbit 3000, 4000, 5000)
Fast Fourier Transforms Xvii XXii

File Compression Xvii Rabbit 3000, 4000 XXii
File System, FAT Xvii Rabbit 3000, 4000, 5000 XXili
File System, FS1 Xviii Rabbit 4000, 5000 XXiii
File System, FS2 Xviii Real-Time Clock XXiv
File System, Registry Xviii Serial Communication XXiV
Flash, NAND Xvili Serial Packet Driver XXVi
Flash, Parallel Xviii Servo Control (Rabbit 3000, 4000) XXVii
Flash, SD XixX SPI XXVii
Flash, Serial XiX Stdio XXVii
Floating-Point Math XiX String Manipulation XXVii
Global Positioning System XX String-to-Number Conversion XXViii
HDLC Protocol (Rabbit 3000, 4000, 5000) XX System XXViii
I/O XX User Block XXVili
I2C Protocol XX VBAT RAM (Rabbit 4000, 5000) XXViii
Interrupts XX Watchdogs XXViii
Chapter 1: Function Descriptions 1
Software License Agreement 557
Dynamic C Function Reference rabbit.com iii

rabbit.com

http://www.rabbit.com

RABBIT.—Sung=

PRODUCT MANUAL

Alphabetical Listing of Dynamic C Functions

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Symbols ChKSOMRESEL .vvvveeieieeeiieeeseee e e e e eeeee s 25
ChKWDTO ittt ee e 26
_GetSysMacrolndex ..o, 178 ClOCKDOUDIErOFf v...vvvieie i cctee e 27
_GetSysMacroValue ..o, 179 ClOCKDOUBDIErON ...t 27
_SYSISSOftRESEL ..vvveiciei e 517 Closel NpUtCOMPreSSedFilecoeevreeereervereeenas 28
_xall OC ittt 542 CloseOutputCompressedFileccoeveervereeennas 28
XAVl o 45 (0] 1='o 1o NPT 29
A COf_PKEATECEIVE oovuvveeeeeciiiee e 29
COf_PKEASEN .evvvviiiriereiiiiiee e 30
A0S 1reeeeie e e 2 COf_PKIBreceiveoocvviiiiis 29
BCOS .vveerreeeseseeesereeesereeesere e s s e e e s e e e s e e s areenares 2 COf_pKIBSENdocvceinieiniiiiniiisinnenisnennaen 30
2 o o S 3 COf_PKICIECEIVE ...t 29
2o oS 3 COf_PKECSENd ...oeviiiiiiiiiiii s 30
AESUECTYPUXS eovveeeeeeeeeeeeereeeeeneeeeseeeeeeneneens 4 COf_PKIDIECRIVE ...vvvvveriiciiieieisisesee e 29
AESIecryptStreamdxd CBCcveveeeeeeeeeseeeseanns 5 COf_PKEIDSENG ...uvvvieieeeeeeiecniireee e e e e eeenrneee e 30
AESENCIYPUXS ooveveeeeeeeeeeeeereeeeeseneeeesereeeeneneens 6 COf_PKIEFECBIVE ...viuvveniiciiieie e 29
AESencryptStreamdx4d CBCcveveueeeeveeseeeseanns 7 COf_PKEESEN ...evvvieeeeeeeiieciiireee e e e e eeenine e 30
AESEXPANAKEYZ .o e eeseeeeseenaeanas 8 COf_PKEFIECEIVE .uvvveeeeeeeiiectiieeee e e e e eeenieeee e 29
AES NESUEAMAXS <o 9 COf_PKEFSEND ..eevviiiieeeee et ee e e e e ee e 30
BSEC vovrereeeeeeeee et enen et en s en e 10 COF_SEIAGEIC «.evrreererereneseisinisise s 31
SN ceveeeeeeee ettt ettt ettt ettt ettt 10 COf_SEIAQELS .vvvvvererisesssessseeeesee s 32
L TV 11 COF_SEIAPULC ..cvaeeeeiseneseisisisese s 33
2 17T 12 COF_SEIAPUES ..eovsceenesereesessisisisesessssise s 34
BEOT vt ettt eeee e ee et e e et eee e e e eeens 13 COf_SEIATEacvvviiiiisieice s 35
BEOT e eeeeeeeeeeeeeeee e e ee e e eee e e et e e e e e eeenn 14 COf_SEIAWILE ...cviviciicie s 36
BEOL ettt 15 COf_SErBUEIC ..vvvvvrrerirescicsceeee s 31
COf_SEIBOELS .uvvvrviiirrereesiieeeeesieneessssseeessnneees 32
B COf_SEIBPULC «evvveerierreneessreeessssreeessssseeessnneees 33
COf_SEIBPULS «evvvreriereeresssieeessssneeessssseeessnseees 34
Eilt 2 ST % SO U BGEEL T 35
e T) S ——— 3
BIRAPOM «.v.eeevvveeeeeeeeeeeesessesesseesseseessseeeee 19 SUSTICC g%
1= 1 20 COLSOCORLS oo
BIOWIPOM +vvevrveeeeeeeeeeeeeeee e eeeeesess e eeeeeens 21 OO SECPUIC oo 33
COf_SEICPULS wevvveersvrreneessreeessssneeessssseeesssenes 34
C COf_SErCreaoovvuvviieeriiciee s 35
COf_SEICWIILE ..eevvvieeeeeeeececttreeee e e e e ee e ee e 36
CaCUIAEECC256oveevveeeeeeneeeeernneeeeenaeeees 22 COf_SEIDGELC ..euvvrrreeieeeeeiecirtrreeeeeeeeeennrneeeaeens 31
CEIl e e 24 COf_SErDOELS v 32
ChKCOITECtECC256vvvieeeiinsiiisiie s 23 COf_SEIDPULC «vevveeeereeeeeereesreeseeesreeereesseenneas 33
ChKHardRESELcvvniieeeee e 25 (o0 = = (3] o1 (R 34
Dynamic C Functions rabbit.com

http://www.rabbit.com
http://www.rabbit.com/products/dc/

COf_SEIDIEAA ...uvvvvreeeeeeeeiecitrrreee e e e e eesnerrreee e 35 errOgFOMMAENTIY vvvveeeeeeiecirrreeeee e e e eesnnvereeeeens 71
COf_SEIDWIIE .evvrreeeeeeeeeiectrrreee e e e e eesnnrnreeee s 36 errlogFormatRegDUMPcccvvvvveeeeeeeieinnreeeeeeans 72
COf_SEMEQEIC vvvrrreeieeeeeieiirrrreeee e e e eesnnrrreeee s 31 errlogFormatStackDUMPvvvveeeeeerereiinrnneeeenns 72
COf_SEMEQELS vvrrrreieeeeeiiicirrrreeeeeeeeesnnrnreeeeens 32 errlogGetHeaderInfoocccvvvveeeeeeeeeecireeeeeen, 70
COf_SEIEPULC .vvvvrrreeeeeeeeiecinrrrreeeeeeeeesnnrnneeeeens 33 ET1OgGEIMESSAE vvvvveeeeiierrrrreeeeeeeeeinerrreeeeens 73
COf_SEIEPULS ..uvvvrrreeeeeeeeiecirrrreeee e e e eesnnrnneeeeens 34 errOgGEININENITY .evvveeeiieciirieeeee e eeeirreeee e 71
(o = = = (== s H U OO 35 errlogReadHeaderoocvvvvveeeeeeeiiiireeeeen, 73
COf_SEIEWIITE .uvvvrreeeeeee e ittt e e e e eecnnrnneee e 36 EITON_IMESSAGE «uvvvrrerreeereresinrrrrereeesssesssrsseneees 74
COf_SEIFOEIC vvrrrreeeeeeeiieiirrrreee e e e e eesnnrnreeeeens 31 EXCEPLION 1oveveieirrreeeee e e e eecrrrre e e e e s e e e snnrrreee e 75
COf_SEIFOELS ..vvvrrreeeee e e e cecrrrree e e e e eesnnrereee e 32 EXIT cuvrrreeieeeesiesirrrrr e e e e e e se e e e e e e e e nnnrrraeeeeas 76
COf_SEIFPULC ..evvvrrreeeeeeeiiecinrirreeeeeeeeesnnrnreeeeens 33 EXP rrrrerereeeeeiinirrrrreee e e e eaaaeeannarararaaas 76
COf_SEIFPULS .euvvrrreeeeeeeiiecirrrreeeeeeeeesnnrnneeeeens 34
COf_SEIFIEad ...ccvvvveeeeeeeiiicrrrreee e e eesirrreee e 35 F
COf_SBIFWNIE wrssvvvvressvvvness s I P 77
COMPIESSHlE ..o 37 fAl_AULOMOUNE ..vveveiivieerseeiieeeeesiiee e s siseee e 78
COPBUSE ..ot 38 (= G 1[0/~ ISR 81
CORe%t ... 38 fat_CreateD| | ST 82
CORESUMEeeieiiieeeeeeeeeecntrreee e e e e e e snnrnneeeeeas 39 O 83
COS uuurrrreeeeeaeeesasunrereeeeeeesaasnnrrreeeeaaeseannssnnanes 40 Fot_CIEALETIME vvvovveeeveesreeeseeessese e 84
COSh ... 40 fat_Dd ete ... 85
D fat_ENUMDEVICEuvvreeeeeeeeeeeirreeeeeeeeeeenneees 86
fat_EnuMPArtitionccceeeeeeecinneeeeeeeeeeeennne. 87
DECOMPIESSFIlE ..vveeeeeeiiiee e et e e eetre e e 41 fAl_FIlESIZE ovvvveeeeirrieee et 88
defiNEErrorHandIErcooeecvvveeiiee e cecireeeeeen, 42 fat_FOrmatDEVICEeeeeeeeeeeiecrrrieeeeeeeeeennene 89
0o PR 43 fat_FOrmatPartitioncceceeeesiivnenessniennnnnns 90
DEBYMS ...eevieeeeeieee e 44 L= £ <Y PRI 91
DEIGYSEC .vvvveeeiriieeeeesriee e ssiee e 45 Lz B G-V i | PR UPTPPRR 92
DEYTICKS .uvreeereiureeeeeirreeeeesreeeeeenreeeeeenneeeas 45 fal_GENAME ..vvveeeeesiieee e e eiree e 93
Disable HW _WDT ...coooiciiiieieeee e eceveeeeean, 46 fat_GetPartitionccceeeeeeeeeeieciereeeeeeeeeeennene 94
(DY = o 47 [z 1 SRR 95
DMACOMPIEEDvveeeeeiiiieeeecreeeeceireee e 438 fat_INItUCOSMULEX ..evvvereiirieeeesiiieeessnieeeeeens 96
DMAandle2chanccccveveeeeeeeeeiecnnveeeeenn. 49 fat_ISCIOSEd ...coeeeeeeiieeie e e e e e e e e 97
DMAIOE2MEM .ivvieeeeirreeesssieeeesssnreeesssssaeeas 50 Al ISOPEN ©eveiviieeee ettt 98
DMAIOIZMEM ..vvveiieeeeeieeiiirieeee e e e e eeinveeeeee e 52 fal_LaStACCESS ...cccuvrrreereeeeeeeinnrreeeeeaeeesennneens 99
DMAI0a0BUFDESC ...cceeeeevrireeeeeeeeeeeneveeeeeenn 53 fat_LastWIte ..oooeceeieeeeeeeee e ee e e e 100
DMAMBCNSELUD evvveeeeirreeeeeireeesssieeeeesssseeeas 54 fat_MouNtPartitionoceveeeeriveenssniiennnnns 101
DMAMEMZI0€ .cuvvveeeeirreeessnsreeessssseesssnsseeens 55 FA_OPEN weviiiiiiieee et 102
DMAMEM2I0i weevivrrerearirreeessnssreesssssseesssssseenns 56 fal_OPENDIT .veveeee e e 104
DMAMEMZMEM 1evviieiiiiiirrrirereeeseessssssrereeeeens 57 fat_PartitionNDEVICEveeeeeeeeeeciiiieeeee e e e e 105
)Y Y oo | PR 58 fAl_READ .vvvveiiiiieee ettt 106
DMADPINBUFDESC .vvvveeiveeeeesireereesieeeessssseeens 59 fat_REAADIT .vveeeeieiieieeesiiee e rreee e 107
DMADFNREGS vvvveeeeiriieesenireenssssseeessssseenas 60 A SEEK wvvvvrerireeeeeriiie e e s e e 109
DMASEBUIDESC .eeveeeeeeieiirreeeeeeeeeeeennveeeeeeeas 61 (= B =7V | U 111
DMASEIDITECE veeeuvveeeeeirieeesssireeeessieeeeesssseeens 62 1= RS o L] PSPPSR 112
DMASEParametersccccvveeeeeeeeeesesinnveeeenens 63 fal_SHAIUS vevveeeeeeecrrrrereeeeeeeecnrereeeeeeeeennnees 113
DMASIATAULD oevvveeeeirreesssnsreeesessseesssssseeeas 64 fAl_SYNCFIIE ..vvveeee et 114
DMASEADITECE ..vvvveeeesirreeesssireeesesveeeessssseeens 65 fat_SyncPartitionccceeevvcuveresriiiensiniiieeenns 115
DMASIOP uvveeeeriirreresssreesssnsseeesssssssesssssseeens 66 1= = | PSPPSR 116
DMASLOPDITECE uuvvvereeirieeessnireeesssireeeesssseeeas 67 FAETICK vevveeeeeiieee s ee e 117
DMATLIMErSEIUD vvvvereeirrieeesireeessssseeessssseenss 67 fA_TIUNCALE «.vvveeeeeeiieeeeesreee e s e e riee e 118
DMAUNGIIOC «.vvvrieiireeeeieiiirrreeeeeeeeesesnnvneeeeeens 68 fat_UNmountDeVICE ...ceeeeeeeeecvereeeeeeeeeeennene 119
fat_UnmountPartitionccccveeeeeeeeerennnnen. 120
E FALWHITE verviei i i 121
ENEDIEIOBUS oo 69 fat_ XReadcceviiniiiiiiiee e 122,123
Vi rabbit.com Dynamic C Functions

http://www.rabbit.com

FCLOSE wvvviieee ettt 125
FOrEAE .evvveee ettt 126
fOreate (FS2) ..ovvvvvvrrreeeiee e e iccrrrreeee e e e e sesnnnes 127
foreate_UNUSETcvvveeeeeeeeeieirrrreeeee e e e eesenenens 128
foreate UNUSEd (FS2) vevveveevviecvnreeeeeeeeesesnnnen, 129
10 1= 1 (TP 130
FOBIEEE (FS2) wervrrerrereereerresseseeseesessessessessessens 131
FEIUSN (FS2) +vrvrrereessereessesseseeseesessessessesseseens 132
FEECPIX vvrreeeeeeeeiiiirrrreeeeeeeesesnnrrreeeeesesenannnens 133
FHECPIXINY 1ereeeeeeiiiiirrere e e e e e e e aneres 134
FRTEAL ©vveeeeeeeee et 135
FRIEAlINV evveeeeieeee e 136
flash_eraseChip .ooccvvvveeeeeeeei e e 137
flash_€raseSectoruveeeeeeeeieciireeeeeeeeeeesaeeens 138
flash_gEttYPE «vvveeeeeeiieeeeeieer e 139
FLASN 1NNt +veveeereeeeeeeseeeeesseeeeeeseesesseeseseeeeens 140
FLASH_TEAO . vevvereeeeeeeeeeeeeeeeeeseeseneseeeeeee e, 141
flash readSectorcvvveeeeeeiviieiirrereeee e e e seaneeens 142
flash_SeCtor2xwindowccccceeeeeeeeerennnnen. 143
HES (I HL0E< <o (o S 144
11100 SRR 145
110070 o ISR 145
fOPEN_Id (FSL) .vvvveireiieeeiiiiereesieee e srieeee s 146
fopen_rd (FS2) ..ccccveveeeeee e cecieeeee e 147
FOPEN W weeiiiiiiiee et 148
fOPEN_WI (FS2) wevviiiiieieeeiiien e e siieee e sriiee e 149
fOrceSOftRESELvvvveeeeeeeee e e e 150
10272 o [150
FEEB0 (FS2) wvvverrerereereeesseseeseeeesessesseeseeesenees 151
FIEXD weeeereiee e e 152
fS FOrmMat (FSL) wevvvvvverereeiiiieneesiieeeeseieeee s 153
fs format (FS2) ..cccvvvereeeeieniiiiiireeee e e 154
fs get_flash IX (FS2) .eveevrrvcreereriirienesniieeeennns 160
fS GELIX (FS2) wvveverrereieieiiienessieee s ssieeee s 161
fS get_IX_SIZ€ (FS2) vvvrvrirrrereerireenesiirennennns 162
fs get_other IX (FS2) ..eevvvvveereeiiiieneeniinennnns 163
fS get_ram_IX (FS2) vevrrivcrvereeiiiiensenieneennns 164
S NIt (FSL) veveeeiieiieeee e 155
fS NIt (FS2) vovvveereiriieeeesiieee e sree e rneee e 156
fs reserve blocks (FS1)ooovcvvvveeeeeeiniicninen, 157
fS SBL IX (FS2) wvveverrierrreriiieenessiieeesssneeee e 165
fS SBIUP (FS2) weveeverririieiiiieereesireee s ssieeee e 166
fS SYNC (FS2) uvvvereiieiiieesiiiee e sreee e rriee e 168
1150 SR 157
FSEEK (FSL) wvvverrerereeeeresseseereeeesesssseesesesenees 158
FSEEK (FS2) wvvvereeeereeressesseseeeesesssseeseessenees 159
FONIft e 171
FEEI (FSL) vorveeerrererereeesseseeseseesessesseeseeesenees 169
FEEI (FS2) vevererrerereeeesessessesesessessesseeseessenees 170
1100 7= R 175
FWITE (FSL) vovvveeeeiriieeeeeiieee e e sieeee s ssseee e 173
=Y (RS 174

Dynamic C Functions

G

QEL_CPU_FrEQUENCY .vvvveeeirieeeeesiree e s sireee e 176
QELCNEN eeeiiiie ittt 175
GELCIC vuvvveeeeeeteeeeesrteeessssre e e e s ssbne e e s esreee e e 176
0etdivider19200cceeeeeriieiiiiirieee e e ee e 177
0= U 177
GetVectEXtErN2000cvcvveereerivreenessreenessnees 180
GetVectEXtEN3000 ...ccovvveereeriereeeesrrrerensaees 181
(€= AV o1 [11= 0o 182
OPS_QEL_POSITION weveiviieeeiiiieeeeesiree e e eireee e 182
OPS_GEL UC uvvveeeeiiieeeessieeeesssineeeesssneeesenes 183
gpPS_ground_diStanCecceeeeeesiveereessseennnnns 183
H

07 0101010) D OO 184
(072101010 [185
[[IO oo | =R 186
[[IO oo | 186
HDLCCIOSEEvvveeeeeiieeeeecireeeeeeneeeeeenneeeens 186
HDLCCIOSEFuvveeeeeciiieeeecieeee e e e e e e nneee s 186
HDLCArOPE .ovevieeeiiiirirreeeeeeeeeseirrreeeeeeenanns 187
HDLCArOPF 1vveeeeeeeicciirrreeeeeeeeesnnvrseeeeeeennanns 187
HDLCEITOIE .oeccvveeeeeiiieeeeeeieeeeeeeneeeeeenneeeens 187
HDLCEITOIF oeieveeeeeciieeeeceeeee e eeven e e e e nneeee s 187
HDLCEXICIOCKE .vveeeeuvveeeerireeeeeeneneeeanneeeans 188
HDLCEXICIOCKF ..vveveeevveeeeeiveeeeeeieeeeeenneeeans 188
HDLCOPENE .oeevieeeiiciriireeeee e e e ecirrreeeeeeennanns 189
HDLCOPENF oevvieeeiiiirirreeeeeeeeecirrreeeeesennanns 189
HDLCPEEKE v.veveveeeeeeeeereeeeeeeeeeeeeeeeeneeeseennes 190
HDLCPEEKE vrveveeeeeeeeeeeeeeeeeeeeeseeeeeeneeeseennes 190
HDLCIECBIVEEvvveeeiveeeeecieeeeeeeneeeeeenneeeens 191
HDLCIECEIVER ...uvveeeecieeeeeeieeeeeeeeeeeeeenneeeeas 191
HDLCSENAEuvvviiieeieeecee e eeee e e e e eea e 192
| IO o | N 192
HDLCSENAINGEcooecvvvrreeeeeeeeecirrreeeeeeeeanns 193
HDLCSENAINGF ...oooveivvrreeeeeeeeeceirrreeeeeeeeanns 193
(4126 1116))Y/ (=3 ORTPR 193
0T R 194
1110 R 194
I

12C_CECK_8CK .vvveeeeeeeeeieciirieeee e e e e eecnveneee e 206
2o 14§ S 207
12C_read_Charcceeveeeeeicciiieeeee e, 207
12C_SENA_BCK wvvrreeeeeeeeeicinreeeee e e e e eesnrnneea e 208
12C_SENA_NBK .vvvveeeeeeeeeecireeeee e e e 208
[J2dog= = > 209
J2dog= = 1V 210
12C_SEOP X uvvereeeiireeeeeiireeeeeeinreeeeeeneeeeennes 211
12C WHLE CHAM vvvveeeieiiiecirrieeee e eirbanee e 211
INEEIVAIMS wvvvreeeeeeececireeee e e e e e e scrrre e e e e 195
INEEIVAISEC .rvvieeeeeeieecrirreee e e e e eeserrreeeeeeeeeanns 195
INEEVAITICK teveereeeeieeiiiireeeeeeeeeserrreeeeeaeeeanns 196

rabbit.com vii

http://www.rabbit.com

IPIES weveeeeeieiirrrrere e e e e e e serrrrr e e e e e s e s eannraneeeeens 196 111511110 o TR 237
01 = OO 197 MEMCIMIP +.vrrrreeeeeeeeeeerrrrrreeeeesesesansreneeeeens 238
ISAINUM oo e e 197 IMEIMCPY ceeverrrrrrereeeeeeeiesnrrereeeeessssssssrsseeeees 239
ISAIPNA 1eeviiecrirriee e e 198 MEMIMOVE .. evvvrrreeeeeeeeeiirrrrerereeesssssssreseeeees 240
1o 3L SR 198 111C 01 SRR 241
ISCODONE ..vvvveeeeeireeeeesnreeeeesnreeeeesnneeeeennns 199 MKEME weeeivieeeeesieee e e srree e e esnre e e e e snnee e e enns 242
ISCORUNNING «vvvvreeeeeeeeeiiirrrereeeeesssesnsrsneeeeens 199 MKEM ceeeeeeieccrirree e e e serrrr e e e e e e e s eannrareeeeeas 243
1= o [T | RSO R 200 111670 | RSO 244
1o 1= o o PUUT TSRO 201
SIOWEF <.vvvvooreeeseeeeeeees e eeesssene s 200 N
s 2L R SRR 202 Nf_eraseBlOCK .uvveeeeeeeeeiecireeeeeeeeeeeennveeeeeens 245
s S R R R R R 203 Nf_getPageCountccccveveeeeeeeeeeecnnveneeeeans 246
ISPACE «rovemvrerrmemssrsr s 202 Nf_gEtPAgESIZE ...evveeeeeeieee et 247
ISUPPEE oo 204 Nf_iNItDEVICE .vvvreeeeeeeeeiecirieeee e e e eeceveeeee e 248
SXAIGL vt 204 O _IDIDIIVER vvvoveeeeeeeeseeeeeee oo 250
o= N 205 O ISBUSYRBHW +e.veooeeeeeeee e 251
K Nf_iSBUSYSLAIUS ...vvvveeeervreeeeesireeeessnneeessneas 252
Nf_r€a0PAgE ..vvvveiereeeeeeiiiee e 253
KDNIT ©.vveeeeceiieee e e 212 Nf_WIEPAGE wvvvveiirreeeeriiiee e s 254
L D D I L= =lc: S 255
[ADS .evveeee et ee e et 212 ©
[OEXP ceveeeiieinrrrreeee e e e e cerrrrre e e e e e e s eannreneee e 213 OpenlnputCompressedFilevvveeeeeeeeeieinnnnee. 256
oo TR OPP 213 OpenOutputCompressedFileuvvevieeeeeiecunnnee. 257
10G. CIEAN +.vveeeeeeeee e eeees e e ses e enenenn 214 OS_ENTER_CRITICAL eeeeeeeeeeeeeeeeneeenens 258
[0Q ClOSE ...vvvrrrrieeeee e e e ceirrrrre e e e e e e s ennrare e 215 OS EXIT_CRITICAL oeevvvecrrireeeeee e eeinnne 258
10g_CONAITION .vvvveeeeeeeeiiiirrereeeeeeeeesnrrrreeeeens 216 OSFIAQACCER .vvvvrrrreeeeeeeieiirrrreeeeesesesesansees 259
[oTo T {o)1117= SO 217 OSFIaQCIEaLE . .uvvvrrreeeeeeeeiecirrrreeeeeeeeesenansees 261
[OQ MAP ceeveerrrrrreeeeeeeeiirrrrreeeeesesssannraneeeeens 218 OSFIagDEoeecvrrrreeeeeeeeiecirrrreee e e e ssanrees 262
[OQ NEXE vevveerrrrrieeeeeeeeieinrrereeeeesessannreneeeeens 219 OSFIAgPENDevvvrrrreeeeeeeeieiirrrreeeeeeeeesessnnees 263
[OQ_OPEN ooeirrrrieeeeeeeeceirrrrre e e e e s e s eansraneeee s 220 OSFIAQPOSt ...cccuvrvreeeieeeeeiecirrrreeeeeseeesssnsees 265
[OQ PIEY covveeerrrrrieeeeeeeeiirrrrreeeeeeesesannraneeeeens 221 OSFIAQQQUETY .vvvrrrrrreeeeeeiieiirrrreeeeesesesensnssens 266
[OQ PUL veveieirrrreeeeeeeeeseinrrereeeeeseseannrnneeeeens 222 OSINIt 1rreeereeeiiiiiirrrreeeeeeeeiesirrrrereeesesesasnssens 267
100 SEEK coovevrrrrrieeeeeeeeciirrrerr e e e e e e s eannrareeee s 223 OSMDBOXACCEDL .evvvrveereeeeeieiirrrreeeeeseseinssnseens 267
1010 coveeeeieenrrrriee e e e e e ieirrrrre e e e e e e s eannrrreee e 224 OSMDBOXCIEALE ..vvvvvreereeereieinrrrreeeeeeeeesnnsnseens 268
[ONGIMP ceeeienrrrrieee e e e eccrrrr e e e e e e s esnarereeeeeas 224 OSMDBOXDE!evvvrrieeieeeeeieciirrreeeeee e e e ssansees 269
[oTe]e] 1= [N PO 225 OSMDBOXPENG ...evvvvreeeeeeeeeieinrrrreeeeeeeeesesnnsnes 270
[OOPINIT veveieeurrrreeeeeeeeeierrrrrreeeeeeeseanrrereeeeens 225 OSMDBOXPOSEuuvvvreeeieeeeeiecnrrsreeeeesesessnsnseens 271
IO trrreereeeeeieeirrrrereeeeeeessnrrrrreeeesesennsrreeees 226 OSMDBOXPOSIOPE .vvvvveereeereieinrrrreeeeesesesesnnsees 272
JEOB 1vvvreeeeeereiesnrrrreeeeeseeessnrrrereeeesesennnrreeees 226 OSMDBOXQUETY ..vvvrrreeeeeeeeiesinrrrreeeeesssesnssnssens 273
7o o R 227 OSMEMCIEALE .vveeeeerreeeeerureeeeeeivreeeesnseeeeeans 274
DG {01117 PP PO R 228 OSMEMGELevvvrreeeeeeeeeiecinrrrreeeeeeeeesssanseens 275
OSMEMPUL «..evvveeeeeireeeeeesneeeeeesnneeessnnneeeeeans 276
M OSMEMQUENY ververeereeseeseesreereeseeseeseesseeseee 277
mbr_CreatePartitionccccceeeeeeeeeccceveneennn. 229 OSMULEXACCEDL ..vvvvsessisinininisissstniseee, 278
Mbr_ENUMDEVICE cooovvvvieiiiieieiiieeeeeeeeeeee e, 230 OSMULEXCIEALE ...oovvvivieiniiniinitni e, 279
mbr_FOrmatDEVICEcoeevveeeiiieieieeeeeeeeeeee e, 231 OSMUIEXDE ..o 280
mbr_ MOUNtPartitionccceeeeeveieiiiiieieeeeeeeenn, 232 OSMUEXPENG ..o 281
mbr_UnmountPartitionccceeeeeeeeeeeieienenennn. 233 OSMULEXPOSL ..ot 282
mbr_ValidatePartitionsccceeeeeeeeccnvveneennnn. 234 OSMULEXQUENY w..ovesemieinininisisssnniisnee, 283
1To [T 10) 1= 0 o [N 235 OSQACCEDL ..covevvrisiissitsns e, 284
MGS_FIMISN +vvrrvvevresseeernessssensnsssssesesssees 236 OOQUIEHE o
MAS 0N ceeeieie s 235 OSOFIUS 1 287
viii rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPEND ...oeeeveirrrreeieeeeeserrrrreee e e e e e ssanrees 288 PITEE FaSt tivvvrrrrieeeee e e it e eerrrrree e 330
OSQPOSE ...ceeieenrrrrrreieeeseiesirrrrereeesesessssnseees 289 PRWIM oo enrrrre e 331
OSQPOSIFIONE ..uvvvvreeeeeeersieeinrrrreeeeesesesnsnseees 290 PKEACIOSE ...vvvrirrieeeeeeeiiiirrree e e e e e e ennrrree e 332
OSQPOSIOPE ..vvvvrrrrreereeeeeiesisrrrreeeeesesesssnseees 291 PKIAGEIEITOIS wvvvveeeeeeeeeicirrreeeeeeeeesesnnrrneeeeens 332
OSQQUETY ..eeeeenrrrrreeeeeeeeiesinrrrreeeeesesessssnseees 292 PKEATNITBUITENS vvvvvieeeiiiciiirieeee e e sennreneee e 333
OSSCEALOCK .vvvvrrreeeeeereieinrrrreeeeesesesesnnnees 293 PKEAOPEN .eeiirirrieeeeeeeecerrreree e e e s e seannrereeeeees 334
OSSChEAUNIOCK wvvvvveereeeeeieinrrrreeeeesesesnnnsnens 293 PKEATECEBIVE ..vvvrrieeeeeeeiiiiirrereeeeesesssnnreneeeeens 336
OSSEMACCER uvvvrrrreereeeeeieiirrrrereeeeesesssnneees 294 PKEASEND ...iirirrieeee e e e ennrrree e 337
OSSEMCIEAE ...vvvvrrreeeeeeeeieiinrrrreeeeeeesesnnnnneees 295 PKEASENDING «evvvrreeeeeeeieiiiirrereeeeeeesesnrrrreeeeees 338
OSSEMPENDvvvrrreeeeeeeeeiecrrrrere e e e e e seanrees 295 PKEASEIPAITLY wvvvveeeeeeeriiiirrrereeeeeeeiesnnreseeeenns 338
OSSEMPOSEvvrrrreeeeeeeeiecrrrrrreeeeesesssannees 296 PKIBCIOSE ..vvvvrirrieeeeeeeiiiiirreeee e e e e e sesnnraneee e 332
OSSEMQUETY .vvvrrrrreeieeeeeieiirrrreeeeesssesssnseees 297 PKIBOELEITOIS 1vvvveeeeeeeeeicirrreeeeeeesssesnnrsneeeenns 332
OSSELTICKPEISEC .vvvveeieeeeeiecirrrreeeeeeeeessnnseens 298 PKIBINItBUIFENS 1vvveeeeeeeiiciirrereee e e e e senrrnneee e 333
OSSEA vevvrerereriirrrrreeeeeeeiesisrrrereeesssesssnneees 298 PKIBOPEN «..vivvrreeeeeeeeeeieirrreree e e e e e seannraneee e 334
OSSAINIT veevevveeeeesrieeeeerrreeeessiree e ssreeee e 299 PKIBIECEIVE ..vvvviiirrereesirieeeesieeeesssnseeesnses 336
OSTaskChangePYiOeeveerverersssvreresssseeeenns 299 PKEBSENG ...vvvveeeieiiiee e 337
OSTaSKCIEAE .vvvveiruvrereeirrreeeessrreeessnseeeenns 300 PKEBSENAING ©vvvvviiirrereeiiiieeeesiieee e s sieeeeenees 338
OSTaSKCIEAEEXL ..uuvvveeerrrreeeessrreeesssreeeennns 301 PKIBSEtPAIITY vvvvvveveeeeeiiiieeeesieeeeessneeeeesneens 338
OSTasKCreateHOOKvvvevrvrrersssvreressnseeeenns 302 PKECCIOSE .vvvveeeeeiiieneesiieee e essee e e e e 332
OSTaSKDE ...uvvveeeerrieeeeerireeeessireeessnsseeeeanns 303 PKECOELEITONS evviiuiveeeeesiieeeeesieneeessneeeesnees 332
OSTasKDEIHOOKuvvveeeiriveeenessirenessniseeeennns 304 PKECINItBUFFENS oo 333
OSTaSKDEIREY +veveeuvvereeirireeeessireesssnseeeesnns 305 PKECOPEN .vvvveeeeeiieee e e sireee e 334
OSTasKIAIEHOOKvvvveeeiivreeressivreeesssseeeenans 306 PKICTECEIVE .vvvriiiirrereesirieeeesieeeessssseeeesnees 336
OSTaSKQUENY ..vveeeerurreressrreeeeessnreeessnsseeeesnns 306 PKECSEND ..vvvveeeieiiiee e 337
OSTaSKRESUME ...cuevveeeeirrieeeessireeesssneeeenans 307 PKECSENAING .vvvvvriireereeriiieeeesire e 338
OSTasKStAHOOK ...uvveeeeirveeeeessrrenessnsreeeennns 307 PKECSEtPANITY vevvvievreeeesiiieeeeriieeeessseeeeenaees 338
OSTaSKSKCOK vvvveeivvieesiivieeeessirenesssneeee e 308 PKEDCIOSE ..vvvveeeeiiireneesireeeeeseeeee e s snee e e enees 332
OSTasKkSUSPEND .eeeeuevveeeeerirreeeessireeesssreeeeenns 309 PKEDGELEITONS vevvevuvveeeeeeiieeeeesieeee e e e 332
OSTaSKSWHOOK .cuvvveeeeiirieeeessireeessssseeeennns 310 PKIDINIBUFFEIS .uvvvereesiiieeeesiieeeeesveee e 333
OSTCBINItHOOK vevevvvveeeesiereeeessireeesssseeeesnns 310 PKEDOPEN .vevveeeeeiiieeeesseeee e e ssee e e e snee e e enees 334
OSTIMEDIY .uvveieeeeiieeeeeeitee e e e e e e eereee e 311 PKIDIECEBIVE ..vvvviiirrereesiieeeeesieeeeessseeessnees 336
OSTIMEDIYHMSM ...ooeieiiiiiieeeciieeeeeeireeee s 312 PKEDSEND . vvvveeeeeiieeeessrreee e e e 337
OSTIMEDIYRESUME ...vvvveiirieeressivrenessniseeeennns 313 PKEDSENDING ©vvvveeinerrereesiieeneeeieeeeeesneeeeenees 338
OSTIMEDIYSEC v.eeeeuvieeeeeeireeeeeeieeeeeeereeee s 314 PKIDSELPAITLY vvvvvievrereesireeneesiieeeeessneeeeessees 338
OSTIMEGEL ..uvvveeeesrieeeesrieeeeessrreeesssseeeenans 315 PKEECIOSE .vvvvveeiiirieneesiieeeeeseeeee e e e 332
OSTIMESEL ...uvvveeeeirieeeesrrreeeessrreeesssreeeesans 315 PKEEGELEITONS 1vvvviiveeeeesireeeeesieeeeessneee e 332
OSTIMETICK uvvvereerrreeeesrireeeessireeesssseeeennns 316 PKEEINIBUFFErS 1ooveveeeeeeiiiee e 333
OSTIMETICKHOOK ..vvvvveeeiiiieeeessireeessiseeeenans 316 [0 =< PR 334
OSVESION .ceiiieeeciiieeeeeieeeeeeeiee e e e eeneeee e 317 PKEETECEBIVE ..vvveeiiiiiereesireeeeesiteeeessneeeesnees 336
OULCKIS evveeeiieieeeeestieee s ssiee e e e s sine e e s esneee e 317 [0 =0 o [P 337
OULSET uvvveeeeeerteeesssseeeesssaseeeeesssnneeesssneeeennns 318 PKEESENTING ©vvvvviivirereeriiieneerireee e sneeeeenees 338
PKEESELPAITLY ©vvvveivvrereesireeeeesireeeessseeeeesaees 338
P PKEFCIOSE . vvvveeeeeiieee et 332
DA ..o 319 PKIFGREITONS oo 332
PAUDS w.vevvrevevrrsssessessssensss s 320 PKUFINIBUMTENS woovsovvnesnnss s 333
DAOAISS .vvvverrssssvesessnnesss s 321 PKIFODEN oo o
AIOCvoooerveeeerees e 322 PHIFTECOIVE oo
Eal 10C FASE oo 323 pkthend_ .. 337
s 2 | T 324 PKIFSENAING oovvvvviieniiiisi s 338
DVEI_TASE wvvvrsvvvrressssensesssssnsns s 325 PKIFSBPAIY oo 338
o Lo T 326 PIBSL et 339
01 PP 327 PIBSLFBEL oot 340
RIFSL_TASE wevvvesseeveesssensnssssensns s B 341
PETEE evreie ettt 329 PMOVEDEIWERN_faSL ..ovvvvvvniniiitinisiiinens 343
Dynamic C Functions rabbit.com ix

http://www.rabbit.com

0101 RO OPP 344 readUSEIBIOCK vvvvveeieeeeiiiiirreeeeeeeeeeenrraneeeeens 393
01012 AR OOTR 345 readUSerBIOCKAITAYccccvvreeeeeeeeeieinrreneeeens 394
PNEXE_FBSE 1vvvrrrreeeeeeeeeiciirrrree e e e e e esnnrereeee s 346 TEQiStry _ENUMETAEE ...ecevvevrrreeeeeeeeesennreneeeeens 395
010 V2R SPP 347 registry finish readccovveeeeeeeeeiicinvnnennnnn. 398
POOL_APPEND ..vvvreeeeeeeeiiiirrrreeee e e e s enrrrreeeeens 348 registry_finish WItecccvvvreeeeeeeeeiecnnreeeeenan. 399
POOL_INIt teiveeurirreeeeeeeeeieirrrrreeeeesesesannrereeeeens 349 TEOISITY JEL vvvrrrreeeeeeeeeiiiirrrreeeeeeesssnnreneeeeens 397
POOL_IINK +eveirirrieeeeeeeeicirrereeeeeeesesannrnneeeeens 350 TEgiStry_prep readoovccvvveeeeeeeeeiesinnreneeeeens 400
POOL_XAPPEND wvvvreeereeeeeiiirrereeeeeeeeesnrrereeeeens 351 TEQiStry_Prep WItE .ovvvvveevvreeeeeeeeeveinnreneeeeens 403
POOL_XINIt vvvvurrrreeeeeeeeeiiirrrereeeeesesessnrereeeeens 352 TEYISITY F€A0 .vvvvreeeeeeeeiiiiirrrreeee e e e s esnnrrreeeeens 405
POW 11vreeeeeeresesunrrrreeeeesseessssssreneeesessssnsssssenes ggg TEQISIIY _UPOEEE vvvveereeeeeiiiirrereeeeeeeeenrreneeeeens 22?
010V O N RES .o
POWEISPECIIUM 1vvverreeereirrrrerereeesesesnsreneeeeens 354 TE5 1rrreeeeeeeieeinrrrreeeeeeesesasnrrareeeeesesasnnrareeeeens 411
DITEY weveeeeieeiurrrreeeeeeeeeisssnsrereeesesssannsreneneeens 355 RESELEITOILOG vevveveveenrrrreeeeeeeeeiiirrreeeeeeesennns 412
PPFEV_FaSt covirirrieeeee e e it e e e enrrrre e 356 TOOE2VIAM ..vvevrrrreeeeeeeeesesnrreeeeeeesssessnsrnneneeens 412
PPULIESE weveiiiieeeeeiieee e 357 (010172 1= KPP 413
PPULIASt_faSt ..vvveiiireeieeiiiiee e 358 MC_tIMEZONE .vvvviiireeeeeriieee e 414
010 11T 1 PP 358 TUNWEECH . vevveee et 415
0102 0 (0 = PP 359
01413t PP 361 S
putchar ... 367 Sdspi_debounce ... 415
pUtS . . TeTTEETEIsnesnnn 367 Sdspl_get_CSd .. 416
pwm_;r;(b ettt e e e ggg SUSD B SCI vvvrrreeeeeeeeee e 417
me_ ... Sdspl_get_status_reg 418
PXAIOC 1evviiiieie et 370 SASDI_GELSECtOrCOUN v eereeeeereee 418
an”OC_faSt .. 371 $5p|_|n|t_card .. 419
pxcal IOC ... 372 $5p|_| nitDe\/ice .. 420
pr!rS .. 373 SdSpI_IS\NrItI ng ... 421
[OATTES S - S SRR 374 SUSDE NOMDUSY rvverrveeeeeeeseeeeseeeeeeseeeeeseeeeee 421
IOQ::: s g;g SUSDI_PIINE_GBY ovvvvvvorrnisnee i 422
p > 1Al s e 377 SdSpI JJroceSS_C()mmand 423
pXI = S SdSpI _read_%ctor ... 424
pXI aSt_faSt .. g;g ﬁqm_re%t_card .. 425
aneXt .. SdSpI_SEI’IdI ngAP ... 426
pX neXt_f = 380 SdSpI_SGt_bl OCk_I ength 427
(040 4=V PP 381 = Y 426
(O (=Y T = 382 SASDI WIE SBCION rvvvrrveereeeeseeeeeeseeeeeeeeeeee 429
SASPi_WHteCONtINUE ..vvvvveereeeeeiiieeeesiiieeeeans 428
Q SEFACIOSE cooviieriieee e 448
06 I = (o PRSPPI 383 S Ao 7 o] (SRS 448
QO_INIE ereeee et 384 SETAAMAEOF .eevieiiieiiiee e 449
(0o I =" o I RPN 385 SETAAMABON ...evviiei et 450
016 12 (o Y PRSPPI 385 SErAFlOWCONrolOff ...vvvviiviieieeiiieee e 451
(015 o] PRSPPI 386 SErAFIOWCONIOION ...vvveeiviiieee e 452
SEIAGELC 1evveirrieeeeesrreeeeesreeeeessbree e s snareeeeeans 453
R SEFAQEIEITON i 454
i 387 SEFAOPEN coeeeeietreee e e e e e e e e e e e nnees Z‘rgg
N 387 SEFAPANTLY cevnieeeeee e e e
FANAD oo 388 serA peek .. 457
FANAG oeveeeoeeeeeeeeeeee oo 388 SEIAPULC +vveeeurireeeesrreeesssseeeeesssbneeessssseeeesans 458
RAPOHE oo 389 SEIAPULS 1eveeeereeeeesreeeesssseeeessssreeessssseeeesans 459
RAPOM oo 390 SEFATAFIUSh .o, 460
tead Mo 302 SEFATAFTEE ...t 460
read_rtc_32kHz ... 392 SEFATAUSE ...vviivieicreceeere e 461
ReadCompressedFiIe '''''''''''''''''''''''''''''''''''' 301 SETATEA ..evivii e 462
X rabbit.com Dynamic C Functions

http://www.rabbit.com

SEAWIFIUSN oo 463 SErDOPEN oeeeiectirreeeee e 455
SETAWIFTER ooeeeiieirreeeee e cerrrree e e e 463 SErDPENITY voeveeeecirreeeie e e sareees 456
SEIAWIITE 1evvieeeeicecirreeeee e e e e serarrre e e e e s e s eannres 464 SErDPEEK covvveieiiirrreee e 457
SEAWIUSED .oooiiivirieeeee et 465 SErDPULC vevveeeieeirrrreeee e e e e eecrrrrere e e e e e e snareees 458
SEBCIOSE vvvvieeee ittt 448 SErDPULS vevveeeieeiirrreeee e e e e secnrrre e e e e e e e e seareees 459
SErBAAabItS ...vvveeeeeiieeeeeiieeeeeeiee e e 448 SEDIAFIUSN v 460
SErBAMAOFTevieeeccieee e 449 SEIDIAFTEE .vieeeeeeteee e et e e e e e e ereee e 460
SErBAMAONeeveeeeceiieee e e e e e 450 SEIDIAUSE ...ovvveeeeciieee e ee e e ceee e ereee e 461
serBflowcontrol Offceeeevveeeiviiieececiieeeeas 451 S S DI SRR 462
SerBflowcontrolOncccccveeeeeviveeeeciineeeenns 452 SErDWIFIUSN .evvveeeciiieee et 463
S S =1 = (AU 453 SEDWIFTEE .ovvtiireeeee e e et e e e e e sareeees 463
SEBOEEITOrN oooviieiirrieeee e e e cerrrree e e e e ennnes 454 SEDWIILE 1ivviieeiirreeeee e e e eecrrrre e e e e sareees 464
SEBOPEN 1evvieeeeiirreeeee e 455 SEDWIUSED ...vvvvirrieeiee e cecitrrre e snreeees 465
SEBPAMLY vevveeeeiiiiirreeeee e e 456 SEMECIOSE cooeveiiciirreeee et 448
SEIBPEEK wvvvviiiiiireiiiitee e st e e 457 SErEAAAbItS .uvvveeeerrreeee e ee s 448
SEIBPULC «vvvveiiereeeessireeesssseeeesssseessssneeeesans 458 SErEAMAOff ..vvveiiiciiiie e 449
SEIBPULS «vvvveeiireeeeisiieeesssseenessssseessssneeeeeans 459 SETEAMAON ...vvveieiiiieee e 450
SEBIAFIUSN oo 460 serEflowcontrol Offocceeviecciiiiieeeee e, 451
SEBIAFIEE covvee et 460 S = [o Voo a11 0 (@] F 452
SEBrAdUSEDuvieeeieiiieeeecveee et 461 SEIEQELC 1vvvviivireeeeiiieeesssite e e e ssine e e s sareee e 453
SEIBIEAH .vvvvviiiiieeeeeiire e st e e 462 SEIEQELEITON .uvvveeeeeiiiee e eriie e e e esiree e sineee e 454
SEBWIFIUSN .ot 463 SEIEOPEN weviiiiieeeeesiieee e et e e e e e 455
SEIBWITTEE .vvviieeieiieee st e e 463 SEIEPAILY wovvvvreeeeeiiriieesssieeeeessire e e srreee e 456
SEIBWIILE vvvvvieieiieeesiieeesssiee e e s siree e ssneee e 464 SEIEPEEK weviiiriieeeisiiiee e e site e e s e 457
SEBWIUSEO ...vvvveeeiiiieieeeiieen e st e s s sneee e 465 SEIEPULC +vvveiruvreeeeesirieesssieeeeesssineeesssneeesnnns 458
S (00 (01 YU 448 SEIEPULS wevveiiuvieeeeesriieesssseeeeessnneeesssneeesnnns 459
SErCUBLADILS ...vvveeeeeireeeeecieeeeeeeree e e eeaeeee e 448 S (= (0 07 [460
S S (®00 117 @) | USROS 449 S (= (0 1= U 460
S (000 11710 o N 450 SErErdUSEd ... 461
SerCflowcontrolOffeeeeeeeeiecciiieeee e e, 451 S (= (=72 o [462
SerCflowcontrolONcececcueeeeeeiiveeeeeeineeeeeans 452 SErEWIFIUSN ..o 463
SEICUELC wvvvvverureereesirreeessseeeesssareessssseeeenans 453 SETEWIFTEE .uvvveeeeeiieee et e et 463
SEICOEIEITON vvviieeieiieeeessreer e e sire e e e ssneee e 454 SEIEWIIE 1evviiiieeeecsiiiee et e e 464
SEICOPEN wevviiiiieeeeesireeeessreeeessssseeesssseeeesans 455 SEIEWIUSED ..evvveiiiiiiee st 465
SEICPANMTY wevvevrureereesiireeesssreeresssreeesssseeeeeans 456 SEIFCIOSE wovviiiiieee ettt 448
SEICPEEK wvvvvirireeeeesireeesssseeeessssseeessnneeeeeans 457 SEFAatabitS .uvvveeeiriiiee e 448
SEICPULC ©vveveeenreeneesrreeesssseesessssneessssseeeesnns 458 SErFAMAOFT .evviieiiiiiiee e 449
SEICPULS wvveveernreeeessnreeesssseessssssseessssseeeesnns 459 SEIFAMAON ...evvieeiiiiiee et 450
SErCIAFIUSN oo 460 SerFflowcontrolOffc.eeeiieccciiiieeeee e, 451
S 0| = U 460 SerFflowcontrolONcccceeeveccivireeeeeeeee s, 452
SErCIAUSED ...vevieeceeiieee et et e e e 461 SEIFQEC wevvviieieieeeriiee e e e e e e 453
SEICTEAN .vvvvveiiiieeeeeiieee e s sree e e s s e e e s nnee e e 462 SEIFQEIEITON .uvvveeieiiiiee e et e e s e e ereee e 454
SEFCWIFIUSN 1.t 463 SEIFOPEN woviiiiiiie e ettt e s 455
SEFCWITTEE .vviieeeeeiieee et e e e s are e enee e 463 SEIFPANLY wovvveveeeeesiieee e e 456
SEICWIIEE 1vvvveiiriereesiieeesssreeeesssaseeesssneeeeeans 464 SEIFPEEK 1evviiiiiiie e ettt et 457
SEICWIUSEO .vvviieeiiiieeesssreee e siree e s nneee e 465 SEIFPULC 1evveiiiiieeeesiieeesesiee e e e s sine e e s sreee e 458
SEIDCIOSE weeeeeeiriee e ettt e et e e 448 SEIFPULS wevveiieieieeesiieeeessieeeesssine e e s saneee s e 459
SerDAatabItsuvveeeeeiieeeeecieee e e e e e e 448 s L 0| = TV o N 460
SerDAMEOFTeveeecieieee e 449 s (0| = (= U 460
SErDAMAON . 450 s L (0 LU=l U 461
serDflowcontrol Offeeeeeeeeiecciiiieeee e, 451 SErFIEad .oooooi i 462
SerDFlOWCONrolONveeeeeciiieeeeciieeeeeeieeee e 452 SErFWIFIUSN ... 463
SEIDGELC wvvvveeiirieneeriieeeeesiee e e s ssree e esreee e 453 SEIFWITTEE uvvieeeeiiieee et e e 463
SEIDGELEITON .uvvvieeieiieeeeesieeeeesireee s s sneee e 454 SEIFWIILE wevviivieeeeesrieee s e e e e s sire e e ereee e 464
Dynamic C Functions rabbit.com Xi

http://www.rabbit.com

SEPWIUSED ..ccooiiiirrieeeee e 465 St INItDEVICE covvvvrrreeeeeeee e cecrrrreee e e e ssanreees 480
Servo_alloC table ...vvveeeeeeiei e 430 SEISWIILING vovveerrrreeeeeeeeevecrrrreee e e e e e e esannnees 481
SErVO_ClOSEIOOP .evvvreeeieeeeiiiiirrrreeeeeeeseanenees 430 St_PAJETORAM ..vvvrieeieeeeiiecrrrreee e e e e e e seanneens 481
Servo_disSale O ccvvvveeeeee e 431 St RAMTOPAGE ..vvvveeeeeeeeiiiirrrreeeeeeeeesennnnens 482
Servo_diSAIE 1 ovcvrreeeeee e 432 Sf_readDeVICERAMccovvvvirrireeeeee e 483
Servo_enable O .oocvvvveeeeee e 433 St readPage .ooocvvrreeeiee e e 484
Servo_enable 1 .ooccvvveeeeeeee e 434 St rEB0RAM ...viiiiiiieeiee e 485
SEIVO QA weveeeeeieirrreeeeeesessesssreeeeeeesesasnssens 435 St WriteDEVICERAMcooovvcnrrireeeeee e e 486
SEIVO_OraPN coveeeiciireeeee e 437 St WILEPAGE ovvvrrreeeeeeeeeiecrrrreee e e e e e e seannnens 487
SEIVO NI wevveeeeiiiiirrreeee e e e sesrrrree e e e e s e e saneres 438 SEWHERAM viiiiirieeeee et 488
servo_ millirpm2vemdoovvecnnvieeeee e, 438 S 1 o TN 11| AU 488
SEIVO_IMOVE 10 viiuvrrrieeeeeeeeieinnrreeeeeesesenannnns 439 T [P RPP 489
SEIVO_OPENIOOP ..vvvrrreeereeeeeieirrrereeeeesesannseens 440 SINN ettt 489
AT 0 IN0 s IP4= (o 1N O SRR 441 S 0oL 11 A UURRPP 490
SErVO_ (0 ZEM0 1 woveeiiieeeeeiee e 441 S 1 S 491
Servo_read tablevvveeeieeiiiiiiiirieeeee e 442 SPIREADeveviiriieieeeeeecrrree e e e e e e e ee e 492
L SO IE = A 00 = - R 443 SPIWTILE .eerireeeeeeeeesecinreeeee e e e e eesnnreneeeeeas 493
SEIVO_SEL POS uvvreeeeeureeeeearreeeseireeeeseseeeesans 444 SPIWIRA ...t 494
SEIVO_SEt VEl eiiiieciiieee e 445 S 0] 014 PP PPTUPRP 495
SEIVO_SEALS FESEL uuvvvreeeieeiiiierrrereeee e s s sssssrens 445 S [U 496
SEIVO_TOFQUE ..evveeeeeeuereeeeeireeeeeenreeeeseseeeenns 446 S - 100 ISR 496
SErXdAatabits ..oeeeieiiiieeee e 448 (0 SR 497
S 0000 1117 O i AU 449 ST 1 SR 498
SEIXAMABON .iiiee et 450 S 1701 o S PRSPPI 499
SerXfloweontrolOffccceeceeeeeeiiiieeeeciiieeeeans 451 S 17011 o) P RPTPRP 500
SerXflowCoNtrolONceeeeveeeeeeireeeeeereeeeeans 452 S (7o o)V PR PPTPRP 501
SEIXQELC wvvvveerureeressireeesesreeeesssaseeesssneeeeeans 453 SIICSPIN eveeeeeerieeeeesrre e e s srree e e e ssrre e e s esreeeeeans 502
S 00 1=t = o) SRS 454 SUTEN e 503
SEIXPAILY +evverrureereesireeesesseeresssreeesssseeeesans 456 SINCAL vuvvveeeerrieeeeesrree e e s srrr e e e s sbre e e s essreeeeeans 504
SEIXPEEK wreeeeiirieeeeeiree e e et e e e e e e e e enre e e 457 S 170 Tei 1] o R SPTPRP 505
SEIXPULC «vveveeenreeneesireeesssseeeessssreessssseeeesans 458 SINCMPE +eeeeeivieee e e sriee e e sreee e 506
SEIXPULS wvveveeiireeneesiteeesssseeeessssseeesssneeeesans 459 SHNCPY evveeeerrrreeeesirreeesssseeeessssreeessnseeeesans 507
SEXTAFTUSN .oiiiiiee et 460 S 17001 PRSPPI 508
SEIXIAFTEE coveeeee ittt e et e e e e 460 1 (v | G 509
SEXIAUSED ...t et 461 S 1S o] H PRSP 510
S D= o [462 1= | U 511
SEXWIFIUSN e 463 L1 100 [T 512
SEIXWIFTEE oot ee e e eetree e e e e 463 S (o) SRR 514
SEIXWITEE 1eeeeeeiiieeeeeite e e e e etee e e e e e e e e eneeee e 464 LS (o) U 515
SEXWIUSED ..vvieiee et eieee e 465 SYSRESELICNAIN .vvvveiiviieeeiriieeeeesiree e ereeee e 517
SE T et 466
SE covrrvveeeee s 466 T
SEt_CPU_POWEr_MOUE .vevvvererrereerireenessreneenans 469 tan 518
BRIy e 467 [o 21
SetClockMOodUIBiONeeeeeuveeeeeciieeeeeeiieee s 468 TAT1RSetVaIue520
SEIMP oot 471 L1 (IR TR 521
SetSeriad TATXRVElUESvveeeeeiiieeeceieeeeas 472 tm wr 522
e A — 473 e
SEVECEXIEN3000ovvieieiisinis 474 170100 = S 523
SetVectEXternd4000cceeveveeeeeeeeeeeeeeeeeee, 475
SEtVECHINENN ...eeeviiieeeeeeeeeecrereee e e e e e e e eaneeees 476 U
Sf_gEtPAgECOUNE ..vevevveeeeeirieeeesiree e e e sieeee e 478 .
Sf_QEtPAgESIZE .oovveeeciee e 478 UPCBLETIMENS ..ovvinriiiisisisis s 524
S LT 479 USSBZKHZOSC oo 524
- USECIOCKDIVITEN ...vvveeeeeirieeeceiieeeeeeieee e 525
Xii rabbit.com Dynamic C Functions

http://www.rabbit.com

useClockDiVider3000ceevvreerereeereessnnnnnns 526

0 S V= 1110 527
1o = 527
Vv

VAGEIFIEAWA v 529
AV 13 530
VAREEASEW ..o 531
AV 00V (0o | 528
w

WIIE TTC uvvrrreeeeeeeeieiirrrreeeeesesessnnrnseeeeeseeennns 534
WIHLEFIBSN2 wvvvvvvveenrvrieirnriesrsesesssrasssseasssanaees 532
WItEFIASh2ATTEY .iecvrreeieeeeeeeeiiirrreeeeeeeeenns 533
WHTEUSEBIOCK .vvvvvvvvvrvrenrinivsrsesrsssssssnssssnnnees 535
WItEUSEIBIOCKAITAY ..vvvvreeeeerereiirrrreeeeeseeennns 537
WWIPOIE ..vvvvvveveieiessssssssssssssasssssssssssssssssssnees 539
(Y=o 1 TR 540
X

DGz Lo IR 541
NE: 0o = 1= 543
DG V2 | R 544
XCalCUIALEECC256ccevvvvneeiereeeiireesreeeeeeens 546
XChKCOITECIECC256 ..ovvvriiierniieinriieeensnieeens 547
D0 1 [0 P UPRTTRR 548
D (0 = 11| TP UPRR 548
XGEHONG wvveeeiiiiiieeeiiiee e e e 549
D 111211720 o AR 550
XIMEMZXMEM .eevvuiiererseerrsnseerssnseerssssreenes 551
D 111211111 G 552
XIMEMCIMP +evveeuvreeeessssrreessssssessssssseesssssseneesns 553
N1 < ST 554
DG 11 [0 AR 555
DS = 1| TR 555
XSBHONG vvveriiireeeeieiieeeessiee e e s ssree e s esneee e 556
D1 (1= 0 NPT 556

Dynamic C Functions

rabbit.com

Xiii

http://www.rabbit.com

Xiv rabbit.com Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

Group Listing of Dynamic C Functions

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

A ISPUNCE .. 203
_ _ ISSPECE ...vevnvirieisiee it 202
Arithmetic (1010 = 204
ADS e 2 SXAIGIE wovvveeeeeeoeeeeoeoeeeeeee e 204
(0= (0 { RSP UPRP 176
5 RS STRSR 226 D
B Data Encryption
)) . AESdecryptdx4cccoceeviveiiiiienieeeeie, 4

Bit Manipulation AESdecryptStream4x4_CBCccueeee. 5
Bl s 17 AESENCIYPIAXA <.vveveeeeeeeeeeeeeeeeeeeeeeeeeees 6
DIt e 16 AESencryptStreamdxd. CBC oo 7
RES ... 411 AESEXPANAKEYA —oroooooeooeeeooeoeeo 8
TES reeeereeerreeestreeesseeesneeesre e e sre e sreeans 411 AESInitStreamdsd ... 9
SET ittt 466
S S 466 Direct Memory Access (Rabbit 4000,

5000)

Bus Operation (Rabbit 3000, 4000) DMAGIIOC «..oovvreecveereiesiesseesees s 47
disablelObUScvvvveiiiieeeeeee e, 46 DMACOMPIELED ... 48
enablelObuscccceveeviiiee e, 69 DMAhaNAI€2ChAN e 49

C DMAIOEZMEM ... 50

DMAIOIZMEM oo 52

Character DMAIOAIBUFDESCocvvenveceeereeeieeeeennns 53
ISAINUM Lo 197 DMAMAChSEUP ...covvveiiiiieeeee e 54
ISAIPNA .eeiiiie e 198 DMAMEMZI0€eeeeeieeiiiee e 55
1S 1 R 198 DMAMEMZI00 ...vveveiiiiiieeeeiiieeeeenieee s 56
1S [T A 200 DMAMEMZ2MEM ..oeeviieeeeeiieeeeeeieee e 57
10Tz 1o 201 D1V 72N oo | R 58
1S o T R 201 DMAPIHNBUFDESCceveeevvveeeeiiieeeens 59
ISPIINE e 202 DMAPDINREGSeveevieeiiiee e 60

Dynamic C Functions rabbit.com XV

http://www.rabbit.com
http://www.rabbit.com/products/dc/

D]\ VANSS (2101 DI= S o 61 031 344
DMASELDITECE ...vvveeevrieeeeeiieee e e csieeee s 62 0315 S 345
DMASetParameterscccceeeeeriieeennnen. 63 PNEXt_fastcoceiiieiiee e 346
DMASIAAULOoeveieeeiieeeieee e 64 POOI_8PPendccceerieeeriiee e 348
DMASIartDIrectccoceevveerieeeriieeennns 65 POOL_INIt i 349
D]V VAN (o] o RS 66 o0 To! I 11 o 350
[D]\V VNS (00| BIT (= AR 67 pool_Xappendcccceecveeeeeeiieee e 351
D]\ VAN T1001= 65T= (V] o 67 POOI_XiNit ..uveveieiieee e 352
DMAUNAIIOC ...coeiiiiiieiiee e 68 PPIEV ettt 355
S S 7AY0 117 O) SRS 449 PPrev_fastoccevieeiiee e 356
SETAAMAON ..o 450 PPULIESE i 357
serBdmaOffooeviieeee e, 449 pputlast_fastccccceeeviiieee i, 358
serBdmaonooevvciieeee 450 014 00 [S 359
SerCAdmaOffovveicieeeee e 449 001 1 oo 370
SErCAMEON ...ocovveiiieieiiee e 450 pXalloC_fastcceevviieeiiiiciiee e 371
SerDAMaOff ..o, 449 PXCAIOC .eviiiiiee et 372
SErDAMAON ...oovviiiiiiieeiee e 450 PXFITSE e 373
SerEdmaOffcoovvcieeeeee e 449 (TS = 374
SerEAmMalnooovcieeeeeee e 450 [0 (= 375
serFdmaOffoeveveiieecee e, 449 pxfree fastcccccveeeevciee e, 376
SErFAMAON ...ooiiiiiiiiecee e 450 PXIBSE .. 377
50,00 117 O i ISR 449 PXIBSt_fast ...coovveiiieeee e 378
SErXAMAaON ...ocovviiiiiieeiee e 450 PXNEXE eeiiiiieiiiee et 379
_) pXNEXt_fastccvviriiniiie 380
Dynamic Memory Allocation PXPIEV eveieeieeseeeenteesieeesseesieeesseesnsesnsenns 381
[0 o 322 T S 382
PAloC_fast ...cocceeeviiieiiee e 323
072 Y2 1 RS 324 E
pavail_fastcccoiieiiiiiiie e 325
PCAIOC ..eviiveeiiieeeiee e 326 ECC
R 397 CalculateECC256cccvvevivveeiireeiveeennn 22
OFIFSEFASE oo 38 ChKCOrreCtECC256ccevviuvveriiiiineennnns 23
XCaCUlAEECC256ccovvvvvereerrrirneinnne 546
0] (== 329
(V1T T 'S S 330 XCHKCOMBAECC2D6 oo il
PAWM e 331 Error Handling
PIESE ..o 339 errlogFOrmMatENtryccoevveeevevreereeeenenen, 71
plast_fast ..o, 340 errlogFormatRegDUMPc.ocuvecveuennes 72
PMOVEDEIWEEN .o, 341 errlogFormatStackDumpceeueee.. 72
pmovebetween_fast ..., 343 errlogGetHeader|nfoc.coecuevecueeennns 70
XVi rabbit.com Dynamic C Functions

http://www.rabbit.com

errl0gGEtMESSAQE ..vvvveeevreee e 73

File Compression

errlogGetNthENtrycccceeeveveeeiiieeeciees 71 Closel nputCompressedFileccee...... 28
errlogReadHeadercococvvvciiiieinee, 73 CloseOutputCompressedFile 28
EITOr_MESSAOE .eeeeevveeeeerrreeeeeerreeeeeareeans 74 CompressFilecoocveeviieeciiee e 37
EXCEPLION v 75 DecompressFilecccuvevereeneeiiiinnns 41
ResetErrorLogoceevveviiniinicsiccn 412 OpenlnputCompressedFile 256
OpenOutputCompressedFile 257
Extended Memory ReadCompressedFileccccceeviiveeennes 391
XAOC v 542
XAVAI i 545 File System, FAT
PAAAN e 319 fat_ AUtOMOUNE ...coveeeieiee e 78
PaAIDSoooieiieeee e 320 fal_ClOSE .eooveeerieeieeeiee e 81
PAAArSSooiiiiieeee e 321 fat_CreateDirccoceevereenieieree e 82
FOOE2XIMEM ..evvveieeieeie e 413 fat_CreateFilecccovvvrivneeiereenene 83
XAIOC .o, 541 fat_Creat€Timeccccveeeveevveeireesiesnens 84
XallOC_StatS ...oovvvvrrirriiirieee e 543 fat_DElEe ...cooveeeieeieeeee e 85
XAVA v 544 fat_ ENUMDEVICEcocveeieeiieeieenie e 86
XQEFIOA .oeeeeeeeeeeee e 548 fat_ EnumPartitioncccoceeeieenieninenns 87
XOEBUNE et 548 fat_Fil€SIZE .ooovreereeieeeeeee e 88
D0 (=1 [0]0 o 549 fat_ FOrmatDEeViCecccovveeevveeiireeeiineenns 89
NUL11= 1172400 | AR 550 fat_FormatPartitionccccveerererennne 90
XMEM2XMEM .o 551 fal_Free .o 91
XMEMCNI ..o 552 fal_ GELATN ..o 92
XIMEMCMP v 553 fat_GetNameooceeiieeee e 93
XIEI@BSE ..vviiiiieie et 554 fat_GetPartitioncc.ccecereenerieereneenn 94
XSELFlOAL ©ovveieeieieeeee e 555 FAE_INIt e 95
DG <]| PSR 555 fat_INtUCOSMULEXovvvrveeeereerienienee 96
XSEHONG v 556 fat_1SClOSEd ...cc.eveveeiieeiee e 97
XSETEN o 556 fat_1SOPEN ..eeeeeeieeiiee e 98
. fat LAStACCESS ..vvvvvvreeeiiiiieeeeenireee e 99
fat LastWIIte ..oeveveeveeeeeieee e 100
Fast Fourier Transforms fat_MountPartitionccccceecveerrnnnen. 101
FFECPIX +verereeeceeeveeteeteseee e 133 fal_OPeN ..o 102
FFECPIXINV vevvereereceeeeee et 134 fat_OPENDIT ..o 104
FEIEAL oo 135 fat_PartitionDevicecccvevrcvvriiennen, 105
FEEAIINV oo 136 fat_Readccocvrciiiiici 106
RBNNCPIX cvrveveeeveceeeeeeeresees st 184 fal ReadDIrcconniinennnissninsssssionens 107
RBNNFEAL ..ot 185 fal_Seek i, 109
POWEISPECEIUMvovveverereereeseseeneesens 354 fal_SEAUN .o 111
Dynamic C Functions rabbit.com XVii

http://www.rabbit.com

fal_StatUS ..occveeerreeeriee e, 113
fat_SyncFilecoocccciieeeee e, 114
fat_SyncPartitioncccccoeviiiiiieennnen. 115
fat_ Tell oo, 116
fat tiCK oveeieieceee e, 117
fat_ Truncateccccoeccvveeeeiveieeesieee e 118
fat_UnmountDevicecccceeevvveeeennee. 119
fat_UnmountPartitioncc.ccccvvvrennnee. 120
fat WHe oo, 121
fat XReadccccceveviiiieiiie e 122,123
fat XWIIte oo 124

fS QL IX woveeiiee e 161
fS get IX_SIZE wvveviieee e 162
fs get_other IX .oovcveviiiiiiicieeee 163
fs get ram_IX .o 164
£ TS 156
LSS = A D 165
LTS = (0 o S 166
fS SYNC erreeeeeee e 168
FSBEK wrvviii e 159
1S 011 S 171
110 | S 170
FWIILE o 174
IX_formatcoecveeeeeiieee e 228

0=z (=SS 126 File System, Registry
fcreate unusedccceeeeciieeeeciieeeee, 128 registry _enumeratec..cocceeeeevrceveennnns 395
fdelete v 130 registry_finish_readcocceeevriiiiiennnns 398
fopen rdcccoeee e 146 registry _finish Writeccccevevicieeens 399
170] 0= o TN/ S 148 (0[S (Vo[(USRI 397
fread ..o 150 registry_prep_readccceeeccveeeeeiiiieeenns 400
fs formatccooeeiiiiiie 153 registry _prep Writeveeeevvcveeeeviiveenenns 403
FS NIt oo 155 registry readcccoeevcveeeeeviieensiniieeeens 405
fs_reserve_blocksccccccveviiiiiiinninnee, 157 registry _Updateccceeeeeviieeneiniiieenenns 406
1150 R 157
FSBEK orerseesessess s sese e 158 Flash, NAND
FEL v seesseersseseesesees s ssree 169 F_SFASBBIOCK vossvvesvvvss v 245
FWIHILE i 173 N_QEPAGECOUNE wrvvvrrssssssssv 246
Nf_QetPageSIZecccoecvveeeeeciieee e, 247
File System, FS2 Nf_iNItDEVICE w.eceveeveeereecteeceeree e, 248
170 [0 1S S 125 Nf_INItDIIVEr e 250
fCreate ..uvvveeveee e 127 nf_isSBusyRBHWcccceecivveeiiiineens 251
fcreate unusedccceeeviieeeccieee e, 129 Nf_iSBUSYyStALUScccvveeeeeeiiiee e, 252
10 1< (= SR 131 Nf_readPageccccevceeeeevciiee e, 253
FIIUSH 132 Nf_WHtEPgEovvveeviieee e 254
fOPEN_Id v, 147 Nf_XD_DEECt ...vvvviiriiieeiiieee i 255
FOPEN_WI o, 149
o 151 Flash, Parallel
fs formatccooeevvcieeee e, 154 flash_erasechipooooovvvvvvvvvssssseeeees 137
fs get flash IX .ocovcceeeiiiiiiee e, 160 flash_erasesectoroooovvvvvvvvvsseeeeees 138
flash_gettypeccevvceveeeiiiiiiee e 139
Xviii rabbit.com Dynamic C Functions

http://www.rabbit.com

flash_initcoccvveeeicieee e 140 sf_writeDeviceRAMcccceevvvveeeennee. 486
flash_readccccooevcieeeeeiieee e 141 St writePage ...oooovcveeeivcieee e 487
flash_readsectorccccceceeeeeciveeeeennen. 142 St WHEERAM oo 4388
flash_sector2xwindowcccceeeennee. 143 SESPI NIt coeevieeecce 4388
flash writesectorcccccceeeeevccciveenennn. 144
WIHEFIBSN2 ovvveoeeeeeeceeeeeeeesseeeeesenee 532 Floating-Point Math
WItEFIBSN2AITEY oooveooeeoooeeeoeon 533 BCOS .eeeiureeerteeesieeestee e st 2
BCOL weeiiiieeetee ettt e 3
Flash, SD 0 RS 3
sdspi_debounCeoovceeeerieeeiiieeennen. 415 BSEC weeeireeerieee st e e 10
SASPi_get_CSA .ovvvvvevreeee e 416 BSIN ceiiiee e 10
S0 (S o0 1= QS o S 417 2 | [11
sdspi_get status reg .ooeeeceveeeeecveeeeeennee. 418 2 2 12
sdspi_getSectorCountcccecvveeeenee. 418 (o= 1 24
sdspi_init_cardcccceeeviiiieniiieee e 419 COS teiurreeeeestreeesssssre e e e ssre e e s s nnre e e e nraeee s 40
SASPi_iNItDEVICEeevvvieierieeeiieeeee, 420 COSN i 40
SASPi_iSWIItiNG .vvvevveeevieeeciee e, 421 B0 i 43
(S0 (S o I 101 o[V Y 421 Lo 76
sdspi_print_devcccceeeeecieeee e 422 fabS woiice e 77
sdspi_process_ commandccceee.ne.. 423 1o 145
sdspi_read SeCtOrcocvevevciveeiiveensnnn, 424 MO . 145
sdspi_reset_cardccovceeiiiiiieniieeenenn 425 FIEXP e 152
sdspi_SendingAPoovviviiieeiieeee 426 [ADS .o 212
sdspi_set_block_lengthccveeeeeee. 427 o Lo o SRR 213
SASPi_SELLED ..coveeiieeeeceeee e 426 oo USRS 213
Sdspi_Write SECtOrcceevcveeeeevvveeeeennee, 429 10010 oo 224
sdspi_WriteContinuecoceevcveeennen. 428 MOOF <. 244
-
SI_getPAgeCOUNt ..vvvvvvvvvvssssssssssssssssnns 478 00 1Y 353
SI_GAPAGESIZE .vvvvsvvvesvvn v 418 B coeeseeees e 387
SENIT e 479 and 387
SE_INItDEVICE oo 480 candb 388
S_ISWIIING covvvessssssnnninnssssssssssssnnnnn 481 e R 388
SI_PAGETORAM ovvsvvrsvvvssvvesne 481 SN coreeeeeeees e e 489
S_RAMTOPEGE oo 482 T 489
S_readDEViCERAM .oovvevvrmnsssssssssmnee 483 e SO 496
SF_TEAPBGE oo 484 s R 496
SI_TBARAM oo 485 LB ceeeeeeeese s eseee e sene 518
Dynamic C Functions rabbit.com Xix

http://www.rabbit.com

Global Positioning System

RAPOMEcviiiiiiiiii e, 389
RAPOItl ..o, 390
WIPOME ..o, 539
WIPOIl e, 540

gpPS_get_POSItioNceeevveveeeeeiiieee e 182 12C Protocol
gps_get_utc . e 183 12 CHECK B0K oo 206
gps_ground_distancecccceecveeeeennnne 183 e init 207
H i2C_read Charcccoccveviiviiieni e, 207
iI2C_send_ack ...ccccoevviieii e 208
HDLC Protocol (Rabbit 3000, 4000, i2C_SeNd NAK .ovcveevieeiieeee e 208
5000) T
HDLCEDOME ..voeeeeeeeeeeeeeeeeeeeeeeeneen, 186 ?zc‘aart‘tx """"""""""""""""""""" 209
I2C_SEArtW_ X coceveeeeeiiieeeeccieeeeesieeee e 210
HDLCADOIFcccuveeecieeeiiee e 186 .
HDLCCIOSEEovveeeeeeeeeeeeeeeeeenennas 186 i —— 2l
I2C_Write Charccccveeeeeeciiieeeceieeeen, 211
HDLCCIOSEFoooveeiieeeecieee e 186
HDLCropEcccoeeeeieeeecieee e 187 Interrupts
HDLCropFccceveeiieee e 187 GetV ectEXtern2000 ..o 180
HDLCETOrE ..., 187 GetVectEXtern3000 ... 181
HDLCEITOrFevveeiiiiiee e 187 GtV ECHNEEN oo 182
HDLCEXtCIOCKEcoovriiiiciriniininne, 188 IPFES vttt 196
HDLCEXCIOCKFcooviiiiiiiine, 188 105 = AU 197
HDLCOPENEooviiiiiiniiisii, 189 SetV ectEXtern2000ccoceeveeeueeennnen. 473
HDLCOPENF ..o, 189 SetVectEXtern3000ccevevevererennnen. 474
HDLCPEEKEovveiviiieeiiieeeeeniiieeens 190 SetV ectEXErn4000 ..o 475
HDLCPEEKFvvveieiieie e 190 SEVECHNEIN oo 476
HDLCrecaVeEccooceeeeeeeeecciineeeennn. 191
HDL CIECBIVEF ...v.oevvvevereseeesssseerereee 191 -
HDLCsendEcccccvvveeeeeee e, 192 Logglng Subsystem
HDLCSENAF ..o 192 10G_ CIEAN wvreeveeeeeeeeeeeeee e eeeeseeeeeens 214
HDLCSENAINGEcovvvveie 193 10G_CIOSE oo eees s 215
HDLCSENAINGF ...ocovovii 193 10g_CONGItION ... 216
| log formatccceeeeeiieereecieee e, 217
1oTo I 7=« NSRRI 218
/0 10G_NEXE .ot sseseeneseaes 219
BIitRAPOIEc.vveeieiiiee e 18 (oI o = s ET T 220
BItRAPOItl ...covviiiiiii e, 19 oo I .Y RS 221
BItWIPOIE ... 20 1O PUL oo, 222
BItWIPOItl .o 21 O = < 223
XX rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPOStFIrONt ..ccvveeeveecirrrreeeeeeeeeeiveeee, 290

MDS OSQPOSIOP eeeverereeeeeeereees e 201
L 235 OSQQUENY rerereseeeeeeeeeeeeeeeeeeeeeeeenenenn 292
MAS5_fiNish ..eeeeiiieee e, 236 osschedLock . 293
1070 Lo T o 235 osschedunlock 293
MicroC/OS-II OSSEMACCEPL ...vvveeeeeeiieeeeceeeee e e e 294
OOSQDE v 286 OSSEMCIEAE -..oovvoveenne 295
0S ENTER CRITICAL oo 258 OSSEMPENT ..o 205
08 EXIT ORITICAL woooooo 258 OSSEMPOSE evveeeeee oo eeeseeeeeeeeee 296
OSFIBGACEEDL oreeeeeeeeeeeeeseeeeeeseeoee 259 OSSEMQUENYevveeeeeeireeeeeeieeee e 297
OSFIGCIERE .o 261 OSSHTICKPEISECoovvvvviviii 298
OSFIGDE wvvvvreeeeeeeeeeeeeeeeees oo 262 OSSIAT ..o 298
OSFIAGPEN ovvveeoeeeeeeeeee e 263 OSSHAUNIT ..o 299
OSFIGPOSE .o eeeeeeeeeone 265 OSTaskChangePrioovvvisssnsnee 299
OSFIGQUEY oo 266 OSTaskCreateccceevveveeeeiiiiveeeesseenens 300
OSInit oo 267 OSTaskCreateEXtoooevvveviiiieieieieinnn, 301
OSMbBOXACCERLevvveeeeiieee e e 267 OSTasKCreaeHOOKcovvvvveeeeinnns 302
OSMDBDOXCIEAE .vvvveeeeeeriiiinrrreeeeeeeeeennns 268 OSTEKDE! ..o 303
OSMBOXDE ..oreeeeeeeeeeeereesseeeeseseeeees 269 OSTAKDEHOOK ..ooovvnnnnrsivninnnssssssseen 304
OSMBOXPEN oo 270 OSTASKDEREY ...oovvvnininnnenenee 305
OSMBOXPOSE oo 271 OSTasKIIEHOOKoooe 306
OSMBOXPOSLOPL .rvevvvveeeeees oo 272 OSTaskQUENY ...uevveeeerireeeeeriieeeesneeeens 306
OSMbBOXQUENYeevveeeeeiieee e 273 OSTESKRESUME ...cooooovvennee 307
OSMEMCIERE revvveveveeeeeeeeeeeseesse 274 OSTAKSIEHOOK -...oooiiee 307
OSMEMGEL evvveeereeeeeee e 275 OSTASKSKCHK wovvvovinnniis 308
OSMEMPUE .o 276 OSTASkSUSPEN ...ooovninininnnnee 309
OSMEMQUETY oo 277 OSTaSKSWHOOK ... 310
OSMUEXACCEDL rrevvveeeeeees oo 278 OSTCBINItHOOK ...ovvvviviieiiiiieeeeieenn 310
OSMULEXCIEAE .vvvveereeeeiiecnrrrreeeeeeeeenns 279 OSTIMEDIY ..o 311
OSMULEXDE! oo 280 OSTIMEDIYHMSM .o s12
OSMULEXPEN oo 281 OSTIMEDIYRESUME ... 313
OSMUEXPOSE «.vveeereeeeeeeesessseeeseseenees 282 OSTIMEDIYSEC .oovvvvvriiinnneiissss 314
T 283 OSTIMEGEL vvovveevereeereeeeeeeeeeeseesesenens 315
T — 84 OSTIMESEL ..oveoreeeeeerereeeeeeeeeeesee 315
OSQCIEAE oovvveeoeeoeeeveeeeeeeeseeeeeo 285 OSTIMETICK vvveeeeeeiieerieeee e, 316
OSQFIUSN oo 287 OSTIimeTickHOOKccovvvveeeeeeeeiiinnen, 316
OSQPENG oo 288 OSVESION .euvvireeeeeeieeiiirreeeeee e e sereees 317

Dynamic C Functions rabbit.com XXi

http://www.rabbit.com

Miscellaneous mbr_UnmountPartitioncccceeeeenne. 233
hexXStrtobyteccccceeveeeeviiee e, 193 mbr_ValidatePartitionsccccuee.n.e. 234
[ONGIMP e 224 ,) ,

Pulse Width Modulation (Rabbit 3000,
(01 o] RPN 386 4000, 5000)
rur?watch ... 415 R | 368
S < 1] 0] o RSP 471 R 369

Multitasking 0
(000 =7="o 1 o [N 29
COPRLISEvvoeveseisaessesssssssssssessssssens 38 Quadrature Decoder (Rabbit 3000, 4000,
S aT S 3g S000)

CORESUME oo 39 (oo [= £ (0] SRR 383

DEAYMS «veeeeeeeeeeeeeeeeeeeeeesese e 44 QO_INIT e 384

Del VLS < T 45 qd_read ... 385

DElayTiCkS c.ovveeeeceeecesecee e, 45 QUZEN0 oo 385

INtErVAMS oo e 195 R

INEErVAISEC ..oovvvvieee e 195

INErVAITICK uveveerieereeeereeeee e 196 Rabbit 3000, 4000

ISCODONE ...veeveeenieesiireieesieeesree e eneens 199 disablelObUSoocvveieerreeeeeeee e 46

ISCORUNNING ...vveeeiveeciiee e 199 enablelObUSoevvveiiiiiie e 69

1070701 1=": o [N 225 servo_alloc tableooovveiiiiieeieneen, 430

[OOPINIT ..o 225 Servo_closedloopececveeerieeesieeennnne. 430
servo_disable O ..oocveeeevciiieeiieee e 431

N servo_disable 1cooceveviieeeieieee e, 432

Number-to-String Conversion servo_enable 0 ..., 433
FEORL cevvveveeeeeeeeeeenesssesseesssnsssssssnssenessnenees 175 eVO_eNaIE 1 cevveeeeeeeerenenenensnsnsnsnseee 434
0170 = T 194 SEIVO_QBAN vvvvvnninsssssss s 435
OB oo 205 ser vo_graph .. 437
OB oo 226 SEIVO_ NIt oo 438
10 7= R URRRR 227 servo_millirpm2vemd ..., 438
11707 S URSRS 527 SEIVO_MOVE 10 ..o 439

SErvo_openloopcccceeeeeeeeeeeeiiieee e 440

P S AV/o TR (o = (o T O J 441

Partitions Servo_gd Zero 1 .ceveviiieeeeeeeee e 441
mbr_CreatePartitionc..occcvveeevinnenn. 229 SBrVO_read able ..vvvrssvvrssvvrsss v a42
mbr_EnumMDEVICEccvvvviiiiieieeiiieenn, 230 SBIVO_SEL_CORITS .vvvvvsssvvvsssvvess v 443
mbr_FormatDeviceccccevvcvveeeiiiivnenn. 231 SEIVO_SELPOS covsssvcmmmmvsssss e a4
mbr_MountPartitioncccccceeeeinneenn. 232 SBIVO_SBLVE coosisvvssssvnsssvess v 445

SErVO_StatS reSet vvvveevvceeeeeeeiieeeeeenne 445

XXii rabbit.com Dynamic C Functions

http://www.rabbit.com

SEIVO_tOMQUE ..vveeeveeeeeeeeireeeeesvreee e e 446 PWML_INIE e 368

PWML_SEL .eiiiieeceieee e e e e 369
Rabbit 3000, 4000, 5000 (oo [= ¢ (0] SRR 383
R 29 eI L 384
R 30 Qd_read ...oooiiei 385
Cof_PKEFrecaiVeuvveevieee e, 29 Q0 ZE10 oo 385
cof _PKEFSENdcccveveeviieee e, 30
COf_SErEQELC ..vvvvveecreecre et 31 Rabbit 4000, 5000
COf_SEIEQELS .uvvvviiieeee et 32 DMAGEIOC ..evveiiiieei e 47
COf_SErEPULC ...evveeiiiieeieeciee e 33 DMAcompletedcccoveeeiieeeiiiiennenn, 48
COf_SErEPULSeveiiiiiieiieee e 34 DMAhandle2chancccccceiveeriieennnnn. 49
(S = = (= o [N 35 DMAIOE2MEM ..oveeeeiiveeeeeciree e e ereee e 50
COf_SEIEWTILE .oveeeieeee e 36 DMAIQIZMEM ...vveeeeiiiiee e e e eriee e 52
(0 S = 0= (R 31 DMAI0adBUFDESCevveeevevrereeciieeeens 53
COf_SEIFQELS .uvvviiiieeee et 32 DMAMAChSEIUP ...oooevveeeeiiiiiee e 54
COf_SEIFPULC ..o 33 DMAMEMZI0€eeeeeieeiiiee e 95
COf_SEIFPULS ..o 34 DMAMEMZI00 .eeeiveeeiieeeieee e 56
cof_serFreadcocceevviieeececieee e, 35 DMAMEM2MEM ..oeevvieeeeeiieeeeerieee e 57
(0 S = 1] (- 36 D]V 72N oo | S 58
HDLCabOrtEccccocvveeeeiiieeeeciiieeeens 186 DMAPIHNBUFDESCceveeeievieeeeiiieeeens 59
HDLCaDOIFccveeiiieeieeeeee e 186 DMAPDINREGSeveeieeiiieeeieee e 60
HDLCCIOSEEuuvueninnnnninnnnnnnnnnnnnnnnnnns 186 DMASEBUFDESCuuvvnenennnnnnnnnnnnnnnnnnnnns 61
HDLCCIOSEFuvvvieninininineneinniinnnennnnns 186 DMASEIDIFECEuvvveriennnnnininnnninnnnnnnnnnnns 62
HDLCropEcccoeeeveeeeeceee e 187 DMASEtParameterscceeevcvveeeeiiieeeennnns 63
HDLCropFccooveeiieee e 187 [D]\V/ /AN =T VAN U | (o SRR 64
HDLCEITOrEoovvieeieeeeee e 187 DMASIarDIrectccccoevvvveerireeerieernens 65
HDLCETOrF ...ooiiieiieeeee e 187 DMASEOP .eeeeiiieeiieeeniee e 66
HDLCextCIOCKEccccoveeriiierieene 188 DMASLOPDITECEeeiiveeiiieeeieee e 67
HDLCextCIOckFccooveiriiieiieeene 188 DMALIMErSatUP ...coeeveeeerieeeeieeeeiee e 67
HDLCOPENEoevveeiieee e ceiieeeens 189 DMAUNAIIOC ...evveeeeeiieee e 68
HDLCOPENFovveeeeeeee e 189 (0101 P24/ - 0 [412
HDLCPEEKEoevveeieeeeecieee e 190 (S S 7AX0 (117 @ 449
HDLCPEEKFoveeeeieeeeceee e 190 S S X0 (117 © o K 450
HDLCreCaVEEcccvvveiiiieiee e 191 SerBAdmMaOffoovvviiii e 449
HDLCrecaiVeFccccoceevvieevieee e 191 SerBAmMalnooovvieiiiiiiee e 450
HDLCSENAEcovvvvivieieeiiieene e 192 SErCAmMaOff ...ovvvivciie 449
HDLCSENAFooeiieeiee e 192 SErCAMEON ...oevvieeiieee e 450
HDLCsendingEcccccveevcveeeeciiieeenns 193 serDAmMaOffoooovcieeeecee e 449
HDLCsendingFcccceveevcveeeeciiieeeens 193 SerDAMalNoeeevvveeee e 450

Dynamic C Functions rabbit.com xxiii

http://www.rabbit.com

SerEdmaOff ..o, 449 COf_SErCreadcccvveeeevieee e, 35

SerEAmMalnooovcieeeeeee e 450 COf_SErCWIILE .oeeeeeeeee e 36
SErFAMaOffovviiiii e 449 COf_SEIDQELC .ovvvvvriiee e 31
SErFAMaONoovviiiieiee e 450 COf_SEIDQELS .vvvviieieieeeiiieee e 32
50,00 117 O i RS 449 COf_SErDPULC ... 33
(5= 9,00 117 © o H 450 COf_SEIDPULS ..eveeeeeeeee e 34
VIAM2TOO0L .evieiieeiieeeiiee e 528 cof_serDreadcooceeevcieeeriieiesie e 35
COf_SErDWIILE ooeceveeeeeeieee e, 36

Real-Time Clock COf_SEIEQELC ..vovvvvereeerivieeeecie e, 31
MKEME oo 242 COF_SEIEQELS oo 32
MKEM e 243 COF_SBIEDULC v 33
(= o [1 (RS TRRTRROTIN 392 COF_SEIEDULS v 34
read_rtc_32KHzccocoevvivenviiiennieenns 392 I e I 35
MC_tiMEZONEeovvvveeiiiee e 414 COF_SSIEWIILE ovvvvvvvvoeoeoeeoeooeoeoes oo 36
e 467 COf_SErFQELC ..ooveeeiiieeecee e 31
tM I e 521 COF SEIEQES wvvvvvvvovoooooooeooooeoeoesoeoeoeseoooons 32
EM_WE e 522 COF_SBIFPULC .vvvvvoooeeoeeoeeeeeeeeeeeeeeee e 33
UPAETIMErS .vvevviiee e 524 COF_SEIFDULS vvvvvvvveoeooeeoeoeoeoesesesoessssssssonns 34
USE32KHZOSC ...oevviveeeiiie e 524 COF_SEIFTEA0 vvvvvvvvvroooooeooeosoeooesoeosoesessons 35
WIEE MC eveeiieeeeiiee e 534 COF_SEIFWIILE ovvvvvvvveoeooeeoeooesesesoesosesesnonns 36
S SEFACIOSE ..o 448
SErAdatabitS ...eevveeeeieee e 448

Serial Communication SSTe 1 £ A 449
COf_SEIAQELC wvvvviiieeee et 31 SEAAMEON oo 450
COf_SEIAQELS .vvvviiieeee e 32 Ser AflOWCONtrolON oo 452
COf_SEIAPULC ..eveeerieieeiee e 33 SETAGELC evveeeeeeeeeeeeeeeeeeeee e seeeereeee 453
COf_SErAPULS ...covviiiiniis 34 SETAGELEITOr e 454
COf_SerAread ..o, 35 SEFAOPEN .vovevecereceeeereseese et 455
COf_SErAWHLE oo, 36 SEFAPAILY vovevecereceeeereeeese et 456
COf_SErBOetCcvvveriiieiieee e 31 SETAPEEK .o en e 457
COf_SErBOetScvvviiiieiie e 32 SETAPULC <evveeeeeeeeeeeeeeeeeeeeeeeeseeseneeens 458
COf_SErBPULC ... 33 SETAPULS .eveeeeeeeeeeeeeeeseeeeeeseeseneee 459
COf_SErBPULS ..evveeiieeee et 34 SEATAFIUSN oo 460
cof_serBread ..o, 35 SEFATAFTEE ... 460
COf_SErBWIILE .oovvvvs 36 SEATAUSE .oovvvoveeriserescisesisesisan 461
COf_SErCgetCcovvviiiiiniiinniiis 31 SEFATEAA ..ovvieiiecie e 462
COf_SErCELS ..vvvivereire e 32 SEIAWIEIUSNY oo 463
COf_SEICPULC .evveveveiee e 33 SEIAWIEIEE oo 463
COf_SEICPULS .eevvevieeee et 34 SEIAWILE oo 464

XXiV rabbit.com Dynamic C Functions

http://www.rabbit.com

SEIBCIOSE .o, 448 SETCWHILE e 464
serBdatabitsocccveeviiiciiiiniieee 448 SErCWIUSED ..oovvviiiiiee e 465
SerBAmMaOffoovvvciiiiiiiiee e 449 SErDClOSE ... 448
SErBAmMalNooovvvveeiiiiiiiee e 450 SerDAatabits ...coveevcvveeeiiiiiiee e 448
serBflowcontrolOncccevveeviieennnnen, 452 SerDAMaOff ..o, 449
SErBOELC wovveeiee e 453 SerDAMalNoeeevvveeee e 450
SErBQEtEITOr ..o 454 serDflowcontrol Offcceevvvivieeeenneee. 451
SErBOPEN ... 455 serDflowcontrolOnccoeceeevieeennen. 452
S < 121 07] |V 456 SEDOELC oo 453
SErBPEEK i 457 SErDOELEITOr .oovveiieeeeeeeee e 454
SErBPULC oo 458 SErDOPEN . 455
SErBPULS ..o 459 SErDPAity coocveeeeeceee e 456
serBrdFlushcooevviieeeeee e 460 SErDPEEK . 457
SEYBIdFreeooocveeviieiieeeee e 460 SEIDPULC e 458
SErBrduUsedcoceevvveeviieecee e, 461 SEIDPULS e 459
SEYBreadccevvveeiiiiie e 462 SerDrdFIUSh ..eeeveeiiiee e 460
SErBWIFIUSH ..o, 463 SEIDIAFTEE ...ovvvvieeciiee e 460
SETBWIFTEE ..ooviiiiiiee e 463 SErDrdUSEd ...oocvveviiieeiieeeee e 461
SETBWIILE oo 464 SEIDreadcccevvveeeeiiee e 462
SErBWrUsedooovcvvvveiiiiiiee e 465 SErDWIFIUSN v 463
SENCClOSE vvieeviiee e 448 SErDWIFIEE ..ovvviiiiiiee e 463
SerCdatabitsooovvveeeiiiiiien e 448 SErDWIIE e 464
SErCAmMaOffoccvvvivieeee e, 449 SErDWIUSEd ..o 465
SErCAMAEON ...ovvvviiiiee e 450 SEFECIOSE ..vvvveiiiee e 448
serCflowcontrolOnccceveveeviieeennnen, 452 SErEdatabits ...ooocvveeviiieevieece e 448
S < (00 (= (oS 453 SErEAMaOffoeveiiiie e 449
S S (00 (1 = () GRS 454 SErEAMalNooovvvveeeiiiiee e 450
SerCheckParitycccceeeevieccciiiieeeeeeeeas 447 serEflowcontrol Offoooeeiiiieniinies 451
(S S (00 o= o 455 serEflowcontrolOncccceevevvveeeenneee. 452
SErCPANLY wooveveeeeieieee e 456 SErEQELC oo 453
SErCPEEK woveevreeee et e 457 SErEQELEITOr ..vvvveeeee e 454
(S < (01 o1 | (oS 458 SErEOPEN .. 455
SEYCPULS ..ot 459 SEFEPArity .oeeeeiieeeiieee e 456
SEYCrdFIUSh ..o, 460 SETEPEEK ..o 457
SEYCIAFree ...oovveiiiiiieeeeeee e 460 SEIEPULC ..o 458
serCrdUsedooevvvveeeeeiieee e 461 SETEPULS oo 459
SEICread ..ooccvvevieeiiee e 462 SErErdFIUSh ..o 460
SErCWIFIUSH ..o, 463 SETErdFIee ...oovvcvvevvieeesiee e 460

Dynamic C Functions rabbit.com XXV

http://www.rabbit.com

SETEread ...oocvvvevieiiee e 462 SErXrdUSEd ...oovvveiiiiieiieeecee e 461
SErEWIFIUSh ..oeeeiiiee e 463 SEIXIEAd .ooovvvieeeeiiiee et 462
SETEWIFTEE «..ovveveiieee e 463 SEPXWIFIUSN Lo 463
SETEWNIE v 464 SEIXWIFTEE evviiiiiiiieee et 463
SErEWIUSEd ..o 465 SETXWIILE v 464
SEIFCIOSE oo 448 SErXWIUSED ..o 465
SerFdatabitsooocveveiveeiiiee e, 448

SerFAdmMaOffcoocvvveieecieceece e 449 Serial Packet Driver

SErFAMAON ...ooiiiiiiiee e 450 COf_PKIATECRIVEvvvvvvvvvvessssssvvvssss 29
srEflowcontrolOff .. 451 COf_PKEASENGoeeeiieeeiieeeiee e 30
serFflowcontrolOncccceveeviieeeeneee, 452 COf_PKIBIECAIVE .ovvvvvvvvvvvsrserrssssssnn 29
SEFQELC wovveeciieee e 453 R 30
et e, T 454 COf_PKICreCaiVeveeviveeeecieeeeeecveenn. 29
SEFOPEN oo 455 COF_PKICSNM oo 30
SENFPANILY ooveeeiieee e 456 COf_PKIDIECAIVEovvvvvvvvesssssssvvvssss 29
N S 457 COf_PKIDSNG .vvvvvessvvvvrresssssn 30
SEIFPULC weeveeciieee e 458 B 29
SEIFPULS e 459 COM_PKIESN ..vvvvvvvvvvvvvsssrerrssssssnn 30
SerFrdFIush ..., 460 COM_PKIFTECEIVE w.ovvvvvvvvvvsssseeeessssssnn 29
SEYFIAFTEe ...oeeeiieccee e 460 COF_PKIFSENG oorooovvvvvvreessssvs 30
wEdused 461 PKEACIOSE ...ooeiiieiiiiee e 332
N 462 PRIAGEEITONS woooeveeeoeeess s 332
S EWElUSh 463 PKtAINItBUfErScoveeviieeeccieee e, 333
SErFWIFIEE . 463 e 334
SErFWIILE oo 464 PKIATECEIVE .oooovvvvvvssrssssssesesssnn 336
weFwrilsed 465 PKEASEND ..o 337
SEIXAELADILS rvvreoeveeeeeeeeeeeeeeeeeeese e 448 PRIASENGING oo 338
NG 11 i 449 PRIASBIPAITLY oo 338
eXdmaon ... 450 PKIBCIOSE ...ovvveeeiieeee e 332
serXflowcontrolOffccceeeevvieeeennnee. 451 PRIBYELEITONS woovvvvvvvvvvsssseeerssssnn 332
serXfloweontrolOncccceeevvveeeennnee. 452 PIBINIBUITENS woovvvvvvvrrreeeeeessssnnn 333
SEIXGELC oo 453 PKEBOPEN ...oveeeeeiieee e 334
SEOXQEEITON oovoooooeeeeeeeoeeeeeee oo 454 PKEBIECEIVE ... 336
SEOXPBIIY oo 456 PKEBSENdooiiiiiiiiee e 337
SEIXPEEK ooovvoeeoeeoeeeeeoeeeeee e 457 PRIBSENGING oo 338
SEIXPULC weveeeereeeeeeiieee e e e 458 e 338
SEIXPULS oo 459 PKECCIOSE ...vvveeeeiieee e 332
serXrdelush 460 PKECOELEITONSveveeeeeeieee e 332

XXVi rabbit.com Dynamic C Functions

http://www.rabbit.com

PKECOPEN .evveeeeeieee e 334
PKECIECAIVE ... 336
PKECSENd ... 337
PKECSENING ...vveeeieee e 338
PKECSELParitycceeeveeveieeeeeeiieee e, 338
PKIDCIOSE ...vvveeeeieeee e 332
PKIDGELEITOrSvveeeecieee e 332
PKEDINItBUFfErScoeviieeiiieeiieeecieee 333
PKIDOPEN ...eeeiiieieiee e 334
PKEIDIECEIVE ... 336
PKIDSENd ...ovvveeeieee e 337
PKEDSENAING .oeeeeeveeeeeeiieee e 338
PKIDSELPAritycceeveevieee e, 338
PKEECIOSE ...ooviiieeiiieceieee e 332
PKEIEQELEITOrSooeiieiiiiee e 332
PKEEINItBUFFErS ... 333
PKEEOPEN ...ovveeicieeee e 334
PKIEFECEIVE ..ooeeeveeeeecieee e 336
PKEESENdovvveieiieie e 337
PKEESENAINGevvveiieeiiiee e 338
PKEESELPAritYoovvveeiiiieiiee e 338
PKEFCIOSE ...oeiiiiiiiiee e 332
PKEFQELEITOrSevveeeeeieee e 332
PKtFINItBUFfErscooeevciieeeccieee e, 333
PKEFOPEN ... 334
PKEFIECEIVE ..o 336
PKEFSENd ..o 337
PKEFSENdiNG ...eeeeiieeeiec e 338
PKEFSEtParitycceeveeeieeee e, 338

Servo Control (Rabbit 3000, 4000)

SPI

SEIVO_graph ...eeeeevceeeeecciieee e 437
SEIVO NIt oo 438
servo_millirpm2vemdcoceevieeennen. 438
5= V[0 1 1110)VZ= 0 (o ISR 439
SErVO_0penioopcceevceeeriieeenieeeiennn 440
servo_gd zero 0 .eeeeeeeeieeeeeeeee e 441
S AV/o TR (o = (o T 441
servo_read tablecccoecieeeiiiiieeeee, 442
Servo_set COEffS ..vvvviiiiiiiei e 443
SEIVO_SEL POS wevveeiiveeeeiniieee e 444
SErVO_SEt VEl i 445
SErVO_StatS reSet vvveeevvceveeeeeiieeee e 445
SEIVO_tOrQUE .eevveeeeveeeeeeeeeeeeeveee e e 446
SPHNIt oo 491
SPIReadooooeeeiieei, 492
SPIWHILE . 493
SPIWIRA ..o 494
ELCNAr oo 175
[0 1 £ SUR 177
KBhit ..o 212
OULCHIS .o 317
OULSEE .ttt 318
PrINtF e 361
PULCHAE oo 367
PULS .ttt 367
SNPFNEE e 490
S o101 495

$ervo_alloc_tahle ..., 430 MEMCAT et eeeee e ee e, 237
Servo_ClOSBAIOOp ..o 430 MEMCIMIP e 238
SEIVO_AISADIE 0 oovvvvveiinnns 431 MEMCPY v 239
servo disable 1 ..vveeiiiiiiiiieceeeeeees 432 MEMMOVE oo 240
servo_enable 0ccceeeeevveee e 433 MEMSEt oo 241
SEIVO_ENaDIE 1 ovvvvvvvveveennnnsss 434 S Tee ST 497
SEIVO_JER wvvvvemsinsnnmsnsensnnimsensnsnsnnes 435 S ({0 0| G 498
Dynamic C Functions rabbit.com XXVii

http://www.rabbit.com

S 100 o S 499 GetVectExtern3000ccceeeecvveeeeennenn. 181
S 100 o[500 GetVeCtinternccccevcveeeeveciveeeeecveenn. 182
SITCPY cvveeerieee et 501 IPFES et 196
S L0 o] o H TR 502 IPSEL 1.t 197
SION e 503 PremMain ..oeeeeieee e 358
(S 11 007 S 504 set_cpu_power modeccceevveeeeennee. 469
S 11010 100 S 505 Set32kHzDIVIdEroevvvviieeeeeciieee e, 467
S 10101010 IS 506 setClockModulationcccceevvveeeennnee. 468
SIINCPY v 507 SetSeriad TATXRVaUEScoevveeeniennne 472
SIPOIK e 508 SysResetChaincccevceeeriieeeiieeennen, o517
SUTCHI e 509 TATIR _SetValue ...cccoeevvvveeeiiiiiee e 520
S S o] o [510 UPdateTIMErS oooeeeeeeceee e 524
SESIE vttt 511 USE32KHZOSC ...eevvvveeviiee e 524
SEEOK et 514 USECIOCKDIVIEYeveevvieeiiieeiieeesieens 525
100] (0111 SRR 523 useClockDivider3000cccceeerrruveenn. 526
TOUPPES oo 523 USEMAINOSCveeeeiiee e 527
String-to-Number Conversion U
AOF e 13
e R 14 JUserBlock
s 15 rEAUSBIBIOCK. oo 393
S [(0]0 ISR 512 r@UwBI OCKATTRY vt 394
Lt 515 WITEUSSBIOCK v 535
writeUserBIockAITaycccceeevcvveeeennee. 537
System Vv
_GetSysMacrolnNdeXccceecveeeeeeiuveenn. 178
_GetSysMacroValuecceeueereenennee. 179 VBAT RAM (Rabbit 4000, 5000)
_SySISSOftRESELvveeeveeecreeeceeecee, 517 00172V =10 4 IO 412
ChkHardReSeteevvvviiveeeiiiieeeeeieenn, 25 (V1002 (0o S 528
ChKSOftRESEL ...vvveevieee e 25
CHKWDTO v 26 W
clockDoublerOff ..., 27 Watchdogs
ClOCKDOUBIENON .vovvvevvvevvvvvvsssssssesssenene 21 Disable HW_WDToooovrrrrrrrrrrrrrrsrnees 46
defineErrorHandlercccoccvvveviieeeinennns 42 Enable HW WDT oo 69
EXIT 76 NIW oo 194
fOrceSoftRESELocvvveeieiieee e 150 VAGetFreeWd oo 529
GEL_CPU_fIEqUENCY .vvovvsvvrsvrsvvrsven 176 VAHIOWG .ooreoroeeeeesoesoeeore 530
QELAIVIDEr19200 .oovvvvvvvvvvvvvsvevivssisisene 1rv VI ceoeeeeeeeeeeeeeeeeeeseesseeeseeeeeeseeseseseeees 530
GEtVeCtEXIEM2000ooovvvvvvvevevevevenene 180 VAREEASBWG ...ovevvveeveeeeeeeenenenenenenenee 531
XXViii rabbit.com Dynamic C Functions

http://www.rabbit.com

RABBIT. == PRODUCT MANUAL

1. Function Descriptions

This chapter includes detailed descriptions for Dynamic C API functions. Not al API functions are
included. For example, board-specific functions are described in the board's user manual.

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function L ookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Dynamic C Functions rabbit.com 1

http://www.rabbit.com/products/dc/
http://www.rabbit.com

abs

int abs(int x);

DESCRIPTION
Computes the absolute value of an integer argument.

PARAMETERS

x Integer argument

RETURN VALUE
Absolute value of the argument.

LIBRARY
MATH.LIB

SEE ALSO
fabs

acos

float acos (float x);

DESCRIPTION
Computes the arccosine of real £1oat vaue x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -1 and 1.

RETURN VALUE

Arccosine of the argument in radians.
If x isout of bounds, the function returns 0 and signals adomain error.

LIBRARY
MATH.LIB

SEE ALSO

cos, cosh, asin, atan

2 rabbit.com Dynamic C Functions

http://www.rabbit.com

acot

float acot(float x):;

DESCRIPTION
Computes the arcotangent of real f1oat vauex.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
Arccotangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, atan

acsc

float acsc(float x):;

DESCRIPTION
Computes the arccosecant of real f1oat vauex.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
The arccosecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, asin

Dynamic C Functions rabbit.com

http://www.rabbit.com

AESdecrypté4x4

void AESdecrypt4x4 (char far * expandedkey, char far * crypt,
char far * plain);

DESCRIPTION

Decryptsablock of datausing animplementation of the Rijndael AES cipher with a128-bit key

and block size.

The encrypted block of data may be overwritten by the decrypted block of data.

PARAMETERS

expandedkey

crypt

plain

LIBRARY
AES CORE.LIB

A set of round keys (generated by AESexpandKey4 ()) from a16-byte
(128 hit) key.

Total of 176 bytes (44 longwords)

Note: when using an AESstreamState structure (e.g. “state”) then call this
function using:

AESdecrypt4x4 (state->expanded key, plain, crypt);

A block of 16 bytes of ciphertext to be decrypted; “ crypt” and “plain” may
point to the same place.

A block of 16 bytes of resulting plaintext data; “crypt” and “plain” may
point to the same place.

rabbit.com Dynamic C Functions

http://www.rabbit.com

AESdecryptStream4x4 CBC

int AESdecryptStream4x4 CBC(AESstreamState * state, long message,
long output, unsigned int count);

DESCRIPTION
Perform an AES-CBC decryption operation.

See Samples\Crypt \AES STREAMTEST . C for asample program and a detailed expla-
nation of the encryption/decryption process.

PARAMETERS

state The AESstreamState structure, initialized via
AESinitStreamé4x4 ().
This memory must be allocated in the program code before calling
AESdecrptyStream4x4 CBC():
static AESstreamState decrypt state;

message Cipher-text message (an xmem buffer)

output Output buffer, for return of decrypted text (in xmem). Must be aslarge as
the cipher-text buffer. May be the same as the cipher-text buffer.

count Length of the message. Must amultipleof AES CBC BLK SZ_ (16).

RETURN VALUE
0 on success, non-zero on failure

LIBRARY
AES CORE.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

AESencrypté4x4

void AESencrypt4x4(char far * expandedkey, char far * plain,
char far * crypt):;

DESCRIPTION
Encrypts ablock of datausing an implementation of the Rijndagl AES cipher with 128-bit key
and block size. The block of data may be overwritten by the encrypted block of data.

PARAMETERS

expandedkey A setof round keys (generated by AESexpandKey4 ()) from a 16-byte
(128 hit) key.

Total of 176 bytes (44 longwords)

Note: when using an AESstreamState structure (e.g., “ state”) then call this
function using:

AESencrypt4x4 (state->expanded key, plain, crypt);

plain A block of 16 bytes of datato be encrypted; “crypt” and “plain” may point
to the same place.

crypt A block of 16 bytes of resulting encrypted data; “crypt” and “plain” may
point to the same place.

RETURN VALUE
None.

LIBRARY
AES CORE.LIB

6 rabbit.com Dynamic C Functions

http://www.rabbit.com

AESencryptStream4x4 CBC

int AESencryptStream4x4 CBC(AESstreamState * state, long message,
long output, unsigned int count);

DESCRIPTION
Perform an AES-CBC encryption operation on XMEM data. Encryptionis not “in-place.”

See Samples\Crypt \AES STREAMTEST . C for asample program and a detailed expla-
nation of the encryption/decryption process.

PARAMETERS

state An AES stream state structure, initialized viaAESinitStream4x4 ().
This memory must be allocated in the program code before calling
AESencrptyStream():
static AESstreamState encrypt state;

message The message in plaintext (an xmem buffer)

output The output buffer, for return of encrypted text (in xmem), must be aslarge
as the plaintext buffer, and may be the same as the plaintext buffer.

count Thelength of the message. Must beamultipleof AES CBC BLK SZ

(16).

RETURN VALUE
0 on success, non-zero on failure (count was not multiple of 16)

LIBRARY
AES CORE.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

AESexpandKey4

void AESexpandKey4 (char far * expanded, char far * key):;

DESCRIPTION

Prepares a key for use by expanding it into a set of round keys. A key isa " password” to deci-
pher encoded data.

Thisfunction is specific to AESwith 128-bit key. See AESexpandKey () for amore general
function (available with Rabbit Embedded Security Pack).

PARAMETERS

expanded A buffer for storing the expanded key. The size of the expanded key, for a
128-hit key, is 176 bytes. Other key sizes are not supported by this func-
tion.
Note: when using an AESstreamState structure (e.g., “ state”) then call this
function using:
AESexpandKey4 (state->expanded key, key);

key The cipher key, 16 bytes

RETURN VALUE
None.

LIBRARY
AES CORE.LIB

8 rabbit.com Dynamic C Functions

http://www.rabbit.com

AESinitStreamd4x4

void AESinitStream4x4 (AESstreamState far * state, char far * key,
char far * init vector);

DESCRIPTION

Sets up a stream state structure to begin encrypting or decrypting a stream using AES with a
128-hit key and block size.. A particular stream state can only be used for one direction.

See Samples\Crypt \AES STREAMTEST. C for asample program and a detailed
explanation of the encryption/decryption process.

PARAMETERS
state An AESstreamState structureto beinitialized. This memory must be
allocated in the program code before calling AESinitStreamé4x4 ().
key The 16-byte cipher key, using a null pointer, will prevent an existing key

from being recal culated.
init vector A 16-bytearray representing theinitial state of the feedback registers. Both
ends of the stream must begin with the same initialization vector and key.

For security, it isvery important never to use the sameinitialization vector
twice with the same key.

RETURN VALUE
None.

LIBRARY
AES CORE.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

asecC

float asec(float x):;

DESCRIPTION
Computes the arcsecant of real f1oat value x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
The arcsecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

COs, acos

asin

float asin(float x):;

DESCRIPTION
Computesthe arcsine of rea f1oat vaue x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -1 and +1.

RETURN VALUE
The arcsine of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, acsc

10 rabbit.com Dynamic C Functions

http://www.rabbit.com

atan

float atan(float x):;

DESCRIPTION
Computes the arctangent of rea f1oat value x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
The arctangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, acot

Dynamic C Functions rabbit.com

11

http://www.rabbit.com

atan2

float atan2(float y, float x);

DESCRIPTION

Computes the arctangent of real f1oat value y/x tofind the angle in radians between the
x-axis and the ray through (0,0) and (x,y).

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS
y The point corresponding to the y-axis
x The point corresponding to the x-axis

RETURN VALUE

If both v and x are zero, the function returns 0 and signals adomain error. Otherwise the arct-
angent of yv/x isreturned as follows:

Re'turned' VEIE Parameter Values
(in Radians)

angle x#0,y=#0
P1/2 x=0,y>0
—Pl/2 x=0,y<
0 x>0,y=0
Pl x<0,y=0

LIBRARY

MATH.LIB
SEE ALSO

acos, asin, atan, cos, sin, tan

12 rabbit.com Dynamic C Functions

http://www.rabbit.com

atof

NEAR SYNTAX: float n atof(char * sptr);
FAR SYNTAX: float f atof(char far * sptr);

Note: By default, atof () isdefinedto n atof ().

DESCRIPTION
ANSI string to float conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-

brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted floating value.
If the conversionisinvalid, xtoxErrissetto 1. Otherwise xtoxErr issetto 0.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atol, strtod

Dynamic C Functions rabbit.com

13

http://www.rabbit.com

atoi

NEAR SYNTAX: int n atoi(char * sptr);
FAR SYNTAX: int £ atoi(char far * sptr);

Note: By default, atoi () isdefinedto n atoi ().

DESCRIPTION

ANSI string to integer conversion (UNIX compatible).

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted integer value.

LIBRARY

STRING.LIB

SEE ALSO

atol, atof, strtod

14

rabbit.com Dynamic C Functions

http://www.rabbit.com

atol

NEAR SYNTAX: long n _atol(char * sptr);
FAR SYNTAX: long _f atol(char far * sptr);

By default, atol () isdefinedto _n atol ().

DESCRIPTION
ANSI string to long conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-

brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
sptr String to convert.

RETURN VALUE
The converted long integer value.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atof, strtod

Dynamic C Functions rabbit.com

15

http://www.rabbit.com

bit

unsigned int bit(void * address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this cal inline.

Reads specified bit at memory address. bit may befrom 0to 31. Thisisequivalent to the fol-
lowing expression, but more efficient:

(*(long *)address >> bit) & 1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where O represents the least significant bit

RETURN VALUE
1: Specified bit is set.
0: Bitisclear.

LIBRARY
UTIL.LIB

SEE ALSO
BIT

16 rabbit.com Dynamic C Functions

http://www.rabbit.com

BIT

unsigned int BIT(void * address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline.

Reads specified bit at memory address. bit may befrom 0to 31. Thisis equivalent to the fol-
lowing expression, but more efficient:

(* (long *)address>>bit) &1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where O represents the least significant bit

RETURN VALUE
1: bitisset
0: bit isclear
LIBRARY
UTIL.LIB

SEE ALSO
bit

Dynamic C Functions rabbit.com

http://www.rabbit.com

BitRdPortE

root int BitRdPortE(unsigned int port, int bitnumber);

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified externa 1/O port.

PARAMETERS
port Address of external parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: Thevalue of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdAPortE, WrPortE,
BitWrPortE

18 rabbit.com Dynamic C Functions

http://www.rabbit.com

BitRdPortlI

int BitRdPortI(int port, int bitnumber);

DESCRIPTION
Returns 1 or 0 matching the va ue of the bit read from the specified internal 1/0 port.

PARAMETERS
port Address of internal parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: Thevaue of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com

19

http://www.rabbit.com

BitWrPortE

void BitWrPortE(unsigned int port, char * portshadow, int value, int
bitcode);

DESCRIPTION
Updates shadow register at bitcode with value (0 or 1) and copies shadow to register.
WARNING! A shadow register is required for this function.

PARAMETERS
port Address of external parallel port dataregister.

portshadow Reference pointer to a variable to shadow the current value of the register.

value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0—7.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE,
WrPortE

20 rabbit.com Dynamic C Functions

http://www.rabbit.com

BitWrPortI

void BitWrPortI(int port, char * portshadow, int value, int
bitcode);

DESCRIPTION

Updates shadow register at positionbitcode withvalue (0 or 1); copies shadow to register.

WARNING! A shadow register is required for this function.
PARAMETERS
port Address of internal parallel port dataregister.
portshadow Reference pointer to a variable to shadow the current value of the register.

value Value of 0 or 1 to be written to the bit position.

bitcode Bit position 0—7.

LIBRARY
SYSIO.LIB
SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com

21

http://www.rabbit.com

CalculateECC256

long CalculateECC256(void * data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capa-
bility) value for a 256 byte (2048 hit) data buffer located in root memory.

PARAMETERS
data Pointer to the 256 byte data buffer

RETURN VALUE

The calculated ECC in the 3 LSBs of thelong (i.e., BCDE) result. Note that the MSB (i.e., B)
of thelong result is aways zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

22 rabbit.com Dynamic C Functions

http://www.rabbit.com

ChkCorrectECC256

void ChkCorrectECC256 (void * data, void * old ecc, void * new_ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary
and possible (1 bit correction, 2 bit detection), corrects the data in the specified root memory

buffer.
PARAMETERS
data Pointer to the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Dataand ECC are good (no correction is necessary)
1: Datais corrected and ECC is good

2: Datais good and ECC is corrected

3: Dataand/or ECC are bad and uncorrectable

LIBRARY

ECC.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Functions rabbit.com

23

http://www.rabbit.com

ceil

float ceil(float x):;

DESCRIPTION
Computes the smallest integer greater than or equal to the given number.

PARAMETERS

x Number to round up.

RETURN VALUE
The rounded up number.

LIBRARY
MATH.LIB

SEE ALSO

floor, fmod

24 rabbit.com Dynamic C Functions

http://www.rabbit.com

chkHardReset

int chkHardReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a hardware reset. Asserting
the RESET line or recycling power are both considered hardware resets. A watchdog timeout
is not a hardware reset.

RETURN VALUE

1: The processor was restarted due to a hardware reset.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkSoftReset, chkWDTO, sysIsSoftReset

chkSoftReset

int chkSoftReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from Dy-
namic C or acall to forceSoftReset ().

RETURN VALUE

1: The board was restarted due to a soft reset.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkWDTO, sysIsSoftReset

Dynamic C Functions rabbit.com

25

http://www.rabbit.com

chkWDTO

int chkWDTO(void);

DESCRIPTION
This function determines whether this restart of the board is due to a watchdog timeout.

Note: A watchdog timeout cannot be detected on a BL2000 or SmartStar.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, sysIsSoftReset

26 rabbit.com Dynamic C Functions

http://www.rabbit.com

clockDoublerOn

void clockDoublerOn(void);

DESCRIPTION
Enablesthe Rabbit clock doubler. If the doubler isaready enabled, there will be no effect. Also
attempts to adjust the communication rate between Dynamic C and the board to compensate for
the frequency change. User serial port rates need to be adjusted accordingly. Also note that sin-
gle-stepping through this routine will cause Dynamic C to lose communication with the target.

LIBRARY
SYS.LIB

SEE ALSO
clockDoublerOff

clockDoublerOff

void clockDoublerOff(void);

DESCRIPTION
Disables the Rabbit clock doubler. If the doubler is already disabled, there will be no effect.
Also attempts to adjust the communication rate between Dynamic C and the board to compen-
sate for the frequency change. User serial port rates need to be adjusted accordingly. Also note
that single-stepping through this routine will cause Dynamic C to lose communication with the

target.

LIBRARY
SYS.LIB

SEE ALSO
clockDoublerOn

Dynamic C Functions rabbit.com 27

http://www.rabbit.com

CloseInputCompressedFile

void CloseInputCompressedFile(ZFILE * ifp):

DESCRIPTION

Close an input compression file opened by OpenInputCompressionFile (). Thisfile
may be acompressed filethat isbeing decompressed, or an uncompressed filethat is being com-
pressed. In either case, thisfunction should be called for each openimport ZFILE onceit isdone
being used to free up the associated input buffer.

PARAMETERS

ifp File descriptor of an input compression ZFILE.

RETURN VALUE
None

LIBRARY
LZSS.LIB

CloseOutputCompressedFile

void CloseOutputCompressedFile(ZFILE * ifp);

DESCRIPTION

Close an output compression file. Thisfileisan FS2 ZF 1 LE which was previously opened with
OpenOutputCompressionFile (). Thisfunction should always be called when done
writing to a compression output ZFILE to free up the associated output buffer.

PARAMETERS

ifp File descriptor of an output compression ZFILE.

RETURN VALUE
None

LIBRARY
lzss.lib

28 rabbit.com Dynamic C Functions

http://www.rabbit.com

CoBegin

void CoBegin(CoData * p);
DESCRIPTION
Initialize acostatement structure so the costatement will be executed next timeit is encountered.

PARAMETERS

P Address of costatement

LIBRARY
COSTATE.LIB

cof pktXreceive

int cof pktXreceive(void * buffer, int buffer size); /* X is A-F */

DESCRIPTION

Receives an incoming packet. This function returns after a complete packet has been read into
the buffer.

Thefunctionscof pktEreceive () and cof pktFreceive () areavailable when us-
ing the Rabbit 3000 or Rabbit 4000.

PARAMETERS
buffer A buffer for the packet to be written into.

buffer size Length of the buffer.

RETURN VALUE

>0: The number of bytesin the received packet on success.
0: No new packets have been received.

-1: The packet istoo large for the given buffer.

-2: A needed test_ packet function is not defined.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com 29

http://www.rabbit.com

cof pktXsend

void cof pktXsend(void *send buffer int buffer length, char delay):;
/* X is A-F */

DESCRIPTION

Initiates the sending of apacket of data. The function will exit when the packet isfinished trans-
mitting.

Thefunctionscof pktEsend () and cof pktFsend () areavailable when using the
Rabbit 3000 or Rabbit 4000.

PARAMETERS
send buffer The data to be sent.
buffer length Length of thedatabuffer to transmit.

delay The number of byte times (0-255) to delay before sending data. Thisis
used to implement protocol-specific delays between packets.

LIBRARY
PACKET.LIB

30 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof serXgetc

int cof serXgetc(void); /* where X is A-F */

DESCRIPTION

Thissingle-user cofunction yieldsto other tasks until acharacter isread from port X. Thisfunc-
tion only returns when a character is successfully written. It is non-reentrant.

Thefunctionscof serEgetc () and cof serFgetc () may be used with the Rabbit
3000 or Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXgetc(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE
An integer with the character read into the low byte.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters

main() {
int c;
serXopen (19200) ;
loopinit () ;
while (1) {
loophead () ;

wfd ¢ = cof serAgetc();
wfd cof serAputc(c) ;

}

serAclose () ;

Dynamic C Functions rabbit.com

http://www.rabbit.com

cof serXgets

int cof serXgets(char * s, int max, unsigned long tmout);
/* where X is A-F */

DESCRIPTION

Thissingle-user cofunction reads characters from port X until anull terminator, linefeed, or car-
riage return character isread, max characters are read, or until tmout milliseconds transpires
between charactersread. A timeout will never occur if no characters have been received. This
function is non-reentrant. It yields to other tasks for as long as the input buffer islocked or
whenever the buffer becomes empty as characters are read. s will always be null terminated
upon return. Thefunctionscof serEgets () and cof serFgets () may be used with
the Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXgets(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
s Character array into which anull terminated string is read.
max The maximum number of charactersto read into s.
tmout Millisecond wait period between characters before timing out.

RETURN VALUE

1 if CR or max bytesread into s.
0 if function times out before reading CR or max bytes.

LIBRARY
RS232.LIB

EXAMPLE

main() { // echoes null terminated character strings
int getOk;
char s[1l6];
serAopen (19200) ;

loopinit () ;
while (1) {
loophead () ;

costate {
wfd getOk = cof serAgets (s, 15, 20);

if (getOk)
wfd cof_ serAputs(s) ;
else { // timed out: s null terminated, but incomplete
}
}
}
serAclose () ;

32 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof serXputc

void cof serXputc (int ¢); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes a character to seria port X, yielding to other tasks when the
input buffer islocked. This function is non-reentrant.

Thefunctions cof serEputc () and cof serFputc () may be used with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof _serXputc(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS

c Character to write.

LIBRARY
RS232.LIB

EXAMPLE

// e€choes characters
main() {
int c;
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
wfd ¢ = cof serAgetc() ;
wfd cof serAputc(c) ;

}

serAclose () ;

Dynamic C Functions rabbit.com

http://www.rabbit.com

cof serXputs

void cof serXputs(char * str); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes a null terminated string to port X. It yieldsto other tasks for
aslong astheinput buffer may belocked or whenever the buffer may become full as characters
are written. This function is non-reentrant.

Thefunctionscof serEputs () and cof _serFputs () may be used with the Rabbit
3000 or Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXputs(port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS

str Null terminated character string to write.

LIBRARY

RS232.LIB

EXAMPLE

// writesanull terminated character string, repeatedly
main() {
const char s[] = "Hello Rabbit";
serRAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd cof serAputs(s) ;
}
}

serAclose () ;

34

rabbit.com Dynamic C Functions

http://www.rabbit.com

cof serXread

int cof serXread(void * data, int length, unsigned long tmout);
/* X is A-F */

DESCRIPTION

Thissingle-user cofunction reads 1 ength charactersfrom port X (where X isA, B, C, D, Eor
F) or until tmout milliseconds transpires between characters read. It yields to other tasks for
as long as the input buffer is locked or whenever the buffer becomes empty as characters are
read. A timeout will never occur if no characters have been read. Thisfunction is non-reentrant.

Thefunctionscof serEread () and cof serFread () may be used with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXread(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
data Data structure into which characters are read.
length The number of characterstoread into data.
tmout Millisecond wait period to allow between characters before timing out.

RETURN VALUE
Number of charactersread into data.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a block of characters
main() {
int n;
char s[16];
serRAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd n = cof serAread(s, 15, 20);
wfd cof serAwrite (s, n);
}
}

serAclose () ;

Dynamic C Functions rabbit.com

http://www.rabbit.com

cof serXwrite

void cof serXwrite(void * data, int length); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes 1ength bytesto port X. It yieds to other tasks for aslong
astheinput buffer islocked or whenever the buffer becomesfull as characters are written. This
function is non-reentrant.

Thefunctionscof serEwrite () and cof serFwrite () may beused with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXwrite(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS

data Data structure to write.

length Number of bytesin data to write.

LIBRARY

RS232.LIB

EXAMPLE

// writesablock of characters, repeatedly
main() {
const char s[] = "Hello Rabbit";
serAopen (19200) ;
loopinit () ;
while (1)
loophead () ;
costate {
wfd cof serAwrite (s, strlen(s));
}
}

serAclose () ;

36

rabbit.com Dynamic C Functions

http://www.rabbit.com

CompressFile

void CompressFile(ZFILE * input, ZFILE * output);

DESCRIPTION

This function compresses the input file (uncompressed ZFILE, opened with
OpenInputCompressFile ()) using thelLZ compression algorithm. Theresultis put into
a user-specified output file (an empty ZFILE, opened with
OpenOutputCompressedFile ()).

The macro OUTPUT COMPRESSION BUFFERS must be defined with a positive non-zero
valueto use CompressFile () or acompile-time error will occur. The default value of
OUTPUT_COMPRESSION BUFFERS iszero.

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE
None

LIBRARY
LZSS.LIB

SEE ALSO
OpenInputCompressedFile, OpenOutputCompressedFile

Dynamic C Functions rabbit.com

37

http://www.rabbit.com

CoPause

void CoPause(CoData * p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next time it is encountered unless
and until Coresume (p) or CoBegin (p) arecaled.

PARAMETERS

P Address of costatement

LIBRARY
COSTATE.LIB

CoReset

void CoReset(CoData * p);

DESCRIPTION
Initializes a costatement structure so the costatement will not be executed next timeit is encoun-
tered.

PARAMETERS
P Address of costatement

LIBRARY

COSTATE.LIB

38 rabbit.com Dynamic C Functions

http://www.rabbit.com

CoResume

void CoResume(CoData * p);

DESCRIPTION

Resume execution of a costatement that has been paused.

PARAMETERS

P Address of costatement

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

39

http://www.rabbit.com

cos

float cos(float x);

DESCRIPTION
Computes the cosine of rea float value x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Angleinradians.

RETURN VALUE
Cosine of the argument.

LIBRARY
MATH.LIB

SEE ALSO

acos, cosh, sin, tan

cosh

float cosh(float x):;

DESCRIPTION

Computes the hyperbolic cosine of real float value x. This functions takes a unitless number as
aparameter and returns a unitless number.

PARAMETERS

x Value to compute.

RETURN VALUE

Hyperbolic cosine.
If |x| > 89.8 (approx.), the function returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO
cos, acos, sin, sinh, tan, tanh

40 rabbit.com Dynamic C Functions

http://www.rabbit.com

DecompressFile

void DecompressFile(ZFILE * input, ZFILE * output);

DESCRIPTION

Thisisthe expansion routine for the LZSS agorithm. It performs the opposite operation of
CompressFile (). Theinput file (acompressed ZFILE, opened with
OpenInputCompressedFile ())isdecompressed to the output file (an empty FS2
ZFILE, opened with OpenOutputCompressedFile ()).

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE
None

LIBRARY
LZSS.LIB

Dynamic C Functions rabbit.com

41

http://www.rabbit.com

defineErrorHandler

void defineErrorHandler(void * errfcn);

DESCRIPTION

Sets the BIOS function pointer for runtime errors to the function pointed to by errfecn. This
user-defined function must be in root memory. Specify root at the start of the function defini-
tion to ensure this. When aruntime error occurs, the following information is passed to the error

handler on the stack:

Stack Position Stack Contents
SP+0 Return address for exceptionRet
SP+2 Error code
SP+4 0x0000 (can be used for additional information)
SP+6 XPCwhen exception () wascalled (upper byte)
SP+8 Addresswhere exception () wascalled
PARAMETERS
errfcn Pointer to user-defined run-time error handler.
LIBRARY
SYS.LIB
42 rabbit.com Dynamic C Functions

http://www.rabbit.com

deg

float deg(float x);

DESCRIPTION
Changes f1oat radians x to degrees

PARAMETERS

x Anglein radians.

RETURN VALUE
Anglein degrees(afloat).

LIBRARY
MATH.LIB

SEE ALSO

rad

Dynamic C Functions rabbit.com

43

http://www.rabbit.com

DelayMs

int DelayMs(long delayms);

DESCRIPTION

Millisecond time mechanism for the costatement wa it for constructs. Theinitia call to this
function starts the timing. The function returns zero and continues to return zero until the num-
ber of milliseconds specified has passed.

PARAMETERS

delayms The number of milliseconds to wait.

RETURN VALUE

1: The specified number of milliseconds have elapsed.
0: The specified number of milliseconds have not el apsed.

LIBRARY
COSTATE.LIB

44 rabbit.com Dynamic C Functions

http://www.rabbit.com

DelaySec

int DelaySec(long delaysec):;

DESCRIPTION

Second time mechanism for the costatement wai t for constructs. Theinitial call to thisfunc-
tion starts the timing. The function returns zero and continuesto return zero until the number of

seconds specified has passed.
PARAMETERS
delaysec The number of seconds to wait.

RETURN VALUE

1: The specified number of seconds have elapsed.
0: The specified number of seconds have not elapsed.

LIBRARY
COSTATE.LIB

DelayTicks

int DelayTicks(unsigned ticks);

DESCRIPTION

Tick time mechanism for the costatement wa i t for constructs. Theinitial cal to thisfunction
startsthetiming. Thefunction returns zero and continuesto return zero until the number of ticks
specified has passed.

1 tick = 1/1024 second.
PARAMETERS
ticks The number of ticks to wait.

RETURN VALUE

1: The specified tick delay has elapsed.
0: The specified tick delay has not el apsed.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

45

http://www.rabbit.com

Disable HW WDT

void Disable HW WDT(void);

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog will be

enabled again just by hitting it. The watchdog is hit by the periodic interrupt, which is on by

default. Thisfunction is useful for special situations such aslow power “sleepy mode.”
LIBRARY

SYS.LIB

disableIObus

void disableIObus(void);

DESCRIPTION

This function disables external 1/0 bus and normal data bus operations resume on the Rabbit
3000 or Rabbit 4000.

Theexternal 1/0 busmust be disabled during normal bus operationswith other devicesand must
be enabled during any external 1/0 bus operation.

Thisfunction is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.

Parallel port A is set to abyte-wide input and parallel port B data direction register (PBDDR)
is set to an unknown state, which must be set by the user.

LIBRARY

ExternIO.LIB (was in R3000.LIB prior to DC 10)

SEE ALSO
enableIObus

46 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAalloc

dma chan t DMAalloc(char channel mask, int highest);

DESCRIPTION

Thisfunction returns ahandle to an available channel. The handle contains the channel number
and avalidation byte to prevent use of an old handle after deallocation.

PARAMETERS
channel mask Mask of al the acceptable channelsto choose from.

highest Bool indicating whether to search for an available channel from 8 or
from O.

RETURN VALUE

Returns ahandleto aDMA channel if oneis available. If none are available it returns
DMA CHANNEL NONE.

LIBRARY
DMA.LIB

SEE ALSO
DMAunalloc, DMAhandle2chan

Dynamic C Functions rabbit.com

47

http://www.rabbit.com

DMAcompleted

int DMAcompleted(dma chan t handle, unsigned int * len);

DESCRIPTION

This function checks to see if achannel is finished with its DMA operation. If complete, the
number of bytestransferred inthelast operationisreturnedin *1en (if Len isnot NULL), and

lisreturned.
PARAMETERS
handle Handle for channel to check
len Pointer to the value to be filled with the number of byteslast transferred

RETURN VALUE

1: DMA operation is complete
0: Allocated channel has never been used or is currently running
-EINVAL: Invalid handle

LIBRARY
DMA.LIB

SEE ALSO
DMAstop

48 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAhandle2chan

int DMAhandle2chan(dma chan t handle);

DESCRIPTION

This function checks the validity of a handle and returns the channel number if it isvalid.

PARAMETER

handle Handle to convert to channel number

RETURN VALUE

0-7: Valid channel number
DMA CHANNEL NONE: The channel isinvalid

LIBRARY
DMA.LIB

SEE ALSO
DMAalloc, DMAunalloc

Dynamic C Functions rabbit.com

49

http://www.rabbit.com

DMAioe2mem

int DMAiocoe2mem(dma chan t handle, dma addr t dest, unsigned int src,

unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DM A operation from external 1/0 to memory.

PARAMETERS
handle Handle for channel to usein transfer
dest Memory destination address
src External 1/0 location source address
len Length to send (cannot equal zero)
flags Various flag options.

* DMA F REPEAT indicates that the transfer will be acycle

* DMA_F_INTERRUPT indicates an interrupt will be triggered at the
completion of thetransfer. Theinterrupt vector and function must be set
up in the user's code.

* DMA F LAST SPECIAL (only for Ethernet or HDLC peripherals)
Internal Source: Status bytewrittentoinitial buffer descriptor beforelast
data.

Internal Destination: Last byte written to offset address for frame termi-
nation.
All Others: no effect.

* DMA_F SRC_DEC only for transferswith memory source. Indicatesthe
source address should be decremented.

* DMA_F DEST DEC only for transfers with memory destination. Indi-
cates the destination address should be incremented.

* DMA F_STOP_MATCH indicateswhether or not to stop the dmatransfer
when acharacter isreached. The match byte and mask should have pre-
viously been set by calling the DMAmatchSetup () function.

* DMA F TIMER indicatesthe DMA timer will beused. The divisor
should have already been set by callingtheDMAt imerSetup () func-
tion.

* DMA F TIMER 1BPR indicatesthat thetimed transferswill send one
byte per request instead of the entire descriptor

50 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAioe2mem (cont’d)

Only one of the following flags (if any) should be set. They indicate that
the DMA transfer is gated using the named pin:

* DMA F PD2,DMA F PE2,DMA F PE6,DMA F PD3,
DMA F PE3,DMA F PE7
The following flags indicate the polarity of the gating signal:

* DMA F FALLING (default), DMA F RISING DMA F LOW,
DMA F HIGH

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Functions rabbit.com

51

http://www.rabbit.com

DMAioi2mem

int DMAioi2mem(dma chan t handle, dma addr t dest, unsigned int src,

unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DM A operation from internal 1/0 to memory.

PARAMETERS
handle Handle for channel to usein transfer
dest Memory destination address
src Internal 1/0 location source address
len Length to send (cannot equal zero)
flags Variousflag options. SeeDMAioe2memn () forafull list of flagsand their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO

DMAmem2mem, DMAcompleted, DMAstop

52

rabbit.com

Dynamic C Functions

http://www.rabbit.com

DMAloadBufDesc

void DMAloadBufDesc(int dmaChannel, dma addr t * bufPtr);

DESCRIPTION

This function loads the appropriate DMA Initial Address Registersfor the requested DMA
channel with the address provided.

PARAMETERS
dmaChannel DMA channel number to load

bufPtr Pointer to variable containing physical address of DMA buffer

LIBRARY
DMA.LIB

SEE ALSO
DMAsetBufDesc, DMAsetDirect

Dynamic C Functions rabbit.com

53

http://www.rabbit.com

DMAmatchSetup

int DMAmatchSetup(dma chan t handle, int mask, int byte);

DESCRIPTION

This function sets up the mask and match registers for the DMA. These registers are only used
whentheDMA F STOP_MATCH flag is passed to the transfer function.

PARAMETERS
handle

mask

byte

LIBRARY
DMA.LIB

SEE ALSO

Handle for the DMA channel.

Mask for termination byte (parameter 3). A value of all zeros disablesthe
termination byte match feature. A value of all onesusesthefull termination
byte for comparison.

Byte that, if matched, will terminate the buffer.

DMAmem2mem, DMAtimerSetup

54

rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAmem2ioe

int DMAmem2ioe(dma chan t handle, unsigned int dest, dma_addr t src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DM A operation from memory to external 1/0.

PARAMETERS
handle Handle for channel to usein transfer
dest External 1/O destination address
src Memory location source
len Length to send (cannot equal zero)
flags Variousflag options. SeeDMAioe2memn () forafull list of flagsand their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Functions rabbit.com 55

http://www.rabbit.com

DMAmem2ioi

int DMAmem2ioi(dma chan t handle, unsigned int dest, dma_addr t src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DM A operation from memory to internal 1/O.

PARAMETERS
handle Handle for channel to usein transfer
dest Internal 1/0 destination address
src Memory location source
len Length to send (cannot equal zero)
flags Variousflag options. SeeDMAioe2memn () forafull list of flagsand their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

56 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAmem2mem

int DMAmem2mem(dma chan t handle, dma addr t dest, dma addr t src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DM A operation from memory to memory.

PARAMETERS
handle Handle for channel to usein transfer
dest Memory destination address
src Memory location source address
len Length to send (cannot equal zero)
flags Variousflag options. SeeDMAioe2memn () forafull list of flagsand their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAcompleted, DMAstop

Dynamic C Functions rabbit.com 57

http://www.rabbit.com

DMApoll

word DMApoll(int dmaChannel, word * bufCount);

DESCRIPTION
Thisisalow-level DMA function for determining how much data has been transferred by the
specified DMA channel. Since DMA is asynchronous to the CPU, this returns a lower bound
on the actually completed transfer.

IMPORTANT: Owing to the way the DMA channels are designed, this function
will not give avalid result for thefirst buffer in alinked list or chain, or if thereis
only one buffer defined (with no link or array sequencing). To get around thislim-
itation, define the first buffer asadummy transfer of one byte from memory to the
same memory, and link thisinitial dummy buffer to the desired list or array of
buffer descriptors. Take the dummy buffer into account when interpreting the
bufCount value returned. If you service an interrupt from the dummy buffer
completion, you will know when it isvalid to poll.

Thisfunction is mainly intended for endless DMA loops (e.g., receiving into acir-
cular buffer from aserial port) thus the above restriction should not be too onerous
in practice.

PARAMETERS
dmaChannel DMA channel number to poll (0-7).

bufCount Pointer to variablein which the completed buffer count will bewritten. The
return value contains the number of bytes remaining (not yet transferred)
in this buffer. The buffer count wraps around modulo 256.

RETURN VALUE

The number of bytes remaining in the buffer indicated by * bufCount. Thisranges from 0, if
completed, up to the total size of the buffer, if not yet started. If the size of any single transfer
was 65536 bytes, then the return value is ambiguous as to whether it means“0” or “65536.”

LIBRARY
DMA.LIB

SEE ALSO
DMAloadBufDesc, DMAsetDirect

58 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAprintBufDesc

void DMAprintBufDesc(void * dr, long dp):

DESCRIPTION

Thisisadebugging function only. It formats and prints the contents of the buffer descriptor at
*dr or *dp, using bit 6 of the chanControl field to determine whether to assume a short
orlongformat. If dr isnot NULL, then the buffer descriptor isin root memory and *dr isused.
Otherwise, dp is assumed to be the physical address of the buffer descriptor in xmem.

PARAMETERS
dr Pointer to buffer descriptor in root memory.

dp Address of buffer descriptor in physical memory.

LIBRARY
DMA.LIB

SEE ALSO
DMAprintRegs

Dynamic C Functions rabbit.com

59

http://www.rabbit.com

DMAprintRegs

void DMAprintRegs(int chan, int masters);

DESCRIPTION

Thisisadebugging function only. This prints the values of the hardware registers for the spec-
ified channel. If mastersistrue, then it also prints the va ues of the master DMA control regis-
ters.

Note that the Source and Destination Address registers are write only and read as zero.

PARAMETERS
chan Channel number to print
masters A booal to determine whether or not to print out the master registers shared
between all channels
LIBRARY
DMA.LIB
SEE ALSO
DMAprintBufDesc

60 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAsetBufDesc

int DMAsetBufDesc(char chanControl, unsigned int bufLength,
dma addr t srcAddress, dma addr t destAddress, dma addr t
linkAddress, dma addr t bufPtr, int bufSize);

DESCRIPTION

Thisfunction loadsa DMA buffer descriptor in memory with the values provided. The buffer
needs to be described as either 12 or 16 bytesin size.

PARAMETERS
chanControl DMA channel control value
bufLength DMA buffer length
srcAddress DMA source address
destAddress DMA destination address
linkAddress DMA link address (of next buffer descriptor)
bufPtr Physical address of buffer descriptor to fill

bufsSize Size of buffer descriptor in bytes (12 or 16 only)

RETURN VALUE

0: Success
-EINVAL: Error

LIBRARY
DMA.LIB

SEE ALSO
DMAloadBufDesc, DMAsetDirect

Dynamic C Functions rabbit.com

61

http://www.rabbit.com

DMAsetDirect

void DMAsetDirect(int channel, char chanControl, unsigned int
bufLength, dma addr t srcAddress, dma addr t destAddress,
dma addr t linkAddress);

DESCRIPTION

Thisfunction sets up aDMA channel with the values provided.

PARAMETERS
channel
chanControl
bufLength
srcAddress
destAddress

linkAddress

LIBRARY
DMA.LIB

SEE ALSO

DMA channel to set

DMA channel control value
DMA buffer length

DMA source address

DMA destination address

DMA link address (of next buffer descriptor)

DMAloadBufDesc, DMAsetBufDesc

62

rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAsetParameters

int DMAsetParameters(unsigned int transfer pri, unsigned int
interrupt pri, unsigned int inter dma pri, unsigned int
chunkiness, unsigned int min cpu pct);

DESCRIPTION

Thisfunction sets up DMA parameters. The chunkiness parameter determines the amount
of CPU time needed to transfer data according to this chart:

chunkiness 1 2 3 4 8 16 32 64

CPU_cycles 11 15 19 23 39 71 135 263

Themin cpu_ pct parameter determinesthe minimum time between burstsand is cal cul ated
with this formula:

(CPU cycles- min cpu pct)
(100 —min_cpu_pct)

Thisisthen rounded up to the nearest value out of 12, 16, 24, 32, 64, 128, 256, or 512.

cpu free time=

PARAMETERS

transfer pri DMA transfer priority (0, 1, 2 or 3), transfers can occur when the CPU
interrupt priority is less than or equal to this value.

interrupt pri DMA interrupt priority (O, 1, 2, or 3); avalue of O will disable the
DMA interrupts.

inter dma pri Relative prioritization amongst the DMA channels. It is one of thefol-
lowing constants:

* DMA IDP FIXED - fixed priorities, with higher channel numbers tak-
ing precedence;

« DMA IDP ROTATE FINE - prioritiesarerotated after every byte
transferred;

* DMA IDP ROTATE COARSE - prioritiesrotated after every transfer
request, the size of which is determined by the “chunkiness’ parameter.

chunkiness Maximum transfer burst size. Allowed valuesare 1, 2, 3, 4, 8, 16, 32,
or 64. Other numberswill be rounded down to the nearest allowed val-
ue.

Dynamic C Functions rabbit.com

http://www.rabbit.com

DMAsetParameters (cont’d)

min_ cpu pct A number between 0 and 100 describing the minimum (worst-case)
relative amount of time that the CPU will control the bus versus the
DMA time. Internally, this function uses this figure to determine the
'minimum clocks between bursts hardware setting. The figure will be
rounded in favor of the CPU, up to the maximum possible hardware
setting.

RETURN VALUE

0: Success
-EINVAL: for an error

LIBRARY
DMA.LIB

DMAstartAuto

void DMAstartAuto(int channel);

DESCRIPTION
Thisfunction is defined to the following:

WrPortI (DMALR, NULL, 1 << channel);

Start (using auto-load) the corresponding DM A channel, using the buffer descriptor in memory
addressed by the Initial Address Register. This command should only be used after the Initia
Address has been loaded.

PARAMETER
channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartDirect, DMAstopDirect

64 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAstartDirect

void DMAstartDirect(int channel);

DESCRIPTION
Thisfunction is defined to the following:

WrPortI (DMCSR, NULL, 1 << channel) ;

Start (or restart) the corresponding DMA channel using the contents of the DMA channel reg-

isters. Thiscommand should only be used after all the DMA channel registers have been loaded.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartAuto, DMAstopDirect

Dynamic C Functions rabbit.com

65

http://www.rabbit.com

DMAstop

int DMAstop(dma chan t handle);

DESCRIPTION

Stop a DMA operation started with one of the DM Amem2ioe series functions.
DMAcompleted () will return TRUE after for an operation stopped with this function, but
with less data length than the original request. It is OK to stop an operation that has currently
completed; this has no effect. DMAcompleted () may be called to determine the actual
amount of data transferred.

PARAMETER
Handle for channd to stop.

RETURN VALUE

0: Success
-EINVAL: Invaid handle

LIBRARY
DMA.LIB

SEE ALSO
DMAcompleted, DMAstopDirect

66 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAstopDirect

void DMAstopDirect(int channel);

DESCRIPTION
Thisfunction is defined to the following:

WrPortI (DMHR, NULL, 1 << channel) ;

Halt the corresponding DMA channel. The DMA registersabtain the current state and the DMA
can be restarted using the DMCSR.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartAuto, DMAstartDirect

DMAtimerSetup

void DMAtimerSetup(unsigned int divisor);

DESCRIPTION

Thisfunction setsup the DMA 16-bit divisor. To usethedivisor, theDMA F_TIMER flag must
be passed to the transfer function.

PARAMETER

divisor 16-bit divisor for the DMA timer

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAmatchSetup

Dynamic C Functions rabbit.com

http://www.rabbit.com

DMAunalloc

int DMAunalloc(dma chan t handle);

DESCRIPTION

This function deall ocates a handle, effectively closing the DMA channel to which it was asso-

ciated.

PARAMETER

handle Handle for DMA channel; returned by DMaalloc ().

RETURN VALUE

0: Success
-EINVAL: Error

LIBRARY
DMA.LIB

SEE ALSO
DMAalloc, DMAhandle2chan

68

rabbit.com

Dynamic C Functions

http://www.rabbit.com

Enable HW WDT

void Enable HW WDT(void);

DESCRIPTION
Enables the hardware watchdog timer on the Rabbit processor. The watchdog is hit by the peri-
odic interrupt, which is on by default.

LIBRARY
SYS.LIB

enableIObus

void enableIObus(void);

DESCRIPTION

Thisfunction enables external 1/0 bus operation on the Rabbit 3000 or Rabbit 4000. The exter-

nal 1/0 bus must be enabled during any external 1/0 bus operation and disabled during normal
bus operations with other devices.

Parallel port A becomesthe I/O data bus and parallel port B bits 7:2 becomes the I/O address
bus.

Thisfunction is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.
If the macro PORTA AUX IO hasbeen previously defined, this function should not be called.

LIBRARY

ExternIO.LIB (was in R3000.LIB prior to DC 10)

SEE ALSO
disableIObus

Dynamic C Functions rabbit.com

http://www.rabbit.com

errlogGetHeaderInfo

root char* errlogGetHeaderInfo(void);

DESCRIPTION
Reads the error log header and formats the output.

When running stand alone (not talking to Dynamic C), this function reads the header directly
from the log buffer. When in debug mode, this function reads the header from the copy in flash.

When a Dynamic C cold boot takes place, the header in RAM is zeroed out to initialize it, but
firgt its contents are copied to an address in the BIOS code before the BIOS in RAM is copied
to flash. This means that on the second cold boot, the data structure in flash will be zeroed out.
The configuration of the log buffer may still be read, and the log buffer entries are not affected.

Because the exception mechanism resets the processor by causing a watchdog time-out, the
number of watchdog time-outs reported by this functions is the number of actual WDTOs plus
the number of exceptions.

RETURN VALUE
A null terminated string containing the header information:

Status Byte: 0
#Exceptions: 5

Index last exception: 5
#SW Resets: 2

#HW Resets: 2

#WD Timeouts: 5

The string will contain “Header checksuminvalid” if achecksum error occurs. The meaning of
the status byteis as follows:

bit 0 - An error has occurred since deployment
bit 1 - The count of SW resets has rolled over.
bit 2 - The count of HW resets has rolled over.
bit 3 - The count of WDTOs has rolled over.

bit 4 - The count of exceptions has rolled over.
bit 5-7 - Not used

The index of the last exception isthe index from the start of the error log entries. If thisindex
does not equal the total exception count minus one, the error log entries have wrapped around
the log buffer.

LIBRARY
ERRORS.LIB

70 rabbit.com Dynamic C Functions

http://www.rabbit.com

errlogGetNthEntry

root int errlogGetNthEntry(int N);

DESCRIPTION

Loads errLogEntry structure with Nth entry of the error buffer. This must be called before
the functions below that format the output.

PARAMETERS
N Index of entry to load into errLogEntry

RETURN VALUE

0: Success, entry checksum okay.
- 1: Failure, entry checksum not okay.

LIBRARY
ERRORS.LIB

errlogFormatEntry

root char* errlogFormatEntry(void);

DESCRIPTION
Returns anull terminated string containing the basic information containedinerrLogEntry:
Error type=240
Address = 00:16aa
Time: 06/11/2001 20:49:29
RETURN VALUE
The null terminated string described above.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

errlogFormatRegDump

root char* errlogFormatRegDump(void);

DESCRIPTION
Returns a null terminated string containing aregister dump using thedatain errLogEntry:
AF=0000,AF'=0000
HL=00f0,HL'=15e3
BC=16ce,BC'=1600
DE=0000,DE'=1731
IX=d3f1l,IY =0560
SP=d3eb, XPC=0000

RETURN VALUE
The null terminated string described above.

LIBRARY
ERRORS.LIB

errlogFormatStackDump

root char * errlogFormatStackDump(void);

DESCRIPTION
Returns anull terminated string containing a stack dump using the datain errLogEntry.
Stack Dump:
0024,04f£1,
d378,cl4e6,
c400,al08,
2404,0000,
RETURN VALUE

The null terminated string describe above.

LIBRARY
ERRORS.LIB

72 rabbit.com Dynamic C Functions

http://www.rabbit.com

errlogGetMessage

root char * errlogGetMessage(void);

DESCRIPTION

Returns a null terminated string containing the 8 byte messagein errLogEntry.

RETURN VALUE
A null terminated string.

LIBRARY
ERRORS.LIB

errlogReadHeader

root int errlogReadHeader(void);

DESCRIPTION
Reads error log header into the structureerrlogInfo.

RETURN VALUE

0: Success, entry checksum OK.
-1: Failure, entry checksum not OK.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

73

http://www.rabbit.com

error message

unsigned long error message(int message index);

DESCRIPTION

Returns a physical pointer to adescriptive string for an error codelistedinerrno.1ib. The
sampleprogramSamples\ErrorHandling\error message test.cillustratesthe
useof error message (). Theerror message strings are definedinerrors. 1lib.

PARAMETER

message index Positive or negative value of error return code.

RETURN VALUE
Physical address of string, or zero if error codeis not listed.

LIBRARY
ERRORS.LIB

74 rabbit.com Dynamic C Functions

http://www.rabbit.com

exception

int exception(int errCode);

DESCRIPTION

Thisfunction is called by Rabbit libraries when a runtime error occurs. It putsinformation
relevant to the runtime error on the stack and calls the default runtime error handler pointed to
by the ERROR_EXIT macro. To define your own error handler, see the
defineErrorHandler () function.

When the error handler is called, the following information will be on the stack:

Location on Stack Description
SP+0 Return address for error handler call
SP+2 Runtime error code
SP+4 (can be used for additional information)
SP+6 XPC when exception () wascalled (upper byte)
SP+8 Addresswhere exception () wascaled from

RETURN VALUE
Runtime error code passed to it.

LIBRARY
ERRORS.LIB

SEE ALSO

defineErrorHandler

Dynamic C Functions rabbit.com

75

http://www.rabbit.com

exit

void exit(int exitcode);

DESCRIPTION

Stops the program and returns exi t code to Dynamic C. Dynamic C uses values above 128
for run-time errors. When not debugging, exi t will run an infinite loop, causing a watchdog
timeout if the watchdog is enabled.

PARAMETERS

exitcode Error code passed by Dynamic C.

LIBRARY
SYS.LIB

exp

float exp(float x);

DESCRIPTION

Computes the exponential of real £1oat vauex.
PARAMETERS

x Value to compute
RETURN VALUE

Returns the value of e*.

If x >89.8 (approx.), the function returns INF and signalsarange error. If x <—89.8 (approx.),
the function returns 0 and signals arange error.

LIBRARY
MATH.LIB

SEE ALSO
log, logl0, frexp, ldexp, pow, powlO, sgrt

76 rabbit.com Dynamic C Functions

http://www.rabbit.com

fabs

float fabs(float x);
DESCRIPTION
Computes the float absolute value of float x.

PARAMETERS

x Value to compute.

RETURN VALUE

x,1f x>=0,

ese -x.
LIBRARY

MATH.LIB
SEE ALSO

abs

Dynamic C Functions rabbit.com

7

http://www.rabbit.com

fat AutoMount

int fat AutoMount(word flags);

DESCRIPTION

Initializes the driversin the default drivers configuration list in fat _config.1lib and enu-
merates the devices in the default devices configuration list, then mounts partitions on enumer-
ated devices according to the device's default configuration flags, unless overridden by the
specified run time configuration flags. Despite its lengthy description, this function makesini-
tializing multiple devices using the FAT library as easy as possible. The first driver in the con-
figuration list becomes the primary driver in the system, if oneis not already set up.

After this routine successfully returns, the application can start calling directory and file func-
tions for the devices mounted partitions.

If devices and/or partitions are not already formatted, this function can optionally format them
according to the device's configuration or run time override flags.

This function may be called multiple times, but will not attempt to remount device partitions
that it has already mounted. Once a device partition has been mounted by this function, un-
mounts and remounts must be handled by the application.

Even though this function may be called multiple times, it is not meant to be used as a polling
or status function. For example, if you are using removable media such as an SD card, you
should call sdspi debounce () to determine when the card isfully inserted into the socket.

Therearetwo arrays of datastructuresthat are populated by calling fat AutoMount (). The
array named fat part mounted[] isanarray of pointersto fat part structures. A
fat_part structure holdsinformation about a specific FAT partition. The other array,

_fat _device table[],iscomposed of pointersto mbr dev structures. Anmbr dev
structure holds information about a specific device. Partition and device structures are needed
in many FAT function calls to specify the device and partition to be used.

Anexampleof using fat _part mounted[] wasshown inthe sample program

fat create.c. FAT applicationswill needtoscan fat part mounted[] tolocateval-
id FAT partitions. A valid FAT partition must be identified before any file and directory opera-
tions can be performed. These pointersto FAT partitions may be used directly by indexing into
the array or stored in alocal pointer. The fat shell.c sample usesanindex into the array,
whereas most other sample programs make a copy of the pointer.

Anexampleof using fat device table[] isinthesampleprogram fat shell.c.
Thisarray isused in FAT operations of alower level than fat part mounted[]. Specifi-
cally, when the device is being partitioned, formatted and/or enumerated. Calling

fat AutoMount () relieves most applications of the need to directly use

fat device table[].

78

rabbit.com Dynamic C Functions

http://www.rabbit.com

fat AutoMount (cont’d)

PARAMETERS

flags Run-time device configuration flags to allow overriding the default device
configuration flags. If not overriding the default configuration flags, spec-
ify FDDF_USE_DEFAULT. To override the default flags, specify the
ORed combination of one or more of the following:
* FDDF_MOUNT PART 0: Mount specified partition
* FDDF_MOUNT PART 1:
* FDDF_MOUNT PART 2:
* FDDF_MOUNT PART 3:
e FDDF_MOUNT PART ALL:Mount al partitions
* FDDF MOUNT_ DEV_0: Apply to specified device
e FDDF_MOUNT DEV_1:
e FDDF_MOUNT DEV_2:
* FDDF_MOUNT DEV_3:
« FDDF_MOUNT DEV_ALL: Apply to all available devices
* FDDF_NO_RECOVERY: Use norecovery if failsfirst time
* FDDF_COND DEV_FORMAT: Format device if unformatted
* FDDF_COND_ PART FORMAT: Format partition if unformatted
* FDDF_UNCOND_ DEV_FORMAT: Format device unconditionally
* FDDF_UNCOND_PART FORMAT: Format partition unconditionally

Note: The FDDF_MOUNT PART * flags apply equally to all
FDDF_MOUNT DEV_* deviceswhich are specified. If thisisaprob-
lem, call this function multiple times with asingle DEV flag bit each
time.

Note: Formatting the device creates a single FAT partition covering
the entire device. It isrecommended that you always set the

* PART FORMAT flag bit if you set the corresponding

* DEV_FORMAT flag bit.

Dynamic C Functions rabbit.com 79

http://www.rabbit.com

fat AutoMount (cont’d)

RETURN VALUE

0: success
-EBADPART: partitionis not avalid FAT partition

-EI0: Devicel/O error

-EINVAL: invalid prtTable

-EUNFORMAT: deviceis not formatted

-ENOPART: no partitions exist on the device

-EBUSY: For non-blocking mode only, the deviceis busy. Call this function again to complete
the close.

Any other negative value means that an /O error occurred when updating the directory entry.
In this case, the fileis forced to close, but its recorded length might not be valid.

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat EnumPartition, fat MountPartition

80 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Close

int fat Close(FATfile *file);

DESCRIPTION
Closes a currently open file. You should check the return code since an /O needs to be per-
formed when closing afile to update the file's EOF offset (length), last access date, attributes
and last write date (if modified) in the directory entry. Thisis particularly critical when using

non-blocking mode.

PARAMETERS

file Pointer to the open file to close.

RETURN VALUE

0: SUCCESS.
-EINVAL: invalid file handle.
-EBUSY: For non-blocking made only, the deviceis busy. Call this function again to complete

the close.

Any other negative value means that an /O error occurred when updating the directory entry.
In this case, the fileis forced to close, but its recorded length might not be valid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir

Dynamic C Functions rabbit.com

81

http://www.rabbit.com

fat CreateDir

int fat CreateDir(fat part *part, char *dirname);

DESCRIPTION
Creates adirectory if it does not already exist. The parent directory must aready exist.
In non-blocking mode, only onefile or directory can be created at any onetime, sinceasingle

static FATEi1le isused for temporary storage. Each time you call this function, pass the same
dirname pointer (not just the same string contents).

PARAMETERS
part Handle for the partition being used.
dirname Pointer to the full path name of the directory to be created.

RETURN VALUE
0: suCCess.
-EINVAL: invalid argument. Trying to create volume label.
-ENOENT: parent directory does not exist.
-EPERM: the directory already exists or iswrite-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: if non-blocking, but a previous sequence of callsto this function (or
fat CreateFile ())hasnot completed and you aretrying to create adifferent file or direc-
tory. You must complete the sequence of calls for each file or directory i.e., keep calling until
something other than -EBUSY is returned.

Other negative values are possible from fat Open ()/fat_Close () cals.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat CreateFile

82 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat CreateFile

int fat CreateFile(fat part * part, char * filename, long
alloc size, FATfile * file);

DESCRIPTION
Creates afileif it does not already exist. The parent directory must already exist.

In non-blocking mode, if fileisNULL, only onefileor directory can be created at any onetime,
sinceasingle static FATf 1 1e isused for temporary storage. Each time you call thisfunction,
pass the same di rname pointer (not just the same string contents).

Valid filenames are limited to an 8 character filename and 3 character extension separated by a
period; thisis commonly known as the “8.3" format. Examples include but are not limited to
“12345678.123", “filename.txt”, and “webpagel.htm”.

PARAMETERS

part Pointer to the partition being used.

filename Pointer to the full pathname of the file to be created.

alloc_size Initial number of bytesto pre-allocate. Note that at |east one cluster will be
alocated. If there is not enough space beyond the first cluster for the re-
guested all ocation amount, the file will be allocated with whatever spaceis
available on the partition, but no error codewill bereturned. If not even the
first cluster is allocated, the - ENOSPC error code will return. Thisinitial
allocation amount is rounded up to the next whole number of clusters.

file If not NULL, the created file is opened and accessible using this handle.

If NULL, thefileis closed after it is created.

RETURN VALUE

0: SUCCESS.

-EINVAL: part, filename, alloc size, or £ile containinvalid values.

-ENOENT: the parent directory does not exist.

-ENOSPC: no allocatabl e sectors were found.

-EPERM: write-protected, trying to create afile on aread-only partition.

-EBUSY: the device is busy (non-blocking mode only).

-EFSTATE: if non-blocking, but a previous sequence of calls to this function (of
fat_CreateFile) has not completed but you aretrying to create adifferent file or directory. You
must compl ete the sequence of calls for each file or directory i.e. keep calling until something
other than -EBUSY isreturned. Thiscodeisonly returned if you passaNULL file pointer, or
if the file pointer is not NULL and the referenced fileis already open.

-EPATHSTR: Bad file/directory path string. Valid filenames are limited to the 8.3 format.

Other negative valuesindicate 1/O error, etc.

Dynamic C Functions rabbit.com

83

http://www.rabbit.com

fat CreateFile (cont’d)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat ReadDir, fat Write

fat CreateTime

int fat CreateTime(fat dirent *entry, struct tm *t);

DESCRIPTION

Thisfunction puts the creation date and time of the entry into the system time structure t. The
function does not fill in the tm_wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.

-EINVAL.: invalid directory entry or time pointer
LIBRARY

FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

84 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Delete

int fat Delete(fat part *part, int type, char *name);

DESCRIPTION

Deletesthe specified file or directory. The t ype must match or the deletion will not occur. This
routine inserts a deletion code into the directory entry and marks the sectors as available in the
FAT table, but does not actually destroy the data contained in the sectors. This allows an unde-
lete function to be implemented, but such aroutine is not part of this library. A directory must

be empty to be deleted.
PARAMETERS
part Handle for the partition being used.
type Must bea FAT file (FAT FILE) or aFAT directory (FAT DIR), depend-

ing on what is to be deleted.

name Pointer to the full path name of the file/directory to be deleted.

RETURN VALUE

0: success.

-EI0: devicel/O error.

-EINVAL: part, type, Or name contain invalid values.

-EPATHSTR: name is not avalid path/name string.

-EPERM: thefileis open, write-protected, hidden, or system.

-ENOTEMPTY: the directory is not empty.

-ENOENT: the file/directory does not exist.

-EBUSY: the device is busy. (Only if non-blocking.)

-EPSTATE: if the partition is busy; i.e., there isan alocation in progress. (Only if non-block-

ing.)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Split, fat Truncate, fat Close

Dynamic C Functions rabbit.com 85

http://www.rabbit.com

fat EnumDevice

int fat EnumDevice(mbr drvr *driver, mbr dev *dev, int devnum,
char *sig, int norecovery):;

DESCRIPTION

Thisroutineiscalled to learn about the devices present on the driver passed in. The device will
be added to the linked list of enumerated devices. Partition pointers will be set to NULL, indi-
cating they have not been enumerated yet. Partition entries must be enumerated separately.

The signature string is an identifier given to the write-back cache, and must remain consistent
between resets so that the device can be associated properly with any battery-backed cache en-
tries remaining in memory.

Thisfunctioniscalled by fat AutoMount () and fat Init ().

PARAMETERS
driver Pointer to an initialized driver structure set up during the initialization of
the storage device driver.
dev Pointer to the device structure to be filled in.
devnum Physical device number of the device.
sig Pointer to a unique signature string. Note that this value must remain the

same between resets.

norecovery Boolean flag - set to Trueto ignore power-recovery data. Trueisany value
except zero.

RETURN VALUE

0: SuCCess.

-EIO: error trying to read the device or structure.

-EINVAL: devnum invalid or does not exist.

-ENOMEM: memory for page buffer/RJis not available.

-EUNFORMAT: the deviceisaccessible, but not formatted. You may useit provided it isformat-
ted/partitioned by either thislibrary or by another system.

-EBADPART: the partition table on the device isinvalid.

-ENOPART: the device does not have any FAT partitions. This code is superseded by any other
error detected.

-EEXIST: the device has already been enumerated.

-EBUSY: the device is busy (nonblocking mode only).

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat EnumPartition

86 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat EnumPartition

int fat EnumPartition(mbr dev *dev, int pnum, fat part *part);

DESCRIPTION

Thisroutine is called to enumerate a partition on the given device. The partition information
will be put into the FAT partition structure pointed to by part. The partition pointer will be
linked to the device structure, registered with the write-back cache, and will then be active. The
partition must be of avalid FAT type.

Thisfunctioniscalled by fat AutoMount () and fat Init ().

PARAMETERS
dev Pointer to an MBR device structure.
pnum Partition number to link and enumerate.
part Pointer to an FAT partition structure to befilled in.

RETURN VALUE

0: suCCess.

-EIO: eror trying to read the device or structure.

-EINVAL: partition number isinvalid.

-EUNFORMAT: the device is accessible, but not formatted.

-EBADPART: the partition is not a FAT partition.

-EEXIST: the partition has already been enumerated.

-EUNFLUSHABLE: there are no flushable sectorsin the write-back cache.
-EBUSY: the device isbusy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat FormatPartition, fat MountPartition

Dynamic C Functions rabbit.com

87

http://www.rabbit.com

fat FileSize

int fat FileSize(FATfile *file, unsigned long *length);

DESCRIPTION
Puts the current size of thefilein bytesinto 1ength.

PARAMETERS
file Handle for an open file.
length Pointer to the variable where the file length (in bytes) is to be placed.

RETURN VALUE

0: success.
-EINVAL: fileisinvalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Seek

88 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat FormatDevice

int fat FormatDevice(mbr dev *dev, int mode);

DESCRIPTION

Formats adevice. The devicewill have aDOS master boot record (MBR) written toit. Existing
partitions are left alone if the device was previously formatted. The formatted device will be
registered with the write-back cache for use with the FAT library. The one partition mode will
instruct the routine to create a partition table, with one partition using the entire device. This
mode only works if the device is currently unformatted or has no partitions.

If needed (i.e., thereisno MBR on the device), thisfunctioniscalled by fat AutoMount ()
if its flags parameter allowsiit.

PARAMETERS
dev Pointer to the data structure for the device to format.
mode Mode:
0 =normal (use the partition table in the device structure)
1 = one partition using the entire device (errors occur if there are already
partitions in the device structure)
3 =force one partition for the entire device (overwrites values aready in
the device structure)
RETURN
0: success.

-EIO: error trying to read the device or structure.
-EINVAL: device structureisinvalid or does not exist.
-ENOMEM: memory for page buffer/RJis not available.
-EEXIST: the device is already formatted.

-EPERM: the device already has mounted partition(s).
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat EnumDevice, fat PartitionDevice,
fat FormatPartition

Dynamic C Functions rabbit.com

89

http://www.rabbit.com

fat FormatPartition

int fat FormatPartition(mbr dev *dev, fat part *part, int pnum,
int type, char *label, int (*usr) ()):

DESCRIPTION

Formats partition number pnum according to partition type. The partition table information in
the device must be valid. Thiswill always be the case if the device was enumerated. The parti-
tiontype must beavalid FAT type. Also note that the partition is not mounted after the partition
isformatted. If - EBUSY isreturned, the partition structure must not be disturbed until a subse-
quent call returns something other than - EBUSY.

If needed (i.e., fat MountPartition () returned error code -EBADPART), thisfunction
iscaledby fat AutoMount ().

PARAMETERS

dev Pointer to a device structure containing partitions.

part Pointer to aFAT partition structure to be linked. Notethat opstate must
be set to zero beforefirst call to thisfunction if the library isbeing used in
the non-
blocking mode.

pnum Partition number on the device (0-3).

type Partition type.

label Pointer to a partition label string.

usr Pointer to a user routine.

RETURN VALUE

0: SuCCess.

-EIO: eror in reading the device or structure.

-EINVAL: the partition number isinvalid.

-EPERM: write accessis not allowed.

-EUNFORMAT: the deviceis accessible, but is not formatted.
-EBADPART: the partition isnot avalid FAT partition.
-EACCES: the partition is currently mounted.

-EBUSY: the device isbusy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat FormatDevice, fat EnumDevice,
fat PartitionDevice, fat EnumPartition

90 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Free

int fat Free(fat part *part);

DESCRIPTION

This function returns the number of free clusters on the partition.

PARAMETERS

part Handle to the partition.

RETURN VALUE

Number of free clusters on success
0: partition handleis bad or partition is not mounted.

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat MountPartition

Dynamic C Functions rabbit.com

91

http://www.rabbit.com

fat GetAttr

int fat_ GetAttr(FATfile *file);

DESCRIPTION

This function gets the given attributes to the file. Use the defined attribute flags to check the
value:

* FATATTR READ ONLY - Thefile can not be modified.

* FATATTR HIDDEN - Thefileisnot visible when doing normal operations.

* FATATTR SYSTEM - Thisisasystem file and should be |eft alone.

* FATATTR VOLUME_ID - Thisisthe name of alogical disk.

* FATATTR DIRECTORY - Thisisadirectory and not afile.

* FATATTR ARCHIVE - Thistellsyou when the file was |ast modified.

* FATATTR LONG NAME - ThisisaFAT32 or long file name. It is not supported.

PARAMETERS

file Handle to the open file.

RETURN VALUE

Attributes on success
-EINVAL: invalid file handle.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Status

92 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat GetName

int fat GetName(fat dirent *entry, char *buf, word flags);

DESCRIPTION

Translatesthefile or directory nameinthe fat dirent structureinto aprintable name. FAT
filenamesare stored in astrict fixed-field formatinthe fat _dirent structure (returned from
fat Status, for example). Thisformat is not always suitable for printing, so this function
should be used to convert the name to a printable null-terminated string.

PARAMETERS
entry Pointer to adirectory entry obtained by fat Status ().
buf Pointer to achar array that will befilled in. Thisarray must be at least 13
characters long.
flags May be one of the following:

* 0- standard format, e.g., AUTOEXEC . BAT Ofr XYZ.GIF
* FAT LOWERCASE - standard format, but make lower case.

RETURN VALUE

0: SuCCess.
-EINVAL: invalid (NULL) parameter(s).

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status

Dynamic C Functions rabbit.com

http://www.rabbit.com

fat GetPartition

int fat GetPartition (fat part **part, char **file, char *
fullpath) ;

DESCRIPTION

Split afull pathname (e.g., “a/filename.txt”) into a paritition and filename.

Examples (with FAT USE FORWARDSLASH defined):
a:/filename.txt > partition A, /filename.txt
/b/filename.txt > partition B, /filename.txt
C:filename.txt > partition C, /filename.txt

Examples (without FAT USE FORWARDSLASH defined):
a:\filename.txt > partition A, \filename.txt
\b\filename.txt > partition B, \filename.txt

C:filename.txt > partition C, \filename.txt

PARAMETERS
part Memory location to store a pointer to the fat partition (drive letter).
file Memory location to store a pointer into fullpath (parameter 3) where the
filename begins.
fullpath Pathname to parse.

RETURN VALUE

0: Success
-EINVAL: unable to parse <fullpath>

LIBRARY
FAT.LIB

94 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Init

int fat Init(int pnum, mbr drvr *driver, mbr dev *dev, fat part
*part, int norecovery):;

DESCRIPTION

Initializes the default driver in MBR_DRIVER INIT, enumerates device O, then enumerates
and mounts the specified partition. This function was replaced with the more powerful
fat AutoMount ().

fat_ Init () will only work with device O of the default driver. This driver becomes the pri-
mary driver in the system.

The application can start calling any directory or filefunctions after this routine returns success-
fully.

The desired partition must already be formatted. If the partition mount fails, you may call the
function again using a different partition number (pnum). The device will not beinitialized a

second time.

PARAMETERS
pnum Partition number to mount (0-3).
driver Pointer to the driver structureto fill in.
dev Pointer to the device structure to fill in.
part Pointer to the partition structure to fill in.

norecovery Boolean flag - set to Trueto ignore power-recovery data. Trueisany value
except zero.

RETURN VALUE

0: Success.

-EI0: devicel/O error.

-EINVAL: pnum, driver, or device, or part isinvalid.
-EUNFORMAT: the device is not formatted.

-EBADPART: the partition requested is not avalid FAT partition.
-ENOPART: no partitions exist on the device.

-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat EnumDevice, fat EnumPartition,
fat MountPartition

Dynamic C Functions rabbit.com

95

http://www.rabbit.com

fat InitUCOSMutex

void fat InitUCOSMutex(int mutexPriority);

DESCRIPTION

Thisfunctionwasintroduced in FAT version 2.10. Prior versions of the FATfile system are com-
patible with uC/OS-I1 only if FAT API callsare confined to one uC/OS-I1 task. The FAT APl is
not reentrant from multiple tasks without the changes made in FAT version 2.10. If you wish to
use the FAT file system from multiple uC/COS tasks, you must do the following:

1. The statement #define FAT USE UCOS_MUTEX must come before the statement:

#use FAT.LIB

2. After calling 0sInit () and before starting any tasks that use the FAT, cdl
fat InitUCOSMutex (mutexPriority). The parameter mutexPriorityisa
UC/OS-1 task priority that must be higher than the priorities of all tasksthat call FAT API func-
tions.

3. You must not call low-level, non-API FAT or write-back cache functions. Only call FAT func-
tions appended with “fat_" and with public function descriptions.

4. Run the FAT in blocking mode (#define FAT BLOCK).

Mutex timeouts or other errors will cause arun-time error -ERR_FAT MUTEX ERROR.
MC/OS-I1 may raise the priority of tasks using mutexes to prevent priority inversion.

The default mutex time-out in seconds isgiven by FAT MUTEX TIMEOUT SEC, which de-
faults to 5 seconds if not defined in the application before the statement #use FAT.LIB.

PARAMETERS

mutexPriority A UC/OS-I task priority that MUST be higher than the priorities of all
tasksthat call FAT API functions.

RETURN VALUE
None: success.
-ERR_FAT MUTEX ERROR: A run-time error causes an exception and the application will
exit with this error code.
LIBRARY
FAT.LIB

SEE ALSO
fat AutoMount, fat Init

96 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat IsClosed

int fat IsClosed(FATfile far * file);

DESCRIPTION
Returns non-zero if the FATfile passed is not open and zero if open.

(Currently implemented as a macro, but may be modified to be an actual function in afuture
release.)

PARAMETER
file Pointer to a FATfile structure to check.

RETURN VALUE

1: fileis closed
0: fileis open

LIBRARY
fat.1lib

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

Dynamic C Functions rabbit.com

97

http://www.rabbit.com

fat IsOpen

int fat IsOpen(FATfile far * file);

DESCRIPTION
Returns TRUE if the FATfile passed isin an open state and FAL SE otherwise.

(Currently implemented as a macro, but may be modified to be an actual function in afuture
release.)

PARAMETER

file Pointer to a FATfile structure to check.

RETURN VALUE
10 if fileisopen

Oif fileisclosed
LIBRARY

fat.lib
SEE ALSO

fat ReadDir, fat Status, fat LastAccess, fat LastWrite

98 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat LastAccess

int fat LastAccess(fat dirent *entry, struct tm *t);

DESCRIPTION

Puts the last access date of the specified entry into the system time structure t. Thetimeisal-
ways set to midnight. The function does not fill inthe tm_wday field in the system time struc-

ture.
PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.

-EINVAL: invalid directory entry or time pointer
LIBRARY

FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat CreateTime, fat LastWrite

Dynamic C Functions rabbit.com

99

http://www.rabbit.com

fat LastWrite

int fat LastWrite(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the date and time of the last write for the given entry into the system time structure t. The
function does not fill in the tm_wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: SUCCESS.

-EINVAL: invalid directory entry or time pointer
LIBRARY

FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat CreateTime, fat LastAccess

100 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat MountPartition

int fat MountPartition(fat part *part);

DESCRIPTION

Marks the enumerated partition as mounted on both the FAT and MBR level. The partition
MUST be previously enumerated with fat EnumPartition ().

Thisfunctioniscalled by fat AutoMount () and fat Init ().

PARAMETER

part Pointer to the FAT partition structure to mount.

RETURN VALUE

0: success.

-EINVAL: device or partition structure or part isinvalid.

-EBADPART: the partition is not a FAT partition.

-ENOPART: the partition does not exist on the device.

-EPERM: the partition has not been enumerated.

-EACCESS: the partition is already linked to another fat _part structure.
-EBUSY: the device isbusy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat UnmountPartition

Dynamic C Functions rabbit.com 101

http://www.rabbit.com

fat Open

int fat Open(fat part *part, char *name, int type, int £ff,

FATfile *file,

DESCRIPTION

long *prealloc);

Opensafileor directory, optionaly creating it if it does not already exist. If the function returns
-EBUSY, cal it repeatedly with the same arguments until it returns something other than

-EBUSY.

PARAMETERS
part

name

type
ff

file

prealloc

Handle for the partition being used.
Pointer to the full path name of the file to be opened/created.
FAT FILE or FAT DIR, depending on what isto be opened/created.

File flags, must be one of:

* FAT OPEN - Object must already exist. If it does not exist, - ENOENT
will be returned.

* FAT CREATE - Object is created only if it does not already exist

* FAT MUST_ CREATE - Object iscreated, and it must not aready exist.

* FAT READONLY - No write operations (thisflag is mutually exclusive
with any of the CREATE flags).

* FAT SEQUENTIAL - Optimizefor sequential reads and/or writes. This

setting can be changed while the file is open by using the
fat fentl () function.

Pointer to an empty FAT filestructurethat will act asahandlefor the newly
opened file. Note that you must memset this structure to zero when you
are using the non-blocking mode before calling this function thefirst time.
Keep calling until something other than -EBUSY is returned, but do not
change anything in any of the parameters while doing so.

Aninitial byte count if the object needs to be created. This number is
rounded up to the nearest whole number of clusters greater than or equal to
1. This parameter isonly used if one of the * CREATE flag is set and the
object does not aready exist. Onreturn, *prealloc isupdated to the ac-
tual number of bytesallocated. May be NULL, in which case one cluster is
alocated if the call is successful.

102

rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Open (cont’d)

RETURN VALUE
0: SUCCESS.
-EINVAL: invalid arguments. Trying to create volume label, or conflicting flags.
-ENOENT: file/directory could not be found.
-EPATHSTR: Invalid path string for parent directory
-EEXIST: object existed when FAT MUST CREATE flag set.
-EPERM: trying to create a file/directory on aread-only partition.
-EMFILE - too many openfiles. If you get thiscode, increasethe FAT MAXMARKERS defi-

nition in the BIOS.
Other negative valuesindicate 1/0 error, €etc.
Non-blocking mode only:

-EBUSY: the device is busy (nonblocking mode only).

-EFSTATE - filestructureisnot in avalid state. Usually meansit was not zerod before calling
this function for thefirst time (for that file) struct, when in non-blocking mode; can also occur
if the same file struct is opened more than once.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Close

Dynamic C Functions rabbit.com 103

http://www.rabbit.com

fat OpenDir

int fat OpenDir(fat part *part, char *dirname, FATfile *dir);

DESCRIPTION
Opens adirectory for useg, filling inthe FATfi1e handle.

PARAMETERS
part Pointer to the partition structure being used.
dirname Pointer to the full path name of the directory to be opened or created.
dir Pointer to directory requested.

RETURN VALUE

0: success

-EINVAL: invalid argument.

-ENOENT: the directory cannot be found.

-EBUSY: the device is busy (Only if non-blocking).

Other negative values are possible from the fat Open () call.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat Close

104 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat PartitionDevice

int fat PartitionDevice(mbr dev *dev, int pnum);

DESCRIPTION

This function partitions the device by modifying the master boot record (MBR), which could
destroy access to information already on the device. The partition information contained in the
specified mbr dev structure must be meaningful, and the sizes and start positions must make
sense (no overlapping, etc.). If thisisnot true, you will get an -EINVAL error code. The device
being partitioned must aready have been formatted and enumerated.

This function will only allow changes to one partition at atime, and this partition must either
not exist or be of a FAT type.

The validity of the new partition will be verified before any changes are doneto the device. All

other partition information in the device structure (for those partitions that are not being modi-
fied) must match the values currently existing onthe MBR. Thetype given for the new partition
must either be zero (if you are deleting the partition) or a FAT type.

You may not use this function to create or modify a non-FAT partition.

PARAMETERS
dev Pointer to the device structure of the device to be partitioned.
pnum Partition number of the partition being modified.

RETURN VALUE

0: success.

-EI0: devicel/O error.

-EINVAL: pnum Or device structureisinvalid.
-EUNFORMAT: the device is not formatted.
-EBADPART: the partition is a non-FAT partition.
-EPERM: the partition is mounted.

-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat FormatDevice, fat EnumDevice, fat FormatPartition

Dynamic C Functions rabbit.com 105

http://www.rabbit.com

fat Read

int fat Read(FATfile *file, char *buf, int len);

DESCRIPTION

Given file, buf, and 1en, thisroutinereads 1 en characters from the specified file and plac-
es the charactersinto buf. The function returns the number of characters actually read on suc-
cess. Characters are read beginning at the current position of the file and the position pointer
will be left pointing to the next byte to be read. The file position can be changed by the
fat_Seek () function. If thefile containsfewer than 1en charactersfrom the current position
to the EOF, the transfer will stop at the EOF. If already at the EOF, O isreturned. The 1en pa
rameter must be positive, limiting reads to 32767 bytes per call.

PARAMETERS
file Handle for the file being read.
buf Pointer to the buffer where data are to be placed.
len Length of datato be read.

RETURN VALUE

Number of bytes read: success. May be less than the requested amount in non-blocking mode,
or if EOF was encountered.

-EEOF: dtarting position for read was at (or beyond) end-of-file.

-EI0: devicel/O error.

-EINVAL: file, buf, or 1len, containinvalid values.

-EPERM: thefileislocked.

-ENOENT: the file/directory does not exist.

-EFSTATE: fileisin inappropriate state (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Write, fat Seek

106 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat ReadDir

int fat ReadDir(FATfile *dir, fat dirent *entry, int mode);

DESCRIPTION

Reads the next entry of the desired type from the given directory, filling in the entry structure.

PARAMETERS
dir
entry

mode

Pointer to the handle for the directory being read.
Pointer to the handle to the entry structure to fill in.

0 = next activefile or directory entry including read only (no hidden, sys,
label, deleted or empty)

A nonzero value sets the selection based on the following attributes:

* FATATTR_READ ONLY - include read-only entries
e FATATTR_HIDDEN - include hidden entries

* FATATTR_SYSTEM - include system entries

* FATATTR_VOLUME_1ID - include label entries

* FATATTR_DIRECTORY - include directory entries
* FATATTR_ ARCHIVE - include modified entries

* FAT FIL RD ONLY - filter on read-only attribute
* FAT FIL HIDDEN - filter on hidden attribute

* FAT FIL SYSTEM - filter on system attribute

* FAT FIL LABEL - filter on label attribute

 FAT FIL DIR - filter on directory attribute

 FAT FIL ARCHIVE - filter on modified attribute

The FAT INC_=* flagsdefault to FAT INC_ACTIVE if none set:

* FAT INC DELETED - include deleted entries
* FAT INC_EMPTY - include empty entries

* FAT INC_LNAME - include long name entries
 FAT INC_ACTIVE - include active entries

The following predefined filters are available:

* FAT INC_ ALL-returnsALL entriesof ANY type

* FAT INC DEF - default (filesand directories including read-only and
archive)

Note: Activefilesare included by default unless FAT INC DELETED,
FAT INC EMPTY, or FAT INC LNAME isset. Include flags become the desired filter
value if the associated filter flags are set.

Dynamic C Functions

rabbit.com

107

http://www.rabbit.com

fat ReadDir (cont’d)

EXAMPLES OF FILTER BEHAVIOR
mode = FAT INC DEF | FATFIL HIDDEN | FATATTR HIDDEN
would return the next hidden file or directory (including read-only and archive)
mode = FAT INC DEF|FAT FIL HIDDEN|FAT FIL DIR|FATATTR HIDDEN
would return next hidden directory (but would not return any hidden file)

mode = FAT INC DEF|FAT FIL HIDDEN|FAT FIL DIR|
FATATTR HIDDEN & ~FATATTR DIRECTORY

would return next hidden file (but would not return any hidden directory)
mode = FAT INC ALL & ~FAT INC EMPTY

would return the next non-empty entry of any type

RETURN VALUE

0: success.

-EINVAL: invalid argument.

-ENOENT: directory does not exist

-EEOF: no more entries in the directory

-EFAULT: directory chain haslink error

-EBUSY: the device is busy (non-blocking mode only)

Other negative valuesfromthe fat _Open () call are also possible.

LIBRARY

FAT.LIB

SEE ALSO

fat OpenDir, fat Status

108 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Seek

int fat Seek(FATfile *file, long pos, int whence);

DESCRIPTION

Positionstheinternal file position pointer. fat _Seek () will allocate clustersto thefileif nec-
essary, but will not movethe position pointer beyond the original end of file (EOF) unlessdoing
aSEEK_ RAW. Inall other cases, extending the pointer past the original EOF will preallocate the
space that would be needed to position the pointer as requested, but the pointer will be |eft at
the original EOF and the file length will not be changed. If this occurs, an EOF error will be
returned to indicate the space was allocated but the pointer was | eft at the EOF.

PARAMETERS
file

pos

whence

Pointer to the file structure of the open file.

Position value in number of bytes (may be negative). Thisvalueisinter-
preted according to the third parameter, whence.

Must be one of the following:

* SEEK_ SET - pos isthe byte position to seek, where 0 is the first byte
of thefile. If pos islessthan 0, the position pointer is set to 0 and no
error code is returned. If posis greater than the length of the file, the po-
sition pointer is set to EOF and error code -EEOF isreturned.

* SEEK CUR - seek pos bytesfrom the current position. If pos isless
than O the seek is towards the start of thefile. If this goes past the start
of thefile, the position pointer is set to 0 and no error code is returned.
If posis greater than O the seek istowards EOF. If this goes past EOF
the position pointer is set to EOF and error code - EEOF is returned.

* SEEK END - seek to pos bytesfrom the end of thefile. That is, for a
filethat is x byteslong, the statement:

fat Seek (&my file, -1, SEEK END) ;

will cause the position pointer to be set at x-1 no matter its value prior
to the seek call. If the value of poswould move the position pointer past
the start of the file, the position pointer is set to O (the start of the file)
and no error code is returned. If pos is greater than or equal to O, the
position pointer is set to EOF and error code -EEOF isreturned..

* SEEK RAW -issimilar to SEEK SET, but if pos goes beyond EOF,
using SEEK_RAW will set the file length and the position pointer to
pos.

Dynamic C Functions

rabbit.com

109

http://www.rabbit.com

fat Seek (cont’d)

RETURN VALUE

0: SUCCESS.

-EI0: devicel/O error.

-EINVAL: file, pos, or whence contain invalid values.
-EPERM: thefileislocked or writes are not permitted.
-ENOENT: the file does not exist.

-EEOF: spaceisalocated, but the pointer isleft at original EOF.
-ENOSPC: no space isleft on the device to complete the seek.
-EBUSY: the device is busy (Only if non-blocking).

-EFSTATE: if filein inappropriate state (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat Write, fat xWrite

110 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat SetAttr

int fat SetAttr(FATfile *file, int attr);

DESCRIPTION
Thisfunction setsthe given attributesto the file. Use defined attribute flagsto create the set val -
ues.

PARAMETERS
file Handle to the open file.
attr Attributes to set in file. For attribute description see fat GetAttr ().

May be one or more of the following:
e FATATTR READ ONLY

e FATATTR HIDDEN

e FATATTR SYSTEM

e FATATTR VOLUME_ID

* FATATTR DIRECTORY

e FATATTR ARCHIVE

e FATATTR LONG NAME

RETURN VALUE

0: Success

-EI0: ondevicelO error

-EINVAL: invalid open file handle

-EPERM: if thefileislocked or write not permitted
-EBUSY: if the deviceisbusy. (Only if non-blocking)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Status

Dynamic C Functions rabbit.com 111

http://www.rabbit.com

fat Split

int fat Split(FATfile *file, long where, char *newfile);

DESCRIPTION

Splitsthe original file at where and assigns any left over allocated clustersto newfile. As
the name implies, newf ile isanewly created file that must not aready exist. Upon comple-
tion, the original fileis closed and the file handle isreturned pointing to the created and opened
new file. Thefile handle given must point to afile of type FAT FILE. Thereareinternal static
variablesused in thisfunction, so only onefile split operation can be active. Additional requests
will be held off with -EBUSY returns until the active split completes.

PARAMETERS

file Pointer to the open file to split.

where May be one of the following:
» >0 - absolute byte to split the file. If the absolute byte is beyond the

EOF, fileis split at EOF.

* FAT BRK END - split at EOF.
* FAT BRK_POS - split at current file position.

newfile Pointer to the absolute path and name of the new file created for the split.

RETURN VALUE

0O: success.

-EIO: devicel/O error.

-EINVAL: £ile hasinvalid references.

-EPATHSTR: newfile isnot avalid path/name string.

-EEOF: no unused clusters are available for newfile. £i1le will be unchanged and open,
newfile isnot created.

-EPERM: file isin use, write-protected, hidden, or system.

-ENOENT: f£ile does not exist.

-ETYPE: file isnot aFAT filetype.

-EBUSY: the device is busy (Only non-blocking mode).

-EFSTATE: if filein inappropriate state (Only non-blocking mode).

LIBRARY
FAT.LIB

SEE ALSO

fat Open, fat OpenDir, fat Delete, fat Truncate, fat Close

112 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Status

int fat_ Status(fat part *part, char *name, fat dirent *entry);

DESCRIPTION

Scans for the specified entry and fillsin the entry structure if found without opening the direc-
tory or entry.

PARAMETERS
part Pointer to the partition structure being used.
name Pointer to the full path name of the entry to be found.
entry Pointer to the directory entry structureto fill in.

RETURN VALUE

0: suCCess.

-EI0: devicel/O error.

-EINVAL: part, filepath, or entry areinvalid.

-ENOENT: the file/directory/label does not exist.

-EBUSY: the device is busy (Only non-blocking mode). If you get this error, call the function
again without changing any parameters.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir

Dynamic C Functions rabbit.com

113

http://www.rabbit.com

fat SyncFile

int fat_SyncFile(FATfile *file);

DESCRIPTION
Updatesthe directory entry for the given file, committing cached size, dates, and attribute fields
to the actual directory. This function has the same effect as closing and re-opening thefile.

PARAMETERS

file Pointer to the open file.

RETURN VALUE

0: success.
-EINVAL: fileisinvalid.
-EPERM - this operation is not permitted on the root directory.

-EBUSY: thedeviceisbusy (Only if non-blocking). Cal function again to compl ete the update.
-EFSTATE - file not open or in an invalid state.

Any other negative value: I/O error when updating the directory entry.

LIBRARY
FAT.LIB

SEE ALSO
fat Close, fat Open, fat OpenDir

114 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat SyncPartition

int fat SyncPartition(fat part *part);

DESCRIPTION
Flushes all cached writesto the specified partition to the actual device.

PARAMETER
part Pointer to the partition to be synchronized.

RETURN VALUE

0: SUCCESS.
-EINVAL: part isinvalid.
-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the sync.

Any other negative value: I/O error when updating the device.

LIBRARY
FAT.LIB

SEE ALSO

fat Close, fat SyncFile, fat UnmountPartition

Dynamic C Functions rabbit.com 115

http://www.rabbit.com

fat Tell

int fat Tell(FATfile *file, unsigned long *pos);

DESCRIPTION

Puts the value of the position pointer (that is, the number of bytes from the beginning
of thefile) into pos. Zero indicates the position pointer is at the beginning of the file.

HC/OSII USERS:

e The FAT API isnot reentrant. To use the FAT from multiple uC/OS-11 tasks, put the
following statement in your application:

#define FAT USE_UCOS_MUTEX

e Mutex timeouts or other mutex errors will cause the run-time error
ERR_FAT MUTEX ERROR. Thedefault mutex timeout is 5 seconds and can be
changed by #defineing adifferent value for FAT MUTEX TIMEOUT SEC.

e YouMUST call fat InitUCOSMutex () after callingosInit () and beforecalling
any other FAT API functions.

e You must run the FAT in blocking mode (#define FAT BLOCK).

e You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “£at " and with public function descriptions.

PARAMETERS
file Pointer to the file structure of the open file
pos Pointer to the variable where the value of the file position pointer isto be

placed.

RETURN VALUE

0: success.
-EIO: position is beyond EOF.
-EINVAL: fileisinvalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Seek, fat Read, fat Write, fat xWrite

116 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat tick

int fat tick(void);

DESCRIPTION

Drive device I/O completion and periodic flushing. It is not generally necessary for the appli-
cation to call thisfunction; however, if it is called regularly (when the application has nothing
else to do) then file system performance may be improved.

RETURN VALUE
Currently always 0.

LIBRARY
FATWTC.LIB

Dynamic C Functions rabbit.com 117

http://www.rabbit.com

fat Truncate

int fat Truncate(FATfile *file, long where);

DESCRIPTION

Truncates the file at where and frees any left over allocated clusters. The file must be a
FAT FILE type.

PARAMETERS
file Pointer to the open file to truncate.
where One of the following:

» >0 - absolute byte to truncate the file. The file is truncated at EOF if
the absolute byte is beyond EOF.

e FAT BRK_END - truncate at EOF.
* FAT BRK_POS - truncate at current file position.

RETURN VALUE

0: success.

-EI0: devicel/O error.

-EINVAL: file isinvalid.

-EPERM: file isin use, write-protected, hidden, or system.
-ENOENT: the file does not exist.

-ETYPE: file isnot aFAT filetype.

-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if filein inappropriate state (Only if non-blocking)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat Split

118 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat UnmountDevice

int fat_ UnmountDevice(mbr_dev * dev);

DESCRIPTION

Unmounts all FAT partitions on the given device and unregisters the device from the cache sys-
tem. This commits all cache entries to the device and prepares the device for power down or
removal. The device structure given must have been enumerated with fat EnumDevice ().

Thisfunction wasintroduced in FAT module version 2.06. Applications using prior versions of
the FAT modulewould call fat UnmountPartition () instead.
PARAMETER

dev Pointer to a FAT device structure to unmount.

RETURN VALUE

0: SuCCess.
-EINVAL: device structure (dev) isinvalid.
-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat AutoMount, fat UnmountPartition

Dynamic C Functions rabbit.com

119

http://www.rabbit.com

fat UnmountPartition

int fat UnmountPartition(fat part *part);

DESCRIPTION

Marks the enumerated partition as unmounted on both the FAT and the master boot record lev-
els. The partition must have been aready enumerated using fat EnumPartition ()
(which happenswhenyou call fat AutoMount ()).

To unmount all FAT partitionson adevice cal fat UnmountDevice (), afunctionintro-
duced with FAT version 2.06. It not only commits all cache entriesto the device, but also pre-
pares the device for power down or removal.

Note: The partitions on a removable device must be unmounted in order to flush data
before removal. Failure to unmount a partition that has been written could cause damage
to the FAT file system.

PARAMETERS

part Pointer to a FAT partition structure to unmount.

RETURN VALUE

0: success.
-EINVAL: device or partition structure or pnum isinvalid.
-EBADPART: the partition is not a FAT partition.
-ENOPART: the partition does not exist on the device.
-EPERM: the partition has not been enumerated.

-EBUSY: the device isbusy (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat MountPartition, fat UnmountDevice

120 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Write

int fat Write(FATfile *file, char *buf, int len);

DESCRIPTION

Writes charactersinto the file specified by the file pointer beginning at the current position in
thefile. Characterswill be copied from the string pointed to by buf. The 1en variable controls
how many characters will be written. This can be more than one sector in length, and the write
function will allocate additional sectorsif needed. Dataiswritten into the file starting at the cur-
rent file position regardless of existing data. Overwriting at specific pointsin the file can be ac-
complished by callingthe fat Seek () function beforecalling fat Write ().

PARAMETERS
file Handle for the open file being written.
buf Pointer to the buffer containing data to write.
len Length of datato be written.

RETURN VALUE

Number of bytes written: success (may be lessthan 1en, or zero if non-blocking mode)
-EI0: devicel/O error.

-EINVAL: file, buf, or len containinvalid vaues.

-ENOENT: file does not exist.

-ENOSPC: no space | eft on the device to complete the write.

-EFAULT: problem in file (broken cluster chain, etc.).

-EPERM: thefileislocked or is write-protected.

-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: fileisin inappropriate state (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat xWrite, fat Seek

Dynamic C Functions rabbit.com 121

http://www.rabbit.com

fat xRead

fat xRead(FATfile * file, char far * buf, int len);

DESCRIPTION
Given file, buf and 1en, thisroutinereadslen characters from the specified file and places
the charactersinto string buf. Returns the number of characters actually read on success.

Characterswill be read beginning at the current position of the file and the position pointer will
be left pointing to the next byte to be read. The file position can be manually set with the
fat_Seek () function. If thefile containslessthe“len” charactersfrom the current position
to the end of the file (EOF), then the transfer will stop at the EOF. If already at the EOF, -EEOF
isreturned. The 1en parameter must be positive, limiting reads to 32767 bytes per call.

HC/OS11 USERS:

e The FAT API isnot reentrant from multiple tasks. To use the FAT from multiple uC/OS-
Il tasks, put the following statement in your application:

#define FAT USE_UCOS_MUTEX

e Mutex timeouts or other mutex errors cause arun-time error ERR_FAT MUTEX ERROR.
The default mutex timeout is 5 seconds and can be changed by #define'ing a different value
for FAT MUTEX TIMEOUT SEC.

e YouMUST call fat InitUCOSMutex () aftercallingosInit () and beforecalling
any other FAT API functions.

e You must run the FAT in blocking mode (#define FAT BLOCK).

e You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “fat " and with public function descriptions.

PARAMETERS
file Handle for the file being read
buf Pointer to buffer where dataisto be placed. May be NULL in order to dis-
card data
len Length of datato beread. If thisis zero, then the return code will be‘ 1’ if

not at EOF, or ‘0’ if at EOF.

122 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat xRead (cont’d)

RETURN VALUE

Number of bytes read on Success. May be less than the requested amount in non-blocking
mode, or if EOF was encountered.

-EEOF: stating position for read was at (or beyond) EOF.
-EI0: ondevicelO error

-EINVAL: if file, buf, or len contain invalid values
-EPERM: if thefileislocked

-ENOENT: if file/directory does not exist

-EFSTATE: if filein inappropriate state (non-blocking)

SEE ALSO

fat Open, fat Read, fat Write, fat xWrite, fat Seek

Dynamic C Functions rabbit.com 123

http://www.rabbit.com

fat xWrite

int fat xWrite(FATfile *file, long xbuf, int len);

DESCRIPTION

Writes charactersinto the file specified by thefile pointer beginning at the current position in the
file. Characterswill be copied from the xmem string pointed to by xbuf. The 1en variable con-
trols how many characters will be written. This can be more than one sector in length, and the
writefunctionwill allocate additional sectorsif needed. Datawill bewritten into thefile starting
at the current file position regardless of existing data. Overwriting at specific pointsin the file
can be accomplished by calling the fat Seek () function beforecalling fat xWrite ().

PARAMETERS
file Handle for the open file being written.
xbuf xmem address of the buffer to be written.
len Length of datato write.

RETURN VALUE

Number of bytes written: success. (may be lessthan 1en, or zero if non-blocking mode)
-EI0: devicel/O error.

-EINVAL: file, xbuf, or len containinvalid values.

-ENOENT: the file/directory does not exist.

-ENOSPC: there are no more sectors to allocate on the device.

-EFAULT: thereisaproblem in the file (broken cluster chain, etc.).

-EPERM: thefileislocked or write-protected.

-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: fileisin inappropriate state (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat Write, fat Seek

124 rabbit.com Dynamic C Functions

http://www.rabbit.com

fclose

void fclose(File* f);
DESCRIPTION
Closes afile.

PARAMETERS

£ The pointer to the file to close.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 125

http://www.rabbit.com

fcreate (FS1l)

int fcreate(File* f, FileNumber fnum);

DESCRIPTION
Creates afile. Before calling this function, avariable of type Fi1le must be defined in the ap-
plication program.

File file;
fcreate (&file, 1);

PARAMETERS
£ The pointer to the created file.
fnum Thisis a user-defined number in the range of 1 t0127 inclusive. Each file

in the flash file system is assigned a unique number in this range.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

126 rabbit.com Dynamic C Functions

http://www.rabbit.com

fcreate (FS2)

int fcreate(File* f, FileNumber name) ;

DESCRIPTION

Createanew filewith the given “file name” which is composed of two parts. thelow byteisthe
actual file number (1 to 255 inclusive), and the high byte contains an extent number (1 to
_fs.num_1x) onwhich to place the file metadata. The extent specified by fs_set 1x()
is always used to determine the actual data extent. If the high byte contains 0, then the default
metadata extent specified by £s_set 1x () isused. Thefile descriptor isfilledinif success-
ful. Thefile will be opened for writing, so afurther call to fopen_ wr () isnot necessary.

The number of fileswhich may be created islimited by thelower of FS_MAX FILES and 255.
Thislimit appliesto the entire filesystem (all logical extents). Once afileis created, its dataand
metadata extent numbers are fixed for thelife of thefile, i.e., until thefileis deleted.

When created, no space is alocated in the file system until the first write occurs for thefile.
Thus, if the system power is cycled after creation but beforethefirst byteiswritten, thefilewill
be effectively deleted. Thefirst writeto afile causes one sector to be allocated for the metadata.

Before calling this function, avariable of type File must be defined in the application pro-
gram. (The sizeof () function will return the number of bytes used for the File datastruc-
ture.)

File file;
fcreate (&file, 1);

PARAMETERS
£ Pointer to the file descriptor to fill in.
name File number including optional metadata extent number.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - Zero file number requested, or invalid extent number.

EEXIST - File with given number aready exists.

ENFILE - No spaceisavailablein the existing filetable. If thiserror occurs, increase the def-
initionof FS_MAX FILES, a#define constant that should be declared before #use
"fs2.1lib".

LIBRARY
fs2.LIB

SEE ALSO
fcreate unused (FS2), fs set 1x (FS2), fdelete (FS2)

Dynamic C Functions rabbit.com 127

http://www.rabbit.com

fcreate unused (FSl)

FileNumber fcreate unused(File * £);

DESCRIPTION
Searchesfor the first unused file number in the range 1 through 127, and creates afile with that
number.

PARAMETERS
£ The pointer to the created file.

RETURN VALUE
The FileNumber (1-127) of the new fileif success.

LIBRARY
FILESYSTEM.LIB

SEE ALSO
fcreate (FS1)

128 rabbit.com Dynamic C Functions

http://www.rabbit.com

fcreate unused (FS2)

FileNumber fcreate unused(File * f);

DESCRIPTION

Create anew fileand return the “file name” which isanumber between 1 and 255. The new file
will be created on the current default extent(s) asspecified by £s_set 1x (). Other behavior
isthesameas fcreate ().

PARAMETERS

£ Pointer to file descriptor to fill in.

RETURN VALUE

>0: Success, the FileNumber (1-255) of the new file.
0: Failure.

ERRNO VALUE
ENFILE - No unused file number available.

LIBRARY
fs2.LIB

SEE ALSO
fcreate (FS2), fs set 1x (FS2), fdelete (FS2)

Dynamic C Functions rabbit.com

129

http://www.rabbit.com

fdelete (FS1)

int fdelete(FileNumber fnum);

DESCRIPTION
Deletes afile.

PARAMETERS

fnum A number inthe range 1 to 127 inclusive that identifiesthefile in the flash
file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

130 rabbit.com Dynamic C Functions

http://www.rabbit.com

fdelete (FS2)

int fdelete(FileNumber name) ;

DESCRIPTION

Delete thefile with the given number. The specified file must not be open. The file number (i.e.
name) iscomposed of two parts: the low byte containsthe actual file number, and the high byte
(if not zero) contains the metadata extent number of thefile.

PARAMETERS

name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

LIBRARY
fs2.LIB

ERRNO VALUES

ENOENT - File doesn't exist, or metadata extent number doesn’t match an existing file.
EBUSY - Fileis open.
EIO - I/O error when releasing blocks occupied by thisfile.

SEE ALSO
fcreate (FS2)

Dynamic C Functions rabbit.com

131

http://www.rabbit.com

fflush (FS2)

int fflush(File * f);

DESCRIPTION

Flush any buffers, associated with the given file, retained in RAM to the underlying hardware
device. This ensures that the file is compl etely written to the filesystem. The file system does
not currently perform any buffering, however future revisions of this library may introduce
buffering to improve performance.

PARAMETERS

£ Pointer to open file descriptor.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EBADFD - fileinvalid or not open.
EIO-I1/Oeror.

LIBRARY
fs2.1.IB

SEE ALSO
fs _sync (FS2)

132 rabbit.com Dynamic C Functions

http://www.rabbit.com

ffteplx

void fftcplx(int * x, int N, int * blockexp);

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x and re-
turns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An invalid
N causes a RANGE exception. The N-point complex sequencein array x isreplaced with its
N-point complex spectrum. The value of blockexp isincreased by 1 each time array x has
to be scaled, to avoid arithmetic overflow.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftecplxinv, fftreal, fftrealinv, hanncplx, hannreal,
powerspectrum

Dynamic C Functions rabbit.com

133

http://www.rabbit.com

fftcplxinv

void fftcplxinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the array x
and returns the complex result in x. N must be apower of 2 and lie between 4 and 1024. An
invalid N causes a RANGE exception. The value of blockexp isincreased by 1 each time
array x hasto be scaled, to avoid arithmetic overflow. The value of blockexp isalso de-
creased by log,N to include the 1/N factor in the definition of the inverse DFT

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftreal, fftrealinv, hanncplx, hannreal, powerspectrum

134 rabbit.com Dynamic C Functions

http://www.rabbit.com

fftreal

void fftreal(int * x, int N, int * blockexp);

DESCRIPTION
Computes the N-point, positive-frequency complex spectrum of the 2N-point real sequence in
array x. The 2N-point real sequence in array x is replaced with its N-point positive-frequency
complex spectrum. Thevaue of blockexp isincreased by 1 each time array x hasto be
scaled, to avoid arithmetic overflow.

The imaginary part of the X[0] term (stored in x[1]) is set to the real part of the fmax term.

The 2N-point real sequence is stored in natural order. The zeroth element of the sequenceis
storedinx [0], thefirst elementin x [1], and the kth element in X[K].

N must be apower of 2 and lie between 4 and 1024. Aninvalid N causes a RANGE exception.

PARAMETERS
x Pointer to 2N-point sequence of real fractions.
N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftrealinv, hanncplx, hannreal,
powerspectrum

Dynamic C Functions rabbit.com

135

http://www.rabbit.com

fftrealinv

void fftrealinv(int * x, int N, int * blockexp);

DESCRIPTION

Computesthe 2N-point real sequence corresponding to the N-point, positive-frequency complex
spectrum in array X. The N-point, positive-frequency spectrum contained in array x is replaced
with its corresponding 2N-point real sequence. Thevalueof blockexp isincreased by 1 each
time array x hasto be scaled, to avoid arithmetic overflow. The value of blockexp isalso
decreased by log,N to include the 1/N factor in the definition of the inverse DFT.

The function expectsto find the rea part of the fmax term in the imaginary part of the zero-fre-
guency X [0] term (stored x[11).

The 2N-point real sequence is stored in natural order. The zeroth element of the sequenceis
storedinx [0], thefirst lementinx [1], and the kth element in x [k] .

N must be a power of 2 and between 4 and 1024. Aninvalid N causes a RANGE exception.
PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcecplxinv, fftreal, hanncplx, hannreal, powerspectrum

136 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash erasechip

void flash erasechip(FlashDescriptor * £d);

DESCRIPTION
Erases an entire flash memory chip.

Note: £d must have already been initialized with £1ash init before calling thisfunc-
tion. See flash init description for further restrictions.

PARAMETERS

£d Pointer to flash descriptor of the chip to erase.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasesector, flash gettype, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

Dynamic C Functions rabbit.com

137

http://www.rabbit.com

flash erasesector

int flash erasesector(FlashDescriptor * £d, word which);

DESCRIPTION
Erases a sector of aflash memory chip.

Note: £d must have already been initialized with £1ash init before calling thisfunc-
tion. See flash init description for further restrictions.

PARAMETERS
£d Pointer to flash descriptor of the chip to erase a sector of.
which The sector to erase.

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash gettype, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

138 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash gettype

int flash gettype(FlashDescriptor * £d);

DESCRIPTION
Returns the 16-bit flash memory type of the flash memory.

Note: £d must have already been initialized with £1ash init before calling thisfunc-
tion. See flash init description for further restrictions.

PARAMETERS

£d The FlashDescriptor of the memory to query.

RETURN VALUE
The integer representing the type of the flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

Dynamic C Functions rabbit.com

139

http://www.rabbit.com

flash init

int flash init(FlashDescriptor * fd, int mb3cr);

DESCRIPTION

Initializes an internal data structure of type FlashDescriptor with information about the
flash memory chip. The Memory Interface Unit bank register (MB3CR) will be assigned the
value of mb3 cr whenever afunction accesses the flash memory referenced by £d. Seethe Rab-
bit 2000 Users Manual for the correct chip select and wait state settings.

Note: Improper use of this function can cause your program to be overwritten or operate
incorrectly. This and the other flash memory access functions should not be used on the
same flash memory that your program resides on, nor should they be used on the same
region of asecond flash memory where afile system resides.

UseWriteFlash () towriteto the primary flash memory.

PARAMETERS
£d Thisis apointer to an internal data structure that holds information about
aflash memory chip.
mb3cr Thisisthevaueto set MB3CR to whenever the flash memory is accessed.

Oxc2 (i.e., CS2, /OEOQ, /WEO, 0WS) isatypical setting for the second flash
memory on the TCP/IP Dev Kit, the Intellicom, the Advanced Ethernet
Core, and the RabbitLink.

RETURN VALUE

0: Success.
1: Invalid flash memory type.
- 1: Attempt made to initialize primary flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash read,
flash readsector, flash sector2xwindow, flash writesector

140 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash read

int flash read(FlashDescriptor * fd, word sector, word offset,
unsigned long buffer, word length);

DESCRIPTION
Reads data from the flash memory and storesit inbuffer.

Note: £d must have already beeninitialized with f1ash _init before calling this func-
tion. Seethe f1ash init description for further restrictions.

PARAMETERS

£d The FlashDescriptor of the flash memory to read from.

sector The sector of the flash memory to read from.

offset The displacement, in bytes, from the beginning of the sector to start read-
ing at.

buffer The physical address of the destination buffer. TIP: A logical address can
be changed to a physical with the function paddr.

length The number of bytesto read.

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash readsector, flash sector2xwindow, flash writesector,
paddr

Dynamic C Functions rabbit.com 141

http://www.rabbit.com

flash readsector

int flash readsector(FlashDescriptor * fd, word sector, unsigned
long buffer);

DESCRIPTION
Reads the contents of an entire sector of flash memory into a buffer.

Note: £d must have already beeninitialized with f1ash _init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory to read from.
sector The source sector to read.
buffer The physical address of the destination buffer. TIP: A logical address can

be changed to a physical with the function paddr ().

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash sector2xwindow, flash writesector

142 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash sector2xwindow

void * flash sector2xwindow(FlashDescriptor * £d, word sector);

DESCRIPTION

Thisfunction setsthe MB3CR and X PC value so the requested sector falls within the XPC win-
dow. The MB3CR isthe Memory Interface Unit bank register. XPC is one of four Memory
Management Unit registers. See flash init description for restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory.
sector The sector to set the X PC window to.

RETURN VALUE
The logical offset of the sector.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash writesector

Dynamic C Functions rabbit.com

143

http://www.rabbit.com

flash writesector

int flash writesector(FlashDescriptor * £fd, word sector, unsigned
long buffer);

DESCRIPTION
Writes the contents of buf fer to sector on the flash memory referenced by £4.

Note: £d must have already been initialized with f1ash _init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory to write to.
sector The destination sector.
buffer The physical address of the source. TIP: A logical address can be changed

to aphysical address with the function paddr ().

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash sector2xwindow

144 rabbit.com Dynamic C Functions

http://www.rabbit.com

floor

float floor(float x);

DESCRIPTION
Computes the largest integer less than or equal to the given number.

PARAMETERS

x Va ue to round down.

RETURN VALUE
Rounded down value.

LIBRARY
MATH.LIB

SEE ALSO

ceil, fmod

fmod

float fmod(float x, float y):;

DESCRIPTION
Calculates modulo math.

PARAMETERS
x Dividend
y Divisor

RETURN VALUE

Returns the remainder of x/y. The remaining part of x after all multiples of v have been re-
moved. For example, if x is22.7 and y is10.3, theintegral division result is2. Then the remain-
deris 22.7-2x103=2.1.

LIBRARY
MATH.LIB

SEE ALSO

ceil, floor

Dynamic C Functions rabbit.com 145

http://www.rabbit.com

fopen rd (FSl)

int fopen rd(File * £, FileNumber fnum);

DESCRIPTION
Opens afilefor reading.

PARAMETERS
£ A pointer to the file to read.
fnum A number inthe range 1 to 127 inclusive that identifiesthefile in the flash

file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

146 rabbit.com Dynamic C Functions

http://www.rabbit.com

fopen rd (FS2)

int fopen rd(File * £, FileNumber name);

DESCRIPTION
Open filefor reading only. See fopen wr () for amore detailed description.

PARAMETERS
£ Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.1ib

SEE ALSO
fclose, fopen wr (FS2)

Dynamic C Functions rabbit.com 147

http://www.rabbit.com

fopen wr (FS1)

int fopen wr(File * £, FileNumber fnum);

DESCRIPTION
Opens afilefor writing.

PARAMETERS
£ A pointer to the fileto write.
fnum A number inthe range 1 to 127 inclusive that identifiesthefile in the flash

file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

148 rabbit.com Dynamic C Functions

http://www.rabbit.com

fopen wr (FS2)

int fopen wr(File * £, FileNumber name);

DESCRIPTION

Open file for read or write. The given file number is composed of two parts: the low byte con-
tains the file number (1 to 255 inclusive) and the high byte, if not zero, contains the metadata
extent number. If the extent number is zero, it defaultsto the correct metadata extent - thisisfor
the purpose of validating an expected extent number. Most applications should just passthefile
number with zero high byte.

A filemay be opened multipletimes, with adifferent file descriptor pointer for each call, which
allowsthe file to be read or written at more than one position at atime. A reference count for
the actual file is maintained, so that the file can only be deleted when all file descriptors refer-
ring to thisfile are closed.

fopen wr () or fopen_ rd () must be called before any other function from thislibrary is
called that requiresaFile pointer. The "current position" issetto zeroi.e. the start of thefile.

When afileiscreated, it is automatically opened for writing thus a subsequent call to
fopen wr () isredundant.

PARAMETERS
£ Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE
0: Success.
10: Failure.
ERRNO VALUES
ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.1ib

SEE ALSO
fclose, fopen rd (FS2)

Dynamic C Functions rabbit.com 149

http://www.rabbit.com

forceSoftReset

void forceSoftReset(void);
DESCRIPTION
Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY
SYS.LIB

fread (FS1)

int fread(File * £, char * buf, int len);

DESCRIPTION

Reads 1 en bytesfrom afile pointed to by £, starting at the current offset into the file, into buff-
er. Dataisread into buffer pointed to by buf.

PARAMETERS
£ A pointer to the fileto read from.
buf A pointer to the destination buffer.
len Number of bytes to copy.

RETURN VALUE
Number of bytes read.

LIBRARY
FILESYSTEM.LIB

150 rabbit.com Dynamic C Functions

http://www.rabbit.com

fread (FS2)

int fread(File * £, void * buf, int len);

DESCRIPTION

Read data from the “ current position” of the given file. When the file is opened, the current po-
sition is 0, meaning the start of the file. Subsequent reads or writes advance the position by the
number of bytesread or written. £seek () can also be used to position the read point.

If the application permits, it is much more efficient to read multiple data bytes rather than read-
ing one-by-one.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen _rd (), fopen_wr () or
fcreate ()).
buf Data buffer located in root data memory or stack. This must be dimen-
sioned with at least len bytes.
len Length of datato read (0 to 32767 inclusive).

RETURN VALUE
len: Success.

<len: Partial success. Returns amount successfully read. errno gives further details (prob-
ably 0 meaning that end-of-file was encountered).

0: Failure, or 1en was zero.

LIBRARY
FS2.LIB

ERRNO VALUES

EBADFD - File descriptor not opened.

EINVAL - len lessthan zero.

0 - Success, but 1en was zero or EOF was reached prior to reading 1en bytes.
EIO - 1/O error.

SEE ALSO
fseek (FS2), fwrite (FS2)

Dynamic C Functions rabbit.com

151

http://www.rabbit.com

frexp

float frexp(float x, int * n);

DESCRIPTION
Splits x into a fraction and exponent, f * (2").

PARAMETERS
x Number to split
n Aninteger

RETURN VALUE

The function returns the exponent in the integer *n and the fraction between 0.5, inclusive and

1.0.
LIBRARY
MATH.LIB
SEE ALSO
exp, ldexp
152 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fs format (FS1l)

int fs format(long reserveblocks, int num blocks, unsigned long
wearlevel);

DESCRIPTION
Initializes the internal data structures and file system. All blocksin the file system are erased.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_ FLASH is defined
this value should be 0 or amultiple of the block size. When FS_RAM
is defined this parameter isignored.

num_blocks The number of blocksto allocate for the file system. With a default
block size of 4096 bytesand a 256K flash memory, thisvalue might be
64.

wearlevel Thisvalue should be 1 on anew flash memory, and some higher value

on an unformatted used flash memory. If you are reformatting a flash
memory you can set wearlevel to O to keep the old wear leveling.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

EXAMPLE
This program can befound in samples/filesystem/format.c.

#define FS_FLASH
#use "filesystem.lib"
#define RESERVE 0
#define BLOCKS 64
#define WEAR 1

main () {
if (fEs_format (RESERVE, BLOCKS, WEAR)) {
printf ("error formatting flash\n") ;
} else {
printf ("flash successfully formatted\n") ;

Dynamic C Functions rabbit.com 153

http://www.rabbit.com

fs format (FS2)

int £s_format (long reserveblocks, int num blocks, unsigned wearlevel
);

DESCRIPTION

Format all extents of the file system. This must be called after calling £s_init (). Only ex-
tents that are not defined as reserved are formatted. All files are deleted.

PARAMETERS
reserveblocks Must be zero. Retained for backward compatibility.
num_blocks Ignored (backward compatibility).

wearlevel Initial wearlevel value. This should be 1 if you have a new flash, and
somelarger number if theflash isused. If you arereformatting aflash,
you can use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - thereserveblocks parameter was non-zero.

EBUSY - one or more files were open.

ETIO - I/O error during format. If thisoccurs, retry the format operation If it fails again, there
is probably a hardware error.

SEE ALSO
fs _init (FS2), 1lx format

154 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs init (FS1)

int f£s_init(long reserveblocks, int num blocks);

DESCRIPTION

Initialize the interna data structures for an existing file system. Blocks that are used by afile
are preserved and checked for dataintegrity.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH isdefined
this value should be 0 or amultiple of the block size. When FS_RAM isde-
fined this parameter isignored.

num_blocks The number of blocks that the file system contains. By default the block
size is 4096 bytes.

RETURN VALUE

0:Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

155

http://www.rabbit.com

fs init (FS2)

int f£s_init(long reserveblocks, int num blocks);

DESCRIPTION

Initialize the filesystem. The static structure £ s contains information that defines the number
and parameters associated with each extent or “partition.” This function must be called before
any of the other functionsin thislibrary, except for £s_setup (), fs get * 1x() and
fs get 1x size().

Pre-main initialization will create up to 3 devices:

» The second flash device (if available on the board)

* Battery-backed SRAM (if FS2 RAM RESERVE defined)

* Thefirst (program) flash (if both XMEM RESERVE_SIZE and
FS2 USE_ PROGRAM FLASH defined)

The LX numbers of the default devices can be obtained usingthe fs_get flash 1x(),
fs get _ram 1x() andfs_get other 1x () cdls.If noneof these devicescan be set
up successfully, s init () will return ENOSPC when called.

This function performs complete consistency checks and, if necessary, fixups for each LX. It
may take up to several secondsto run. It should only be called once at application initialization
time.

Note: When using uC/OS-II, £s_init () must becalled before0SInit ().

PARAMETERS
reserveblocks Must be zero. Retained for backward compatibility.

num_blocks Ignored (backward compatibility).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - the reserveblocks parameter was non-zero.

EIO -1/Oeror. Thisindicates a hardware problem.

ENOMEM - Insufficient memory for required buffers.

ENOSPC - No valid extents obtained e.g. there is no recognized flash or RAM memory device
available.

LIBRARY
fs2.1ib

SEE ALSO
fs setup (FS2), fs get flash 1x (FS2)

156 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs reserve blocks (FSl)

int fs_reserve_blocks(int blocks);

DESCRIPTION

Sets up anumber of blocksthat are guaranteed to be available for privileged files. A privileged
file has an identifying number in the range 128 through 143. Thisfunction isnot needed in most
cases. If itisused, it should be called immediately after s _init or fs_format.

PARAMETERS

blocks Number of blocks to reserve.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

fsck (FS1)
int fsck(int flash);
DESCRIPTION
Check the filesystem for errors
PARAMETERS
flash A bitmask indicating which checksto NOT perform. Thefollowing checks

are available:

FSCK_HEADERS - Block headers.
FSCK_CHECKSUMS - Data checksums.
FSCK_VERSION - Block versions, from afailed write.

RETURN VALUE

0: Success.
10: Failure, thisis abitmask indicating which checksfailed.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 157

http://www.rabbit.com

fseek (FS1)

int fseek(File * £, long to, char whence);

DESCRIPTION

Places the read pointer at adesired location in thefile.

PARAMETERS
£ A pointer to the file to seek into.
to The number of bytesto move the read pointer. This can be a positive or
negative number.
whence The location in the file to offset from. Thisis one of the following con-
stants.
SEEK_SET - Seek from the beginning of thefile.
SEEK _CUR - Seek from the current read position in thefile.
SEEK_END - Seek from the end of thefile.
EXAMPLE

To seek to 10 bytes from the end of thefile £, use

fseek (£, -10, SEEK END) ;

To rewind the file £ by 5 bytes, use
fseek (f, -5, SEEK CUR) ;

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

158 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fseek (FS2)

int fseek(File * £, long where, char whence);

DESCRIPTION

Set the current read/write position of the file. Bytesin afile are sequentially numbered starting
at zero. If the current position is zero, then the first byte of thefile will be read or written. If the
position equals the file length, then no data can be read, but any write will append data to the

file.

fseek () dlowsthe position to be set relative to the start or end of thefile, or relativeto its

current position.

In the special case of SEEK_RAW, an unspecified number of bytes beyond the known end-of-
file may be readable. The actual amount depends on the amount of spaceleft in the last internal
block of the file. This mode only applies to reading, and is provided for the purpose of datare-
covery in the case that the application knows more about the file structure than the filesystem.

PARAMETERS

f

where

whence

RETURN VALUE

0: Success.

Pointer to file descriptor (initialized by fopen rd (), fopen wr () or
fcreate ()).

New position, or offset.

One of the following values:

SEEK_SET: 'where' (non-negative only) isrelative to start of file.
SEEK_CUR: 'where (positive or negative) is relative to the current posi-
tion.

SEEK_END: 'where' (non-positive only) is relative to the end of thefile.
SEEK_RAW: Similar to SEEK_END, except the file descriptor issetin a
specia mode which allows reading beyond the end of the file.

1 0: The computed position was outside of the current file contents, and has been adjusted to the
nearest valid position.

ERRNO VALUES
None.

LIBRARY

FS2.LIB

SEE ALSO
ftell

fread (FS2), fwrite (FS2)

Dynamic C Functions

rabbit.com 159

http://www.rabbit.com

fs get flash 1x (FS2)

FSLXnum fs get flash 1x(void);

DESCRIPTION

Returns the logical extent number of the preferred flash device. Thisis the second flash if one
is available on your hardware, otherwise it isthe reserved areain your program flash. In order
for the program flash to be available for use by the file system, you must define two constants:
thefirst constant isXMEM_RESERVE_SIZE near thetop of BIOS\RABBITBIOS.C. This
valueis set to the amount of program flash to reserve (in bytes). Thisisrequired by the BIOS.
The second constant is set in your code before #use "fs2.1lib".

FS2 USE_ PROGRAM FLASH must be defined to the number of KB (1024 bytes) that will ac-
tually be used by thefile system. If thisis set to alarger value than the actual amount of reserved
space, then only the actual amount will be used.

The sample program SAMPLES\FILESYSTEM\FS2INFO . C demonstrates use of thisfunc-
tion.

Thisfunction may be called beforecalling £s_init ().

RETURN VALUE

0: Thereisno flash file system available.
10: Logical extent number of the preferred flash.

LIBRARY
FS2.1ib

SEE ALSO
fs get _ram 1x (FS2), fs_get other 1lx (FS2)

160 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs get 1x (FS2)

FSLXnum fs get 1x(int meta);

DESCRIPTION

Return the current extent (LX) number for file creation. Each file has two parts: the main bulk
of data, and the metadata which isarédatively small, fixed, amount of data used to journal
changes to the file. Both data and metadata can reside on the same extent, or they may be sep-
arated.

PARAMETERS

meta 1: return logical extent number for metadata.
0: return logical extent number for data.

RETURN VALUE
Logical extent number.

LIBRARY
FS2.1ib

SEE ALSO
fcreate (FS2), fs set 1x (FS2)

Dynamic C Functions rabbit.com

161

http://www.rabbit.com

fs get 1x size (FS2)

long fs get 1lx size(FSLXnum 1lxn, int all, word ls shift);

DESCRIPTION

Returnsthe size of the specified logical extent, in bytes. Thisinformation isuseful when initial-
ly partitioning an L X, or when estimating the capacity of an LX for user data. a11 isaflag
which indicates whether to return the total data capacity (asif all current files were deleted) or
whether to return just the available data capacity. The return value accounts for the packing ef-
ficiency which will belessthan 100% because of the bookkeeping overhead. It does not account
for the free space required when any updates are performed; however this free space may be
shared by all fileson the LX. It aso does not account for the space required for file metadata.
You can account for this by adding one logical sector for each fileto be created onthisLX. You
can also specify that the metadata be stored on adifferent LX by useof £s_set 1x().

Thisfunction may be called either before or after £s_init (). If called before, then the

1s_ shift parameter must be set tothevaluetobeusedin £s_setup (), sincetheLSsize
isnot known at thispoint. 1s_shift canalso be passed as zero, in which case the default
sizewill beassumed. a1l must benon-zeroif called beforefs _init (), sincethe number of
filesin useis not yet known.

PARAMETERS
lxn Logical extent number to query.
all Boolean: O for current free capacity only, 1 for total.
Must use 1if calling before fs_init ().
ls shift Logical sector shift i.e. log base 2 of LS size (6 to 13); may be zero to use

default.

RETURN VALUE

0: The specified LX does not exist.
1 0: Capaecity of the LX in bytes.

LIBRARY
FS2.1ib

162 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs get other 1lx (FS2)

FSLXnum fs get other 1x(void);

DESCRIPTION
Returns the logical extent number of the non-preferred flash device. If it exists, thisis usually
the program flash. Seethedescriptionunder £s_get flash 1x () for detailsabout setting
up the program flash for use by the filesystem.

The sample program Samples\FILESYSTEM\FS2INFO. C demonstrates use of thisfunc-
tion.

This function may be called beforecalling £s_init ().

RETURN VALUE

0: Thereis no other flash filesystem available.
10: Logical extent number of the non-preferred flash.

LIBRARY
FS2.LIB

SEE ALSO
fs get ram 1x (FS2), fs _get flash 1lx (FS2)

Dynamic C Functions rabbit.com

163

http://www.rabbit.com

fs get ram 1lx (FS2)

FSLXnum fs get ram 1lx(void);

DESCRIPTION
Return the logical extent number of the RAM file system device. Thisisonly available if you
have defined FS2 RAM RESERVE to a non-zero number of bytesin the BIOS.

A RAM filesystem is only really useful if you have battery-backed SRAM on the board. You
can till useaRAM file system on volatile RAM, but of coursefileswill not persist over power
cycles and you should explicitly format the RAM filesystem at power-up.

The sample program Samples\FILESYSTEM\FS2INFO.C demonstrates use of thisfunc-
tion.

Thisfunction may be called beforecaling £s_init ().

RETURN VALUE

0: Thereisno RAM filesystem available.
10: Logica extent number of the RAM device.

LIBRARY
FS2.LIB

SEE ALSO
fs get flash 1x (FS2), fs get other 1x (FS2)

164 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs set 1x (FS2)

int f£s_set 1lx(FSLXnum meta, FSLXnum data);

DESCRIPTION

Setsthe default logical extent (LX) numbersfor file creation. Each file has two parts: the main
bulk of data, and the metadatawhich isarelatively small, fixed amount of data used to journal
changes to the file. Both data and metadata can reside on the same extent, or they may be sep-
arated. The metadata, no matter where it islocated, consumes one sector.

Thefile creation functions allow the metadata extent to be explicitly specified (in the high byte
of the file number), however itisusually easiertocall £s_set 1x () to set appropriate de-
faults. Calling £s_set 1x () istheonly way to specify the data extent.

If £s_set 1x () isnever called, both dataand metadatawill default to the first non-reserved
extent number.

PARAMETERS
meta Extent number for metadata.
data Extent number for data.

RETURN VALUE

0: Success.
10: Error, e.g. non-existent LX number.

ERRNO VALUES
ENODEYV - no such extent number, or extent is reserved.

LIBRARY
FS2.LIB

SEE ALSO
fcreate (FS2)

Dynamic C Functions rabbit.com

165

http://www.rabbit.com

fs setup (FS2)

FSLXnum fs setup(FSLXnum lxn, word ls shift, int reserve_ it, void *
rfu, int partition it, word part, word part ls shift, int
part reserve, void * part rfu);

DESCRIPTION

To modify or add to the default extents, this function must be called before calling
fs_init ().If caled after £s_init (), thefilesystem will be corrupted.

fs_setup () runsinoneof two basic modes, determined by thepartition it parame-
ter. If partition it isnon-zero, then the specified extent (1xn, which must exist), issplit
into two extents according to the given proportions. If partition it iszero, then the spec-
ified extent must not exist; it is created. Thisuseis beyond the scope of this note, sinceit in-
volvesfilesystem internals. The paritioning usage is described here.

partition it maybeFS MODIFY EXTENT inwhich casethe baseextent, 1xn,ismod-
ified to usethe specified 1s_shift and reserve it parameters (the other parametersare
ignored).

partition it maybesetto F'S PARTITION FRACTION (other valuesreserved). This
causes extent number 1xn to be split. The first half is still referred to as extent 1xn, and the
other half is assigned a new extent number, which is returned.

The base extent number may itself have been previously partitioned, or it should be 1 for the
2nd flash device, or possibly 2 for the NVRAM device.

PARAMETERS
lxn Base extent number to partition or modify.
ls shift New logical sector sizeto assign to base partition, or zero to not alter it.
Thisisexpressed asthelog base 2 of the desired size, and must be anum-
ber between 6 and 13 inclusive.
reserve it TRUE if base partition isto be marked reserved.
rfu A pointer reserved for future use. Pass as null.

partition it Mustbesetto FS PARTITION FRACTION oOf
FS MODIFY EXTENT. Thefollowing parametersareignored if this
parameter isnot FS_ PARTITION FRACTION.

166 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs setup (FS2) (cont’d)

Thefraction of the existing base extent to assign to the new extent. This
number is expressed as a fixed-point binary number with the binary
point to the left of the M SB e.g. 0x3000 assigns 3/16 of the base extent
to the new partition, updating the base extent to 13/16 of itsorigina
size. The nearest whole number of physical sectorsisused for each ex-

tent.

part

part 1ls shift Logical sector Sizeto assign to the new extent, or zero to use the same
LS size as the base extent. Expressed in same units as parameter 2.

part reserve TRUE if the new extent is to be reserved.
part rfu A pointer reserved for future use. Pass as null.

RETURN VALUE

0: Failure, extent could not be partitioned.
10: Success, number of the new extent, or same as 1xd for existing extent maodification.

ERRNO VALUES
ENOSPC - one or other half would contain an unusably small number of logical sectors, or the
extent tableisfull. Inthe latter case, #define FS MAX LX toalarger value.

EINVAL - partition_ it settoaninvalid value, or other parameter invalid.
ENODEV - specified base extent number not defined.

LIBRARY
FS2.LIB

SEE ALSO
fs _init (FS2)

Dynamic C Functions rabbit.com

167

http://www.rabbit.com

fs sync (FS2)

int fs sync(void);

DESCRIPTION

Flush any buffersretained in RAM to the underlying hardware device. Thefile system does not
currently perform any buffering, however future revisions of this library may introduce buffer-
ing to improve performance. Thisfunctionissimilar to ££1ush (), except that the entire file
system is synchronized instead of the data for just onefile. Use £s_sync () in preference to
fflush () if thereisonly one extent in the filesystem.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
EIO -1/O error.

LIBRARY
FS2.LIB

SEE ALSO
fflush (FS2)

168 rabbit.com Dynamic C Functions

http://www.rabbit.com

ftell (Fsl1)

long ftell(File * £);

DESCRIPTION

Gets the offset from the beginning of afile that the read pointer is currently at.

TIP: ftell () canbeused with fseek () tofind the length of afile.

fseek(f, 0, SEEK END); // seek to the end of thefile
FileLength = ftell (f); // find the length of thefile
PARAMETERS
£ A pointer to the fileto query.

RETURN VALUE

The offset in bytes of the read pointer from the beginning of the file: Success.
-1: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

169

http://www.rabbit.com

ftell (Fs2)

long ftell(File * £);

DESCRIPTION

Return the current read/write position of thefile. Bytesin afile are sequentially numbered start-
ing at zero. If the current position is zero, then the first byte of the file will be read or written.
If the position equal s the file length, then no data can be read, but any write will append datato
thefile.

Notethat no checking isdoneto seeif thefile descriptor svalid. If the Fileis not actually open,
the return value will be random.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen _rd (), fopen_wr () or

fcreate()).

RETURN VALUE
Current read/write position (0 to length-of-file).

ERRNO VALUES
None

LIBRARY
fs2.1ib

SEE ALSO
fseek (FS2)

170 rabbit.com Dynamic C Functions

http://www.rabbit.com

fshift

int fshift(File * £, int len, wvoid * buf);

DESCRIPTION

Delete datafrom the start of afile opened for writing. Optionally, the datathat was removed can
be read into a buffer. The “current position” of the file descriptor is adjusted to take account of
the changed file offsets. If the current position is pointing into the data that is removed, then it
is set to zero, i.e., the start of dataimmediately after the deleted section.

The specified file must not be opened with other file descriptors, otherwise an EBUSY error is
returned. Theexceptiontothisisif FS2 SHIFT DOESNT UPDATE_FPOS isdefined before
#use fs2.1lib. If defined, multiple file descriptors can be opened, but their current position
will not be updated if fshift () isused. Inthis case, the application should explicitly use
fseek () onadl file descriptors open on thisfile (including the one used to perform the
fshift ()).If thisisnot done, then their current position is effectively advanced by the num-
ber of characters shifted out by the fshift ().

The purpose of thisfunctionisto makeit easy to implement fileswhich worm their way through
the filesystem: adding at the head and removing at the tail, such that the total file size remains
approximately constant.

Surprisingly, it ispossiblefor an out-of-space error to occur, since the addition of thejournaling
(meta-data) entry for the shift operation may cause an error before deleted blocks (if any) are
made available.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen wr () or fcreate ()).
len Length of datato remove (0 to 32767 inclusive).
*buf Data buffer located in root data memory or stack. This must be dimen-

sioned with at least 1en bytes. This parameter may also be null if the de-
leted datais not needed.

Dynamic C Functions rabbit.com 171

http://www.rabbit.com

fshift (cont’d)

RETURN VALUE
len: Success.
<len: Partia success - returns amount successfully deleted. errno gives further details (prob-

ably ENOSPC)
0: Error or 1en was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or isread-only.

EINVAL - len lessthan zero.

0 - Success, but 1 en was zero.

EIO - 1/Oeror.

ENOSPC - extent out of space.

EBUSY - file opened more than once. Thisisonly possible if

FS2 SHIFT DOESNT UPDATE FPOS isnot defined, which isthe default case.

LIBRARY
FS2.LIB

SEE ALSO
fread (FS2), fwrite (FS2)

172 rabbit.com Dynamic C Functions

http://www.rabbit.com

fwrite (FS1)

int fwrite(File * £, char * buf, int len);

DESCRIPTION

Appends 1en bytes from the source buffer to the end of thefile.

PARAMETERS
£ A pointer to the file to write to.
buf A pointer to the source buffer.
len The number of bytesto write.

RETURN VALUE

The number of bytes written: Success.
0: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

173

http://www.rabbit.com

fwrite (FS2)

int fwrite(File * £, wvoid * buf, int len);

DESCRIPTION

Write datato file opened for writing. The datais written starting at the current position. Thisis
zero (start of file) whenitis opened or created, but may be changed by fread (), fwrite (),
fshift () or fseek () functions. After writing the data, the current position is advanced to
the position just after the last byte written. Thus, sequential callsto fwrite () will add or ap-
pend data contiguoudly.

Unlike the previousfile system (FILESYSTEM. LIB), thislibrary allows filesto be overwrit-
ten not just appended. Internally, overwrite and append are different operations with differing
performance, depending on the underlying hardware. Generally, appending is more efficient es-
pecially with byte-writable flash memory. If the application allows, it is preferable to use ap-
pend/shift rather than overwrite. In order to ensure that datais appended, use fseek (£, 0,
SEEK_END) beforecaling fwrite ().

The same current-position pointer is used for both read and write. If interspersing read and
write, then £seek () should be used to ensure the correct position for each operation. Alterna-
tively, the same file can be opened twice, with one descriptor used for read and the other for
write. Thisprecludesuse of fshift (), sinceit does not tolerate shared files.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen wr () or fcreate ()).
buf Data buffer located in root data memory or stack.
len Length of data (0 to 32767 inclusive).

RETURN VALUE

len: Success.
<len: Partia success. Returns amount successfully written. errno gives details.
0: Failure, or Len was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or isread-only.
EINVAL - len lessthan zero.

0 - Success, but 1en was zero.

EIO - 1/Oerror.

ENOSPC - extent out of space.

LIBRARY
fs2.LIB

SEE ALSO
fread (FS2)

174 rabbit.com Dynamic C Functions

http://www.rabbit.com

ftoa

int ftoa(float £, char * buf);

DESCRIPTION
Converts afloat number to a character string.
The character string only displays the mantissa up to 9 digits, no decimal points, and a minus

signif £ is negative. The function returns the exponent (of 10) that should be used to compen-
sate for the string: ftoa (1.0, buf) yieldsbuf="100000000" and returns - 8.

PARAMETERS
£ Float number to convert.
buf Converted string. The string is no longer than 10 characters long.

RETURN VALUE
The exponent of the number.

LIBRARY
STDIO.LIB

SEE ALSO
utoa, itoa

getchar

char getchar(wvoid);

DESCRIPTION

Busy waitsfor acharacter to be typed from the stdio window in Dynamic C. The user should make
sure only one process calls this function at atime.

RETURN VALUE
A character typed in the Stdio window in Dynamic C.

LIBRARY
STDIO.LIB

SEE ALSO
gets, putchar

Dynamic C Functions rabbit.com 175

http://www.rabbit.com

get cpu frequency

unsigned long get cpu frequency();

DESCRIPTION

Returns the clock speed of the CPU as calculated by the BIOS, adjusted for the clock doubler
if itis enabled. Dueto the limited precision of the clock speed calculation, the calculated and
actual clock speeds may differ dightly.

RETURN VALUE
The clock speed of the CPU in Hz.

LIBRARY
sys.lib

getcrc

int getcrc(char * dataarray, char count, int accum);

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (maximum
255) of datain buffer. Callsto getcrc can be “concatenated” using accum to compute the
CRC for alarge buffer.

PARAMETERS
dataarray Data buffer
count Number of bytes. Maximum is 255.
accum Base CRC for the data array.

RETURN VALUE
CRC vdue.

LIBRARY
MATH.LIB

176 rabbit.com Dynamic C Functions

http://www.rabbit.com

getdivider19200

char getdivider19200(void);

DESCRIPTION
This function returns avalue that is used in baud rate cal culations.
The correct valueis returned regardless of the compile mode. In separate |& D space mode, the
divider value is stored as a define byte in code space, so directly accessing the variable will re-
sult in an incorrect load (from constant data space). This function uses the 1dp instruction,

which circumvents the separate |& D default loading scheme so that the correct valueis re-
turned.

RETURN VALUE
The value used in baud rate calcul ation.

LIBRARY
SYS.LIB

gets

char * gets(char * s);

DESCRIPTION

Waitsfor astring terminated by <CR> at the stdio window. The string returned is null terminat-
ed without the return. The user should make sure only one process callsthis function at atime.

PARAMETERS

s Theinput string is put to the location pointed to by the argument s. The
caller isresponsibleto make sure thelocation pointed to by s isbig enough
for the string.

RETURN VALUE
Same pointer passed in, but string is changed to be null terminated.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

Dynamic C Functions rabbit.com 177

http://www.rabbit.com

_GetSysMacroIndex

int GetSysMacrolIndex(int n, char * buf, uint32 * value);

DESCRIPTION

Skipsto the nth macro entry and retrieves the macro name (as defined by the compiler), and the
value of the macro as defined in the system macro table. The system macro table contains board
specific configuration parameters that are defined by the compiler and can be retrieved at runt-
imethrough thisinterface. The flash driver must beinitialized and the System ID block must be
read before this function will return accurate results.

This function only applies to boards with Version 5 or later System 1D blocks.

PARAMETERS
n The index in the system macro table.
buf Character array to contain and return macro name (copied from system
macro table). MUST BE AT LEAST SYS MACRO_LENGTH bytes or
function will overflow buffer and can crash system!
value Pointer to macro value to return to caller.

RETURN VALUE

0: if successful
-1:invalid address or range (use to find end of table)
-2: 1D block or macro table invalid

LIBRARY
IDBLOCK.LIB

SEE ALSO
_GetSysMacroVaue

178 rabbit.com Dynamic C Functions

http://www.rabbit.com

_GetSysMacroValue

int GetSysMacroValue(char * name, long * value);

DESCRIPTION
Finds the system table macro named by the first parameter (as defined by the compiler) and re-
trievesthe value of the macro as defined in the system macro table. The system macro table con-
tains board specific configuration parameters that are define by the compiler and can be
retrieved at runtime through this interface. The flash driver must be initialized and the System
ID block must be read before this function will return accurate results.

See writeUserBlockArray for more details.
This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
name Name of System ID block macro (acts as lookup key).
value Pointer to macro value to return to caller.

RETURN VALUE

0: if successful
-1: Macro name not found
-2: Novalid ID block found (block version 3 or later)
- 3: First parameter is a bad macro name

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlockArray

Dynamic C Functions rabbit.com 179

http://www.rabbit.com

GetVectExtern2000

unsigned GetVectExtern2000(void);

DESCRIPTION

Readsthe address of external interrupt table entry. Thisfunctionreally just returnswhat is present
inthetable. Thereturn value is meaninglessif the address of the external interrupt has not been
written.

This function should be used for Rabbit 2000 processors that are marked Q2T in the 3rd line
of text across the face of the chip. It will work for other versions of the Rabbit 2000 but should
be deprecated in favor of GetVectExtern3000 () which alows the use of two external
interrupts. (Please see document TN301, “ Rabbit 2000 Microprocessor Interrupt Issue,” on the
Rabbit Semiconductor website for more information.)

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO

GetVectIntern, SetVectExtern2000, SetVectIntern,
GetVectExtern3000

180 rabbit.com Dynamic C Functions

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbit.com

GetVectExtern3000

unsigned GetVectExtern3000(int interruptNum) ;

DESCRIPTION

Reads the address of an external interrupt table entry. Thisfunction may be used with all Rabbit
3000 processors and all Rabbit 2000 processors with the exception of the ones marked 1Q2T in
the 3rd line of text across the face of the chip. For those, use the function
GetVectExtern2000 () instead.

GetVectExtern3000 () returnsthe value at address:
(external vector table base) + (interruptNum * 8) + 1

PARAMETER

interruptNum Interrupt number. Should be O or 1.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO

SetVectExtern3000, SetVectIntern, GetVectIntern,
GetVectExtern2000

Dynamic C Functions rabbit.com 181

http://www.rabbit.com

GetVectIntern

unsigned GetVectIntern(int vectNum) ;

DESCRIPTION
Reads the address of theinternal interrupt table entry and returns whatever valueis at the address:

(internal vector table base) + (vectNum*16) + 1
PARAMETER

vectNum Interrupt number; should be 0-15.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectExtern2000, SetVectIntern

gps_get position

int gps _get position(GPSPositon * newpos, char * sentence);

DESCRIPTION

Parses a sentence to extract position data. Thisfunction is able to parse any of the following
GPS sentence formats; GGA, GLL or RMC.

PARAMETERS
newpos A GPSPosition structureto fill.
sentence A string containing aline of GPS datain NMEA-0183 format.

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
gps.lib

182 rabbit.com Dynamic C Functions

http://www.rabbit.com

gps_get utc

int gps get utc(struct tm * newtime, char * sentence);

DESCRIPTION
Parses an RMC sentence to extract time data.

PARAMETERS
newtime tm structure to fill with new UTC time.
sentence A string containing aline of GPS datain NMEA-0183 format (RMC sen-

tence).

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
GPS.LIB

gps _ground distance

float gps ground distance(GPSPosition * a, GPSPosition * b);

DESCRIPTION
Calculates ground distance (in km) between two geographical points. (Uses spherical earth
model.)
PARAMETERS
a First paint.
b Second point.

RETURN VALUE
Distance in kilometers.

LIBRARY
GPS.LIB

Dynamic C Functions rabbit.com 183

http://www.rabbit.com

hanncplx

void hanncplx(int * x, int N, int * blockexp);

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered spec-
trum replaces the original spectrum.

The function produces the same results aswould be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

N must be a power of 2 and between 4 and 1024. Aninvalid N causes a RANGE exception.
PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

184 rabbit.com Dynamic C Functions

http://www.rabbit.com

hannreal

void hannreal(int * x, int N, int * blockexp):;

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann kernel.
The function produces the same results as woul d be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

Theimaginary part of the dc term (stored inx [11) isconsidered to be thereal part of the fmax
term. The dc and fmax spectral components take part in the convolution along with the other
spectral components. The real part of fmax component affects the real part of the X[N-1] com-
ponent (and vice versa), and should not arbitrarily be set to zero unless these components are

unimportant.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.
blockexp Pointer to integer block exponent.

RETURN VALUE
None. The filtered spectrum replaces the original spectrum.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftecplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

Dynamic C Functions rabbit.com 185

http://www.rabbit.com

HDLCabortX

void HDLCabortX(void); /* Where X is E or F */

DESCRIPTION

Immediately stops any transmission. An HDL C abort code will be sent if the driver wasin the
middle of sending a packet.

Thisfunction isintended for use with the Rabbit 3000 and Rabbit 4000.

LIBRARY
HDLC PACKET.LIB

HDLCcloseX

void HDLCcloseX(void); /* Where X is E or F */

DESCRIPTION

Disablesthe HDLC port (E or F). If it was used, the TAT1R resource (timer A1 cascade) isre-
leased. Thisfunction is non-reentrant.

Thisfunction isintended for use with the Rabbit 3000 and Rabbit 4000.

LIBRARY
HDLC PACKET.LIB

SEE ALSO
TAT1R SetValue

186 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCdropX

int HDLCdropX(void); /* Where X is E or F */

DESCRIPTION

Drops the next received packet, freeing up its buffer. This must be used if the packet has been
examined with HDL.CpeekX () andisno longer needed. A call toHDLCreveiceX () isthe
only other way to free up the buffer.

This function isintended for use with the Rabbit 3000 and Rabbit 4000.

RETURN VALUE

1: Packet dropped.
0: No received packets were available.

LIBRARY
HDLC PACKET.LIB

HDLCerrorX

int HDLCerrorX(unsigned long * bufptr, int * lenptr);
/* Where X is E or F */

DESCRIPTION

Thisfunction returns a set of possible error flags as an integer. A received packet with errorsis
automatically dropped.

Masks are used to check which errors have occurred. The masks are;

* HDLC NOBUFFER - driver ran out of buffers for received packets.

* HDLC OVERRUN - abyte was overwritten and lost before the ISR could retreive it.
* HDLC OVERFLOW - areceived packet wastoo long for the buffers.

* HDLC ABORTED - areceived packet was aborted by the sender during tranmission.
* HDLC BADCRC - apacket with an incorrect CRC was received.

This function isintended for use with the Rabbit 3000 and Rabbit 4000.

RETURN VALUE
Error flags (see above).

LIBRARY
HDLC PACKET.LIB

Dynamic C Functions rabbit.com 187

http://www.rabbit.com

HDLCextClockX

void HDLCextClockE(int ext clock) /* Where X is E or F */

DESCRIPTION

Configures HDL C to be either internally (default) or externally clocked. This should be called
after HDLCopenX ().

Thisfunction isintended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETER
ext clock 1 for externally clocked
0 for internally clocked
LIBRARY

HDLC PACKET.LIB

188 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCopenX

int HDLCopenX(long baud, char encoding, unsigned long buffers, int
buffer count, int buffer size); /* Where X is E or F */

DESCRIPTION

Opens serid port E or Fin HDLC mode. Sets up buffersto hold received packets. Thisfunction
isintended for use with the Rabbit 3000 and Rabbit 4000. Please see the chip manualsfor more
details on HDL C and the bit encoding modes to use.

PARAMETERS

baud The baud rate for the serial port. Due to imitations in the baud generator,
non-standard baud rates will be approximated within 5% of the value re-
guested.

encoding The bit encoding mode to use. Macro labels for the available options are:
* HDLC NRZ
* HDLC NRZI
* HDLC MANCHESTER
* HDLC BIPHASE SPACE
e HDLC BIPHASE MARK

buffers A pointer to the start of the extended memory block containing the receive
buffers. This block must be allocated beforehand by the user. The size of
the block should be:
(# of buffers) * ((size of buffer) + 4)

buffer count Thenumber of buffersin the block pointed to by buffer.

buffer size Thecapacity of each buffer in the block pointed to by buffer.

RETURN VALUE

1: Actual baud rate is within 5% of the requested baud rate,
0: Otherwise.

LIBRARY
HDLC PACKET.LIB

SEE ALSO
SetSerialTATxRValues, TAT1R SetValue

Dynamic C Functions rabbit.com 189

http://www.rabbit.com

HDLCpeekX

int HDLCpeekX(unsigned long * bufptr, int * lenptr);
/* Where X is E or F */

DESCRIPTION
Reportsthe location and size of the next available received packet if oneisavailable. Thisfunc-
tion can be used to efficiently inspect a received packet without actually copying it into aroot
memory buffer. Once inspected, the buffer can be received normally (see
HDLCreceiveX ()), or dropped (see HDLCdropX ()).

Thisfunction isintended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
bufptr Pointer to location in xmem of the received packet.
lenptr Pointer to the size of the received packet.

RETURN VALUE

1: Thepointersbufptr and lenptr have been set for the received packet.
0: No received packets available.

LIBRARY
HDLC PACKET.LIB

190 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCreceiveX

int HDLCreceiveX(char *rx buffer, int length); /* Where X is E or F */

DESCRIPTION

Copiesareceived packetintorx_buf fer if thereisone. Packetsarereceived inthe order they
arrive, even if multiple packets are currently stored in buffers.

Thisfunction isintended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
rx_buffer Pointer to the buffer to copy areceived packet into.
length Size of the buffer pointedto by rx_buffer.

RETURN VALUE

>0: Size of received packet.

-1: No packets are available to receive.

-2: The buffer is not large enough for the received packet. In this case, the packet remainsin
the receive buffer)

LIBRARY
HDLC PACKET.LIB

Dynamic C Functions rabbit.com 191

http://www.rabbit.com

HDLCsendX

int HDLCsendX(char * tx buffer, int length); /* Where X is E or F */

DESCRIPTION

Transmits a packet out seria port E or Fin HDLC mode. The tx_buffer isread directly while
transmitting, therefore it cannot be altered until a subsequent call to HDL.CsendingX () re-
turns false, indicating that the driver is done with it.

This function isintended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
tx buffer A pointer to the packet to be sent. This buffer must not change while trans-
mitting (see above.)
length The size of the buffer (in bytes).

RETURN VALUE

1: Sending packet.
0: Cannot send, another packet is currently being transmitted.

LIBRARY
HDLC PACKET.LIB

192 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCsendingX

int HDLCsendingX(void); /* Where X is E or F */

DESCRIPTION

Returnstrueif apacket is currently being transmitted. Thisfunction isintended for use with the
Rabbit 3000 and Rabbit 4000.

RETURN VALUE

1: Currently sending a packet.
0: Transmitter isidle.

LIBRARY
HDLC PACKET.LIB

hexstrtobyte

int hexstrtobyte (char far *p);

DESCRIPTION
Convertstwo hex characters (0-9A-Fa-f) to abyte.

RETURN VALUE

The byte (0-255) represented by the two hex characters or -1 on error (invalid character, string
less than 2 bytes).

EXAMPLES

hexstrtobyte("FF") returns 255
hexstrtobyte("0") returns -1 (error because < 2 characters)
hexstrtobyte("ABCDEF") returns OXAB (ignores additional chars)

Dynamic C Functions rabbit.com 193

http://www.rabbit.com

hitwd

void hitwd(void);

DESCRIPTION

Hitsthe watchdog timer, postponing a hardware reset for 2 seconds. Unless the watchdog timer
is disabled, a program must call this function periodically, or the controller will automatically

reset itself. If thevirtual driver isenabled (whichit isby default), it will call hitwd inthe back-
ground. The virtual driver also makes additional “virtual” watchdog timers available.

LIBRARY
VDRIVER.LIB

htoa

char * htoa(int wvalue, char * buf);

DESCRIPTION
Convertsinteger value to hexadecima number and puts result into buf.

PARAMETERS
value 16-bit number to convert
buf Character string of converted number

RETURN VALUE
Pointer to end (null terminator) of string in buf.

LIBRARY
STDIO.LIB

SEE ALSO

itoa, utoa, ltoa

194 rabbit.com Dynamic C Functions

http://www.rabbit.com

IntervalMs

int IntervalMs(long ms);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous call.

Intended for usewithwaitfor.

PARAMETERS
ms The number of milliseconds to wait.

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

IntervalSec

int IntervalSec(long sec);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous call.

Intended for usewithwaitfor.

PARAMETERS
sec The number of seconds to delay.

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

195

http://www.rabbit.com

IntervalTick

int IntervalTick(long tick);

DESCRIPTION

Provides a periodic delay based on the time from the previous call. Intended for use with
waitfor. A tick is 1/1024 seconds.

PARAMETERS
tick The number of ticksto delay

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

ipres

void ipres(wvoid);

DESCRIPTION

Dynamic C expands this call inline. Restore previousinterrupt priority by rotating the 1P regis-
ter.

LIBRARY
UTIL.LIB

SEE ALSO
ipset

196 rabbit.com Dynamic C Functions

http://www.rabbit.com

ipset

void ipset(int priority);

DESCRIPTION

Dynamic C expandsthiscall inline. Replaces current interrupt priority with another by rotating
the new priority into the IP register.

PARAMETERS
priority Interrupt priority range 0-3, lowest to highest priority.

LIBRARY
UTIL.LIB

SEE ALSO

ipres

isalnum

int isalnum(int c);

DESCRIPTION

Tests for an alphabetic or numeric character, (AtoZ, atozand 0to 9).
PARAMETERS

c Character to test.

RETURN VALUE

0 if not an alphabetic or numeric character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalpha, isdigit, ispunct

Dynamic C Functions rabbit.com 197

http://www.rabbit.com

isalpha

int isalpha(int ¢);

DESCRIPTION

Tests for an alphabetic character, (A to Z, or ato z).
PARAMETERS

c Character to test.

RETURN VALUE

0 if not a a phabetic character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalnum, isdigit, ispunct

iscntrl

int iscntrl(int c);

DESCRIPTION

Tests for a control character: 0 <= c <=31or ¢ == 127.
PARAMETERS

c Character to test.

RETURN VALUE

0 if not a control character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalpha, isalnum, isdigit, ispunct

198 rabbit.com Dynamic C Functions

http://www.rabbit.com

isCoDone

int isCoDone(CoData * p);

DESCRIPTION
Determineif costatement is initialized and not running.

PARAMETERS

P Address of costatement

RETURN VALUE

1: Costatement isinitialized and not running.
0: Otherwise.

LIBRARY
COSTATE.LIB

isCoRunning

int isCoRunning(CoData * p);

DESCRIPTION
Determineif costatement is stopped or running.

PARAMETERS

P Address of costatement.

RETURN VALUE

1 if costatement is running.
0 otherwise.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

199

http://www.rabbit.com

isdigit

int isdigit(int ¢);
DESCRIPTION
Testsfor adecimal digit: 0- 9
PARAMETERS
c Character to test

RETURN VALUE

0 if not adecimal digit.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isxdigit, isalpha, isalpha

200

rabbit.com

Dynamic C Functions

http://www.rabbit.com

isgraph

int isgraph(int c);

DESCRIPTION

Tests for a printing character other than a space: 33 <= ¢ <= 126
PARAMETERS

c Character to test.

RETURN VALUE

0: c isnot aprinting character.
10: c isaprinting character.

LIBRARY
STRING.LIB

SEE ALSO

isprint, isalpha, isalnum, isdigit, ispunct

islower

int islower(int c);

DESCRIPTION

Tests for lower case character.
PARAMETERS

c Character to test.

RETURN VALUE

0 if not alower case character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

tolower, toupper, isupper

Dynamic C Functions rabbit.com 201

http://www.rabbit.com

isspace

int isspace(int c);

DESCRIPTION

Tests for awhite space, character, tab, return, newline, vertical tab, form feed, and space:

9<=c<=13and c == 32.
PARAMETERS

c Character to test.

RETURN VALUE
0 if not, ! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

ispunct

isprint

int isprint(int c);
DESCRIPTION
Tests for printing character, including space: 32 <= ¢ <= 126
PARAMETERS
c Character to test.

RETURN VALUE
0 if not a printing character, ! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isdigit, isxdigit, isalpha, ispunct, isspace,

isalnum, isgraph

202 rabbit.com

Dynamic C Functions

http://www.rabbit.com

ispunct

int ispunct(int c);

DESCRIPTION
Tests for a punctuation character.

Character Decimal Code
space 32
1" #3% &' ()*+,-./ 3B<=c<=47
I<=>7@ 58<=c<=64
N~ 91<=c<=96
{1} ~ 123 <= c <= 126
PARAMETERS
c Character to test.
RETURN VALUE
0: Not acharacter.
1 0: Isacharacter.
LIBRARY
STRING.LIB
SEE ALSO
isspace
Dynamic C Functions rabbit.com 203

http://www.rabbit.com

isupper

int isupper(int c);

DESCRIPTION

Tests for upper case character.
PARAMETERS

c Character to test.

RETURN VALUE

0: Isnot an uppercase character.
1 0: Isan uppercase character.

LIBRARY
STRING.LIB

SEE ALSO

tolower, toupper, islower

isxdigit

int isxdigit(int c);

DESCRIPTION

Testsfor ahexadecimal digit: 0-9,A-F a-f
PARAMETERS

c Character to test.

RETURN VALUE

0: Not ahexadecimal digit.
10: Isahexadecimal digit.

LIBRARY
STRING.LIB

SEE ALSO
isdigit, isalpha, isalpha

204 rabbit.com

Dynamic C Functions

http://www.rabbit.com

itoa

char * itoa(int value, char * buf);

DESCRIPTION
Places up to a5-digit character string, with aminus sign in the leftmost digit when appropriate,
at *buf. The string represents value, asigned number.

Leading zeros are suppressed in the character string, except for one zero digit when value =
0. The longest possible string is“-32768.”

PARAMETERS
value 16-bit signed number to convert
buf Character string of converted number in base 10

RETURN VALUE
Pointer to the end (null terminator) of the string in buf.

LIBRARY
STDIO.LIB

SEE ALSO

atoi, utoa, ltoa

Dynamic C Functions rabbit.com 205

http://www.rabbit.com

i2c_check ack

int i2c_check ack(void);

DESCRIPTION
Checks if slave pulls datalow for ACK on clock pulse. Allows for clocks stretching on SCL
going high.

RETURN VALUE

0: ACK sent from Save.
1: NAK sent from dave.
-1: Timeout occurred.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

206 rabbit.com Dynamic C Functions

http://www.rabbit.com

i2c_init

void i2c¢_init(wvoid);
DESCRIPTION
Sets up the SCL and SDA port pins for open-drain output.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c read char

int i2c_read char(char * ch);

DESCRIPTION

Reads 8 hits from the slave. Allows for clocks stretching on all SCL going high. Thisisnot in
the protocol for 12C, but allows |2C slaves to be implemented on slower devices.

PARAMETERS

ch A one character return buffer.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com 207

http://www.rabbit.com

i2c _send ack

int i2c_send ack(void);

DESCRIPTION

Sends ACK sequenceto slave. ACK isusually sent after asuccessful transfer, where more bytes
are going to be read.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_send nak

int i2c_send nak(void);

DESCRIPTION
Sends NAK sequence to slave. NAK is often sent when the transfer is finished.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

208 rabbit.com Dynamic C Functions

http://www.rabbit.com

i2c start tx

int i2c_start tx(void);

DESCRIPTION
Initiates 12C transmission by sending the start sequence, which is defined as ahigh to low tran-
sition on SDA while SCL is high. The point being that SDA is supposed to remain stable while
SCL ishigh. If it does not, then that indicates astart (S) or stop (P) condition. Thisfunction first
waits for possible clock stretching, which iswhen a bus peripheral holds SCK low.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com

209

http://www.rabbit.com

i2c_startw tx

int i2c_startw tx(void);

DESCRIPTION
Initiates 12C transmission by sending the start sequence, which is defined as ahigh to low tran-
sition on SDA while SCL ishigh. The point being that SDA is supposed to remain stable while
SCL ishigh. If it does not, then that indicates astart (S) or stop (P) condition. Thisfunction first
waits for possible clock stretching, which is when a bus peripheral holds SCK low.

Thisfunctionisessentially thesameasi2c_start tx () withtheaddition of aclock stretch
delay, which is2000 “counts,” inserted after the start sequence. (A count isan iteration through
aloop.)

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

210 rabbit.com Dynamic C Functions

http://www.rabbit.com

i2c _stop tx

void i2c _stop tx(void);

DESCRIPTION

Sendsthe stop sequenceto the dave, which is defined as bringing SDA high while SCL ishigh,
i.e., the clock goes high, then data goes high.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c write char

int i2c_write char(char 4);

DESCRIPTION
Sends 8 hitsto slave. Checksif dave pullsdatalow for ACK on clock pulse. Allowsfor clocks
stretching on SCL going high.

PARAMETERS

d Character to send

RETURN VALUE

0: Success.
-1: Clock stretching timeout.
1: NAK sent from dave.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com 211

http://www.rabbit.com

kbhit

int kbhit(void);

DESCRIPTION

Detects keystrokes in the Dynamic C Stdio window.

RETURN VALUE
10 if akey has been pressed, 0 otherwise.

LIBRARY
UTIL.LIB

labs

long labs(long x);

DESCRIPTION

Computes the long integer absolute value of long integer x.

PARAMETERS

x Number to compute.

RETURN VALUE

x,ifx>0.
-x, otherwise.

LIBRARY
MATH.LIB

SEE ALSO
abs, fabs

212 rabbit.com

Dynamic C Functions

http://www.rabbit.com

ldexp

float ldexp(float x, int n);

DESCRIPTION
Computesx* (2™).

PARAMETERS
x The value between 0.5 inclusive, and 1.0
n Aninteger

RETURN VALUE
Theresult of x* (27) .

LIBRARY
MATH.LIB

SEE ALSO

frexp, exp

log

float log(float x);

DESCRIPTION
Computes the logarithm, base e, of real £1oat valuex.

PARAMETERS

x Float value

RETURN VALUE
The function returns—INF and signals a domain error when x < 0.

LIBRARY

MATH.LIB
SEE ALSO

exp, loglo

Dynamic C Functions rabbit.com 213

http://www.rabbit.com

log clean

int log clean(LogDest 14);

DESCRIPTION

Reset only the specified destination class and stream (encoded asa L ogDest value). Thisisonly
applicableto filesystem or XMEM destinations since they are locally persistent storage.
XMEM isautomatically cleaned at start-up time, since it is not assumed to be non-voldtile.

If this operation is not applicable, 0 is returned with no further action.

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETER

14 Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).

RETURN VALUE

0: success
-2: The stream is out-of-range for the class.

LIBRARY
log.lib

214 rabbit.com Dynamic C Functions

http://www.rabbit.com

log close

int log close(LogDestClass ldc);

DESCRIPTION
Close the specified class, enumerating all streams. If the destination classis aready closed, re-
turns success.

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETER

ldc Destination class. Use one of the constants LOG_DEST FS2,
LOG_DEST_XMEM, LOG_DEST_ UDP of LOG_DEST_ ALL. The latter
case closes al open destinations.

RETURN VALUE
0: success

LIBRARY
log.lib

Dynamic C Functions rabbit.com 215

http://www.rabbit.com

log condition

int log condition(LogDest 1ldst);

DESCRIPTION

Return the state of the specified |og destination. Destination classes or streams that are not con-
figured cause a -2 return code.

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETER

ldst Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).

RETURN VALUE

0: Destination not open

1: destination OK

2: destination reached limit of its space quota
-1: error in destination.

-2: destination not configured

LIBRARY
log.lib

216 rabbit.com Dynamic C Functions

http://www.rabbit.com

log format

char * log format(LogEntry *le, char *buffer, int length, int pfx);

DESCRIPTION

Given the log entry returned by log_next() or log_prev(), format the entry as an ASCII string.
The string is constructed in Unix "syslog" format:

<%d>%.15s %.89 %d]: %s
where the substitutions are:

%d: facility/priority as decimal number (0-255)

%.15s: date/time as "Mon dd hh:mm:ss"

%s:. process name - taken from LOG_UDP_PNAME(O) if defined, else ™" (empty).
%d: process ID, but the entry serial number is used instead.

%s: the log entry data.

A null terminator is aways added at buffer[length-1], or at the end of the string if it fitsin the
buffer. If pfx is zero, then the above syslog prefix is not generated.

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETERS

le Log entry result from log_next/log_prev().

buffer Storage for result. Must be dimensioned at least 'length'.

length Length of buffer. For the maximum sized log entry, the buffer should be
158 bytes. The minimum length must be greater than or equal to 43 (if pfx
true) else 1. If abad length is passed, the function returns without writing
to buffer.

pfx 0: message text only; do not generate syslog prefix.

1: prefix plus message text.
2: prefix only (up to ', then null terminator).

RETURN VALUE
buffer address, or NULL if bad length passed.

LIBRARY
log.lib

SEE ALSO
log_next, log_prev

Dynamic C Functions rabbit.com 217

http://www.rabbit.com

log map

uint32 log map(LogFacPri 1fp);

DESCRIPTION

Return thelog destination class and stream, for agiven facility/priority code. Theresultisupto
four destinations packed into alongword. This function merely invokes the macro
LOG_MAP (), which may be overridden by the application, but defaults to just the filesystem.

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETER
lfp Facility/priority code. Thisis asingle-byte code specified whenever any
log message is added. Facility is coded in the 5 MSBs, and priority in the
3LSBs.

RETURN VALUE

Up to four destinations for a message of the specified facility and priority. Each bytein there-
sulting long word represents a destination/stream. A zero byte indicates no destination. If the
result is all zeros, then a message of this type would be discarded.

LIBRARY
log.lib

218 rabbit.com Dynamic C Functions

http://www.rabbit.com

log next

int log next(LogDest ldst, LogEntry * le);

DESCRIPTION

Retrieve next log entry. Youmust call Log_seek () beforecalling thisfunctionthefirst time.
Retrieval of stored log messages proceeds, for example, as follows:

log_seek(ldst, 0); // seek to start

log next (ldst, &L); // get lst entry

log next (ldst, &L); // get 2nd entry

log prev(ldst, &L); // get2nd entry again
log prev(ldst, &L); // Qetlstentry

log prev(ldst, &L); // returns-1

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).
le Storage for resuilt.

RETURN VALUE

non-negative: length of log entry data
-1: End of log or not open
-2: Not areadable log destination class

LIBRARY
log.lib

SEE ALSO
log_seek, log_prev

Dynamic C Functions rabbit.com 219

http://www.rabbit.com

log open

int log open(LogDestClass ldc, int clean);

DESCRIPTION

Open the specified logging destination class. If necessary, this enumerates al possible streams
within the class, opening them all (necessary only for FS2 class, since each file needs to be
opened). Class LOG_DEST ALL opensall configured classes.

If clean istrue, then the dest is set to empty log, if that makes sense for the class.

Note: Please see the comments at thetop of 1og . 1ib for adescription of the message
logging subsystem.

PARAMETERS
ldc Destination class; LOG_DEST FS2,LOG_DEST UDEP,
LOG DEST XMEM or LOG DEST ALL.
clean Boolean, should the destination be erased before using?

RETURN VALUE

0: success
-1: unknown LogDestClass value

LIBRARY
log.lib

220 rabbit.com Dynamic C Functions

http://www.rabbit.com

log prev

int log prev(LogDest ldst, LogEntry * le);

DESCRIPTION

Retrieve previouslog entry. Youmust call 1og seek () before calling this function the first
time. Retrieval of stored log messages proceeds, for example, asfollows:

log_seek(ldst, 1); // seek toend

log prev(ldst, &L); // getlast entry

log prev(ldst, &L); // get 2nd last entry

log next (ldst, &L); // get 2nd last entry again
log next (ldst, &L); // getlast entry

log next (ldst, &L); // returns-1

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).
le Storage for resuilt.

RETURN VALUE

non-negative = length of log entry data
-1 = Start of log or not open
-2 = Not areadable log destination class

LIBRARY
log.lib

SEE ALSO

log seek, log next

Dynamic C Functions rabbit.com 221

http://www.rabbit.com

log put

int log put(LogFacPri ifp, uint8 fmt, const char *data, int length);

DESCRIPTION

Add alog entry. The specified facility/priority is mapped to the appropriate destination(s), as
configured by the macros. If the destination exists, then the log entry is added; otherwise, the
entry isquietly ignored. If adestination is unable to fit the log entry, and the destination is con-
figured as“circular,” then the first few entries may be deleted to make room. If this cannot be
done, or an unrecoverable error occurs, then -2 isreturned. For non-circular destinations, -2 is
returned when it becomes full.

Since multiple log destinations can result from the given facility/priority, it can be difficult to
determine which actual destination caused an error. You can usethe 1log_map () function to
determine the destinations, then check each destination's stateusing log condition ().

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message
logging subsystem.

PARAMETERS
ifp Facility/priority code. Facility in 5 MSBs, priority in 3 LSBs.
fmt Format code. O for ascii string, others user-defined.
data Pointer to first byte of datato store.
length Length of data. Must be between O and 115 (LOG_MAX MESSAGE) inclu-

Sive.

RETURN VALUE

0 = success

-1 = Message too long (over 115).

-2 = Unrecoverable error in destination. This return code usually means that the destination is
unusable and further entries for that destination will probably meet the sasmefate. Thiscan also
mean that the destination has not been opened.

LIBRARY
log.lib

222 rabbit.com Dynamic C Functions

http://www.rabbit.com

log seek

int log seek(LogDest ldst, int);

DESCRIPTION

Position log for readback. The next call to 1og next () will return the first entry in the log
(if whence=0), or 1og_prev () will return thelast entry (if whence=1).

Note: Please see the comments at thetop of 1og. 1ib for adescription of the message

logging subsystem.
PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).
whence O: first entry.
1: last entry.
other values reserved.

RETURN VALUE

0 = success.

-1 =Log empty.

-2 = Unrecoverable error or not open.

-3 = Not a seekable or configured log destination class.
-4 = invalid whence parameter.

LIBRARY
log.lib

SEE ALSO

log next, log prev

Dynamic C Functions rabbit.com 223

http://www.rabbit.com

logl0

float logl0(float x);

DESCRIPTION
Computes the base 10 logarithm of real f1oat value x.
PARAMETERS
x Value to compute

RETURN VALUE
Thelog base 10 of x.

The function returns—INF and signals a domain error when x < 0.

LIBRARY
MATH.LIB
SEE ALSO
log, exp

longjmp

void longjmp(jmp buf env, int wval);

DESCRIPTION

Restores the stack environment saved in array env [1. Seethedescription of setjmp () for
details of use.

Note: you cannot use longjmp () to move out of dlice statements, costatements, or
cofunctions.

PARAMETERS
env Environment previously saved with setjmp () .

val Integer result of setjmp ().

LIBRARY
SYS.LIB

SEE ALSO
setjmp

224 rabbit.com Dynamic C Functions

http://www.rabbit.com

loophead

void loophead(void);

DESCRIPTION
This function should be called within the main loop in a program. It is necessary for proper sin-
gle-user cofunction abandonment handling.

When two costatements are requesting access to a single-user cofunction, the first request is
honored and the second request is held. When 1oophead () noticesthat thefirst caller isnot
being called each time around the loop, it cancels the request, calls the abandonment code and
allowsthe second caller in.

See Samples\Cofunc\Cofaband. ¢ for sample code showing abandonment handling.

LIBRARY
COFUNC.LIB

loopinit

void loopinit(void);

DESCRIPTION

Thisfunction should be called in the beginning of a program that uses single-user cofunctions.
It initializes internal data structures that are used by 1ocophead () .

LIBRARY
COFUNC.LIB

Dynamic C Functions rabbit.com 225

http://www.rabbit.com

1sqgrt

unsigned int lsqgrt(unsigned long x);

DESCRIPTION

Computes the square root of x. Note that the return valueis an unsigned int. The fractional por-

tion of the result is truncated.

PARAMETERS

x long int input for square root computation

RETURN VALUE
Squareroot of x (fractional portion truncated).

LIBRARY
MATH.LIB

ltoa

char * ltoa(long num, char * ibuf)

DESCRIPTION

This function outputs a signed long number to the character array.

PARAMETERS
num Signed long number.
ibuf Pointer to character array.

RETURN VALUE
Pointer to the same array passed in to hold the resullt.

LIBRARY
STDIO.LIB

SEE ALSO
ltoa

226 rabbit.com

Dynamic C Functions

http://www.rabbit.com

ltoan

int ltoan(long num);

DESCRIPTION
This function returns the number of characters required to display asigned long number.

PARAMETERS

num 32-bit signed number.

RETURN VALUE
The number of characters to display signed long number.

LIBRARY
STDIO.LIB

SEE ALSO
ltoa

Dynamic C Functions rabbit.com 227

http://www.rabbit.com

lx format

int 1lx format(FSLXnum 1lxn, long wearlevel);

DESCRIPTION

Format a specified file system extent. Thismust not be called beforecaling £s_init (). All
fileswhich have either or both metadata and data on this extent are deleted. Formatting can be
quite slow (depending on hardware) so it is best performed after power-up, if at all.

PARAMETERS
lxn Logical extent number (1.. fs.num_1x inclusive).
wearlevel Initial wearlevel value. Thisshould be 1 if you have anew flash, and some

larger number if the flash is used. If you are reformatting a flash, you can
use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

ENODEV - no such extent number, or extent is reserved.

EBUSY - one or more files were open on this extent.

EIO - I/O error during format. If this occurs, retry the format operation. If it fails again, there
is probably a hardware error.

LIBRARY
FS2.11B

SEE ALSO

fs _init, fs_ format

228 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr CreatePartition

int mbr CreatePartition(mbr drive *drive, int pnum, char type);

DESCRIPTION

Creates or modifies the partition specified. The partition being modified must not be mounted,
and should be released by filesystem use (that is, its £s_part pointer must be null). The new
partition values should be placed in the appropriate partition structure within the drive structure.

For example,

drive.
drive
drive
drive
drive
drive
drive
drive

part [partnum]

.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]

.bootflag = 0;
.starthead = 0xfe;
.startseccyl = 0;
.parttype = 0xda;
.endhead = 0xfe;

.endseccyl = 0;
.startsector = start;
.partsecsize = ((PART SZ) / 512) + 1;

mbr CreatePartition(&drive, partnum, O0xda) ;

For more information on the partition structure (mbr part) lookinpart defs.lib.

The type parameter should match the type asit currently exists on the drive, unless thisis un-
used. Somevauesfor the t ype parameter arealready in use. A list of known partition typesis

at:

www.win.tue.nl/~aeb/partitions/partition types-1.html

Note: Starting with Dynamic C 9.01, this function BLOCK S|

PARAMETERS
drive
pnum
type

RETURN VALUE

O for success

Pointer to a MBR drive structure

Partition number to be created or modified

Type that exists on the physical drive partition now

-E10 for Error trying to read drive/device or structures.

-EINVAL if drive structure, pnum or type isinvalid.

-EPERM if the partition has not been enumerated or is currently mounted.
-EUNFORMAT if the drive is accessible, but not formatted.

-EBUSY if the deviceis busy. (Valid prior to Dynamic C 9.01)

LIBRARY
PART.LIB

Dynamic C Functions

rabbit.com

229

http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
http://www.rabbit.com

mbr EnumDevice

mbr EnumDevice(mbr drvr *driver, mbr dev *dev, int devnum, int
(*checktype) ());

DESCRIPTION

Thisroutineis called to learn about devices present on the driver passed in. The device will be
added to the linked list of enumerated devices. Partition information will be filled in from the
master boot record (MBR). Pointersto file system level partition information structures will be

set to NULL.
PARAMETERS
driver Pointer to aDOS contoller structure (setup during init of storage device de-
vicer.)
dev Pointer to a drive structure to befilled in.
devnum Physical device number of device on the driver.
checktype Routinethat takes an unsigned char partition type and returns 1 if of sought

type and zero if not. Pass NULL for this parameter to bypass this check.

RETURN VALUE

0 for success
-E10 for Error trying to read the device or structure.
-EINVAL if devnum invalid or does not exist.
-ENOMEM if memory for page buffer is not available.
-EUNFORMAT if the device is accessible, but not formatted. You can useit provided it is for-
matted/partitioned by either thislibrary or another system.
-EBADPART if the partition table on the deviceisinvalid
-ENOPART if the device does not have any sought partitions, If checktype parameter isNULL,
thistest is bypassed. This code is superseded by any other error detected.
-EXIST if the device has already been enumerated.
-EBUSY if the deviceis busy.

LIBRARY
PART.LIB

230 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr FormatDevice

int mbr FormatDevice(mbr_ dev * dev);

DESCRIPTION

Creates or rewrites the Master Boot Record on the device given. The routine will only rewrite
the Boot Loader codeif an MBR already exists on the device. The existing partition table will
be preserved. To modify an existing partition table use mbr_CreatePartion.

Note: Thisroutineis NOT PROTECTED from power loss and can make existing parti-
tionsinaccessibleif interrupted.

Note: Thisfunctionis BLOCKING.
PARAMETERS
dev Pointer to MBR device structure

RETURN VALUE

0 for success.

-EEXIST if the MBR exists, writing Boot Loader only
-E10 for Error trying to read the device or structure
-EINVAL if the Device structure is not valid

-ENOMEM if memory for page buffer is not available
-EPERM if drive has mounted or FS enumerated partition(s)

LIBRARY
PART.LIB

Dynamic C Functions rabbit.com 231

http://www.rabbit.com

mbr MountPartition

int mbr MountPartition(mbr drive * drive, int pnum);

DESCRIPTION

Marks the partition as mounted. It is the higher level codes responsibility to verify that the
fs_part pointer for apartitionisnot in use (null) as this would indicate that another system
isin the process of mounting this device.

PARAMETERS
drive Pointer to a drive structure
pnum Partition number to be mounted

RETURN VALUE

0 for success
-EINVAL if Driveor Partition structure or pnum isinvalid.
-ENOPART if Partition does not exist on the device.

LIBRARY
PART.LIB

232 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr UnmountPartition

int mbr UnmountPartition(mbr drive * drive, int pnum);

DESCRIPTION

Marks the partition as unmounted. The partition must not have any user partition data attached
(through mounting at ahigher level). If thefs _part pointer for the partition being unmounted
isnot null, an EPERM error is returned.

PARAMETERS
drive Pointer to a drive structure containing the partition
pnum Partition number to be unmounted

RETURN VALUE

0 for success
-EINVAL if the Drive structure or pnum isinvalid.
-ENOPART if the partition is enumerated at a higher level.

LIBRARY
PART.LIB

Dynamic C Functions rabbit.com

233

http://www.rabbit.com

mbr ValidatePartitions

int mbr ValidatePartitions(mbr drive * drive);

DESCRIPTION

Thisroutinewill validate the partition table contained in the drive structure passed. It will verify
that all partitions fit within the bounds of the drive and that no partitions overlap.

PARAMETERS
drive Pointer to a drive structure

RETURN VALUE

0 for success
-EINVAL if the partition table in the drive structure isinvalid.

LIBRARY
PART.LIB

234 rabbit.com Dynamic C Functions

http://www.rabbit.com

md5 append

void md5 append(md5 state t * pms, char * data, int nbytes);

DESCRIPTION

Thisfunction will take abuffer and compute the MD5 hash of its contents, combined with al pre-
vious data passed to it. Thisfunction can be called several times to generate the hash of alarge
amount of data.

PARAMETERS

md5 append Pointer tothemd5 _state_t structure that wasinitialized by

md5_init.
data Pointer to the data to be hashed.
nbytes Length of the data to be hashed.
LIBRARY
MD5.LIB

md5 init

void md5 init(md5 state t * pms);

DESCRIPTION

Initialize the MD5 hash process. Initial values are generated for the structure, and this structure
will identify aparticular transaction in all subsequent calls to the md5 library.

PARAMETER

pms Pointer tothemd5 state_t structure.

LIBRARY
MD5.LIB

Dynamic C Functions rabbit.com

235

http://www.rabbit.com

md5 finish

void md5 finish(md5 state t * pms, char digest[1l6]);

DESCRIPTION
Completes the hash of all the received data and generates the final hash value.

PARAMETERS
pms Pointer tothemd5 _state_t structure that wasinitialized by
md5 init.
digest The 16-byte array that the hash value will be written into.
LIBRARY
MD5.LIB

236 rabbit.com Dynamic C Functions

http://www.rabbit.com

memchr

NEAR SYNTAX: void * n memchr(void * src, int ch, unsigned int n);
FAR SYNTAX: void far * f memchr(void far * src, int ch, size t n);

Note: By default, memchr () isdefinedto _n memchr ().

DESCRIPTION
Searches up to n characters at memory pointed to by src for character ch.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses arelarger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
src Pointer to memory source.
ch Character to search for.
n Number of bytes to search.

RETURN VALUE
Pointer to first occurrence of ch if found within n characters. Otherwise returns null.

LIBRARY
STRING.LIB

SEE ALSO

strrchr, strstr

Dynamic C Functions rabbit.com 237

http://www.rabbit.com

memcmp

NEAR SYNTAX: int n memcmp(void *sl, void *s2, size t n);
FAR SYNTAX: int £ memcmp(void far *sl, void far *s2, size t n);

Note: By default, memcmp () isdefinedto n memcmp () .

DESCRIPTION
Performs unsigned character by character comparison of two memory blocks of length nn.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
sl Pointer to block 1.
s2 Pointer to block 2.
n Maximum number of bytesto compare.

RETURN VALUE

<0: A character in str1 islessthan the corresponding character in str2.
0: strlisidentical to str2.
>0: A character in str1 is greater than the corresponding character in str2.

LIBRARY
STRING.LIB

SEE ALSO

strncmp

238 rabbit.com Dynamic C Functions

http://www.rabbit.com

memcpy

NEAR SYNTAX: void * n memcpy(void *dst, void *src, unsigned int n
FAR SYNTAX: void far *_ f memcpy(void far *dst, void far *src,
size t n);

Note: By default, memcpy () isdefinedto n memcpy ().

DESCRIPTION
Copies ablock of bytes from one destination to another. Overlap is handled correctly.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versonwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR _STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO

memmove, memset

)

Dynamic C Functions rabbit.com

239

http://www.rabbit.com

memmove

NEAR SYNTAX: void * n memmove(void *dst, void *src, unsigned int n);
FAR SYNTAX: f memmove(void far * dst, void far * src, size t n);

Note: By default memmove () isdefinedto n memmove ().

DESCRIPTION
Copies ablock of bytes from one destination to another. Overlap is handled correctly.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses arelarger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO

memcpy, memset

240 rabbit.com Dynamic C Functions

http://www.rabbit.com

memset

NEAR SYNTAX: void * n memset(void * dst, int chr, unsigned int n);
FAR SYNTAX: void far * f memset(void far * dst, int chr, size t n);

Note: By default, memset () isdefinedto n memset ().

DESCRIPTION
Setsthefirst n bytes of ablock of memory pointed to by dst to the character chr.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Block of memory to set
chr Character that will be written to memory
n Amount of bytesto set

RETURN VALUE
dst: Pointer to block of memory.

LIBRARY
STRING.LIB

Dynamic C Functions rabbit.com 241

http://www.rabbit.com

mktime

unsigned long mktime(struct tm * timeptr);

DESCRIPTION
Converts the contents of structure pointed to by t imeptr into seconds.

struct tm

char tm sec; // seconds 0-59
char tm min; // 0-59
char tm_hour; // 0-23
char tm mday; // 1-31
char tm mon; // 1-12
char tm year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==sunday
}i
PARAMETERS
timeptr Pointer to tm structure

RETURN VALUE
Time in seconds since January 1, 1980.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, tm rd, tm wr

242 rabbit.com Dynamic C Functions

http://www.rabbit.com

mktm

unsigned int mktm(struct tm * timeptr,

DESCRIPTION

Convertsthe seconds (t ime) to date and time and fillsin thefields of the tm structure with the

result.

struct tm {

char
char
char
char
char
char
char

PARAMETERS
timeptr
time

RETURN VALUE
0

LIBRARY
RTCLOCK.LIB

SEE ALSO

tm sec; // seconds 0-59

tm min; // 0-59

tm hour; // 0-23

tm mday; // 1-31

tm mon; // 1-12

tm_year; // 80-147 (1980-2047)

tm_wday; // 0-6 0==sunday
Address to store date and time into structure:

Seconds since January 1, 1980.

mktime, tm rd, tm wr

unsigned long time);

Dynamic C Functions

rabbit.com

243

http://www.rabbit.com

modf

float modf(float x, int * n);

DESCRIPTION
Splits x into afraction and integer, £ + n.

PARAMETERS
Floating-point integer
n Aninteger

RETURN VALUE
Theinteger part in *n and the fractional part satisfies |£| < 1.0

LIBRARY
MATH.LIB

SEE ALSO
fmod, ldexp

244 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf eraseBlock

int nf eraseBlock(nf device * dev, long page);

DESCRIPTION
Erases the block that contains the specified page on the specified NAND flash device. Check
for completion of the erase operation using either nf i sBusyRBHW () or
nf isBusyStatus().

Normally, this function will not allow a bad block to be erased. However, when
NFLASH CANERASEBADBLOCKS isdefined by the application, the bad block check is not
performed, and the application is allowed to erase any block, regardless of whether it is marked

good or bad.
PARAMETERS
dev Pointer to aninitiadlized nf _device structure
page Page specifies the zero-based number of a NAND flash page in the block

to be erased, relative to the first “ good” page.

RETURN VALUE

0: Success, or thefirst error result encountered
-1: NAND flash deviceis busy
-2: Block check time out error
-3: Pageisin abad block

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com 245

http://www.rabbit.com

nf getPageCount

long nf getPageCount(nf device * dev);

DESCRIPTION
Returns the number of program pages on the particular NAND flash device.
PARAMETERS
dev Pointer toannf device structurefor aninitialized NAND flash device.

RETURN VALUE
The number of program pages on the NAND flash device.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

246 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf getPageSize

long nf getPageSize(nf device * dev);

DESCRIPTION

Returns the size in bytes (excluding “spare” bytes) of each program page on the particular
NAND flash device.

PARAMETERS

dev Pointer toannf device structurefor aninitialized NAND flash device.

RETURN VALUE

The number of data bytesinthe NAND flash's program page, excluding the “ spare” bytes used
for ECC storage, etc.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com

247

http://www.rabbit.com

nf initDevice

int nf initDevice(nf device * dev, int which);

DESCRIPTION

Initializes a particular NAND flash device. This function must be called before the particular
NAND flash devicecan beused. Seenf devtable [] inNFLASH. LIB for the user-updat-
able list of supported NAND flash devices. Note that xalloc iscalled to allocate buffer(s)
memory for each NAND flash device; arun time error will occur if the available xmem RAM
isinsufficient.

There are two modes of operation for NAND flash devices: FAT and direct. If you are using the
FAT file system in the default configuration, i.e., the NAND flash has one FAT partition that
takes up the entire device, youdo not needtocall nf _initDevice (). Youonly needto call
nf InitDriver (), whichisthe default device driver for the FAT file system on aNAND
flash device.

Configurations other than the default one require more work. For example, having two parti-
tions on the device, one a FAT partition and the other anon-FAT partition, require you to know
how to fit more than one partition on adevice. A good example of how to do thisisin theremote
application upload utility. The function dlm_initserialflash() in
/LIB/RCM3300/downloadmanager.lib iswhereto look for code details.The upload
utility is specifically for the RCM3300; however, even without the RCM 3300, the utility is till
useful in detailing what is necessary to manage multiple partitions.

The second mode of operation for NAND flash devicesis direct access. An application that di-
rectly accesses the NAND flash (using callssuch asnf readPage () and

nf writePage ()) may defineNFLASH USEERASEBLOCKSIZE to be either O (zero) or
1 (one) before NFLASH . LIB is#used, in order to set the NAND flash driver's main data pro-
gram unit size to either the devices' program page size of 512 bytes or to its erase block size of
16 KB.

If not defined by the application, NFLASH USEERASEBLOCKSIZE issettothevaluelin
NFLASH. LIB; thismode should maximize the NAND flash devices life.

NFLASH USEERASEBLOCKSIZE value 1 setsthe driver up to program an erase block size
at atime. Thismode may be best for applications with only afew files open in write mode with
larger blocks of databeing written, and may be especially good at append operations. Thetrade
off isreduced flash erasures at the expense of chunkier overhead due to the necessity of per-
forming all 32 pages ECC calculations for each programming unit written.

NFLASH USEERASEBLOCKSIZE valueO setsthedriver up to program a program page size
at atime. Thismode may be best for applicationswith morethan afew files open in write mode
with smaller blocks of data being written, and may be especialy good at interleaved file writes
and/or random accesswrite operations. Thetrade off isincreased flash erasures with the benefit
of spread out overhead due to the necessity of performing only 1 page's ECC calculations per
programming unit written.

248 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf initDevice (cont’d)

PARAMETERS
dev Pointer to annf device structure that will befilled in. Aninitialized
nf device struct acts as ahandle for the NAND flash device.
which Number of the NAND flash device to initialize. Currently supported de-
vice numbers are O for the soldered-on device or 1 for the socketed NAND
flash device.

RETURN VALUE

0: Success
-1: Unknown index or bad internal 1/0O port information
-2: Error communicating with flash chip
-3: Unknown flash chip type

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com

249

http://www.rabbit.com

nf InitDriver

int nf InitDriver(mbr drvr * driver, void * device list);

DESCRIPTION
Initializes the NAND flash controller.

PARAMETERS

driver Empty mbr drvr structure. It must be initialized with this function
before it can be used with the FAT file system. More information on this
structure can be found in the Dynamic C Module document titled, “ FAT
File System User’'s Manual,” available on the Rabbit Semiconductor
website.

device list If not null, thisisapointer to the head of alinked list of nf device
structures for NAND flash devices that have each already been initialized
by calingnf initDevice().
If device 1list isnull, then thisfunction attemptsto initialize all
NAND flash devices and provide adefault linked list of nf device
structures in order from device number 0 on up. If the initialization of a
NAND flash deviceisunsuccessful, thenits nf device structureisnot
entered into the linked list.

RETURN VALUE

0: Success
<0: Negative vaue of a FAT file system error code

LIBRARY
NFLASH FAT.LIB (This function was introduced in Dynamic C 9.01)

250 rabbit.com Dynamic C Functions

http://www.rabbit.com
http://www.rabbitsemiconductor.com/products/dc/docs.shtml

nf isBusyRBHW

int nf isBusyRBHW(nf device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy. Uses the hardware Ready/Busy check
method, and can be used to determine the device's busy status even at the start of aread page
command. Note that this function briefly enforces the Ready/Busy input port bit, reads the pin
status, and then restores the port bit to its previous input/output state. There should be little or
no visible disturbance of the LED output which shares the NAND flash's Ready/Busy status
line.

PARAMETERS

dev Pointer to aninitialized nf _device structure for the particular NAND
flash chip.

RETURN VALUE
1: Busy
0: Ready, (not currently transferring a page to be read, or erasing or writing a page)
-1: Error (unsupported Ready/Busy input port)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

nf isBusyStatus

Dynamic C Functions rabbit.com

251

http://www.rabbit.com

nf isBusyStatus

int nf isBusyStatus(nf device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash deviceis busy erasing or writing to a page. Uses the
software status check method, which can not (must not) be used to determine the device's busy
status at the start of aread page command.

PARAMETERS

dev Pointer to an initialized nf _device structure for the particular NAND
flash chip

RETURN VALUE
1: Busy
0: Ready (not currently erasing or writing a page)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
nf isBusyRBHW

252 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf readPage

int nf readPage(nf device * dev, long buffer, long page):

DESCRIPTION

Reads data from the specified NAND flash device and page to the specified buffer in xmem.
Note that in the case of most error results at least some of the NAND flash page's content has
been read into the specified buffer. Although the buffer content must be considered unreliable,
it can sometimes be useful for inspecting page content in “bad” blocks.

PARAMETERS
dev Pointer to aninitidlized nf _device structure
buffer Physical address of the xmem buffer to read datainto
page Specifiesthe zero-based number of aNAND flash pageto beread, relative

to thefirst “good” page's number.

RETURN VALUE

0: Success, or thefirst error result encountered
-1: NAND flash deviceis busy
-2: Block check time out error
-3: Pageisin abad block
- 4: Pageread time out error
-5: Uncorrectable data or ECC error

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com 253

http://www.rabbit.com

nf writePage

int nf writePage(nf device * dev, long buffer, long page):;

DESCRIPTION

Writes data to the specified NAND flash device and page from the specified buffer in xmem.
Check for completion of the write operation using nf i sBusyRBHW () or
nf isBusyStatus().

PARAMETERS
dev Pointer to aninitilized nf _device structure
buffer Physical address of the xmem data to be written
page Specifies the zero-based number of a NAND flash page to be written, rel-

ativeto thefirst “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash deviceis busy
-2: Block check time out error
-3: Pageisin abad block
-4: XMEM/root memory transfer error
- 5: Erase block or program page operation error.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

254 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf XD Detect

long nf XD Detect(int debounceMode) ;

DESCRIPTION
Thisfunction attempts to read the xD card ID and searchestheinternal device table for that 1D
in detect mode 1. In detect mode O it just uses the xD card detect.
Assumes only one XD card present.

WARNING! - This should not be called to determineif it is safe to do write operations if there
is achance aremovable device might be pulled between calling it and the write. It is best used
to determineif adeviceis present to proceed with an automount after a device has been un-
mounted in SW and removed.

PARAMETERS

debounceMode 0 - nodebouncing
1 - busy wait for debouncing interval
2 - for useif function to be called until debouncing interval isdone, e.g.,

waitfor(rc = nf XD Detect(l) != -EAGAIN) ;
-EAGAIN will be returned until done.

RETURN VALUE

>0: The ID that was found on the device and in the table

-EBUSY: NAND flash deviceis busy

- ENODEV: No device found

-EAGAIN: if debounceMode equals 2, then not done debouncing, try again

LIBRARY
NFLASH FAT.LIB

Dynamic C Functions rabbit.com 255

http://www.rabbit.com

OpenInputCompressedFile

int OpenInputCompressedFile(ZFILE * ifp, long fn);

DESCRIPTION

Opens afile for input. This function sets up the LZ compression algorithm window associated
with the ZFILE file. The second parameter is the file handle (FS2) or address (#zimport) of
the input file to be opened. If the file is aready compressed, after calling this function the file
can be decompressed by calling ReadCompressedFile (). If thefile handle pointsto an
uncompressed FS2 file, after calling this function the resulting ZFILE file can be compressed
by calling CompressFile ().

The INPUT COMPRESSION BUFFERS macro controlsthe memory allocated by this func-
tion. It defaultsto 1.

PARAMETERS
ifp ZFILE file descriptor
fn Address or handle of input file

RETURN VALUE

0: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO

CloseInputCompressedFile, CompressFile, ReadCompressedFile

256 rabbit.com Dynamic C Functions

http://www.rabbit.com

OpenOutputCompressedFile

int OpenOutputCompressedFile(ZFILE * ofp, int fn);

DESCRIPTION
Open an FS2 file for compressed output. This function sets up the LZ compression algorithm
window and tree associated with the ZFILE file. The second parameter isthefile handle (FS2)
of the output file to be written to. Note that thisMUST be an FS2 file handle, or the open will
fail.

The OUTPUT COMPRESSION BUFFERS macro must be defined as a positive non-zero
number if compression is being used.

PARAMETERS
ofp ZFILE file descriptor
fn FS2 handle of output file

RETURN VALUE

0: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO
CloseOutputCompressedFile

Dynamic C Functions rabbit.com 257

http://www.rabbit.com

OS ENTER CRITICAL

void OS ENTER CRITICAL(void);

DESCRIPTION
Enter a critical section. Interrupts will be disabled until 0OS_EXIT CRITICAL () iscalled.
Task switching isdisabled. Thisfunction must be used with great care, since misuse can greatly
increase the latency of your application. Note that nesting 0S_ ENTER CRITICAL () calls

will work correctly.

LIBRARY
UCOS2.LIB

OS EXIT CRITICAL

void OS_EXIT CRITICAL(void);

DESCRIPTION
Exit acritical section. If the corresponding previousOS _ENTER CRITICAL () call disabled
interrupts (that is, interrupts were not already disabled), then interrupts will be enabled. Other-
wise, interrupts will remain disabled. Hence, nesting callsto OS_ ENTER_CRITICAL () will

work correctly.

LIBRARY
UCOS2.LIB

258 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagAccept

0S_FLAGS OSFlagAccept(OS FLAG GRP * pgrp, OS FLAGS flags, INT8U
wait type, INT8U * err);

DESCRIPTION

Thisfunctioniscalled to check the status of acombination of bitsto be set or cleared in an event
flag group. Your application can check for ANY bit to be set/cleared or ALL bitsto be
set/cleared.

This call does not block if the desired flags are not present.

PARAMETERS
pgrp Pointer to the desired event flag group.
flags Bit pattern indicating which bit(s) (i.e. flags) you wish to check. E.g., if
your application wantstowait for bits0 and 1 then £ 1ags should be 0x03.
wait type Specifieswhether you are checking for ALL bitsto be set/cleared or ANY

of the bitsto be set/cleared. You can specify the following argument:

* OS_FLAG WAIT CLR_ALL - Youwill check ALL bitsinflags to
be clear (0)

* OS_FLAG WAIT CLR_ANY - Youwill check ANY bit in flags to
be clear (0)

* OS_FLAG WAIT SET ALL - Youwill check ALL bitsin flags to
beset (1)

* OS_FLAG WAIT SET ANY - Youwill check ANY bit inflags to
beset (1)

Note: Add OS_FLAG CONSUME if you want the event flag to be
consumed by the call. Example, to wait for any flag in agroup AND
then clear the flags that are present, set thewait type parameter
to:

OS_FLAG WAIT SET ANY + OS_FLAG_ CONSUME

Dynamic C Functions rabbit.com 259

http://www.rabbit.com

OSFlagAccept (cont’d)

err Pointer to an error code. Possible values are:

* OS_NO_ERR - No error

* OS_ERR_EVENT_TYPE - Not pointing to an event flag group

* OS_FLAG _ERR_WAIT TYPE - Proper wait type argument not
specified.

* OS_FLAG_INVALID PGRP - null pointer passed instead of the event
flag group handle.

* OS_FLAG ERR _NOT_RDY - Flagsnot available.

RETURN VALUE
The state of the flagsin the event flag group.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

260 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagCreate

OS FLAG GRP * OSFlagCreate(OS FLAGS flags, INT8U * err);

DESCRIPTION
Thisfunction is called to create an event flag group.

PARAMETERS
flags Containsthe initial value to store in the event flag group.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - Thecall was successful.

* OS_ERR_CREATE_ISR - Attempt madeto create an Event Flag from
an ISR.

* OS_FLAG GRP_DEPLETED - There are no more event flag groups

RETURN VALUE
A pointer to an event flag group or a null pointer if no more groups are available.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Functions rabbit.com

261

http://www.rabbit.com

OSFlagDel

0S FLAG GRP * OSFlagDel(OS FLAG GRP * pgrp, INT8U opt, INT8U * err);

DESCRIPTION

Thisfunction deletes an event flag group and readies al tasks pending on the event flag group.
Note that:

» Thisfunction must be used with care. Tasksthat would normally expect the presence of the
event flag group must check the return code of 0SFlagAccept () and OSFlagPend ().

» Thiscall can potentialy disable interrupts for along time. Theinterrupt disabletimeis
directly proportional to the number of tasks waiting on the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Deletesthe event flag group only if no task pend-
in
. OSg_DEL_ALWAYS - Deletes the event flag group even if tasks are wait-
ing. Inthis case, al the tasks pending will be readied..
err Pointer to an error code. May be one of the following values:

* OS_NO_ERR - Success, the event flag group was deleted

* OS_ERR_DEL_ ISR - If you attempted to delete the event flag group
froman ISR

* OS _FLAG INVALID PGRP - If pgrpisanull pointer.

* OS_ERR_EVENT TYPE - You are not pointing to an event flag group

* OS_ERR_EVENT TYPE - If you didn't pass a pointer to an event flag
group

* OS_ERR_INVALID OPT - Invalid option was specified

* OS_ERR_TASK WAITING - One or more tasks were waiting on the
event flag group.

RETURN VALUE

pevent Error.
(0OS_EVENT *)O0 Semaphore was successfully deleted.
LIBRARY

OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

262 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPend

0S_FLAGS OSFlagPend(OS FLAG GRP * pgrp, OS FLAGS flags, INT8U
wait type, INT16U timeout, INT8U * err);

DESCRIPTION

Thisfunctionis called to wait for a combination of bits to be set in an event flag group. Your
application can wait for ANY hit to be set or ALL bitsto be set.

PARAMETERS
pgrp Pointer to the desired event flag group.

flags Bit pattern indicating which bit(s) (i.e. flags) you wish to wait for. E.g. if
your application wantstowait for bits 0 and 1 then £ 1ags should be 0x03.

wait type Specifieswhether you want ALL bitsto be set or ANY of the bitsto be set.
You can specify the following argument:

* OS_FLAG WAIT CLR_ALL - You will wait for ALL bitsinmask to
be clear (0)

* OS_FLAG WAIT SET ALL - Youwill wait for ALL bitsinmask to
beset (1)

* OS_FLAG WAIT CLR_ANY - Youwill waitfor ANY bit inmask to
be clear (0)

* OS_FLAG WAIT_ SET ANY - Youwill waitfor ANY bit inmask to
beset (1)

Note: Add OS_FLAG CONSUME if you want the event flag to be
consumed by the call. E.g., to wait for any flag in agroup AND then
clear the flags that are present, set the wait type parameter to:

0S_FLAG WAIT SET ANY + OS_FLAG_ CONSUME

timeout An optional timeout (in clock ticks) that your task will wait for the desired
bit combination. If you specify 0, however, your task will wait forever at
the specified event flag group or, until a message arrives.

Dynamic C Functions rabbit.com 263

http://www.rabbit.com

OSFlagPend (cont’d)

err Pointer to an error code. Possible values are;

OS_NO_ERR - Thedesired bits have been set within the specified time-
out.

OS_ERR_PEND_ ISR - Ifyoutriedto PEND froman ISR.

OS_FLAG INVALID PGRP - If pgrp isanull pointer.
OS_ERR_EVENT TYPE - You are not pointing to an event flag group
OS_TIMEOUT - The bit(s) have not been set in the specified time-out.

OS_FLAG _ERR _WAIT TYPE - You didn't specify a proper
wait type argument.

RETURN VALUE
The new state of the flagsin the event flag group when the task is resumed or, O if atimeout or
an error occurred.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

264 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPost

0S FLAGS OSFlagPost(OS FLAG GRP * pgrp, OS FLAGS flags, INT8U opt,
INT8U * err);

DESCRIPTION
Thisfunctionis called to set or clear some bitsin an event flag group. The bitsto set or clear
are specified by a bitmask. Warnings:

» The execution time of this function depends on the number of tasks waiting on the event flag
group.

» Theamount of timeinterruptsare DISABLED depends on the number of taskswaiting on the
event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.

flags If opt (seebelow) isOS FLAG SET, eachbitthatissetin £lags will
set the corresponding bit in the event flag group. E.g., to set bits0, 4 and 5
you would set £1ags to:

0x31 (note, bit 0isleast significant bit)

If opt (seebelow) isOS_FLAG CLR, each bit that is set in flags will
CLEAR the corresponding bit in the event flag group. E.g., to clear bits 0O,
4 and 5 you would specify flags as:

0x31 (note, bit Oisleast significant bit)

opt Indicates whether the flags will be:
set (0S_FLAG_SET), or cleared (OS_FLAG_CLR)

err Pointer to an error code. Valid values are;

* OS_NO_ERR - Thecall was successful.

* OS_FLAG INVALID PGRP - null pointer passed.

* OS_ERR_EVENT_ TYPE - Not pointing to an event flag group
* OS_FLAG INVALID OPT - Invalid option specified.

RETURN VALUE
The new value of the event flags bits that are still set.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Functions rabbit.com 265

http://www.rabbit.com

OSFlagQuery

0S FLAGS OSFlagQuery(OS FLAG GRP * pgrp, INT8U * err);

DESCRIPTION
Thisfunction is used to check the value of the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
err Pointer to an error code returned to the called:

* OS_NO_ERR - The call was successful
* OS_FLAG INVALID PGRP - null pointer passed.
* OS_ERR_EVENT_ TYPE - Not pointing to an event flag group

RETURN VALUE
The current value of the event flag group.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

266 rabbit.com Dynamic C Functions

http://www.rabbit.com

O0SInit

void 0SInit(void);

DESCRIPTION
Initializes uC/OS-11 data; must be called before any other uC/OS-11 functions are called.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt, OSStart

OSMboxAccept

void * OSMboxAccept(OS EVENT * pevent);

DESCRIPTION

Checks the mailbox to seeif amessage is available. Unlike 0SMboxPend (),
OSMboxAccept () does not suspend the calling task if amessageis not available.

PARAMETERS

pevent Pointer to the mailbox’s event control block.

RETURN VALUE

1= (void *)0 Thisisthe message in the mailbox if oneis available. The mailbox
is cleared so the next time OSMboxA ccept() is called, the mailbox
will be empty.

== (void *)0 The mailbox isempty, or pevent isanull pointer, or you didn't

pass the proper event pointer.

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxCreate, OSMboxPend, OSMboxPost, OSMboxQuery

Dynamic C Functions rabbit.com 267

http://www.rabbit.com

OSMboxCreate

OS _EVENT * OSMboxCreate(void * msg);

DESCRIPTION

Creates a message mailbox if event control blocks are available.

PARAMETERS

msg

RETURN VALUE

!= (void *)O0

== (Void *)0

LIBRARY

Pointer to a message to put in the mailbox. If thisvalueis set to the null
pointer (i.e., (void *) 0) thenthe mailbox will be considered empty.

A pointer to the event control clock (OS EVENT) associated with
the created mailbox.

No event control blocks were available.

OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO

OSMboxAccept,

OSMboxPend, OSMboxPost, OSMboxQuery

268

rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxDel

OS_EVENT * OSMboxDel(OS EVENT * pevent, INT8U opt, INT8U * err)

DESCRIPTION

Thisfunction deletes a mailbox and readies all tasks pending on the mailbox. Note that:

 Thisfunction must be used with care. Tasks that would normally expect the presence of the
mailbox MUST check the return code of 0SMboxPend () .

* OSMboxAccept () calerswill not know that the intended mailbox has been deleted unless
they check pevent to seethat it'sanull pointer.

» Thiscall can potentially disable interrupts for along time. Theinterrupt disabletimeis
directly proportional to the number of tasks waiting on the mailbox.

» Because ALL tasks pending on the mailbox will be readied, you MUST be careful in
applications where the mailbox is used for mutual exclusion because the resource(s) will no
longer be guarded by the mailbox.

PARAMETERS
pevent

opt

err

RETURN VALUE

!= (void *)O

== (Void *)0
LIBRARY

0S_MBOX.C

Pointer to the event control block associated with the desired mailbox.

May be one of the following delete options:

OS_DEL_NO_PEND - Delete mailbox only if no task pending

OS_DEL_ALWAYS - Deletes the mailbox even if tasks are waiting. In
this case, all the tasks pending will be readied.

Pointer to an error code that can contain one of the following values:

OS_NO_ERR - Call was successful; mailbox was deleted
OS_ERR_DEL_ISR - Attempt to delete mailbox from ISR
OS_ERR INVALID OPT - Invalid option was specified

OS_ERR_TASK WAITING - One or more tasks were waiting on the
mailbox

OS_ERR_EVENT TYPE - No pointer passed to a mailbox
OS_ERR_PEVENT NULL - If pevent isanull pointer.

Isapointer to the event control clock (OS_EVENT) associated with
the created mailbox

If no event control blocks were available

.
I

Dynamic C Functions

rabbit.com

269

http://www.rabbit.com

OSMboxPend

void *OSMboxPend(OS_ EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION
Waits for amessage to be sent to a mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
timeout Allowstask to resume execution if amessage was not received by the num-
ber of clock ticks specified. Specifying 0 meansthe task iswilling to wait
forever.
err Pointer to avariablefor holding an error code. Possible error messages are:

* OS_NO_ERR: The call was successful and the task received a message.

* 0S_TIMEOUT: A message was not received within the specified time-
out

* OS_ERR_EVENT_ TYPE: Invaid event type

* OS_ERR_PEND ISR Ifthisfunctionwascalled froman ISR andthe
result would lead to a suspension.

* OS_ERR_PEVENT NULL: If pevent isanull pointer
RETURN VALUE
= (void *)0 A pointer to the message received
== (void *)0 No message wasreceived, or pevent isanull pointer, or the prop-
er pointer to the event control block was not passed.

LIBRARY
OS _MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPost, OSMboxQuery

270 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxPost

INT8U OSMboxPost(OS EVENT * pevent, void * msg);

DESCRIPTION
Sends a message to the specified mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to message to be posted. A null pointer must not be sent.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent.

0S MBOX FULL The mailbox already contains amessage. Only one message at a
time can be sent and thus, the message MUST be consumed be-
fore another can be sent.

0S_ERR_EVENT TYPE Attempting to post to a non-mailbox.
0S_ERR_PEVENT NULL If pevent isanull pointer
0S_ERR_POST NULL PTR If you areattempting to post anull pointer

LIBRARY
OS _MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxQuery

Dynamic C Functions rabbit.com 271

http://www.rabbit.com

OSMboxPostOpt

INT8U OSMboxPostOpt(OS EVENT * pevent, void * msg, INT8U opt):;

DESCRIPTION
This function sends a message to a mailbox.

Note: Interrupts can be disabled for along time if you do a“broadcast.” The interrupt dis-
abletimeis proportional to the number of tasks waiting on the mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST OPT NONE - POST to asingle waiting task (Identical to
0S_MboxPost ())

* OS_POST_OPT BROADCAST - POST to ALL tasksthat arewaiting on

the mailbox
RETURN VALUE
0S_NO ERR The call was successful and the message was sent.
0S MBOX FULL The mailbox already contains amessage. Only one message a a

time can be sent and thus, the message MUST be consumed be-
fore another can be sent.

0S_ERR_EVENT TYPE Attempting to post to a non-mailbox.
0S_ERR_PEVENT NULL If pevent isanull pointer
0S_ERR_POST NULL PTR If you areattempting to post anull pointer

LIBRARY
OS _MBOX.C (Prior to DC 8:UCOS2.LIB)

272 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxQuery

INT8U OSMboxQuery(OS EVENT * pevent, OS MBOX DATA * pdata):;

DESCRIPTION
Obtains information about a message mailbox.

PARAMETERS
pevent Pointer to message mailbox’s event control block.
pdata Pointer to a data structure for information about the message mailbox

RETURN VALUE
0S_NO ERR The call was successful and the message was sent.
OS _ERR_EVENT TYPE Attempting to obtain data from anon mailbox.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxPost

Dynamic C Functions rabbit.com

273

http://www.rabbit.com

OSMemCreate

OS_MEM * OSMemCreate(void * addr, INT32U nblks, INT32U blksize,
INT8U * err);

DESCRIPTION
Creates afixed-sized memory partition that will be managed by uC/OS-11.

PARAMETERS
addr Pointer to starting address of the partition.
nblks Number of memory blocks to create in the partition.
blksize The size (in bytes) of the memory blocks.
err Pointer to variable containing an error message.

RETURN VALUE
Pointer to the created memory partition control block if oneisavailable, null pointer otherwise.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemGet, OSMemPut, OSMemQuery

274 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMemGet

void * OSMemGet(OS MEM * pmem, INT8U * err);

DESCRIPTION
Gets amemory block from the specified partition.

PARAMETERS
pmem Pointer to partition’s memory control block
err Pointer to variable containing an error message

RETURN VALUE
Pointer to amemory block or anull pointer if an error condition is detected.

LIBRARY
UCOs2.LIB

SEE ALSO
OSMemCreate, OSMemPut, OSMemQuery

Dynamic C Functions rabbit.com 275

http://www.rabbit.com

OSMemPut

INT8U OSMemPut (OS MEM * pmem, void * pblk);

DESCRIPTION
Returns a memory block to a partition.

PARAMETERS
pmem Pointer to the partition’s memory control block.
pblk Pointer to the memory block being released.

RETURN VALUE
0S_NO ERR The memory block was inserted into the partition.
0S MEM FULL If returning amemory block to an already FULL memory partition. (More
blocks were freed than allocated!)

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemQuery

276 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMemQuery

INT8U OSMemQuery(OS MEM * pmem, OS MEM DATA * pdata);

DESCRIPTION

Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS
pmem Pointer to partition’s memory control block.
pdata Pointer to structure for holding information about the partition.

RETURN VALUE

0S_NO ERR This function always returns no error.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemPut

Dynamic C Functions rabbit.com

277

http://www.rabbit.com

OSMutexAccept

INT8U OSMutexAccept(OS EVENT * pevent, INT8U * err);

DESCRIPTION

This function checks the mutual exclusion semaphore to see if aresource is available. Unlike
OSMutexPend (), 0SMutexAccept () doesnot suspend the calling task if the resourceis
not available or the event did not occur. This function cannot be called from an I SR because
mutual exclusion semaphores are intended to be used by tasks only.

PARAMETERS
pevent Pointer to the event control block.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.

* OS_ERR_EVENT TYPE - if pevent isnot apointer to a mutex
* OS_ERR_PEVENT NULL - pevent isanull pointer

* OS_ERR_PEND ISR - if you called thisfunction from an ISR

RETURN VALUE
1: Success, the resource is available and the mutual exclusion semaphore is acquired.

0: Error, either the resource is not available, or you didn't pass a pointer to a mutual exclusion
semaphore, or you called this function from an ISR.

LIBRARY
0S_MUTEX.C

278 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexCreate

OS_EVENT *OSMutexCreate(INT8U prio, INT8U * err);

DESCRIPTION

This function creates amutual exclusion semaphore. Note that:

» The LEAST significant 8 bits of the OSEventCnt field of the mutex’ s event control block are
used to hold the priority number of the task owning the mutex or OxFF if no task owns the

mutex.

» The MOST significant 8 bits of the OSEventCnt field of the mutex’ s event control block are
used to hold the priority number to use to reduce priority inversion.

PARAMETERS

prio

err

RETURN VALUE

!= (void *)O0

(void *)O0

LIBRARY
0OS_MUTEX.C

The priority to use when accessing the mutual exclusion semaphore. In
other words, when the semaphore is acquired and a higher priority task at-
tempts to obtain the semaphore then the priority of the task owning the
semaphoreisraised to thispriority. It isassumed that you will specify apri-
ority that isSLOWER invaluethan ANY of the tasks competing for the mu-
tex.

Pointer to error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.

* OS_ERR_CREATE_ISR -Yyou attempted to create amutex from an ISR

* OS_PRIO_EXIST -atask at thepriority inheritance priority already ex-
ist.

* OS_ERR_PEVENT NULL - no more event control blocks available.

* OS_PRIO INVALID -if thepriority you specify ishigher that the max-
imum allowed (i.e. > 0S _LOWEST PRIO)

Pointer to the event control clock (OS EVENT) associated with
the created mutex.

Error detected.

Dynamic C Functions

rabbit.com 279

http://www.rabbit.com

OSMutexDel

OS_EVENT *OSMutexDel(OS EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

Thisfunction deletes amutua exclusion semaphore and readies all tasks pending on it. Note
that:

» Thisfunction must be used with care. Tasksthat would normally expect the presence of the
mutex MUST check the return code of 0SMutexPend () .

» Thiscall can potentialy disable interrupts for along time. Theinterrupt disabletimeis
directly proportional to the number of tasks waiting on the mutex.

» Because ALL tasks pending on the mutex will be readied, you MUST be careful because the
resource(s) will no longer be guarded by the mutex.

PARAMETERS
pevent Pointer to mutex’s event control block.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete mutex only if no task pending
* OS_DEL_ALWAYS - Deletesthe mutex even if tasks are waiting. In this
case, all pending tasks will be readied.
err Pointer to an error code that can contain one of the following values:
* OS_NO_ERR - Thecall was successful and the mutex was del eted
* OS_ERR_DEL_ ISR - Attempted to delete the mutex from an ISR
* OS_ERR_INVALID OPT - Aninvalid option was specified
* OS_ERR_TASK WAITING - One or more tasks were waiting on the
mutex
* OS_ERR _EVENT TYPE - If you didn't pass apointer to amutex point-
er.
RETURN VALUE
pevent On error.
(0OS_EVENT *)0 Mutex was del eted.
LIBRARY

0OS_MUTEX.C

280 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexPend

void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

This function waits for amutual exclusion semaphore. Note that:

» Thetask that owns the Mutex MUST NOT pend on any other event while it owns the mutex.
* You MUST NOT change the priority of the task that owns the mutex.

PARAMETERS
pevent

timeout

err

LIBRARY
0S_MUTEX.C

Pointer to mutex’s event control block.

Optional timeout period (in clock ticks). If non-zero, your task will wait for
the resource up to the amount of time specified by this argument. If you
specify 0, however, your task will wait forever at the specified mutex or,
until the resource becomes available.

Pointer to where an error message will be deposited. Possible error mes-
sages are:

OS_NO_ERR - The call was successful and your task owns the mutex
OS_TIMEOUT - The mutex was not available within the specified time.
OS_ERR_EVENT TYPE - If you didn't pass a pointer to a mutex
OS_ERR_PEVENT NULL - pevent isanull pointer

OS_ERR_PEND_ ISR -Ifyoucaledthisfunctionfroman ISR andthere-
sult would lead to a suspension.

Dynamic C Functions

rabbit.com

281

http://www.rabbit.com

OSMutexPost

INT8U OSMutexPost(OS_EVENT * pevent);
DESCRIPTION
This function signals a mutual exclusion semaphore.

PARAMETERS

pevent Pointer to mutex’s event control block.

RETURN VALUE

O0S _NO ERR The call was successful and the mutex was signaled.
0S_ERR_EVENT TYPE If you didn't pass a pointer to a mutex
OS_ERR_PEVENT NULL pevent isanull pointer

O0S _ERR _POST ISR Attempted to post from an ISR (invalid for mutexes)

0S_ERR_NOT MUTEX OWNER Thetask that did the postisNOT the owner of the MUTEX.

LIBRARY
0S_MUTEX.C

282 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexQuery

INT8U OSMutexQuery(OS EVENT * pevent, OS MUTEX DATA * pdata);

DESCRIPTION
This function obtains information about a mutex.

PARAMETERS
pevent Pointer to the event control block associated with the desired mutex.
pdata Pointer to a structure that will contain information about the mutex.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent
O0S_ERR_QUERY ISR Function was called from an ISR
0S_ERR_PEVENT NULL pevent isanull pointer
0S_ERR_EVENT TYPE Attempting to obtain data from anon mutex.

LIBRARY
0S_MUTEX.C

Dynamic C Functions rabbit.com 283

http://www.rabbit.com

OSQAccept

void * OSQAccept(OS EVENT * pevent);

DESCRIPTION

Checksthe queueto seeif amessage isavailable. Unlike 0SQPend (), with0OSQAccept ()
the calling task is not suspended if amessageis unavailable.

PARAMETERS
pevent Pointer to the message queue’s event control block.

RETURN VALUE
Pointer to message in the queue if oneis available, null pointer otherwise.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQCreate, OSQFlush, 0OSQPend, OSQPost, OSQPostFront, 0OSQQuery

284 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQCreate

OS_EVENT * OSQCreate(void ** start, INT1l6U gsize);

DESCRIPTION
Creates a message queue if event control blocks are available.

PARAMETERS
start Pointer to the base address of the message queue storage area. The storage
area MUST be declared an array of pointersto void: void
*MessageStorage [gsize] .
gsize Number of elements in the storage area.

RETURN VALUE

Pointer to message queue's event control block or null pointer if no event control blocks were
available.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQFlush, 0OSQPend, OSQPost, OSQPostFront, 0OSQQuery

Dynamic C Functions rabbit.com

285

http://www.rabbit.com

O0SQDel

OS_EVENT * OSQDel(OS_ EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION
Deletes amessage queue and readies all tasks pending on the queue. Note that:

 Thisfunction must be used with care. Tasks that would normally expect the presence of the
gueue MUST check the return code of 0SQPend ().

* 0SQAccept () callerswill not know that the intended queue has been deleted unless they
check pevent to seethat it'sanull pointer.

» Thiscall can potentially disable interrupts for along time. Theinterrupt disabletimeis
directly proportional to the number of tasks waiting on the queue.

» Because al tasks pending on the queue will be readied, you must be careful in applications
where the queue is used for mutual exclusion because the resource(s) will no longer be
guarded by the queue.

« |If the storage for the message queue was allocated dynamicaly (i.e., usingamalloc () type
call) then your application must release the memory storage by call the counterpart call of the
dynamic allocation scheme used. If the queue storage was created statically then, the storage

can be reused.
PARAMETERS

pevent Pointer to the queue’s event control block.

opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete queue only if no task pending
* OS_DEL_ALWAYS - Deletesthe queue even if tasksare waiting. In this

case, all the tasks pending will be readied.
err Pointer to an error code that can contain one of the following:

* OS_NO_ERR - Call was successful and queue was deleted
* OS_ERR_DEL_ISR - Attempt to delete queue from an ISR
* OS_ERR_INVALID OPT - Invalid option was specified

* OS_ERR TASK WAITING - Oneor more taskswere waiting on the
queue

* OS_ERR_EVENT TYPE - You didn't pass a pointer to aqueue
* OS_ERR_PEVENT NULL - If pevent isanull pointer.

RETURN VALUE

pevent Error
(0OS_EVENT *)0 The queue was successfully deleted.
LIBRARY

OS_Q.C (Prior to DC 8:UC0S2.LIB)

286 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQFlush

INT8U OSQFlush(OS EVENT * pevent);

DESCRIPTION
Flushes the contents of the message queue.
PARAMETERS

pevent Pointer to message queue’s event control block.

RETURN VALUE
0S_NO_ERR Success.
0S_ERR_EVENT TYPE A pointer to a queue was not passed.
0S_ERR _PEVENT NULL If pevent isanull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQPend, OSQPost, OSQPostFront, 0OSQQuery
Dynamic C Functions rabbit.com 287

http://www.rabbit.com

O0SQPend

void * OSQPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION
Waits for amessage to be sent to a queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
timeout Allow task to resume execution if amessage was not received by the num-
ber of clock ticks specified. Specifying 0 meansthe task iswilling to wait
forever.
err Pointer to a variable for holding an error code.

RETURN VALUE
Pointer to a message or, if atimeout occurs, anull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQFlush, OSQPost, OSQPostFront, OSQQuery

288 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPost

INT8U OSQPost(OS_EVENT * pevent, void * msg);

DESCRIPTION
Sends a message to the specified queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

0S_NO ERR The call was successful and the message was sent.

0S Q FULL The queue cannot accept any more messages becauseitisfull.

OS_ERR_EVENT TYPE [f apointer to aqueue not passed.

0S_ERR_PEVENT NULL If pevent isanull pointer.
0S_ERR_POST NULL PTR If attempting to post to anull pointer.
LIBRARY

OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQFlush, 0OSQPend, OSQPostFront, OSQQuery

Dynamic C Functions rabbit.com

289

http://www.rabbit.com

OSQPostFront

INT8U OSQPostFront(OS EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified queue, but unlike 0sQPost (), the message is posted at the
front instead of the end of the queue. Using 0SQPostFront () alows'priority' messagesto

be sent.
PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

0S_NO ERR The call was successful and the message was sent.

0S Q FULL The queue cannot accept any more messages because it isfull.
0S_ERR_EVENT TYPE A pointer to a queue was not passed.

0S_ERR_PEVENT NULL If pevent isanull pointer.

0S_ERR_POST NULL PTR Attempting to post to a non mailbox.

LIBRARY
OS_Q.C (Prior to DC 8:UC0OS2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQFlush, 0OSQPend, OSQPost, OSQQuery

290 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPostOpt

INT8U OSQPostOpt(OS EVENT * pevent, void * msg, INT8U opt);

DESCRIPTION
This function sends a message to aqueue. This call has been added to reduce code size since it
can replace both 0SQPost () and 0SQPostFront (). Also, thisfunction adds the capabil-
ity to broadcast a message to all tasks waiting on the message queue.

Note: Interrupts can be disabled for along time if you do a“broadcast.” In fact, the inter-
rupt disable timeis proportional to the number of tasks waiting on the queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:
* OS_POST OPT_NONE - POST to asingle waiting task (Identical to
0SQPost ())
* OS_POST_ OPT BROADCAST - POST to ALL tasksthat arewaiting on
the queue

* OS _POST OPT FRONT - POST asLIFO (Simulates
OSQPostFront ())

The last 2 flags may be combined:

* OS_POST OPT_ FRONT +0S_POST_OPT BROADCAST -isidenti-
cal to0SQPostFront () except that it will broadcast msg to all wait-

ing tasks.
RETURN VALUE
0S_NO ERR The call was successful and the message was sent.
0S_Q FULL The queueisfull, cannot accept any more messages.
OS_ERR_EVENT TYPE A pointer to a queue was not passed.
O0S_ERR_PEVENT NULL If pevent isanull pointer.

0S_ERR_POST NULL PTR Attempting to post anull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Functions rabbit.com 291

http://www.rabbit.com

OSQQuery

INT8U OSQQuery(OS EVENT * pevent, OS Q DATA * pdata);

DESCRIPTION
Obtains information about a message queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
pdata Pointer to a data structure for message queue information.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent
OS_ERR_EVENT TYPE Attempting to obtain data from anon queue.
OS_ERR _PEVENT NULL If pevent isanull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO

OSQAccept, OSQCreate, OSQFlush, 0OSQPend, OSQPost, OSQPostFront

292 rabbit.com

Dynamic C Functions

http://www.rabbit.com

O0SSchedLock

void 0SSchedLock(wvoid);

DESCRIPTION

Prevents task rescheduling. This allows an application to prevent context switches until it is
ready for them. There must be a matched call to 0SSchedUnlock () for every cal to
0SSchedLock ().

LIBRARY
UCOS2.LIB

SEE ALSO
0SSchedUnlock

0SSchedUnlock

void 0SSchedUnlock(void);

DESCRIPTION

Allow task rescheduling. There must beamatched call to 0SSchedUnlock () forevery cal
to 0SSchedLock ().

LIBRARY
UCO0S2.LIB

SEE ALSO
0SSchedLock

Dynamic C Functions rabbit.com 293

http://www.rabbit.com

OSSemAccept

INT16U OSSemAccept(OS EVENT * pevent);

DESCRIPTION

Thisfunction checks the semaphore to seeif aresourceisavailable or if an event occurred. Un-
like 0OSSemPend (), 0OSSemAccept () does not suspend the calling task if the resourceis
not available or the event did not occur.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value;

If >0, semaphore value is decremented; valueis returned before the decrement.

If 0, then either resource is unavailable, event did not occur, or null or invalid pointer was
passed to the function.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemCreate, 0OSSemPend, OSSemPost, 0OSSemQuery

294 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSSemCreate

OS_EVENT * OSSemCreate(INT16U cnt);

DESCRIPTION
Creates a semaphore.
PARAMETERS
cnt The initial value of the semaphore.

RETURN VALUE

Pointer to the event control block (0S EVENT) associated with the created semaphore, or null
if no event control block is available.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, OSSemPend, OSSemPost, 0OSSemQuery

OSSemPend

void OSSemPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION
Waits on a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
timeout Timein clock ticksto wait for the resource. If O, the task will wait until the
resource becomes available or the event occurs.
err Pointer to error message.
LIBRARY
UCOS2.LIB
SEE ALSO

OSSemAccept, OSSemCreate, OSSemPost, OSSemQuery

Dynamic C Functions rabbit.com

295

http://www.rabbit.com

OSSemPost

INT8U OSSemPost(OS EVENT * pevent);

DESCRIPTION
This function signals a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block

RETURN VALUE
O0S _NO ERR The call was successful and the semaphore was signaled.

0S_SEM OVF If the semaphore count exceeded itslimit. In other words, you have
signalled the semaphore more often than you waited onit with either
OSSemAccept () or 0OSSemPend ().

OS_ERR_EVENT TYPE If apointer to a semaphore not passed.
0S_ERR_PEVENT NULL If pevent isanull pointer.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, 0SSemPend, OSSemQuery

296 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSSemQuery

INT8U OSSemQuery(OS_ EVENT * pevent, OS_SEM DATA * pdata);

DESCRIPTION
Obtains information about a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
pdata Pointer to a data structure that will hold information about the semaphore.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent.
OS_ERR_EVENT TYPE Attempting to obtain data from a non semaphore.
0S_ERR_PEVENT NULL If thepevent parameter isanull pointer.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, 0OSSemPend, OSSemPost

Dynamic C Functions rabbit.com

297

http://www.rabbit.com

OSSetTickPerSec

INT16U OSSetTickPerSec(INT16U TicksPerSec):;

DESCRIPTION

Setsthe amount of ticks per second (from 1 - 2048). Ticks per second defaultsto 64. I thisfunc-
tionisused, the#define OS_TICKS PER_SEC needsto bechanged so that thetime delay
functions work correctly. Since this function uses integer division, the actual ticks per second
may be slightly different that the desired ticks per second.

PARAMETERS
TicksPerSec Unsigned 16-bit integer.

RETURN VALUE
The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSStart

OSStart

void OSStart(wvoid);

DESCRIPTION

Starts the multitasking process, allowing pC/OS-11 to manage the tasks that have been created.
Beforeosstart () iscaled, 0SInit () MUST have been called and at least one task
MUST have been created. This function calls0SStartHighRdy which calls
0STaskSwHook and sets OSRunning to TRUE.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExXt

298 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSStatInit

void OSStatInit(void);
DESCRIPTION
Determines CPU usage.

LIBRARY
UCOS2.LIB

OSTaskChangePrio

INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

DESCRIPTION
Allows atask's priority to be changed dynamically. Note that the new priority MUST be avail-
able.
PARAMETERS
oldprio The priority level to change from.
newprio The priority level to changeto.

RETURN VALUE

0S_NO ERR The call was successful.

0S PRIO INVALID The priority specified is higher that the maximum allowed (i.e. >
OS_LOWEST PRIO).

OS_PRIO_EXIST The new priority aready exist

0S PRIO ERR Thereis no task with the specified OLD priority (i.e. the OLD task
does not exist).

LIBRARY
UCOS2.LIB

Dynamic C Functions rabbit.com 299

http://www.rabbit.com

OSTaskCreate

INT8U OSTaskCreate(void (*task) (), void *pdata, INT16U stk_size,

INT8U prio);

DESCRIPTION

Creates atask to be managed by uC/OS-I1. Tasks can either be created prior to the start of mul-
titasking or by arunning task. A task cannot be created by an ISR.

PARAMETERS
task Pointer to the task’s starting address.
pdata Pointer to atask’s initial parameters.
stk size Number of bytes of the stack.
prior The task’s unique priority number.

RETURN VALUE
0S_NO_ERR

OS PRIO EXIT

OS PRIO INVALID

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreateExt

The call was successful.

Task priority aready exists (each task MUST have a unique priori-
ty).

The priority specified is higher than the maximum alowed (i.e. >
OS_LOWEST PRIO).

300

rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskCreateExt

INT8U OSTaskCreateExt(void (* task) (), void * pdata, INT8U prio,
INT16U id, INT16U stk size, void * pext, INT1l6U opt);

DESCRIPTION

Creates atask to be managed by uC/OS-I1. Tasks can either be created prior to the start of mul-
titasking or by arunning task. A task cannot be created by an ISR. Thisfunction issimilar to
OSTaskCreate () except that it allows additional information about a task to be specified.

PARAMETERS

task Pointer to task’s code.

pdata Pointer to optional dataarea; used to pass parameters to the task at start of
execution.

prio The task’s unique priority number; the lower the number the higher the pri-
ority.

id The task’s identification number (0...65535).

stk_size Size of the stack in number of elements. If 0OS_STK isset to INT8U,
stk_size corresponds to the number of bytes available. If 0OS_STK is
Setto INT16U, stk_size containsthe number of 16-bit entries avail-
able. Finally, if 0OS_STKissetto INT32U, stk_size containsthe num-
ber of 32-bit entries available on the stack.

pext Pointer to a user-supplied Task Control Block (TCB) extension.

opt Thelower 8 bits are reserved by uC/OS-I1. The upper 8 bits control appli-
cation-specific options. Select an option by setting the corresponding
bit(s).

RETURN VALUE
0S_NO ERR The call was successful.
0S_PRIO EXIT Task priority aready exists (each task MUST have a unique priori-
ty).
0S_PRIO INVALID The priority specified is higher than the maximum allowed

(i.e.>0S_LOWEST_PRIO).

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreate

Dynamic C Functions rabbit.com 301

http://www.rabbit.com

OSTaskCreateHook

void OSTaskCreateHook(OS TCB * ptcb);

DESCRIPTION

Cdled by uC/OS-11 whenever atask is created. This call-back function residesin
UCos2.LIB and extends functionality during task creation by allowing additional informa-
tion to be passed to the kernel, anything associated with atask. This function can also be used
to trigger other hardware, such as an oscilloscope. Interrupts are disabled during this call, there-
fore, it is recommended that code be kept to a minimum.

PARAMETERS

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskDelHook

302 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskDel

INT8U OSTaskDel(INT8U prio);

DESCRIPTION

Deletes atask. The calling task can delete itself by passing either its own priority number or
OS_PRIO_SELF if it doesn’t know its priority number. The deleted task isreturned to the dor-
mant state and can be re-activated by creating the deleted task again.

PARAMETERS

prio Task’s priority number.

RETURN VALUE
0S_NO_ERR
0S_TASK DEL_IDLE

OS PRIO INVALID

0S_TASK DEL_ERR

0S_TASK DEL_ISR

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskDelReq

The call was successful.
Attempting to delete uC/OS-II's idle task.

The priority specified is higher than the maximum allowed (i.e. >
OS_LOWEST PRIO)oOr,0S PRIO SELF not specified.

Thetask to delete does not exist.
Attempting to delete atask from an ISR.

Dynamic C Functions

rabbit.com

303

http://www.rabbit.com

OSTaskDelHook

void OSTaskDelHook(OS TCB * ptcb);

DESCRIPTION

Cdlled by uC/OS-11 whenever atask isdeleted. This call-back function residesin
UC0S2.LIB. Interruptsaredisabled during thiscall, therefore, it is recommended that code
be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreateHook

304 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskDelReq

INT8U OSTaskDelReqg(INT8U prio);

DESCRIPTION

Notifiesatask to deleteitself. A well-behaved task is deleted when it regains control of the CPU
by calling 0STaskDelReq (0STaskDelReq) and monitoring the return value.

PARAMETERS
prio The priority of the task that is being asked to delete itself.
OS_PRIO_SELF isused when asking whether another task wants the
current task to be deleted.
RETURN VALUE
0S_NO_ERR Thetask exists and the request has been registered.

OS_TASK_NOT EXIST The task has been deleted. This allowsthe caller to know whether
the request has been executed.

OS_TASK DEL IDLE If requesting to delete uC/OS-II's idletask.
0S_PRIO INVALID The priority specified is higher than the maximum alowed (i.e. >
OS_LOWEST PRIO)oOr,0S PRIO_SELF isnot specified.
0S_TASK_DEL REQ A task (possibly another task) requested that the running task be de-
leted.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDel

Dynamic C Functions rabbit.com 305

http://www.rabbit.com

OSTaskIdleHook

void OSTaskIdleHook(void);

DESCRIPTION

Thisfunctioniscalled by theidletask. This hook has been added to allow you to do such things
as STOP the CPU to conserve power. Interrupts are enabled during this call.

LIBRARY
UCOs2.LIB

OSTaskQuery

INT8U OSTaskQuery(INT8U prio, OS TCB * pdata);

DESCRIPTION
Obtains a copy of the requested task's task control block (TCB).

PARAMETERS
prio Priority number of the task.
pdata Pointer to task's TCB.

RETURN VALUE

0S_NO ERR The requested task is suspended.
0S PRIO INVALID The priority you specify ishigher than the maximum allowed (i.e. >
OS_LOWEST PRIO)oOr,0S PRIO_SELF isnot specified.
0S PRIO ERR The desired task has not been created.
LIBRARY
UCOS2.LIB

306 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskResume

INT8U OSTaskResume(INT8U prio);

DESCRIPTION
Resumes a suspended task. Thisisthe only call that will remove an explicit task suspension.
PARAMETERS

prio The priority of the task to resume.

RETURN VALUE
0S _NO ERR The requested task is resumed.

0S_PRIO INVALID The priority specified is higher than the maximum allowed (i.e. >
OS_LOWEST PRIO).

0S_TASK_NOT SUSPENDED Thetask to resume has not been suspended.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskSuspend

OSTaskStatHook

void OSTaskStatHook(void);

DESCRIPTION

Cdlled every second by uC/OS-II's statistics task. Thisfunction residesinucos2 . 1L.IB and al-
lows an application to add functionality to the statistics task.

LIBRARY
UCOS2.LIB

Dynamic C Functions rabbit.com 307

http://www.rabbit.com

OSTaskStkChk

INT8U OSTaskStkChk(INT8U prio, OS STK DATA * pdata);

DESCRIPTION
Check the amount of free memory on the stack of the specified task.

PARAMETERS
prio The task’s priority.
pdata Pointer to a data structure of type OS_STK _DATA.

RETURN VALUE
0S_NO ERR The call was successful.

0S PRIO INVALID The priority you specify ishigher than the maximum alowed (i.e. >
OS_LOWEST PRIO)Or,0S PRIO_SELF not specified.

OS TASK NOT EXIST The desired task has not been created.

0S_TASK_OPT_ERR If OS_TASK OPT STK_ CHK wasNOT specified when the task
was created.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskCreateExt

308 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskSuspend

INT8U OSTaskSuspend(INT8U prio);

DESCRIPTION

Suspends atask. Thetask can bethe caling task if the priority passedto 0STaskSuspend ()
isthe priority of the callingtask or 0OS_ PRIO SELF. Thisfunction should be used with great
care. If atask is suspended that iswaiting for an event (i.e., amessage, asemaphore, aqueue...)
the task will be prevented from running when the event arrives.

PARAMETERS

prio The priority of the task to suspend.

RETURN VALUE
0S_NO_ERR
0S_TASK_SUS_IDLE

OS PRIO INVALID

0S_TASK_SUS_PRIO

LIBRARY
UCOS2.LIB

SEE ALSO

OSTaskResume

The requested task is suspended.
Attempting to suspend the idle task (not allowed).

The priority specified is higher than the maximum allowed (i.e. >
OS_LOWEST PRIO)oOr,0S PRIO_SELF isnot specified.

The task to suspend does not exist.

Dynamic C Functions

rabbit.com

309

http://www.rabbit.com

OSTaskSwHook

void OSTaskSwHook (void);

DESCRIPTION

Called whenever a context switch happens. The task control block (TCB) for the task that is
ready to run isaccessed viathe global variable 0STCBHi ghRdy, and the TCB for thetask that
is being switched out is accessed viathe global variable 0STCBCur.

LIBRARY
UCOS2.LIB

OSTCBInitHook

void OSTCBInitHook(OS_TCB * ptcb);

DESCRIPTION

Thisfunctioniscalledby 0OSTCBInit () after setting up most of thetask control block (TCB).
Interrupts may or may not be enabled during this call.

PARAMETER

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOs2.LIB

310 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeDly

void OSTimeDly(INT16U ticks);

DESCRIPTION

Delays execution of the task for the specified number of clock ticks. No delay will result if
ticks isO.If ticks is>0, then acontext switch will result.

PARAMETERS
ticks Number of clock ticks to delay the task.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDlyHMSM, OSTimeDlyResume, OSTimeDlySec

Dynamic C Functions rabbit.com 311

http://www.rabbit.com

OSTimeDlyHMSM

INT8U OSTimeDlyHMSM(INT8U hours, INT8U minutes, INT8U seconds,
INT16U milli);

DESCRIPTION

Delays execution of the task until specified amount of time expires. This call allows the delay
to be specified in hours, minutes, seconds and milliseconds instead of ticks. The resolution on
the milliseconds depends on thetick rate. For example, a10 msdelay isnot possibleif theticker
interrupts every 100 ms. In this case, the delay would be set to 0. The actual delay isrounded to

the nearest tick.
PARAMETERS
hours Number of hours that the task will be delayed (max. is 255)
minutes Number of minutes (max. 59)
seconds Number of seconds (max. 59)
milli Number of milliseconds (max. 999)

RETURN VALUE
0S_NO ERR Execution delay of task was successful
OS_TIME INVALID MINUTES Minutesparameter out of range
0S TIME INVALID SECONDS Seconds parameter out of range
0S_TIME INVALID MS Milliseconds parameter out of range
0S_TIME ZERO DLY

LIBRARY
OS TIME.C (Prior to DC 8:ucos2.1lib)

SEE ALSO
OSTimeDly, OSTimeDlyResume, OSTimeDlySec

312 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeDlyResume

INT8U OSTimeDlyResume(INT8U prio);

DESCRIPTION

Resumes atask that has been delayed through acall to either 0STimeD1y () or
0STimeD1yHMSM (). Notethat thisfunction MUST NOT be called to resume atask that is
waiting for an event with timeout. This situation would make the task look like atimeout oc-
curred (unless thisisthe desired effect). Also, atask cannot be resumed that has called
0STimeD1yHMSM () with acombined timethat exceeds 65535 clock ticks. In other words, if
the clock tick runs at 100 Hz then, adelayed task will not be able to be resumed that called
OSTimeDlyHMSM (0, 10, 55, 350) or higher.

PARAMETERS

prio Priority of the task to resume.

RETURN VALUE
0S_NO ERR Task has been resumed.

0S_PRIO INVALID The priority you specify is higher than the maximum allowed (i.e. >
OS_LOWEST PRIO).

0S_TIME NOT DLY Task is not waiting for time to expire.
OS_TASK_NOT EXIST The desired task has not been created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDly, OSTimeDlyHMSM, OSTimeDlySec

Dynamic C Functions rabbit.com 313

http://www.rabbit.com

OSTimeDlySec

INT8U OSTimeDlySec(INT16U seconds);

DESCRIPTION

Delays execution of the task until seconds expires. Thisis alow-overhead version of
0STimeD1yHMSM for seconds only.

PARAMETERS

seconds The number of seconds to delay.

RETURN VALUE

0S_NO ERR The call was successful.

OS TIME ZERO DLY A delay of zero seconds was requested.
LIBRARY

UCOS2.LIB
SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume

314 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeGet

INT32U OSTimeGet(void);

DESCRIPTION
Obtain the current value of the 32-bit counter that keeps track of the number of clock ticks.

RETURN VALUE
The current value of 0STime.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeSet

OSTimeSet

void OSTimeSet (INT32U ticks):;

DESCRIPTION
Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS

ticks The valueto set 0STime to.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeGet

Dynamic C Functions rabbit.com 315

http://www.rabbit.com

OSTimeTick

void OSTimeTick(void);

DESCRIPTION

Thisfunction takes care of the processing necessary at the occurrence of each systemtick. This
functioniscalled from the BIOS timer interrupt | SR, but can a so be called from ahigh priority
task. The user definable 0STimeTickHook () iscalled from thisfunction and allows for
extra application specific processing to be performed at each tick. Since

0STimeTickHook () iscalled during an interrupt, it should perform minimal processing as
it will directly affect interrupt latency.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeTickHook

OSTimeTickHook

void OSTimeTickHook(void);

DESCRIPTION

Thisfunction, asincluded with Dynamic C, isastub that does nothing except return. It iscalled
every clock tick. Code in this function should be kept to aminimum asit will directly affect
interrupt latency. This function must preserve any registers it uses other than the ones that are
preserved at the beginning of the periodic interrupt (periodic isr in VDRIVER.LIB),
and therefore should be written in assembly. At the time of this writing, the registers saved by
periodic_ isr are: AFIPHL,DE and IX.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTimeTick

316 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSVersion

INT16U OSVersion(void);

DESCRIPTION
Returnsthe version number of uC/OS-11. The returned value correspondsto pC/OS-I1'sversion
number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE
Version number multiplied by 100.

LIBRARY
UCOs2.LIB

outchrs

char outchrs(char ¢, int n, int (*putc) ());

DESCRIPTION
Use putc to output n times the character c.

PARAMETERS
c Character to output
n Number of times to output
putc Routine to output one character. The function pointed to by putc should

take a character argument.

RETURN VALUE
The character in parameter c.

LIBRARY
STDIO.LIB

SEE ALSO

outstr

Dynamic C Functions rabbit.com 317

http://www.rabbit.com

outstr

char * outstr(char * string, int (*putc) ());

DESCRIPTION
Output the string pointed to by st ring viacalstoputc. putc should take a one-character
parameter.
PARAMETERS
string String to output
putc Routine to output one character. The function pointed to by putc should

take a character argument.

RETURN VALUE
Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO

outchrs

318 rabbit.com Dynamic C Functions

http://www.rabbit.com

paddr

unsigned long paddr(void * pointer);

DESCRIPTION

Convertsalogical pointer into its physical address. Thisfunction is compatiblewith both shared
and separate |1& D space compile modes. Use caution when converting a pointer in the xmem
window, i.e., in the range OxEOOO to OxFFFF, as this function will return the physical address

based on the XPC on entry.
PARAMETERS
pointer The pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddrDS, paddrSS

Dynamic C Functions rabbit.com 319

http://www.rabbit.com

paddrDS

unsigned long paddrDS(void * pointer);

DESCRIPTION

Convertsa"Data Segment" logical pointer into its physical address. Thisfunction assumesthe
pointer pointsto static (excluding bbram) data, which eliminates some runtime testing as
compared with the more general function, paddr () .

paddrDs () will generate incorrect results if used for:

* addressesin theroot code (that is, program code or constants)
* bbram (only available in fast RAM compile mode)

stack (that is, auto variables)

* Xmem segments

PARAMETERS

pointer Logical static (non-bbram) data pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddr, paddrSS

320 rabbit.com Dynamic C Functions

http://www.rabbit.com

paddrsSs

unsigned long paddrSS(void * pointer);

DESCRIPTION

Convert alogical pointer into its physical address. This function assumes the pointer points to
datain the stack segment, which eliminates some runtime testing compared with the more gen-
eral function, paddr () . The stack segment is used to store auto dataitems. This function
will generate incorrect results if used for addresses in the root code (i.e. program code or con-
stants), data (i.e. statically allocated variables), or xmem segments.

PARAMETERS

pointer The pointer to convert, pointing to stack (auto) data.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddr, paddrDS

Dynamic C Functions rabbit.com

321

http://www.rabbit.com

palloc

void * palloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pfree () to avoid memory leaks.

Assembler code cancall palloc_fast () instead.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free e ements available
Otherwise, pointer to an element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pcalloc, pfree, phwm, pavail, palloc fast, pxalloc,
pool link

322 rabbit.com Dynamic C Functions

http://www.rabbit.com

palloc fast

xmem void * palloc_fast(Pool t * p);

DESCRIPTION
Return next available free element from the given pool, which must be aroot pool.

Thisis an assembler-only version of palloc ().
*** Do _not_ cal thisfunction from C. ***

palloc_fast doesnot perform any IPSET protection, parameter validation, or update the
high-water mark. palloc_fast isaroot function. The parameter must be passedin X, and
the returned element addressisin HL.

REGISTERS

Parameter in I1X
TrashesF, BC, DE
Return valuein HL, carry flag.

EXAMPLE

1d ix,my pool

lcall palloc fast

jr c,.no_free

; HL points to element

PARAMETERS

P Pool handle structure, as previously passed to pool init (). Passthis
inlX.

RETURN VALUE
C flag set: no free elements were available.
C flag clear (NC): HL pointsto an element.

If the pool is not linked, your application can use this element provided it does not write more
than p->elsize bytestoit (thiswasthe elsize parameter passed to pool init ()). If
the pool islinked, you can writep->elsize-4 bytestoit.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, palloc

Dynamic C Functions rabbit.com 323

http://www.rabbit.com

pavail

word pavail(Pool t * p);

DESCRIPTION
Return the number of elementsthat are currently available for allocation.

PARAMETERS

p Pool handle structure, as previously passed to pool init ()or
pool xinit ().

RETURN VALUE
Number of elements available for allocation.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

324 rabbit.com Dynamic C Functions

http://www.rabbit.com

pavail fast

xmem word pavail fast(Pool t * p);

DESCRIPTION
Return the number of elements that are currently available for allocation.

Thisis an assembler-only version of pavail ().

*** Do _not_ cal thisfunction from C. ***

REGISTERS

Parameter in IX
Trashes F, DE
Returnvaluein HL, Z flag

EXAMPLE

1d ix,my pool
lcall pavail fast
; HL contains number of available elements

PARAMETERS

p Pool handle structure, as previously passed to pool init ()or
pool xinit (). Thismust be provided inthelX register.

RETURN VALUE

Number of elements available for allocation. The return valueis placed in HL. In addition, the
'Z' flagis set if there are no free elements.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

Dynamic C Functions rabbit.com 325

http://www.rabbit.com

pcalloc

void * pcalloc(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free elements were available

Otherwise, pointer to an el ement. If the pool is not linked, your application must not write more
than p->elsize bytesto the element (thiswasthe elsize parameter passed to

pool init ()). Theapplicationcanwriteupto(p->elsize-4) bytestotheelementif the
pool islinked. (An element in root memory has 4 bytes of overhead when the pool islinked.)

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pfree, phwm, pavail

326 rabbit.com Dynamic C Functions

http://www.rabbit.com

pfirst

void * pfirst(Pool t * p);

DESCRIPTION
Get thefirst allocated element in aroot pool. The pool MUST be set to being alinked pool us-
ing:
pool link(p, <non-zero>)

Otherwise, the result is undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: There are no allocated elements
Otherwise, pointer to first (i.e., oldest) allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, plast, pnext, pprev

Dynamic C Functions rabbit.com 327

http://www.rabbit.com

pfirst fast

xmem void * pfirst fast(Pool t * p);

DESCRIPTION
Get the first allocated element in aroot pool. The pool MUST be set to being alinked pool by
using:
pool link(p, <non-zero>) ;
Otherwise the results are undefined.
Thisis an assembler-only version of pfirst ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parameter in I1X
TrashesF, DE
Return valuein HL, carry flag

EXAMPLE

1d ix,my pool

lcall pfirst fast

jr ¢, .no _elems

; HL points to first element

PARAMETERS

p Pool handle structure, as previously passed to pool init (). Passthis
inthe X register.

RETURN VALUE

C flag set, HL=0: There are no allocated elements.
C flag clear (NC): HL pointsto first element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, pfirst, pnext fast

328 rabbit.com Dynamic C Functions

http://www.rabbit.com

pfree

void pfree(Pool t * p, void * e);

DESCRIPTION
Free an element that was obtained viapalloc (). Note: if you free an element that was not
allocated from this pool, or was already free, or was outside the poal, then your application will
crash! You can detect most of these programming errors by defining the following symbols be-
fore fuse pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previoudy passedto palloc ().
e Element to free, which was returned frompalloc ().

RETURN VALUE
None

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pcalloc, phwm, pavail

Dynamic C Functions rabbit.com

329

http://www.rabbit.com

pfree fast

xmem void pfree fast(Pool t * p, void * e);

DESCRIPTION

Free an element that was previously obtained viapalloc ().

Thisis an assembler-only version of pfree ().

*** Do _not_ cal thisfunction from C. ***

pfree fast doesnot performany IPSET protection or parameter validation.pfree fast
isaxmem function. The parameters must be passed in machine registers.

REGISTERS

Parametersin IX, DE respectively
Trashes BC, DE, HL

EXAMPLE

1d ix,my pool
1d de, (element addr)
lcall pfree fast

PARAMETERS

p

RETURN VALUE
None

LIBRARY
POOL.LIB

SEE ALSO

Pool handle structure, as previously passed to pool alloc ()or
palloc fast. Thismust beinthelX register.

Element to free, whichwasreturned frompalloc (). Thismust beinthe
DE register.

pool init, palloc fast, pavail fast, pxfree fast

330

rabbit.com Dynamic C Functions

http://www.rabbit.com

word phwm(Pool t * p);

DESCRIPTION

Return the largest number of elements ever simultaneously allocated from the given poadl, i.e.,
the pool high water mark.

You can use thisfunction to help size apool, sinceit may be difficult to determine the optimum
number of elements without running atrial program.

PARAMETERS
p Pool handle structure, as previously passed to pool init () or

pool xinit ().

RETURN VALUE
Maximum number of elements ever allocated.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

Dynamic C Functions rabbit.com 331

http://www.rabbit.com

pktXclose

void pktXclose(void); /* X is A-F */

DESCRIPTION

Disables seria port X. ThefunctionspktEclose () andpktFclose () may beused with
the Rabbit 3000 and Rabbit 4000.

LIBRARY
PACKET.LIB

pktXgetErrors

char pktXgetErrors(void); /* X is A-F */

DESCRIPTION

Getsabit field with flags set for any errorsthat occurred on port X. Theseflagsare then cleared,
so that aparticular error will only cause the flag to be set once.

Thefunctions pktEgetErrors () and pktFgetErrors () may be used with the
Rabbit 3000 and Rabbit 4000.

RETURN VALUE
A bit field with flags for various errors. The errors along with their bit masks are as follows:

PKT BUFFEROVERFLOW O0x01

PKT RXOVERRUN 0x02
PKT PARITYERROR 0x04
PKT_ NOBUFFER 0x08

LIBRARY
PACKET.LIB

332 rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXinitBuffers

int pktXinitBuffers(int buf count, int buf size); /* X is A-F */

DESCRIPTION

Allocates extended memory for channel X receive buffers. This function should not be called
more than once in a program. The total memory allocated is buf_count* (buf_size + 2) bytes.

ThefunctionspktEinitBuffers () and pktFinitBuffers () may beused with the

Rabbit 3000 and Rabbit 4000.
PARAMETERS
buf count The number of buffersto allocate. Each buffer can store one received pack-

et. Increasing this number allowsfor more pending packets and alarger la-
tency time before packets must be processed by the user's program.

buf size The number of bytes each buffer can accommodate. This should be set to
the size of the largest possible packet that can be expected.

RETURN VALUE

1: Success, extended memory was allocated.
0: Failure, no memory allocated, the packet channel cannot be used.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com 333

http://www.rabbit.com

pktXopen

int pktXopen(long baud, int mode, char options, int (*test packet) ()

); /* X is A-F */

DESCRIPTION

Opens seria port X. The functions pktEopen () and pktFopen () may be used with the
Rabbit 3000 and Rabhit 4000.

The packet driver is meant to be used with avariety of transceiver hardware, so some functions
must be defined by the user. Each of these functions, listed below, take no arguments and return
nothing.

e pktXinit () - Initializesthe communication hardware. Called inside pkt Xopen () . This
function may bewrittenin C. It will only be called once each timethe packet driver isopened,
so speed is not amajor concern. Thisiswhere 1/O pins should be configured and any other
setup should be performed.

* pktXrx () - Setsthe hardware to receive data. This function must be written in assembly.
Any registers besides the 8-bit accumulator A must be preserved first, and restored before
returning. This function is called when the driver switches from transmit to receive mode
once there are no packets to send. Thisfunction is necessary for half-duplex connections and
other types of shared bus schemes so that the transmitter can be disabled, allowing other
nodes to use the lines.

» pktXtx () - Setsthe hardwareto transmit data. Thisfunction must be written in assembly.
The samerulesfor register usage asfor pktXrx () apply. Thisfunctionis called whenever
the driver switches from receive to transmit mode in response to an additional packet or
packets being available for sending. A typical use of thisfunction isto enable any necessary
transmitter hardware.

See the sample program Samples/PKTDEMO. C for an example of how to write these user-
supplied functions. See technical note TN213 “Rabbit Serial Port Software” for more informa-
tion on the packet driver.

334

rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXopen (cont’d)

PARAMETERS
baud

mode

options

test packet

RETURN VALUE

Bits per second of datatransfer: minimum is 2400.

Type of packet scheme used, the options are:

e PKT GAPMODE
e PKT 9BITMODE
e PKT CHARMODE

Further specification for the packet scheme. The value of this depends on
the mode used:
* gap mode - minimum gap size (in byte times)
* 9-hit mode - type of 9-bit protocol
e PKT RABBITSTARTBYTE
e PKT LOWSTARTBYTE
e PKT HIGHSTARTBYTE
* char mode - character marking start of packet

Pointer to afunction that tests for completeness of a packet. The function
should return 1 if the packet is complete, or O if more data should be read
in. For gap mode the test function is not used and should be set to null.

1: The Rabbit’s bps setting is within 5% of the input baud.
0: The Rabbit’s bps setting differs by more than 5% of the input baud

LIBRARY
PACKET.LIB

Dynamic C Functions

rabbit.com

335

http://www.rabbit.com

pktXreceive

int pktXreceive(void * buffer, int buffer size); /* X is A-F */

DESCRIPTION
Gets areceived packet, if thereis one, from serial port X.

ThefunctionspktEreceive () and pktFreceive () may be used with the Rabbit 3000
and Rabhit 4000.
PARAMETERS

buffer A buffer for the packet to be written into.

buffer size Length of the data buffer.

RETURN VALUE

>0: Number of bytesin the successfully received packet.
0: No new packet has been received.

- 1: The packet istoo large for the given buffer.

-2: A needed test packet function isnot defined.

LIBRARY
PACKET.LIB

336 rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXsend

int pktXsend(void *send buffer, int buffer length, char delay):;
/* X is A-F */

DESCRIPTION

Initiates the sending of a packet of data using seria port X. Thisfunction will alwaysreturnim-
mediately. If there is aready a packet being transmitted, this call will return 0 and the packet
will not be transmitted, otherwise it will return 1.

pktXsending () checksif the packet isdonetransmitting. The system will be using the buff-
er until then.

The functionspktEsend () and pktFsend () may be used with the Rabbit 3000 and
Rabbit 4000.

PARAMETERS
send buffer The data to be sent
buffer length Length of the data buffer to transmit

delay Thenumber of bytetimesto delay before sending the data (0-255) This
is used to implement protocol-specific delays between packets

RETURN VALUE

1: The packet is going to be transmitted.
0: Thereisalready a packet transmitting, and the new packet was refused.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com

337

http://www.rabbit.com

pktXsending

int pktXsending(void); /* X is A-F */

DESCRIPTION

Testsif apacket iscurrently being sent on serial port X. If pktXsending () returnstrue, the
transmitter is busy and cannot accept another packet.

The functions pktEsending () and pktFsending () may be used with the Rabbit 3000
and Rabbit 4000.

RETURN VALUE

1: A packet is being transmitted.
0: Port X isidle, ready for a new packet.

LIBRARY
PACKET.LIB

pktXsetParity

void pktXsetParity(char mode); /* X is A-F */

DESCRIPTION
Configures parity generation and checking. Can aso configure for 2 stop bits.

ThefunctionspktEsetParity () and pktFsetParity () may be used with the
Rabbit 3000 and Rabhit 4000.

PARAMETERS
mode Code for mode of parity bit:
* PKT NOPARITY - no parity bit (8N1 format, default)
* PKT OPARITY - odd parity (801 format)
* PKT EPARITY - even parity (8E1 format)
* PKT TWOSTOP - an extrastop bit (8N2 format)
LIBRARY

PACKET.LIB

338 rabbit.com Dynamic C Functions

http://www.rabbit.com

plast

void * plast(Pool t * p);

DESCRIPTION

Get thelast allocated element in aroot pool. The pool MUST be set to being alinked pool using
pool link(p, <non-zeros);otherwise, theresultsare undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

null: There are no alocated elements
'null: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst

Dynamic C Functions rabbit.com

339

http://www.rabbit.com

plast fast

xmem void * plast fast(Pool t * p);

DESCRIPTION
Get thelast allocated element in aroot pool. The pool MUST be set to being alinked pool using
pool link(p, <non-zeros); otherwise, theresults are undefined.
Thisis an assembler-only version of plast ().
*** Do _not_ call thisfunction from C. ***

Registers
Parameter in IX
TrashesF, DE
Return valuein HL, carry flag

Example
1d ix,my pool
lcall plast fast
jr c,.no_elems
; HL points to last element

PARAMETERS

P Pool handle structure, as previously passed to pool init (). Passthis
inIX register.
RETURN VALUE

C flag set, HL=0: there are no allocated elements
C flag clear (NC): HL pointsto last element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, plast, pprev fast

340 rabbit.com Dynamic C Functions

http://www.rabbit.com

pmovebetween

void * pmovebetween(Pool t * p, void * e, void * d, void * f);

DESCRIPTION

Atomically remove alocated element “€” and re-insert it between allocated elements “d” and
“f.” “Atomically” means that the POOL._IPSET level is used to lock out other CPU contexts
from altering the pool while this operation isin progress. In addition, “d” and “f” are checked
to ensure that the following conditions still hold:

pprev(p, f) == d
and
pnext (p, d) == £

in other words, “f” follows“d.” Thisis useful since your application may have determined “d”
and “f” some time ago, but in the meantime some other task may have re-ordered the queue or
deleted these elements. In this case, the return value will be null. Your application should then
re-evaluate the appropriate queue elements and retry this function.

The pool MUST be set to being alinked pool by using:
pool link(p, <non-zero>)

Otherwise the results are undefined.

PARAMETERS
p Pool handle structure, as previously passed to pool init ().

e Address of element to move, obtained by, e.9.,plast (). Thismust bean
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element isimplied (i.e., whatever plast () would re-
turn). If there are no elements at all, or this parameter does not point to a
valid alocated element, then the results are undefined (and probably cata-
strophic).

Ife == dore == f£,thenthereisno action except to check whether

“f” follows“d.” This parameter may refer to an unlinked (but allocated) el-
ement.

d First reference element. Theelement “ €’ will beinserted after thiselement.
On entry, it must betruethat pnext (p, d) == £.Otherwise, null is
returned. If this parameter is null, then “f” must point to the first element
inthelist, and “€’ isinserted at the start of thelist.

Dynamic C Functions rabbit.com 341

http://www.rabbit.com

pmovebetween (cont’d)

£ Second reference element. The element “€” will be inserted before this el-
ement. On entry, it must be truethat pprev (p, £) == d.Otherwise,
null is returned. If this parameter is null, then “d” must point to the last €l -
ement inthelist, and “€" isinserted at the end of thelist.

Note: If both “d” and “f” are null, then it must be true that there are no allocated €l e-
mentsinthelinked list, and the element “€” isadded as the only element in thelist. This
proviso only obtains when the element “€” isinitially allocated from an empty pool
with:

pool link(p, POOL LINKED BY APP)

The allocated element is not in the linked list of allocated elements.

RETURN VALUE

Returns the parameter value “e,” unless “€” was null; in which casethevalue of plast (), if
called at function entry, would be returned. If theinitial conditionsfor “d” and “f” do not hold,
then null is returned with no further action.

EXAMPLES

void * d, * e, * £;

e = plast(p); // €lement to move
f pnext (p, d = pfirst(p)); // d,farefirst 2 elements
pmovebetween (p, e, d, £f);

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool link, plast, pfirst, pnext, pprev, preorder

342 rabbit.com Dynamic C Functions

http://www.rabbit.com

pmovebetween fast

void * pmovebetween fast(Pool t *p, void *e, void *d, void *f);

DESCRIPTION

See description under pmovebetween () . Thisisan assembler- callable version (do not call
from C). It does not issue TPSET protection or check parameters.

REGISTERS: Parametersin IX, DE, BC, HL respectively
Trashes AF, BC, DE, BC', DE', HL'
Return valuein HL, carry flag.

PARAMETERS
P Pool handle structure, aspreviously passedtopool init ().PassinlX
register
e Address of element to move. Passin DE register.
d Thefirst reference element. Passin BC register.
£ The second reference element. Passin HL register.

RETURN VALUE
In HL. Either set to “¢e” parameter, or 0. The carry flag is set if HL.==0; otherwiseit is clear.

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween

Dynamic C Functions rabbit.com

343

http://www.rabbit.com

pnel

word pnel(Pool t * p);

DESCRIPTION

Return the number of dementsthat are in the pool, both free and used. This includes elements
appended using pool append () etc.

PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

RETURN VALUE
Number of e ements total

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

344

rabbit.com

Dynamic C Functions

http://www.rabbit.com

pnext

void * pnext(Pool t * p, void * e);

DESCRIPTION

Get thenext allocated element in aroot pool. The pool MUST be set to being alinked pool using
pool link(p, <non-zeros);otherwise, theresultsare undefined.

You can easily iterate through all of the allocated elements of aroot pool using the following
construct:

void * e;
Pool t * p;

for (e = pfirst(p); e; e = pnext(p, e)) {
}
PARAMETERS
p Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., pfirst (). Thismust bean

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through alist and deleting elements using
pfree ():oncethe element isdeleted, it isno longer valid to passits ad-
dress to this function.

If this parameter isnull, thentheresultisthesameaspfirst (). Thisen-
surestheinvariant pnext (p, pprev(p, e)) == e

RETURN VALUE

null: There are no more e ements
Inull: Pointer to next alocated e ement

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst, pprev

Dynamic C Functions rabbit.com 345

http://www.rabbit.com

pnext fast

xmem void * pnext fast(Pool t * p, void * e);

DESCRIPTION

Get thenext allocated element in aroot pool. The pool MUST be set to being alinked pool using
pool link(p, <non-zeros);otherwise, theresultsare undefined.

Thisis an assembler-only version of pnext ().
*** Do _not_ call thisfunction from C. ***
Registers

Parametersin IX, DE respectively
Trashes F, DE
Return valuein HL, carry flag

Example

1d ix,my pool

1d de, (current element)

lcall pnext fast

jr c,.no _more elems

; HL points to the next allocated element

PARAMETERS
p Pool handle structure, as previously passed to pool init (). Passthis
in X register.
e Current element, addressin DE register. See pnext () for afull descrip-
tion.

RETURN VALUE

C flag set, HL=0: There are no more el ements
C flag clear (NC): HL pointsto next element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst, pprev

346 rabbit.com Dynamic C Functions

http://www.rabbit.com

poly

float poly(float x, int n, float cl[]);

DESCRIPTION

Computes polynomial value by Horner's method. For example, for the fourth-order polynomial
10x* - 3x2 + 4x + 6, n would be4 and the coefficients would be

cl4]
c[3]
cl2]
c[1]
c[0]
PARAMETERS
x

n

C

RETURN VALUE

10.
0.
-3.
4.
6.

O O O o o

Variable of the polynomial.
The order of the polynomial

Array containing the coefficients of each power of x.

The polynomial value.

LIBRARY
MATH.LIB

Dynamic C Functions

rabbit.com

347

http://www.rabbit.com

pool append

int pool append(Pool t * p, void * base, word nel);

DESCRIPTION

Add another root memory areato an existing pool. It isassumed that the element sizeisthe same
as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize byteslong (whereelsize isthe element size of the existing pool, andnel is
the parameter to this function).

The total pool size must obey the constraints documented with pool init ().

PARAMETERS
o) Pool handle structure, as previously passed to pool init ().
base Base address of theroot datamemory areato append to thispool. Thismust
benel*elsize byteslong. Typically, thiswould be a static (global) ar-
ray.
nel Number of elements in the memory area.The sum of nel and the current

number of e ements must not exceed 32767.

RETURN VALUE

Currently always zero. If you define the macro POOL_ DEBUG, then parameters are checked. If
the parameters look bad, then an exception israised. You can define POOL _VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init

348 rabbit.com Dynamic C Functions

http://www.rabbit.com

pool init

int pool init(Pool t * p, void * base, word nel, word elsize);

DESCRIPTION
Initialize aroot memory pool. A pool isalinked list of fixed-size blocks taken from a contigu-
ousarea. You can use poolsinstead of malloc () whenfixed-sizeblocksareall that is needed.
You can have several pools, with different size blocks. Using memory poolsis very efficient
compared with more general functionslikemalloc (). (Thereiscurrently nomalloc () im-
plementation with Dynamic C.)

This function should only be called once, at program startup time, for each pool to be used.

Note: the product of nel and elsize must be lessthan 65535 (however, thiswill usually be
limited further by the actual amount of root memory available).

After calling this function, your application must not change any of thefieldsin the Pool t

structure.
PARAMETERS

P Pool handle structure. Thisis allocated by the caller, but this function will
initialize it. Normally, thiswould be allocated in static memory by declar-
ing aglobal variable of type Pool t.

base Base address of the root datamemory areato be managed in thispool. This
must benel*elsize byteslong. Typically, thiswould be a static (glo-
bal) array.

nel Number of elementsin the memory area. 1..32767

elsize Size of each element in the memory area. 2..32767

RETURN VALUE
Currently aways zero. If you define the macro POOL_DEBUG, then parameters are checked. If
the parameters look bad, then an exception israised. You can define POOL_VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, palloc, pcalloc, pfree, phwm, pavail

Dynamic C Functions rabbit.com 349

http://www.rabbit.com

pool link

int pool link(Pool t * p, int link);

DESCRIPTION
Tell the specified pool to maintain a doubly-linked list of alocated elements.
This function should only be called when the pool is completely free; i.e.,

pavail () == pnel/()
PARAMETERS

p Pool handle structure, as previously passed to pool init () or
pool xinit ().

link Must be one of the following:

* POOL_NOT_LINKED (0): the pool is not to be linked.

* POOL_LINKED AUTO (1): the pool islinked, and newly allocated el-
ements are always added at the end of the list.

* POOL_LINKED BY APP (2): thepool islinked, but newly alocated
elements are not added to thelist. The application must call

preorder () Of pmovebetween () to insert the element. Thisop-
tionisonly available for root pools.

WARNING: if you set the POOL._ LINKED BY APP option, then the al-
located el ement must NOT be passed to any other pool API function except
forpfree (), preorder () (asthe“€” parameter) or
pmovebetween () (asthe“€’ parameter). After callingpreorder ()
or pmovebetween (), thenit is safeto pass this element to all appropri-
ate functions.

RETURN VALUE

Currently aways zero. If you define the macro POOL_DEBUG, then parameters are checked. If
the parameters look bad, then an exception israised. You can define POOL. VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

350 rabbit.com Dynamic C Functions

http://www.rabbit.com

pool xappend

int pool xappend(Pool t * p, long base, word nel);

DESCRIPTION

Add another xmem memory areato an existing poal. It is assumed that the element sizeisthe
same as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize byteslong (whereelsize isthe element size of the existing pool, andnel is
the parameter to this function).

The total pool size must obey the constraints documented with pool xinit ().

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
base Base address of the xmem data memory areato append to this pool. This
must benel *elsize byteslong. Typicaly, thiswould be an area alo-
cated using xalloc ().
nel Number of elementsin the memory area. 1..65534. The sum of thisand the

current number of e ements must not exceed 65535.

RETURN VALUE

Currently always zero. If you define the macro POOL_ DEBUG, then parameters are checked. If
the parameters look bad, then an exception israised. You can define POOL_VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit

Dynamic C Functions rabbit.com 351

http://www.rabbit.com

pool xinit

int pool xinit(Pool t * p, long base, word nel, word elsize);

DESCRIPTION

Initialize an xmem memory pool. A pool isalinked list of fixed-size blocks taken from a con-
tiguousarea. You can use poolsinstead of malloc() when fixed-size blocks areall that isneeded.
You can have several pools, with different size blocks. Using memory poolsis very efficient
compared with more general functionslike malloc(). (Thereis currently no malloc() implemen-
tation with Dynamic C.)

This function should only be called once, at program startup time, for each pool to be used.

After calling this function, your application must not change any of the fieldsin the Pool t

structure.
PARAMETERS

o) Pool handle structure. Thisis allocated by the caler, but this function will
initialize it. Normally, thiswould be allocated in static memory by declar-
ing aglobal variable of type Pool t.

base Base address of the xmem data memory areato be managed in this pool.
Thismust benel*elsize byteslong. Typically, thiswould be an area
allocated by xalloc () when your program starts.

nel Number of elementsin the memory area. 1..65535

elsize Size of each element in the memory area. 4..65535

RETURN VALUE

Currently aways zero. If you define the macro POOL_DEBUG, then parameters are checked. If
the parameters look bad, then an exception israised. You can define POOL. VERBOSE to get

printf () messages.
LIBRARY
POOL.LIB

SEE ALSO

pool init, pxalloc, pxcalloc, pxfree, phwm, pavail

352 rabbit.com Dynamic C Functions

http://www.rabbit.com

pow

float pow(float x, float y):

DESCRIPTION
Raises x to the yth power.

PARAMETERS
x Vaueto beraised
y Exponent

RETURN VALUE
x to the yth power

LIBRARY
MATH.LIB

SEE ALSO
exp, powlO, sgrt

powlO

float powl0(float x);

DESCRIPTION
10 to the power of x.

PARAMETERS

x Exponent

RETURN VALUE
10 raised to power x

LIBRARY
MATH.LIB

SEE ALSO

pow, exp, sgrt

Dynamic C Functions rabbit.com

353

http://www.rabbit.com

powerspectrum

void powerspectrum(int * x, int N, * int blockexp):;

DESCRIPTION
Computes the power spectrum from a complex spectrum according to

Power [k] = (Re X[k])? + (Im X[k])?

The N-point power spectrum replaces the N-point complex spectrum. The power of each com-
plex spectral component is computed as a 32-bit fraction. Its more significant 16-bits replace
the imaginary part of the component; its less significant 16-bits replace the real part.

If the complex input spectrum is a positive-frequency spectrum computed by £ftreal () , the
imaginary part of the X[0] term (stored x [1]) will contain the real part of the fmax term and
will affect the calculation of the dc power. If the dc power or the fmax power isimportant, the
fmax term should be retrieved fromx [1] and x [1] set to zero before calling
powerspectrum().

The power of the kth term can be retrieved via
P[k]=* (long*) &x [2k] *2"blockexp.

The value of blockexp isfirst doubled to reflect the squaring operation applied to all ele-
mentsin array x. Then it isfurther increased by 1 to reflect an inherent division by two that oc-
curs during the sguaring operation.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal

354 rabbit.com Dynamic C Functions

http://www.rabbit.com

pprev

void * pprev(Pool t * p, void * e);

DESCRIPTION

Get the previously allocated element in aroot pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of aroot pool using the following
construct:

void * e;
Pool t * p;

for (e = plast(p); e; e = pprev(p, e)) {

}

PARAMETERS
P Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., plast () . Thismust bean al-

located element in the given pool; otherwise, the results are undefined. Be
careful when iterating through alist and deleting elements using

pfree ():oncethe element isdeleted, it isno longer valid to passits ad-
dressto thisfunction. If this parameter is null, then the result is the same
asplast (). Thisensuresthe invariant

pprev(p, pnext(p, e)) == e

RETURN VALUE

null: There are no more e ements
!null: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, plast, pnext

Dynamic C Functions rabbit.com 355

http://www.rabbit.com

pprev_ fast

xmem void * pprev_fast(Pool t * p, void * e);

DESCRIPTION
Get the previous allocated element in aroot pool. The pool MUST be set to being alinked pool
by usngpool link(p, <non-zeros); otherwise, the resultsare undefined.
Thisis an assembler-only version of pprev () .
*** Do _not_ call thisfunction from C. ***
Registers

Parametersin I1X, DE respectively
Trashes F, DE
Return valuein HL, carry flag

Example

1d ix,my pool

1d de, (current element)

lcall pprev_fast

jr c,.no _more elems

; HL points to previously allocated element

PARAMETERS
p Pool handle structure, as previously passed to pool init (). Passthis
in X register.
e Current element, addressin DE register. Seepprev () for fuller descrip-
tion.

RETURN VALUE

C flag set, HL=0: There are no more el ements
C flag clear (NC): HL pointsto previous element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pprev

356 rabbit.com Dynamic C Functions

http://www.rabbit.com

pputlast

void * pputlast(Pool t * p, void * e);

DESCRIPTION

Atomically remove allocated element “€” and re-insert it at the end of the allocated list. “ Atom-
ically” meansthat the POOL_IPSET level isused tolock out other CPU contextsfrom altering
the pool while this operation isin progress.

Thisisequivaent to:
pmovebetween (p, e, plast(p), NULL);
but is considerably faster.

A common use for this function is to insert an element allocated when the
POOL_LINKED BY APP attributeis set for the pool, at the end of the alocated list. Thisis
useful when, say, an ISR alocates and uses abuffer without placing it onthe allocated list. Only
when the buffer is complete does the ISR use this function to place it on the queue for reading
by the main application.

The pool MUST be set to being alinked pool by using:
pool link(p, <non-zeros) ;

otherwise the results are undefined.

PARAMETERS
P Pointer to pool handle structure, as previously passed to pool init ().
e Address of element to move. If NULL, then this function behaves as

plast ().

RETURN VALUE

Same asthe “€’ parameter, unless “€” isNULL inwhich case the existing last element isre-
turned asper plast ().

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween, pool link

Dynamic C Functions rabbit.com 357

http://www.rabbit.com

pputlast fast

void * pputlast fast(Pool t * p, void * e);

DESCRIPTION

See description under pputlast (). Thisisan assembler-calable version (do not call from
C). It does not issue IPSET protection or check parameters.

Registers.

Parametersin IX (“p”) and DE (“€")
TrashesF, DE, BC
Returnvaluein HL

PARAMETERS
P Pointer to pool handle structure, as previously passedto pool init ().

Passin IX register
e Address of element to move. Passin DE register. If NULL, then thisfunc-

tion behavesasplast fast ().

RETURN VALUE
In HL. Same asthe “ €’ parameter, unless “€” is NULL in which case the existing last element
isreturned asper plast fast ().

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween, pool link

premain

void premain(void);

DESCRIPTION

Dynamic C cadlspremain to start initialization functions such asvdinit. Thefina thing
premain doesiscal main. Thisfunction should never be called by an application program.
It isincluded here for informational purposes only.

LIBRARY
PROGRAM.LIB

358 rabbit.com Dynamic C Functions

http://www.rabbit.com

preorder

void * preorder(Pool t *p, void *e, void *where, word options);

DESCRIPTION

Atomically remove allocated element “€” and re-insert it before or after element “where.”
“Atomically” meansthat the POOL_IPSET level isused to lock out other CPU contexts from
altering the pool while this operation isin progress.

The pool MUST be set to being alinked pool by using:

pool link(p, <non-zeros>)

Otherwise the results are undefined.

PARAMETERS

p

e

where

options

Pool handle structure, as previously passed to pool init ().

Address of element to move, obtained by e.g., plast (). Thismust bean
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element isimplied (i.e., whatever plast () would re-
turn). If there are no elements at al, or this parameter does not point to a
valid alocated element, then the results are undefined (and probably cata-
strophic).

Thereferenceelement. Theelement “ € will beinserted before or after this
element, depending on the options parameter. If e==where, thenthereis
no action. If this parameter is null, then the reference element is assumed
to be thefirst element (i.e., whatever pfirst () would return). If there
are no elements at all, or this parameter does not point to avalid alocated
element, then the results are undefined (and probably catastrophic).

Option flags. Currently, the only options are:

POOL_INSERT BEFORE
POOL_INSERT AFTER

which specifieswhether “€”’ isto be inserted before or after “where.”

Dynamic C Functions

rabbit.com

359

http://www.rabbit.com

preorder (cont’d)

RETURN VALUE

Returns the parameter value “€” unless e’ was null, in which case thevalue of plast (),
when called at function entry, would be returned.

IMPORTANT: If null is returned, that means that some other task (context, or
ISR) modified the linked list while this operation wasin progress. In thiscase, the
application should call this function again with the same parameters, since this
operation will NOT have completed. This would be arare occurrence; however,
multitasking applications should handle this case correctly.

EXAMPLES

void * r;
void * s;

s pnext (p, pfirst(p); // sissecond element
r plast (p) ; // rislast element
preorder (p, s, r, POOL INSERT AFTER) ;

// If sl=r, then swill become the new last element. Y ou can use null
// parameters to perform the common case of moving the last element
// tothehead of thelist:

preorder (p, NULL, NULL, POOL INSERT BEFORE) ;

// whichisidentical to:.
preorder (p, plast(p), pfirst(p), POOL INSERT BEFORE) ;

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool 1link, plast, pfirst, pnext, pprev, pmovebetween

360 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf

int printf(char *fmt, ...);

DESCRIPTION

Thisfunctionissimilar to sprintf (), but outputs the formatted string to the Stdio window.
Prior to Dynamic C 7.25, print £ () would work only with the controller in program mode
connected to a PC running Dynamic C. As of Dynamic C 7.25, it is possible to redirect
printf () outputtoaseria port during run mode by defining amacro to specify the seria
port. See the sample program SAMPLES/STDIO SERIAL. C for moreinformation.

See below for the complete list of Dynamic C Conversion Specifiers.
The user should make sure that:
* there are enough arguments after £mt to fill in the format parametersin the format string

* thetypes of arguments after fmt match the conversion specifiersin fmt

ThemacroSTDIO DISABLE_ FLOATS canbedefinedif itisnot necessary to format floating
point numbers. If thismacro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

Themacro STDIO ENABLE LONG_STRINGS can be defined if it is necessary to print
strings to the Stdio window that are longer than the default of 127 bytes. Without defining this
macro, such strings are truncated. The drawback of defining thismacroisthat if it isdefinedin
amulti-tasking application where more than one task is utilizing printf and at |east one of the
tasksis printing strings longer than 127 bytes, the user must ensure that callsto printf are seri-
alized viaa semaphore or similar means. If callsto printf are not serialized under these condi-
tions, printf output from the different tasks may be interleaved in the Stdio window.

Note: thisfunction istask reentrant and it has a 128 byte buffer.
PARAMETERS
fmt String to be formatted.

Format arguments.

RETURN VALUE
Number of characters written

LIBRARY
STDIO.LIB

SEE ALSO
sprintf

Dynamic C Functions rabbit.com 361

http://www.rabbit.com

printf (cont’d)

DYNAMIC C CONVERSION SPECIFIERS
%s - string
%ls - null terminated string in xmem
%d - signed decimal
%u - unsigned decimal
%f - float
%e - exponential
%q - floating point, same as %f or %e depending upon value and precision
%p - pointer
%Ip - pointer
%x - hexadecimal, result in lowercase
%X - hexadecimal, same as %x but result in uppercase
%c - single character

%s - string
The precision specifier (the number between “%” and “s") determines the maximum number
of charactersto display.

o)

maini)

Brintf(">ss<in”, "a");
printf (™% . 3s<hn™, "at") ;
printf| ek dmah, n","a";

printf(">s-3s<in”,"a");

printf("T'RH‘T'RWT'RH‘T'R?TK?TK?'\‘ n"] = rabods

printf(">Es<n", Tabod™) ;
printf ("% .33<vn", "abed™) 2
printf(">%3s<hn", Tahod™) ;
printf (">%-33<vn", "abod™) 2

J 31 N T

Asshown inthe screenshot above, avaluetotheright of “ . causesthe string to be displayed
with that number of characters, ignoring extracharacters. A valueby itself or totheleft of “ . ”
causes padding. Negative values cause the string to be left justified, with spaces added to the
right if necessary. Positive values cause the string to be right justified, with spaces added to

the left if necessary.

362 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf (cont’d)

%l s - null terminated string in xmem

This conversion specifier isidentical to“%s’ but the strings come from extended memory in-
stead of root memory.

xdata mystring {“Now is the time.”};
printf (“%$1s”, mystring) ; // Now i1s the time.

%d - signed decimal
Width specifier |: short values must not include |; without |, long values are treated as short

Precision specifier n: includes'-' and if necessary treats argument as signed

short n;

n = 30000;

printf ("%d", n); // 30000
printf ("%5d4d", n); // 30000
printf ("%6d4d", n); // 30000
printf ("%44", n); /] *rE*,
unsigned short n;

n = 40000;

printf ("%d", n); // -25536
printf ("%6d", n); // -25536
printf ("%74", n); // -25536
printf("%Sd", n)'. // * k% kK %
long n;

n = 300000;

printf ("%1d4", n); // 300000
printf ("$71d", n); // 300000

%u - unsigned decimal
Width specifier I: long values must include I, short values must not:

Precision specifier n: includes'-' if necessary treats argument asif it were unsigned

short n;
n = -25536;
printf ("%u", n); // 40000

unsigned short n;
n = 40000;
printf ("%d", n); // 40000

Dynamic C Functions rabbit.com 363

http://www.rabbit.com

printf (cont’d)

%f - float
Width specifier | isignored for Dynamic C float and double (both 4 bytes)

Precision specifier n . d: n isthetotal widthincluding'-'and".' ; if niszero or isomitted, itis
ignored and only dis used.

float f£f;

f = -88.8888;

printf ("sf", £); // -88.888801
printf ("%$10£f" f); // -88.888801
printf ("%9f", f); [] KRk k ok kK
printf("s.0f", f); // -89
printf("%.3f", f); // -88.889
printf ("%.0£f", £f); // -88.889
printf ("%$0.3£f", £f); // -88.889
printf ("%$7.3£f", £f); // -88.889
printf ("%8.3f", f); // -88.889
printf ("s6.3£", f);] HxEEE

%e - exponential
Width specifier | isignored for Dynamic C float and double (both 4 bytes)
Precision specifier n.d: nisthetotal width excluding exponent sign; if niszero or isomitted,

itisignored and only d isused; if nlarger than width, the result is not padded. d is decimal
places of n.nnn..E[+/-]nn format

float £f;
f = -88.8888;
printf ("%e\n", £f); // -8.888880E+01
printf ("%$13e\n", f); // -8.888880E+01
printf ("%$12e\n", f); // -8.888880E+01
printf ("%.0e\n", f); // -9E+01
printf("%.1e\n", f); // -8.9E+01

f

// -8.889E+01
; // -8.889E+01
printf ("%9.3e\n", // -8.889E+01

printf ("%$0.3e\n", f)
) i

"$15.3e\n", f); // -8.889E+01
)
bl

(
(
(
(
(
printf ("%.3e\n",
(
(
(
(
(

printf
printf ("%8.3e\n", f); [/ xxEx KKKk
printf ("%8.3e\n", -f); // 8.889E+01

364

rabbit.com Dynamic C Functions

http://www.rabbit.com

printf (cont’d)

%q - floating point
(Same as %f or %e depending upon value and precision.)
float £, g, h;

f = -888.8888;
g = 888888.0
g = 8888880.0
printf ("%g\n", g); // 888888.0
printf ("$g\n", h); // 8.888880E+06
printf ("$g\n", f); //-888.888790
printf ("%$13g\n", f); // -888.888790
printf ("%$12g\n", f); // -888.888790
printf ("%.0g\n", f); // -8.9E+02
printf ("%.1g\n", f); // -8.9E+02
printf ("%.2g\n", f); // -8.89E+02
printf ("%.3g\n", f); // -888.889
printf ("%$7.3g\n", f); [FxExkxk
printf ("%0.3g\n", f); // -888.889
printf ("%$9.3g\n", f); // -888.889
printf ("%$15.3g\n", f); // -888.889
printf ("%8.3g\n", f); // -888.889
printf ("%8.3g\n", -f); // 888.889
%p - pointer
Specifiesa 16-bit logical pointer.
int i, *iptr;
i =0;
ptr = &i;
printf ("$p\n",ptr) ; // printsvalue of ptrin hex.
// logical memory location of i
%Ip - pointer

Specifies a 32-bit physical pointer.
long i, *iptr;
i = 0;
ptr = &i;

printf ("%1lp\n",ptr); // printsvalue of ptrin hex.
// physica memory location of i

Dynamic C Functions rabbit.com 365

http://www.rabbit.com

printf (cont’d)

%X - hexadecimal
Result in lowercase

Width specifier |: short values must not include |; without I, long values are treated as short
Precision specifier n: must be at least as large as total width; treats argument asif it were un-

signed
short n;
n = 30000;
printf ("%x", n); //7530
printf ("%5x", n); // 7530
printf ("%6x", n); // 7530
printf ("$3x", n); /] ***
unsigned short n;
n = 40000;
printf ("%x", n); // 9c40
long m, n;
m = -25536;
n = 0x10000 + Oxabc;
printf ("$x\n", m); // 9c40
printf ("$x\n", z); // abc

%X - hexadecimal

Same as %x except the result isin uppercase.

%c - single character

Precision specifier n isignored for % c; treats argument asif it were char

long n;
n = 0x10000 + 0x100 + 'A';

printf ("%$0c", n); // A

short n;
n = 0x100 + 'A';

printf ("$0c", n); // A

char n;
n = "'A';

printf ("$0c", n); // A

Not supported:
%0 - octa

%E - same as %e, result uppercase (the result is awaysin uppercase in Dynamic C)
%G - same as %g, result uppercase (the result is alwaysin uppercase in Dynamic C)

366

rabbit.com

Dynamic C Functions

http://www.rabbit.com

putchar

void putchar(int ch);

DESCRIPTION

Putsasingle character to Stdout. The user should make sure only one process callsthisfunction
at atime.

PARAMETERS
ch Character to be displayed.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

puts

int puts(char * s);

DESCRIPTION

This function displays the string on the stdio window in Dynamic C. The Stdio window isre-
sponsible for interpreting any escape code sequences contained in the string. Only one process
at atime should call this function.

PARAMETERS

s Pointer to string argument to be displayed.

RETURN VALUE
1: Success.

LIBRARY
STDIO.LIB

SEE ALSO
putchar, gets

Dynamic C Functions rabbit.com 367

http://www.rabbit.com

pwm_init

unsigned long pwm_init(unsigned long frequency);

DESCRIPTION

Setsthe base frequency for the pulse width modulation (PWM) and enables the PWM driver on
all four channels. The base frequency isthe frequency without pul se spreading. Pul se spreading
(seepwm_set ()) will increase the frequency by afactor of 4.

This function isintended for use with the Rabbit 3000 and Rabbit 4000.
PARAMETER

frequency Requested frequency (in Hz)

RETURN VALUE

The actual frequency that was set. Thiswill be the closest possible match to the requested fre-
quency.

LIBRARY
PWM.LIB (was in R3000.LIB prior to DC 10)

368 rabbit.com Dynamic C Functions

http://www.rabbit.com

pwm set

int pwm set(int channel, int duty cycle, int options);

DESCRIPTION

Sets aduty cycle for one of the pulse width modulation (PWM) channels. The duty cycle can
beavauefrom 0to 1024, where O islogic low thewholetime, and 1024 islogic high thewhole
time. Option flags are used to enable features on an individual PWM channel. Bit masks for
these are:

* PWM_SPREAD - sets pulse spreading. The duty cycleis spread over four separate pulses to
increase the pulse frequency.

* PWM_OPENDRAIN - setsthe PWM output pin to be open-drain instead of anormal push-pull
logic output.

This function isintended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
channel channel(0 to 3)
duty cycle value from 0 to 1024

options combination of optional flags (see above)

RETURN VALUE

0: Success.
-1: Error, an invalid channel number is used.
-2: Error, requested duty cycleisinvalid.

LIBRARY
PWM.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 369

http://www.rabbit.com

pxalloc

long pxalloc(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pfree () to avoid memory leaks.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE
0: No free elements are available.

10: Physical (xmem address) of an element. If the pool is not linked, your application can use
this element provided it does not write more than p- >elsize bytestoit (thiswasthe
elsize parameter passedtopool xinit ()).If thepool islinked, you can write up to
(p->elsize-8) bytestoit. (Each element has 8 bytes of overhead when the pool is

linked.)
LIBRARY
POOL.LIB
SEE ALSO

pool xinit, pxcalloc, pxfree, phwm, pavail

370 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxalloc fast

xmem long pxalloc fast(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pxfree () to avoid memory leaks.
Thisis an assembler-only version of pxalloc ().
*** Do _not_ call thisfunction from C. ***

pxalloc fast doesnot performany IPSET protection, parameter validation, or update the
high-water mark. pxalloc fast isaroot function. The parameter must be passedin I X, and
the returned element addressisin BCDE.

REGISTERS

Parameter in I1X
Trashes AF, HL
Return value in BCDE, carry flag.

EXAMPLE

1d ix,my pool

lcall pxalloc fast

jr ¢, .no _free

; BCDE points to element

PARAMETERS

P Pool handle structure, as previously passed to pool init () Passthis
inthe IX register.

RETURN VALUE
C flag set: No free elements are available. (BCDE is undefined in this case.)
NC flag: BCDE pointsto an element If the pool is not linked, your application must not write
morethanp->elsize bytestoit (thiswasthe el size parameter passed to

pool xinit ()).If thepool islinked, you can write (p->elsize-8) bytestoit. (An ele-
ment has 8 bytes of overhead when the pool is linked.)

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, pxalloc

Dynamic C Functions rabbit.com

371

http://www.rabbit.com

pxcalloc

long pxcalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pxfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE
0: No free elements are available.

1 0: Physical (xmem address) of an element. If the pool isnot linked, your application must not
write morethan p->elsize bytestoit (thiswasthe elsize parameter passed to
pool xinit ()). Theapplicationcanwriteupto (p->elsize-8) bytestotheelement
if the pool islinked. (An element has 8 bytes of overhead when the pool is linked.)

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pxalloc, pxfree, phwm, pavail

372 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxfirst

long pxfirst(Pool t * p);

DESCRIPTION

Get the first allocated element in an xmem pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
1 0: Pointer to first, i.e., oldest, allocated el ement.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext, pxprev

Dynamic C Functions rabbit.com 373

http://www.rabbit.com

pxfirst fast

xmem long pxfirst fast(Pool t * p);

DESCRIPTION

Get the first allocated element in an xmem pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

Thisis an assembler-only version of pxfirst ().
*** Do _not_ call thisfunction from C. ***
Registers

Parameter in I1X
Trashes F, HL
Return valuein BCDE, carry flag

Example

1d ix,my pool

lcall pxfirst fast

jr ¢, .no _elems

; BCDE points to first element

PARAMETERS

P Pool handle structure, as previously passed to pool init (). Passthis
in X register.
RETURN VALUE

C flag set: There are no allocated elements
C flag clear (NC): BCDE pointsto first element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfirst, pxnext fast

374 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxfree

void pxfree(Pool t * p, long e);

DESCRIPTION
Free an element that was previoudly obtained viapxalloc ().
Note: if you free an element that was not allocated from this pool, or was already free, or was

outside the pool, then your application will crash! You can detect most of these programming
errors by defining the following symbols before #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previously passed to pxalloc ().
e Element to free, which was returned from pxalloc ().

RETURN VALUE

null: There are no more elements
Inull: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pxalloc, pxcalloc, phwm, pavail

Dynamic C Functions rabbit.com

375

http://www.rabbit.com

pxfree fast

xmem void pxfree fast(Pool t * p, long e);

DESCRIPTION

Free an element that was previously obtained viapxalloc (). Thisisan assembler-only ver-
sion of pxfree ().

*** Do _not_ cal thisfunction from C. ***

pxfree fast doesnot perform any IPSET protection or parameter validation.

pxfree fast isan xmem function. The parameters must be passed in machine registers.
Registers

Parametersin IX, BCDE respectively

Trashes AF, BC, DE, HL

Example

1d ix,my pool

1d de, (element addr)
1d bc, (element addr+2)
lcall pxfree fast

PARAMETERS
P Pool handle structure, as previoudly passed to palloc () or
palloc_fast. Thismust beinthelX register.
e Element to free, whichwasreturned frompalloc (). Thismust beinthe

BCDE register (physical address)

RETURN VALUE
null: There are no more elements
Inull: Pointer to previous allocated element
LIBRARY
POOL.LIB

SEE ALSO

pool init, pxalloc fast, pavail fast, pfree fast

376 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxlast

long pxlast(Pool t * p);

DESCRIPTION

Get the last alocated element in an xmem pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
10: Pointer tolast, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst

Dynamic C Functions rabbit.com 377

http://www.rabbit.com

pxlast fast

xmem long pxlast fast(Pool t * p);

DESCRIPTION

Get the last alocated element in an xmem pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

Thisis an assembler-only version of pxlast ().
*** Do _not_ call thisfunction from C. ***
Registers

Parameter in I1X
Trashes F, HL
Return valuein BCDE, carry flag

Example

1d ix,my pool

lcall pxlast fast

jr ¢, .no _elems

; BCDE points to last element

PARAMETERS

P Pool handle structure, aspreviously passedto pool xinit (). Passthis
in X register.
RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE paintsto last el ement

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxlast, pxprev_ fast

378 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxnext

long pxnext(Pool t * p, long e);

DESCRIPTION

Get the next allocated element in an xmem pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

You can easily iterate through all of the allocated elements of aroot pool using the following

construct:

long e;
Pool t * p;

for (e

}

PARAMETERS

p

e

RETURN VALUE

pxfirst(p); e; e = pxnext(p, e)) {

Pool handle structure, as previously passed to pool xinit ().

Previous element address, obtained by e.g. pxfirst (). Thismust be an
allocated element in the given pool, otherwisetheresults are undefined. Be
careful when iterating through alist and deleting elements using
pxfree ():oncethe element isdeeted, isisno longer valid to passits
addressto thisfunction. If thisparameter is zero, then theresult isthe same
aspxfirst (). Thisensurestheinvariant

pxnext (p, pxprev(p, e)) == e.

0: There are no more elements
1 0: Pointer to the next allocated e ement

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst, pxprev

Dynamic C Functions

rabbit.com 379

http://www.rabbit.com

pxnext fast

xmem long pxnext fast(Pool t * p, long e);

DESCRIPTION
Get the next allocated element in an xmem pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.
Thisis an assembler-only version of pxnext ().
*** Do _not_ call thisfunction from C. ***
Registers

Parametersin IX, DE respectively
Trashes AF, HL
Return valuein BCDE, carry flag

Example

1d ix,my pool

1d de, (current element)

1d bc, (current element+2)

lcall pxnext fast

jr c,.no _more elems

; BCDE points to next allocated element

PARAMETERS
P Pool handle structure, aspreviously passedto pool xinit (). Passthis
inthe IX register.
e Current element, address in BCDE register. See pxnext () for fuller de-
scription.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE pointsto next element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst, pxprev

380 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxprev

long pxprev(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link(p, <non-zeros); otherwisethe resultsare undefined.

You can easily iterate through all of the all ocated elements of an xmem pool using thefollowing

construct:
long e;
Pool t * p;
for (e = pxlast(p); e; e = pxprev(p, e)) {
}

PARAMETERS
p Pool handle structure, as previously passed to pool xinit ().
e Previous element address, obtained by e.g., pxlast (). Thismust be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through alist and deleting elements using
pxfree ():oncetheelementisdeleted, itisnolonger valid to passits ad-
dressto thisfunction. If this parameter is zero, then the result is the same
aspxlast (). Thisensurestheinvariant

pxlast (p, pxnext(p, e)) == e

RETURN VALUE

0: There are no more € ements
1 0: Pointsto previously allocated element

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext

Dynamic C Functions rabbit.com 381

http://www.rabbit.com

pxprev_ fast

xmem long pxprev_fast(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

Thisis an assembler-only version of pxprev ().
*** Do _not_ call thisfunction from C. ***
Registers

Parametersin I1X, DE respectively
Trashes AF, HL
Return valuein BCDE, carry flag

Example

1d ix,my pool

1d de, (current element)

1d bc, (current element+2)

lcall pxprev_fast

jr c,.no _more elems

; BCDE points to previously allocated element

PARAMETERS
p Pool handle structure, asprevioudy passedtopool xinit (). Passthis
inIX register.
e Current element, addressin BCDE register. See pxprev () for fuller de-
scription.

RETURN VALUE

C flag set: there are no more elements
C flag clear (NC): BCDE pointsto previous element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxprev

382 rabbit.com Dynamic C Functions

http://www.rabbit.com

gd error

char qd_error(int channel);

DESCRIPTION

Getsthe current error bitsfor that gd channel. Thisfunction isintended to be used with the Rab-
bit 3000 and Rabbit 4000.

PARAMETERS

channel The channel to read errors from (currently 1 or 2).

RETURN VALUE
Set of error flags, that can be decoded with the following masks:

QD OVERFLOW 0x01
QD UNDERFLOW 0x02

LIBRARY
OD.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 383

http://www.rabbit.com

qd init

void gd init(int iplevel);

DESCRIPTION

If your board has a Rabbit 3000A microprocessor installed, the quadrature decoder can be set
for 10 bit counter operation. For 10 bit operation, add the following macro at the top of your
application program.

#define QD 10BIT OPERATION

If the above macro isnot defined then the quadrature decoder defaultsto 8 bit counter operation.
With the Rabbit 3000 processor you must use the default 8-bit operation; defining the 10-bit
macro will cause a compile time error.

Sample program Samples/Rabbit3000/QD Phase 10bit.c demonstratesthe use
of the macro.

If your board has a Rabbit 4000 microprocessor installed, the quadrature decoder inputs must
be chosen with one of the following defines. Define only one per quadrature decoder.

#define QD1 USEPORTD // useport D pins1and0
#define QD1 USEPORTEL // useport E pins1and0
#define QD1 USEPORTEH // useport Epins5and4
#define QD2 USEPORTD // useport D pins3and 2
#define QD2 USEPORTEL // useport E pins3and 2
#define QD2 USEPORTEH // useport E pins7and 6

If no macro is defined for a decoder, that decoder will be disabled.

PARAMETERS
iplevel The interrupt priority for the ISR that handles the count overflow. This
should usually be 1.
LIBRARY

QD.LIB (was in R3000.LIB prior to DC 10)

384 rabbit.com Dynamic C Functions

http://www.rabbit.com

gd read

long gd read(int channel);

DESCRIPTION

Reads the current quadrature decoder count. Since thisfunction waitsfor aclear reading, it can
potentialy block if thereis enough flutter in the decoder count.

Thisfunction isintended to be used with the Rabbit 3000 and Rabbit 4000.

PARAMETERS

channel The channel to read (currently 1 or 2).

RETURN VALUE
Returns asigned long for the current count.

LIBRARY
QOD.LIB (was in R3000.LIB prior to DC 10)

gd zero
void gd zero(int channel);

DESCRIPTION
Setsthe count for a channel to 0. This function isintended to be used with the Rabbit 3000 and
Rabbit 4000.

PARAMETERS
channel The channel to reset (currently 1 or 2)

LIBRARY

OD.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 385

http://www.rabbit.com

gsort

int gsort(char * base, unsigned n, unsigned s, int (*cmp) ());

DESCRIPTION
Quick sort with center pivot, stack control, and easy-to-change comparison method. This ver-
sion sorts fixed-length dataitems. It isideal for integers, longs, floats and packed string data
without delimiters. Raw integers, longs, floats or strings may be sorted, however, the string sort

is not efficient.
PARAMETERS
base Base address of the raw string data.
n Number of blocks to sort.
s Number of bytesin each block.
cmp User-supplied compare routinefor two block pointers, p and g, that returns

an int with the same rules used by Unix strcmp (p, q) :
=0: Blocks p and q are equal
<0:pislessthan g
> 0: p isgreater than g
Bewareof using ordinary st rcmp () —it requiresanull at theend of each
string.

RETURN VALUE

0 if the operation is successful.

LIBRARY
SYS.LIB

EXAMPLE - Sorts an array of integers.

int mycmp (int *p, int *q){ return (*p - *q);}
const int g[10] = {12,1,3,-2,16,7,9,34,-90,10};
const int pl[10] {12,1,3,-2,16,7,9,34,-90,10};
main() {
int i;
gsort (p, 10,2, mycmp) ;
for(i=0;1i<10;++1i) printf("%d. %4, %d\n",i,plil,qli]);

}
Output from the above sample program:
0. -90, 12
1. -2, 1
2. 1, 3
3. 3, -2
4. 7, 16
5. 9, 7
6. 10, 9
7. 12, 34
8. 16, -90
9. 34, 10

386 rabbit.com Dynamic C Functions

http://www.rabbit.com

rad

float rad(float x);

DESCRIPTION
Convert degrees (360 for one rotation) to radians (2 for arotation).

PARAMETERS

x Degree value to convert.

RETURN VALUE
The radians equivalent of degree.

LIBRARY
SYS.LIB

SEE ALSO
deg

rand

float rand(wvoid);

DESCRIPTION
Returns a uniformly distributed random number in the range 0.0 < v < 1.0. Uses algorithm:
rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function.
rand () isnot reentrant.

RETURN VALUE
A uniformly distributed random number: 0.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

randb, randg, srand

Dynamic C Functions rabbit.com 387

http://www.rabbit.com

randb

float randb(void);

DESCRIPTION
Uses algorithm:
rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function.
randb () isnot reentrant.

RETURN VALUE
Returns a uniformly distributed random number: -1.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randg, srand

randg

float randg(void);

DESCRIPTION

Returns a gaussian-distributed random number in the range -16.0 < v < 16.0 with a standard de-
viation of approximately 2.6. The distribution is made by adding 16 random numbers (see
rand ()). Thisfunction is not task reentrant.

RETURN VALUE
A gaussian distributed random number: -16.0 < v <16.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, srand

388 rabbit.com Dynamic C Functions

http://www.rabbit.com

RdPortE

int RAPortE(unsigned int port);

DESCRIPTION
Reads an external /O register specified by the argument.

PARAMETERS

port Address of external parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port specified by
the argument. Upper byte contains zero.

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com 389

http://www.rabbit.com

RdPortI

int RdPortI(int port);

DESCRIPTION
Reads an internal 1/0 port specified by the argument (use RdPortE () for external port).

All of the Rabbit internal registers have predefined macros corresponding to the name of the
register. PADR is #defined to be 0x30, etc.

PARAMETERS

port Address of internal 1/0 port

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port specified by
the argument. Upper byte contains zero.

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortE, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

390 rabbit.com Dynamic C Functions

http://www.rabbit.com

ReadCompressedFile

int ReadCompressedFile(ZFILE * input, UBYTE * buf, int lenx);

DESCRIPTION

This function decompresses a compressed file (input ZFILE, opened with
OpenInputCompressedFile ())usingthelLZ compression agorithm on-the-fly, placing
anumber of bytes (1enx) into a user-specified buffer (buf).

PARAMETERS
input Input bit file.
buf Output buffer.
lenx Number of bytesto read. This can be increased to get more throughput or
decreased to free up variable space.
RETURN VALUE
Number of bytes read
LIBRARY
LZSS.LIB

Dynamic C Functions rabbit.com

391

http://www.rabbit.com

read rtc

unsigned long read rtc(void);

DESCRIPTION

Reads seconds (32 hits) directly from the Real-time Clock (RTC). Use with caution! In most
casesuselongvariable SEC_ TIMER, which containsthe sameresult, unlessthe RTC hasbeen
changed since the start of the program.

If you are running the processor off the 32 kHz crystal and using a Dynamic C version prior to
7.30,useread_rtc_ 32kHz () instead of read_rtc (). Starting with DC 7.30,
read rtc 32kHz () isdeprecated becauseit isno longer necessary. Programmers should

only useread_rtc().

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

SEE ALSO

write rtc

read rtc 32kHz

unsigned long read rtc 32kHz (void);

DESCRIPTION

Reads the real-time clock directly when the Rabbit processor is running off the 32 kHz oscilla-
tor. Seeread rtc () for more details.

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

392 rabbit.com Dynamic C Functions

http://www.rabbit.com

readUserBlock

int readUserBlock(void * dest, unsigned addr, unsigned numbytes);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a buffer in root memory.
Please note that portions of the User block may be used by the BIOS for your board to store
values. For example, any board with an A to D converter will require the BIOS to write
calibration constants to the User block. For some versions of the BL2000 and the BL2100 this
memory areais 0x1C00 to Ox1FFF. Seethe user’s manual for your particular board for more
information before overwriting any part of the User block. Also, see the Rabbit Microprocessor
Designer’s Handbook for more information on the User block.

Note: When using a board with serial bootflash (e.g.,, RCM4300, RCM4310),
readUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flashisin use
by another device. However, if using uC/OS-Il and SPI USE UCOS MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, theruntime error ERR_SPI_MUTEX ERROR will occur. See
the description for _rcm43 InitUCOSMutex () for moreinformation on using
HC/OS-Il and SPI_ USE UCOS_ MUTEX.

PARAMETERS
dest Pointer to destination to copy datato.
addr Address offset in User block to read from.
numbytes Number of bytes to copy.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: Novalid ID block found (block version 3 or later)

The return values below are applicableonly if SPI _USE UCOS_ MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlock, readUserBlockArray

Dynamic C Functions rabbit.com 393

http://www.rabbit.com

readUserBlockArray

int readUserBlockArray(void * dests[], unsigned numbytes[], int
numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffersin root
memory. Thisfunction is usually used as the inverse function of
writeUserBlockArray ().

This function was introduced in Dynamic C version 7.30.

Note: Portions of the User block may be used by the BIOS to store values such as calibra-
tion constants. See the manual for your particular board for more information before over-
writing any part of the User block.

Note: When using a board with serial bootflash (e.g.,, RCM4300, RCM4310),
readUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flashisin use
by another device. However, if using uC/OS-Il and SPI USE UCOS_ MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the runtime error ERR_SPI_MUTEX ERROR will occur. See
the description for _rcm43 InitUCOSMutex () for moreinformation on using
HC/OS-Il and _SPI_USE UCOS_ MUTEX.

PARAMETERS
dests Pointer to array of destinations to copy datato.
numbytes Array of numbers of bytes to be written to each destination.
numdests Number of destinations.
addr Address offset in User block to read from.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: Novalid System ID block found (block version 3 or later)
The return values below are applicableonly if SPI USE UCOS_MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlockArray, readUserBlock

394 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry enumerate

int registry enumerate(RegistryContext * r, int (*£f) (), int

keyvalues,

DESCRIPTION

void far * ptr);

Enumerate registry r->old_spec, calling the specified function “f” for each section header and,
optionally, key=value pair.

Theregistry get () function aso performsenumeration; in fact it is awrapper for this

function.

PARAMETERS

r

keyvalues

ptr

RegistryContext structure, with at least the o1d_spec field initialized.
For example, use registry prep read () to set up the struct cor-
rectly.

r->old_spec: Open resource handle of a readable resource containing the
registry settings. Thisis read from the current seek position, thus in most
cases call this function with a freshly opened resource handle.

Callback function to be invoked. The function prototype must be as fol-
lows:

int f(void far * ptr,

int new sect,

char * sect,

char far * key,

char far * value) { ... }

where the parameters are:
* ptr - thisis passed through from the 4th parameter to the
registry enumerate () function (see below).

» new_sect - boolean indicating whether this call isto introduce anew sec-
tion. If true, then 'sect’ is the new section name, and 'key' and 'value' are
not relevant.

* sect - name of section if new_sect flagistrue
key - key (field) ascii string if new_sect isfalse
* value - value as an ascii string if new_sect isfalse.

Boolean indicating whether the callback function is to be invoked for
key=value pairs (if true). In either case, the callback is inkoked whenever
anew section isfound, and the new_sect callback parameter will be set
true.

An arbitrary pointer which will be passed through to the callback on each
invocation.

Dynamic C Functions

rabbit.com

395

http://www.rabbit.com

registry enumerate (cont’d)

RETURN VALUE

<0: failure to write or read the resource

0: success
LIBRARY
registry.lib

SEE ALSO

sspec_open,

registry prep read, registry finish read

registry read, registry update, registry get,

396

rabbit.com

Dynamic C Functions

http://www.rabbit.com

registry get

int registry get(char * basename, char far * section,
RegistryEntry * re, ServerContext * sctx, int (*£f) (),
int keyvalues, void far * ptr);

DESCRIPTION

Convenience function for reading and/or enumerating registry contents. This basically com-
bines calls to the following functions:

registry prep read()

registry read() and/or registry enumerate ()

registry finish read()

If thefield array (re) isnot NULL, then registry read () will becalled. If the callback
function (f) isnot NULL, thenregistry enumerate () will becalled. If bothreandf are
not NULL, then read will be invoked before enumerate.

PARAMETERS

basename Base name of registry file, as a Zserver resource name. This file must not
have an extension, since the extensions".1", ".2" and so on are appended
to the name.

section Section nameto read (may be NULL to read the anonymous section at the
start of theregistry file).

re Array of fieldstoread. Seeregistry read () function description
for details.

sctx Server context.

£() Callback function. Seeregistry enumerate () for details.

keyvalues Boolean indicating whether callback receives key=vaue pairs aswell as
section headers. If false, it only receives section headers.

ptr Arbitrary application data which will be dutifully passed through to the

callback without alteration.

RETURN VALUE

<0: general failure, code will be negative of one of the codesin ERRNO . L.IB.
0: OK

LIBRARY
register.lib
SEE ALSO

registry prep read, registry read, registry finish read,
registry enumerate, registry update

Dynamic C Functions rabbit.com

397

http://www.rabbit.com

registry finish read

int registry finish read(RegistryContext * r);

DESCRIPTION
Finish reading aregistry, and clean up resources. Most applications will use the sequence of
functions:

registry prep read()
registry read() and/or registry enumerate () |
registry finish read()

PARAMETER

r RegistryContext struct, asset by registry prep read().

RETURN VALUE

<0: general failure, code will be negative of one of the codesin ERRNO . L.IB.
0: OK.

LIBRARY
registry.lib

SEE ALSO

registry read, registry prep read, registry prep write,
registry write, registry finish write, registry enumerate,
registry update, registry get

398 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry finish write

int registry finish write(RegistryContext * r);

DESCRIPTION
Finish updating aregistry, and clean up resources. Most applications will use the sequence of
functions

registry prep write()
registry write()
registry finish write()

PARAMETER

r RegistryContext structure, asset by registry prep read().

RETURN VALUE

<0: general failure, code will be negative of one of the codesin ERRNO.LIB.
0: OK

LIBRARY
registry.lib

SEE ALSO

registry read, registry prep read, registry prep write,
registry write, registry finish read, registry enumerate,
registry update, registry get

Dynamic C Functions rabbit.com

399

http://www.rabbit.com

registry prep read

int registry prep read(RegistryContext * r, char * basename,
ServerContext * context);

DESCRIPTION

Prepare for reading aregistry. This function helps organize registry resourcesin order to create
arobust registry.

Most applications will use the sequence of functions:
registry prep read()

registry read() and/or registry enumerate ()
registry finish read()

or simply
registry get ()

Registry updates require reading from an old registry, editing it, then writing the modified result
to anew registry resource. This requires two resourcesto be open. Normally, the "old" registry
will be deleted once the updateis successful. If there is a power outage or reset during this pro-
cess, it is possible for two registry files to exist when the system is restarted. This causes prob-
lems, since one of the registries may be corrupt. This APl imposes a naming convention on the
old/new resources so that a non-corrupt registry can always be found.

The algorithm used appends an extension to the basename resource name. Theextensionis™.1",
".2" or".3". The"current" registry resource will cycle through these extensions. It is assumed
that exactly 0, 1 or 2 of these resources will exist at any time. Thismeansthat at | east one of the
possible resource names will not exist. (If al three exist, then the behavior is undefined, since
the resources must have been created outside the registry system. The application isresponsible
for ensuring this does not happen, otherwise the ability to find a non-corrupt registry will be
compromised).

400 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry prep read (cont’d)

If none of the resources exist, then thisindicates abrand new registry. If exactly one exists, then
thisisthe old (and presumed non-corrupt) registry. If two exist, it is assumed that one of the
resources is OK and the other corrupt. Since there are only 3 possible extensions, and they in-
crement in wrap-around fashion, the "lowest" numbered extension is assumed to be the non-cor-
rupt one, with "lowest" being in the sense of modulo 3. Thisis summarized in the following
table:

Existing Extensions Assumed Non-corrupt

- None, new registry

1 1
2 2
3 3
1,2 1 (2 will be deleted)
2,3 2 (3 will be deleted)
1,3 3 (1 will be deleted)
Should not happen - will
1,2,3 arbitrarily pick 1 and delete
2,3.

In the case that more than one registry extension was found, the presumed corrupt resource is
automatically deleted to clean up the registry.

PARAMETERS

r RegistryContext structure. Thisis used to passinformation in a consistent
manner between the major registry API functions. It may be passed unini-
tialized to thisfunction. Thisfunction fillsin the r->old_spec field to indi-
cate the open resourcewhich will beusedby registry read().The
value may also be set to -1 if there was an error or no existing resource
could be located.

basename Base name (including path) of the registry This should NOT include any
extension (e.g. ".foo") since the extension is manipulated by this function.
In practice, thiswill need to be a resource name on non-volatile storage,
which supports names with extensions. In practice, this limits the appro-
priate filesystem to FAT filesystem only. For example

registry prep read("/A/myreg", &spec);

will select from a set of registry filescaled /A/myreg.1, /A/myreg.2,
/A/myreg.3 of which, normally, only one will exist at any time.

Dynamic C Functions rabbit.com

401

http://www.rabbit.com

registry prep read (cont’d)

context ServerContext struct. E.g. from http_getContext().

RETURN VALUE
<0: General failure, code will be negative of one of the codesin ERRNO . LIB.
0: thereis currently no resource of the given name. Thisisnot necessarily an error, since it will
be returned if the registry has not yet been created.
1,2, 3: Anexisting presumed non-corrupt resource hasbeen opened. The numeric return code
indicates which of the extensions was located.

LIBRARY

register.lib

SEE ALSO
registry read, registry finish read, registry prep write,
registry write, registry finish write, registry enumerate,
registry update, registry get

402 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry prep write

int registry prep write(RegistryContext * r, char * basename,
ServerContext * context);

DESCRIPTION

Prepare for updating aregistry. Thisfunction hel psorganizeregistry resourcesin order to create
arobust registry.

Most applications will use the sequence of functions
registry prep write()
registry write ()
registry finish write()

or, more simply, just
registry update ()

See the function description for registry prep read () for details concerning the orga-
nization of registry files.

Likeregistry prep read (), thisfunction opensan existing presumed non-corrupt reg-
istry for reading, and also a new empty registry (the "next" registry) for writing the updated es-
ults, asrequired by registry write().

PARAMETERS

r RegistryContext struct. Thisis used to pass information in a consistent
manner between the major registry API functions. It may be passed unini-
tialized to this function.

basename Base name (including path) of the registry. This should NOT include any
extension (e.g. ".foo") since the extension is manipulated by this function.
In practice, thiswill need to be a resource name on non-volatile storage,
which supports names with extensions. In practice, thislimitsthe appropri-
ate filesystem to FAT filesystem only. For example

registry_prep_write("/A/myreg", & oldspec, & newspec);
will select from a set of registry files called

[Al/myreg.1, /A/myreg.2, /A/myreg.3\ of which, normally, only two will
exist at any time; onewill be opened for reading, and the other will be emp-
ty and ready for writing.

context ServerContext structure. E.g. fromhttp getContext ().

Dynamic C Functions rabbit.com 403

http://www.rabbit.com

registry prep write (cont’d)

RETURN VALUE
<0: general failure, code will be negative of one of the codesin ERRNO . L.IB.
0: thereiscurrently noresourceof thegiven name. * oldpwill besetto-1linthiscase. Thisis
not necessarily an error, sinceit will bereturned if theregistry hasnot yet been created. You can

pass*oldpto registry write () inthiscase, andit will correctly create the new registry
without attempting to read the (non-existent) "old" registry.

1,2,3: An existing presumed non-corrupt resource has been opened, and the open resource han-
diereturned in * oldp. The numeric return code indicates which of the extensions was located.
Note that the "new" registry file will be this number plus 1 (except that 4 becomes 1).

LIBRARY

register.lib

SEE ALSO
registry read, registry finish read, registry prep read,
registry write, registry finish write, registry enumerate,
registry update, registry get

404 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry read

int registry read(RegistryContext * r, char far * section,
RegistryEntry far * entries);

DESCRIPTION

Read the registry r->old_spec using the specified registry entries. Only entries in the named
“section” are read, and the results are placed at the locations pointed to by the RegistryEntry

array elements.

Note: Since thisfunction requires some temporary malloc memory, you should ensure that
thereisat least REGBUF SIZE bytesof available system-space malloc memory. The
_REGBUF_SIZE macro defaultsto 1025 bytes, but you may override this definition
before #use registry.lib.

r

section

entries

RETURN VALUE

RegistryContext structure, with at least the old_spec field initialized. For
example, useregistry prep read () toset up thisstructure cor-
rectly.

r->old_spec:
Open resource handle of areadable resource containing the registry set-

tings. Thisisread from the current seek position, thusin most cases you
will want to call this function with afreshly opened resource handle.

Section name. If NULL or empty string, then thefirst (anonymous) section
of theregistry isimplied.

List of registry entriestoread. Seetheregistry write () description
for details. The “value’ field will be set to point to the location where the
read valueis stored. If the key does not exist in the specified section, then
the contents at thislocation will be untouched. Thus, you can set “default”
values at each location before calling registry read ().

Asforregistry write (),thelist MUST beterminated with an entry
with the REGOPTION EOL option.

<0: failure to write or read the resource

0: success

LIBRARY

register.lib

SEE ALSO

sspec_open,

registry write, registry update, registry get,

registry prep read, registry finish read

Dynamic C Functions

rabbit.com

405

http://www.rabbit.com

registry update

int registry update(char * basename, char far * section,
RegistryEntry * re, ServerContext * sctx);

DESCRIPTION

Convenience function for updating a registry with aminimum of fuss. Basically combines the
function calls:

registry prep write()
registry write ()
registry finish write()

PARAMETERS

basename Base name of registry file, as a Zserver resource name. Thisfile must not
have an extension, since the extensions".1", ".2" and so on are appended
to the name.

section Section name to update (may be NULL to update the anonymous section
at the start of the registry file).

re Array of update commands. Seethe registry write () function de-
scription for details. If this pointer isNULL, the entire section is deleted.

sctx Server context.

RETURN VALUE

<0: general failure, code will be negative of one of the codesin ERRNO.LIB.
0: OK

LIBRARY

register.lib

SEE ALSO

registry prep write, registry write, registry finish write,
registry get

406 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry write

int registry write(RegistryContext * r, char far * section,
RegistryEntry far * entries);

DESCRIPTION

Modify the old registry r->01d_spec using the specified registry entries, writing the result
to r->new_spec. Only entriesin the named “ section” may be altered. This function also al-
lows entries and sections to be deleted.

Thenew and old filesmust be different, since thisfunction depends on reading fromthe oldfile,
performing the requested modifications, and writing the new file -- thisisall done line-by-line.
Generally, you will need two resource files which will alternate. Only when the modifications
are successfully complete will the old file be deleted. This makes the update process more re-
sistant to corruption caused by e.g., the user turning off the power in the middle of the update.
The helper function registry prep write () automates this process.The function
registry update () encapsulatesthe basic registry update process.

NOTE: since this function requires some temporary malloc memory, you should ensure that
thereisat least REGBUF_SIZE bytes of available system-space malloc memory. The
_REGBUF_SIZE macro defaultsto 1025 bytes, but you may override this definition before
#use registry.lib.

Registry resources are similar to Windows “.ini” file format. They are ASCII formatted (and
thus human readable) and consist of one or more “sections,” each of which has zero or more
key=value lines. For example:

[net settings]
ip=10.10.6.100
ssid=Rabbit

[app settings]

some integer=23

a string=hello world

Each section is headed by a string enclosed in square brackets. Within each sectionisalist of
key stringsfollowed by '=' followed by the value of that entry. The key string isarbitrary except
that it cannot start with '[' or contain any '=', null or newline characters. The value string is ar-
bitrary except that newline and null characters are not allowed. Section names are arbitrary ex-
cept they cannot contain ‘', null or newline characters. Spaces are always significant. In
particular, don't put spaces on either side of the '=' separator.

If there are duplicate keysin the entries table, then it is undefined which of the entries actually
gets stored. Don't do it.

Normally, you do not need to be concerned with the above format rules, since the library func-
tions enforce them.

Dynamic C Functions rabbit.com 407

http://www.rabbit.com

registry write (cont’d)

If you need to store null (binary zero) or newline (binary OxOA or, in C syntax, "\n") then your
application will need to use some sort of convention for escaping such characters, or you can
usetheREGOPTION BIN () optionwhichwill storethe string expanded into ASCII hexadec-
imal, which is completely safe.

Individual key/value entries may be deleted by specifying the REGOPTION DELETE flag
with the appropriate entries.

PARAMETERS

r RegistryContext structure, with at least the old_spec and new_spec fields
initialized. For example, useregistry prep write () tosetupthis
structure correctly.

r ->old_spec:

Open resource handle of areadable resource containing the old registry set-
tings. Thisisread from the current seek position, thusin most cases you
will want to call this function with a freshly opened resource handle. This
may also be -1, which indicates thereis*no* old registry to update, and a
new registry will be written to new_spec.

r->new_spec: Open resource handle of awritable resource, to which the
old registry (modified with the given settings) will be written. Normally,

this should initially be an empty resourcefile. The new settings will be
written starting at the current seek position in this resource.

Note that the resource handles remain open when this function returns.

section Section name. If NULL or empty string, then thefirst (anonymous) section
of theregistry isimplied.

408

rabbit.com Dynamic C Functions

http://www.rabbit.com

registry write (cont’d)

entries List of replacement registry entries. Thelist MUST be terminated with an
entry with the REGOPTION EOL option.

Caution: If this pointer is NULL, then the entire section is deleted.
Each element inthisarray isasfollows:

typedef struct ({

char far * key; // Entry key. Must not contain '=" or newlines, and
// must not start with '[". Must be null-terminated.
void far * wvalue; // Entry value. Type determined by options. If the

// REGOPTION_STRING option is set, this must
// not contain newlines and must be null terminated.
int options; // Entry optionsand flags: If valueis greater
// than zero, then value is an arbitrary binary
// value with the specified length. It will be
// storedintheregistry with twice that many
// ascii hex digits. If valueis<=-10, theniti
// ascii string with max length of (-options-8)
// Otherwise, thisfield is asimple enumeration
// indicating the data type as follows:
#define REGOPTION_ EOL 0 // Endof list

#define REGOPTION SHORT (-1) // Signed short (2 byte) - stored as decimal
#define REGOPTION LONG (-2) // Signedlong (4 byte) - tored as decimal
#define REGOPTION_BOOL (-3) // int(2byte) - stored as 1 (if non-zero) or O
#define REGOPTION FLOAT (-4) // |EEEfloat (4 byte)

// Only avail if STDIO_DISABLE_FLOATS

// *not* defined, stored in %f format
#define REGOPTION RESV5 (-5)
#define REGOPTION_ RESV6 (-6)
#define REGOPTION DELETE (-7) // Deletethisentry if found
#define REGOPTION NOP (-8) // No operation: convenience for

// congtructingRegistryEntry lists.

#define REGOPTION RESV9 (-9) // Forvariablelength data...

#define REGOPTION BIN(len) (len)

// Binary of given fixed length - stored expanded into ascii hexadecimal.

// lenmust bel.. REGBUF_SIZE/2-M where M isthe size of the key plus 2.
// Asarule of thumb, be careful when len is more than about 256.

#define REGOPTION_ STRING(len) (-8-(len))

// Null-terminated string up to len chars counting the null terminator - stored as-is.

// lenmust beat least 2. len must not be morethan REGBUF_SIZE-M where M isthe
// size of the key plus 2. Asarule of thumb, be careful when len is more than about 512.

word work; // Work field for registry read/write lib functions
// May beleft uninitialized by the caller unless otherwise noted in the function description.
} RegistryEntry;

Dynamic C Functions rabbit.com 409

http://www.rabbit.com

registry write (cont’d)

RETURN VALUE

<0: failure to write or read the resource
0: success

LIBRARY
REGISTRY.LIB

SEE ALSO

sspec_open, registry read, registry update, registry get,
registry prep write, registry finish write

410 rabbit.com Dynamic C Functions

http://www.rabbit.com

res

void res(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand thiscall inline. Clears specified bit at memory addressto 0. Bit may be
from 0 to 31. Thisisequivalent to the following expression, but more efficient:

* (long *)address &= ~ (1L << bit)

PARAMETERS

address Address of byte containing bits 7-0.

bit Bit location where O represents the least significant bit.
LIBRARY

UTIL.LIB
SEE ALSO

RES

RES

void RES(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Clears specified bit at memory addressto 0. bit may
be from 0 to 31. Thisis equivalent to the following expression, but more efficient:

* (long *)address &= ~ (1L << bit)
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where O represents the |east significant bit.

LIBRARY
UTIL.LIB

SEE ALSO

res

Dynamic C Functions rabbit.com 411

http://www.rabbit.com

ResetErrorLog

void ResetErrorLog(void);

DESCRIPTION

This function resets the exception and restart type countsin the error log buffer header. This
function is not called by default from anywhere. It should be used to initialized the error log
when aboard is programmed by means other than Dynamic C, cloning, the Rabbit Field Utility
(RFU), or aservice processor. For example, if boards are mass produced with pre-programmed
flash chips, then the test program that runs on the boards should call this function.

LIBRARY
ERRORS.LIB

root2vram

int root2vram(void * src, int start, int length);

DESCRIPTION

This function copies datato the VBAT RAM. Tamper detection on the Rabbit 4000 erases the
VBAT RAM with any attempt to enter bootstrap mode.

PARAMETERS
src The address to the data in root to be copied to vbat ram.
start The start location within the VBAT RAM (0-31).
length The length of datato writeto VBAT RAM. The length should be greater
than 0.
The parameters length + start should not exceed 32.
LIBRARY
VBAT.LIB
SEE ALSO
vram2root

412 rabbit.com Dynamic C Functions

http://www.rabbit.com

root2xmem

int root2xmem(unsigned long dest, void * src, unsigned len) ;

DESCRIPTION
Stores 1en characters from logical address src to physical address dest.

PARAMETERS
dest Physical address.
src Logical address.
len Numbers of bytes.

RETURN VALUE

0: Success.
- 1: Attempt to write flash memory area, nothing written.
-2: Source not all in root.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xmem2root

Dynamic C Functions rabbit.com 413

http://www.rabbit.com

rtc_timezone

int rtc_timezone(long * seconds, char * tzname);

DESCRIPTION
Thisfunction returnsthetimezone offset asknown by thelibrary. Thetimezoneisobtained from
the following sources, in order of preference:

1. The DHCP server. Thiscan only be used if the TCP/IP stack isin use, and USE_DHCP is

defined.
2. The TIMEZONE macro. This should be defined by the program to an _hour_ offset - may be
floating point.
PARAMETERS
seconds Pointer to result longword. Thiswill be set to the number of seconds offset
from Coordinated Universal Time (UTC). The value will be negative for
west; positive for east of Greenwich.
tzname If null, notimezone nameisreturned. Otherwise, thismust point to abuffer

of at least 7 bytes. The buffer is set to a null-terminated string of between
0 and 6 charactersin length, according to the value of the TZNAME macro.
If TZNAME is not defined, then the returned string is zero length ("").

RETURN VALUE

0: timezone obtained from DHCP.
- 1: timezone obtained from TIMEZONE macro. The value of this macro (which may beint,

float or avariable name) is multiplied by 3600 to form the return value.
-2: timezoneis zero since the TIMEZONE macro was not defined.

LIBRARY
RTCLOCK.LIB

414 rabbit.com Dynamic C Functions

http://www.rabbit.com

runwatch

void runwatch(void);

DESCRIPTION
Runs and updates watch expressions if Dynamic C has requested it with a Ctrl-U. Should be
called periodicaly in user program.

LIBRARY
SYS.LIB

sdspi debounce

int sdspi_debounce(sd_device * sd);

DESCRIPTION

Thisfunction waits for and debounces the card insertion switch. When it returns True (1), then
acardisfully inserted.

PARAMETER
sd The device structure for the SD card.

RETURN VALUE

1: Success, card fully inserted
0: No card present

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 415

http://www.rabbit.com

sdspi get csd

int sdspi_get csd(sd_device * sd);

DESCRIPTION

Thisfunction is called to execute protocol command 9 to retrieve the SD card's Card Specific
Data (CSD) and storeit in the respective SD driver configuration object. The CSD datais used
to determine the SD card's physical storage and timing attributes.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

-EI0: /O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY

SDFLASH.LIB

416 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi get scr

int sdspi_get_ scr(sd_device * sd);

DESCRIPTION

Thisfunction executes application specific command 51 to retrieve the SD card's Configuration
Register (SCR) and storeit in the respective SD driver configuration object. The SCR datais
used to identify the SD card's physical interface version and security version. It also contains
erase state (all 0's or 1's) and supported bus widths.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

-EI0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 417

http://www.rabbit.com

sdspi getSectorCount

long sdspi getSectorCount(sd device * dev);
DESCRIPTION
Return number of usable 512 byte sectors on an SD card.

PARAMETER

dev Pointer to sd_device struct for initialized flash device.

RETURN VALUE
Number of sectors

LIBRARY
SDFLASH.LIB

sdspi get status reg

int sdspi get status reg(sd device *sd, int * status);

DESCRIPTION
Thisfunction is called to execute protocol command 13 to retrieve the status register value of
the SD card.
PARAMETERS
sd Pointer to the device structure for the SD card.
status Pointer to variable that returns the status.

RETURN VALUE

0: Success, Card status placed in status
-EI0: I/O error

-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

418 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi init card

int sdspi_init card(sd device * =d);

DESCRIPTION

Initializes the SD card pointed to by sd. Function executes protocol command “1" which clears
HCS bit and activates the card's initialization sequence.

PARAMETERS
sd Pointer to sd_device structure for the SD card.

RETURN VALUE

0: Success

-EI0: /O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 419

http://www.rabbit.com

sdspi initDevice

int sdspi_ initDevice(int indx, sd dev interface * sd _dev);

DESCRIPTION

Initializesthe SD card pointed to by sd_dev and adds information about the cardsinterface to
the SD device array in the position pointed to by indx. Sets up the default block size of 512
bytes used by sector read/write functions. This function should be called before any calsto
other sdspi functions.

PARAMETERS
indx Index into the SD device array to add the card.
sd_dev Pointer to sd_dev_interface for the SD card.

RETURN VALUE
0: Success
-EI0: /O error
-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: SPI port busy

LIBRARY
SDFLASH.LIB

420 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi isWriting

int sdspi_isWriting(sd _device * dev);
DESCRIPTION
Returns 1 if the SD card is busy writing a sector.
PARAMETER
dev Pointer to initialized sd_device structure for the flash chip

RETURN VALUE
1: Busy
0: Ready, not currently writing

LIBRARY
SDFLASH.LIB

sdspi notbusy

int sdspi notbusy(int port);

DESCRIPTION

Thisfunction tests for a busy status from the SD card on the port given. It is assumed that the
card is already enabled.

PARAMETER

port The base address for the SD card's SPI port

RETURN VALUE

1. The card is not busy, write/erase has ended
0: The card is busy, write/erase in progress

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 421

http://www.rabbit.com

sdspi print dev

void sdspi print dev(sd_device * dev);
DESCRIPTION
Prints parameters from the SD device structure.

PARAMETER

dev Pointer to sd_device structure of the SD card.

LIBRARY
SDFLASH.LIB

422 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi process command

int sdspi process command(sd device *sd, SD_CMD REPLY * cmd reply,
int mode);

DESCRIPTION

Thisfunction sendsthe command placed inthe cmd_reply structureandretrievesareply and
data (optional) as defined in the cmd_ reply structure. Pointersto TX and RX buffersare re-
trieved from the cmd_reply structure and used for command transmission and reply/data re-
ception. Reply is parsed and placed in cmd_reply.reply. Errors encountered will give a
negative return value.

The SPI semaphore is obtained before the command is sent. The mode parameter controls
whether the semaphore will be released after command execution and reply/data reception. If
mode is zero, both semaphore and chip select are active on a successful return. An end com-
mand sequence and release of the semaphore must be handled by caller.

If modeis not O, the semaphore will be released before returning. In addition, if modeis 2 then
an SD card reset isin progress. This enables the distinguishing of certain I/O error conditions
that would normally be grouped with the - ET0 error code and instead return the - EAGAIN
error code, indicating reset retries should continue.

PARAMETER
sd Pointer to sd_device structure of the SD card.

cmd reply Pointer to cmd_reply structure, which contains:

cmd - command to be executed

argument - arguments for the command
reply - storage for command reply
reply_size - sizein bytes of expected reply
data_size - size in bytes of expected data
tx_buffer - pointer to TX buffer to use
rx_buffer - pointer to RX buffer to use

mode One of the following:

0 = SPI port semaphore should be retained.
1=If SPI port to be released before return.

2 = Attempting SD card reset, otherwise same as mode “1”.
(Enables - EAGAIN return value.)

Dynamic C Functions rabbit.com 423

http://www.rabbit.com

sdspi process command (cont’d)

RETURN VALUE

0: Success

-EI0: I/O error

-EAGAIN: Allowable I/O error during card reset
-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi read sector

int sdspi read sector(sd device * sd, unsigned long sector number,
void * data buffer);

DESCRIPTION
Thisfunction is called to execute protocol command 17 to read a 512 byte block of data from
the SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

sector number The sector number to read.
data buffer Pointer to a buffer for the 512 bytes read.

RETURN VALUE

0: Success

-EI0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

424 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi reset card

int sdspi_reset_card(sd_device * sd);

DESCRIPTION

Resets the SD card pointed to by sd. Function executes protocol command 0 to force the card
to Idle mode. This command is sent multiple times to reset the SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

RETURN VALUE

0: Success

-EI0: /O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 425

http://www.rabbit.com

sdspi sendingAP

int sdspi_sendingAP(sd device * =d);

DESCRIPTION
Sends AP command 55 to set Alternate Command maode on the next command sent to the card.
This function does not release the port sharing semaphore unless an error is encountered.
PARAMETER

sd Pointer to sd_device structure of the SD card.

RETURN VALUE

0: Success

-EI10:1/O error

-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi setLED

void sdspi setLED(sd device * sd, char state);

DESCRIPTION

Thisfunction setsthe LED for the given SD card based on state. If stateis 0, the LED isturned
off. If state is not zero, the LED is turned on.

PARAMETER
sd Pointer to sd_device structure of the SD card.
state The state to set the LED to: 0 = Off and Non-zero = On
LIBRARY

SDFLASH.LIB

426 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi set block length

int sdspi_set block length(sd device * sd, int block length);

DESCRIPTION

Thisfunction executes protocol command 16 to set the block length for the SD card. The default
block length for SD cardsis 512 bytes. Please note that sdspi_write sector () and
sdspi read sector () work on 512 byte blocksonly. If you change the block size, these
functions will need to be modified, or you will need to execute commands directly through
sdspi_ process command () andinternal write block and read block functions.

PARAMETER

sd Pointer to device structure of the SD card.

block length Theblock sizein bytesfor the SD card.

RETURN VALUE

0: Success

-EI0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 427

http://www.rabbit.com

sdspi WriteContinue

int sdspi WriteContinue(sd_device * sd);

DESCRIPTION

This function completes the previously started write command to the SD card when non-block-
ing mode is enabled. It looks for the end of the busy signal from the card, then strobes the chip
select. This function should be called repeatedly until the -EBUSY codeis not returned, at
which point the SPI port isfreed. Thereisatimeout mechanism for the busy signal. If exceeded,
the port is freed and the -EIO error codeis returned.

PARAMETERS

sd The device structure for the SD card.

RETURN VALUE

0: Success
-EI0: /O error or timeout
-EBUSY: SD card is busy with write operation; call sdspi WriteContinue () again

LIBRARY
SDFLASH.LIB

428 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi write sector

int sdspi_ write sector(sd device * sd, unsigned long sector_ number,
char * data buffer);

DESCRIPTION
Thisfunction is called to execute protocol command 24 to write a512 byte block of datato the
SD card.

PARAMETER
sd Pointer to device structure of the SD card.

sector number The sector number to write.
data buffer Pointer to a buffer of 512 bytes to write.

RETURN VALUE

0: Success

-EI0: I/O error

-EACCES: Write protected block, no write access

-EINVAL: Invalid parameter given

-ENOMEDIUM: No SD card in socket

-ESHAREDBUSY: Shared SPI port busy

-EBUSY: SD card is busy with write operation; call sdspi WriteContinue () tocom-
plete (only when SD_NON BLOCK is defined)

LIBRARY

SDFLASH.LIB

Dynamic C Functions rabbit.com 429

http://www.rabbit.com

servo alloc table

void servo_alloc_table(int which, int entries);

DESCRIPTION

Allocate an xmem data area for servo statistics collection. This function should be called once
only (for each servo) at application startup time.

PARAMETERS
which Servo (Oor 1)
entries Number of entriesto allocate. Each entry is 8 bytes, and stores 4 integer
values. The maximum value for this parameter is 8190.
LIBRARY
SERVO.LIB
SEE ALSO

servo_graph, servo read table, servo_stats reset

servo closedloop

void servo_closedloop(int which, int reset);

DESCRIPTION
Run specified servo in closed-loop (PID) mode.

PARAMETERS
which Servo (O or 1).
reset Whether to reset the current command list. The command list executes
evenwhilein open loop mode (although it will havenovisible effect in that
mode). If reset is non-zero, then the command list will be reset to empty
and the motor will halt at the current position.
LIBRARY
SERVO.LIB
SEE ALSO

servo_openloop, servo torque

430 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _disable 0

void servo disable 0(void);

DESCRIPTION

Disable drive to the first servo motor. Thisfunction only worksif an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO_ENABLE PORT 0 PGDR
#define SERVO_ENABLE PORTSHADOW 0 PGDRShadow
#define SERVO_ENABLE PIN 0 6

and, optionally,
#define SERVO ENABLE DDR 0 PGDDR

#define SERVO ENABLE DDRSHADOW 0 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 0

Thisfunction is limited to toggling the output pin. If enabling or disabling the servo motor re-
quires more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE 0 yyyy

whereyyyy isthe name of your own function (which isassumed to take no parameters and have
no return value)

LIBRARY
SERVO.LIB

SEE ALSO

servo_enable 0

Dynamic C Functions rabbit.com 431

http://www.rabbit.com

servo_disable 1

void servo disable 1(void);

DESCRIPTION

Disable drive to the second servo motor. This function only worksif an auxiliary control signal
is connected to the motor driver. The 1/0O pin used for this function is specified by the macros:

#define SERVO_ENABLE PORT 1 PGDR
#define SERVO_ENABLE PORTSHADOW 1 PGDRShadow
#define SERVO_ENABLE PIN 1 7

and, optionally,
#define SERVO ENABLE DDR 1 PGDDR

#define SERVO ENABLE DDRSHADOW 1 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 1

Thisfunction is limited to toggling the output pin. If enabling or disabling the servo motor re-
quires more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE 1 yyyy

whereyyyy isthe name of your own function (which isassumed to take no parameters and have
no return value)

LIBRARY
SERVO.LIB

SEE ALSO

servo_enable 1

432 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _enable 0

void servo enable 0(void);

DESCRIPTION
Enable drive to the first servo motor. Thisfunction only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE_ PORT 0 PGDR
#define SERVO ENABLE PORTSHADOW 0 PGDRShadow
#define SERVO ENABLE PIN 0 6

and, optionally,

#define SERVO_ENABLE DDR_0 PGDDR
#define SERVO ENABLE DDRSHADOW 0 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 0

Thisfunctionislimited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO ENABLE 0 xXxXX

where xxxx isthe name of your own function (which isassumed to take no parameters and have
no return value).

LIBRARY
SERVO.LIB

SEE ALSO

servo_disable 0

Dynamic C Functions rabbit.com 433

http://www.rabbit.com

servo_enable 1

void servo enable 1(void);

DESCRIPTION
Enable drive to the second servo motor. This function only worksif an auxiliary control signal
is connected to the motor driver. The 1/0O pin used for this function is specified by the macros:

#define SERVO ENABLE_ PORT 1 PGDR
#define SERVO ENABLE PORTSHADOW 1 PGDRShadow
#define SERVO ENABLE PIN 1 7

and, optionally,

#define SERVO ENABLE DDR_1 PGDDR
#define SERVO ENABLE DDRSHADOW 1 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 1

Thisfunctionislimited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO ENABLE 1 xxxX

where xxxx isthe name of your own function (which isassumed to take no parameters and have
no return value).

LIBRARY
SERVO.LIB

SEE ALSO

servo_disable 1

434 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_gear

void servo_gear(int count0, int countl, int slave0O, int slavel);

DESCRIPTION

NOTE: thisfunction is currently not efficient enough for production use (owing to use of long
multiplication and division). Itisprovided asan example of the use of callbacks from the ISR.

If two servos are in use, couple or cross-couple their positioning. This only works if
NUM_SERVOS is 2, and both servos are in closed loop mode.

There are four possible sub-modes of operation, which depend on the slave0/1 parameters.

slaveO slavel Operation

Non-gear mode: neither servo isdlaved. Thisisthe normal,
default, mode.

Second servo is slaved from first servo. For every ‘countQ'
0 1 increments of the first servo's encoder, the second servo will be
moved ‘countl’ increments.

First servo is slaved from second servo. For every ‘countl’
1 0 increments of the second servo's encoder, the first servo will be
moved ‘count0’ increments.

Both servos cross-coupled. Movement will only result from an
1 1 externally applied torque. Thisisatrue simulation of
mechanical gearing.

Call this function with countO or countl zero, or both slave0 and slavel zero, to exit from gear
mode. When a servo that was slaved is set to normal mode, its velocity is set to zero.

PARAMETERS
count0 Encoder increment for thefirst servo which resultsfrom countl increments
of the second servo.
countl Encoder increment for the second servo which results from countO incre-

ments of the first servo.

Together, count0 and countl determine the gearing ratio. Neither value should be set to a mag-
nitude greater than about 500, to avoid internal arithmetic overflow. In any gear mode, the total
movement of either servo should belimited to | essthan about 2M countsin either direction from
the point at which gear mode was set. If asmaller range of movement is acceptable, then the
maximum of either count parameter may be increased proportionally. The value of
countO/countl or count1/countO should not have a magnitude greater than about 10 to avoid en-
coder quantization problems, especialy in cross-coupled mode.

Dynamic C Functions rabbit.com 435

http://www.rabbit.com

servo _gear (cont’d)

slave0 1if first servo slaved to second, €lse zero.
slavel 1if second servo slaved to first, else zero.
LIBRARY
SERVO.LIB
SEE ALSO

servo_ closedloop, servo_ torque

436 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_graph

int servo graph(int which, word start, word nlines, word samples,
word what, int low, int high);

DESCRIPTION

Draw ASCII-art graph of servo response. Thisis primarily intended for debugging. It should be
called after resetting the sample collection table using servo_stats_ reset (), then exe-
cuting amovement whose response is to be graphed.

PARAMETERS

which Servo (Oor 1)

start Starting sample number

nlines Number of lines (sample bins) in graph - vertical axis

samples Number of samplesto cover (should be multiple of nlines)

what Which statistic to print: Oisfor error; 1 for error integral; 2 for error rate
(differential), 3 for PWM output setting. These may be customized to have
different meanings

low Low range of horizontal axis

high High range of horizontal axis

RETURN VALUE
0: OK
-1: error

LIBRARY
SERVO.LIB

SEE ALSO

servo_alloc table, servo read table, servo stats reset

Dynamic C Functions rabbit.com 437

http://www.rabbit.com

servo_init

void servo init(void);

DESCRIPTION

Thisfunction must be called once at the beginning of application code to initialize the servo li-
brary.

LIBRARY
SERVO.LIB

SEE ALSO

servo_stats reset, servo alloc table, servo_ set coeffs,
servo_enable 0

servo millirpm2vcmd

long servo millirpm2vemd(int which, long millirpm) ;

DESCRIPTION
Convert /1000 RPM unitsto velocity command value. Basic formulais:

SERVO COUNT PER REV n - millirpm - 65536
60000 - SERVO_LOOP RATE HZ

vemd =

Floating point is used to retain 24 bit precision.

PARAMETERS
which Servo (O or 1).
millirpm Input in units of /1000 RPM.

RETURN VALUE

Output in units suitable for command velocity setting i.e units of 1/65536 encoder counts per
ISR execution (sample).

LIBRARY
SERVO.LIB

SEE ALSO

servo_move to, servo_set vel, servo set pos

438 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _move to

int servo move to(int which, long pos, long ticks, long accel ticks,
long final v);

DESCRIPTION

Move to new position, pos. Assumes current position is“cmd” and current velocity is*“vemd”
(with the values of these read from the control structure at beginning of routine).

Each "tick" represents the time interval between loop updates. This routine measures timein-
tervalsin units of ticks.

accel_ticks (<= ticks) isthe number of ticks allocated to accel eration/decel eration phase of
movement. The remaining part of the movement isperformed at constant vel ocity. Acceleration
and decel eration are computed to be of the same magnitude at beginning and end of motion (but
may be opposite signs). fina_v isthe velocity to be achieved at end of movement. Thisroutine
returns as soon as the necessary command list isinstalled for execution by the ISR. The move-
ment will not be completed until “ticks” 1SR executions.

NB: if theaverage vel ocity (vt) required to complete the movement isgreater than +/-16k counts
per tick, then the movement is stretched to alonger timeinterval so asto makethe peak velocity
equal tothe +/- 8k counts/tick (which ishigher than any physical motor can follow). accel _ticks
isset to 16384 if it is over that (since rounding errors can accumul ate over long periods of low
acceleration).

If thisroutineis called again before the previous motion is completed, then the previous motion
will be overridden by the new motion. This routine uses floating point, since the mathematics
are quite complex. It takes several milliseconds to execute, so should not be called to perform
motions which complete in less than, say, 50ms.

Thisroutine does not attempt to control rate of change of acceleration ("jerk" or d"3x/dt"3). It
approximates the required movement profile as parabolic (constant acceleration) and linear
(constant velocity) segments.

PARAMETERS
which Servo (O or 1).
pos Position to be achieved at end of movement.
ticks Number of ISR executions (loop update rate) over which to complete the

movement. If lessthan 1, itissetto 1.

accel ticks Number of ticksover which accelerationisto beapplied. Theremainder of
theinterval, ticks- accel_ticks, isperformed at constant velocity. If greater
than "ticks', it is set equal to "ticks".

final v Final velocity to be achieved at end of movement.

Dynamic C Functions rabbit.com 439

http://www.rabbit.com

servo move to (cont’d)

RETURN VALUE

0: OK.
1: computed velocity is"extremely high": timeinterval stretched to make velocity fit within al-
lowable fixed-point limits (i.e. 8192 encoder counts per sample).

LIBRARY
SERVO.LIB

SEE ALSO

servo_set vel, servo set pos, servo millirpm2vcmd

servo_ openloop

void servo openloop(int which, word pwm) ;

DESCRIPTION

Run specified servo in open-loop mode (no PID control). Note that this bypasses dynamic cur-
rent-limiting (if any defined) so should be used with caution.

PARAMETERS
which Servo (O or 1).
pwm Output PWM setting (0-1024). 0 indicates maximum reverse speed, 1024
is maximum forward speed. 512 isnominally zero speed (but this depends
on amplifier offset).
LIBRARY
SERVO.LIB
SEE ALSO

servo_ closedloop, servo_ torque

440 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _qgd zero 0

void servo gd zero 0(void);

DESCRIPTION

Reset the first servo encoder reading to zero. The servo motor is not moved; only the notion of
the current position is reset to zero. This should only be called when the servo isin open loop
mode.

LIBRARY
SERVO.LIB

SEE ALSO

servo_gd zero 1

servo qgd zero 1

void servo gd zero 1 (void ;)

DESCRIPTION

Reset the second servo encoder reading to zero. The servo motor is not moved; only the notion
of the current position isreset to zero. Thisshould only be called when the servoisin open loop
mode.

LIBRARY
SERVO.LIB

SEE ALSO

servo_gd zero 0

Dynamic C Functions rabbit.com 441

http://www.rabbit.com

servo read table

int servo_read table(int which, word entry, word nent, int datal[l2]);

DESCRIPTION

Read one or more table entries, returning average, max and min of al samplesin the specified
group starting at entry, for nent samples.

PARAMETERS
which Servo (Oor 1)
entry First sample number
nent Number of entries starting at "entry"
datal[12] Returned data: 3 setsof 4 contiguousentries. Thefirst set (data[0]..data] 3])

contains the average; the second set (data[4]..data] 7]) contains the maxi-
mum; and the last set (data[8]..data[11]) contains the minimum. The ele-
ments of each set correspond with the table data: the first element isthe
instantaneous error; the second is the error integral; the third is the error
rate; and the 4th isthe PWM output. These may be customized to have dif-
ferent meanings.

RETURN VALUE
0: OK
1: no such entry or entries.

LIBRARY
SERVO.LIB

SEE ALSO

servo_alloc_table, servo graph, servo stats reset

442 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo set coeffs

void servo set coeffs(int which, int prop, int integral, int diff);

DESCRIPTION

Set the PID closed loop control coefficients. The normal sign for all coefficients should be pos-
itive in order to implement a stable control loop. See Technical Note 233 for details.

PARAMETERS
which Servo (Oor 1)
prop Proportional coefficient
integral Integra ("reset") coefficient
diff Derivative ("rate") coefficient
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo openloop

Dynamic C Functions rabbit.com

443

http://www.rabbit.com

servo_ set pos

void servo set pos(int which, long pos, long vel);

DESCRIPTION

Move the specified servo motor to a specified position and set the specified velocity at that po-
sition. This cancels any move which is currently in effect.

PARAMETERS

which
pos

vel

LIBRARY
SERVO.LIB

SEE ALSO

Servo (Oor 1)
Position, as an encoder count

Vel acity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo millirpm2vemd ().

servo_move_ to, servo set vel, servo millirpm2vcmd

444

rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_set vel

void servo_set vel(int which, long vel);

DESCRIPTION
Move the specified servo motor at a constant velocity. This cancels any move that is currently
in effect.
PARAMETERS
which Servo (O or 1).
vel Vel ocity, in units of encoder counts per |oop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo_millirpm2vemd().
LIBRARY
SERVO.LIB
SEE ALSO

servo_move_ to, servo set pos, servo millirpm2vcmd

servo stats reset

void servo stats reset(int which);

DESCRIPTION

Reset the statistics table. Thisis used immediately prior to a command movement, so that the
tableisfilled with the results of the movement command. Oncereset, onetablerow isfilled in
for each execution of the update loop (ISR driven). This continues until the tableisfull, oritis
reset again.

PARAMETER

which Servo (Oor 1)

LIBRARY
SERVO.LIB

SEE ALSO

servo_graph, servo read table

Dynamic C Functions rabbit.com 445

http://www.rabbit.com

servo_torque

void servo torque(int which, int torque);

DESCRIPTION

Run specified servo in open loop controlled torque mode. Thetorqueislimited by the dynamic
current limit feature, if available.

PARAMETERS
which Servo (Oor 1)
torque Amount of torque expressed as a fraction of the maximum permissible
torque, times 10,000. For example, to set the torque to 1/10 the maximum
valuein the reverse direction, call servo_torque (0, -1000).
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo openloop

446 rabbit.com Dynamic C Functions

http://www.rabbit.com

serCheckParity

int serCheckParity(char rx byte, char parity):;

DESCRIPTION

Thisfunction is different from the other serial routinesin that it does not specify a particular
seria port. This function takes any 8-hit character and testsit for correct parity. It will return
trueif the parity of rx_byte matchesthe parity specified. Thisfunctionisuseful for checking
individual characters when using a 7-bit data protocol.

PARAMETERS
rx byte The 8 bit character being tested for parity.
parity The character ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE

1: Parity of the byte being tested matches the parity supplied as an argument.
0: Parity of the byte does not match.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com

447

http://www.rabbit.com

serXclose

void serXclose(); /* where X is A-F */

DESCRIPTION
Disables serial port X. Thisfunction is non-reentrant.

Thefunctions serEclose () and serFclose () may be used with the Rabbit 3000 and
Rabbit 4000.

LIBRARY
RS232.LIB

serXdatabits

void serXdatabits (state); /* where X is A-F */

DESCRIPTION

Sets the number of data bitsin the serial format for this channel. Currently seven or eight bit
modes are supported. A call to serXopen () must be made before calling this function. This
function is non-reentrant.

Thefunctions serEdatabits () and serFdatabits () may be used with the Rabbit
3000 and Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXdatabits(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
state Aninteger indicating what bit mode to use. It isbest to use one of the mac-
ros provided for this:
* PARAM 7BIT - Configures seria port to use 7 bit data.
* PARAM 8BIT - Configures serial port to use 8 bit data (default condi-
tion).
LIBRARY
RS232.LIB

448 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXdmaOff

int serXdmaOff(void); /* where X is A-F */

DESCRIPTION
Stops DMA transfers and unall ocates the channels. Restarts the serial interrupt capability.
Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the function prototype
is: serXdmaOff(int port), where “port” is one of the macros SER_PORT A through
SER_PORT F.

RETURN VALUE

0: Success
DMA Error codes: Error

LIBRARY
RS232.LIB

SEE ALSO

serXdmaOn

Dynamic C Functions rabbit.com 449

http://www.rabbit.com

serXdmaOn

int serXdmaoOn(int tcmask, int rcmask); /* where X is A-F */

DESCRIPTION

Enables DMA for serial send and receive. This function should be called directly after
serXopen ().

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the function prototype
is: serXdmaOn(int port, ...), where “port” is one of the macros SER_PORT_A through
SER_PORT F.

Important Flow Control Note:
Because the DMA flowcontrol uses the external request feature, only two serial ports can use
DMA flowcontrol at atime. For the CTS pin, one serial port can use PD2, PE2, or PE6, and the
other can use PD3, PE3 or PE7.

How DMA Serial Works:

DMA Transmit:

When a serial function is called to transmit data, a DMA transfer begins. The length of that
transfer is either the length requested, or the rest of the transmit buffer size from the current po-
sition. An interrupt isfired at the end of the transmit at which time another transmit is set up if
more datais ready to go.

DMA Receive:

When serXdmaOn () iscalled, acontinuous chain of DMA transfers begins sending any data
received on the seria line to the circular buffer. With flowcontrol on, thereis an interrupt after
each segment of the data transfer. At that point, if receiving another segment would overwrite
data, the RT Soff function is called.

For more information see the description at the beginning of RS232 . LIB.

PARAMETERS
tcmask Channel mask for DMA transmit. Use DMA CHANNEL_ ANY to choose
any available channel.
rcmask Channel mask for DMA receive. UseDMA CHANNEL _ANY to chooseany

available channel.

RETURN VALUE
DMA error code or O for success

LIBRARY
RS232.LIB

SEE ALSO
serXdmaOff

450 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXflowcontrolOff

void serXflowcontrolOff(void); /* where X is A-F */

DESCRIPTION
Turns off hardware flow control for serial port X. A call to serXopen () must be made before
calling this function. This function is non-reentrant.

Thefunctions serEflowcontrolOff () and serFflowcontrolOff () may beused
with the Rabbit 3000 and Rabhbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXflowcontrol Off(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 451

http://www.rabbit.com

serXflowcontrolOn

void serXflowcontrolOn(void); /* where X is A-F */

DESCRIPTION

Turns on hardware flow control for channel X. This enablestwo digital lines that handle flow
control, CTS (clear to send) and RTS (ready to send). CTSisan input that will be pulled active
low by the other system when it isready to receive data. The RTS signal is an output that the
system usestoindicatethat it isready to receive data; it isdriven low when data can be received.
A call to serXopen () must be made before calling this function.

Thisfunction is non-reentrant.

ThefunctionsserEflowcontrolOn () andserFflowcontrolOn () may beusedwith
the Rabbit 3000 and Rabbit 4000.

If pinsfor the flow control lines are not explicitly defined, defaults will be used and compiler
warnings will be issued. The locations of the flow control lines are specified using a set of 5

macros.

SERX RTS_ PORT Dataregister for the parallel port that the RTSlineis on. e.g.
PCDR

SERA RTS_ SHADOW Shadow register for the RTSline's parallel port. e.g. PCDRShad-
ow

SERA RTS BIT The bit number for the RTS line

SERA CTS_PORT Dataregister for the parallel port that the CTSlineison

SERA CTS BIT The bit number for the CTSline

LIBRARY
RS232.LIB

452 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXgetc

int serXgetc(void); /* where X is A-F */

DESCRIPTION
Get next available character from serial port X read buffer. This function is non-reentrant.

Thefunctions serEgetc () and serFgetc () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXgetc(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

Success: the next character in the low byte, 0 in the high byte.
Failure: -1, which indicates either an empty or alocked receive buffer.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main() {
int c;
serRAopen (19200) ;
while (1) {
if ((c = serAgetc()) != -1) {
serAputc(c) ;
}
}

serAclose ()

Dynamic C Functions rabbit.com

453

http://www.rabbit.com

serXgetError

int serXgetError(void); /* where X is A-F */

DESCRIPTION

Returns a byte of error flags, with bits set for any errors that occurred since the last time this
function was called. Any bits set will be automatically cleared when this function is called, so
aparticular error will only be reported once. This function is non-reentrant.

The flags are checked with bitmasks to determine which errors occurred. Error bitmasks:

e SER PARITY ERROR
e SER OVERRUN_ ERROR

Thefunctions serEgetError () and serFgetError () may be used with the
Rabbit 3000 and Rabhbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXgetError(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE
The error flags byte.

LIBRARY
RS232.LIB

454 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXopen

int serXopen(long baud); /* where X is A-F */

DESCRIPTION
Opens seria port X. Thisfunction is non-reentrant.

The user must define the buffer sizes for each port being used with the buffer size macros
XINBUFSIZE and XOUTBUFSIZE. The values must be a power of 2 minus1, e.g.

#define XINBUFSIZE 63
#define XOUTBUFSIZE 127

Defining the buffer sizesto 2™ - 1 makes the circular buffer operations very efficient. If avalue
not equal to 2°- 1 is defined, adefault of 31 isused and a compiler warning is given.

The functions serEopen () and serFopen () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: The default pin setup of Serial Port E uses parallel port C pins which conflict with
the programming port. Opening serial port E with the default settings while in debug mode
will therefore kill PC host/target communication.

The user must #define the following if not using the default (PCDR) settings:

SERE_TXPORT defineto PEDR or PDDR
SERE_RXPORT defineto PEDR or PDDR

Note: The alternate pins on parallel port D can be used for seria port B by defining
SERB_USEPORTD at the beginning of a program. See the section on parallel port D inthe
Rabbit documentation for more detail on the alternate serial port pins.

For Rabbit 4000 Users. To use DMA for transfers, call serXdmaOn () after thisfunction.

PARAMETERS

baud Bits per second (bps) of data transfer. Note that the baud rate must be
greater than or equal to the peripheral clock frequency divided by 8192.

RETURN VALUE

1: The Rabbit's bps setting is within 5% of the input baud.
0: The Rabbit's bps setting differs by more than 5% of the input baud.

LIBRARY
RS232.LIB

SEE ALSO

serXgetc, serXpeek, serXputs, serXwrite, cof serXgetc,
cof serXgets, cof serXread, cof serXputc, cof serXputs,
cof serXwrite, serXclose

Dynamic C Functions rabbit.com 455

http://www.rabbit.com

serXparity

void serXparity(int parity mode); /* where X is A-F */

DESCRIPTION

Sets parity mode for channel X. A call to serXopen () must be made before calling thisfunc-
tion.

Parity generation for 8-bit data can be unusually slow due to the current method for generating
high 9th bits. Whenever a 9th high bit is needed, the UART is disabled for approximately 10
baud times to create along stop bit that should be recognized by the receiver as a high 9th bit.

Thelong delay isimposed because we are using the serial port itself to handle timing for the
delay. Creating a shorter delay would the require use of some other timer resource.

This function is non-reentrant.

ThefunctionsserEparity () and serFparity () may beused with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serX parity(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS

parity mode Aninteger indicating what parity mode to use. It is best to use one of the
macros provided:

* PARAM NOPARITY - Disables parity handling (default).

* PARAM OPARITY - Odd parity; parity bit set to “0” if odd number of
1'sin databits.

* PARAM EPARITY - Even parity; parity bit set to“1” if even number of
1'sin databits.

* PARAM MPARITY - Mark parity; parity bit always set to logical 1.
(Rabbit 4000 only)

* PARAM SPARITY - Space parity; parity bit always set to logical 0.
(Rabbit 4000 only)

* PARAM 2STOP - 2 stop hits.

From alogical standpoint, the first three of these PARAM macros cannot
be combined, but even PARAM 2STOP must stand alone due to limita-
tionsin the UART hardware that will not allow parity bits and extra stop
bits.

LIBRARY
RS232.LIB

456 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXpeek

int serXpeek(void); /* where X is A-F */

DESCRIPTION
Returns first character in input buffer X, without removing it from the buffer. Thisfunctionis
non-reentrant.

ThefunctionsserEpeek () and serFpeek () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serX peek(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

An integer with first character in buffer in the low byte.
-1 if the buffer is empty.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 457

http://www.rabbit.com

serXputc

int serXputc(char ¢); /* where X is A-F */

DESCRIPTION
Writes a character to serial port X write buffer. This function is non-reentrant.

ThefunctionsserEputc () andserFputc () may beused with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXputc(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
c Character to write to serial port X write buffer.

RETURN VALUE
0 if buffer locked or full, 1 if character sent.

LIBRARY
RS232.LIB

EXAMPLE

main() { // echoes characters
int c;
serRPopen (19200) ;
while (1) {
if ((c = serBAgetc()) != -1) {
serAputc (c) ;
}
}

serAclose () ;

458 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXputs

int serXputs(char * s); /* where X is A-F */

DESCRIPTION

CalsserXwrite (s, strlen(s));doesnotwritenull terminator. Thisfunction is non-
reentrant.

ThefunctionsserEputs () and serFputs () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serX puts(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS

s Null terminated character string to write

RETURN VALUE
The number of characters actually sent from seria port X.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null-terminated string of characters, repeatedly
main() {
const static char s[] = "Hello Rabbit";
serAopen(19200) ;
while (1) {
serAputs (s) ;
}

serAclose () ;

Dynamic C Functions rabbit.com 459

http://www.rabbit.com

serXrdFlush

void serXrdFlush(void); /* where X is A-F */

DESCRIPTION
Flushes seria port X input buffer. This function is non-reentrant.

Thefunctions serErdFlush () and serFrdFlush () may be used with the Rabbit 3000
and Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdFlush(int port), where “port” is one of the macros
SER_PORT_ A through SER_PORT F.

LIBRARY
RS232.LIB

serXrdFree

int serXrdFree(void); /* where X is A-F */

DESCRIPTION
Cadlculates the number of characters of unused data space. This function is non-reentrant.

ThefunctionsserErdFree () and serFrdFree () may beused with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdFree(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE
The number of charsit would take to fill input buffer X.

LIBRARY
RS232.LIB

460 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXrdUsed

int serXrdUsed(void); /* where X is A-F */

DESCRIPTION

Calculates the number of characters ready to read from the serial port receive buffer. Thisfunc-
tion is non-reentrant.

ThefunctionsserErdUsed () and serFrdUsed () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdUsed(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

The number of characters currently in serial port X receive buffer.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 461

http://www.rabbit.com

serXread

int serXread(void * data, int length, unsigned long tmout) ;
/* where X is A-F */

DESCRIPTION

Reads 1 ength bytesfrom serial port X or until tmout milliseconds transpires between bytes.
The countdown of tmout does not begin until a byte has been received. A timeout occursim-
mediately if there are no charactersto read. This function is non-reentrant.

ThefunctionsserEread () andserFread () may beused with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXread(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
data Data structure to read from serial port X
length Number of bytesto read
tmout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE
The number of bytes read from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a blocks of characters
main() {
int n;
char s[16];
serAopen (19200) ;
while (1) {
if ((n = serAread(s, 15, 20)) > 0) {
serAwrite (s, n) ;
}

}

serAclose () ;

462 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXwrFlush

void serXwrFlush(void); /* where X is A-F */

DESCRIPTION
Flushes seria port X transmit buffer, meaning that the buffer contents will not be sent. This
function is non-reentrant.

The functions serEwrFlush () and serFwrFlush () may be used with the Rabbit 3000
and Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrFlush(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

LIBRARY
RS232.LIB

serXwrFree

int serXwrFree(void); /* where X is A-F */

DESCRIPTION
Calculates the free space in the serial port transmit buffer. This function is non-reentrant.

ThefunctionsserEwrFree () and serFwrFree () may beused with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrFree(port), where “port” is one of the macros
SER_PORT_Athrough SER_PORT F.

RETURN VALUE
The number of characters the serial port transmit buffer can accept before becoming full.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 463

http://www.rabbit.com

serXwrite

int serXwrite(void * data, int length); /* X is A-F */

DESCRIPTION
Transmits 1ength bytesto seria port X. This function is non-reentrant.

Thefunctions serEwrite () and serFwrite () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrite(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
data Data structure to write to serial port X
length Number of bytesto write

RETURN VALUE
The number of bytes successfully written to the serial port.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Rabbit";
serRPopen (19200) ;
while (1) {
serAwrite (s, strlen(s)) ;
}

serAclose () ;

}

464 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXwrUsed

int serXwrUsed(void); /* where X is A-F */

DESCRIPTION
Returns the number of charactersin the output buffer. This function is non-reentrant.

ThefunctionsserErdUsed () and serFrdUsed () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of thisfunction that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrUsed(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE
The number of characters currently in the output buffer.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 465

http://www.rabbit.com

set

void set(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory addressto 1. bit may be
from 0 to 31. Thisisequivalent to the following expression, but more efficient:

* (long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the |east significant bit
LIBRARY
UTIL.LIB
SEE ALSO
SET
SET

void SET(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory addressto 1. bit may be
from 0 to 31. Thisis equivalent to the following expression, but more efficient:

* (long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where O represents the |east significant bit.

LIBRARY
UTIL.LIB

SEE ALSO

set

466 rabbit.com Dynamic C Functions

http://www.rabbit.com

set32kHzDivider

void set32kHzDivider(int setting);

DESCRIPTION

Sets the expanded 32kHz oscillator divider for the Rabbit 3000 processor. This function does
not enabl e running the 32kHz oscillator instead of the main clock. This function will affect the
actual rate used by the processor when the 32kHz oscillator has been enabled to run by acall to
use32kHzOsc ().

This function is not task reentrant.

PARAMETER
setting 32kHz divider setting. The following are valid:
* OSC32DIV_1 - don't divide 32kHz oscillator
* OSC32DIV_2 - divide 32kHz oscillator by two
* OSC32DIV_4 - divide 32kHz oscillator by four
* 0SC32DIV_8 - divide 32kHz oscillator by eight
* 0OSC32DIV_16 - divide 32kHz oscillator by sixteen
LIBRARY
SYS.LIB
SEE ALSO

useClockDivider, useClockDivider3000, useMainOsc, use32kHzOsc

Dynamic C Functions rabbit.com 467

http://www.rabbit.com

setClockModulation

void setClockModulation(int setting);

DESCRIPTION

Changes the setting of the Rabbit 3000 CPU clock modulation. Calling this function will force
a 500 clock delay before the setting is changed to ensure that the previous modulation setting
has cleared before the next oneis set. See the Rabbit 3000 Microprocessor User's Manual for
more details about clock modulation for EMI reduction.

PARAMETER
setting Clock modulation setting. Allowed values are:
» 0=no modulation
» 1 =weak modulation
» 2 =strong modulation
LIBRARY
SYS.LIB

468 rabbit.com Dynamic C Functions

http://www.rabbit.com

set cpu power mode

int set cpu power mode(int mode,

shortChipSelect);

DESCRIPTION

char clkDoubler,

char

Sets operating power of the controller. Suspend serial communication and other data transmis-
sion activity prior to calling this function, which sets higher priority interrupt while switching

clock frequencies.

This function is non-reentrant.

PARAMETERS

mode

M ode operation. Usethefollowing table values below. (The higher the val-

ue the lower the power consumption of controller.)

Mode Description Comments
1 Cclk=Pclk=MainOsc Debug capable
2 Cclk=Pclk=MainOsc/2 Debug capable (19200 baud)
3 Cclk=Pclk=MainOsc/4 Debug capable (9600 baud)
4 Cclk=Pclk=MainOsc/6
5 Cclk=Pclk=MainOsc/8

_ _ Periodic Interrupt disabled, so
6 Cclk=Pclk= 32.768KHz call hitwd()

oL _ Periodic Interrupt disabled, so
7 Cclk=Pclk=32KHz/2=16.384KHz call hitwd()

_ _ _ Periodic Interrupt disabled, so
8 Cclk=Pclk=32KHz/4 =8.192KHz call hitwd()

_ _ _ Periodic Interrupt disabled, so
9 Cclk=Pclk=32KHz/8=4.096K Hz call hitwd()
10 | Colk=Pelk=32kHz/16 =2.048K Hz | ot odic Interrupt disabled, so

call hitwd()

Dynamic C Functions

rabbit.com

469

http://www.rabbit.com

set cpu power mode (cont’d)

clkDoubler Clock doubler setting: CLKDOUBLER _ON Or CLKDOUBLER _OFF.

CPU will operate at half sel ected speed when turned off. This param-
eter only affectsmain oscillator modes, not 32 kHZ oscillator modes.
Turning Clock doubler off reduces power consumption.

shortChipSelect Short Chip Select setting. Use SHORTCS_OFF, of SHORTCS_ON.

Note: When short chip select is on, make sure that interrupts are dis-

abled during 1/0 operations. Turning Short Chip Select on may

reduce power consumption. See the Rabbit processor manual for

more information regarding chip selects and low power operation.
RETURN VALUE

0: valid parameter
-1: invalid parameter

LIBRARY

low power.lib

470 rabbit.com Dynamic C Functions

http://www.rabbit.com

setjmp

int setjmp(jmp buf env);

DESCRIPTION

Store the PC (program counter), SP (stack pointer) and other information about the current state
into env. The saved information can be restored by executing 1ongjmp ().

Note: you cannot use setjmp () to move out of slice statements, costatements, or
cofunctions.

Typical usage:
switch (setjmp(e))
case O0: // firsttime
£(); // try to execute f(), may cal longimp()
break; // if weget here, f() was successful
case 1: // toget here, f() called longimp()
/* doexception handling */
break;
case 2: // similar to above, but different exception code
}
£0 |
g()
}
g() {
longjmp (e, 2) ; // exception code 2, jump to setjmp() statement,
// setimp() returns 2, so execute
// case 2 in the switch statement
}
PARAMETERS
env Information about the current state

RETURN VALUE

Returns zero if it isexecuted. After longjmp () isexecuted, the program counter, stack point-
er and etc. arerestored to the statewhen set jmp () wasexecuted thefirst time. However, this
time setjmp () returnswhatever valueis specified by the longjmp () statement.

LIBRARY
SYS.LIB

SEE ALSO
longjmp

Dynamic C Functions rabbit.com

471

http://www.rabbit.com

SetSerialTATxRValues

long SetSerialTATxRValues(long bps, char #*divisor, int tatXr);

DESCRIPTION

Sets up the possibly shared seria timer (TATXR) resources required to achieve, as closaly as
possible, the requested seria bpsrate. The algorithm attempts to find, when necessary and if
possible, the lowest value for the TAT1R that will precisely produce the requested serial bps
rate. For thisreason, an application that requires the TAT 1R to be shared should generally first
set up its usage with (1) the most critical timer A1 cascade rate, or (2) the lowest timer A1 cas-
caderate. That is, consider setting up the most critical stage (PWM, servo, triac, ultra-precise
serid rate, etc) first, else set up the slowest usage (often, the lowest serial rate) first.

Note that this function provides no TATXR resource sharing protection for an application that
uses any of theindividual TATXR resources either directly or indirectly. For example, thisfunc-
tion affords no protection to an application that sets a direct usage TAT7R timer interrupt and
also opens seria port D such that TAT7R is used to set the serial datarate.

A run time error occurs if parameter(s) areinvalid. Also, thisfunction is not reentrant.

PARAMETERS
bps The requested serial bits per second (BPS, baud) rate.
divisor Anoptional pointer to the caller's seria timer divisor variable. If the caller
is not interested in the actual seria timer (TATXR) divisor valuethat is set
by this function, then NULL may be passed.
tatXr The TATXR for the serid timer whose value(s) are to be set. Use exactly

one of the following macros.

» TAT4R for serial port A
TATSR for seria port B
TAT6R for seria port C
TAT7R for seria port D
TAT2R for serial port E
TAT3R for serial port F

RETURN VALUE
The actual serial rate BPS (baud) setting that was achieved.

LIBRARY
sys.lib

SEE ALSO
TAT1R SetValue

472 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectExtern2000

unsigned SetVectExtern2000(int priority, wvoid * isr);

DESCRIPTION

Sets up the external interrupt table vectors for external interrupts 0 and 1. This function should
be used for Rabbit 2000 processors revision 1Q2 due to a bug in the chip's interrupt handling.
(See Technical Note 301, “Rabbit 2000 Microprocessor Interrupt Issue,” on the Rabbit Semi-
conductor website for more information.)

Oncethisfunctioniscalled, both external interrupts 0 and 1 should be enabled with priority lev-
els set higher than any currently running interrupts. (All system interrupts in the BIOS run at
interrupt priority 1.) Theinterrupt priority is set viathe control register IOCR for external inter-
rupt 0 and 11CR for external interrupt 1.

The actual priority used by the interrupt service routine (I1SR) is passed to this function.

PARAMETERS
priority Priority the ISR should run at. Valid valuesare 1, 2 or 3.
isr ISR handler address. Must be aroot address.

RETURN VALUE
Address of vector table entry, or zero if priority isnot valid.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectIntern, GetVectIntern

Dynamic C Functions rabbit.com 473

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbit.com

SetVectExtern3000

unsigned SetVectExtern3000(int interruptNum, void * isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 3000 and some
versions of the Rabbit 2000. All Rabbit interrupts usejump vectors. See SetVectIntern ()
for more information.

PARAMETERS
interruptNum External interrupt number. 0 and 1 are the only valid values.

isr ISR handler address. Must be aroot address.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectIntern, GetVectIntern

474 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectExtern4000

unsigned SetVectExtern4000(int interruptNum, void * isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 4000, Rabbit 3000
and some versions of the Rabbit 2000. All Rabbit interrupts use jJump vectors. See
SetVectIntern () for moreinformation.

PARAMETERS
interruptNum External interrupt number. 0 and 1 arethe only valid values.

isr ISR handler address. Must be aroot address.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectIntern, GetVectIntern

Dynamic C Functions rabbit.com

475

http://www.rabbit.com

SetVectIntern

unsigned SetVectIntern(int vectNum, void * isr);

DESCRIPTION

Setsaninternal interrupt table entry. All Rabbit interrupts usejump vectors. Thisfunction writes
ajp ingruction (0xC3) followed by the 16 bit | SR address to the appropriate location in the
vector table. The location in RAM of the vector table is determined and set by the BIOS auto-
matically at startup. The start of the table is always on a 0x100 boundary.

Itis perfectly permissible to have ISRsin xmem and do long jumps to them from the vector ta-
ble. Itiseven possibleto placethe entire body of the | SR in the vector tableif it is 16 byteslong
or less, but this function only sets up jumps to 16 bit addresses.

The following table shows the ve c t Num value for each peripheral or RST. The offset into the
vector tableis also shown. The following vectors are valid for al Rabbit processors.

Peripheral or RST vectNum Vector Table Offset
Periodic interrupt 0x00 0x00
RST 10 instruction 0x02 0x20
RST 38 instruction 0x07 0x70
Slave Port 0x08 0x80
Timer A Ox0A OxAO
Timer B 0x0B 0xBO
Serial Port A 0x0C 0xCO
Serial Port B 0x0D 0xDO
Serial Port C Ox0E OxEO
Seria Port D OxOF 0xFO

The following vectors are valid starting with the Rabbit 3000.

Peripheral or RST vectNum Vector Table Offset
Input Capture Ox1A 0x01A0
Quadrature Encoder 0x19 0x0190
Serial port E 0x1C 0x01CO
Serial port F 0x1D 0x01DO0

476 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectIntern (cont’d)

The following vectors are valid starting with the Rabbit 3000 Revision 1.

Peripheral or RST vectNum Vector Table Offset
Pulse Width M odulator 0x17 0x0170
Secondary Watchdog 0x01 0x10

The following vectors are valid starting with the Rabbit 4000.

Peripheral or RST vectNum Vector Table Offset
Timer C Ox1F 0x01FO0
Network Port A Ox1E O0x01EO

The following three RSTs are included for completeness, but should not be set by the user as

they are used by Dynamic C.
Peripheral or RST vectNum Vector Table Offset
RST 18 instruction 0x03 0x30
RST 20 instruction 0x04 0x40
RST 28 instruction 0x05 0x50

PARAMETERS

vectNum

isr

RETURN VALUE

Interrupt number. See the above table for valid values.

ISR handler address. Must be a root address.

Address of vector table entry, or zero if vectNum isnot valid.

LIBRARY
SYS.LIB
SEE ALSO
GetVectExtern2000, SetVectExtern2000, GetVectIntern
Dynamic C Functions rabbit.com 477

http://www.rabbit.com

sf getPageCount

long sf getPageCount(sf device * dev);
DESCRIPTION
Return number of pagesin aflash device.

PARAMETER

dev Pointer to sf _device struct for initialized flash device.

RETURN VALUE
Number of pages.

LIBRARY
SFLASH.LIB

sf getPageSize

unsigned int sf getPageSize(sf device * dev);
DESCRIPTION
Return size (in bytes) of a page on the current flash device.

PARAMETER

dev Pointer to sf _device struct for initialized flash device.

RETURN VALUE
Bytesin a page.

LIBRARY
SFLASH.LIB

478 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf init

int sf init(void);

DESCRIPTION

Initializes serial flash chip. Thisfunction must be called before the serial flash can be used. Cur-
rently supported devices are:

» AT45DB041
* AT45DB081

* AT45DB642
* AR45DB1282

Note: Thisfunction blocks and only works on boards with one serial flash device.

RETURN VALUE

0 for success

-1if no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com 479

http://www.rabbit.com

sf initDevice

int sf initDevice(sf device * dev, int c¢s_port, char * cs_shadow,

int cs_pin);

DESCRIPTION

Replacessf init ().

Thefunctionsfspi init () mustbecalled beforeany calstothisfunction. Initializesseria
flash chip. Thisfunction must be called before the serial flash can be used. Currently supported

devices are:

» AT45DB041
* AT45DB081
* AT45DB642
* AR45DB1282

PARAMETERS

dev

cs_port
cs_shadow
cs_pin

RETURN VALUE
0 for success

Pointer toanempty sf _device struct that will befilledinonreturn. The

struct will then act as a handle for the device.

1/0 port for the active low chip select pin for the device.

Pointer to the shadow variable for cs_port.

1/O port pin number for the chip select signal.

-1if no flash chip detected
-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

480

rabbit.com

Dynamic C Functions

http://www.rabbit.com

sf isWriting

int sf isWriting(sf device * dev);
DESCRIPTION
Returns 1 if the flash device is busy writing to a page.
PARAMETER
dev Pointer to sf _device struct for initialized flash device

RETURN VALUE

1 busy
0 ready, not currently writing

LIBRARY
SFLASH.LIB

sf pageToRAM

int sf pageToRAM(long page);

DESCRIPTION

Command the seria flash to copy the contents of one of its flash pagesinto its RAM buffer.

Note: Thisfunction blocks and only works on boards with one serial flash device.
PARAMETER

page The page to copy.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com

481

http://www.rabbit.com

sf RAMToPage

int sf RAMToPage(long page);

DESCRIPTION
Command the seria flash to write its RAM buffer contents to one of the flash memory pages.

Note: Thisfunction blocks and only works on boards with one serial flash device.
PARAMETER

page The page to which the RAM buffer contents will be written t

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

482 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf readDeviceRAM

int sf readDeviceRAM(sf device * dev, long buffer, int offset,
int len, int flags):;

DESCRIPTION
Read data from the RAM buffer on the serial flash chip into an xmem buffer.

PARAMETERS
dev Pointer to sf _device struct for initialized flash device.
buffer Address of an xmem buffer.
offset The addressin the serial flash RAM to start reading from.
len The number of bytesto read.
flags Can be one of the following:

SF_BITSREVERSED - Readsthedatain bit reversed order from theflash
chip. Thisimproves speed, but the data must have been also written in re-
versed order (see sf_XWriteRAM)

SF_RAMBANKI1 (default) - Readsfrom thefirst RAM bank on the flash de-
vice
SF_RAMBANK?2 - Reads from the alternate RAM bank on the flash device

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com 483

http://www.rabbit.com

sf readPage

int sf readPage(sf device * dev, int bank, long page);

DESCRIPTION

Replaces sf pageToRAM ().

Command the seria flash to copy from one of its flash pages to one of its RAM buffers.

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf _device struct for initialized flash device.

Which RAM bank to write the data to. For Atmel 45DBxxx devices, this
canbelor 2.

The page to read from.

484

rabbit.com Dynamic C Functions

http://www.rabbit.com

sf readRAM

int sf readRAM(char * buffer, int offset, int len);

DESCRIPTION
Read data from the RAM buffer on the serial flash chip.

Note: Thisfunction blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to character buffer to copy datainto.
offset Addressin the serial flash RAM to start reading from
len Number of bytesto read

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com

485

http://www.rabbit.com

sf writeDeviceRAM

int sf writeDeviceRAM(sf device * dev, long buffer, int offset,
int len, int flags):;

DESCRIPTION

Write datato the RAM buffer on the serial flash chip from a buffer in xmem.

PARAMETER
dev
buffer
offset
len

flags

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf _device struct for initialized flash device.
Pointer to xmem data to write into the flash chip RAM.
The addressin the serial flash RAM to start writing at.
The number of bytesto write.

Can be one of the following:

* SF_BITSREVERSED - Allows the data to be written to the flash in re-
verse bit order. Thisimproves speed, and works fine aslong asthe data
is read back out with this same flag.

Ignored on R4000 based cores, but reserved for legacy code support.

* SF_RAMBANK1 (default) - Writesto thefirst RAM bank on theflash de-
vice

* SF_RAMBANK2 - Writesto the alternate RAM bank on the flash device

486

rabbit.com Dynamic C Functions

http://www.rabbit.com

sf writePage

int sf writePage(sf device * dev, int bank, long page);

DESCRIPTION

Replaces sf RAMToPage ().

Command the serial flash to write its RAM buffer contents to one of its flash memory pages.
Check for completion of the write operation using sf isWriting().

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf _device struct for initialized flash device.

Which RAM bank towritethe datafrom. For Atmel 45DBxxx devices, this
canbelor?2

The page to write the RAM buffer to

Dynamic C Functions

rabbit.com

487

http://www.rabbit.com

sf writeRAM

int sf writeRAM(char * buffer,

DESCRIPTION

Write datato the RAM buffer on the serial flash chip.

int offset, int len);

Note: Thisfunction blocks and only works on boards with one serial flash device.

PARAMETER
buffer
offset

len

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Pointer to data that will be written the flash chip RAM.

Addressin the serial flash RAM to start writing at.

Number of bytes to write.

sfspi init

int sfspi init(void);

DESCRIPTION

Initialize SPI driver for use with serial flash. This must be called before any callsto
sf initDevice().

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

488

rabbit.com

Dynamic C Functions

http://www.rabbit.com

sin

float sin (float x);

DESCRIPTION
Computes the sine of x.
Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Anglein radians.

RETURN VALUE
Sine of x.

LIBRARY
MATH.LIB

SEE ALSO

sinh, asin, cos, tan

sinh

float sinh(float x):;

DESCRIPTION
Computes the hyperbolic sine of x. This functions takes a unitless number as a parameter and
returns a unitless number.

PARAMETERS

x Value to compute.

RETURN VALUE
The hyperbalic sine of x.
If x >89.8 (approx.), thefunction returns INF and signalsarange error. If x <—89.8 (approx.),
the function returns —INF and signals arange error.
LIBRARY
MATH.LIB

SEE ALSO

sin, asin, cosh, tanh

Dynamic C Functions rabbit.com 489

http://www.rabbit.com

snprintf

int snprintf(char * buffer, int len, char * format, ...);

DESCRIPTION

Thisfunction takes a string (pointed to by format), arguments of the format, and outputs the
formatted string to the buffer pointed to by buffer. snprintf () will only output up to
len characters. The user should make sure that:

* there are enough arguments after format tofill inthe format parametersin the format string
* thetypes of arguments after format match the format fieldsin format

For example,
snprintf (buffer, BUF LEN, "%s=%x",'"variable x",b256);
puts the string “variable x=100" into buffer.

A completelist of valid conversion specifiers (%d, %s, etc.) can be found in the description for
printf () under Dynamic C Conversion Specifiers.

ThemacroSTDIO DISABLE_ FLOATS canbedefinedif itisnot necessary to format floating
point numbers. If thismacro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Location of formatted string.
len The maximum length of the formatted string.
format String to be formatted.

Format arguments.

RETURN VALUE

The number of characterswritten. If the output is truncated due to the 1 en parameter, then this
function returns the number of characters that would have been written had there been enough
space.

LIBRARY
STDIO.LIB

SEE ALSO
printf, sprintf

490 rabbit.com Dynamic C Functions

http://www.rabbit.com

SPIinit

void SPIinit(wvoid);

DESCRIPTION

Initializethe SPI port parametersfor aseria interface only. Thisfunction does nothing for apar-
alel interface. A description of the valuesthat the user may definebeforethe #use SPI.LIB
statement isfound at the top of thelibrary Lib\Spi\Spi.1lib.

LIBRARY
SPI.LIB

SEE ALSO
SPIRead, SPIWrite, SPIWrRd

Dynamic C Functions rabbit.com 491

http://www.rabbit.com

SPIRead

void SPIRead(void * DestAddr, int ByteCount);

DESCRIPTION

Reads a block of bytes from the SPI port. The variable SPIxor needs to be set to either 0x00
or OxFF depending on whether or not the received signal needsto beinverted. M ost applications

will not need inversion. SPIinit () setsthevalue of SPIxor to 0x00.

If SPT_SLAVE RDY PORT isdefined for aslave device the driver will turn on the bit imme-
diately upon activating the receiver. It will then wait for abyte to become available then turn off
the bit. The byte will not be available until the master supplies the 8 clock pulses.

If SPT_SLAVE RDY PORT isdefined for a master device the driver will wait for the bit to
become true before activating the receiver and then wait for it to become fal se after receiving

the byte.

Note for Master: the receiving device Chip Select must aready be active

PARAMETERS
DestAddr Address to store the data
ByteCount Number of bytesto read

RETURN VALUE

Master: none.
Slave: 0 = no CSsignal, no received bytes.
1=CS, bytesreceived.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIWrite, SPIWrRd

492 rabbit.com

Dynamic C Functions

http://www.rabbit.com

SPIWrite

int SPIWrite(void * SrcAddr, int ByteCount);

DESCRIPTION
Write a block of bytes to the SPI port.

If SPT_SLAVE RDY PORT isdefined for aslave device the driver will turn on the bit imme-
diately after loading the transmit register. It will then wait for the buffer to become available
then turn off the bit. The buffer will not become available until the master supplies the first
clock.

If SPI_SLAVE RDY PORT isdefined for a master device the driver will wait for the bit to

become true before transmitting the byte and then wait for it to become fal se after transmitting
the byte.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of datato write.
ByteCount Number of bytes to write.

RETURN VALUE

Master: none.
Slave: 0 = no CSsignal, no transmitted bytes.
1=CS, bytes transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIRead, SPIWrRd

Dynamic C Functions rabbit.com

493

http://www.rabbit.com

SPIWrRd

void SPIWrRd(void * SrcAddr, void * DstAddr, int ByteCount) ;

DESCRIPTION
Read and Write a block of bytes from/to the SPI port.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of datato write.
DstAddr Address to put received data.
ByteCount Number of bytesto read/write. The maximum valueis 255 bytes. Thislimit
isnot checked! Thereceive buffer MUST be at | east aslarge asthe number
of bytes!

RETURN VALUE

Master: none.
Slave: 0 = no CSsignal, no received/transmitted bytes.
1 =CS, bytes received/transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIRead, SPIWrite

494 rabbit.com Dynamic C Functions

http://www.rabbit.com

sprintf

int sprintf(char * buffer, char * format, ...);

DESCRIPTION

Thisfunction takes a string (pointed to by format), arguments of the format, and outputs the
formatted string to buf fer (pointed to by buf fer). The user should make sure that:
* there are enough arguments after format tofill inthe format parametersin the format string

* thetypes of arguments after format match the format fieldsin format
« the buffer islarge enough to hold the longest possible formatted string

The following isa short list of valid conversion specifiersin the format string. For a complete
list of conversion specifiers, refer to the function description for printf ().

%d decimal integer (expectstype int)

%u decima unsigned integer (expectstype unsigned int)

%X hexadecimal integer (expectstype signed int or unsigned int)
%s astring (not interpreted, expectstype (char *))

%f afloat (expectstype float)

For example,
sprintf (buffer,"%s = %x","variable x",256) ;
putsthe string “variable x = 100" into buf fer.

ThemacroSTDIO DISABLE_ FLOATS canbedefinedif itisnot necessary to format floating
point numbers. If thismacro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Result string of the formatted string.
format String to be formatted.

Format arguments.

RETURN VALUE
Number of characters written.

LIBRARY
STDIO.LIB

SEE ALSO
printf

Dynamic C Functions rabbit.com 495

http://www.rabbit.com

sqgrt

float sqgrt(float x);

DESCRIPTION
Cdlculate the square root of x.

PARAMETERS

x Value to compute.

RETURN VALUE
The square root of x.

LIBRARY
MATH.LIB

SEE ALSO
exp, pow, powlO

srand

void srand(unsigned long seed):;

DESCRIPTION
Sets the seed value for the rand () function.

PARAMETER

seed This must be an odd number.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, randg

496 rabbit.com

Dynamic C Functions

http://www.rabbit.com

strcat

NEAR SYNTAX: char * n strcat(char * dst, char * src);
FAR SYNTAX: char far * _f strcat(char far * dst, char far * src);

Note: By default, strcat () isdefinedto n strcat ().

DESCRIPTION
Concatenate string src tothe end of dst.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to destination string.
src Pointer to location to source string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strncat

Dynamic C Functions rabbit.com 497

http://www.rabbit.com

strchr

NEAR SYNTAX: char * n strchr(char * src, char ch);
FAR SYNTAX: char far * f strchr(char far * src, char ch);

Note: By default, strchr () isdefinedto n strchr ().

DESCRIPTION
Scans a string for the first occurrence of a given character.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned.
ch Character to search

RETURN VALUE

Pointer to the first occurrenceof chin src.
Null if ch isnot found.

LIBRARY
STRING.LIB

SEE ALSO

strrchr, strtok

498 rabbit.com Dynamic C Functions

http://www.rabbit.com

strcmp

NEAR SYNTAX: int n stremp(char * strl, char * str2);
FAR SYNTAX: int £ strcmp(char far * strl, char far * str2);

Note: By default, strcmp () isdefinedto n strcmp ().

DESCRIPTION
Performs unsigned character by character comparison of two null terminated strings.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: stril islessthan str2 because
character in st r1 islessthan corresponding character in str2, or
strl isshorter than but otherwise identical to str2.

=0: strlisidentical to str2

>0: strl isgreater than str2 because
character in st r1 isgreater than corresponding character in str2, or
str2 isshorter than but otherwise identical to str1.

LIBRARY
STRING.LIB

SEE ALSO

strncmp, strcmpi, strncmpi

Dynamic C Functions rabbit.com 499

http://www.rabbit.com

strcmpi

NEAR SYNTAX: int * n strcmpi(char * strl, char * str2);
FAR SYNTAX: int £ strcmpi(char far * strl, char far * str2);

Note: By default, strcmpi () isdefinedto n strcmpi ().

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two null terminated
strings.
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses arelarger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strl islessthan str2 because
character in st r1 islessthan corresponding character in str2, or
strl isshorter than but otherwise identical to str2.

=0: strlisidentical tostr2

>0: strl isgreater than str2 because
character in st r1 isgreater than corresponding character in str2, or
str2 isshorter than but otherwise identical to strl.

LIBRARY
STRING.LIB

SEE ALSO

strncmpi, strncmp, strcmp

500 rabbit.com Dynamic C Functions

http://www.rabbit.com

strcpy

NEAR SYNTAX: char * n strcpy(char * dst, char * src);
FAR SYNTAX: char far * _f strcpy(char far * dst, char far * src);

Note: By default, strcpy () isdefinedto n strcpy ().

DESCRIPTION
Copies one string into another string, including the null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strncpy

Dynamic C Functions rabbit.com 501

http://www.rabbit.com

strcspn

NEAR SYNTAX: unsigned int n strcspn(char * sl, char * s2);
FAR SYNTAX: size t f strcspn(char far * sl, char far * s2);

Note: By default, strcspn () isdefinedto n strcpsn().

DESCRIPTION
Scans a string for the occurrence of any of the charactersin another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Returnsthe position (lessone) of thefirst occurrence of acharacter in s1 that matchesany char-
acterin s2.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strtok

502 rabbit.com Dynamic C Functions

http://www.rabbit.com

strlen

NEAR SYNTAX: int n strlen(char * s);
FAR SYNTAX: int f strlen(char far * s);

Note: By default, strlen () isdefinedto n strlen().

DESCRIPTION
Calculate the length of astring.
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-

brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS

s Character string.

RETURN VALUE
Number of bytesin a string.

LIBRARY
STRING.LIB

Dynamic C Functions rabbit.com 503

http://www.rabbit.com

strncat

NEAR SYNTAX: char * n strncat(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncat(char far * dst, char far * src,
size t n);

Note: By default, strncat () isdefinedto _n_strncat ().

DESCRIPTION

Appends one string to another up to and including the null terminator or until n characters are
transferred, followed by anull terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strcat

504 rabbit.com Dynamic C Functions

http://www.rabbit.com

strncmp

NEAR SYNTAX: int n strncmp(char * strl, char * str2, n);
FAR SYNTAX: int f strncmp(char far * strl, char far * str2, unsigned
n);

Note: By default, strncmp () isdefinedto n_ strncemp ().

DESCRIPTION
Performs unsigned character by character comparison of two strings of length n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versonwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR _STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n M aximum number of bytesto compare. If zero, both strings are considered

equal.

RETURN VALUE

<0: strlislessthan str2 because
char in strl islessthan corresponding char in str2.

=0: strlisidentical to str2

>0: strl isgreater than str2 because
char in str1 isgreater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmp, strcmpi, strncmpi

Dynamic C Functions rabbit.com 505

http://www.rabbit.com

strncmpi

NEAR SYNTAX: int n strncmpi(char * strl, char * str2, unsigned n);
FAR SYNTAX: int £ strncmpi(char far * strl, char far * str2,
unsigned n);

Note: By default, strncmpi () isdefinedto _n strncmpi ().

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two strings of length
n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versonwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses arelarger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR _STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytesto compare, if zero then strings are considered

equal

RETURN VALUE

<0: strlislessthan str2 because
char in strl islessthan corresponding char in str2.

=0: strlisidentical to str2

>0: strl isgreater than str2 because
char in str1 isgreater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmpi, strcmp, strncmp

506 rabbit.com Dynamic C Functions

http://www.rabbit.com

strncpy

NEAR SYNTAX: char * n strncpy(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncpy(char far * dst, char far * src,
size t n);

Note: By default, strncpy () isdefinedto _n_strncpy ().

DESCRIPTION

Copiesagiven number of charactersfrom one string to another and padding with null characters
or truncating as necessary.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versonwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR _STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strcpy

Dynamic C Functions rabbit.com 507

http://www.rabbit.com

strpbrk

NEAR SYNTAX: char * n strpbrk(char * sl, char * s2);
FAR SYNTAX: char far * _f strpbrk(char far * sl, char far * s2);

Note: By default, strpbrk () isdefinedto n strpbrk ().

DESCRIPTION
Scans a string for the first occurrence of any character from another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of acharacter contained in s2 in s1. Returnsnull if not
found.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strtok

508 rabbit.com Dynamic C Functions

http://www.rabbit.com

strrchr

NEAR SYNTAX: char * n strrchr(char * s, int c);
FAR SYNTAX: char far * f strrchr(char far * s, int c);

Note: By default, strrchr () isdefinedto _n strrchr().

DESCRIPTION
Similar to st rchr, except this function searches backward from the end of s to the beginning.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
s String to be searched
c Search character

RETURN VALUE
Pointer to last occurrence of c in s. If cisnot found in s, return null.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strcspn, strtok

Dynamic C Functions rabbit.com 509

http://www.rabbit.com

strspn

NEAR SYNTAX: size t n strspn(char * src, char * brk);
FAR SYNTAX: size t f strspn(char far * src, char far * brk);

Note: By default, strspn () isdefinedto n strspn ().

DESCRIPTION
Scans a string for the first segment in src containing only characters specified in brk.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned
brk Set of characters
RETURN VALUE

Returns the length of the segment.

LIBRARY
STRING.LIB

510 rabbit.com Dynamic C Functions

http://www.rabbit.com

strstr

NEAR SYNTAX: char * n strstr(char *sl, char *s2);
FAR SYNTAX: char far * _f strstr(char far * sl, char far * s2);

Note: By default, strstr () isdefinedto n strstr ().

DESCRIPTION
Finds a substring specified by s2 in string s1.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all callsto functionsin thisli-
brary to their far versions. The user may also explicitly call thefar versionwith £ strfunc
where st rfunc isthe name of the string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointersare near pointers, append n_ tothefunctionname, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Substring to search for.

RETURN VALUE
Pointer to the first occurrence of substring s2 in s1. Returns null if s2 isnot foundin s1.

LIBRARY
STRING.LIB

SEE ALSO

strcspn, strrchr, strtok

Dynamic C Functions rabbit.com 511

http://www.rabbit.com

strtod

NEAR SYNTAX: float _n_ strtod(char * s, char ** tailptr);
FAR SYNTAX: float f strtod(char far * s, char far * far * tailptr);

Note: By default, strtod () isdefinedto n strtod().

DESCRIPTION

ANSI string to float conversion.

For Rabbit 4000+ users, this function supports FAR pointers. ThemacroUSE _FAR STRING
will change all callsto functionsin thislibrary to their far versions by default. The user may
aso explicitly call thefar versionwith £ strfunc, where strfunc isthe name of the
string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macroisde-
fined and all pointers are near pointers, append n_ to the function name, eg. n strtod.
For more information about FAR pointers, see th Dynamic C User’s Manual or the samplesin
Samples/Rabbit4000/FAR/.

Warning: Thefar version of strtod is not backwards compatible with near pointers due to
the use of adouble pointer. The problemisthat char ** tailptr isal6-bit pointer
pointing to another 16-bit pointer. The far version, char far * far * tailptr, is a 32-bit
pointer pointing to a 32-hit pointer. If you pass a double near pointer as the argument to
the double far pointer function, the double dereference (**tailptr) of the double pointer
will attempt to access a 32-bit address pointed to by the passed near pointer. The compiler
does not know the contents of a pointer and will assume the inner pointer is a 32-bit
pointer. For more information about FAR pointers, please see the Dynamic C User’'s Man-
ual.

512

rabbit.com Dynamic C Functions

http://www.rabbit.com

strtod (cont’d)

In the following examples:

] = 1lbyte

[
[11 1I[x][x] indicatesaNEAR address (16 bit) upcast to FAR

Passing a*“char far * far * ptr” astailptr:

ADDRESS: DATA:

[10 1I[x]Ix] [yl [yl [yl [yl (tailptr)

[v] [y] [yl [yl [z] [z] [z] [z] (*tailptr)

[z] [z] [z] [z] [Correct contents] (**tailptr)

Passing a'char ** ptr' astailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:
[10 1I[x]I[x] [10 1[lyllyl (tailptr)
[10 1[0yllyl [?]1[?][z] [z] (*tailptr)
(2] [?] [z] [z] [Incorrect contents] (**tailptr)
PARAMETERS
s String to convert.
tailptr Pointer to a pointer of character. The next conversion may resume at the

location specified by *tailptr.

RETURN VALUE
The float number represented by “s.”

LIBRARY
STRING.LIB

SEE ALSO
atof

Dynamic C Functions rabbit.com 513

http://www.rabbit.com

strtok

NEAR SYNTAX: char * n strtok(char * src, char * brk);
FAR SYNTAX: char far * _f strtok(char far * src, char far * brk);

Note: By default, strtok () isdefinedto n strtok ().

DESCRIPTION
Scans src for tokens separated by delimiter characters specified in brk.
First call with non-null for src. Subsequent calls with null for src continue to search tokens

inthe string. If atokenisfound (i.e., delineators found), replace thefirst delimiter in src with
anull terminator so that src points to a proper null terminated token.

PARAMETERS
src String to be scanned, must be in SRAM, cannot be aconstant. In contrast,
strings initialized when they are declared are stored in flash memory, and
are treated as constants.
brk Character delimiter.

RETURN VALUE
Pointer to atoken. If no delimiter (therefore no token) isfound, returns null.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strstr, strcspn

514 rabbit.com Dynamic C Functions

http://www.rabbit.com

strtol

NEAR SYNTAX: long n strtol(char * sptr, char ** tailptr, int base);
FAR SYNTAX: long f strtol(char far *sptr, char far * far * tailptr,
int base);

Note: By default, strtol () isdefinedto n strtol ().

DESCRIPTION
ANSI string to long conversion.

For Rabbit 4000+ users, this function supports FAR pointers. ThemacroUSE_FAR STRING
will change all callsto functionsin thislibrary to their far versions by default. The user may
aso explicitly call thefar versionwith £ strfunc, where strfunc isthe name of the
string function.

Because FAR addresses are larger, the far versions of thisfunction will run slightly slower than
the near version. To explicitly call the near version whenthe USE_ FAR_ STRING macro isde-
fined and all pointers are near pointers, append n__ to the function name, eg. n strtod.
For more information about FAR pointers, see th Dynamic C User’'s Manual or the samplesin
Samples/Rabbit4000/FAR/.

Warning: Thefar version of strtod is not backwards compatible with near pointers due to
the use of adouble pointer. The problem isthat char ** tailptr isal6-bit pointer
pointing to another 16-bit pointer. The far version, char far * far * tailptr, is a 32-bit
pointer pointing to a 32-bit pointer. If you pass a double near pointer as the argument to
the double far pointer function, the double dereference (**tailptr) of the double pointer
will attempt to access a 32-bit address pointed to by the passed near pointer. The compiler
does not know the contents of a pointer and will assume the inner pointer is a 32-bit
pointer. For more information about FAR pointers, please see the Dynamic C User’s Man-
ual.

In the following examples:

1 = lbyte

[
[1[0 1I[x][x] indicatesaNEAR address (16 bit) upcast to FAR

Passing a*“ char far * far * ptr” astailptr:

ADDRESS: DATA:

[10 1I[x]I[x] [v] [y] [yl [yl (tailptr)

[yl [yl [y] [yl [z] [z] [z] [z] (*tailptr)

[z] [z] [z] [Z] [Correct contents] (**tailptr)

Dynamic C Functions rabbit.com 515

http://www.rabbit.com

strtol (cont’d)

Passing a'char ** ptr' astailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:
[10 1I[x]I[x] [10 1[yllyl (tailptr)
[10 1[0yllyl [?1[?]1[z] [z] (*tailptr)
(2] [?] [z] [z] [Incorrect contents] (**tailptr)
PARAMETERS
sptr String to convert.
tailptr Assigned the last position of the conversion. The next conversion may re-
sume at the location specified by *tailptr.
base Indicates the radix of conversion.

RETURN VALUE

The long integer.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atol

516

rabbit.com Dynamic C Functions

http://www.rabbit.com

_sysIsSoftReset

void sysIsSoftReset(void);

DESCRIPTION

This function should be called at the start of a program if you are using protected variables. It
determines whether thisrestart of the board is due to a software reset from Dynamic C or a call
to forceSoftReset (). If it wasa soft reset, this function then does the following:

» Cdls_prot_init () toinitializethe protected variable mechanisms. It isup to the user to
initialize protected variables.

» CédlssysResetChain (). Theuser my attach functionsto this chain to perform additional
startup actions (for example, initializing protected variables). If asoft reset did not take place,
thisfunction calls_prot_recover () torecover any protected variables.

LIBRARY

SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, chkWDTO

sysResetChain

void sysResetChain (void);

DESCRIPTION
Thisisafunction chain that should be used to initialize protected variables. By default, it'semp-
ty

LIBRARY
SYS.LIB

Dynamic C Functions rabbit.com 517

http://www.rabbit.com

tan

float tan (float x);

DESCRIPTION
Compute the tangent of the argument.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Angleinradians.

RETURN VALUE

Returnsthetangent of x, where—8 x PI < x <+8 x PI. If x isout of bounds, the function returns
Oand signalsadomain error. If thevaue of x istoo closeto amultiple of 90° (PI/2) thefunction
returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO

atan, cos, sin, tanh

518 rabbit.com Dynamic C Functions

http://www.rabbit.com

tanh

float tanh (float x);

DESCRIPTION

Computes the hyperbolic tangent of argument. This functions takes a unitless number as a pa-
rameter and returns a unitless number.

PARAMETERS

x Float to use in computation.

RETURN VALUE

Returns the hyperbolic tangent of x. If x >49.9 (approx.), the function returns INF and signals
arange error. If x <—49.9 (approx.), the function returns—INF and signals arange error.

LIBRARY
MATH.LIB

SEE ALSO

atan, cosh, sinh, tan

Dynamic C Functions rabbit.com 519

http://www.rabbit.com

TAT1R SetValue

char TAT1R SetValue(int requestor, int value);

DESCRIPTION

If not already inuse, or if inacompatibleuse, allocatesthe TAT 1R resource (setsanew or keeps
the current TAT1R value) as requested. Also enables or disables the requestor'stimer Al cas-
cade bit(s) in TACR or TBCR, as appropriate. When thetimer B cascade from timer Al isdis-
abled in TBCR the timer B "clocked by PCLK/2" is then enabled.

A run time error occursif parameter(s) are invalid and also, this function is not reentrant.

Note: Thisfunction does not attempt to manage interrupts that are associated with timers
A or B; that work is left entirely up to the application.

PARAMETERS

requestor The requestor of the TAT1R resource. Use exactly one of the following
macros to specify the appropriate requestor:

* TAT1IR _AI1TIMER REQ (e.g., direct useof Timer Al)

* TAT1R A2TIMER REQ (eg., useby serial port E)

* TAT1IR _A3TIMER REQ (e.g., useby seria port F)

* TAT1R A4TIMER REQ (eg., useby serial port A)

* TAT1IR ASTIMER REQ (e.g., useby serial port B)

* TAT1IR A6TIMER REQ (eg., useby serial port C)

* TAT1IR _A7TIMER REQ (e.g., useby serial port D)

* TAT1R BTIMER REQ (e.g., usewith PWM, servo or triac)

value Either the new TAT1R setting value (0 to 255, inclusive), or the macro
TAT1R _RELEASE_REQ to release the TAT1R resourcein use by the
specified regquestor.

RETURN VALUE

The new or current TAT1R setting. The caller should check their requested new TAT1R value
againgt thisreturn value. If the two values are not the same, the caller may decide the return val-
ue is acceptable after all and make another request using the previous return value. A valid re-
lease request alway's succeeds; in this case thereis no need for the caller to check the return
value.

LIBRARY
sys.lib

520 rabbit.com Dynamic C Functions

http://www.rabbit.com

tm rd

int tm rd(struct tm * t);

DESCRIPTION
Reads the current system time from SEC_ TIMER into the structure t.

WARNING: Thevariable SEC_TIMER isinitialized when aprogram is started. If you change
the Real Time Clock (RTC), this variable will not be updated until you restart a program, and
thetm rd () function will not return the time that the RTC has been reset to. The
read_rtc () functionwill read the actual RTC and can be used if necessary.

PARAMETERS
t Pointer to structure to store time and date.
struct tm {
char tm_sec; // seconds 0-59
char tm min; // 0-59
char tm_hour; // 0-23
char tm mday; // 1-31
char tm mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==Sunday

RETURN VALUE

0: Successful.
-1: Clock read failed.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_ wr

Dynamic C Functions rabbit.com 521

http://www.rabbit.com

tm wr

int tm wr(struct tm * t);

DESCRIPTION

Setsthe system time from a tm struct. It isimportant to note that although tm_rd () readsthe
SEC_TIMER variable nottheRTC, tm_ wr () writesto the RTC directly, and SEC_ TIMER
is not changed until the program is restarted. The reason for thisis so that the DelaySec ()
function continues to work correctly after setting the system time. To make tm_rd () match
the new time written to the RTC without restarting the program, the following should be done:

tm_wr (tm) ;
SEC_TIMER = mktime (tm);

But thiscould cause problemsif awaitfor (DelaySec (n)) ispending completioninaco-
operative multitasking programor if the SEC_ TIMER variableisbeing used in another way the
user, so user beware.

PARAMETERS
t Pointer to structure to read date and time from.
struct tm {
char tm_sec; // seconds 0-59
char tm min; // 0-59
char tm_hour; // 0-23
char tm mday; // 1-31
char tm mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==Sunday

RETURN VALUE

0: Success .
-1: Failure.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_rd

522 rabbit.com Dynamic C Functions

http://www.rabbit.com

tolower

int tolower(int c);

DESCRIPTION
Convert alphabetic character to lower case.

PARAMETERS

c Character to convert

RETURN VALUE
Lower case alphabetic character.

LIBRARY
STRING.LIB

SEE ALSO

toupper, isupper, islower

toupper

int toupper(int c);

DESCRIPTION
Convert alphabetic character to uppercase.

PARAMETERS

c Character to convert.

RETURN VALUE
Upper case a phabetic character.

LIBRARY
STRING.LIB

SEE ALSO

tolower, isupper, islower

Dynamic C Functions rabbit.com

523

http://www.rabbit.com

updateTimers

void updateTimers(void);

DESCRIPTION

Updatesthevaluesof TICK _TIMER,MS TIMER, and SEC_TIMER whilerunning off the 32
kHz oscillator. Since the periodic interrupt isdisabled when running at 32 kHz, these valueswil|
not updated unless this function is called.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, usel32kHzOsc

use32kHzOsc

void use32kHzOsc(void);

DESCRIPTION

Sets the Rabbit processor to use the 32kHz real-time clock oscillator for both the CPU and pe-
ripheral clock, and shuts off the main oscillator. I thisis already set, there is no effect. This
mode should provide greatly reduced power consumption. Serial communications will be lost
since typical baud rates cannot be made from a 32kHz clock. Also note that this function dis-
ables the periodic interrupt, so waitfor and related statements will not work properly (al-
though costatements in general will still work). In addition, the valuesin TICK TIMER,

MS_ TIMER, and SEC_TIMER will not be updated unless you call the function
updateTimers () frequently inyour code. In addition, you will need to call hitwd () pe-
riodically to hit the hardware watchdog timer since the periodic interrupt normally handlesthat,
or disable the watchdog timer before calling this function. The watchdog can be disabled with
Disable HW WDT ().

usel32kHzOsc () isnot task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, useClockDivider, updateTimers

524 rabbit.com Dynamic C Functions

http://www.rabbit.com

useClockDivider

void useClockDivider (void);

DESCRIPTION

Sets the Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the pe-
ripheral clock). If thisis already set, there is no effect. Because the peripheral clock isnot af-
fected, serial communications should still work. This function also enables the periodic
interrupt in case it was disabled by acall touse32kHzOsc ().

This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

Dynamic C Functions rabbit.com

525

http://www.rabbit.com

useClockDivider3000

void useClockDivider3000(int setting);

DESCRIPTION

Setsthe expanded clock divider options for the Rabbit 3000 processor. Target communications
will be lost after changing this setting because of the baud rate change. This function also en-
ablesthe periodic interrupt in case it was disabled by acal to user32kHzOsc ().

The peripheral clock isalso affected by this function. If you want to divide the main processor
clock and not the peripheral clock, you may use the function useClockDivider () todi-
vide the main processor clock by 8. To divide the main processor clock by any of the other al-
lowable values (2, 4, or 6) means using useClockDivider3000 () and thusdividing the
peripheral clock aswell.

Thisfunction is not task reentrant.

PARAMETER

setting Divider setting. The following are valid:

* CLKDIV_2 -divide main processor clock by two
* CLKDIV_4 - divide main processor clock by four
* CLKDIV_6 - dividemain processor clock by six
* CLKDIV_8 - divide main processor clock by eight

RETURN VALUE
None.

LIBRARY
SYS.LIB

SEE ALSO

useClockDivider, useMainOsc, use32kHzOsc, set32kHzDivider

526 rabbit.com Dynamic C Functions

http://www.rabbit.com

useMainOsc

void useMainOsc(void);

DESCRIPTION

Sets the Rabbit processor to use the main oscillator for both the CPU and peripheral clock. If
thisis already set, there is no effect. This function also enables the periodic interrupt in case it
wasdisabled by acall touse32kHzOsc (), andupdatestheTICK TIMER,MS TIMER,and
SEC_TIMER variablesfrom the real-time clock. This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

use32kHzOsc, useClockDivider

utoa

char * utoa(unsigned value, char * buf);

DESCRIPTION

Placesupto 5 digit character string at *bu £ representing value of unsigned number. Suppresses
leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 program bytes.

PARAMETERS
value 16-bit number to convert.
buf Character string of converted number.

RETURN VALUE
Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO

itoa, htoa, ltoa

Dynamic C Functions rabbit.com 527

http://www.rabbit.com

vram2root

int vram2root(void * dest, int start, int length);

DESCRIPTION

This function copies datafrom the VBAT RAM. Tamper detection on the Rabbit 4000 erases
the VBAT RAM with any attempt to enter bootstrap mode.

PARAMETERS
dest The address to which the datain the VBAT RAM will be copied.
start The start location within the VBAT RAM (0-31).
length Thelength of datato read from VBAT RAM. Thelength should be greater
than 0.
The parameters length + start should not exceed 32.
LIBRARY
VBAT.LIB
SEE ALSO
root2vram
528 rabbit.com Dynamic C Functions

http://www.rabbit.com

VdGetFreeWd

int VdGetFreeWd(char count);

DESCRIPTION

Returns afree virtual watchdog and initializes that watchdog so that the virtual driver begins
counting it down from count. The number of available virtual watchdogsis determined by the
macro N_WATCHDOG, which is 10 by default. The default can be overridden by the user, e.g.,
#define N WATCHDOG 11.

Thevirtual driver is called every 0.00048828125 second. On every 128th call to it (i.e., every
62.5 ms), the virtual watchdogs are counted down and then tested. If any virtual watchdog
reaches zero, thisisafatal error. Once avirtual watchdog is active, it should reset periodically
withacall to VdHitWd () to prevent the count from readching zero.

PARAMETERS

count 1< count <=255

RETURN VALUE
Integer id number of an unused virtual watchdog timer.

LIBRARY
VDRIVER.LIB

Dynamic C Functions rabbit.com 529

http://www.rabbit.com

VdHitwWd

int VAHitWd(int ndog):;

DESCRIPTION

Resets virtual watchdog counter to N counts where N is the argument to the call to
VdGetFreeWd () that obtained the virtual watchdog ndog.

Thevirtual driver counts down watchdogs every 62.5 ms. If avirtual watchdog reaches 0, this

isafatal error. Once avirtual watchdog is active it should reset periodically with acall to
VAHitwWd () to prevent this.

IfN=2,vdHitwd () will needtobecalled again for virtual watchdog ndog within 62.5 ms.

If N =255, vaaitwd () will need to be called again for virtual watchdog ndog within
15.9375 seconds.

PARAMETERS
ndog Id of virtual watchdog returned by VvdGetFreeWd ()

LIBRARY

VDRIVER.LIB

VdInit

void vdInit(void);

DESCRIPTION
Initializes the Virtual Driver for all Rabbit boards. SupportsDelayMs (), DelaySec (),
DelayTick (). vdInit () iscaled by the BIOS unlessit has been disabled.

LIBRARY

VDRIVER.LIB

530 rabbit.com Dynamic C Functions

http://www.rabbit.com

VdReleaseWd

int VdReleaseWd(int ndog);

DESCRIPTION
Deactivates a virtual watchdog and makesit available for vdGet FreewWd ().

PARAMETERS

ndog Handlereturned by vdGetFreeWd ()

RETURN VALUE

0: ndog out of range.
1: Success.

LIBRARY
VDRIVER.LIB

EXAMPLE

// VdReeaseWd virtual watchdog example
main() {
int wd; // handle for avirtual watchdog
unsigned long tm;
tm = SEC_TIMER;
wd = VdGetFreeWd (255) ; // wd activated, 9 virtual watchdogs
// now available. wd must be hit
// @ least every 15.875 seconds
while (SEC_TIMER - tm < 60) { // letitrunforaminute
VAHitWd (wd) ; // reset counter back to 255
}

VdReleaseWd (wd) // now 10 virtual watchdogs available

Dynamic C Functions rabbit.com

531

http://www.rabbit.com

WriteFlash?2

int WriteFlash2(unsigned long flashDst, wvoid * rootSrc,
unsigned len);

DESCRIPTION

Write 1en bytesfrom rootSrc tophysical address £f1ashDst onthe2ndflash device. The
source must beinroot. The £ 1ashDst address plusthe sum of numbytes [1 areamust be
within memory quadrant(s) already mapped to the second flash.

This function is not reentrant.

Note: Thisfunction should NOT be used if you are using the second flash device for a
flash file system, e.g. if you are writing a TCP/IP-based application!

Note: Thisfunction is extremely dangerous when used with large sector flash. Don't do it.

PARAMETERS
flashDst Physical address of the flash destination
rootSrc Pointer to the root source
len Number of bytes to write
RETURN VALUE
0: Success.

- 1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc notin root.

-3: Time out while writing flash.

-4: Attempt to writeto ID block

- 5: Sector erase needed; write aborted

LIBRARY
XMEM.LIB

532 rabbit.com Dynamic C Functions

http://www.rabbit.com

WriteFlash2Array

int WriteFlash2Array(unsigned long flashDst, void * rootSrcl],

unsigned numbytes[], int numsources);

DESCRIPTION

Write aset of scattered information to the 2nd flash in acontiguous block. The sourcesare given
inthe root Src array, and the corresponding number of bytesin each sourceisgiveninthe
numbytes [] array. All sources must bein root. numsources specifies the number of en-
triesinthe rootSrc and numbytes arrays. The f1ashDst address plus the sum of
numbytes [] areamust be within memory quadrant(s) already mapped to the second flash.

Thisfunction is not reentrant. It was introduced in Dynamic C version 7.30.

Note: Thisfunction should NOT be used if you are using the second flash device for a
flash file system, e.g. if you are writing a TCP/IP-based application!

Note: Thisfunction is extremely dangerous when used with large sector flash. Don't do it.

Note: The sum of the lengthsin numbytes [1 must not exceed 65535 bytes, else not all
datawill be written.

PARAMETERS

flashDst Physical address of the flash destination.
rootSrc Array of pointers to the root sources.
numbytes Array of numbers of bytes to write for each source.

numsources Number of sources specified in rootSrc [] and numbytes [].

RETURN VALUE

0: Success.
- 1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc[] entry notin root.
- 3: Time-out while writing flash.

LIBRARY

XMEM.LIB

Dynamic C Functions rabbit.com

533

http://www.rabbit.com

write rtc

void write rtc(unsigned long int time);

DESCRIPTION

Writes a 32 bit seconds value to the RTC, zeros other bits. This function does not stop or delay
periodic interrupt. It does not affect the SEC_TIMER or MS_TIMER variables.

PARAMETERS

time 32-bit value representing the number of seconds since January 1, 1980.
LIBRARY

RTCLOCK.LIB

SEE ALSO

read rtc

534 rabbit.com Dynamic C Functions

http://www.rabbit.com

writeUserBlock

int writeUserBlock(unsigned addr, void #*source, unsigned numbytes) ;

DESCRIPTION

Rabbit-based boards have a System ID block located on the primary flash. (See the Rabbit Mi-
croprocessor Designer's Handbook for more information on the System ID block.) Version 2
and later of thisID block has a pointer to a User ID block: a place intended for storing calibra-
tion constants, passwords, and other non-volatile data.

The User block is recommended for storing all non-file data. The User block is where calibra-
tion constants are stored for boards with analog 1/0. Space in the User block is limited to as
small as (8K - sizeof (SysIDBlock)) bytes, or less, if there are calibration constants.

writeUserBlock () writesanumber of bytesfrom root memory to the User block. This
block is protected from normal writesto the flash device and can only be accessed through this
function or the function writeUserBlockArray ().

Using this function can cause al interruptsto be disabled for aslong as 20 ms while aflash sec-
tor erases, depending on the flash type. A single call can produce as many asfour of these erase
delays. Thiswill cause periodic interrupts to be missed, and can cause other interrupts to be

missed aswell. Therefore, it isbest to buffer up datato be written rather than to do many writes.

While debugging, several consecutive callsto thisfunction can cause aloss of target serial com-
munications. This effect can be reduced by introducing delays between the calls, lowering the
baud rate, or increasing the seria time-out value in the project file.

Note: Seethe manual for your particular board for more information before overwriting
any part of the User block.

Note: When using a board with serial bootflash (e.g.,, RCM4300, RCM4310),
writeUserBlock () should be called until it returns zero or a negative error code. A
positive return value indicates that the SPI port needed by the serial flash isin use by
another device. However, if using uC/OS-1l and _SPI_USE UCOS_ MUTEX is#defined,
then this function only needs to be called once. If the mutex times out waiting for the SPI
port to free up, theruntime error ERR_SPI_MUTEX_ ERROR will occur. See the descrip-
tionfor rcm43 InitUCOSMutex () for moreinformation on using pC/OS-I1 and
_SPI USE UCOS MUTEX.

Backwards Compatibility:

If the version of the System ID block doesn't support the User ID block, or no System ID block
ispresent, then 8K bytes starting 16K bytesfrom the top of the primary flash are designated the
User ID block area. However, to prevent errors arising from incompatible large sector configu-
rations, thiswill only work if theflash typeissmall sector. Rabbit Semiconductor manufactured
boards with large sector flash will have valid System and User ID blocks, so this should not be
problem on Rabbit boards.

If users create boards with large sector flash, they must install System ID blocks version 2 or
greater to use or modify this function.

Dynamic C Functions rabbit.com 535

http://www.rabbit.com

writeUserBlock (cont’d)

PARAMETERS
addr Address offset in User block to write to.
source Pointer to source to copy data from.
numbytes Number of bytes to copy.

RETURN VALUE

0: Successful
-1: Invalid address or range

The return values below are new with Dynamic C 10.21:
-2: No valid user block found (block version 3 or later)
- 3: flash writing error
The return values below are applicableonly if SPI_USE UCOS_ MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

readUserBlock, writeUserBlockArray

536 rabbit.com Dynamic C Functions

http://www.rabbit.com

writeUserBlockArray

int writeUserBlockArray(unsigned addr, void * sources[], unsigned
numbytes[], int numsources);

DESCRIPTION

Rabbit Semiconductor boards are released with System ID blockslocated on the primary flash.
Version 2 and later of thisID block has a pointer to a User block that can be used for storing
calibration constants, passwords, and other non-volatile data. The User block is protected from
normal write to the flash device and can only be accessed through this function or
writeUserBlock ().

This function writes a set of scattered data from root memory to the User block. If the datato

be written arein contiguous bytes, using thefunctionwriteUserBlock () issufficient. Use
of writeUserBlockArray () isrecommended when the data to be written isin noncon-

tiguous bytes, as may be the case for something like network configuration data.

See the designer’s handbook for your Rabbit processor (e.g., the Rabbit 4000 Designer's Hand-
book) for more information about the System ID and User blocks.

Note: Portions of the User block may be used by the BIOS for your board to store values,
e.g., calibration constants. See the manual for your particular board for more information
before overwriting any part of the User block.

Note: When using a board with serial bootflash (e.g.,, RCM4300, RCM4310),
writeUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flashisin use
by another device. However, if using uC/OS-Il and SPI USE UCOS MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, theruntime error ERR_SPI_MUTEX ERROR will occur. See
the description for _ rcm43 InitUCOSMutex () for moreinformation on using
HC/OS-Il and _SPI_USE UCOS_ MUTEX.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block is

present, then the 8K bytes starting 16K bytes from the top of the primary flash are designated

User block area. This only worksif the flash type is small sector. Rabbit manufactured boards
with large sector flash will have valid System ID and User blocks, sois not a problem on Rabbit
boards. If userscreate boardswith large sector flash, they must install System 1D blocksversion
3 or greater to use this function, or modify this function.

Dynamic C Functions rabbit.com 537

http://www.rabbit.com

writeUserBlockArray

PARAMETERS
addr Address offset in User block to write to.
sources Array of pointer to sources to copy data from.
numbytes Array of number of bytesto copy for each source. The sum of the lengths

in this array must not exceed 32767 bytes, or an error will be returned.

numsources Number of data sources.

RETURN VALUE
0: Successful.
-1: Invalid address or range.
-2: Novalid User block found (block version 3 or later).
- 3: Flash writing error.

The return values below are applicableonly if SPI_USE UCOS_ MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

538 rabbit.com Dynamic C Functions

http://www.rabbit.com

WrPortE

void WrPortE(unsigned int port, char * portshadow, int data value);

DESCRIPTION

Writes an external /O register with 8 bits and updates shadow for that register. The variable
names must be of the form port and portshadow for the most efficient operation. A null
pointer may be substituted if shadow support is not desired or needed.

PARAMETERS
port Address of external dataregister.

portshadow Reference pointer to avariable shadowing theregister data. Substitute with
null pointer (or 0) if shadowing is not required.

data value Value to be written to the data register

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdAPortE, BitRdPortE,
BitWrPortE

Dynamic C Functions rabbit.com 539

http://www.rabbit.com

WrPortI

void WrPortI(int port, char * portshadow, int data value);

DESCRIPTION
Writes an internal 1/0O register with 8 bits and updates shadow for that register.

PARAMETERS
port Address of data register.

portshadow Reference pointer to avariable shadowing theregister data. Substitute with
null pointer (or 0) if shadowing is not required.

data value Value to be written to the data register

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, BitRdPortE, BitWrPortI, RdAPortE, WrPortE,
BitWrPortE

540 rabbit.com Dynamic C Functions

http://www.rabbit.com

xalloc

long xalloc(long sz);

DESCRIPTION

Allocates the specified number of bytesin extended memory. Starting with Dynamic C version
7.04P3, the returned address is aways even (word) aligned.

Starting with Dynamic C 8, if xalloc () fails, arun-time error will occur. Thisisawrapper
functionfor _xalloc () ,for backwardscompatibility. Itisthesameas xalloc (&sz, 1,
XALLOC MAYBBB) except that theactual allocated amount isnot returned sincethe parameter
is not a pointer.

Starting with Dynamic C9.30, xalloc () and related functionswere modified so that they are
now driven by the compiler origin directives.

Note: xalloc () isnot thread safe sinceit accesses aglobal static structure with no lock-
ing.

PARAMETERS

sz Number of bytesto allocate. Thisis rounded up to the next higher even
number.

RETURN VALUE

The 20-bit physical address of the allocated data: Success.
0: Failure.

Note: Starting with Dynamic C 8, a run-time exception will occur if the function fails.

LIBRARY
STACK.LIB

SEE ALSO

root2xmem, xmem2root, xavail

Dynamic C Functions rabbit.com 541

http://www.rabbit.com

_xalloc

long =xalloc(long * sz, word align, word type);

DESCRIPTION
Allocates memory in extended memory. If _xalloc () fails, aruntime error will occur.

PARAMETERS

sz On entry, pointer to the number of bytesto allocate. On return, the pointed-
to value will be updated with the actual number of bytes allocated. This
may be larger than requested if an odd number of bytes was requested, or
if some space was wasted at the end because of alignment restrictions.

align Storage alignment as the log (base 2) of the desired returned memory start-
ing address. For example, if thisparameter is“8,” then thereturned address
will align on a 256-byte boundary. Values between 0 and 16 inclusive are
allowed. Any other valueis treated as zero, i.e., no required alignment.

type This parameter is only meaningful on boards with more than one
type of RAM. For example, boards with afast RAM and a slower
battery-backed RAM like the RCM 3200 or RCM 3300 Use one of the
following values, any other value will have undefined resuilts.

* XALLOC_ANY (0) - any type of SRAM storage allowed

* XALLOC_ BB (1) - must be battery-backed program execution SRAM
(ak.a, fast RAM).

* XALLOC_NOTBB (2) - return non-BB SRAM only.
* XALLOC MAYBBB (3) - return non-BB SRAM in preference to BB.

RETURN VALUE
The 20-bit physical address of the allocated data on success. On error, aruntime error occurs.

Note: This return value cannot be used with pointer arithmetic.

LIBRARY
STACK.LIB

EXCEPTIONS
ERR BADXALLOC - if could not allocate requested storage, or negative size passed.

542 rabbit.com Dynamic C Functions

http://www.rabbit.com

xalloc stats

void xalloc_stats(word parm);

DESCRIPTION
Prints atable of available xalloc () regionsto the Stdio window.

This function was introduced in Dynamic C version 8. It is for debugging and educational pur-
poses. It should not be called in a production program.

PARAMETERS
parm Prior to Dynamic C version 9.30: reserved for future use. Set to 0.
Starting with DC 9.30: this parameter is of type 1ong. It isthe address of
the data structure xbreak t and must not be O.
LIBRARY

MEM.LIB (XMEM.LIB prior to DC 9.30)

SEE ALSO

xalloc, =xalloc, xavail, =xavail, xrelease

Dynamic C Functions rabbit.com

543

http://www.rabbit.com

xavail

long xavail(long * addr ptr);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate
cal toxalloc (), and optionally alocates that amount.

This function was introduced in Dynamic C version 7.04P3.

PARAMETERS

addr ptr Pointer to along word in root data memory to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block isallocated asif by acall toxalloc ().

RETURN VALUE

The size of the largest free block available. If thisis zero, then *addr ptr will not be
changed.

LIBRARY
XMEM.LIB (was in STACK.LIB prior to DC 8)

SEE ALSO

xalloc, xalloc, xavail, xrelease, xalloc_ stats

544 rabbit.com Dynamic C Functions

http://www.rabbit.com

_xavail

long =xavail(long * addr ptr, word align, word type);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate
calto _xalloc (), and optionaly alocatesthat amount. Thealign and type parameters
are the same aswould be presented to _xalloc ().

PARAMETERS
addr ptr Address of alongword, in root data memory, to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block isallocated asif by acall to_xalloc ().
align Alignment of returned block, asper xalloc ().
type Type of memory, asper xalloc ().

RETURN VALUE

The size of the largest free block available. If thisis zero, then *addr ptr will not be
changed.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, =xalloc, xavail, xrelease, xalloc stats

Dynamic C Functions rabbit.com

545

http://www.rabbit.com

xCalculateECC256

long xCalculateECC256 (unsigned long data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capa-
bility) value for a 256 byte (2048 bit) data buffer located in extended memory.

PARAMETERS
data Physical address of the 256 byte data buffer.

RETURN VALUE

The calculated ECC in the 3 LSBs of thelong (i.e., BCDE) result. Note that the MSB (i.e., B)
of thelong result is aways zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

546 rabbit.com Dynamic C Functions

http://www.rabbit.com

xChkCorrectECC256

int xChkCorrectECC256 (unsigned long data, void * old ecc,
void * new ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 hit) data buffer, and if necessary
and possible (1 bit correction, 2 bit detection), corrects the data in the specified extended mem-

ory buffer.

PARAMETERS
data Physical address of the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Dataand ECC are good (no correction is necessary)
1: Datais corrected and ECC is good

2: Datais good and ECC is corrected

3: Dataand/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Functions rabbit.com

547

http://www.rabbit.com

xgetfloat

float xgetfloat(long src);

DESCRIPTION
Returnsthe f1oat pointed to by src. Thisisthe most efficient function for obtaining 4 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the float value to retrieve.

RETURN VALUE
float value (4 bytes) at src.

LIBRARY
XMEM.LIB

xgetint

int xgetint(long src);

DESCRIPTION
Returnsthe integer pointed to by src. Thisisthe most efficient function for obtaining 2 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the integer value to retrieve.

RETURN VALUE
Integer value (2-bytes) at src.

LIBRARY
XMEM.LIB

548 rabbit.com Dynamic C Functions

http://www.rabbit.com

xgetlong

long xgetlong(long src);

DESCRIPTION
Returnthelong word pointed to by src. Thisisthemost efficient function for obtaining 4 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the long value to retrieve.

RETURN VALUE
Long integer value (4 bytes) at src.

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com 549

http://www.rabbit.com

xmem2root

int xmem2root(void * dest, unsigned long int src,
unsigned int len);

DESCRIPTION
Stores 1 en characters from physical address src tological address dest.

PARAMETERS
dest Logical address
src Physical address
len Numbers of bytes

RETURN VALUE

0: Success.
- 1: Attempt to write flash memory area, nothing written.
-2: Destination not all in root.
LIBRARY
XMEM.LIB

SEE ALSO

root2xmem, xalloc

550 rabbit.com Dynamic C Functions

http://www.rabbit.com

Xxmem2xmem

int xmem2xmem(unsigned long dest, unsigned long src,
unsigned len);

DESCRIPTION

Stores 1 en characters from physical address src to physica address dest.

PARAMETERS
dest Physical address of destination
src Physical address of source data
len Length of source datain bytes

RETURN VALUE

0: Success.
- 1: Attempt to write flash memory area, nothing written.

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com

551

http://www.rabbit.com

xmemchr

long xmemchr (long src, char ch, unsigned short n);

DESCRIPTION
Search for the first occurrence of character ch in the xmem area pointedto by src.

PARAMETERS
src xmem (linear) address of the first character to search.
ch Character to search for.
n Maximum number of charactersto search.

RETURN VALUE

0: Character was not found within n bytes from the start.
>0: Physical address of the first character that matched ch.

LIBRARY
XMEM.LIB

552 rabbit.com Dynamic C Functions

http://www.rabbit.com

Xmemcmp

int xmemcmp(long xstr, char * str, unsigned short n);

DESCRIPTION
Test whether xmem string at xst r matches the root memory string at st r. n bytes are com-
pared.

PARAMETERS
xstr xmem (linear) address of the first character of the first string to compare.
str root address of the first character of the second string to compare.
n Length of each string. If n iszero, returnszero. n must belessthan or equal

4097.

RETURN VALUE

0: Exact match.
>0. xstr > str
<0. xstr < str

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com 553

http://www.rabbit.com

xrelease

void xrelease(long addr, long sz);

DESCRIPTION
Release ablock of memory previously obtained by xalloc () or by xavail () withanon-
null parameter. xrelease () may only be called to free the most recent block obtained. Itis
NOT agenera -purpose malloc/free type of dynamic memory allocation. Callsto
xalloc () /xrelease () must be nested in first-allocated/| ast-released order, similar to the
execution stack. The addr parameter must be thereturnvaluefromxalloc (). If not, thena
run-time exception will occur. The sz parameter must al so be equal to the actual allocated size,
however thisis not checked. The actual allocated size may be larger than the requested size (be-
cause of alignment overhead). The actual size may be obtained by calling xalloc () rather
than xalloc () . For thisreason, it is recommended that your application consistently uses
_xalloc () rather thanxalloc () if youintend to use thisfunction.

PARAMETERS
addr Address of storage previousdly obtained by xalloc ().

sz Size of storage previously returned by xalloc ().

LIBRARY
XMEM.LIB

SEE ALSO
xalloc, xalloc, xavail, xavail, xalloc_ stats

554 rabbit.com Dynamic C Functions

http://www.rabbit.com

xsetint

void xsetint(long dst, int wval);

DESCRIPTION
Set the integer pointed to by dst. Thisisthe most efficient function for writing two bytes to
Xmem.
PARAMETERS
dst xmem (linear) address of the int value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM.LIB

xsetfloat

void xsetfloat(long dst, float wval);

DESCRIPTION

Set the float pointed to by dst. Thisisthe most efficient function for writing 4 bytes to xmem.

PARAMETERS
dst xmem (linear) address of the float value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com

555

http://www.rabbit.com

xsetlong

void xsetlong(long dst, long val);

DESCRIPTION
Set thelong integer pointed to by dst. Thisisthe most efficient function for writing 4 bytesto
xmem.
PARAMETERS
dst xmem (linear) address of the long integer value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM.LIB

xstrlen

unsigned int xstrlen(long src);

DESCRIPTION

Return the length of the string in xmem pointed to by src. If thereisno null terminator within
the first 65536 bytes of the string, then the return value will be meaningless.

PARAMETERS

src xmem (linear) address of the first character of the string. Note: to perform
anormal null-terminated search, ensurethat src isintherange0..22°° 1,
If the MSB of srcisnot zero (i.e., bits 24-31) then that character will be
used to terminate the search rather than the standard null terminator. E.g.,
to determine the length of a string terminated by '@":

xstrlen (paddr (my str) | (long)'@' << 24);

RETURN VALUE
Length of string, not counting the terminator.

LIBRARY
XMEM.LIB

556 rabbit.com Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

Software License Agreement

RABBIT® SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING COPYING OR OTHERWISE USING THE
ENCLOSED RABBIT DYNAMIC C SOFTWARE, WHICH INCLUDES COMPUTER SOFTWARE
("SOFTWARE") AND MAY INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND
"ONLINE" OR ELECTRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF
YOURSELF OR ASAN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE
TOALL THE TERMSOF THISEND USER LICENSE AGREEMENT ("LICENSE") REGARDING
YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDI-
ATELY CONTACT RABBIT FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to include to
protect our legal rights. If You have any questions, write or call Rabbit at (530) 757-4616, 2900 Spafford
Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capitalized
words used in this License shall have the following meanings:
1.1 "Qualified Applications' means an application program developed using the Software and that
links with the devel opment libraries of the Software.

1.1.1"Qualified Applications' is amended to include application programs devel oped using the Sof-
tools WinIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-II (UC/OS-I1) library and sample code and the Point-to-Point Protocol (PPP)
library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software may be
modified for use with the Softools WinIDE program in Qualified Systems as defined in 1.2. All
other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems' means a microprocessor-based computer system which is either (i) manufac-
tured by, for or under license from Rabbit, or (ii) based on the Rabbit 2000 microprocessor, the
Rabbit 3000 microprocessor, the Rabbit 4000 microprocessor, or any other Rabbit microproces-
sor. Qualified Systems may not be (a) designed or intended to be re-programmable by your cus-
tomer using the Software, or (b) competitive with Rabbit products, except as otherwise stated in a
written agreement between Rabbit and the system manufacturer. Such written agreement may
require an end user to pay run time royalties to Rabbit.

Dynamic C Functions rabbit.com 557

http://www.rabbit.com

2. License. Rabbit grants to You a nonexclusive, nontransferable license to (i) use and reproduce the Soft-
ware, solely for interna purposes and only for the number of users for which You have purchased
licenses for (the "Users") and not for redistribution or resale; (ii) use and reproduce the Software solely
to develop the Qualified Applications; and (iii) use, reproduce and distribute, the Qualified Applica-
tions, in object code only, to end users solely for use on Qualified Systems; provided, however, any
agreement entered into between You and such end users with respect to a Qualified Applicationisno
less protective of Rabbit'sintellectual property rights than the terms and conditions of this License. (iv)
use and distribute with Qualified Applications and Qualified Systems the program files distributed with
Dynamic C named RFU.EXE, PILOT.BIN, and COLDLOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone el se to, decompile, reverse
engineer, disassemble or otherwise attempt to reconstruct or discover the source code of the Software,
alter, merge, modify, translate, adapt in any way, prepare any derivative work based upon the Software,
rent, lease network, loan, distribute or otherwise transfer the Software or any copy thereof. You shall
not make copies of the copyrighted Software and/or documentation without the prior written permis-
sion of Rabbit; provided that, You may make one (1) hard copy of such documentation for each User
and a reasonable number of back-up copies for Your own archival purposes. You may not use copies of
the Software as part of abenchmark or comparison test against other similar products in order to pro-
duce results strictly for purposes of comparison. The Software contains copyrighted material, trade
secrets and other proprietary material of Rabbit and/or its licensors and You must reproduce, on each
copy of the Software, all copyright notices and any other proprietary legends that appear on or in the
original copy of the Software. Except for the limited license granted above, Rabbit retains al right, title
and interest in and to all intellectual property rights embodied in the Software, including but not limited
to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other technical data
received from Rabbit, nor the direct product thereof, will be exported outside the United States or re-
exported except as authorized and as permitted by the laws and regulations of the United States and/or
the laws and regulations of the jurisdiction, (if other than the United States) in which You rightfully
obtained the Software. The Software may not be exported to any of the following countries: Cuba, Iran,
Iraq, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Software
is supplied to the Department of Defense ("DOD"), the Software is classified as " Commercial Com-
puter Software" and the Government is acquiring only "restricted rights" in the Software and its docu-
mentation as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the Software
is supplied to any unit or agency of the United States Government other than DOD, the Government's
rightsin the Software and its documentation will be as defined in Clause 52.227-19(c)(2) of the FAR or,
in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR.

558 rabbit.com Dynamic C Functions

http://www.rabbit.com

6. Disclaimer of Warranty. You expressy acknowledge and agree that the use of the Software and its
documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECHNICAL
SUPPORT ARE PROVIDED ON AN "ASIS' BASISAND WITHOUT WARRANTY OF ANY
KIND. Information regarding any third party servicesincluded in this package is provided as a conve-
nience only, without any warranty by Rabbit, and will be governed solely by the terms agreed upon
between You and the third party providing such services. RABBIT AND ITS LICENSORS
EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHER-
WISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS. RABBIT DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTSIN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, RABBIT DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. NO
ORAL ORWRITTEN INFORMATION OR ADVICE GIVEN BY RABBIT ORITSAUTHORIZED
REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THISWARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING NEG-
LIGENCE, SHALL RABBIT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUEN-
TIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE AND/OR INABILITY TO USE THE SOFTWARE, EVEN IF RABBIT ORITSAUTHO-
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL RABBIT'STOTAL LIABILITY
TOYOU FOR ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CON-
TRACT, TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. This Licenseis effective for the duration of the copyright in the Software unless termi-
nated. You may terminate this License at any time by destroying all copies of the Software and its docu-
mentation. This License will terminate immediately without notice from Rabbit if You fail to comply
with any provision of this License. Upon termination, You must destroy all copies of the Software and
its documentation. Except for Section 2 ("License"), al Sections of this Agreement shall survive any
expiration or termination of this License.

Dynamic C Functions rabbit.com 559

http://www.rabbit.com

9. General Provisions. No delay or failure to take action under this License will constitute awaiver unless
expressly waived in writing, signed by a duly authorized representative of Rabbit, and no single waiver
will constitute a continuing or subsequent waiver. This License may not be assigned, sublicensed or
otherwise transferred by You, by operation of law or otherwise, without Rabbit's prior written consent.
This License shall be governed by and construed in accordance with the laws of the United States and
the State of California, exclusive of the conflicts of laws principles. The United Nations Convention on
Contracts for the International Sale of Goods shall not apply to this License. If for any reason a court of
competent jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so as to affect the intent
of the parties, and the remainder of this License shall continue in full force and effect. This License
constitutes the entire agreement between the parties with respect to the use of the Software and its doc-
umentation, and supersedes all prior or contemporaneous understandings or agreements, written or oral,
regarding such subject matter. There shall be no contract for purchase or sale of the Software except
upon the terms and conditions specified herein. Any additional or different terms or conditions pro-
posed by You or contained in any purchase order are hereby rejected and shall be of no force and effect
unless expressy agreed to in writing by Rabbit. No amendment to or modification of this License will
be binding unless in writing and signed by a duly authorized representative of Rabbit.

Digi International Inc. © 2008 « All rights reserved.

560 rabbit.com Dynamic C Functions

http://www.rabbit.com

	Table of Contents
	Alphabetical Listing of Dynamic C Functions
	Group Listing of Dynamic C Functions
	Arithmetic
	Bit Manipulation
	Bus Operation (Rabbit 3000, 4000)
	Character
	Data Encryption
	Direct Memory Access (Rabbit 4000, 5000)
	Dynamic Memory Allocation
	ECC
	Error Handling
	Extended Memory
	Fast Fourier Transforms
	File Compression
	File System, FAT
	File System, FS1
	File System, FS2
	File System, Registry
	Flash, NAND
	Flash, Parallel
	Flash, SD
	Flash, Serial
	Floating-Point Math
	Global Positioning System
	HDLC Protocol (Rabbit 3000, 4000, 5000)
	I/O
	I2C Protocol
	Interrupts
	Logging Subsystem
	MD5
	MicroC/OS-II
	Miscellaneous
	Multitasking
	Number-to-String Conversion
	Partitions
	Pulse Width Modulation (Rabbit 3000, 4000, 5000)
	Quadrature Decoder (Rabbit 3000, 4000, 5000)
	Rabbit 3000, 4000
	Rabbit 3000, 4000, 5000
	Rabbit 4000, 5000
	Real-Time Clock
	Serial Communication
	Serial Packet Driver
	Servo Control (Rabbit 3000, 4000)
	SPI
	Stdio
	String Manipulation
	String-to-Number Conversion
	System
	User Block
	VBAT RAM (Rabbit 4000, 5000)
	Watchdogs

	�1. Function Descriptions
	abs
	acos
	acot
	acsc
	AESdecrypt4x4
	AESdecryptStream4x4_CBC
	AESencrypt4x4
	AESencryptStream4x4_CBC
	AESexpandKey4
	AESinitStream4x4
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol
	bit
	BIT
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI
	CalculateECC256
	ChkCorrectECC256
	ceil
	chkHardReset
	chkSoftReset
	chkWDTO
	clockDoublerOn
	clockDoublerOff
	CloseInputCompressedFile
	CloseOutputCompressedFile
	CoBegin
	cof_pktXreceive
	cof_pktXsend
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CompressFile
	CoPause
	CoReset
	CoResume
	cos
	cosh
	DecompressFile
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	Disable_HW_WDT
	disableIObus
	DMAalloc
	DMAcompleted
	DMAhandle2chan
	DMAioe2mem
	DMAioi2mem
	DMAloadBufDesc
	DMAmatchSetup
	DMAmem2ioe
	DMAmem2ioi
	DMAmem2mem
	DMApoll
	DMAprintBufDesc
	DMAprintRegs
	DMAsetBufDesc
	DMAsetDirect
	DMAsetParameters
	DMAstartAuto
	DMAstartDirect
	DMAstop
	DMAstopDirect
	DMAtimerSetup
	DMAunalloc
	Enable_HW_WDT
	enableIObus
	errlogGetHeaderInfo
	errlogGetNthEntry
	errlogFormatEntry
	errlogFormatRegDump
	errlogFormatStackDump
	errlogGetMessage
	errlogReadHeader
	error_message
	exception
	exit
	exp
	fabs
	fat_AutoMount
	fat_Close
	fat_CreateDir
	fat_CreateFile
	fat_CreateTime
	fat_Delete
	fat_EnumDevice
	fat_EnumPartition
	fat_FileSize
	fat_FormatDevice
	fat_FormatPartition
	fat_Free
	fat_GetAttr
	fat_GetName
	fat_GetPartition
	fat_Init
	fat_InitUCOSMutex
	fat_IsClosed
	fat_IsOpen
	fat_LastAccess
	fat_LastWrite
	fat_MountPartition
	fat_Open
	fat_OpenDir
	fat_PartitionDevice
	fat_Read
	fat_ReadDir
	fat_Seek
	fat_SetAttr
	fat_Split
	fat_Status
	fat_SyncFile
	fat_SyncPartition
	fat_Tell
	fat_tick
	fat_Truncate
	fat_UnmountDevice
	fat_UnmountPartition
	fat_Write
	fat_xRead
	fat_xWrite
	fclose
	fcreate (FS1)
	fcreate (FS2)
	fcreate_unused (FS1)
	fcreate_unused (FS2)
	fdelete (FS1)
	fdelete (FS2)
	fflush (FS2)
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen_rd (FS1)
	fopen_rd (FS2)
	fopen_wr (FS1)
	fopen_wr (FS2)
	forceSoftReset
	fread (FS1)
	fread (FS2)
	frexp
	fs_format (FS1)
	fs_format (FS2)
	fs_init (FS1)
	fs_init (FS2)
	fs_reserve_blocks (FS1)
	fsck (FS1)
	fseek (FS1)
	fseek (FS2)
	fs_get_flash_lx (FS2)
	fs_get_lx (FS2)
	fs_get_lx_size (FS2)
	fs_get_other_lx (FS2)
	fs_get_ram_lx (FS2)
	fs_set_lx (FS2)
	fs_setup (FS2)
	fs_sync (FS2)
	ftell (FS1)
	ftell (FS2)
	fshift
	fwrite (FS1)
	fwrite (FS2)
	ftoa
	getchar
	get_cpu_frequency
	getcrc
	getdivider19200
	gets
	_GetSysMacroIndex
	_GetSysMacroValue
	GetVectExtern2000
	GetVectExtern3000
	GetVectIntern
	gps_get_position
	gps_get_utc
	gps_ground_distance
	hanncplx
	hannreal
	HDLCabortX
	HDLCcloseX
	HDLCdropX
	HDLCerrorX
	HDLCextClockX
	HDLCopenX
	HDLCpeekX
	HDLCreceiveX
	HDLCsendX
	HDLCsendingX
	hexstrtobyte
	hitwd
	htoa
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isspace
	isprint
	ispunct
	isupper
	isxdigit
	itoa
	i2c_check_ack
	i2c_init
	i2c_read_char
	i2c_send_ack
	i2c_send_nak
	i2c_start_tx
	i2c_startw_tx
	i2c_stop_tx
	i2c_write_char
	kbhit
	labs
	ldexp
	log
	log_clean
	log_close
	log_condition
	log_format
	log_map
	log_next
	log_open
	log_prev
	log_put
	log_seek
	log10
	longjmp
	loophead
	loopinit
	lsqrt
	ltoa
	ltoan
	lx_format
	mbr_CreatePartition
	mbr_EnumDevice
	mbr_FormatDevice
	mbr_MountPartition
	mbr_UnmountPartition
	mbr_ValidatePartitions
	md5_append
	md5_init
	md5_finish
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf
	nf_eraseBlock
	nf_getPageCount
	nf_getPageSize
	nf_initDevice
	nf_InitDriver
	nf_isBusyRBHW
	nf_isBusyStatus
	nf_readPage
	nf_writePage
	nf_XD_Detect
	OpenInputCompressedFile
	OpenOutputCompressedFile
	OS_ENTER_CRITICAL
	OS_EXIT_CRITICAL
	OSFlagAccept
	OSFlagCreate
	OSFlagDel
	OSFlagPend
	OSFlagPost
	OSFlagQuery
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxDel
	OSMboxPend
	OSMboxPost
	OSMboxPostOpt
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSMutexAccept
	OSMutexCreate
	OSMutexDel
	OSMutexPend
	OSMutexPost
	OSMutexQuery
	OSQAccept
	OSQCreate
	OSQDel
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQPostOpt
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskIdleHook
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTCBInitHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTick
	OSTimeTickHook
	OSVersion
	outchrs
	outstr
	paddr
	paddrDS
	paddrSS
	palloc
	palloc_fast
	pavail
	pavail_fast
	pcalloc
	pfirst
	pfirst_fast
	pfree
	pfree_fast
	phwm
	pktXclose
	pktXgetErrors
	pktXinitBuffers
	pktXopen
	pktXreceive
	pktXsend
	pktXsending
	pktXsetParity
	plast
	plast_fast
	pmovebetween
	pmovebetween_fast
	pnel
	pnext
	pnext_fast
	poly
	pool_append
	pool_init
	pool_link
	pool_xappend
	pool_xinit
	pow
	pow10
	powerspectrum
	pprev
	pprev_fast
	pputlast
	pputlast_fast
	premain
	preorder
	printf
	putchar
	puts
	pwm_init
	pwm_set
	pxalloc
	pxalloc_fast
	pxcalloc
	pxfirst
	pxfirst_fast
	pxfree
	pxfree_fast
	pxlast
	pxlast_fast
	pxnext
	pxnext_fast
	pxprev
	pxprev_fast
	qd_error
	qd_init
	qd_read
	qd_zero
	qsort
	rad
	rand
	randb
	randg
	RdPortE
	RdPortI
	ReadCompressedFile
	read_rtc
	read_rtc_32kHz
	readUserBlock
	readUserBlockArray
	registry_enumerate
	registry_get
	registry_finish_read
	registry_finish_write
	registry_prep_read
	registry_prep_write
	registry_read
	registry_update
	registry_write
	res
	RES
	ResetErrorLog
	root2vram
	root2xmem
	rtc_timezone
	runwatch
	sdspi_debounce
	sdspi_get_csd
	sdspi_get_scr
	sdspi_getSectorCount
	sdspi_get_status_reg
	sdspi_init_card
	sdspi_initDevice
	sdspi_isWriting
	sdspi_notbusy
	sdspi_print_dev
	sdspi_process_command
	sdspi_read_sector
	sdspi_reset_card
	sdspi_sendingAP
	sdspi_setLED
	sdspi_set_block_length
	sdspi_WriteContinue
	sdspi_write_sector
	servo_alloc_table
	servo_closedloop
	servo_disable_0
	servo_disable_1
	servo_enable_0
	servo_enable_1
	servo_gear
	servo_graph
	servo_init
	servo_millirpm2vcmd
	servo_move_to
	servo_openloop
	servo_qd_zero_0
	servo_qd_zero_1
	servo_read_table
	servo_set_coeffs
	servo_set_pos
	servo_set_vel
	servo_stats_reset
	servo_torque
	serCheckParity
	serXclose
	serXdatabits
	serXdmaOff
	serXdmaOn
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXwrFlush
	serXwrFree
	serXwrite
	serXwrUsed
	set
	SET
	set32kHzDivider
	setClockModulation
	set_cpu_power_mode
	setjmp
	SetSerialTATxRValues
	SetVectExtern2000
	SetVectExtern3000
	SetVectExtern4000
	SetVectIntern
	sf_getPageCount
	sf_getPageSize
	sf_init
	sf_initDevice
	sf_isWriting
	sf_pageToRAM
	sf_RAMToPage
	sf_readDeviceRAM
	sf_readPage
	sf_readRAM
	sf_writeDeviceRAM
	sf_writePage
	sf_writeRAM
	sfspi_init
	sin
	sinh
	snprintf
	SPIinit
	SPIRead
	SPIWrite
	SPIWrRd
	sprintf
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcmpi
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	_sysIsSoftReset
	sysResetChain
	tan
	tanh
	TAT1R_SetValue
	tm_rd
	tm_wr
	tolower
	toupper
	updateTimers
	use32kHzOsc
	useClockDivider
	useClockDivider3000
	useMainOsc
	utoa
	vram2root
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	WriteFlash2
	WriteFlash2Array
	write_rtc
	writeUserBlock
	writeUserBlockArray
	WrPortE
	WrPortI
	xalloc
	_xalloc
	xalloc_stats
	xavail
	_xavail
	xCalculateECC256
	xChkCorrectECC256
	xgetfloat
	xgetint
	xgetlong
	xmem2root
	xmem2xmem
	xmemchr
	xmemcmp
	xrelease
	xsetint
	xsetfloat
	xsetlong
	xstrlen

	Software License Agreement

