
A Methodology for Processing Problem Constraints in

Genetic Programming

Cezary Z� Janikow�

Department of Mathematics and Computer Science

University of Missouri � St� Louis

emailto�janikow�radom�umsl�edu

November �� �		


Abstract

Search mechanisms of arti�cial intelligence combine two elements� representation�
which determines the search space� and a search mechanism� which actually explores
the space� Unfortunately� many searches may explore redundant and�or invalid so�
lutions� Genetic programming refers to a class of evolutionary algorithms based on
genetic algorithms but utilizing a parameterized representation in the form of trees�
These algorithms perform searches based on simulation of nature� They face the same
problems of redundant�invalid subspaces� These problems have just recently been ad�
dressed in a systematic manner� This paper presents a methodology devised for the
public domain genetic programming tool lil�gp� This methodology uses data typing and
semantic information to constrain the representation space so that only valid� and pos�
sibly unique� solutions will be explored� The user enters problem�speci�c constraints�
which are transformed into a normal set� This set is checked for feasibility� and sub�
sequently it is used to limit the space being explored� The constraints can determine
valid� possibly unique space� Moreover� they can also be used to exclude subspaces the
user considers uninteresting� using some problem�speci�c knowledge� A simple exam�
ple is followed thoroughly to illustrate the constraint language� transformations� and
the normal set� Experiments with boolean ���multiplexer illustrate practical applica�
tions of the method to limit redundant space exploration by utilizing problem�speci�c
knowledge�

�Supported by a grant from NASA�JSC� NAG �����	

�



� Preliminaries

Solving a problem of the computer involves two elements� representation of the problem�
or that for its potential solutions� and a search mechanism to explore the space spanned
by the representation� In the simplest case of computer programs� the two elements are
not explicitly separated and instead are hard�coded in the programs� However� separating
them has numerous advantages such as reusability for other problems which may require
only modi�ed representation� This idea has been long realized and practiced in arti�cial
intelligence� There� one class of algorithms borrows ideas from nature� namely population
dynamics� selective pressure� and information inheritance by o�spring� to organize its search�
This is the class of evolutionary algorithms�

Genetic algorithms �GAs	 
�� �� 
� are the most extensively studied and applied evolution�
ary algorithms� A GA uses a population of chromosomes coding individual potential solu�
tions� These chromosomes undergo a simulated evolution facing Darwinian selective pressure�
Chromosomes which are better with respect to a simulated environment have increasing sur�
vival chances� In this case� the measure of �t to this environment is based on the quality of
a chromosome as a solution to the problem being solved� Chromosomes interact with each
other via crossover to produce new o�spring solutions� and they are subjected to mutation�

Most genetic algorithms operate on �xed�length chromosomes� which may not be suitable
for some problems� To deal with that� some genetic algorithms adapted variable�length
representation� as in machine learning 
�� ��� Moreover� traditional genetic algorithms use
low�level binary representation� but many recent applications use other abstracted alphabets

�� ���

Genetic programming �GP	 
�� �� �� uses trees to represent chromosomes� At �rst used to
generate LISP computer programs� GP is also being used to solve problems where solutions
have arbitrary interpretations 
��� Tree representation is richer than that of linear �xed�
length strings� However� there is a price to pay for this richness�

In general� the number of trees should equal the number of potential solutions� with one�to�
one mapping between them� Unfortunately� this is hardly ever possible� Because we need a
mapping for each potential solution� the number of trees will tend to be much larger� with
some of them being redundant or simply invalid� Therefore� some means of dealing with such
cases� such as possibly avoiding the exploration of such extraneous trees� are desired� While
for some problems some ad�hoc mechanisms have been proposed 
�� ��� there is no general
methodology� Our objective is to provide a systematic means� while making sure that the
means do not increase the overall computational complexity� In this paper� we present a
method suitable for� and implemented with� a standard GP tool lil�gp� This methodology is
a somehow weaker version of 
��� modi�ed speci�cally for lil�gp�

lil�gp is a tool 
��� for developing GP applications� Its implementation is based on the
standard GP closure property 
��� which states that every function can call any other function
and that any terminal can provide values for any function argument� Even though this is
usually called a �property�� it is in fact a necessity in the absence of other means for dealing

�



with invalid trees�

Almost any application imposes some problem�speci�c constraints on the placement of ele�
ments in solution trees� Invalid solutions can be re�interpreted as redundant solutions �as
done to force closure	� or they can be assigned low evaluations� practically causing their
extinction �penalty approach	� Both approaches may face potential problems� Too many
ad�hoc redundancies may easily change problem characteristics �problem landscape	� Too
many extinction�bound solutions waste computational resources and may cause premature
convergence �over�selection in GP 
��	� Recently� other methods have been explored and
proposed� For example� Montana has developed means for ensuring that only valid trees
evolve �Strongly Typed Genetic Programming � STGP 
���	� and we independently proposed
a similar methodology for processing more arbitrary constraints in Constrained Genetic Pro�
gramming �CGP	 
��� CGP� in addition to providing means for avoiding exploration of invalid
subspaces� also provides for speci�cation�avoidance of both redundant subspaces as well as
subspaces which are perfectly valid but some problem�speci�c heuristics suggest to exclude
them from being desired solutions�

The objectives of CGP is to provide means to specify syntax and semantic constraints� and
to provide e�cient systematic mechanisms to enforce them 
��� We have just implemented
a pilot tool�� which incorporates CGP with the widely used GP tool lil�gp���� �lil�gp allows
forrest chromosomes� which for computer programs corresponds to program modules � our
current methodology deals with a single tree� but it is currently being extended	� This paper
describes CGP applied to lil�gp �called CGP lil�gp	�

Even though this paper is not intended to compare STGP with CGP� it is worthwhile to point
out that CGP ensures that the extra processing does not change the overall complexity of
the basic GP mechanisms� Moreover� CGP allows more user�friendly front�end for constraint
speci�cations� with a transformation aimed at reducing the constraints to a minimal set�
It also allows various constraints� such as syntax� and semantics�based� Finally� CGP�s
crossover is more powerful since it allows more feasible o�spring from the same two parents�
A more systematic comparison will be presented separately�

In section �� we overview the problems CGP attempts to alleviate� In section � we present
the CGP methodology for lil�gp� along with a complexity analysis� A simple example is used
to illustrate the processing from constraint speci�cation to generation of the minimal set�
This section can be omitted by readers not interested in technical details� In section 
 we
present initial experiments designed to illustrate CGP lil�gp�s application to deal with re�
dundant�undesired search spaces using the ���multiplexer problem� This experiment is only
intended to illustrate how problem�speci�c knowledge can be expressed with the constraint
language� and what the implications of restricting the search are� However� some important
observations are made in section 
����

�fttp���radom	umsl	edu

�



� State�Space Searches and GP Search Space

In arti�cial intelligence� solving a problem on the computer involves searching the collection
of possible solutions� For example� solving a two�dimensional integer optimization problem
with both domains 
������ would involve searching through the space of ������ solutions �one
for each pair	� This search may be random� enumerated exhaustive� or heuristic 
��� However�
in most practical problems of interest to arti�cial intelligence� the space of potential solutions
is too large to be explicitly retained and e�ectively randomly or exhaustively searched by
an algorithms� Instead� the space is de�ned by implicit means� often by transition operators
generating new states from existing ones� along with a set of currently explored solutions�
Given a complete set of operators� some control strategy is then used to manage the search�
Such approaches are called state�space searches in arti�cial intelligence 
���

Evolutionary algorithms utilize state�space searches� The subspace being explored is retained
in the population of chromosomes� Genetic operators� such as mutation and crossover� gen�
erate new solutions from the existing ones� The control is stochastic� promoting exploration
of �better� subspaces �additional heuristics may be used to further guide the search� as in

��	�

In GP� a set of functions and a set of terminals are de�ned� Elements of these label the
internal and the external nodes� respectively� Interpretations of those elements are given by
providing implementations for evaluating nodes labeling them� Then� a generic interpreter
uses those interpretations to evaluate a tree by following a standard traversal� For example�
a root node having three subtrees must be labeled with a function having three arguments�
These subtrees are evaluated recursively� and their values are used as arguments to the
function labeling the root�

Following evolutionary algorithms� GP generates a population of random trees� using the
primitive elements� Then� all trees are evaluated in the environment �using functional in�
terpretations with the interpreter� and the problem at hand	� Crossover and mutation are
used to generate new trees in the population� from parents selected following Darwinian
principles� GP also allows another operator� selection� which simply copies chromosomes to
the new population�

Since all trees are evolved from the primitive elements� these must be su�cient to generate the
sought tree� The assumption that this is indeed the case is called the su�ciency principle

��� However� in general to satisfy su�ciency a large number of functions must be given�
This unfortunately exponentially explodes the search space� In up�to�date applications� this
is dealt with by providing �the right� functions and terminals� Obviously� in many cases this
may not happen� and the search space will explode nevertheless� To deal with this potential
problem� as well as its current weak manifestation� practical size restrictions are imposed on
the trees� Unfortunately� the more rigid the restriction� the more likely that some important
solutions may be excluded�

In the next section we will present a methodology to utilize constraints to prune implicitly
identi�ed subspaces� In general� the constraints we propose for the pruning include both






syntactic and semantic elements� Syntactic constraints include typing function arguments�
values returned by functions� and individual terminals� These are similar to those of Mon�
tana 
���� Semantic constraints are additional restrictions based on function or terminal
interpretation� The methodology presented here is a weaker version of that presented in 
���
but it is the one that has been implemented with lil�gp�

� CGP Methodology

��� Constraint speci�cations

In lil�gp 
���� functions and terminals fall into three categories� Let us call them functions
of type I� II� and III �as described below	� and sets of those functions will be denoted as FI �
FII � and FIII � Unless explicitly stated� all references to functions imply all function types
�denoted F 	� and all references to terminals imply functions of type II and III �denoted T 	�
Borrowing 
����s terminology� we have�

I� Ordinary functions� These are functions of at least one argument� thus they can label
internal nodes� with the number of subtrees corresponding to the number of arguments�

II� Ordinary terminals� These are functions of no arguments� Therefore� they can label
external nodes� However� they are not instantiated in trees but rather during interpre�
tation� In other words� these terminal values are provided by the environment �as for
a function reading the current temperature	�

III� Ephemeral random constant terminals� These are functions of no arguments� which
are instantiated individually in each tree� thus the values are independent of the envi�
ronment�

In lil�gp 
���� terminal sets for type III are not extensively de�ned� Instead� they are de�ned
by generating functions� which return uniform random elements from the appropriate ranges�
Ranges for functions of type I and type II and not explicitly de�ned either�

In 
�� we de�ned the notion of domain�range compatibility �denoted here �	� which can
be used to infer validity of using functions and terminals as arguments to other functions�
That notion� based on sets� allows automated processing of such compatibilities� With lil�
gp� these capabilities cannot be automated since no explicit sets are used� and the resulting
methodology is somehow weaker �section 
 gives an example	� Therefore� all compatibility
speci�cations are left to user�s responsibility �similarly to Montana�s approach 
���	� This
unfortunately means that the user must be trained in the domain� Fortunately� our pre�
processing o�ers a user�friendly method to specify constraints which method can deal with
inconsistent and�or redundant speci�cations�

De�nition � De�ne the following Tspecs 	syntactic constraints
�

�



�� TRoot � the set of functions which return data type compatible with the problem speci�
�cation�

�� T �
� � T

j
i is the set of functions compatible with the jth argument of fi�

In terms of a labeled tree� TRoot is the set of functions which� according to data types� can
possibly label the Root node� T j

i is the set of functions that can possibly label the jth child
node of a node labeled with fi�

Following closure� lil�gp allows any function of type I to label any internal node� and any
function of type II and III to label any external node� Obviously� in general� di�erent
functions take di�erent arguments and return di�erent ranges� Tspecs allow expressing
such di�erences� thus allowing reduction in the space of tree structures and tree instances�
Moreover� some Tspecs also implicitly restrict what function can call other functions� Tspecs
are analogous to function prototypes and data typing in the context of tree�like computer
programs� and thus they are similar to Montana�s type restrictions 
���	�

Example � Assume FI � ff�� f�� f�g with arities 
� �� and �� respectively� Assume FII �
ff�g and FIII � ff�� f�� f�g� Assume that the three type III functions generate random
boolean� integer� and real� respectively� Assume f� reads an integer� Assume f� takes boolean
and two integers� respectively� and returns a real� Assume f� takes two reals and returns
a real� Assume f� takes a real and returns an integer� Also assume that the problem spec�
i�cations state that a solution program should compute a real number 	what the problem
might be is irrelevant here
� The example assumes that integers are compatible with reals�
while booleans are not compatible with either 	di�erent than in the C programming language
�
These assumptions are expressed with the following Tspecs�

TRoot � T �
� � T �

� � T �
� � ff�� f�� f�� f�� f�� f�g

T �
� � ff�g

T �
� � T �

� � ff�� f�� f�g

However� syntactic �t does not necessarily mean that a function should call another function�
One needs additional speci�cations based on program semantics� These are provided by
means of Fspecs� which further restrict the space of trees�

De�nition � De�ne the following Fspecs 	semantic constraints
�

�� FRoot � the set of functions disallowed at the Root�

�� F� � Fi is the set of functions disallowed as direct callers to fi 	generally� a function
is unaware of the caller� however� GP constructs a tree
�


� F �
� � F

j
i is the set of functions disallowed as argj to fi�

�



Example � Continue example �� Assume that we know that the sensor reading function
f� does not provide the solution to our problem� We also know that boolean 	generated by
f�
 cannot be the answer 	this information is actually redundant as it can be inferred from
Tspecs� however� it will be easier for the user if no speci�c requirements are made as to how
to specify non�redundant constraints
� Also assume that for some semantic reasons we wish
to exclude f� from calling itself 	e�g�� this is the integer�part function� which yields identity
when applied to itself
� These constraints are expressed with the following Fspecs 	the other
sets are empty
�

FRoot � ff�� f�g

F� � ff�g

��� Transformation of the constraints

����� Normal form

The above Tspecs and Fspecs provide a speci�cation language for expressing problem con�
straints� Obviously this language is limited in power� However� it is quite useful �as our
experiments illustrate � section 
	 and we believe the expressible constraints are the most
general that could be implemented without increasing the computational complexity of lil�gp
�section ����� and �����	�

Because Tspecs and Fspecs allow redundant speci�cations� an obvious issue is that of the ex�
istence of su�ciently minimal speci�cations� It turns out that after certain transformations�
only a subset of Tspecs and Fspecs is su�cient to express all such constraints� This obser�
vation is extremely important� as it will allow e�cient constraint enforcement mechanisms
after some initial preprocessing� The �rst step is to extend Fspecs�

Proposition � The following are valid inferences for extending Fspecs from Tspecs�

�fk�F �fk �� T
j
i � fk � F

j
i 	

�fk�F �fk �� TRoot � fk � FRoot	

�� If fk returns a range which is not compatible with the domain for the speci�c function
argument 	fk �� T

j
i 
� then fk cannot be used to provide values for the argument� The same

applies to values returned from the program�

The above proposition is very important as it states that Tspecs can be expressed with
Fspecs�

De�nition � If Fspecs explicitly satisfy proposition � then call them T�extensive Fspecs� If
Fspecs do not satisfy proposition � for any function� then call them T�intensive Fspecs�

�



In other words� T�intensive Fspecs list only semantics�based constraints which cannot be
inferred from data types�

Proposition � T�extensive Fspecs are su�cient to express all Tspecs�

�� Consider function fk and function fi of type I 	with arguments
� Two cases are possible�

� ��fk � f
j
i 	� Then fk �� T

j
i in Tspecs� and according to proposition � fk � F

j
i � Thus�

Fspecs express the same information that fk cannot be called from the jth argument of
fi�

� fk � f
j
i � Then fk � T

j
i in Tspecs� Thus� based on Tspecs there is no reason to exclude

from being called by the jth argument of fi� However� Fspecs list additional constraints
which supersede those of Tspecs� Thus� if fk � F

j
i then fk should be excluded regardless

of Tspecs� and if fk �� F
j
i then Fspecs and Tspecs say the same�

Now we look at redundancies among Fspecs�

Proposition � Suppose fk � F and Fspecs are T�extensive� Then

�fi�F �fk � Fi � �j����ak	fi � F
j
k 	

�� If fk cannot call fi� then fi will never be called by fk on any of its ak arguments�

However� F� and F �
� are not equivalent � a function may be allowed on some arguments but

not on others� Nevertheless� both are not needed either � F �
� Fspecs are stronger�

De�nition � If Fspecs explicitly satisfy proposition 
 then call them F�extensive Fspecs�
Dropping all F� from the F�extensive Fspecs gives F�intensive Fspecs�

Proposition � T�extensive F�intensive Fspecs are su�cient to express all Fspec constraints�

�� Follows from proposition 
�

De�nition � Call the T�extensive F�intensive Fspecs the normal form� That is� the normal
form contains only the FRoot and F �

� Fspecs 	after proper transformations
�

Proposition � The normal form is su�cient to express all constraints of the Tspec�Fspec
language�

�� According to proposition � T�extensive Fspecs express or supersede Tspecs� According to
proposition �� T�extensive F�intensive Fspecs express all the same info as any other form of
Fspecs�

It is not shown here� but the normal form is also the minimal form that expresses the Tspec
and Fspec constraints�

�



Example � Constraints of examples � and � have the following normal form�

FRoot � ff�� f�� f�g ��	

F �
� � ff�� f�� f�� f�� f�� f�g ��	

F �
� � F �

� � ff�� f�� f�� f�g ��	

F �
� � F �

� � ff�g �
	

F �
� � ff�� f�g ��	

The normal form expresses constraints in a unique and minimal form� These transformed
constraints are consulted by lil�gp to restrict the search space� Obvious questions remain�
how can crossover�mutation use the information in an e�cient and e�ective way�� We
propose to express the normal form di�erently � in mutation sets � to facilitate e�cient con�
sultations� In fact� we show that the overall O complexity for constrained mutation�crossover
remain the same�

����� Useless functions

Given a speci�c set of constraints� it may happen that the constraints prohibit some func�
tions from being used in any valid program � such functions would invalidate any program
regardless of their position in the program tree� Detection of such cases is addressed in this
section� Notice that this issue would be dealt with by CGP lil�gp itself since no node would
be labeled with such a function� Early detection is rather a tool aimed at presenting such
situations to the user�

De�nition 	 If a function from F cannot label any nodes in a valid tree� call it a useless
function�

Proposition 	 A function fi � F is useless i�

� it is a member of all sets of the normal form� or

� it is a member of all sets of the normal form except for only sets associated with useless
functions�

�� F �
� sets of the normal form list functions excluded from being called as children of other

functions� FRoot lists functions excluded from labeling the Root� A function excluded from
labeling the Root and excluded from labeling all children nodes cannot possibly label any node
in a valid program� On the other hand� if the function does not appear in at least one of
the sets of the normal form� then it can indeed label some nodes� The only exception to the
latter is when the function is allowed to be directly called only from other functions which are
found to be useless� Because the useless functions cannot label any nodes� then the function
in question will never be called in any tree�

�



Proposition 
 Removing useless functions from F does not change the CGP search space�
That is� exactly the same programs can be evolved before and after the removal�

�� Useless functions cannot appear in any valid tree�

����� Mutation sets

lil�gp allows parameters determining how deep to grow a subtree while in mutation� That
is� lil�gp allows di�erentiation between functions of type I and terminal nodes �labeled with
type II or III	� We need to provide for the same capabilities�

De�nition 
 De�ne FN to be the set of functions of type I that can label 	thus� excluding
useless functions
 node N without invalidating an otherwise valid tree containing the node�
De�ne TN to be the set of terminals T that can label node N the same way�

Proposition � Assume the normal form for constraints� and node N� not being the Root
and being the jth child of a node labeled fi� Then

TN � ffkjfk �� F
j
i 	 fk � FII 
 FIIIg

FN � ffkjfk �� F
j
i 	 fk � FIg

�� The normal constraints express all Tspecs and Fspecs according to proposition �� N is not
the Root� so it must be a child of a node labeled with functions with arguments� F

j
i in the

normal form lists all functions excluded from labeling the child N�

Proposition � Assume the normal form for constraints and node N being Root� Then

TN � ffkjfk �� FRoot 	 fk � FII 
 FIIIg

FN � ffkjfk �� FRoot 	 fk � FIg

��Arguments follow those for Proposition ��

De�nition � Let us denote TRoot and FRoot the pair of mutation sets associated with Root�
Let us denote T j

i and F j
i the pair of mutation sets for the jth child of a node labeled with fi�

Proposition �
 For an application problem� there are � �
PjFI j

i
��ai	 mutation set pairs�

�� There is exactly one pair for Root� For other nodes� the mutation sets are determined by
what function labels the parent node� and which child of the parent the node is� Parent nodes
are of type I� If the label of the parent is fi� then it can have exactly ai di�erent children�

The above implies that the information expressed in the normal form can be expressed with
� � �� �

PjFI j
i
��ai		 di�erent function sets� while only two sets �one pair	 are needed in lil�gp

itself� Now we show how these sets alone are su�cient to initialize CGP lil�gp programs with
only valid trees� to mutate valid trees into valid trees� and to crossover valid trees into valid
trees�

��



Proposition �� For any non�root node N of a valid program at least one of the two mutation
sets is guaranteed not to be empty� The same is true for Root 	see proposition ��
�

�� Suppose N is labeled with fi� If N is an internal node� then fi � FN � If N is a leaf� then
fi � TN �

Example � Here are selected examples of mutation sets generated for example 
�

TRoot � ff�g

FRoot � ff�� f�� f�g

T �
� � ff�� f�� f�g

F�
� � ff�� f�g

����� Constraint feasibility

Unfortunately constraints may be so severe that only empty or only in�nite trees are valid�
In the �rst case� GP would fail to initialize trees �or it would try in�nitely	� In the second
case� GP would run out of memory or it would fail� as in the �rst case� if size restrictions were
imposed� To avoid such problems� this could be detected early and the troublesome functions
can be identi�ed and possibly removed from the function set� We exclude the empty tree
from being valid� In other words� a tree must contain at least one node to constitute a
potential solution�

Proposition �� If �TRoot � �	 	 �FRoot � �	 then no valid trees exist�

�� There is no way to label the Root� Thus� valid 	nonempty
 trees do not exist� Stated
di�erently� a valid tree cannot have both of these sets empty�

Proposition �� identi�es trivial cases when no valid trees exist because only empty trees are
valid� However� a more common problem might be that only in�nite trees exist�

Example � Consider a function fi � FI such that 
j�ai�F
j
i � F n ffig in the normal form�

In other words� on the given argument the function can only call itself� It can be veri�ed that
any node N being the jth child of any node labeled with fi will have the following mutation
sets 	proposition �
� TN � � and FN � ffig� This means that the child node can only be
labeled the same way as the parent� fi� Recursively� the same will apply to its jth child� Note
that the same can happen through indirect recursion as well�

De�nition � We say that a subtree whose root is labeled fi can be �nitely instantiated
without� 	cb�w�
F � � F i� �nite valid trees without labels from F � do exist�

��



Proposition �� A tree with its root labeled fi cannot be �nitely instantiated without func�
tions from F �
 	fi cbfiw � F �
 i� either is true


j�ai�T
j
i � � 	 F j

i � ffig	


j�ai�T
j
i � � 	 �

fk�F
j
i
n�F ��ffig�

��fk cb�w� �F � 
 ffig		

�� If the sets T �
i are nonempty for all ai children� all the children can be instantiated to

leaves� Any child having T j
i � � and only allowing recursive calls 	�rst case
 will necessarily

create an in�nite tree� Any such child which also allows other type I function calls must
be eventually instantiated with a �nite tree � only indirect recursion would obviously lead to
in�nite trees � those are excluded in the second case�

Proposition �� helps identify functions causing only in�nite trees to be valid� Such cases
can be reported to the user� Moreover� the troublesome functions can be removed from
consideration�

This feature� along with useless functions� is not currently implemented� Montana 
���
presents a procedure which also takes tree depth into account�

����� CGP lil�gp mutation

lil�gp mutates a tree by selecting a random node �di�erent probabilities for internal and
external nodes	� The mutated node becomes the root of a subtree� which is grown as deter�
mined by some parameters� To stop growing� a terminal function is used as the label� To
force growing� a type I function is used as the label� In CGP lil�gp the only di�erence is that
a subset of the original functions provides candidates for labels�

Operator � �Mutation� To mutate a node N� �rst determine the kind of the node 	either
Root� or otherwise what the label of the parent is and which child of that parent N is
� If
the growth is to continue� label the node with a random element of FN and continue growing
the proper number of subtrees� each grown recursively with the same mutation operator�
Otherwise� select a random element of TN � instantiate it if from FIII� and stop expanding
N� If growing a tree and FN � �� then select a member of TN 	guaranteed not to be empty
under proposition ��
� If stopping the growth and TN � �� then select a member of FN 	this
will unfortunately extend the tree� but it is guaranteed to stop according to proposition �

�

Proposition �� If a valid tree is selected for mutation� operator � will always produce a
valid tree� Moreover� this is done with only constant overhead�

�� The mutation sets express exactly the same information as Tspecs and Fspecs� Moreover�
the only implementation di�erence is to consult one of � �

PjFI j
i
��ai	 instead of a single set

of function labels in lil�gp� Which set to consult is immediately determined from the parent
node and can be accessed in constant time given proper data structure�

��



Example 	 Assume the mutation sets of example �� Assume mutating parent� as in �gure
�� Assume the node N is selected for mutation� It is the �st child of a node labeled with f��
Thus� TN � T �

� � ff�� f�� f�g and FN � F�
� � ff�� f�g� If the current mode is to grow the

tree� then the mutated node will be randomly labeled with either f� or f�� If the current node
is to generate a leaf� then label N with either f�� f�� or f��

����	 CGP lil�gp initialization

Operator � �Create a valid tree� To generate a valid random tree� create the Root node�
and mutate it using the mutation operator�

Proposition �� If TRoot �� � � FRoot �� � and functions such that trees with such roots
cannot cbfiw � � are removed from F then operator � will create a tree with at least one
node� the tree will be �nite and valid with respect to constraints�

�� Because of the conditions at least one node can be labaled� The functions remaining in the
mutation sets can label trees with �nite elements and guarantee validity�

����
 CGP lil�gp crossover

The idea to be followed is to generate one o�spring by replacing a selected subtree from
parent� with a subtree selected from parent�� To generate two o�spring� the same may be
repeated after swapping the parents�

Operator � �Crossover� Suppose that node N from parent� is selected to receive a material
from parent�� First determine FN and TN � Assume that F� is the set of labels appearing in
parent�� Then� �FN 
 TN	 � F� is the set of labels determining which subtrees from parent�
can replace the subtree of parent� starting with N� In other words� any subtree of parent�
whose root is labeled with one of �FN 
TN 	�F� can replace N and still generate a valid tree�

Proposition �	 If two valid trees are selected for crossover� the operator will always produce
a valid tree� Moreover� this is done with only the same 	order
 computational complexity�

�� For the �rst part� arguments follow those of proposition �� since crossover is based on
the same mutation sets� Crossover is implemented in lil�gp in such a way that a random
number up to the number of nodes in parent� is generated� and then the tree is traversed
until the numbered node is encountered 	can be done separately for internal and external
nodes
� Therefore� crossover�s complexity is in the size of the tree O�n	�

CGP lil�gp does not know ahead of the traversal how many nodes will be found applicable�
During the traversal� applicable nodes are indexed for constant�time access and they are
counted� At the end of the tree� a random number up to the counter is generated� and the
proper node is immediately accessed� On average� this requires traverasl twice as long� but

��



in the same order�
Instead of generating indexed constant�time�access structures� another traversal may follow�
This does not change the overall complexity �adds another O�n		�

� Insert Fig� �

Figure �� Illustration of mutation and crossover�

Example 
 Assume mutation sets of example �� Assume parent� and parent� as in �gure
�� Assume the node N is selected for replacing with a subtree of parent�� It is the �st child
of a node labeled with f�� Then� TN � T �

� � ff�� f�� f�g and FN � F�
� � ff�� f�g� and only

the subtrees with the shaded roots can be used to replace N� Crossover would select a random
element from a so marked set of nodes� and move the corresponding subtree�

� Illustrative Experiment

In this section� we follow a practical example intended to illustrate how problem�speci�c
knowledge can be used to come up with various constraints� In this experiment� we explore
di�erent constraints that can be used to express� and thus restrict� some of the redundant
solutions from being explored by GP� This is intended as illustration� but we also explore
the implications of such restrictions on the behavior of GP� In fact� this issue arises in any
state�space search� and has yet to be addressed� We hope that our tool will help in studying
this issue�

We will use the widely studied ���multiplexer problem 
��� Multiplexer is a boolean circuit
with a number of inputs and exactly one output� In practical applications� a multiplexer is
used to propagate exactly one of the inputs to the output� For example� in the computer
CPU �central processing unit	 multiplexers are used to pass binary bits �via a group of
multiplexers	 from exactly one location �e�g�� one register	 to the ALU �arithmetic�logic unit	�
Multiplexer has two kinds of binary inputs� address and data� The address combination
determines which of the data inputs propagates to the output� Thus� for a address bits� there
are �a data bits� ���multiplexer has � address and � data bits� Let us call them a
 � � � a� and
d
 � � � d�� respectively� For example� when the address is ��� �the boolean formula a�a�a
	�
then d� is passed to the output�

���multiplexer implements a boolean function� which can be expressed in DNF �disjunctive
normal form	 as�

a�a�a
d� � a�a�a
d� � a�a�a
d� � a�a�a
d� � a�a�a
d� � a�a�a
d� � a�a�a
d� � a�a�a
d


In 
��� Koza has proposed to use the following function set FI � fand� or� not� ifg and termi�
nals FII � fa
 � � � a�� d
 � � � d�g �no FIII functions	 for evolving the ���multiplexer function

�




with GP� In this case� GP evolves trees which are labeled with the above primitive elements�
each element having the standard interpretation� The only feedback to this evolution is the
evaluation �environment	� which assigns a �tness value to each tree based on the number of
the possible ��
� input combinations which compute the correct output bit�

The function set is obviously complete� thus satisfying su�ciency� However� the set is also
redundant � a number of type I subsets� such as fand� notg� are known to be su�cient to
represent any boolean formula� Thus� by placing restrictions on function use� we may reduce
the amount of redundant subspaces in the representation space� However� we do not know
what function sets make it easier� or more di�cult� to solve this problem by evolution�
In fact� the following experiments will spark very interesting observations suggesting that
su�ciency itself is not strong enough to predict learning properties � in addition to providing
the necessary functions�terminals� one should also provide �the right� functions�terminals�

As to closure� it is trivially satis�ed for this problem since all terminals �address�data sensors	
and all type I functions return boolean� Thus� this problem does not have any invalid
subspaces � all constraints will be used only to reduce the number of redundant�undesired
trees� Even given this triviality� it is a very interesting problem�

We set a number of experiments� intended to illustrate how CGP lil�gp can be used to
utilize various constraints� drawn from problem�speci�c knowledge� For each case� we repeat
and average �� independent runs� with a population of ����� ������������� probabilities for
crossover�selection�mutation� and otherwise the default parameters� We report averages of
best solutions generated at ��iteration increments �discrete learning curves	 while running
for ��� iterations�

Previously� we observed that the constraint language allows redundant speci�cations� In fact�
many of the constraints we subsequently use can be expressed in a number of di�erent ways
�it is the translator that generates unique equivalent constraints	� To make the presentation
more systematic� we assume that Tspecs stay constant� and all constraints are expressed
with Fspecs� In one case� however� we illustrate how the same constraints can be expressed
with di�erent Tspecs� The generic Tspecs we use do not impose any constraints� Thus�

TRoot � T �
� � fand� or� not� if� a
 � � � a�� d
 � � � d�g

where ��� indicates any possible value� here meaning that all sets are the same�

��� Unconstrained ���multiplexer with lilgp �base experiment	

Even though it is not our current intention here to evaluate the impact that the reduction
of redundant subspaces may have on search properties� we set a benchmark obtained from
unconstrained lil�gp on the same problem� In this experiment� we evolve ���multiplexer solu�
tions using the above function set and no constraints� Thus� we recreate Koza�s experiments�
except that we use lil�gp �and not CGP lil�gp either	�

The remaining experiments all use CGP lil�gp�

��



��� Experiment E

 unconstrained ���multiplexer with CGP lil�gp

This is the same base experiment except that it is run with CGP lil�gp� Thus� there are no
constraints �all Fspecs are empty	� This experiment may be treated as informal validation �
formal validation�veri�cation is done separately and will be reported elsewhere�

��� Experiment E�
 using su�cient set fand� notg

We observe that fand� notg is a su�cient type I function set� Thus� we run an experiment
with only these two type I functions� While in this speci�c case it is also possible to run
lil�gp with only these functions �by modifying and then recompiling the program	� this is
not our objective� Instead� we show how this particular constraint can be presented in CGP
lil�gp� Our constraint is that of the four type I functions� if and or be not used at all� This
can be expressed with the following Fspecs�

FRoot � F �
� � fif� org F� � �

We should note that even though fand� notg is a su�cient set� the ���multiplexer function
expressed with these two functions is necessarily more complex� Thus� we should not expect
any payo� from this constraint �this is another example of problem�speci�c knowledge	� In
other words� we suspect that this is not �the right� su�cient set�

��� Experiment E�
 DNF

We attempt to generate DNF �disjunctive normal form	 solutions� Obviously� if must be
excluded� However� this is not su�cient� We must also ensure that or is distributed over
and� and that not applies to type II functions �atoms	 only� This can be expressed �one of
possible options	 with the following Fspecs�

FRoot � fifg F� � �

F �
if � � F �

not � fif� or� and� notg

F �
and � fif� org F �

or � fifg

��� Experiment E

 structure�restricted DNF

The above DNF speci�cation leaves many interpretation�isomorphic trees� In this experi�
ment� we intend to remove some of those redundancies �though not all	� We constrain the
trees to grow conjunctions and disjunctions to the left only �thus� we prohibit right�recursive
calls on or and and	� This is accomplished with the following modi�cations to Fspecs of E��

FRoot � fifg F� � �

F �
if � � F �

not � fif� or� and� notg

��



F �
andfif� org F �

and � fif� or� andg

F �
orfifg F �

or � fif� org

Previous experience with other evolutionary algorithms using DNF representation suggest
that DNF is �the right� representation �GIL system� 
��	� Thus� we would expect both E�

and E� to do relatively well� We will shortly observe that �and speculate why	 this is not
the case�

��
 Experiment E�
 using fifg only

Here we observe that the type I function set FI � fifg is completely su�cient for the task
of learning the ���multiplexer� Even though studying that is not our explicit objective� we
may compare the learning characteristics of this experiment with those of other complete
function sets �E�� E�� and E�	� giving us some insights as to what functions make it easier
for GP to evolve solutions to the ���multiplexer problem� Our observations will be rather
striking�

Restricting trees to use this function only can be accomplished with the following Fspecs�

FRoot � F �
if � fand� or� notg F� � �

F �
or � F �

and � F �
not � irrelevant

��� Experiment E�
 E� with problem�speci�c knowledge

Now� suppose that in addition to observing that fifg is a su�cient type I function set we also
use some additional problem�speci�c knowledge� For example� suppose we know that the
�rst three bits are addresses and the others are data bits� Knowing the interpretation of if
�which we do since we implement it	� we may further conclude that the condition argument
���	 should test addresses� and the other arguments should compute and thus return data
bits� This constraint could be completely expressed with a slightly enlarged function set�
To avoid extra complexity� we express a somehow lesser constraint� one which restricts only
immediate arguments �in the original theory it is possible to specify the stronger constraint
for this function set� because that theory is based on sets rather than functions 
��	� This
can be expressed with the following Fspecs�

FRoot � fand� or� not� a
� a�� a�gF� � �
F �
if � fand� or� not� d
 � � � d�g

F �
if � F �

if � fand� or� not� a
� a�� a�g
F �
or � F �

and � F �
not � irrelevant

or the same Fspecs as those of E� plus the following Tspecs �this is just for illustration 
however� as indicated earlier� Tspecs are intended to restrict closure	�

T �
if � fif� a
� a�� a�g

TRoot � T �
if � T �

if � fif� d
 � � � d�g

��



��� Experiment E�
 E� with further heuristic knowledge

Further suppose that we prevent trees of E� from using if on its �rst argument� This further
reduces redundancy� while still allowing solutions to evolve� This can be accomplished with�

FRoot � fand� or� not� a
� a�� a�gF� � �
F �
if � fand� or� not� if� d
 � � � d�g

F �
if � F �

if � fand� or� not� a
� a�� a�g
F �
or � F �

and � F �
not � irrelevant

��� Experiment E�
 E� relaxed

Finally� suppose that we want to allow another function to enrich our explored search space
� not to be used in the condition part of if � However� we make sure that it only applies
to non�negated address bits� This of course introduces additional redundancy� This can be
accomplished with�

FRoot � fand� or� not� a
� a�� a�gF� � �
F �
if � fand� or� if� d
 � � � d�g

F �
if � F �

if � fand� or� not� a
� a�� a�g
F �
not � F n fa
� a�� a�g

F �
or � F �

and � irrelevant

With the above� E� will evolve solutions of the form illustrated in �gure ��

� Insert Fig� �

Figure �� Solution form for E��

���� Experimental results and discussion

The results are very interesting� some even striking� To illustrate them� we present two
�gures� Figure � presents quality of the best solutions captured in ��iteration intervals
�averaged over � independent runs	� In cases when a run �nds the perfect ���
�	 tree before
the ���th iteration� its ��
� evaluation is used for averaging in subsequent iterations�

Figure 
 presents complexity� measured by the number of nodes� of the same best trees�
For each run which completes before the ���th iteration� complexity � is used for averaging
on subsequent generations� This way the curves are directly proportional to average time
needed to evaluate an individual �since no more work is necessary after a solution is found	�
In other words� lower complexity would result in lower processing times per generation�
Moreover� the area bounded by each curve is directly proportional to the total time needed
for evolution �with a bound ��� iterations	�

��



First� when constraints are not present �base and E
	� both lil�gp and CGP lil�gp perform
very similar searches �discrepancies result from a di�erent number of random calls� thus
resulting in stochastically di�erent runs	� As indicated before� this is not intended to serve
as veri�cation�validation� More systematic experiments are used to accomplish that� with
extra processing to ensure the same random calls take place � in which case both programs
explore exactly the same trees� Because the runs were very similar here� �gures � and 

report averages from these two experiments�

Forcing evolution with fand� notg type I set �E�	� even though it dramatically reduces the
number of redundant solutions being explored� has a disastrous e�ect� It seems that the most
important reason for this degradation is that� as pointed out shortly� if is extremely e�cient
in solving this problem with GP� Moreover� ���multiplexer expressions using fand� notg are
necessarily more complex� This would require extra processing to evolve � as seen in Figure
�� the learning curve has not saturated after ��� iterations�

Forcing DNF functions to evolve �E�	 has equally disastrous e�ects on the program� In
this case� even further restrictions on tree structures �E�	 failed to compensate for the dis�
advantage� It seems that the reasons are similar to those above � if will prove to be the
most e�ective and thus extremely important� The fact that GP fails to e�ciently evolve
DNF solutions is striking when compared against another evolutionary program designed
for machine learning� GIL 
�� is a genetic algorithm with specialized DNF representation�
specialized inductive operators� and evolutionary state�space search controlled by inductive
heuristics� In reported experiments� while evolving solutions to the same function� but in
a more challenging environment in which only ��Our DNF GP evolved less than ��Even
though a direct comparison was not an objective here� one may draw some conclusions� In
this case� both programs were using the same representation �DNF	� The only di�erence
is that CGP lil�gp used only blind crossover�mutation� �red with static probabilities� while
GIL used operators modeling the inductive methodology� whose �ring was controlled by
heuristics� This suggests that such problem�speci�c knowledge is extremely important to
evolutionary problem solving�

� Insert Fig� �

Figure �� Comparison of the quality of the best�of�population tree�

Because of similar results� �gures � and 
 report averages of E�� E�� and E��

In the other experiments we investigate the utility of the if function for this speci�c problem�
The reason for this experiment is that our previous results with restricted but still su�cient
function sets failed to improve search characteristics� instead degrading the performance and
leading to our suspicion that this interpretation�rich function is extremely important for
solving this problem with GP� Thus� E� was set to evolve with only one type I function� if �
Results are strikingly obvious� perfect solutions �nally emerge from this evolution� on the

��



average after about �� iterations� However� time complexity increases due to the increase in
tree sizes ��gure 
	�

Increased tree sizes translate directly into longer processing time per iteration� Thus� the
wall�clock performance might not necessarily improve� To alleviate the problem� we used
additional problem�speci�c information about di�erent interpretation of address and data
bits �E�	� This leads not only to further speed up in evolution ��gure �	� The evolving trees
also have the smallest sizes from among all experiments ��gure 
	� This result supports our
previous conjecture that problem�speci�c knowledge is crucial here� It also illustrates how
the generic CGP lil�gp can utilize this kind of information �GIL� on the other hand� was
designed and implemented with such problem�speci�c knowledge from the beginning	�

In other words� this result indicates that it is indeed important to provide �the right� and
minimal set of functions for GP� For example� comparing results from E
 and E� one may
see a dramatic improvement despite the fact that both experiments use the identi�ed if

function� This indicates that reducing the redundant subspace pays o� in this case� but only
because �the right� subspace was pruned away�

� Insert Fig
 �

Figure 
� Comparison of complexity needed for evolving solutions in ��� generations �com�
plexity � used on �nished runs	�

Finally� providing additional heuristic about the desired solutions� and thus pruning away
other otherwise valid solutions� leads to even better speed ups �E� and E� in �gure � are av�
eraged since they produced indistinguishable curves	� This further supports our observation
that providing such information is advantageous not only to generate solutions with some
speci�c characteristics but to speeding up evolution as well� Unfortunately� usually this can
only be done by a careful redesign of the algorithm�representation�operators� or the function
set in GP� In CGP� no changes are needed�

Between E� and E� it is worthwhile to point out that E�� which uses less redundant search
space� explores trees of slightly lower complexity� Finally� between the two and E�� it is
interesting to observe that while the former evolve perfect solutions in many fewer gener�
ations� this involves trees of larger sizes� In fact� in terms of clock�time performance� E�

outperforms these two �areas in �gure 
	�

� Summary

This paper describes a method to prune constraints�identi�ed subspaces from being explored
in GP search� The constraints are allowed in a user�friendly language aimed at expressing
syntax and semantics�based restrictions to closure� Speci�c constraints lead to the exclusion
of syntactically invalid� redundant� or simply undesired trees from ever being explored� Such

��



pruning may not only lead to more e�cient problem solving with lil�gp� When studied
systematically� it may also give insights about pruning redundant subspaces from any state�
space search�

We have presented a complete methodology and illustrated it with an example� We have
also used the ���multiplexer problem to illustrate practical application of the methodology�
Even though illustration was our primary goal� some interesting observations were made�

It has been obvious that the function set proposed by Koza for solving this problem is
redundant� Our experiments suggest that reducing those redundancies� and thus reducing
the search space� is not necessarily advantageous� However� if �the right� choices are made�
a tremendous payo� can be expected� This is further ampli�ed by using additional problem�
speci�c knowledge� CGP lil�gp allows us to express such information with a generic constraint
language� alleviating the need for devising specialized representation�operators� However� by
comparing the results with those of another specialized algorithm� we may observe that such
a specialized algorithm makes it advantageously possible to implement other problem�speci�c
information and heuristics�

In the future� we plan to make more systematic testing aimed at supporting the observations
made here� In particular� we did not even explore the methodology�s impact on the more
serious problem of invalid subspaces� where we expect the bene�ts to amplify� We are also
currently extending the implementation for ADFs �automatically de�ned functions	� which
will allow similar capabilities to Montana�s generic functions 
��� yet more general �as our
crossover is more general	�

One should point out that the current constraint speci�cation language does not allow for
arbitrary constraints to be expressed� In particular� this lil�gp�s version is even weaker than
the originally proposed methodology� Thus� for the future we also plan to explore extending
the language and�or this implementation of lil�gp�

References


�� Leonard Bolc ! Jerzy Cytowski� Search Methods for Arti�cial Intelligence� Academic
Press� �����


�� Lawrence Davis �ed�	� Handbook of Genetic Algorithms� Van Nostrand Reinhold� �����


�� David E� Goldberg� Genetic Algorithms in Search� Optimization� and Machine Learning�
Addison Wesley� �����



� Holland� J� Adaptation in Natural and Arti�cial Systems� University of Michigan Press�
�����


�� Cezary Z� Janikow� �A Knowledge�Intensive GA for Supervised Learning�� Machine
Learning �� �����	� pp� ��������

��




�� Cezary Z� Janikow� �Constrained Genetic Programming�� Submitted to Evolutionary
Computation�


�� Kenneth E� Kinnear� Jr� �ed�	 Advances in Genetic Programming� The MIT Press� ���
�


�� John R� Koza� Genetic Programming� The MIT Press� �����


�� John R� Koza� Genetic Programming II� The MIT Press� ���
�


��� David J� Montana� �Strongly typed genetic programming�� Evolutionary Computation�
Vol� �� No� �� �����


��� Douglas Zonker ! Bill Punch� lil�gp ��� User�s Manual� zonker"isl�cps�msu�edu�

��


