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Chapter 1

Introduction

$Revision: 1.26 $

$Date: 2002/08/14 16:52:07 $

1.1 The Purpose of the Lyngby Toolbox

Lyngby is a Matlab toolbox for the analysis of functional magnetic resonance imaging (fMRI)
time series. The main purpose of the toolbox is to model four-dimensional fMRI data (i.e. 3D
spatial volume over time) and to derive parameter sets from them that will allow easy interpreta-
tion and identification. The toolbox was primarily written for the analysis of experimental data
obtained from controlled multicentre trials - The Human Brain Project “Spatial and Temporal
Patterns in Functional Neuroimaging”, carried out by the International Consortium for Neu-
roimaging. All of the methods have low-level modelling functions and a graphical user interface
(GUI) interface for easy access to the data and modelling results. It is important to realize
that no single model can grasp all the features of the data. Each of the models have their own
contributions, and the assumptions underlying the models are very different in nature.

The Lyngby toolbox can import data in various different formats, and it is also able to cope
with non-supported formats with very little user-intervention. In addition to the large set of
data modelling strategies, there is also a choice of pre-processing steps and routines, and the
ability to perform post-processing on the modelling results.

The toolbox was developed on Linux and SGI platforms and should work on all platforms
with Matlab version 5.2. Lyngby was previously supported with Matlab 4.2 and some of the
functions will still work with this version. There are still some teething problems with running
the toolbox under MS Windows however, due to some differences in the way Matlab operates
between the Unix and Windows flavours. We are working to overcome these problems, but as
they are due to subtle, undocumented Matlab ’inconsistencies’, it is something of a trail-and-
error process. For the time-being, we encourage people to use the toolbox in Matlab under
Linux, where the majority of our development is now carried out. Any advice regarding the
development of the toolbox in Matlab for MS Windows is, of course, welcomed.

In addition to this manual, there are also a few other pieces of documentation to aid use
of the toolbox. A “Getting Started” guide has been written to show the first-time user how
to download, install and run the toolbox as quickly and simply as possible. In addition, an
“Example Analysis” guide demonstrates how Lyngby can be used to analyse one of the sample
datasets, extract some meaningful results, and then interpret them. Both these documents are
included in this manual as appendices.

7



Section 1.1 The Purpose of the Lyngby Toolbox 8

1.1.1 Models Available in the Toolbox

Currently, the toolbox includes the following modelling methods (The exact details of the algo-
rithms are covered later on in the manual):

Cross-Correlation Cross-correlation with the paradigm (The activation function, which usu-
ally is a square shaped design function). A well-established method suited for estimation
of delay and activation strength from a given paradigm.

FIR filter A general linear regression model of finite length. The time series are modelled as
a convolution between the paradigm and a linear filter of a finite length, on a per voxel
basis.

Exhaustive FIR filter The same as the FIR filter, but using an exhaustive search of all FIR
models up to a specified filter length. The optimal filter is found from generalization
theory.

K-means Clustering A non-linear statistical method for clustering (labelling) the data using
either the raw time series or the cross-correlation with the paradigm. This method is suited
for identification of areas with similar activation and delay. The method is described in
(Bishop, 1995, pp. 187-189) and has been used for fMRI in (Toft et al., 1997; Goutte
et al., 1999).

Grid Search Lange-Zeger model A parameterized convolution model with a grid search of
optimal parameters with zoom built in. The same as above but a non-iterative grid search
scheme for estimating the parameter is used. The model estimates three parameters that
have easy physical interpretation.

Iterative Lange-Zeger model A parameterized convolution model with an iterative scheme
for estimating the model parameters. The model estimates three parameters that have
easy physical interpretation.

The Ardekani t-test A linear transform of the time-series mapped to a subspace controlled
by the paradigm. In this method the activation estimator can be approximated to be
Student t-distributed, hence a statistical measure of the correlation to the paradigm is
found. The method has been described by Babak Ardekani and Iwao Kanno (Ardekani
and Kanno, 1998).

Ardekani F-test A linear transform of the time-series mapped to a subspace controlled by
a finite size Fourier based subspace. In this method the activation estimator can be
approximated to be F-distributed, hence a statistical measure of the energy in the subspace
relative to the energy lying outside of this subspace is found. The method has been
described by Babak Ardekani and Iwao Kanno (Ardekani and Kanno, 1998).

Ardekani F-test with nuisance subspace A variation of the Ardekani F-test, where a nui-
sance subspace is identified and extracted from the signal. The method is described in
(Ardekani et al., 1999).

Ordinary t-test From a square wave activation function each of the time series is split into
an activation part and a baseline part. In this model the difference in means relative to a
deviation measure is given a statistical interpretation.

c©Lars Kai Hansen et al 1997



Section 1.2 Organisation of this Book 9

The Kolmogorov Smirnov test In the Kolmogorov Smirnov-test each of the time series is
split into an activated part and a baseline part. The maximal distance between the his-
tograms of the two parts is taken as a measure of match. A probabillity measure is also
derived.

Neural Network regression A feed-forward artificial neural network is trained to predict the
time series for each voxel. If the neural network is better at predicting the time series than
a “null”-model for a specific voxel, that voxel can be said to be activated. The neural
network regression is a non-linear generalization of the FIR filter model.

Neural Network Saliency A feed-forward artificial neural network is trained to classify the
scans according to the paradigm. After the training, the neural network is analyzed to
reveal which voxels were the most important in the prediction.

Poisson Filter An fMRI time-series model.

Singular value decomposition (SVD) The same as principal component analysis (PCA).

Independent component analysis (ICA) A multivariate methods to find independent (not
necessarily orthogonal) components with an implementation of the simple Molgedey-
Schuster algorithm.

Strother CVA Canonical variate analysis.

Strother Orthonormalized PLS The PLS (partial least square) method finds the images
and sequences that explain the majority of the variation between two matrices. The two
matrices in the Strother orthonormalized PLS are the datamatrix and a designmatrix that
is constructed by putting the scans in the same period in each run into the same class.

1.2 Organisation of this Book

This book fulfills several requirements. The first - explaining what the Lyngby toolbox is for,
what it can do, who developed it and other related information - is here in the first chapter. The
second - the “user manual” element - is contained in Chapter 2. It explains how to go about
using the toolbox, including getting your own data into it, and shows you how to do the different
analyses. Consider it as a “How to. . . ” guide. The following three chapters explain the different
stages of using the toolbox in more detail and provide more background information. The first
of these covers the different data formats that Lyngby supports, how data is loaded and stored
in the toolbox, and the pre-processing that is usually done to the data before any analysis is
performed. The second (Chapter 4) looks at the actual data analysis stage and considers each
of the modelling algorithms in detail. The final chapter of this group (Chapter 5) covers post-
processing of the data. This involves the analysis of the results from the (previous) modelling
stage by way of meta-analysis algorithms. Finally, the appendices cover any derivations of
modelling algorithms and other similar details refererred to in the main part of the book.

In summary:

Chapter 1 Introduction to Lyngby – what is it, who wrote it, and what is it for?

Chapter 2 The main user manual – a step-by-step guide to the user interface.

Chapter 3 Details of the preliminary steps – the data formats and the pre-processing stages.

c©Lars Kai Hansen et al 1997



Section 1.3 Explanation of the Typographic Conventions 10

Chapter 4 Details of the analysis algorithms in the toolbox.

Chapter 5 Details of the post-processing stages (meta-analysis).

Appendix A Glossary of fMRI and Lyngby terms.

Appendix B Detailed list of all the functions and script files within the toolbox.

Appendix C Derivations of the algorithms used in the toolbox.

Appendix D The Getting Started Guide – useful for first-timers.

Appendix E Example Analysis – An step-by-step example of how to to use the toolbox to
analyse fMRI datasets.

1.3 Explanation of the Typographic Conventions

Within this manual, we have tried to improve the readability of the text by using certain
typographic conventions. For instance:

Any reference to Matlab code,

either on the commandline (at the >> prompt)

or within a Matlab script (*.m) file,

will be written in monospace with all

the inherent formatting included.

In addition, commands written at the Matlab commandline will have the Matlab prompt in-
cluded on the left-hand side, e.g.:

>> help lyngby

Any Lyngby variables or Matlab files mentioned in running text, such as PARADIGM or
data paradigm.m will also be in bold monospace.

Any reference to a particular button in the Lyngby GUI will have a box around it, whilst
Window Titles and Window Menus will be shown in italics.

1.4 fMRI Analysis, Matlab and the Lyngby Toolbox

The Lyngby toolbox was created for the analysis of fMRI images using advanced mathemat-
ical and statistical methods in a way that was easily accessible to researchers from all fields.
fMRI is still a relatively new field, and this is reflected in the continually growing number of
analysis routines available. Originally, methods developed for the analysis of PET images were
adapted to work on fMRI data, and some of these are still present in the toolbox. However,
we have also added a considerable number of innovative analysis methods, and are continually
developing more. One of the purposes of the toolbox is to enable researchers to add their own
algorithms with relative ease, without having to worry about handling the data input, image
display, statistics or saving of results. By writing the toolbox in the universally adopted Matlab
package, and allowing the code to be open, we hope that other researchers will be able to add
their own algorithms with ease. We also hope that they will consider submitting to us any they
think would be useful to other people in the field so that we may include them in a subsequent
release of the Lyngby toolbox. Of course, any other suggestions for developments of the toolbox
will also be greatly welcomed.

c©Lars Kai Hansen et al 1997



Section 1.5 Support on the Web and Downloading the Toolbox 11

1.4.1 Definitions and Glossary

It would probably be useful at this point to define some of the terms used throughout this
book. Although the fMRI field is developing rapidly, some of the terms used are still ambiguous
and those coming into the field for the first time may not appreciate the difference between,
for example, “volume” when it refers to a 2D-slice-with-time vs. a spatial-3D-volume. For
consistency and clarity we will define what we mean by the standard terms, along with some
Lyngby–specific terms. These are all in the Glossary at the back of the book — see Appendix A.

1.5 Support on the Web and Downloading the Toolbox

The Lyngby toolbox has a mailing list where the latest development is announced, and its own
homepage:

http://hendrix.imm.dtu.dk/software/lyngby/

The parts of the Lyngby homepage relating to downloading of software and documentation
is updated automatically every day. The Lyngby toolbox can either be downloaded file by file
(more than 300 files), or you can get the compressed tar file that contains all the files. You can
download the latest version from:

http://hendrix.imm.dtu.dk/software/lyngby/code/lyngby.tar.gz

Note that currently the software and documentation is password protected. Please fill in the
form on the Lyngby homepage or contact the authors regarding access.

We use CVS to control the code revisions, which enables very easy updating and automatic
generation of the web documentation. On the Lyngby homepage it is also possible to see which
files have changed (and view the change logs) over the last 7 days and last 30 days.

The (closed) mailing list lyngby@isp.imm.dtu.dk can be joined by sending an email to

majordomo@isp.imm.dtu.dk

with the only line in the body being:

subscribe lyngby

The mailing list is used for discussions, problems, and announcements.

1.6 Other Software

Other software packages for the analysis of functional neuroimages do also exist, most notably
SPM from Wellcome Department of Cognitive Neurology (Friston et al., 1995b) and Stimulate
developed by John P. Strupp from University of Minnesota Medical School (Strupp, 1996). (Gold
et al., 1998) gives a review of these two together with several other software packages.
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Section 1.7 The Lyngby Development Team 12

1.7 The Lyngby Development Team

Lyngby has been designed and implemented by a modeling group at Informatics and Mathe-
matical Modelling (IMM, formerly called Department of Mathematical Modelling), Technical
University of Denmark (DTU). The head of this group is Lars Kai Hansen. The programming
has been carried out mainly by Finn Årup Nielsen, Peter Toft and Matthew Liptrot as well as
Carsten Helbo. Peter Toft and Carsten Helbo are now involved in other work.
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Sørensen have supplied methods and code for the package.
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Much valuable input has come from the HBP partners, especially Stephen Strother, Nick

Lange, and Babak Ardekani.
This work has been supported by the The Danish Research Councils through the programs

“Functional Activation in the Human Brain” (9502228), “CONNECT” Computational Neural
Network Center (9500762), the US Human Brain Project “Spatial and Temporal Patterns in
Functional Neuroimaging” (P20 MH57180), and the European Union project MAPAWAMO.

1.7.2 Contact us

Besides the mailing list lyngby@isp.imm.dtu.dk, we can also be contacted by email directly –
see the list in the table below.

Lars Kai Hansen Associate Professor lkhansen@isp.imm.dtu.dk

Finn Årup Nielsen Post Doc fn@imm.dtu.dk

Matthew G. Liptrot Research Assistent mgl@imm.dtu.dk

Peter Toft can be contacted via pto@sslug.dk, however he is no longer employed at IMM
or officially involved with Lyngby.
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Chapter 2

User Manual

$Revision: 1.30 $

$Date: 2002/08/14 15:54:22 $

2.1 Introduction

This chapter deals with everyday usage of the toolbox. It is a “How do I. . . ?” guide showing, in
a step-by-step manner, how data is loaded in, how a typical analysis would be carried out, what
results can be obtained, and how these results can be viewed and saved. More information on
each of the stages, such as a description of the available data formats and the different modelling
algorithms, can be found in the later chapters.

2.2 Installation and Getting Started

2.2.1 First-time Users

It is recommended that, if you have not yet installed Lyngby, you first read a seperate document
entitled “Getting Started” which takes the user step-by-step through downloading, installing
and running the toolbox. The aim is to have a first-time user able to start experimenting with
real data within a couple of minutes of downloading the Lyngby toolbox. As an additional help,
the Lyngby toolbox also comes with a sample dataset that allows the first-time user to quickly
get started with using Lyngby without first spending time working out how to get their own
data loaded in.

It is highly recommended that first-time users then read the follow-up document entitled
“Example Analysis”. This takes the user through a typical fMRI analysis session, from loading
in the data and ensuring all the pre-processing steps are done, to performing some modelling
of the data, and finally through to analysing the results obtained. This will give the user a
good overview of how Lyngby can help them in the analysis of their own data. Both of these
documents are available on the Lyngby website for seperate download, and are also included in
this book as Appendices D and E, respectively.

2.2.2 Using Lyngby On Your Own Data

If you want to use Lyngby to analyse your own data, there are two main approaches. If the data
is in one of the supported formats (Analyze, Vapet, Stimulate or Raw) then you can simply load
the data directly into the toolbox. However, if you data is in any other format, you will need
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Section 2.3 Using Lyngby 14

a few simple conversion files to act as format translators. These are very simple to write, and
once stored alongside the data, will allow seamless loading of your data with little or no user
intervention required. These files, the supported data formats and detailed instructions on how
to load data into the toolbox are given later on in this chapter and in the next.

2.3 Using Lyngby

From this point we will assume that the user has followed the “Getting Started” guide and
installed Lyngby correctly. It may also be advantageous for the user to have worked through the
“Example Analysis” guide to see how the Lyngby toolbox can be used to analyse fMRI data.

2.3.1 Starting Lyngby

Lyngby can be run either through the graphical interface or through the Matlab commandline.
The toolbox consists of over 300 Matlab script (*.m) files, which can all be executed from the
Matlab prompt. This allows the advanced user great flexibility and the ability to add and alter
the code as desired, as well as the option of writing batch scripts to run Lyngby automatically,
or on large jobs. However, it can be difficult to remember all the different script names and
their required parameters, so the novice user will find that the graphical interface is far easier
to use. Here the user is prompted for all the required information, removing the need to call
anything from the commandline (once the toolbox is started).

To start the graphical interface, change directory within Matlab to the directory that contains
the data files that are to be processed, and then type:

>> lyngby

If you get an error saying ”??? Undefined function or variable lyngby.” it is prob-
ably because you haven’t set up the path to the lyngby functions. To fix this (assuming that
you have placed the lyngby code in the directory /usr/local/lyngby), simply type:

>> path(path, ’/usr/local/lyngby’);

You can put this command in your ~/matlab/startup.m file.
Details on how to use Lyngby via each method are given in Sections 2.5 and 2.6 respectively.

2.3.2 Getting Help

An overview of all the functions in the toolbox can be obtained through the standard matlab
help function:

>> help lyngby

You can also get help for each individual function, for example:

>> help lyngby_fir_main

To distinguish the functions in this toolbox from other Matlab toolboxes all the functions
have the prefix lyngby *. All the functions associated with the graphical interface to lyngby
are called lyngby ui *. Furthermore, functions to each algorithm also have a special prefix.
For example, the FIR filter algorithm uses the files: lyngby fir * and lyngby ui fir *. A
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very useful index of all the toolbox function files and their inter-dependencies can be found on
the Lyngby website.

Within the GUI, there are Help buttons at various stages. Clicking on a Help button will
bring up a single dialog box explaining the purpose of the different windows and the options
within them. In addition, most of the windows have a “Tooltips” option, invoked from the
Options window menu or with the <Ctrl-T> key combination. These Tooltips will pop-up
handy explanations for any button over which the mouse pointer rests temporarily. They are
meant for the new user, although they are set to be off by default as they can become distracting
after a short while.

2.4 Data Setup

This section will deal with getting data into Lyngby. It will cover the file formats that Lyngby
can currently read and will also explain how your own data format, even highly custom or
non-standard formats, can be read in.

2.4.1 How Lyngby Reads in Data

There are two ways to get new data into Lyngby — either by the file formats already supported,
or via a conversion process that will allow any non-supported file format to be read. For the
supported formats, nothing needs to be done outside the GUI in order to read in the data — all
the required information is extracted from the header files and from details entered into the GUI’s
Load New Data window. Non-supported file formats can be read-in by the use of “conversion
files” (data readdata.m and data readinfo.m). These are small matlab files which act as
header and data-reading files for the Lyngby program so that it can understand the data. These
are very simple to write, and detailed examples of how to do this are given later.

For all file formats, there may be external influences on the data that you will also need for
your analysis. For instance: the paradigm and run signals, any previous voxel-masking, or a
time-mask to remove unwanted scans. These can be specified through the GUI, but it may be
easier to save this information as small matlab files that can then be loaded in at the same time
as the data. Examples include data paradigm.m and data run.m.

In addition, it may be easier to save the parameters that specify the data, such as image size
and data location, in a seperate file as well. Then the user does not have to enter them every
time data is to be loaded. This file will work for any data format. This file is called data init.m

Details on how to create all these files are also given later.

2.4.2 Setting-up the Conversion Files for Non-supported Data Formats

It is easiest to explain how to set-up the files that perform the conversion by use of an example.
To do this, we will use the Jezzard Turner Friston (Friston et al., 1994) dataset: Visual stimu-
lation and a single coronal slice. This is one of the sample datasets available from the Lyngby

website.
The data is stored in a filetype that is not recognized by Lyngby, so we have to make our

own functions that read the data: data readinfo.m and data readdata.m, the latter of the
two being the most important.

These files are called from the Load new data... window of the GUI. Several Lyngby

internal functions are called once the data is required to be loaded. The first of these is
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lyngby getdata.m. This then calls lyngby getvolume.m, which, for non-supported data, then
calls the user-created file data readdata.m. This acts as the actual data-reader, returning the
data to the program in the form of a vector. Details about the actual shape and order of the
volume are not specified in this file, though of course they will be required in order to write the
data-reading function within it that will actually return the data.

However, Lyngby itself will not know the shape of the data, the number of
runs/volumes/time-points etc. This information has to be entered into the GUI, or can be
stored in a matlab file (data init.m) to save the user typing in the relevant details each time
the data is loaded.

In summary, then, there is only one file that is absolutely necessary when reading in non-
supported data (data readdata.m), although up to four others may be used. These others are
optional but do make life easier. Any file that is to be supplied by the user will have a filename
stem of data *.m. Their individual purposes are summarized below:-

data readdata.m The only necessary file required for reading in non-supported file formats, it
contains a few lines of matlab code that actually return the non-supported data as a vector.
It is also where the user will put in any re-organisation of the data in order to get the
byte-read-order correct. The user must use the standard Matlab functions to re-organise
their data to match this ordering. An example of how to do this is given later.

data readinfo.m This file is only required if the user wants to use the facility within Lyngby to
check the headers of their data files. This is accessed by pressing the Try to setup! button
in the Load new data window. It is therefore not an essential requirement for loading in
non-supported data formats, and indeed may become redundant in future versions of the
toolbox.

data paradigm.m This is used to specify the paradigm (the external reference function) which
is used in the actual analysis stage. It can be specified within the GUI, but it is far easier
to keep it within a file that is loaded in automatically. It is simply a 1D vector indicating
“on” and “off” time points, and as such usually only requires a single line of code. The
GUI can be used to make changes to the paradigm function if required.

data run.m This specifies which time-points belong to which run within a given experiment or
session. As for the paradigm file, this too can be specified through the GUI, although
only if the lengths of all the runs are equal. But once again, it is far easier to keep the
information in a file that is loaded automatically. Changes to the function can also be
made from within the GUI if required.

data init.m This file contains all the parameters that the user would normally enter in the
“Load new data” window. As such, it also is not essential, but it makes life easier because
it then saves the user specifying the parameters every time data is loaded. It is simply a file
of variable assignments, specifying such parameters as the size and shape of the volume,
the number of scans and runs, and a TIME MASK variable which can be used to remove
unwanted scans.

Note that the latter three files can be used for all data formats, and it is only the first two
which are specific to custom data.
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2.4.3 Examples of the Data Conversion Files

This section looks at how to write the actual code within the data conversion files. It uses
the Jezzard dataset as a basis for the code examples. This is a single trial, single slice fMRI
experiment, with 64 volumes (i.e. time points or frames), each of size 64-by-64-by-1.

2.4.3.1 The data readdata.m and data readinfo.m Files

The contents of the data readinfo.m file are read when the user wants to pass the header
information contained within the file into the Load Setup window. This is achieved by pressing
the Try to setup! button. An example of the file is shown below:

function [siz, vdim, name, datatype] = data_readinfo(index);

siz = [64 1 64];

vdim = [0.003 1 0.003]

name = ’jezzard’;

datatype = ’short’

Pressing the Try to setup! button then attempts to locate the file in the current directory
and read the contents. These are then placed in the correct fields of the Load Setup window,
and the relevant status boxes are set to Header. For all the other file formats, pressing the
Try to setup! button ignores any data readinfo.m file, and instead the relevant header files
for the chosen format are attempted to be read and the extracted parameters again passed into
the relevant fields in the Load Setup window, with the associated status boxes also being changed
to Header.

The other function, data readdata, is the function that should return the actual data. The
data has to be flipped because, in this case, the original ordering is not the same as that used
by Lyngby.

The Lyngby toolbox will always assume that the vector data returned from data readdata

is of the following form:-

V = [P1(x, y, z), P2(x, y, z), P3(x, y, z), . . .]

where:

P refers to an individual data point

(x,y,z) refers to the location in 3D space of the data point

x refers to the sagittal slice (i.e. ear-to-ear/left-right)

y refers to the coronal slice (i.e. back-to-front)

z refers to the transaxial slice (i.e. bottom-to-top)

. . . and so this is the order into which the user must reshape their own data.
The X index changes quickest, followed by the Y index, with the Z index changing the

slowest. Thus, the data cycles through the X’s first, then the Y ’s, and finally through the Z’s.
So, for a 10-by-10-by-10 cube, the data should be in the order:-
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P1 = (x1, y1, z1), P2 = (x2, y1, z1), P3 = (x3, y1, z1), .... , P10 = (x10, y1, z1), ...
P11 = (x1, y2, z1), P12 = (x2, y2, z1), P13 = (x3, y2, z1), .... , P20 = (x10, y2, z1), ...
...
P101 = (x1, y10, z1), P102 = (x2, y10, z1), P103 = (x3, y10, z1), .... , P110 = (x10, y10, z1), ...
P111 = (x1, y1, z2), P112 = (x2, y1, z2), P113 = (x3, y1, z2), .... , P120 = (x10, y1, z2), ...
...
P991 = (x1, y10, z10), P992 = (x2, y10, z10), P993 = (x3, y10, z10), .... , P1000 = (x10, y10, z10).

Note that the direction along each of the three orthogonal axes is also important. The
Lyngby toolbox uses the Talairach co-ordinate space as its reference. The origin of this space is
located at the centre of the brain, with the directions of the axes as given in Table 2.1

- +

Left Right
Back Front
Bottom Top

Table 2.1: Direction of the axes in Talairach coordinate space.

The Lyngby toolbox will assume that the data is written with the most negative values first,
increasing through the origin, and up to the most positive values last.

For the Jezzard data, the file looks like:

function V = data_readdata(index);

fid = fopen(sprintf(’jezzard0716phot1_unwarp.%03d’, index), ’r’, ’ieee-be’);

if fid==-1

error(’readdata: Could not open file’);

end

fread(fid, 8, ’char’);

V = fread(fid, ’int16’)’;

V = reshape(fliplr(flipud(reshape(V,64,64))),1,64*64);

fclose(fid);

Let’s look at this in more detail.
The first thing to do is open the file with:

fid = fopen(sprintf(’jezzard0716phot1_unwarp.%03d’, index), ’r’, ’ieee-be’);

The fid is the file pointer. Note that the filename is actually the file-stem of the relevant
data files, and that the individual datafile is specified by the index parameter. This index is
passed to the data readdata function when it is called, and so this function will be called for
each “volume” that is to be read in. The number of times that data readdata is called is given
by the difference between the Start and Stop scan indices as specified in the Load Data window
or in the data init.m file. The former takes preference. (Note that some data formats don’t
use a different file for each time-point, or frame, and instead the whole time-series is contained
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within a single file. When this is the case, the File Pattern field, and the Start and Stop indices
are not used.)

The r means that the files are to be opened “read-only”, while the ieee-be specifies that they
are in “big-endian” format. As a rule, files stored on Intel (Pentium) and DEC Alpha machines
are “little-endian” (ieee-le), whilst those stored on Sun and SGI machines are “big-endian”
(ieee-be). Make sure that the correct format is chosen for your architecture.

The next few lines check that the file was actually there and that it could be opened, returning
an error if not:

if fid==-1

error(’readdata: Could not open file’);

end

The next line skips the header in each data file. The Jezzard data files have an 8-byte header:

fread(fid, 8, ’char’);

Next, the data in the file is read into a single vector, V . Remember that this is only one
volume at a time. The size of the individual data points must be specified — a 2-byte signed
integer in this case. It is probably wise to specify the data size in architecture-independent form,
as shown in Table 2.2 (e.g. use “int16” instead of “short”):

V = fread(fid, ’int16’)’;

MATLAB C or Fortran Description

’char’ ’char*1’ character, 8 bits
’uchar’ ’unsigned char’ unsigned character, 8 bits
’schar’ ’signed char’ signed character, 8 bits
’int8’ ’integer*1’ integer, 8 bits.
’int16’ ’integer*2’ integer, 16 bits.
’int32’ ’integer*4’ integer, 32 bits.
’int64’ ’integer*8’ integer, 64 bits
’uint8’ ’integer*1’ unsigned integer, 8 bits.
’uint16’ ’integer*2’ unsigned integer, 16 bits.
’uint32’ ’integer*4’ unsigned integer, 32 bits.
’uint64’ ’integer*8’ unsigned integer, 64 bits
’float32’ ’real*4’ floating point, 32 bits.
’float64’ ’real*8’ floating point, 64 bits.

Table 2.2: Architecture Independent Variables

We now have a single volume of the full data (i.e. a spatial volume for a given time point)
in the form of a 1D vector. The next bit re-orders this data so that it will appear in the correct
order for Lyngby as specified earlier. This is the most complex bit!

V = reshape(fliplr(flipud(reshape(V,64,64))),1,64*64);

Looking at this function in more detail:
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First of all, the vector V is reshaped into a 2D matrix, 64-by-64. Note that this case is
relatively easy because the Jezzard data is only single-slice, so the volume is 64-by-64-by-1. (For
a multiple-slice dataset, you would have to use the reshape function with an extra parameter.
Type help reshape at the Matlab prompt for more information.)

reshape(V,64,64)

Next, the matrix is flipped about the horizontal axis:

flipud(matrix)

and then about the vertical axis:

fliplr(matrix)

Finally, this re-ordered matrix is put back into the vector V with another reshape command:

V = reshape(matrix, 1, 64*64)

This results in a vector V that has been re-ordered so that the elements appear in the same
order that Lyngby is expecting them, i.e. X, Y , Z, X, Y , Z, X, etc with the Z indices changing
the quickest.

Finally, the file is closed with:

fclose(fid);

2.4.3.2 The data paradigm.m and data run.m files

The data paradigm function for the Jezzard data is:

function P = data_paradigm();

P = [kron(ones(3,1), [zeros(10,1) ; ones(10,1))] ; zeros(4,1)];

Another example of a data paradigm function is:

function P = data_paradigm

P = lyngby_kronadd(zeros(8,1), [ zeros(24,1) ; ones(24,1) ; zeros(24,1) ]);

This function was created for an 8 run study with 72 scans in each run: first are 24 base line
scans, then 24 activation scans, and finally 24 base line scans. Note that as well as using this
compact way of specifying the paradigm it is also valid to type the paradigm as a long vector,
i.e. specify the paradigm in long-hand:

function P = data_paradigm

P = [ 0 0 0 1 1 1 0 0 0 ... 0]’;

The total length of the paradigm vector must be the same as the whole time series, i.e.
before the time mask is applied. This is also true for the function defining the run structure —
data run:
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function R = data_run();

% The Jezzard dataset contains three runs: The first with 24 scans,

% then one with 20, and the last also with 20.

R = [ones(4,1); ones(20,1) ; 2*ones(20,1) ; 3*ones(20,1)];

Another example of a data run.m file is:

function R = data_run

R = lyngby_kronadd((0:7)’, ones(72,1));

Both examples define a staircase function, with one level per run.
Two of the examples use the convenient lyngby kronadd function, which is actually a “kro-

necker addition”. It works like the kronecker tensor product (the matlab kron function), just
with addition instead of multiplication.

Alternatively, instead of defining functions you can define *.mat files (data paradigm.mat

and data run.mat) with a PARADIGM and RUN variable in them, or you can define an ascii file
(data paradigm.txt and data run.txt).

When you start Lyngby two functions are automatically called: lyngby paradigm and
lyngby run. These will call your data paradigm.* and data run.* function/files and setup
the global variables PARADIGM and RUN.

2.4.3.3 The data init file

A data init function is created to setup some of the global variables. These variables could
also have been setup through the command line. However it is convenient to have them in a file
so you will not need to set them up every time.

For the Jezzard data:

function data_init();

lyngby_global;

NUM_VOXELS = [ 64 1 64 ]’;

ROI_VOXELS = [29 46 ; 1 1 ; 14 43];

A list of the general global variables is given in Table 2.3 on page 37, and a list of the
user-interface related global variables is given in Table 2.4 on page 38.

If another program has masked the volumes so that non-brain voxels are already zero, we will
take advantage of this by setting a VOXEL MASK, — reading in the first volume and extracting
only the voxels that are different from zero.

2.5 Using the Lyngby Windows Interface

The Lyngby toolbox is easy to use due to a graphical user interface (GUI) front-end embedding
the numerical routines. The main window that pops-up when starting Lyngby is shown in
figure 2.1.
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Figure 2.1: The main control window in Lyngby.

2.5.1 The Workflow in the Lyngby Toolbox

As seen from figure 2.1, a top to bottom flow is intended The main window is split into sections
(or frames) according to their purpose as follows:

Title frame The name of the Toolbox.

Data This shows the name or location of the current dataset being used.

Data Input Data is loaded into the toolbox here

External Influences This is where the Run and Paradigm variables are loaded in and/or
edited.

Pre-processing and Design Any set-up of the data, including removal of unwanted scans or
the subtraction of the mean across each time-series, can be performed here.

Data Analysis The heart of the toolbox, this allows the data to be analysed by any of the
built-in algorithms and viewing of the subsequent results.

Post-Processing Once a result dataset has been created, further analysis, such as clustering
of the results, can then be performed.

Close The worksheet is saved, and the toolbox closed, from here.

Status Feedback on what process is currently running is shown here, and the toolbox copyright
infomation can also be obtained by pressing the status line.
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Note that we use the following convention for the menus:

• Ok Accept the values currently shown in the display and close the window.

• Apply Accept the values currently shown in the display.

• Cancel Don’t accept the values currently shown in the display (note that pressing Cancel
after Apply will first accept the current values and then close the window).

2.5.2 A Typical Analysis Session

A typical analysis procedure would progress as follows:

2.5.2.1 Data Loading

The first stage of the process is to get some data into the toolbox. This is done by either loading
an existing worksheet from a previous session, or loading new data from scratch. A previously
saved worksheet (usually *.mat) is recalled by pressing the Load Worksheet! button. This
brings up a standard Matlab file chooser, starting from the directory where lyngby was started.

New data is loaded by pressing the Load new data... button. This then displays a window
called Load setup, shown in Fig. 2.2, allowing specification of the number of scans, the file format,
voxel masking etc. . . . To aid this process, there is a Try to setup! button. This attempts to

probe the header files for the chosen file format (or the data readinfo.m file in the case of
the Lyngby format) and place any extracted information about the datafiles into the correct
fields in the Load Setup window. Any fields successfully read are indicated by the change of the
respective status box to Header.

There are several options within the Load Setup window. The majority of the fields are
used to set up the file structure and image size etc. . . , whilst the bottom right frame is used to
specify some external factors, such as specifying a region-of-interest (ROI) and the removal of
any unwanted scans.

2.5.2.2 The Load Window – Data Fields

There are many fields in this window, and the various file formats support a different number
of these fields. Those that are not supported, or are yet to be fully implemented, are greyed-out
and hence cannot be used (note how the accessibility of the fields changes as you change the file
format).

File Format: lyngby can load in several different file formats. Apart from its own native
format, lyngby can also read Vapet, Analyze Stimulate and Raw formats. The lyngby

format requires some additional small conversion files to be written that describe how the
data should be read (examples were given earlier in Subsection 2.4.3 on how to create your
own). Once this has been done for your dataset, the lyngby format then becomes the
easiest to load, as the image parameters have already been specified.

The other formats will require the user to specify the location of the data, the image size,
the size of each data unit, the ordering of the data etc. . . . It is usual for the data to be
split across many individual files, and this is catered for by the File Pattern, Start Index
and No. of Scans choices, which allows the user to specify the common file stem and the
scope of the file index.
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Figure 2.2: The file load window in Lyngby.

Image Dimensions: Specifies the size of the full data volume, in spatial terms i.e. for a
single time-point, before any region-of- interest is selected.

Image Word Size: The size of the individual words in the datafile.

File Byte Ordering: The order of the bytes within the file.

Data Endian: Intel (Pentium) and DEC Alpha usually use big endian, while Sun and SGI
usually use little endian when storing data on disk.

Data Orientation: allows the user to change the orientation of the displayed image. Note
that this refers to the mirroring around each of the three orthogonal axes, and not to the
way the data is stored within the file — that is catered for by the Ordering option.

Greyscale: How the greyscales are mapped to the colourmap.

Voxel Dimensions: Specifies the real-world size of the image voxels, to allow for calibration
etc. . .

Location of Origin Voxel: Allows spatial calibration of the brain.

Plane angle to horizontal: Compensates for non-orthogonal orientation of the slice-planes.

Repeat period: The frame-rate – allows the calculations to be calibrated in seconds instead
of in frames.
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File Offset: The number of bytes to skip in the datafile in order to get past the header
info and into the data. Very useful for loading in raw data without creating any seperate
translation files.

Compression method: The file compression used on the datafiles. The toolbox is capable
of decompressing the files ’on-the-fly’, allowing the data to be kept compressed and thus
saving space. It also allows the data to be read compressed straight from a CDROM.

Extract to dir: The temporary directory used for on-the-fly decompressing of the data as
it is loaded-in.

2.5.2.3 The Load Window – Bottom-Right Frame

This frame controls some of the external factors that affect the loading-in of the data. Other
external influences, such as the Run and Paradigm variables, don’t affect the way the data is
loaded-in and as such are seperated off into a later stage.

Time Mask: Before actually loading the data, a time mask can be specified by pressing
the Edit. . . button. This is convenient if you want to discard transient scans or scans
at the start that behave badly (such as highly saturated T1 scans). The associated global
variable is TIME MASK, and the window is shown in figure 2.3.

Figure 2.3: The time window in Lyngby.

Voxel Mask: This allows the exclusion of specific voxels within the selected region of
interest (ROI) to be loaded. It is usually in the form of a sparse matrix. At the moment,
the front-end interface for this feature is not yet finished, but the supporting code is in
place and as such you may load in a voxel mask from the command prompt. Details of
how to do this are given later.

Volume/ROI: The ROI can be specified by pressing the Volume/ROI Edit... button.
In order to edit the volume, it must first, of course, be loaded in. This requires the
data parameters to be specified first, so once this is done, press the Apply button at the

bottom and this will then unshade the Volume/ROI Edit. . . button. Note that the whole
data matrix is not loaded at this point — only the relevant volume. In this window, a
rectangular ROI can be specified by the user, who can also browse through all the data in
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both time and space. As can be seen in Fig. 2.4, the user has the choice of five different
viewing layouts to examine the data. The first one simply shows a single slice of the data,
with the choice of the three orthogonal directions and the ability to move along each of
these axes. The second choice allows two slices to be shown alongside one another, either
from the same or different viewpoints. There is also the ability for linking the two views if
they are of the same direction, allowing for easy-stepping through the volume. The third
choice is the standard triple orthogonal view. This is also repeated in the fourth option,
alongside a 3-dimensional view of the data. The final option is for view multiple slices
from the same viewpoint, displaying 8 adjacent slices.

Figure 2.4: The volume window in Lyngby, showing three orthogonal views and a 3-dimensional
one.

Once all the loading parameters have been set, press the Apply button to ensure that they

are all stored, and then press the Load Data! button to start the loading-in of all the data.
The Load Setup window is closed and the status bar at the bottom of the main window indicates
the progress of the loading.

2.5.2.4 Data – External Influences

In the main window, there were links to create, edit and load external influences on the data
that affected the way or the amount of data loaded into the toolbox. This section covers the
external influences on the data that are applied once the data is loaded. To access this stage,

press the Create/Edit External Influences. . . button in the main window. This will bring up

the External Data Influences window, as seen in figure 2.5. Most of these external influences are
usually specified in external files first, and then altered here if necessary. Guidelines for writing
these files are given later:

• The run structure can be verified by pressing the Create of edit the Run function. . .
button. Each of the runs is given a unique number so the graph should be a staircase as
shown in figure 2.6. You will only need this structure if you plan to make a pre-processing
step or analysis type that requires run information, e.g. run centering. The global variable
associated with the run structure is called RUN. Like the paradigm, this function can be
altered here, but is usually defined in an external file.
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Figure 2.5: The External influences window in Lyngby.

Figure 2.6: The run window in Lyngby.

• The paradigm can be verified by pressing the Create or edit the Paradigm function. . .
button. The global Matlab variable associated with this window is called PARADIGM. The
GUI allows alteration of the paradigm function that is usually defined in an external file
(data paradigm located at the same place as the data. The Paradigm window is shown
in Fig. 2.7.

2.5.2.5 Data Pre-Processing

Before the actual modelling, the data should be pre-processed. By pressing the Data Setup...
button, the window shown in Fig. 2.8 pops up. This window has a left and right pane which
serve different purposes. The user should do any work on the left pane first, before selecting the
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Figure 2.7: The paradigm window in Lyngby.

relevant options on the right pane and then pressing the Apply.. button.
On the left, the top button is used to remove unwanted scans by applying the TIME MASK

variable, which was previously specified in the Load Setup window, to the PARADIGM and RUN

variables. The lower button removes the vertical offset (“DC component”) from the PARADIGM

variable. This is necessary for those analysis algorithms which require a zero-mean paradigm.
The right pane focuses only on the data. Three of the choices involve the removal of the mean

from the data: over the whole time series, the whole volume and over each run respectively. The
remaining choice normalizes the variance. The relevant choices should be selected by pressing
the toggle buttons, and then these are applied by pressing the Apply... button at the bottom
of the window. This also closes the pre-processing window.

Figure 2.8: The preprocessing window in Lyngby.

c©Lars Kai Hansen et al 1997



Section 2.5 Using the Lyngby Windows Interface 29

2.5.2.6 Data Analysis and Modelling

The next step is to select the actual data modelling algorithm from the Data analysis frame.
The top button in this frame determines the analysis algorithm that will be used. Pressing this
button causes a list to pop-up of all the available algorithms. Simply select the desired one,
and the list will disappear and the button will display the name of the chosen algorithm. The
Original option simply displays the un-analysed data (which is also the input data used by all
the other analysis algorithms). The actions of the associated buttons are then dependent on the
choice of algorithm, but always follow a standard pattern:

• The Parameters button is used to choose the parameters for the selected modelling algo-
rithm, and as such the window that pops up after pressing it will be different for each one.
For the Neural Network Saliency algorithm, the parameter window is shown in Fig. 2.9.
Once the required parameters have been chosen, then click Apply , followed by Close .

Figure 2.9: The Neural Network Saliency parameter window in Lyngby.

• The Calculate! button will then run the algorithm and the progress of the processing is
shown on the status line at the bottom of the main window.

• Finally, pressing the View button shows the result of the analysis.

• The two ! buttons adjacent to the View and Calculate! buttons will display, in
the command window, the actual code/script that will be run when their neighbouring
buttons are pressed. This allows the user to easily keep track of what variables will be
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modified and displayed at each stage.

Note that the popup menu showing the algorithms will have a (+), (-) or a (!) alongside
each one, indicating whether or not the results of that algorithm are available for visu-
alization :– (-) indicates no result, (+) indicates a new result, and (!) indicates that the
parameters have been changed and the algorithm has not yet been run with these new
variables.

The next step is the actual viewing of the modelling results. Whichever modelling or analysis
method is chosen, the same three windows are used to explore the results. For the Neural
Network Saliency algorithm, these result windows are shown in Fig. 2.10.

Figure 2.10: The Neural Network Saliency results window in Lyngby.

Let’s go through the features of these windows in more detail:

• There is always one control window underneath two data-viewing windows, which usu-
ally show spatial/voxel information and time series information respectively. The control
window is arranged in layers to reflect the concept of overlapping data layers in the spa-
tial window. This is perhaps illustrated more clearly with the aid of a diagram — see
figure 2.11.

• Clicking on a voxel in the volume window will automatically update the other window to
show the time-series for the chosen voxel, plus the result of any modelling algorithm for
that particular voxel.
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Figure 2.11: The Concept of Layers in the Result Windows.

• The control window can be expanded to show extra layers with the More. . . button.
These allow the addition of a contour overlay, a background underlay, and data-masking
features.

Time Display Layer: The lower layer controls the right window, which usually displays
the time-series of the currently selected voxel. However, some algorithms also produce
histograms, error curves, periodograms etc. . . , either voxel-based or full-volume-based,
which can be selected from the left-most button in this layer and displayed in the right
window.

The Full button controls the scaling of the bottom axis, and so allows ”temporal zoom-
ing”.

The next button switches the vertical axis scaling between fixed and automatic.

Adjacent to this, the slider controls the temporal location of the time-series display, and
is used in conjunction with the horizontal zoom button to move through the time-series.
It is disabled when the full time-series is displayed.

The next four buttons apply to all three windows. The Close all button closes all three
windows. The results are still kept, though, and can be accessed again by pressing the
View these results button in the main window. The Save data. . . button displays the
Save Layer, allowing specific volumes or results to be selected for saving. This is covered
again later. The Help button brings up help for all three windows, and the More. . . or

Less. . . button adds/removes the extra layers for masking, background display etc. . .
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Data Layer: This controls the main results of the modelling algorithm. As in the other
three voxel-related layers (Masking, Contour and Background), the result set being used
is chosen from the leftmost button’s popup list. Some algorithms only have a few result
sets, whilst others may have dozens. The beauty of this layering approach is that it allows
you to display one result set, filtered by another, over a background of a third, whilst
overlaying a contour plot of a fourth.

The next button specifies the slice direction for observing the data volume. This is only
really interesting if the data is a 3D spatial volume. The adjacent slider controls the
position of the slice plane within the volume. Note that these also alter the viewing
direction of the other layers as well (it is no use plotting the transversal activation over a
sagittal background!)

Next to this is a button controlling what each voxel represents. There is a choice of the
current slice, as selected by the previous two buttons, the mean of the volume, or the
maximum voxel value, both measured along the current direction.

Next comes a button specifying the colourmap to be used for this layer. The Default
setting uses the default colourmap as set in the file lyngby ui option.m.

Finally, the last button controls whether the colourbar on the spatial plot should be dis-
played or not.

Masking Layer: This layer creates a binary mask from the selected dataset, and then
applies it to the Data Layer below. Thus the only parts of the result set that are visible
are those that occur where the mask allows. This is useful for viewing a thresholded
activation result over a background image. This masking process is only activated when
the second button, initially labeled None, is switched to some other value.

Next to the first button, which chooses which of the result sets to use to create the mask,
is the button which selects the threshold type. The choice is between ’¿’, ’¿¡’ (absolute) or
’==’ (integer equals). The first is a simple threshold. The second is an absolute threshold
to remove both positive and negative values greater than a certain value, and the third is
used only with a few result sets to pick out a particular level (for instance, in the K-Means
clustering, you may want to extract the results of just the 3rd cluster). The next two
buttons are used to select the threshold level, either via typing it into the edit box, or by
moving the slider.

The final button controls whether the threshold level is an absolute one, or is done on a
percentage bssis within the current slice.

Contour Layer This is the left side of the top layer, and controls the addition of a contour
overlay on top of the current volume view. It is turned on and off via the radio button to
the left. Next to this is the popup button allowing the selection of the result set to use for
drawing the contours. The adjacent button specifies whether the contour is drawn using
the current slice of the chosen result set, or using its mean or maximum values along the
current direction.

Background Layer This is the right side of the top layer, and it controls the ’underlay’ of a
background image. At the moment, this background image must be chosen from the cur-
rent result set. We are hoping to incorporate the option of loading in a seperate anatomical
background image soon (although this raises several questions regarding registration and
resolution). For the moment though, a very good approximation to an anatomical image
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can be obtained by use of the mean image, which is automatically included in all result
sets.

Once again, the radio button to the left controls the activation of the layer, and the next
button allows the choice of which result set to use as a background. The final button
specifies whether the background is taken as the values in the current slice, or as a mean
or maximum of the volume along the current direction.

Save Layer: This appears on top of the other four layers and has a red background to
highlight it. In addition, the layers upon which the save layer is acting are also coloured
red. The first button controls what is to be saved e.g. the whole volume, the current slice
or the time-series of the current voxel.

The next button specifies the format in which to save the data. The options depend on
what is to be saved. For instance, the volume has a choice of ASCII, Matlab, Analyze,
STD or VAPET. More choices will be added in future, as will more flexible saving options.
These will be located in the next button which is currently unavailable.

The next button allows choice of a compression algorithm. This currently only works on
Unix-type systems, as it employs the unix-compress and gzip routines.

The filename to save the file under can be typed into the next box, and saved in the current
working directory by pressing the adjacent Save here! button. If you want to choose a

different directory, simply use the Save in dir. . . button instead.

Mosaic View: Originally, most fMRI studies were single slice, but as the amount of volume
studies has grown, we have added in a mosaic slice viewer. This allows the display of
mutliple adjacent slices of a volume so the whole result set can be viewed at once. To
turn this on, select the Toggle Mosaic View from the View Options menu in the volume
window. Alternatively, use the Control+M keyboard shortcut when the volume window
is the selected window.

An example of the mosaic view can be seen in figure 2.12.

The mosaic view requires a minimum of 3 slices of the current view plane. In addition, it
won’t work if you are looking at the mean or maximum result values (as this would lead
to multiple copies of the same image). The current slice is used as the first slice in the
mosaic list, and so there must be at least two more slices left after it for the mosaic view
to work. So if you are currently looking at the last slice of a 16 slice volume, move the
slider to the left to select an earlier slice before choosing the mosaic view.

Once selected, the mosaic view will display up to 20 slices from the current volume. You
can move the slice slider as before to move through the volume. The result sets all use the
same colourmap (i.e. the colourmap has been scaled to the maximum and minimum of
the current result set) so individual colourbars are not necessary, and the slices update far
quicker wiith them turned off. A single colourbar for this view will be added very shortly.

You can turn the mosaic view off again with the same menu or keyboard shortcut that
turned it on.

2.5.2.7 Data Post-Processing

After the data analysis, the user can perform some post-processing on the results data. This
post-processing allows the analysis of the previous result sets in a formal way. At the moment,
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Figure 2.12: The volume result window in mosaic mode.

only one post-processing algorithm, Meta K-means clustering, is included in the toolbox, but
more are due to be added later. To use this feature, one first has to have a collection of result
parameters that require analysis. This result dataset is presently acquired by using either the
FIR Filter or the Iterative Lange Zeger routines. Once this has been created, then the post-
processing can be done. The procedure is exactly the same as for the main analysis routines,
with the user setting the initial parameters of the algorithm via the Parameters... button,

shown in Fig. 2.13 , and then starting the calculation by pressing the Calculate! button. The

results are also viewed using the same interface as before, accessed via the View these results!
button.

The Meta K-Means algorithm attempts to cluster, for example, the parameters of the filters
used to model each of the voxels, in effect looking for commonality of filter types instead of
common voxel time-series. In this way, it is a ’higher level’ of analysis, and should provide
another viewpoint on the data.

2.5.3 Exporting Variables, Printing and Saving Results

Generally, the result variables are not available from the commandline as they are global vari-
ables. However, it is easy to access them by issuing the command:

>> lyngby_ui_global

You can then list all the variables by doing:
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Figure 2.13: The parameter options for the Meta K-Means post-processing algorithm.

>> whos

This allows you to both see the size of the result variables and save them directly from the
command line. For example:

>> save MyFilename.txt RESULT_LZ -ascii

This will export the Lange-Zeger result to an ASCII-file named MyFilename.txt. Note that
you might want to change to another directory first – you are in the data directory while working
with the Lyngby package.

Alternatively, you can save the entire worksheet by using the Save Worksheet button near
the bottom of the main window. This will bring up a file chooser, allowing you to store all the
data, the variables and all the results obtained into a single file, usually of the form *.mat.

To print a window of the lyngby toolbox in Matlab 5.0, you can use the print function in
the window frame or you can use the ordinary matlab function print:

>> print -deps MyFilename.eps

An alternative is to save the data from the Result View - Control window. To specify which
data to save, click on the Save data. . . button towards the bottom right of the window. This
will expand the window to five layers - the normal four layers and an extra red-framed “Save”
layer. Changing the choices in the first button on the Save layer specifies which layers, and
hence which data, is to be saved. These layers are also highlighted in red. The other buttons in
the Save layer allow the choice of the Save options - the file format, file compression, filename
and file location.
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2.6 Using Lyngby from the commandline

You may prefer to use Lyngby from the command-line instead of using the window-interface. As
the GUI simply calls individual Matlab *.m files, then these can also be called directly from the
command-line. However, if you are working without the GUI you must setup the parameters in
the data init.m file. In addition, it may help to have the run and paradigm files setup as for the
GUI. If your data is a non-supported format, then it may also be easier to put the data-loading
functions into the data readdata.m file rather than having to enter them on the commandline
each time.

2.6.1 Data Loading

• Change to the relevant data directory

• Setup the global variables. This is usually done within data init.m, data paradigm.m,
and data readdata.m

• X = lyngby getdata;

2.6.2 Pre-Processing

Pre-processing has been used with different meanings in neuroimaging. In terms of the Lyngby

toolbox, by pre-processing we mean the step after loading the data, but before the actual data-
analysis.

In the GUI, the setup of the pre-processing is managed by lyngby ui preproc. This is called
from lyngby ui main upon pressing the Data Setup ... button. The function and its associated
window are used to setup the global variables in lyngby prep global. These variables are used
by lyngby ui main in its call to lyngby normalize — the function that does the actual pre-
processing. This is normally done by pressing the Apply Pre-Processing and Close button in
the Data Setup window.

The loaded data, held in the global variable X, is passed to the pre-processing step, which then
outputs the global variables XN, X MEAN and X STD. You do not have to use the lyngby normalize

function, and you can set these variable yourself directly from the command-line:

XN = X;

X_MEAN = mean(X);

X_STD = std(X);

2.6.3 Global Variables

The Lyngby toolbox has to use a set of global variables that under normal conditions are hidden
from the user. The user can make the these variable available to the workspace by calling
lyngby global. A list of the Lyngby global variables is given in table 2.3.

Furthermore, the result variables and the data matrix are also global, but are seperate from
the ones shown above. You can make the these variables available to the workspace by calling
lyngby ui global. An example list of these global variables is given in table 2.4.

X and P will be defined once the data have been loaded (normally done upon pressing the

Load Data button). XN and PN will be defined once the pre-processing has been done, and the

RESULT * will first be defined once an analysis has been performed (via the Calculate! button).
The next section gives more details on how to run the analysis algorithms from the com-

mandline.
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Name Description

DATATYPE Type of data, e.g. ’float’, ’double’, ’short’,
’byte’, ’long’

DEFAULT SAVE PATH The default location in the file chooser when sav-
ing data

DISCRIM TMASK

FILENAME PATH Path to the data file
FILENAME PATTERN String with the filename pattern. Example:

’volume%02d’
FILENAME STARTINDEX Start index for use with the FILE-

NAME PATTERN
FILENAME WORKSPACE The name of the workspace loaded in (lyn-

gby workspace.mat is the default)
FILE READING TYPE 1=Analyze/Vapet (obsolete), 2=Lyngby (i.e.

custom), 3=Raw, 4=Analyze, 5=Analyze4D,
6=SDT (Stimulate), 7=VAPET4D

LOGFILENAME File name to write log information into - not
currently used

NUM RUNS Number of runs in the data matrix
NUM SCANS Number of scans in the data matrix
NUM SUBJECTS Number of subjects in data - not used at the

moment
NUM VOXELS Number of voxels in the datamatrix. 3x1 vector
ORDERING The file order of the voxels:’xyz’, ’yxz’, etc. . .
ORIENTATION How the data is mirrored to display it the correct

way around [’lr’, ’pa’, ’is’]
ORIGIN Centre voxel
ROI VOXELS Number of voxels in the (rectangular) ROI. 3x1

vector
TIME MASK Mask in time to discard unwanted scans
UI ON If UI ON=1 then the program is run from the

GUI interface, if 0 then text based (not up-to-
date)

VOXELSIZE Voxelsize
VOXEL MASK Spatial mask, e.g. to remove non-brain voxels

Table 2.3: Global variables

2.7 Writing Scripts to Run Lyngby Automatically

The functions in Lyngby do not need to be run from the GUI and can easily be run from the
commandline, although the structure and ordering in which everything is done is not as obvious.
This is the advantage of using the GUI. But the commandline approach does have an advantage
also, and that is the ability to write and run “scripts”, equivalent to batch files. This means
you can load your datafiles, perform the pre-processing, analyse and model the data and do any
post-processing, all without any user intervention. Obviously this allows you to set-up a whole
selection of jobs running overnight on different data, using different modelling parameters, and

c©Lars Kai Hansen et al 1997



Section 2.7 Writing Scripts to Run Lyngby Automatically 38

Name Description

X The original datamatrix
XN The preprocessed datamatrix
RUN The original run series
PARADIGM The original paradigm series
P The paradigm variable after the time mask has been ap-

plied
R The run variable after the time mask has been applied
PN The preprocessed paradigm (zero-mean)
X MEAN Mean of each scan
X STD Standard deviation of each scan
DELAY * The results from algorithms that include a measurement

of temporal shift between the paradigm and the voxel’s
response

RESULT * The main results from the different algorithms. See below
for examples.

STRENGTH * The results from algorithms that include a measurement
of the strength of the voxel’s response

RESULT FIR The result from the FIR analysis
RESULT BAT The result from the Ardekani t-test
RESULT BAF The result from the Ardekani f-test
RESULT LM ASSIGN The assignment labels from the K-means analysis
RESULT KM CENTER The cluster center in K-means analysis
RESULT CC The result from the Cross-correlation analysis
RESULT TS The result from the ordinary t-test (t-measure)
TS PROBMAP The result from the ordinary t-test (probability map)
RESULT LZ The result from the Lange-Zeger analysis
KS PROBMAP The result from the Kolmogorov Smirnov test (probability

map)
RESULT KS The result from the Kolmogorov Smirnov test analysis

Table 2.4: Some Examples of the Global GUI variables

then look at the results the next morning.
It is very straightforward to write scripts for Lyngby, although it will be easier once you are

familiar with using the GUI. You will then know the order in which the data is processed and
the range of possible choices (e.g. the different pre-processing options) and algorithms available.
A full list of all the functions within the Lyngby toolbox and their purpose is given in Table B.1
of Appendix B. In addition, you may want to have a look at the Lyngbywebsite, where there is
ahyperlinked index of all the toolbox files, giving details of its purpose and its interdependencies
with the other files.

When using the commandline, you must have a data init.m file to specify the initial data
parameters, as well as the data run.m, data paradigm.m and data readdata.m files. These are
set up in exactly the same way as would be required when using the GUI (see Section 2.4.2 for
details and examples).

For example, for a particular dataset, the initialisation and conversion files would be as
shown below:
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The data init.m file:

% data_init.m

function data_init

lyngby_global

NUM_VOXELS = [24 12 1];

NUM_SCANS = 384;

FILE_READING_TYPE = 2;

DISCRIM_TMASK = lyngby_index2tmask(...

lyngby_dropedge(TIME_MASK*lyngby_paradigm, 4, 4), ...

length(TIME_MASK*lyngby_paradigm));

The data paradigm.m file:

% data_paradigm.m

function P = data_paradigm

P = kron(ones(8,1), [zeros(12,1) ; ones(24,1) ; zeros(12,1)]);

The data run.m file:

% data_run.m

function R = data_run

R = kron( (1:8)’, ones(48,1));

The data readdata.m file:

% data_readdata.m

function V = data_readdata(index)

fid = fopen(’../data/simfmri.1’, ’r’);

X = fscanf(fid, ’%f’);

fclose(fid);

offset = (index-1)*288;

V = X( (1:288)+offset );

Then the main script file may look something like this:

% session_load Load data

lyngby_init

lyngby_ui_global

% Set up X

data_readx

% Set up design
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P = lyngby_paradigm;

R = lyngby_run;

% session_prep Compute data pre-processing

lyngby_ui_global

% Preprocessing

lyngby_prep_global

PREP_CENTERING = 1;

PREP_RUNCENTERING = 0;

PREP_IMAGECENTERING = 0;

PREP_NORMALIZATION = 0;

[XN, X_MEAN, X_STD, X_SEQMEAN, X_SEQSTD] = ...

lyngby_normalize(X, ...

’Centering’, PREP_CENTERING, ...

’RunCentering’, PREP_RUNCENTERING, ...

’ImageCentering’, PREP_IMAGECENTERING, ...

’Normalization’, PREP_NORMALIZATION);

PN = P - mean(P);

% session_lz Compute Lange-Zeger

lyngby_lzit_global

LZ2_THETA1INIT = 10;

LZ2_THETA2INIT = 2;

LZ2_STEPSIZE = 1;

LZ2_MINCHANGE = 1e-4;

LZ2_ITERATIONS = 90;

RESULT_LZIT = lyngby_lzit_main(PN, XN, ...

’Iterations’,LZ2_ITERATIONS,...

’MinChange’,LZ2_MINCHANGE,...

’StepSize’,LZ2_STEPSIZE,...

’Theta1Init’,LZ2_THETA1INIT,...

’Theta2Init’,LZ2_THETA2INIT...

);

RESULT = RESULT_LZIT;

STRENGTH_LZIT = RESULT_LZIT(1,:);

DELAY_LZIT = RESULT_LZIT(2,:) ./ RESULT_LZIT(3,:);

% session_save_lz Save LZ results

[y, m, d] = datevec(now);

s = sprintf(’%d-%02d-%02d’, y, m, d’);

t = pwd;
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t = t(length(t));

eval(sprintf(’save RESULT_LZ_BETA_%s_%s.txt STRENGTH_LZIT -ASCII’, s, ...

t));

eval(sprintf(’save RESULT_LZ_DELAY_%s_%s.txt DELAY_LZIT -ASCII’, s, ...

t));

2.8 Adding New Algorithms to the Toolbox

The Lyngby toolbox is meant as a development platform as well as an analysis one, and as such
we encourage you to add your own functions and models. If you have any you think would
benefit other researchers we would be happy consider it for the next release of the toolbox.

The process of adding your own functions is straightforward and you need only follow the
steps outlined below.

1. In lyngby_ui_main.m : Add the new main algorithm ’.m’ file to the list in the header
under

(See also:)

2. Add the variables returned from the new method to the ones in lyngby_ui_global.m -
often RESULT_{NAME} where {NAME} is the identifier for the new method. Both in the help
text and the global settings.

3. In lyngby_ui_main.m : Add a line under the line

% Globals

with the name lyngby_{NAME}_global

4. Add the file lyngby_{NAME}_global.m where the control variables of the new algorithm
are made global. (See lyngby_fir_global.m as an example). The control variables should
be named {NAME}_{SOMETHING}, where {SOMETHING} describes the variable contents.

5. In lyngby_ui_main.m under the line

% Method Identifiers

add an identifier for the new method am_{NAME} = {NEXT#} where {NEXT#} is the next
available number. (It is ok to insert and shift the remaining.)

6. In lyngby_ui_main.m under the line

% Initialize

add the line

lyngby_{NAME}_init;
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7. Add the file lyngby_{NAME}_init.m where the variables used in
lyngby_{NAME}_global.m are initialized to suitable values.

8. In lyngby_ui_main.m add a new line under the line

% Analysis Buttons

which should look like

’(-) {EXPLAINING TEXT}|’,...

Note that the order should match the selection from 5:

9. In lyngby_ui_main.m locate the line

elseif command == 500

and add two lines

elseif AnalysisMethod == am{NAME}

lyngby_log(’{EXPLAINING TEXT} chosen’);

10. Locate the line

elseif command == 501

add two lines

elseif AnalysisMethod == am{NAME}

lyngby_ui_{NAME}_init;

11. Add the file lyngby_ui_{NAME}_init.m. Here a GUI interface to setting the parameters
from 7: is made. Look at the other lyngby_ui_{OTHERNAME}_init.m for examples.

12. In lyngby_ui_main.m locate the line

% The actual analysis

Add a new block for the new algorithm, which maybe look like

elseif AnalysisMethod == am{NAME}

RESULT_{NAME} = lyngby_{NAME}_test(XN, PN, R, ...

’Something’, {NAME}_{SOMETHING});

RESULT = RESULT_{NAME};

XN is the normalized data matrix at this point, PN is the activation function (with mean
subtracted), and R is the run structure.

13. In lyngby_ui_main.m locate the line

elseif command == 503

Add a new block for visualization of the new method

14. Add the file lyngby_{NAME}_test.m which returns the result of the method. The file
lyngby_ui_main.m will turn the RESULT into activation strength, delay etc.
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Chapter 3

Data Formats, Masking, and

Pre-Processing

$Revision: 1.11 $

$Date: 2002/08/14 14:21:24 $

3.1 Introduction

These next three chapters are reference-texts, covering the different stages of data-input, analysis
and post-processing in more detail than in the previous “user manual”.

This chapter deals with the issues of data formats and preparation before the analysis stage.
The next chapter describes the different analysis algorithms available within the toolbox, whilst
the one after it covers the post-processing, or meta-analysis, algorithms.

Each of the modelling algorithms needs to do several processing steps. Some of them are
common and have been pulled into a common pre-processing step. The most common step
is the substraction of the mean for each of the time series. Furthermore it is becoming more
and more clear that the pre-processing steps are very important; examples could be motion
correction and correction for field inhomogeneity. Currently we have chosen to concentrate our
efforts into the modelling of the data, and to only supply basic pre-processing steps and leave
other preprocessing to other packages. However, we are open to contributions.

3.2 Volume file formats

Given that many have designed their own “best” file format, we cannot support all formats, and
currently the toolbox can read fMRI data in the formats show in table 3.1

The Custom option allows Lyngby to read any data format with a little help from the user.
The interface/conversion files that are required to help Lyngby understand the user’s own data
are very simple and straightforward to write and should only take a few minutes to construct.
Full details and examples on how to write these files are given in the previous chapter — see
section 2.4.2.

If your format cannot be read automatically (and you don’t want to use the custom option)
tell us about the format and maybe it can be incorporated in the toolbox soon. Currently we
would like to support AnalyzeSPM (slightly changed Analyze format), the VoxelView format,
and the XPrime format.
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Name Files Extension Usage

Analyze 2 hdr, img Widely used: SPM, AIR and ANALYZE
Analyze 4D 2 hdr, img All the time frames are in a single file
SDT 2 sdt, spr Stimulate format
Vapet 1 — Used at the Minneapolis Veterans Medical

Center, PET Center
RAW 1 — Support for raw binary data with several

options of orientation and type
Custom 1 — Support for other data where the user

writes a small interface file that returns the
volume at a given time step

Table 3.1: Data formats read by Lyngby.

3.3 Masking

The core of this toolbox lies in the composition of a datamatrix (named X in our Matlab code),
where a certain row is the volume at that particular time, and a certain column corresponds to
the time series for that particular voxel. This is shown in figure 3.1.

time

voxel number

The data matrix X

Figure 3.1: The data matrix X.

The toolbox has the potential to mask in both time and space, although currently the user
only has a GUI interface with which to specify a box region.

A mask in time, TTIME MASK (the variable TIME MASK in the code) is multiplied from the left of
the full data matrix. And likewise a mask in space, SVOXEL MASK (the variable VOXEL MASK in the
code), is multiplied from the right. Before the VOXEL MASK is applied, a further masking step can
be made: A box region can be specified with the limits defined in the variable ROI VOXELS.

X = TTIME MASK Xfull SROI VOXELS SVOXEL MASK (3.1)

We use sparse matrices for the TIME MASK and the VOXEL MASK, so these extra matrices only
require a modest amount of memory. Note that if all the data is to be used then the two masks
can be set to 1.

3.4 Preprocessing steps

3.4.1 Centering

Currently we have support for the following steps for removal of mean in various ways:

• Subtraction of mean from each voxel, i.e., the mean of each time series is forced to zero.
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• Subtraction of mean from each scan, i.e., the mean of each volume at a certain time step
is forced to zero.

• Subtraction of mean from each run, i.e., the mean of each run in each of the time series is
forced to zero. Note that this makes the first substraction meaningless.

3.4.2 Variance Normalization

Algorithms such as neural networks in general use data normalization to unit variance in order
to improve the stability of the algorithms. Note that this option might lead to unreliable results
in other algorithms.
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Chapter 4

Analysis — The Modeling

Algorithms

$Revision: 1.46 $

$Date: 2004/01/21 10:54:40 $

4.1 Cross-correlation

The “Cross correlation” measures the temporal cross correlation between the paradigm and the
measured data.

4.1.1 Our implementation

In the toolbox the paradigm can be cross-correlated with the time series. This produce a cross-
correlation function, i.e. a function that is approximately twice as long. In general the cross-
correlation function is only interesting around lag zero, and the user can decide how many lags
that should be computed and stored. Note that people often only compute the cross-correlation
for lag zero, which can lead to unreliable results in regions with long delays, so we maintain the
temporal information as well.

In the display of the cross-correlation function we have enabled the display of the maximal
value of the cross-correlation function as well as the delay defined as the position of the maximal
value and the energy of the cross-correlation function.

4.2 FIR filter

The finite impulse response (FIR) filter is the same as a regression model or an ARX(0,n) model
(that is an autoregressive model with exogenous input). The voxel denoted by u is regarded
as a linear system with the input x (the paradigm), the filter (transformation function) to be
estimated h, and the output (fMRI data) y which is disturbed by additive noise.

y(u, t) =

L−1
∑

τ=0

h(u, t − τ)x(u, τ) + εu(t) (4.1)

The algorithm fits the parameters h(τ) so that the error is the least square solution. This

46



Section 4.2 FIR filter 47

assumes that the noise εu is gaussian distributed. In that case the model ŷ is

ŷ(u, t) =

L−1
∑

τ=0

h(u, t − τ)x(u, τ) (4.2)

or in matrix vector notation for each value of u:

Ŷ = X h (4.3)

where Ŷ = [ŷ(u, 0), ŷ(u, 1), ..., ŷ(u,N−1)] and X contains the time-shifted values of the paradigm
where each row of the matrix has L samples.

From the assumption that the error is Gaussian, the minimization of the error function

Eu =
∑

u

(ŷ − y)2 (4.4)

can be identified directly through the so-called “normal equation”:

XT Y = XT X h ⇒ (4.5)

h = (XT X)−1XT Y (4.6)

If the model is too complex — if the model is allowed to use too many filter coefficients —
the model will not only fit to the signal within the data but also to the noise.

In the toolbox two ways of estimating the inverse matrix have been implemented for handling
the often ill-posed inversion problem.

The first method for reducing the model complexity without reducing the lag size is to
introduce regularization. One regularization technique is the ridge regression controlled by a
single parameter κridge. Note that the neural network community calls this weight decay and
that this technique biases the filter coefficients towards zero.

h = (XT X + κridgeI)
−1XT Y (4.7)

where I is the unity matrix.
The other estimation technique computes the singular value decomposition (SVD) of the

matrix to invert (In this case the U and V will be equal, so that cheaper and equivalent
numerical methods can be used):

XT X = UΣVT (4.8)

hence
(XT X)−1 ≈ VΣ+UT (4.9)

where a threshold κSV D controls how many singular values
enter the pseudo inverse.

σ+
i,j =

{

σ−1
i,i if σi,i ≥ κSV D and i = j

0 if σi,i < κSV D or i 6= j
(4.10)

Note that this inversion does not depend on the voxel position u, hence a transformation
matrix T = (XT X)−1XT can be generated once and then the filter for each value of u can be
generated from the linear transform

hu = T Yu (4.11)

This type of regularization is the same as principal component regression (Jackson, 1991).
Note that for the FIR filter with a symmetric paradigm (symmetric with respect to rise and

fall flange) the response will also be symmetric. This means that if you have, for example, an
on/off square wave paradigm, then a positive spike at the rise flank will force a negative spike
at the fall flank.
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4.2.1 Estimation of the Activation strength in the FIR filter

Using the estimated FIR filter, an activation strength can be defined as the standard deviation
of the data estimate, normalized by the standard deviation of the paradigm.

A(u) =

√

V (ŷ(u, t))

V (h)
(4.12)

where V is a variance estimator.

4.2.2 Estimation of the delay from the FIR Filter

Dealing with a FIR filter makes it easy to derive several descriptors. One is the group delay,
e.g., (Oppenheim and Schafer, 1989, pp. 205) defined as,

τFIR(ω) = −
∂

∂ω
arg H(ω) =

∂Hr(ω)
∂ω Hi(ω) − ∂Hi(ω)

∂ω Hr(ω)

|H(ω)|2
(4.13)

where index r and i denote the real and the imaginary part respectively.

H(ω) =
N

∑

n=0

h(n)e−jωn =
N

∑

n=0

h(n)(cos(ωn) − j sin(ωn)) (4.14)

∂H(ω)

∂ω
= −

N
∑

n=0

nh(n)e−jωn =

N
∑

n=0

nh(n)(− sin(ωn) − j cos(ωn)) (4.15)

which means that the delay has a frequency dependence, and given that the paradigm functions
often are dominated by the low frequencies, a simple approximation is to neglect the frequency
dependence and only consider the delay for ω = 0;

τFIR = −
∂H
∂ω

H(ω)

∣

∣

∣

∣

∣

ω=0

=

∑

t h(u, t)
∑

h(u, t)
(4.16)

For some combinations of filter coefficients the denominator of equation 4.16 can be very
small which will influence the delay estimate dramatically. This problem can be explained from
the fact that equation 4.16 is based on a low frequency dominance and in case of a very high
noise level the assumption is in general not valid, and the estimate should rather be disregarded.

A simple way to check whether the assumptions is fulfilled is to evaluate

∣

∣

∣

∑

h(u, t)
∣

∣

∣
> γ

∑

|h(u, t)| (4.17)

where γ should at least be larger than 0.5. More details can be found in (Nielsen et al., 1997).

4.2.3 Our Implementation

Currently the user has to choose to parameters depending on whether the inversion type is done
using equation 4.9 or equation 4.7.

• The order of the filter can be varied.

• The regularization parameter
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– For SVD: The lowest level of singular values accepted κSV D.

– For ridge regression: the weight decay parameter κRidge

The order of the filter should depend on the number of scans in the time series and the
magnitude of the regularization. With a too high order the model will mainly fit the noise in
the data, — with a too small order it will not be able to fit the data.

Currently, although a suitable order must be chosen manually, this does not seem to degrade
the results significantly. If an automatic determination of the order is required, then the more
time consuming algorithm described in section 4.3 should be used.

4.2.4 References

The standard linear regression we employ here should be described in most books about time
series analysis. The ridge technique in regression was first applied by (Hoerl and Kennard,
1970b) (Hoerl and Kennard, 1970a). For an annotated bibliography see (Alldredge and Gilb,
1976). Ridge-regresion is a form of Tikhonov regularization for linear models (Tikhonov, 1963)
(Tikhonov and Arsenin, 1977) (Hansen, 1996). Principal component regression is described in
(Jackson, 1991).

The application of the FIR filter on fMRI is described in (Goutte et al., 2000) and shortly
in (Nielsen et al., 1997). Another type of linear time series analysis on fMRI is described in
(Locascio et al., 1997).

4.3 Exhaustive FIR filter

In the FIR filter method (section 4.2) the user has to make the choice about the length of the
filter. In principle the filter length is a parameter that can be varied as a function of the voxel
index. In voxels where the signal is complex and there is a high signal to noise ratio many filter
coefficients may be needed. On the other hand, in voxels where only noise is observed none of
the estimated filter coefficients are stable, and the best stable signal estimator is a constant of
value zero, i.e. zero taps in the filter.

In the Exhaustive FIR filter, the idea is to find the optimal filter length in each voxel. The
optimal model is chosen by using the mean generalization error as a measure based on a training
and test scheme. (this scheme is especially used in artificial neural networks, see section 4.9).

The basic idea is that each run in a time series is considered as an independent time series.
Using resampling without replacement with that prior it is possible create a new dataset that
gives good statistics in the generalization error.

The mean generalization error for a given model is defined as

Egen(u) =
1

NT

T
∑

t=1

N
∑

i=1

(Yi(u, t) − Yestimat,i(u, t))2 (4.18)

where i denotes the resample index and t is the time.
The new dataset created with the resampling is split into a training and a test set. The ratio

between the size of these two datasets is used in the algorithm as a variable.
The Exhaustive FIR filter uses a varying filter length combined with the SVD regularization.

This means that for each filter length there is a “filter length” of singular values that can enter
the pseudo inverse. So for each filter length there is a model using the largest singular value,
and another model using the two largest singular values etc. The number of models is now given
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by 1+ 2+ ...+ Maxorder = Maxorder(Maxorder+1)
2 , which can lead to several hundred different

models being tested.
The job is now to calculate the generalization error (test error) which depends of the dif-

ferent models and the split ratio (for splitting the dataset). The model with the smallest mean
generalization error is chosen as the optimal model for the voxel.

When the optimal model for each voxel has been estimated, the activation strength can be
found from equation 4.12. Note also that the number of filter coefficients will vary across the
volume, and this might also be of interest to investigators.

4.3.1 Our Implementation

All exhaustive FIR functions have an infix of efir . The two parameters that can be set are the
“filter length” and the “reshuffle” amount. The reshuffle amount determines how many times
the data set resampling is done.

4.3.2 References

We can not make any direct references in connection with the exhaustive FIR model. Consult
section 4.2.4 for reference in relation to the architecture of the model. Generalization and
train/test set are terminology from the artificial neural network society, and reference to that
can be found in section 4.9.2.

4.4 The Ardekani t-test

In (Ardekani and Kanno, 1998) another type of t-test is described. The method is rather different
than the one described in section 4.14 and it is actually closer to the cross-correlation method.

The basic idea is to project each of the time-series onto a subspace driven by the paradigm
function. The t-statistics are obtained by dividing by the estimate of the standard deviation
found from the part of the energy in the time-series that is not explained by the paradigm.

4.4.1 Our Implementation

Our implementation follows the paper rather closely and as suggested in the paper we have
implemented a delay option, so that the paradigm can be delayed a number of samples compared
to the time-series in order to adapt to a possible delay in the data.

4.4.2 References

Babak Ardekani’s t-test is described in (Ardekani and Kanno, 1998).

4.5 The Ardekani F-test

In (Ardekani and Kanno, 1998) an F-test has been presented to identify activated regions. The
strategy has some common ideas with the Ardekani t-test (described in the same article).

The basic idea is to project each of the time-series onto a subspace driven by a truncated
Fourier expansion of the data. The power of the data in the subspace driven by the expansion is
divided by the power of the data that lies outside of the Fourier subspace. Thus an F-statistic
is obtained without using requiring any knowledge of the paradigm.
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In (Ardekani et al., 1999) the F-test is extended with the modeling of a nuisance subspace:
A subspace orthogonal to the subspace spanned by the Fourier expansion is found and this
subspace is then extracted from the original signal. The dimension of the subspace is found by
using Akaike’s information criterion.

4.5.1 Our Implementation

Functions belonging to the (Barbak) Ardekani F-test have the infix baf , and function for the
Ardekani F-test with nuisance have the infix baf2 . Our implementation follows the paper
rather closely. It is also intended to implement alternatives to the Fourier expansion.

4.5.2 References

Babak Ardekani’s F-test is described in (Ardekani and Kanno, 1998). The F-test with nuisance
parameters extension is described in (Ardekani et al., 1999).

4.6 K-means Clustering

The K-means algorithm is a simple non-parametric clustering method.
The idea behind K-means clustering here is to classify the individual voxel in the volume

with respect to their time series. This is indicated in figure 4.1. After the clustering the
individual clusters may be analyzed further. The method is currently sensitive to the initial
cluster positions and the algorithm converges fast.

Figure 4.1: The time-series are each assigned to the cluster center with the best match.

In the K-means algorithm, K cluster centers have to be chosen (The dimension of the space
is equal to the size of the time series length). Then the distance from each voxel to each cluster
center is calculated. Each voxel is then assigned to the cluster which is the minimum distance
away, as shown in figure 4.2; lastly (before iterating) the new cluster center is calculated as the
mean of all the voxels assigned to that cluster.

1. Initialize K cluster centers C
(0)
k of same dimensionality as the time series, iteration i = 0.

2. Assign each data vector xj to the cluster with the nearest center C
(i)
k . Currently we use

the ordinary Euclidean distance metric ‖C
(i)
k − xj‖.
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closest cluster center
Data vectors are assigned

Figure 4.2: In a high dimensional space the data vectors are clustered to the nearest cluster
center.

3. Set new cluster centers C
(i+1)
k to the center of gravity of each cluster:

C
(i+1)
k = E{xj}

xj∈C
(i)
k

(4.19)

This formula can also be modified to use the median and/or to include an inertia term.

4. Goto step 2 until convergence.

4.6.1 Our implementation

Instead of using the time series directly as the input to the K-means algorithm, we have made it
possible to use the cross-correlation of the fMRI time series and the paradigm. This has a major
impact of the results of K-means algorithm, which will make it far easier to find the activated
voxels (Toft et al., 1997).

When clustering on the cross-correlation function or the raw time series, the final clusters
centers will be affected by the amplitude level and a possible lag. For instance, if two spatially
separated regions have similar response strength but different delays, then they will be clustered
into two different clusters according to their delay values.

The toolbox enables clustering using K-means or K-median (K-mediod). The range of the
variables can be “standardized” (normalized) to unit variance or standardized according to the
min-max-range. The cluster centers can be initialized randomly (In (Toft et al., 1997) it has
been found that this strategy works rather well for the cross-correlation clustering) or according
to the correlation with the paradigm function. The variable to cluster on can be set to the raw
time series or the cross-correlation function.

It is implemented in the lyngby km main matlab function.

4.6.2 References

The K-means clustering algorithm was first described in (MacQueen, 1967). Other “non-neuro-
imaging” descriptions of this algorithm are available in (Ripley, 1996, section 9.3), (Sonka et al.,
1993, section 7.2.4) or (Hartigan and Wong, 1979). Our approach in connection with functional
neuroimaging is published in (Goutte et al., 1999) and described shortly in (Goutte et al., 1998;
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Toft et al., 1997). In (Liptrot et al., 2003) it was applied to extract the time-activity curve from
dynamic PET scans in connection with the 5HT2A-receptor ligand.

Different kinds of clustering methods have been applied in functional neuroimaging. Some
of the references are collected at http://www.inrialpes.fr/is2/people/goutte/fmriclusterefs.html

4.7 Kolmogorov-Smirnov test

Most standard text books in statistics show the Kolmogorov Smirnov test, where the maximal
difference between two histograms is used as a measure of match between the two signals. Hence
a very small difference indicates that the two signals are nearly identical. Note that the method
only uses the histograms, hence the temporal placement is not used here.

4.7.1 Our implementation

As mentioned in section 1.1.1, each of the time series is split into an activated part and a baseline
part, determined from the

paradigm function. In order to compensate somewhat for the hemodynamic response time,
we have made it possible to drop a number of samples after each transition from the baseline to
an activated state and vice versa.

The Kolmogorov Smirnov test requires the histograms, hence some sorting of signal values is
needed. This implies that the function might be slow if the fMRI data has many time elements.

4.7.2 References

A critique of the Kolmogorov-Smrnov test used for fMRI has been made in (Aguirre et al., 1998).

4.8 Lange-Zeger

The Lange-Zeger model (Lange and Zeger, 1997) fits a three parameter gamma density function
hLZ as the convolution filter:

hLZ(u, t) = β(u)θ2,u(θ2,ut)θ1,u−1 exp(−θ2,ut)/Γ(θ1,u) (4.20)

The gamma density function is convolved with the paradigm to give the voxel value.

y(u, t) =
∑

τ

h(u, t − τ)x(u, τ) (4.21)

Note that the Lange-Zeger kernel is normalized so that the β is the power amplitude of
the hemodynamic response. The dependence on the two parameters can be seen from fig-
ures 4.3 and 4.4.

4.8.1 Estimation of the delay from the Lange Zeger model

The Lange Zeger model is in principle a constrained version of the FIR model, hence a delay
can be estimated just as it was in subsection 4.2.2.

In the Lange Zeger case, the spectrum has a rather simple expression

HLZ(ω) =

(

1 +
jω

θ2,u

)

−θ1,u

(4.22)
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Figure 4.3: The gamma density kernel as a function of the time t for β = 1 and θ2 = 1 for a set
of θ1.
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Figure 4.4: The gamma density kernel as a function of the time t for β = 1 and θ1 = 5 for a set
of θ2.

hence the delay for very low frequencies (ω = 0) ends up in a very simple form

τLZ(u) =
θ1,u

θ2,u
(4.23)
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4.8.2 Our implementation

Compared to the original algorithm, our algorithm does not perform any noise estimates as
suggested in (Lange and Zeger, 1997). Furthermore we have experienced that the iterative way
of estimating the model parameters suggested in (Lange and Zeger, 1997) is often unstable,
which cannot be explained with the lack of a better noise model. In certain situations the noise
makes the iterative algorithm diverge, resulting in extreme values of the model parameters.

In our implementation, the original iterative algorithm is available (though currently not in
the GUI) as well as a version where the (θ1, θ2) space is grid searched and the value of β is
determined directly in every grid point. Furthermore is it possible in the grid search version to
use regularization on the value of β penalizing the extreme values.

It should also be mentioned that the Lange-Zeger kernel shown in equation 4.20 is a con-
tinuous function of time t, which needs to be sampled in time as indicated in equation 4.21.
This implies that the number of samples taken from equation 4.20 should at least include the
maximum point of the kernel, which is found at

t = arg max hLZ =
θ1,u − 1

θ2,u
(4.24)

4.9 Neural networks

By neural networks we mean artificial neural network. They have little to do with biologic
neural network, — we are not trying to simulate the biological neural circuit. The name “neural
network” has arisen because the first versions of these mathematical models was highly inspired
by the biological neural circuits. We use neural networks solely as general purpose non-linear
statistical models. In some sense the neural network is a non-linear generalization of the linear
model (see the FIR model in section 4.2).

The main type of neural network we employ is the two-layer feed-forward neural network. It
consists of two layers of weights (the neural network name for the model parameters) and two
(or three) layers of “neurons” (or units). The first layer of neurons is not usually counted as a
layer: It is the input to the neural network. The second layer is the hidden layer. The neurons in
this layer have an activation function, and it is necessary for the non-linearity of neural network
that this activation function is non-linear. The final layer is the output layer. These will also
have an activation function. This might be linear or non-linear.

With x as the input, y as the output, with v as the first layer of weights (the input-to-hidden
weights) and w as the second (the hidden-to-output weights) and with i, h, o and p as the indices
for the input, hidden and output neurons, and the examples, respectively, we get the following
neural network function:

yp
o = go

(

nh
∑

h

whog
h

(

ni
∑

i

vihxp
i + vh0

)

+ wo0

)

(4.25)

Here, go and gh are the activation functions and vh0 and wo0 are the biases.
The activation function is usually of the sigmoidal type and we use the hyperbolic tangent.

In connection with classification the output activation function is this hyperbolic tangent to get
a restricted output that can be interpreted as a probability. In connection with regression the
output activation function is linear.

The neural network is optimized to predict to a target, i.e. to make the (numerical) difference
between a desired target t and the computed output of the neural network y as small as possible.
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As a measure for the discrepancy (how well we have optimized the network) we can use
different kinds of cost functions. In regression we usually strive for uniformly minimum variance,
thus we can use the mean square error for the measure:

Eq =

np
∑

p

no
∑

o

(tpo − yp
o)

2 (4.26)

In the case of two-class classification a more appropriate measure is the two-class (cross-
)entropy error:

Ee =

np
∑

p

no
∑

o

[

1

2
(1 + tpo) ln

1 + tpo
1 + yp

o
+

1

2
(1 − tpo) ln

1 − tpo
1 − yp

o

]

(4.27)

The cross-entropic errorfunction of equation 4.27 requires the target to be t = 1 or t = −1.
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Figure 4.5: Comparison of the square and the cross-entropic errorfunction. The target is t = 1.
The cross-entropic errorfunction is penalizing large deviation from the target value much more
than the square errorfunction.

Another type of errorfunction is the cross-entropy for multiple classes (Bishop, 1995). We
use a so-called “c − 1” variation where the number of output neurons in the neural network is
one less than the number of classes (Andersen et al., 1997).

Ec = ln

(

1 +

no−1
∑

o

exp(φo)

)

−

no−1
∑

o

toφo (4.28)

This errorfunction is developed for a neural network with neural network function as follows.
The hidden layer neurons have a hyperbolic tangent as the activation function:

hp
h = tanh

(

ni
∑

h

vhix
p
i

)

+ vh0 (4.29)
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The second layer has linear activation functions:

φo =

nh
∑

h

wohhp
h + wh0 (4.30)

To be able to interprete the output as a probability we use a softmax layer:

yo =

{

exp(φo)
Pno

o′
exp(φo′)+1

, if o < no

1 −
∑no

o′ yo′ , if o = no

(4.31)

The neural network is optimized by adjusting the weights in an iterative scheme, either with
gradient or with Hessian based methods, see, e.g., (Ripley, 1996, appendix A.5). The term
“back-propagation” is usually used to denote gradient-based optimization.

4.9.1 Our implementation

All neural network functions have the prefix lyngby nn. In the present implementation there
are two types of neural networks: A regression type with least square fitting and a classification
type with a cross entropic cost function suitable for binomial distributions. The functions in
connection with the regression neural network have the prefix lyngby nn q where the “q” stands
for quadratic. The second group of functions has the prefix lyngby nn e where the “e” is for
entropic. Functions that are common do only have the prefix lyngby nn.

4.9.2 References

There are a number of good books for that introduce neural networks, e.g., Chris Bishop’s Neural
Networks for Pattern Recognition (Bishop, 1995) and Brian Ripley’s Pattern Recognition and
Neural Networks (Ripley, 1996). Others are (Haykin, 1994) and (Hertz et al., 1991).

The two-layer feed-forward neural network is described in several papers from our depart-
ment, — the first important one being (Svarer et al., 1993a), followed by (Hintz-Madsen et al.,
1995) (Hintz-Madsen et al., 1996a) (Hintz-Madsen et al., 1996b) and (Svarer et al., 1993b).

4.10 Neural network regression

The “Neural network regression” is a neural network generalization of the FIR model. For the
input to the neural network we use the paradigm, and the weights are adjusted to target the
output to the fMRI time series signal. One neural network is trained for every voxel.

The ability of the neural network to predict the fMRI time series is used
as a measure for the strength of the signal in a voxel: If this signal can be predicted from

the paradigm signal then the voxel is activated.

4.10.1 Our implementation

The functions that belong to the neural network regression analysis method have the prefix
lyngby nnr.

The optimization of a single neural network is usually a tedious affair and when one neural
network has to be optimized for every single voxel, the computational effort of this analysis
method is enormous.

The neural network regression analysis is currently under implementation, and it does not
provide any means for assuring that the neural network is generalizing well so it is presently
dangerous to use the neural network regression.
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4.10.2 References

To our knowledge using neural networks in connection with fMRI time series regression is not
described anywhere, yet. A first application was in a comparison between models (Lange et al.,
1996).

4.11 Neural network saliency

Contrary to the neural network regression analysis (section 4.10) the “Neural Network Saliency”
does not analyze the fMRI signal as time series. Rather, the neural network treats each scan as
an individual object that is used in a classification or regression, and the saliency map estimates
each voxel’s importance for this prediction.

Each scan is — after an SVD-projection or other linear transformation — used as the input
to the neural network. The state of the paradigm corresponding to the scan is used as the
target. The SVD-projection is usually necessary because the weight optimization problem will
be highly ill-posed if the number of parameters is not heavily reduced.

After the neural network has been optimized for best generalization the actual saliency
computation is performed. The saliency resembles the saliency from OBD (Le Cun et al., 1990),
but where the OBD-saliency is for the weights the saliency in connection with the saliency
map is for the variables, i.e. each individual voxel. The saliency describes the change in the
generalization error when a voxel is deleted. The method to derive the change in generalization
error is based on a Taylor expansion of the neural network costfunction and regarding the effect
of the small perturbation when deleting a weight. There are several levels of approximation
from the generalization error to the actual estimate.

Let the matrix B denote the linear transformation we apply to the voxel datamatrix X to
project it onto a subspace containing the data described by the subspace datamatrix X̃:

X̃ = XB (4.32)

The vectors x̃p from the subspace matrix X̃ are used as input to a two-layer feed-forward neural
network, see section 4.9. When the neural network is fully optimized to best generalization, the
full costfunction from the voxel to the output of the neural network is Taylor-expanded with
respect to the components in the linear transformation B. For an “entropic neural network” the
first order derivative and the diagonal approximation of the second order derivative yield :

∂Ce

∂bil
= −

np
∑

p

nh
∑

h

(tp − yp) woh

(

1 −
(

hp
h

)2
)

vhix
p
l (4.33)
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∂b2
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∑
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(

1 − (yp
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2
)

[

nh
∑

h

woh

(

1 −
(
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h

)2
)

vhi

]2
(

xp
l

)2
(4.34)

The symbols are: i = 1..ni is indicing over inputs to the neural network, i.e., the output of the
linear transformation and l = 1..nl indices over voxels. The rest of is the same as the symbols
of section 4.9. Entering the derivatives in the Taylor expansion yields:

δCe,l ≈

np
∑

p

nh
∑

h

ni
∑

i

(tp − yp) woh

(
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(
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h

)2
)
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p
l (4.35)
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Similar calculations can be performed for the costfunction to the “quadratic neural network”
Cq. Here the derivatives become:

∂Cq

∂bil
= −2

np
∑

p

no
∑

o

nh
∑

h

(tpo − yp
o) woh

(

1 −
(
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h

)2
)

vhix
p
l (4.36)

∂2Cq
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(4.37)

Substituting these derivatives into the Taylor expanded saliency yields:

δCq,l ≈ 2
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+
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4.11.1 Our implementation

The functions that are specific for the neural network saliency all have the infix nns . The
optimization of the neural network is performed with the functions calls nn .

4.11.2 References

The first description of the neural network saliency was in Mørch (Mørch et al., 1995) and
(Mørch et al., 1996). It has also been the subject of three master’s thesis within our depart-
ment, (Lundsager and Kristensen, 1996), (Mørch and Thomsen, 1994) and (Nielsen, 1996). The
method is still under development, i.e. the mathematical form of the saliency is not yet fully
justified.

4.12 The SCVA model: Strother Canonical Variate Analysis

The SCVA model is directly related to the SOP model (section 4.13: It uses the same designma-
trix, — equation 4.51). Using the same terminology as Mardia (Mardia et al., 1979) the analysis
method should not be called canonical variate analysis but canonical correlation analysis.

CVA together with SVD on a datamatrix with degenerate rank is ambiguous: The canonical
correlation coefficients will all be one, thus the canonical correlation vectors will have no unique
orientations. A technique to cope with this problem is canonical ridge, which is a variation of
ridge regression within canonical variate analysis. With the ridge regression parameters on the
highest level, the canonical ridge will become PLS (see section 4.13).

The ordinary canonical correlation analysis / canonical variate analysis is the singular value
decomposition of a (normalized) cross-correlation matrix:

(

GTG
)

−1/2
GTX∗

(

X∗TX∗

)

−1/2
= UΛVT (4.39)

Here X∗ is the SVD projection (see also the equivalent equation 4.53):

X∗ = XV∗T = U∗Λ∗ (4.40)
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The equality sign only holds if there are more variables than objects (more voxels than
scans).

V∗ is found through a normal singular value decomposition:

X = U∗Λ∗V∗T (4.41)

Ordinary canonical variate analysis can be extended to canonical ridge. Canonical ridge is
usually written as:

(

GTG + kGI
)

−1/2
GTX∗

(

X∗TX∗ + kXI
)

−1/2
= UΛVT (4.42)

A different way to write the canonical ridge equation is by using another form of scaling:

(

(1 − kG)GTG + kGI
)

−1/2
GTX∗

(

(1 − kX)X∗TX∗ + kXI
)

−1/2
= UΛVT (4.43)

This has the advantage that the ridge parameters kG and kX are morphing between ordinary
CVA and PLS via orthonormalized PLS.

kX kG

ordinary CVA 0 0
ordinary PLS 1 1

orthonormalized PLS 0 1

Equation 4.40 can be used to eliminate X∗:

(

(1 − kG)GTG + kGI
)

−1/2
GT X∗

(

(1 − kX)X∗TX∗ + kXI
)

−1/2
(4.44)

U∗Λ∗

(

(1 − kX) (U∗Λ∗)T U∗Λ∗ + kXI
)

−1/2
(4.45)

U∗Λ∗

(

(1 − kX)Λ∗TU∗TU∗Λ∗ + kXI
)

−1/2
(4.46)

U∗Λ∗

(

(1 − kX)Λ∗TΛ∗ + kXI
)

−1/2
(4.47)

If kX = 0, as in ordinary CVA, we will get a simpler equation:

(

(1 − kG)GTG + kGI
)

−1/2
GT U∗Λ∗

(

Λ∗TΛ∗

)

−1/2
(4.48)

U∗Λ∗Λ∗−1 (4.49)

U∗ (4.50)

U∗ is an orthonormal matrix: it is a matrix containing eigenvectors — eigensequences — of
the original datamatrix. Such a matrix does not contain any principal direction. All directions
are equally strong, i.e., the eigenvalues have the same magnitude. Multiplying with another
orthonormalized matrix (e.g., the designmatrix part of equation 4.50) will not bring up any new
principal direction. When there are no principal directions in the matrix, the eigenvectors —
eigenimages — cannot be said to represent anything but an arbitrary direction.
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4.12.1 Our implementation

The main function that implements the SCVA model is called lyngby scva main. Before the
datamatrix is singular value decomposed it is doublecentered. The actual canonical variate
analysis function is called lyngby cva.

The number of components (singular values) maintained in the final singular value decom-
position can be varied by the user. Usually only three or less components are significant. The
function will only return eigenvectors with eigenvalues that are different from “zero”, i.e. larger
than a tolerance set to account for numerical round-off errors.

In the present implementation it is only possible to do the analysis on a run basis, — not
within run (e.g. if you have a repeated stimulus function in a run), and not with longer periods
than a run. The run specification is used to make the designmatrix.

4.12.2 References

SVD and CVA is usually explained in most multivariate analysis textbooks, e.g., Mardia (Mar-
dia et al., 1979). An short overview of multivariate analyses is available in (Worsley et al.,
1997) or (Worsley, 1997). The special canonical ridge technique is described shortly in (Mardia
et al., 1979) which reference the original article (Vinod, 1976). Furthermore, the canonical ridge
analysis has a special case in PLS (see section 4.13).

The SCVA model with the special designmatrix (which we here call the Strother’s design-
matrix) was used in (Strother et al., 1996). CVA has also been used in (Friston et al., 1995a)
(Fletcher et al., 1996) and (Van Horn et al., 1996).

4.13 The SOP model: Strother Orthonormalized PLS

The SOP model consists of a preliminary SVD on the datamatrix, a orthonormalization of a
designmatrix, followed by a partial least square analysis (PLS) between the SVD’ed datamatrix
and the orthonormalized designmatrix. The outcome of this analysis is eigenimages, eigenvalues
and the corresponding eigensequences are represent a dependency between the datamatrix and
the designmatrix.

The designmatrix is constructed in a special way as in (Strother et al., 1996) (where it was
used in connection with CVA — canonical variate analysis): All the scans that correspond to a
specific period in a run are given their own class, e.g. the designmatrix of a tiny study consisting
of 2 runs, each with four scans, will have the following structure:

G =

























1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

























(4.51)

It is of course important that the stimulus function (the paradigm) is the same for all runs.
We use partial least square, not as in introduced by McIntosh (McIntosh et al., 1996),

but in the orthonormalized version as suggested by Worsley (Worsley et al., 1997) where the
designmatrix is made invariant to linear transformations:
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(GTG)−1/2GTX∗ = UΛVT (4.52)

Here X∗ is the SVD projection:

X∗ = XV∗T (4.53)

And V∗ is the eigenimage of X:

X = U∗Λ∗V∗T (4.54)

The eigensequence U and the eigenimage of V of equation 4.52 are the interesting parts.
These are sorted according to descending eigenvalues. The first eigenimage and eigensequence
will (usually) have a direct relationship with the stimulus function.

4.13.1 Our implementation

The main function that implements the SOP model is called lyngby sop main. Before the
datamatrix is singular value decomposed it is doublecentered.

The number of components (singular values) maintained in the final singular value decom-
position can be varied by the user. Usually only three or less components are significant. The
function will only return eigenvectors with eigenvalues that are different from “zero”, i.e. larger
than a tolerance set to account for numerical round-off errors.

In the present implementation it is only possible to do the analysis on a run basis, — not
within a run (e.g. if you have a repeated stimulus function in a run), and not with longer periods
than a run. The run specification is used to make the designmatrix.

4.13.2 References

SVD and CVA is usually explained in most multivariate analysis textbooks, e.g. Mardia (Mardia
et al., 1979). For PLS, and orthonormalized PLS see the compact explanation in (Worsley et al.,
1997).

The SOP model — orthonormalized PLS combined with Strother’s designmatrix — is not
described anywhere else than here.

4.14 The Ordinary t-test

A common test in functional brain modeling is the t-test. For a given voxel the fMRI signal is
split into two sections: the activated part and a baseline part. The difference in means of the
two parts divided by a measure of the standard deviation for the two parts can be modeled by
the Student t-distribution. Hence a t-value (and/or a probability measure) for the two parts
being identical can be derived.

If a Gaussian assumption is made about the noise and it is independent and identically dis-
tributed then a P -value can be derived. The noise from fMRI BOLD is usually not independent
due to the hemodynamic response function and unmodelled confounds (autocorrelation in the
noise).
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Chapter 5

Post-Processing

$Revision: 1.8 $

$Date: 2002/08/14 12:44:33 $

This chapter covers the post-processing, or meta-analysis, stage within the toolbox. This is
where the results of the previous analysis stage are then themselves analysed in an effort to gain
more insight and robustness into the location of stimulations within functional images.

Currently, only one post processing algorithm has been implemented within the toolbox,
although more are in the pipeline. Any suggestions for expanding this section will also be
greatly received.

5.1 K-means Clustering on the Modelling Results

As described in section 4.6, the K-means clustering algorithm can be used to cluster from the
time series or the cross-correlation function. It can also be taken a step further and be used as
a post-processing tool.

Here, the result of the modelling method is fed into the K-means algorithm, regardless of
the number of parameters generated. For the Kolmogorov Smirnov test the clustering could be
made solely on the maximum test size, but with the FIR, for example, the whole filter could be
fed to the clustering algorithm. The K-means will then cluster the similar results into the same
bins, hence a label is generated for each of the voxels.

Note that this strategy can be questioned. If, for instance, a measure of activation and a
delay measure are generated for each voxel and fed into the post-processing K-means clustering
algorithms (“Meta K-Means”), then the magnitudes of the two parameters are very different,
which naturally will bias the results. In our implementation, the Matlab matrix fed into K-
means is called RESULT – this is generated by each of the modelling algorithms. If rescaling of
the rows of the RESULT matrix is required before this clustering, e.g. multiplication of the first
row by two, then, from the Matlab commandline, simply type:

>> global RESULT

>> RESULT(1,:) = 2*RESULT(1,:);

and then run the Meta K-means from the GUI as normal.
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Appendix A

Glossary

$Revision: 1.3 $

$Date: 2002/08/14 13:20:17 $

Table A.1: An Explanation of Lyngby Toolbox, fMRI and Related Terms
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Analysis The core stage of the investigation of functional images within the
toolbox, usually involving statistical algorithms acting upon a time
series of volumes. It comes directly after the pre-processing stage,
and before the post-processing one.

Axial slice See Transversal slice

Coronal slice A slice taken through a spatial volume. For the example of a person,
this would be like looking at them from the front. As such, the slice
index goes from posterior-anterior, or back-to-front.

Experiment A term used to describe the entire set from which results are de-
rived. An experiment can consist of several trials over different
days, each of which may have several runs.

Frame The spatial data (which could be 2D or 3D) available at each time-
point. Sometimes this is referred to as a scan or volume

A portion of a window in the Lyngby toolbox that contains buttons
that are related to each other. The main Lyngby window consists
of a separate frame for each of the processing stages.

Layers A term used in image processing to describe individual images put
together to form a single composite image viewed on common axes.
Part of each image will be transparent, allowing the images under-
neath to show through. It is rather akin to the building-up of a
cartoon frame from different “cells” - a character or item is drawn
on clear plastic. The majority of the layer is transparent allowing
anything underneath to show through. However, individual items
are not transparent and will obscure those directly underneath.

Pane A portion of a window in the Lyngby toolbox that contains buttons
that are related to each other. The Load New Data. . . window has
three panes for the data parameters, external influences and the
window control buttons.

Paradigm The “activation” signal, usually binary, that indicates when the
subject in a functional imaging experiment is performing some task.

Post-processing The stage that comes after the analysis of the data. It usually con-
sists of some form of analysis of the results sets, such as clustering
of all the result parameters.
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Pre-processing The stage after the data has been loaded into the toolbox, but
before the data analysis is started. It is an initialization stage,
used to get the data into the correct form for analysis by the usual
algorithms. It usually involves some form of mean-removal, nor-
malisation and/or removal of any unwanted scans.

Run The part of a time series of functional images where a certain task
is performed. A run usually consists of several cycles of a paradigm.
A single experiment can consist of several runs.

Sagittal slice A slice taken through a spatial volume. For the example of a person,
this would be like looking at them from the side. As such, the
slice index goes from left-to-right. Derived from the Latin word for
“arrow”, due to the direction of the cutting plane indicated by the
angle of an arrow striking a person from the front.

Slice A spatial volume one voxel thick i.e. a 2-D image. Usually refers to
an entire time-series (e.g. trial or run), and as such can be thought
of as a volume with time as the third dimension.

Transversal slice A slice taken through a spatial volume. For the example of a person,
this would be like looking at them from above. As such, the slice
index goes from inferior-superior, or bottom-to-top.

Trial (as in “single trial”) An experiment where only one task is performed, usually repeated
several times.

Volume A spatial volume of slices, usually spatially adjacent, with a time
reference. It can be thought of as a 4-D set, with three spatial
dimensions and one time dimension.

Voxel An element of a spatial 3-D volume, usually with a time reference.
It can be thought of as a 1-D time signal.
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Appendix B

Functions

$Revision: 1.3 $

$Date: 2002/08/14 13:32:23 $

B.1 Available Functions

This appendix provides a list of all the functions that are available within the Lyngby package.
This is meant for users who wish to write scripts to automatically process their data. Users of
the GUI will not normally need to access these functions directly.

Help on each function can be obtained from the Matlab command line by typing:

>> help <functionname>

For instance, to obtain help on the “lyngby getdata” function:

>> help lyngby_getdata

This will then return the following:

lyngby_getdata - Returns the masked datamatrix

function X = lyngby_getdata(ROI, voxelMask, timeMask);

Input: ROI (Optional) Region of Interests, 3x2 matrix

voxelMask (Optional) Sparse masking matrix

timeMask (Optional) Sparse masking matrix

Output: X The datamatrix

This function loads the datamatrix. The voxel is in the

horizontale direction (as columns) and the time is in the

vertical direction (as rows).

To save memory a ’Region of Interest’ can be specified,

and further a voxel or/and a time mask can be specified.

If the input arguments are missing TIME_MASK, VOXEL_MASK and

ROI_VOXELS are used.
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Which volumes is loaded is determined by global variables and

through calls to consecutive calls lyngby_getvolume (for each

volume).

See also LYNGBY, LYNGBY_GETVOLUME, LYNGBY_UI_LOADFILE.

$Id: function-appendix.tex,v 1.3 2002/08/14 13:32:23 fnielsen Exp $

The last line is the concurrent revision system (CVS) text. The first number indicates the
revision number and the date is the date of the last revision.
You can also use the helpwin Matlab command:

>> helpwin(’lyngby_getdata’)

A new help window should popup, and you can click between related functions listed at the
button next to “See also”.

The following table lists all the functions available. Not that the list is not complete. Some
will never need to be called directly as they will be called from other functions. All the functions
with a “lyngby ui ” stem are concerned with the GUI controls and as such are unlikely to be
called from a script.
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Table B.1: Functions Available in the Lyngby Toolbox

Function Name Purpose

General Lyngby Functions

lyngby lyngby start, Calls lyngby ui main
lyngby circle Draw a circle
lyngby classerr Classification error
lyngby corrlin Lin’s concordance correlation coefficient for reproducibility
lyngby cumperiodo Normalized cumulated periodogram
lyngby cva Canonical variate analysis (Canonical Ridge)
lyngby design n/a
lyngby dropedge Drop scans at the paradigm shifts
lyngby filter function for averaging volumes
lyngby frame Test function
lyngby global File defining global variables
lyngby histeq Perform histogram equalization
lyngby image Plot a slice
lyngby init Initialize the global variables
lyngby kronadd Kronecker add
lyngby log Log
lyngby meangeo Geometric mean
lyngby meanhl Hodges-Lehmann estimator
lyngby mod Modulus function
lyngby msvd main Perform meta svd comparison of selected models.
lyngby opls Orthonormalized PLS
lyngby plotmatch Plot paradigm, data and model

Statistical Distributions

lyngby cdf bin Binomial distribution function

lyngby cdf chi2 X2̂ cumulated distribution function
lyngby cdf gauss Gaussian (normal) distribution function
lyngby cdf t Student t distribution
lyngby cdf wilrank “Wilcoxon sign rank” distribution
lyngby fs cdf Returns the cumulative F disttribution
lyngby fs invcdf Returns the inverse of the cumulative F dist.

lyngby idf chi2 Invers X2̂ distribution function
lyngby idf t Inverted Student t distribution
lyngby pdf bin Binomial probability density function
lyngby pdf gauss Gaussian (normal) density function
lyngby pdf poisson Poisson probability density function

Data Loading and Writing

lyngby filefind Find the position of a string in a file
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lyngby read header Reads header information of a volume file
lyngby read volume Reads a volume from a recognized file
lyngby readanahdr Reads an ANALYZE header
lyngby readanavol Reads an ANALYZE img file
lyngby readvahdr4 Reads the header information in a 4 dimensional VAPET file
lyngby readvapethdr Reads the header information in a VAPET file
lyngby readvapetvol Reads a VAPET volume from a file
lyngby readvavol4 Reads a 4 dimensional VAPET structure from a file
lyngby readxpihdr Read header from EC flexible format
lyngby readxpivol Read data from EC flexible (Xprime) format
lyngby vmask2index Return Indices from voxel mask
lyngby write ana Write a volume to ANALYZE files
lyngby write sdt Write a volume/datamatrix to SDT/SPR file
lyngby write vapet Write a volume to VAPET file

Data Formatting and
Information

lyngby full2mask Convert indices from Full volume to ROI volume
lyngby getdata Returns the masked datamatrix
lyngby getinfo Get volume info from a file
lyngby getslice Extracts a slice from a volume
lyngby getvolume Get a volume from a file
lyngby index2tmask Return time mask from indices
lyngby index2vmask Return voxel from indices
lyngby mask2full Convert indices from ROI to Full volume
lyngby normalize Normalize in vertical direction of a datamatrix
lyngby normalize Normalize (Preprocess) a datamatrix
lyngby numscan Returns the masked number of scans volume
lyngby paradigm Returns the paradigm
lyngby prep global Global variables for preprocessing
lyngby prep init Initialize global variables for preprocessing
lyngby roi Returns the begin and end index of the volume
lyngby roi2vmask Transform ROI definition to masking matrix
lyngby run Returns the run specification
lyngby runinfo Number of runs and scans within runs
lyngby sliceindex Returns indices for a specified slice
lyngby swaporder Swap the xyz order in a volume
lyngby talaimg Returns Talairach brain plot in the style of SPM
lyngby tmask2index Return time mask from indices
lyngby tmp files Prints which temporary files was opened by lyngby
lyngby tmp getseq Get sequence from temporary file of data matrix
lyngby tmp getvol Get volume in temporary file for all voxels
lyngby tmp init Initialize temp file for datamatrix (Read/Write)
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lyngby tmp putseq Store a sequence in a temporary file of data matrix
lyngby tmp putvol Store volume in temporary file for all voxels

Matrix Operations

lyngby std Take the standard deviation of a matrix
lyngby test wilrank Wilcoxon sign rank test

Statistics Tests

lyngby ts ftest F-test for two samples.
lyngby ts global Global variables for TS analysis method
lyngby ts init Initialize globals for t-test analysis method
lyngby ts main Whole volume Student’s t-test for equal variances.
lyngby ts pttest Student’s paired t-test.
lyngby ts ttest Two sample Student t test, equal variances.
lyngby ts uttest Student’s t-test for unequal variances.
lyngby ui ts init User interface for initialization of t-test
lyngby ui view ts t-test viewing function
lyngby uis ts Script executed for t-test analysis
lyngby uis ts v Script for t-test view

General User Interface
Functions

lyngby ui credit Display a credit
lyngby ui global Defines global for the user interface
lyngby ui loadfile Opens a window for specifying file parameters.
lyngby ui loadsetup Opens a window for specifying file parameters.
lyngby ui main Main function for the GUI for lyngby
lyngby ui message Display a message
lyngby ui movie User interface for movie
lyngby ui option Option/setup for user interface
lyngby ui para draw User interface for paradigm viewing (and specification)
lyngby ui paradigm User interface for paradigm viewing (and specification)
lyngby ui preproc UI for setting up preprocessing parameters
lyngby ui resinfo Defines global for the user interface
lyngby ui run User interface for run viewing (and specification)
lyngby ui run no User interface for time mask specification
lyngby ui saveresult Opens a window for specifying file parameters.
lyngby ui time User interface for time mask specification
lyngby ui time be User interface for time mask specification
lyngby ui view User interface for viewing results
lyngby ui view dfl Default viewing function
lyngby ui viewvol View full volume timeserie and specify ROI and voxelmask
lyngby ui volume View full volume timeserie and specify mask
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lyngby uis none v Script for ’original’ view

Analysis Functions and
Modelling Algorithms

Ardekani F-Test

lyngby baf global Global variables for Ardekani f-test analysis method
lyngby baf init Initialize globals for Ardekani F-test
lyngby baf test Barbak Ardekani’s F-test
lyngby ui baf init Ardekani’s F-test, GUI for init. of param.
lyngby ui view baf Viewing BAF filter results
lyngby uis baf Script executed for Ardekani’s F-test
lyngby uis baf v Script for Ardekani F-test view

Ardekani F-Test with
Nuisance Subspace

lyngby baf2 global Global variables for Ardekani nuisance signal f-test
lyngby baf2 init Initialize globals for Ardekani F-test with nuisance
lyngby baf2 main Barbak Ardekani’s F-test with nuisance estimation
lyngby baf2 test Barbak Ardekani’s F-test with nuisance estimation
lyngby ui baf2 init Ardekani’s nuisance F-test, init. of param.
lyngby ui view baf2 Viewing function for Ardekani’s nuisance F
lyngby uis baf2 Script executed for Ardekani’s nuisance F
lyngby uis baf2 v Script for Arkani’s F-test with nuisance view

Ardekani T-Test

lyngby bat global Global variables for Ardekani t-test analysis method
lyngby bat init Initialize globals for Ardekani t-test
lyngby bat test t-test using the Ardekani t-method
lyngby ui bat init User interface for init. of Ardekani’s t-test
lyngby ui view bat Viewing Ardekani t-test results
lyngby uis bat Script executed for Ardekani’s t-test
lyngby uis bat v Script for Ardekani’t t-test view

Cross-correlation

lyngby cc global Global variables for cross-correlation analysis method
lyngby xcorr Cross correlation
lyngby ui cc init User interface for init. of cross-correlation
lyngby ui cc view User interface for viewing Cross-correlation results
lyngby ui view cc Viewing Cross-correlation results
lyngby uis cc Script executed for cross-correlation anal.
lyngby uis cc v Script for cross-correlation view

c©Lars Kai Hansen et al 1997



Section B.1 Available Functions 73

Exhaustive FIR

lyngby efir global Global variables for Exhaustive FIR analysis method
lyngby efir init Initialize global variables for EFIR analysis
lyngby efir main Main exhautive FIR function
lyngby ui efir init UI for initialization of EFIR model
lyngby ui view efir Viewing EFIR filter results
lyngby uis efir Script executed at the EFIR analysis
lyngby uis efir v Script for ’exhaustive FIR’ viewing
lyngby plotfilter Plot FIR response

FIR

lyngby fir convolve Convolve the FIR kernel with the input
lyngby fir error FIR residual signal (Quadratic error)
lyngby fir global Global variables for FIR analysis method
lyngby fir init Initialize global variables for FIR analysis
lyngby fir main Regularized FIR filter, main function
lyngby fir masscent Returns the masscenter of the FIR kernel
lyngby fir plot Plot paradigm, data and FIR model
lyngby ui fir init User interface for FIR filter analysis
lyngby ui view fir Viewing FIR filter results
lyngby uis fir Script executed at the FIR analysis
lyngby uis fir v Script for FIR view
lyngby plotfilter Plot FIR response

Gaussian Mixture Models

lyngby gmm error Gaussian mixture model, error
lyngby gmm fit Gaussian mixture model, fitting
lyngby gmm plot Plot gaussian mixture model

K-Means

lyngby km error K-means, error
lyngby km global K-means, Global variables declarations
lyngby km init K-means, Global variables initialization
lyngby km main Main function for K-means clustering
lyngby km plot K-means plot
lyngby ui km init GUI for K-means parameter initialization
lyngby ui view km Viewing K-means filter results
lyngby uis km Script executed for K-means analysis
lyngby uis km v Script for K-means view

Kolmogorov-Smirnov

lyngby ks global Global variables for KS analysis method
lyngby ks init Initialize globals for KS-test analysis
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lyngby ks main Kolmogorov Smirnov test
lyngby ks prob Kolmogorov-Smirnov probability
lyngby ks test Kolmogorov-Smirnov test of two arrays.
lyngby ui ks init KS, GUI for initialization of parameters
lyngby ui view ks Kolmogorov-Smirnov viewing function
lyngby uis ks Script executed for Kolmogorov-Smirnoff
lyngby uis ks v Script for Kolmogorov-Smirnov view

Lange-Zeger

lyngby lz error Lange-Zeger residual signal (Quadratic error)
lyngby lz lambda The Lange-Zeger hemodynamic response function
lyngby lz masscent Returns the masscenter of the Lange Zeger Kernel
lyngby lz plot Plot Paradigm, data and Lange-Zeger model
lyngby lz plottheta Plot Lange-Zeger theta1 against theta2

Lange-Zeger Grid Search

lyngby lzgs global Global variables for LZ Grid Search analysis
lyngby lzgs init Initialize global variables for LZGS
lyngby lzgs main Lange-Zeger model with grid search
lyngby lzgs search Lange Zeger main algorithm for grid search
lyngby ui lzgs init Lange-Zeger GUI init of parameters
lyngby ui view lzgs Viewing Lange Zeger results
lyngby uis lzgs Script executed for Lange-Zeger Grid Search
lyngby uis lzgs v Script for Lange-Zeger gridsearch view

Lange-Zeger, Iterative

lyngby lzit algo Lange-Zeger, optimization of model
lyngby lzit beta Lange-Zeger, Estimate beta parameter
lyngby lzit conv Lange-Zeger, Convolve kernel with the input
lyngby lzit cost The cost function used in the Lange-Zeger model
lyngby lzit ftlamb Lange-Zeger, Fourier transformed of lambda
lyngby lzit global Global variables for iterative LZ
lyngby lzit init Initialize global variables for iterative LZ
lyngby lzit main Main function for Lange-Zeger estimation
lyngby lzit noise Noise estimate in the Lange-Zeger model
lyngby lzit pickf Pick frequencies out from the data matrix
lyngby lzit thopt Lange-Zeger, Optimize theta parameters
lyngby ui lzit init GUI for iterative Lange-Zeger initialization
lyngby ui view lzit Viewing Lange Zeger results
lyngby uis lzit Script executed for Lange-Zeger, Iterative
lyngby uis lzit v Script for Lange-Zeger ’iterative’ view

Meta K-Means
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lyngby mkm global Meta K-means, Global variables declaration
lyngby mkm init Meta K-means, Global variables initialization
lyngby ui mkm init GUI for Meta K-means initialization
lyngby ui view mkm Viewing of meta K-means results
lyngby uis mkm Script executed for Meta K-means analysis
lyngby uis mkm v Script for Meta K-means viewing

Neural Network

lyngby nn cddevds 2nd order, entropic, input, diag. sym.
lyngby nn cddewda Classifier neural network, output, diag 2nd
lyngby nn cddewds Classifier neural network, output, diag 2nd
lyngby nn cddru 2nd order der. of regularization for weights
lyngby nn cdev Classifier neural network, input 1st der.
lyngby nn cdew Classifier neural network, output 1st der.
lyngby nn cdru Neural network, regularization, 1st der.
lyngby nn cerror Classifier neural network error
lyngby nn cforward Classifier neural network forward
lyngby nn cmain Main functions for classifier neural network
lyngby nn cost Cost function = error + regularization
lyngby nn cpruneobd Classifier neural network, OBD pruning
lyngby nn csoftline Classifier neural network soft linesearch
lyngby nn csoftmax Softmax for neural network classifier
lyngby nn ctrain Classifier neural network training
lyngby nn eddevds 2nd order, entropic, input, diag. sym.
lyngby nn eddewd Entropic neural network, output, diag 2nd
lyngby nn eddru 2nd order der. of regularization for weights
lyngby nn edev Entropic neural network, input 1st der.
lyngby nn edew Entropic neural network, output, 1st der.
lyngby nn edru First order derivative, Regularization
lyngby nn eehl Neural network entropic error (Hodge-Lehmann)
lyngby nn eemedian Neural network entropic error (median)
lyngby nn eerror Calculate (cross-)entropic error
lyngby nn eforward Entropic neural network, feed-forward
lyngby nn emain Main function for Entropic Neural network
lyngby nn epruneobd Pruning by Optimal Brain Damage (entropic)
lyngby nn esoftline Soft linesearch with the entropic cost function
lyngby nn esoftline Soft linesearch with the quadratic costfunction
lyngby nn etarget Normalize target for entropic neural network
lyngby nn etrain Entropic neural network, training
lyngby nn initvw Initialize weights in neural network
lyngby nn plotnet Neural network, plot the network weights
lyngby nn pruneobd Pruning by Optimal Brain Damage
lyngby nn qddeus 2nd der., quad., all weights, gauss approx.
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lyngby nn qddevds 2nd der., quadratic, input, diag gauss.
lyngby nn qddevs 2nd der., quadratic, input, gauss approx.
lyngby nn qddewds 2nd order der, quadratic, output, diag gauss
lyngby nn qddews 2nd. order der., quadratic, output, gauss approx.
lyngby nn qddru 2nd order der. of regularization for weights
lyngby nn qdev Quadratic neural network, input, 1st der.
lyngby nn qdew First order derivative, quadratic, Output weights
lyngby nn qdru Quadratic neural network, 1st der. reg.
lyngby nn qerror Quadratic error
lyngby nn qforward Neural network forward with linear output function
lyngby nn qmain Main function for quadratic neural network
lyngby nn qpruneobd Pruning by Optimal Brain Damage (quadratic)
lyngby nn qtrain Quadratic neural network, training
lyngby nn reg2reg Standardize regularization
lyngby nn setsplit Split the data into training and validation set
lyngby nn tanh Faster hyperbolic tangent
lyngby nn u2vw Vectorize neural network weights
lyngby nn vw2u Vectorize neural network weights

Neural Network Regression

lyngby nnr global Global variables for NNR analysis method
lyngby nnr init Initialize global variables for NNR analysis
lyngby nnr main Main function for Neural network Regression
lyngby ui nnr init User interface for NNR method
lyngby ui view nnr Viewing NNR filter results
lyngby uis nnr Script executed for Neural network regression
lyngby uis nnr v Script for neural network regression view

Neural Network Saliency

lyngby nns esalmap Saliency map with entropic cost function
lyngby nns global Global variables for NNS analysis
lyngby nns init Initialize global variables for NNS analysis
lyngby nns main Main function for Neural network saliency
lyngby ui nns init GUI for Neural network saliency
lyngby ui view nns Viewing of NNS results
lyngby uis nns Script executed for Neural network saliency
lyngby uis nns v Script for neural network saliency view

PCA Analysis

lyngby pca eqtest PCA test for equal eigenvalues
lyngby pca main Main PCA analysis
lyngby pcafilte Reduce the dimension or filter a matrix with PCA filtering

c©Lars Kai Hansen et al 1997



Section B.1 Available Functions 77

Poisson

lyngby pois error Poisson residual signal (Quadratic error)
lyngby pois forward Possion kernel forward (prediction)
lyngby pois forwn Possion kernel forward (prediction)
lyngby pois global Poisson filter, Global variables
lyngby pois init Poisson filter, Initialize global variables
lyngby pois main Main function for Possion filter
lyngby pois toptim Possion kernel optimization
lyngby ui pois init GUI, Poisson filter, initialization
lyngby ui view pois Viewing poisson filter results
lyngby uis pois Script executed for Poisson filter analysis
lyngby uis pois v Script for Poisson filter view

SCVA

lyngby scva global Global variables for SCVA analysis
lyngby scva init Initialize global variables for SCVA analysis
lyngby scva main Strother Canonical variate analysis
lyngby ui scva init GUI for init of Strother CVA
lyngby ui view scva Viewing function for Strother CVA
lyngby uis scva Script executed for SCVA analysis
lyngby uis scva v Script for SCVA view
lyngby sdesign Strother design matrix
lyngby set and set intersection: S1 / S2
lyngby set diff set difference: S1 S2
lyngby set unique set thining: all elements different

SOP

lyngby sop global Global variables for SOP analysis
lyngby sop init Initialize global variables for SOP analysis
lyngby sop main Strother OPLS
lyngby sopressvd SOP with SVD on the residual
lyngby ui sop init GUI of init. of SOP model
lyngby ui view sop Viewing for Strother OPLS
lyngby uis sop Script executed for SOP analysis
lyngby uis sop v Script for SOP view
lyngby splitonnoff Function to find the indices of the on/off scans.

SVD

lyngby svd Singular value decomposition
lyngby svd global Global variables for SVD analysis
lyngby svd init Initialize global variables for SVD analysis
lyngby svdfilter Filtering by SVD
lyngby ui svd init GUI for initialization of SVD model
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lyngby ui view svd Viewing for Strother OPLS
lyngby uis svd Script executed for SVD analysis
lyngby uis svd v Script for SVD view
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Appendix C

Derivations

$Revision: 1.5 $

$Date: 2002/08/14 13:17:05 $

C.1 Neural Network

C.1.1 Symbol table

δ Kronecker’s delta

φ Output of the neural network before the softmax is applied

Ec Errorfunction for the classifier neural network

h Index for hidden units

i Index for input units

no Number of outputs

np Number of patterns, i.e., examples or scans

o Index for output unit

p Index for pattern

p(. . .) Probability

T Training set

t Target output for the neural network

u Weights (parameters) in the neural network

v Input layer weights (first layer weights)

w Output layer weights (second layer weights)

x Input for the neural network

y (Predicted) Output of the neural network (after the softmax is applied)
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z The hidden unit value after the activation function has been applied

In the following the index for pattern has been omitted, so that what should have been
written as xp

i , zp
h, φp

o, yp
o and tpo (or in an equivalent notation) is written as xi, zh, φo, yo and to.

C.1.2 The errorfunction for the classifier neural network and its derivatives

The errorfunction for the classifier neural network is developed from the conditional probability:

p(T |u) =

np
∏

p

p(y|x, u) =

np
∏

p

no
∏

o

yto
o (C.1)

The error function is constructed as the normalized negative log-likelihood of the parameters
u and with the two-layer feedforward neural network with an added softmax layer and a 1-of-
(c − 1) coding scheme — or rather 1-of-(no − 1) coding scheme — we get:

Ec = −
1

np
ln[p(T |u)] (C.2)

= −
1

np

np
∑
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o
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o (C.3)
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o
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(C.10)

In order to optimize the neural network with gradient or newton methods the derivatives
have to be found. The first order derivative of the classifier neural network errorfunction with

c©Lars Kai Hansen et al 1997



Section C.1 Neural Network 81

respect to the weights is:

∂Ec
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The second order derivative of the classifier neural network errorfunction with respect to the
weight is:

∂2Ec
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(C.16)

For the first order derivative we only need to compute the derivative for the two ordinary
layer (∂φ/∂u) — not the softmax layer. However, for the second order derivative we need to
have the derivative through the softmax:
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We can now use equation C.21 in C.16 arriving at:

∂2Ec
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(C.22)

The partial derivatives for the φ output are the same as for the quadratic neural network.
For the output weights w we have:

∂φo

∂woh
= zh (C.23)
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Combining equations C.14 and C.23 makes the derivative for the errorfunction to:

∂Ec

∂woh
=

1

np

np
∑

(yo − to) zh (C.24)

For the input weights v we have:

∂φo

∂vhi
= woh
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1 − z2
h

)

xi (C.25)
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h

)

xi (C.26)

The second order derivative — the Hessian — is more complex, and it can unfortu-
nately/luckily be approximated in a number of ways: using only the Gauss-Newton term and
diagonalizing it. The derivative for the output weights is relatively simple:

∂2φo1o2

∂wo1h1∂wo2h2

= zh1zh2 (C.27)

∂2Ec

∂wo1z1∂wo2h2

=
1

np

np
∑

[δo1o2 (yo − to) zh1zh2 + yo1(δo1o2 − yo2)zh1zh2 ] (C.28)

=
1

np

np
∑

[(−yo1yo2 + 2δo1o2yo − δo1o2to) zh1zh2 ] (C.29)

The diagonal approximation is

∂2Ec

∂w2
oh

=
1

np

np
∑

[(

−y2
o + 2yo − to

)

z2
h

]

(C.30)

For the input weights we have:

∂2φ

∂vh2i2∂vh1i1

=
∂

∂vh2i2

[

woh1

(

1 − (zh1)
2
)

xi1

]

(C.31)

= −woh1xi12zh1

(

1 − z2
h1

)

δh1h2xi2 (C.32)

= −wohδh1h2xi1xi22zh

(

1 − z2
h

)

(C.33)
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The derivative for the errorfunction is:
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With diagonal approximation the derivative becomes:
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C.1.3 Numerical stabil computation of softmax

The softmax function has an exponential divided by an exponential which makes it prone to
congest the range of the data type and divide +Inf with +Inf. For 64 bit double data type this
happens a bit over 700:

>> log(realmax)

ans =

709.7827

To cope with this problem the softmax function can be reformulated:

exp(φo)
∑no

o exp(φo′) + 1
=

exp(φo)
∑no

o exp(φo′) + 1

exp(k)

exp(k)
=

exp(φo + k)
∑no

o exp(φo′ + k) + exp(k)
(C.42)

And by setting k = −max(φ) we can make sure that the exponential in the numerator does not
saturate against +Inf, — and it does not matter that the denominator saturate against -Inf

for computer with IEEE arithmetic since exp(-Inf) yields 0.
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Appendix D

Getting Started

$Revision: 1.3 $

$Date: 2002/08/14 13:03:16 $

Table D.1: Installed, Up and Running in Two Minutes!

Keyboard/mouse action Explanation

Installation

Click on the link to the toolbox file (lyngby.tar.gz). Choose
a suitable place to save the file. Save the sample dataset
(sampledata.tar.gz) in the same way.

Download the lyngby Toolbox and
the sample dataset from the web-
site at: http://hendrix.imm.dtu.dk-
/software/lyngby/.

> cp lyngby.tar.gz /usr/local/ Copy the file to a suitable location,
such as /usr/local, where a program
directory will be created.

> gunzip lyngby.tar.gz Uncompress the file.

> tar -xvf lyngby.tar Unpack the file, which automatically
creates a ”lyngby” directory.

> rm lyngby.tar.gz Remove the original distribution file
to save space.

> cp sampledata.tar.gz /usr/local/lyngby Copy the sample dataset to the lyn-
gby directory.

> gunzip sampledata.tar.gz Uncompress the sample dataset.

> tar -xvf sampledata.tar Unpack the sample dataset, auto-
matically creating a ”sampledata”
directory in the process.
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> rm sampledata.tar.gz Remove the original distribution file
to save space.

Setup

> emacs startup.m

Add the line:
path(path, ’/usr/local/lyngby’);

Edit your Matlab ”startup.m” file to
inform Matlab where it can find the
lyngby executable files.

Starting lyngby

> matlab Start Matlab as normal

>> cd /usr/local/lyngby/sampledata Within Matlab, change to the direc-
tory containing the sample data.

>> lyngby Start lyngby by simply typing lyn-
gby from the command prompt. The
lyngby main window should pop-up.
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Appendix E

Example Analysis

$Revision: 1.2 $

$Date: 2002/08/14 13:08:46 $

How To Load and Analyse Data Using the Sample Dataset.

Table E.1: A Simple Example Analysis - How To Use The Lyngby GUI

Keyboard/mouse action Explanation

Press Load new data. . . . A new window ti-
tled Load data will pop-up.

First, we need to load the sample dataset.
The data parameters should all be set auto-
matically, as lyngby will have read-in a con-
version file specifying them.

Press the Apply button at the bottom of the
new window

The values of the GUI will be written to
global variables needed for the loading.

Press the Load Data! button. The window
will close.

The data will now be read in from the files. In
the main window it should display “Finished
loading data!” at the bottom.

Press the Create/Edit External Influences...

button bringing up a new window

This is were you, e.g., can specify a stimulus
function.

Press Setup design The first pre-processing step is to mask
out those unwanted timepoints from the
paradigm and run structures.

Press Process design Next, the mean is removed from the paradigm
structure (i.e. the paradigm signal is trans-
formed from 0, 1, 0, 1, 0, 1. . . to -1/2, +1/2,
-1/2, +1/2, -1/2, +1/2. . . ) as required by
some analysis algorithms.
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Press Close . The window should disappear

Press the Data setup. . . button in the main
window. A new window titled Data Setup
will pop-up.

The next stage is to perform any pre-
processing of the data.

If not already highlighted, select the first
options (“normalization”) on the left-hand
pane, and press “Setup design and run”. A
new window (“Pre-Processing”) will appear.

The next stage is to select the pre-processing
methods that will be applied to the data.

Select the first and third option and press the
Apply Pre-Processing and Close button.

The Pre-Proceesing window will close, and
the status of the pre-processing will be shown
on the status bar within the main window.

Press Done! in the Data setup window. This will close the window

Click on the top button of the Data Analy-
sis frame, initally labeled Original. From the
pop-up list, select the FIR Filter algorithm.

Next, the actual analysis of the data can take
place. As an example, we will do a FIR Filter
analysis of the paradigm and the fMRI data.

Press the Parameters. . . button to bring up
a new window. Once you have finished exam-
ining the settings, press the Close button to
shut the window.

The initial parameters for the FIR Filter can
be set within a dedicated window. The Pa-
rameters window will be different for each
algorithm, reflecting the different variables
used in each case. Note that each algorithm
will have a sensible set of defaults within its
Parameters window. For this example, we
can use default settings.

Press the Calculate button to start the cal-
culation.

The calculation is then started, with feedback
given on the status line within the main win-
dow. Note that once the calculation is fin-
ished, the symbol adjacent to the algorithm
name changes to a “+”, indicating that re-
sults for this algorithm are ready to be ex-
amined. A “-” indicates that no calculation
has been performed, whilst a “!” indicates
that the parameters have been changed, but
not yet used in a calculation.
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Press the View these results button. A set
of three windows, labelled Control, Volume
and Time will pop-up.

Once the calculations have finished (as shown
in the status line), then the results can be
viewed.

Click on different voxels in the Volume win-
dow. Note how the Time window displays
the relevant time-series.

The control window initially shows two “lay-
ers”. The lower one controls the right-hand
time-based window, while the upper one is
used to control the left-hand volume-based
window. The Time window shows the time-
series for whichever voxel is selected in the
Volume window. The current voxel location
is shown above the time-series in the form
[x,y,z]. Note how the data in the top-left of
the image [x = 32-34, y = 1, z = 34] corre-
lates better with the paradigm than that at
the bottom-right [x = 14-20, z = 40-45]. Note
also how the FIR model (red-line) matches
the data far more closely in these highly-
activated regions.

Click on Sum of Coefficients in the Data
Layer, and pick Activation Strength from the
pop-up list.

For the FIR filter, there are several results
for both the volume and time windows. The
Activation Strength shows better contrast be-
tween the activated and non-activated re-
gions.

Click on Time in the Time Layer, select-
ing the Histogram of Data option. The Time
window will change from displaying a time-
series to showing a histogram of the greylevels
for the selected voxel.

The time display can also display other types
of data that are voxel-dependent. For in-
stance, the FIR filter algorithm generates a
range of results displaying histograms of the
greyscales of a voxel through the time-series.

Click on different voxels and note that the
general shape of the histogram is different for
the activated and non-activated areas.

The different areas in the volume have dif-
ferent greyscale distributions. Note that
the distribution in activated areas has a bi-
modal distribution, reflecting the two dis-
tinct grey-levels that occur during the ac-
tivated and non-activated states, whilst the
distribution of non-activated areas is gener-
ally monomodal.
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Click on the More. . . button to expand the
control window to display an additional two
rows. The upper row contains two new vi-
sual layers, Contour and Background, whilst
the Masking Layer underneath is an interme-
diate processing layer that affects the data
layer below it. See Fig. 2.11 for a graphical
explanation.

The toolbox can also display concurrent spa-
tial information by the use of overlays - layers
that sit above or below the data.

In the Masking Layer, click on the second
button from the left (showing None ), and
select the “>” option.

Now we can mask the Data layer by using the
Masking layer above. This creates a mask
from a given dataset and then applies it to
the dataset in the Data layer.

Click on the Sum of Coefficients button
in the Masking layer and select Activation
Strength from the pop-up list.

We will choose to define the mask using the
Activation Strength dataset, although any of
the others could be used to give different
masks.

Using the slider control in the Masking layer,
adjust the threshold to around 0.96. You can
use the edit box immediately to the left to
type in 0.96 if you prefer.

We can now adjust the size of the mask by
adjusting the thresholding limit. This can
be done by specifying either an absolute or
fractile value. We’ll use the latter, which is
the default.

In the Background Layer, click on the first
button to the right of the Background la-
bel. This turns the layer on. Now click the
Sum of Coefficients button and select the
Mean (data) dataset to display the anatomi-
cal data.

It would be more useful if we could now see
this thresholded data overlaid onto the origi-
nal data.

Click on the button immediately to the right
of the Contour label to activate the contour
layer. Then click on the Sum of Coefficients
button and select the Activation strength
dataset from the pop-up list.

To see how far this threshold is from the rest
of the data, we can now overlay a contour
layer of the full Activation strength dataset.
Note how you can now see that if you de-
creased the mask threshold, then the peak at
[x = 31, y = 1, z = 27] will be the next to
show up. The contour layer can also be used
to compare different variables from the same
result set. This allows a comparison of meth-
ods for highlighting the activated regions.
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In the main window, below the Analysis
pane, is the Post-processing section. Meta-
K-means should already be selected. Click
on the Parameters button to bring up the
options dialog box. Make sure that the Pa-
rameter Variables Set is set to the FIR fil-
ter results. The other initial settings should
should already be sensible. Click Close once
you have finished.

Next, we can cluster the actual parameters
of the FIR filter - a Meta K-means clustering
of the results. This enables us to look for
patterns in the result dataset.

Click on the Calculate button. The post-processing analysis can then be
started, with feedback on the progress given
on the status line.

Once the calculation is finished, click on the
View results button to bring up the triple-
set of viewing windows.

The results are viewed in the same way as the
main analysis results.

Click on the Time button in the Time layer
and select the Cluster mean seq. from the
pop-up list. The Time window will now show
an additional red line representing how the
mean of the cluster that the selected voxel is
a member of varies with time.

The data can then be analysed using the same
techniques as for the main anaylsis results.
The Volume window shows the voxels in their
correct locations, but with the colour indi-
cating their cluster membership. Note how
the voxels near the upper left of the image
[around x = 31, y = 1, z = 34] are members
of the same cluster, and that the mean of this
cluster most closely follows the time series.

In the main window, click on the
Save Worksheet button in the seventh
pane. The entire workspace is then saved
into the file lyngby workspace.mat, located
in the directory from which lyngby was
started.

Once the results have been analysed, you will
probably want to save them. In Matlab, you
are able to save the entire variable and re-
sult set into a single file which can then be
reloaded at a later date without having to re-
specify all the data loading parameters.

Click on the Save Data. . . button to bring
up the standard four layers plus the extra
Save layer

Alternatively, you may want to save a subset
of the results. The toolbox has a new save
layer which can be used for this purpose.

Click on the first button on the Save layer
and select the Sequence option. On the sec-
ond button, select the Matlab Binary option.
Type in a filename into the edit box and then
press the Save here! .

As an example, we will save the time-
sequence for the current voxel. Other options
allow you to save the present slice, or the en-
tire volume.

c©Lars Kai Hansen et al 1997



91

Click on the Exit! button and the lyngby
main window will disappear.

Once you have finished using the GUI, just
close it. All the variables will still be accessi-
ble from the command line.

On the command-line, type:

>> lyngby_ui_global

To make the results and variables visible
to the command-line you will need to make
them all global. You can also do this whilst
the GUI is still open.

In the command-line, type:

>> whos

This will then display all the variables as used
in the calculations. You can now access the
individual results and variables.
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