
NetGen

The following consists of a brief presentation of NetGen as a software and a user manual for

people interested in using this tool for generating consistent datasets amenable for analysis in a

few steps.

Technical Foreword
NetGen is coded in Python. The current version does not support any graphical user interface

(GUI) in order to ensure platform independence, that is, NetGen runs on any operating systems

(Windows, OS X, Linux), any version of Python and with any user account limitations (as it does

not use any extra library). In order to run it, a Python environment needs to be installed on the

computer. Nevertheless, NetGen does not depend on the environment used (IDLE, Eclipse,

Terminal, etc). Inside the Bundesbank, the only permitted environment is the Python IDLE.

There exist many versions (e.g. 2.4, 2.7, 3.3) but any will work with NetGen. Note that no prior

knowledge of Python will be needed to run the program.

Even though no programming skills are required, we here provide a list of good habits to

maintain when dealing with scripts.

 Avoid accents

 Use different names for different variables

 Avoid spaces

 Avoid using files not present in the main NetGen folder or any sub folder

The data description of the German interbank market presents many challenges in cleaning and

preparing datasets. In the following, we refer to the general set of extra-actions that are needed

in such context as mapping processes. Hence, a mapping process can refer to a challenge such

as identifiers matching, dropping of certain entries, mergings, etc.

A First Look at NetGen
NetGen comes as a zip file that can be stored and extracted anywhere in the user's drive or on a

remote server. The directory contains subfolders and two Python files (Figure 1).

Figure 1: The NetGen Folder

1. The __init__.py Python file is required for Python to treat the different packages. It

is a mandatory file for NetGen to work properly. As no interaction is needed with it, the

user can ignore this element.

2. The netgen.py Python file is the main script of the program. This means that it is the

file that needs to be executed via the IDLE in order to launch NetGen. It automatically

uses the other modules and adapts to the configuration provided by the user (see next

section).

3. The input/ folder is the (default) directory in which all the files needed as input are to

be stored: raw data file(s) and any additional mapping file(s).

4. The output/ folder is the default directory where all the files produced by NetGen will

be stored.1

5. The log/ folder contains logs of previous NetGen runs. Those logs retrieve information

on the amount of data that is being dropped or merged during the different mapping

processes. It is helpful for tracking the impact of the configuration being implemented.

6. The src/ folder contains all the modules used by NetGen (Figure 2).

Figure 2: The src/ folder

(a) The Analyzer (analyzer.py) is the general module called by NetGen to dispatch

any task among the other more specialized modules. It provides the interface and the

translation between the specific tasks and the end-user instructions.

(b) The Configuration file (config.py) contains all the information that the user needs

to provide for NetGen to run. It is not a script per se but rather a collection of

configuration information: the input file(s), output file(s), the data structure (raw and

cleaned) and the mapping processes.

(c) The Data Handler (data_hanlder.py) is the module specialized in dealing with

data. It verifies consistency, checks for outliers and inconsistent entries and

structures them according to the configuration entered by the user.

(d) The File Handler (file_handler.py) is the module specialized in dealing with

external files (raw data files, output files, and mapping files). It allows importing data,

storing results and dealing with missing values.

(e) The Mapper (mapper.py) is the module responsible for taking all extra-action into

account and applying them to the cleaned data. Among others, it allows to match

1 Both directories (input and output) are not mandatory. The user can use different directories by defining their

absolute path during the configuration process (see next section).

identifiers, consolidate many identifiers under one identifier, drop entries not

referenced in the mapping files, merge entries, etc.

How to Run NetGen
Three steps are needed before running NetGen.

1. Input files preparation:

The user assembles all needed files (raw data files and mapping files), identifies their location,

formats, and inner structures (delimiter, etc.).

2. Configuration of the config file:

The user fills all the entries in in the file config.py. This is the most important step

throughout the use of NetGen. It will be described in a detailed manner in the following section.

3. Launching NetGen:

This step merely consists of opening the file netgen.py via the IDLE and running it by

pressing the F5-key.

The Configuration Process
This section further describes the configuration process presented in the second step of the

previous section. It consists of a simple script that the user needs to fill. In the script, lines

starting with a '#' are comments placed to give guidance to the user. All lines not starting with

'#' are entries that need the user's input.

The user reports settings in single quotes after the equal symbol as follows2:

configuration_entry = 'user_entry'

Note the following important rule: all entries must be filled; if no specific values is to be entered

by the user for one entry, this entry must be equal to an empty single quote (''). The rest of

this section is divided in four parts. Each part describes a set of entries present in the config

file. Their order follows the ordering in which they appear in the config script.

1. File description

Each file that will be used by NetGen (as input or output) must be introduced using the following

information: directory, name, extension and delimiter.

The directory indicates where the file is located (will be written) for input files (output files)

and should always end with '/'. If the directory is a sub folder of the NetGen folder, the relative

path can be given, that is, a path starting from the NetGen directory. If not, the user has to

introduce an absolute path, that is, a path starting from the main drive directory. The name is

the name of the file: everything before the point. The extension is the format of the file: the

three letters after the point. The delimiter indicates how elements are separated in each line of

the file.

2 The last part of this section will describe how the user can deal with several values for one entry, that is,

dealing with multiple files and multiple processes.

Here is an example of a text file located in the input/ sub folder named 'agenda' in which

elements are separated via comas.

file_directory = 'input/'
file_name = 'agenda'
file_extension = 'txt'
file_delimiter = ','

Additionally, the input and output file description also allows defining how missing values are

reported. The input data files can also be defined as being quoted or not.

Finally, when several raw data files are given, the user can also decide if all results should be

stored into one or several files. The latter case will be described in the last part of this section.

For the former case, the entry out_file_single_file must be activated (’on'). The

user can also decide how results from different input files should be stored by filling the

out_file_separate_line entry. There are three possibilities:

 'anytext' : the user entries a text that will always appear between the results of

different datafiles

 'in_file_name' : by entering 'in_file_name' the user specifies that the separating

line should contain as text the name of the raw data file from which the coming results are

produced

 '' : by leaving the entry empty, the use indicates that the resulting unique data file will

not provide any separation between results coming from different raw data files.

Here is an example where the user activates the single output file option and specifies that

results coming from different datasets must be separated by a line containing 'New set of
results:'

out_file_single_file = 'on'
out_file_separate_line = 'New set of results:'

2. Data structure and cleaning process

For each input raw datafile, the user needs to describe the inner structure of the data, that is,

how many fields exist per line and what format should they be associated with. This is achieved

by completing the 'raw_data_structure' entry in the config file. The protocol is to open

a list by opening brackets ([]) where the user gives for each field a name and the format of the

values. Each input must be quoted and separated via comas. Here is an example:

raw_data_structure = ['From', 'str', 'To', 'str', 'Exposure',

'float', 'IRI1','str']

The following formats are currently admitted:

 'str'= strings – any text

 'float'= floats – any real number

 'int'= integer – any integer

 'date'= date in the format day/month/year

Following the same protocol, the user then describes the structure expected for the output data

in the 'clean_data_structure'. Names reported in this entry must refer to names

previously reported in the raw data structure. To follow with the previous example, here is one

possible clean data structure:

clean_data_structure = ['From', 'str', 'To', 'str', 'Exposure',

'float']

The resulting data would then only consist of entries made of From, To and Exposure.

3. Mapping process

The mapping procedure consists of a set of controls that allows tackling all challenges reported

in the previous section describing the data. All mapping processes are based upon additional

information that needs to be retrieved through additional files which will also need to be defined

in the config file (directory, name, extension, delimiter).

 Replacing values

This process allows changing values present in the data given a mapping list from a given

mapping file.

Example of use: this is typically what will be used to match Geber and Nehmer identifiers.

To run this process, the user needs to (i) activate the related control, (ii) indicate which values

to look for in the data, (iii) what to replace them with and (iv) which fields in the data should be

checked during the search.

The points (ii) and (iii) define positions in the mapping file. Here is the example of an entry in a

mapping file matching the lender and borrower identifier of a bank.

0002,1002

The position of the lender identifier is the column 0 and the position of the borrower identifier is

the column 1. Thus, the related entries in the config file should be as follows:

mapping_replace_ids = 'on'
mapping_kept_id_position = '0'
mapping_lost_id_position = '1'
mapping_target_position = 'To'

This example replaces borrower identifies with lender identifiers. Additionally, it specifies the

target position where the change should exclusively be performed: in the column 'To' of

the cleaned data. If the target position field is left empty ('') or with the value 'all' then all the

fields of the entry will be checked for replacement. If several columns are to be checked, but not

all of them, columns' names must be indicated between the single quote separated by coma (ex:

'From,To')

 Dropping unreferenced entities

This process allows the user to force the dropping of any entry that does not contain certain

values present in the list of kept identifiers in the mapping file.

Example of use: this is typically what will be used to drop entries related to firms in the

Exposure data in order to make sure that the resulting dataset only contains banks.

To run this process, the user needs to (i) activate the control and (ii) define targets specifying

which entries in the data should be checked. Here is an example where the mapping process will

drop any entry which does not have in the 'From' field and in the 'To' field, an identifier not

present in the kept identifiers of the mapping file:

mapping_drop_unreferenced_entries = 'on'

mapping_target_unreferenced_entries = 'From,To'

The same protocol as for the matching values control stands for the target entry.

 Removing duplicates

This process allows the user to make sure no double counting is present in the data.

Example of use: this is typically what will be used to remove duplicates present when sub entities

are lending to the same counterparty as a reporting artifact from their holding institution.

To run this process, the user needs to (i) activate the control and (ii) define targets specifying

the set containing the fields in the data that will be compared in order to determine duplication.

Here is an example where the process will consider duplicates by comparing one by one all fields

of different entries and subsequently drop one.

mapping_remove_duplicates = 'on'

mapping_target_duplicates_set = 'all'

The same protocol as for the matching values control stands for the target entry.

 Merging lines

This process allows the user to merge entries.

Example of use: this is typically what will be used after entities have been matched to their

holding institution identifier allowing for several entries to exist between to same institutions.

To run this process, the user needs to (i) activate the control, (ii) define targets specifying the

set containing the fields in the data that will be compared to determine whether two entries must

be merged and (iii) the set of commands to apply to the rest of fields in the entry. Here is an

example:

mapping_merge_entries = 'on'

mapping_target_merge_set = 'From,To'

mapping_commands = 'Exposure : avg'

The same protocol as for the matching values control stands for the target entry. The protocol

for the commands is the following: for each field not present in the target set, the user specifies

which action to take between the corresponding values in the different entries in the following

way:

'field_name1:action1, field_name2:action2'

That is, each instruction is separated by a coma inside the single quotation, as it was done for

specifying the targets. Three commands can be performed:

 '+': aggregation – summing up values

 'avg': taking the average values of all the merged entries

 'same': keeping the value if it is the same in all entries, indicating a missing value

otherwise.

If existing fields are not explicitly mentioned in the command, the default action is 'same'.

 Minor: Dropping ghosts.

This control allows specifying that if a variable in the mapping file has an empty field in the kept

position, all entries containing that field should be dropped. The scope of this removal is

implicitly related to the target positions defined by the value of the entry

mapping_kept_id_position.

4. Multiple files and processes

For any step where input files are needed, it is possible to use several files (e.g. several raw data

files, several steps for the full mapping process using different configuration including several

mapping files). To do this, the user can use brackets and comas to separate the different files,

that is, make a list of instructions. For example, the previous input file example becomes:

file_directory = ['input/period1/' , 'input/period2/']
file_name = ['agenda1','agenda2']
file_extension = ['txt','txt']
file_delimiter = [',',',']

This case presents two files to be used as input: one present in the subfolder 'period1/' and

the other present in the subfolder 'period2/'. The sequence of information related to the

same file in the different entries of the config file must be respected as it is shown in the

example: file 'agenda1' is considered to exist in the sub folder 'period1/' and 'agenda2' in

'period2/'.

As it can often be the case, some entries might be the same for all files. In this case, the user

does not need to repeat the information. He can simply provide one information and NetGen will

infer that this information stands for all cases. In the above example, both files have the same

extension and the same delimiter. The extension and the delimiter can thus be modified in the

following way:

file_directory = ['input/period1/' , 'input/period2/']
file_name = ['agenda1','agenda2']
file_extension = 'txt'
file_delimiter = ','

Nevertheless, as soon as one file needs different information for one entry, the full sequence

must then explicitly be reported.

