A Methodology for Processing Problem Constraints in
Genetic Programming

Cezary 7. Janikow™
Department of Mathematics and Computer Science
University of Missouri - St. Louis
emailto:janikow@radom.umsl.edu

November 6, 1997

Abstract

Search mechanisms of artificial intelligence combine two elements: representation,
which determines the search space, and a search mechanism, which actually explores
the space. Unfortunately, many searches may explore redundant and/or invalid so-
lutions. Genetic programming refers to a class of evolutionary algorithms based on
genetic algorithms but utilizing a parameterized representation in the form of trees.
These algorithms perform searches based on simulation of nature. They face the same
problems of redundant/invalid subspaces. These problems have just recently been ad-
dressed in a systematic manner. This paper presents a methodology devised for the
public domain genetic programming tool /il-gp. This methodology uses data typing and
semantic information to constrain the representation space so that only valid, and pos-
sibly unique, solutions will be explored. The user enters problem-specific constraints,
which are transformed into a normal set. This set is checked for feasibility, and sub-
sequently it is used to limit the space being explored. The constraints can determine
valid, possibly unique space. Moreover, they can also be used to exclude subspaces the
user considers uninteresting, using some problem-specific knowledge. A simple exam-
ple is followed thoroughly to illustrate the constraint language, transformations, and
the normal set. Experiments with boolean 11-multiplexer illustrate practical applica-
tions of the method to limit redundant space exploration by utilizing problem-specific
knowledge.

*Supported by a grant from NASA/JSC: NAG 9-847.

1 Preliminaries

Solving a problem of the computer involves two elements: representation of the problem,
or that for its potential solutions, and a search mechanism to explore the space spanned
by the representation. In the simplest case of computer programs, the two elements are
not explicitly separated and instead are hard-coded in the programs. However, separating
them has numerous advantages such as reusability for other problems which may require
only modified representation. This idea has been long realized and practiced in artificial
intelligence. There, one class of algorithms borrows ideas from nature, namely population
dynamics, selective pressure, and information inheritance by offspring, to organize its search.
This is the class of evolutionary algorithms.

Genetic algorithms (GAs) [2, 3, 4] are the most extensively studied and applied evolution-
ary algorithms. A GA uses a population of chromosomes coding individual potential solu-
tions. These chromosomes undergo a simulated evolution facing Darwinian selective pressure.
Chromosomes which are better with respect to a simulated environment have increasing sur-
vival chances. In this case, the measure of fit to this environment is based on the quality of
a chromosome as a solution to the problem being solved. Chromosomes interact with each
other via crossover to produce new offspring solutions, and they are subjected to mutation.

Most genetic algorithms operate on fixed-length chromosomes, which may not be suitable
for some problems. To deal with that, some genetic algorithms adapted variable-length
representation, as in machine learning [3, 5]. Moreover, traditional genetic algorithms use
low-level binary representation, but many recent applications use other abstracted alphabets
[2, 5].

Genetic programming (GP) [7, 8, 9] uses trees to represent chromosomes. At first used to
generate LISP computer programs, GP is also being used to solve problems where solutions
have arbitrary interpretations [7]. Tree representation is richer than that of linear fixed-
length strings. However, there is a price to pay for this richness.

In general, the number of trees should equal the number of potential solutions, with one-to-
one mapping between them. Unfortunately, this is hardly ever possible. Because we need a
mapping for each potential solution, the number of trees will tend to be much larger, with
some of them being redundant or simply invalid. Therefore, some means of dealing with such
cases, such as possibly avoiding the exploration of such extraneous trees, are desired. While
for some problems some ad-hoc mechanisms have been proposed [7, 8], there is no general
methodology. Our objective is to provide a systematic means, while making sure that the
means do not increase the overall computational complexity. In this paper, we present a
method suitable for, and implemented with, a standard GP tool lil-gp. This methodology is
a somehow weaker version of [6], modified specifically for lil-gp.

lil-gp is a tool [11] for developing GP applications. Its implementation is based on the
standard GP closure property [8], which states that every function can call any other function
and that any terminal can provide values for any function argument. Even though this is
usually called a ”property”, it is in fact a necessity in the absence of other means for dealing

with invalid trees.

Almost any application imposes some problem-specific constraints on the placement of ele-
ments in solution trees. Invalid solutions can be re-interpreted as redundant solutions (as
done to force closure), or they can be assigned low evaluations, practically causing their
extinction (penalty approach). Both approaches may face potential problems. Too many
ad-hoc redundancies may easily change problem characteristics (problem landscape). Too
many extinction-bound solutions waste computational resources and may cause premature
convergence (over-selection in GP [8]). Recently, other methods have been explored and
proposed. For example, Montana has developed means for ensuring that only valid trees
evolve (Strongly Typed Genetic Programming - STGP [10]), and we independently proposed
a similar methodology for processing more arbitrary constraints in Constrained Genetic Pro-
gramming (CGP) [6]. CGP, in addition to providing means for avoiding exploration of invalid
subspaces, also provides for specification/avoidance of both redundant subspaces as well as
subspaces which are perfectly valid but some problem-specific heuristics suggest to exclude
them from being desired solutions.

The objectives of CGP is to provide means to specify syntax and semantic constraints, and
to provide efficient systematic mechanisms to enforce them [6]. We have just implemented
a pilot tool', which incorporates CGP with the widely used GP tool lil-gp1.02 (lil-gp allows
forrest chromosomes, which for computer programs corresponds to program modules - our
current methodology deals with a single tree, but it is currently being extended). This paper
describes CGP applied to lil-gp (called CGP lil-gp).

Even though this paper is not intended to compare STGP with CGP, it is worthwhile to point
out that CGP ensures that the extra processing does not change the overall complexity of
the basic GP mechanisms. Moreover, CGP allows more user-friendly front-end for constraint
specifications, with a transformation aimed at reducing the constraints to a minimal set.
It also allows various constraints, such as syntax- and semantics-based. Finally, CGP’s
crossover is more powerful since it allows more feasible offspring from the same two parents.
A more systematic comparison will be presented separately.

In section 2, we overview the problems CGP attempts to alleviate. In section 3 we present
the CGP methodology for lil-gp, along with a complexity analysis. A simple example is used
to illustrate the processing from constraint specification to generation of the minimal set.
This section can be omitted by readers not interested in technical details. In section 4 we
present initial experiments designed to illustrate CGP lil-gp’s application to deal with re-
dundant/undesired search spaces using the 11-multiplexer problem. This experiment is only
intended to illustrate how problem-specific knowledge can be expressed with the constraint
language, and what the implications of restricting the search are. However, some important
observations are made in section 4.10.

Hfttp: //radom.umsl.edu

2 State-Space Searches and GP Search Space

In artificial intelligence, solving a problem on the computer involves searching the collection
of possible solutions. For example, solving a two-dimensional integer optimization problem
with both domains [1,100] would involve searching through the space of 10,000 solutions (one
for each pair). This search may be random, enumerated exhaustive, or heuristic [1]. However,
in most practical problems of interest to artificial intelligence, the space of potential solutions
is too large to be explicitly retained and effectively randomly or exhaustively searched by
an algorithms. Instead, the space is defined by implicit means, often by transition operators
generating new states from existing ones, along with a set of currently explored solutions.
Given a complete set of operators, some control strategy is then used to manage the search.
Such approaches are called state-space searches in artificial intelligence [1].

Evolutionary algorithms utilize state-space searches. The subspace being explored is retained
in the population of chromosomes. Genetic operators, such as mutation and crossover, gen-
erate new solutions from the existing ones. The control is stochastic, promoting exploration
of "better” subspaces (additional heuristics may be used to further guide the search, as in
51).

In GP, a set of functions and a set of terminals are defined. Elements of these label the
internal and the external nodes, respectively. Interpretations of those elements are given by
providing implementations for evaluating nodes labeling them. Then, a generic interpreter
uses those interpretations to evaluate a tree by following a standard traversal. For example,
a root node having three subtrees must be labeled with a function having three arguments.
These subtrees are evaluated recursively, and their values are used as arguments to the
function labeling the root.

Following evolutionary algorithms, GP generates a population of random trees, using the
primitive elements. Then, all trees are evaluated in the environment (using functional in-
terpretations with the interpreter, and the problem at hand). Crossover and mutation are
used to generate new trees in the population, from parents selected following Darwinian
principles. GP also allows another operator, selection, which simply copies chromosomes to
the new population.

Since all trees are evolved from the primitive elements, these must be sufficient to generate the
sought tree. The assumption that this is indeed the case is called the sufficiency principle
[8]. However, in general to satisfy sufficiency a large number of functions must be given.
This unfortunately exponentially explodes the search space. In up-to-date applications, this
is dealt with by providing ”the right” functions and terminals. Obviously, in many cases this
may not happen, and the search space will explode nevertheless. To deal with this potential
problem, as well as its current weak manifestation, practical size restrictions are imposed on
the trees. Unfortunately, the more rigid the restriction, the more likely that some important
solutions may be excluded.

In the next section we will present a methodology to utilize constraints to prune implicitly
identified subspaces. In general, the constraints we propose for the pruning include both

syntactic and semantic elements. Syntactic constraints include typing function arguments,
values returned by functions, and individual terminals. These are similar to those of Mon-
tana [10]. Semantic constraints are additional restrictions based on function or terminal
interpretation. The methodology presented here is a weaker version of that presented in [6],
but it is the one that has been implemented with [il-gp.

3 CGP Methodology

3.1 Constraint specifications

In lil-gp [11], functions and terminals fall into three categories. Let us call them functions
of type I, II, and IIT (as described below), and sets of those functions will be denoted as F7,
Fyr, and Frrr. Unless explicitly stated, all references to functions imply all function types
(denoted F), and all references to terminals imply functions of type II and IIT (denoted T)).
Borrowing [11]’s terminology, we have:

I. Ordinary functions. These are functions of at least one argument, thus they can label
internal nodes, with the number of subtrees corresponding to the number of arguments.

I1. Ordinary terminals. These are functions of no arguments. Therefore, they can label
external nodes. However, they are not instantiated in trees but rather during interpre-
tation. In other words, these terminal values are provided by the environment (as for
a function reading the current temperature).

ITI. Ephemeral random constant terminals. These are functions of no arguments, which
are instantiated individually in each tree, thus the values are independent of the envi-
ronment.

In lil-gp [11], terminal sets for type III are not extensively defined. Instead, they are defined
by generating functions, which return uniform random elements from the appropriate ranges.
Ranges for functions of type I and type II and not explicitly defined either.

In [6] we defined the notion of domain/range compatibility (denoted here =), which can
be used to infer validity of using functions and terminals as arguments to other functions.
That notion, based on sets, allows automated processing of such compatibilities. With [il-
gp, these capabilities cannot be automated since no explicit sets are used, and the resulting
methodology is somehow weaker (section 4 gives an example). Therefore, all compatibility
specifications are left to user’s responsibility (similarly to Montana’s approach [10]). This
unfortunately means that the user must be trained in the domain. Fortunately, our pre-
processing offers a user-friendly method to specify constraints which method can deal with
inconsistent and/or redundant specifications.

Definition 1 Define the following Tspecs (syntactic constraints):

1. TR0t — the set of functions which return data type compatible with the problem speci-
fication.

2. TF — Tij is the set of functions compatible with the jth argument of f;.
In terms of a labeled tree, 77 is the set of functions which, according to data types, can
possibly label the Root node. Tij is the set of functions that can possibly label the ;™ child
node of a node labeled with f;.

Following closure, lil-gp allows any function of type I to label any internal node, and any
function of type II and III to label any external node. Obviously, in general, different
functions take different arguments and return different ranges. Tspecs allow expressing
such differences, thus allowing reduction in the space of tree structures and tree instances.
Moreover, some T'specs also implicitly restrict what function can call other functions. Tspecs
are analogous to function prototypes and data typing in the context of tree-like computer
programs, and thus they are similar to Montana’s type restrictions [10]).

Example 1 Assume F; = {f1, fo, f3} with arities 3, 2, and 1, respectively. Assume Fi; =
{fs} and Frrr = {fs, fs, fz}. Assume that the three type III functions generate random
boolean, integer, and real, respectively. Assume fy reads an integer. Assume fi takes boolean
and two integers, respectively, and returns a real. Assume fo takes two reals and returns
a real. Assume f3 takes a real and returns an integer. Also assume that the problem spec-
ifications state that a solution program should compute a real number (what the problem
might be is irrelevant here). The example assumes that integers are compatible with reals,
while booleans are not compatible with either (different than in the C' programming language).
These assumptions are expressed with the following Tspecs:

TROOt:T;:TZZZTgl - {f17f27f37f47f67f7}
Tll = {fs}
TP =T = {fs fi, fo}

However, syntactic fit does not necessarily mean that a function should call another function.
One needs additional specifications based on program semantics. These are provided by
means of Fspecs, which further restrict the space of trees.

Definition 2 Define the following Fspecs (semantic constraints):

1. FRoot —the set of functions disallowed at the Root.

2. F, — F; is the set of functions disallowed as direct callers to f; (generally, a function
is unaware of the caller; however, GP constructs a tree).

3. FF — Fij is the set of functions disallowed as arg; to f;.

6

Example 2 Continue example 1. Assume that we know that the sensor reading function
fa does not provide the solution to our problem. We also know that boolean (generated by
f5) cannot be the answer (this information is actually redundant as it can be inferred from
Tspecs; however, it will be easier for the user if no specific requirements are made as to how
to specify non-redundant constraints). Also assume that for some semantic reasons we wish
to exclude f3 from calling itself (e.g., this is the integer-part function, which yields identity
when applied to itself). These constraints are expressed with the following Fspecs (the other
sets are empty):

FRoot = {f,, fs}
Py o= {f3}

3.2 Transformation of the constraints
3.2.1 Normal form

The above Tspecs and Fspecs provide a specification language for expressing problem con-
straints. Obviously this language is limited in power. However, it is quite useful (as our
experiments illustrate - section 4) and we believe the expressible constraints are the most
general that could be implemented without increasing the computational complexity of lil-gp
(section 3.2.5 and 3.2.7).

Because Tspecs and Fspecs allow redundant specifications, an obvious issue is that of the ex-
istence of sufficiently minimal specifications. It turns out that after certain transformations,
only a subset of Tspecs and Fspecs is sufficient to express all such constraints. This obser-
vation is extremely important, as it will allow efficient constraint enforcement mechanisms
after some initial preprocessing. The first step is to extend Fspecs.

Proposition 1 The following are valid inferences for extending Fspecs from Tspecs:

Vier(fu € T) — fu € FY)
vkaF(fk € TRoot SN fk c FRoot)

;o Af fi returns a range which is not compatible with the domain for the specific function
argument (fr & T7), then fr cannot be used to provide values for the argument. The same
applies to values returned from the program.

The above proposition is very important as it states that T'specs can be expressed with
Fspecs.

Definition 3 If Fspecs explicitly satisfy proposition 1 then call them T-extensive Fspecs. If
Fspecs do not satisfy proposition 1 for any function, then call them T-intensive Fspecs.

In other words, T-intensive Fspecs list only semantics-based constraints which cannot be
inferred from data types.

Proposition 2 T-extensive Fspecs are sufficient to express all Tspecs.

2 Consider function fy, and function f; of type I (with arguments). Two cases are possible:

o ~(fr = flj) Then fr & Tz-j in Tspecs, and according to proposition 1 f € Fz-j. Thus,
Fspecs express the same information that f, cannot be called from the j" argument of

fi-

o fr= ff Then f; € Tij in Tspecs. Thus, based on Tspecs there is no reason to exclude
from being called by the j** argument of f;. However, Fspecs list additional constraints
which supersede those of Tspecs. Thus, if fy € F} then fi should be excluded regardless
of Tspecs, and if fi, & F} then Fspecs and Tspecs say the same.

Now we look at redundancies among Fspecs.

Proposition 3 Suppose fr € F and Fspecs are T-extensive. Then
Vier(fi € Fi < Vien o fi € F})

2 Af fr cannot call f;, then f; will never be called by fr on any of its a arguments.

However, F, and F are not equivalent - a function may be allowed on some arguments but
not on others. Nevertheless, both are not needed either - F Fspecs are stronger.

Definition 4 If Fspecs explicitly satisfy proposition 3 then call them F-extensive Fspecs.
Dropping all F, from the F-extensive Fspecs gives F-intensive Fspecs.

Proposition 4 T-extensive F-intensive Fspecs are sufficient to express all Fspec constraints.

.2 Follows from proposition 3.

Definition 5 Call the T-extensive F-intensive Fspecs the normal form. That is, the normal
form contains only the ™ and F* Fspecs (after proper transformations).

Proposition 5 The normal form is sufficient to express all constraints of the Tspec/Fspec
language.

:: According to proposition 2 T-extensive Fspecs express or supersede Tspecs. According to
proposition 4, T-extensive F-intensive Fspecs express all the same info as any other form of
Fspecs.

It is not shown here, but the normal form is also the minimal form that expresses the Tspec
and Fspec constraints.

Example 3 Constraints of examples 1 and 2 have the following normal form:

FRet = {fu, fs, fo} (1)
Fl = {fi, fa 3, fus fo fo} 2)
FP=F = {fi,fo s fr} (3)
Fy =F; = {fs} (4)
Fy = {fs fs} (5)

The normal form expresses constraints in a unique and minimal form. These transformed
constraints are consulted by [il-gp to restrict the search space. Obvious questions remain:
how can crossover/mutation use the information in an efficient and effective way?. We
propose to express the normal form differently — in mutation sets — to facilitate efficient con-
sultations. In fact, we show that the overall O complexity for constrained mutation/crossover
remain the same.

3.2.2 Useless functions

Given a specific set of constraints, it may happen that the constraints prohibit some func-
tions from being used in any valid program - such functions would invalidate any program
regardless of their position in the program tree. Detection of such cases is addressed in this
section. Notice that this issue would be dealt with by CGP lil-gp itself since no node would
be labeled with such a function. Early detection is rather a tool aimed at presenting such
situations to the user.

Definition 6 If a function from F cannot label any nodes in a valid tree, call it a useless
function.

Proposition 6 A function f; € F is useless iff

e it is a member of all sets of the normal form, or

e it is a member of all sets of the normal form except for only sets associated with useless
functions.

: FY osets of the normal form list functions excluded from being called as children of other
functions. FRo° lists functions excluded from labeling the Root. A function excluded from
labeling the Root and excluded from labeling all children nodes cannot possibly label any node
in a valid program. On the other hand, if the function does not appear in at least one of
the sets of the normal form, then it can indeed label some nodes. The only exception to the
latter is when the function is allowed to be directly called only from other functions which are
found to be useless. Because the useless functions cannot label any nodes, then the function
in question will never be called in any tree.

Proposition 7 Removing useless functions from F does not change the CGP search space.
That is, exactly the same programs can be evolved before and after the removal.

:r Useless functions cannot appear in any valid tree.

3.2.3 Mutation sets

lil-gp allows parameters determining how deep to grow a subtree while in mutation. That
is, lil-gp allows differentiation between functions of type I and terminal nodes (labeled with
type II or IIT). We need to provide for the same capabilities.

Definition 7 Define Fy to be the set of functions of type I that can label (thus, excluding
useless functions) node N without invalidating an otherwise valid tree containing the node.
Define Ty to be the set of terminals T that can label node N the same way.

Proposition 8 Assume the normal form for constraints, and node N, not being the Root
and being the §* child of a node labeled f;. Then

Tnv = {felfe & sz A fe € Frr U Fppp}
Fn = {fulfu &€ F} N fir € Fr}

2 The normal constraints express all Tspecs and Fspecs according to proposition 5. N is not
the Root, so it must be a child of a node labeled with functions with arguments. F} in the
normal form lists all functions excluded from labeling the child N.

Proposition 9 Assume the normal form for constraints and node N being Root. Then

Tv = {filfs € F°" A fi. € Fr; U Frpp}
Fn = {fulfe & F™" A fi € Fr}

Arguments follow those for Proposition 8.

Definition 8 Let us denote Troor and Froor the pair of mutation sets associated with Root.
Let us denote T and F the pair of mutation sets for the j™ child of a node labeled with f;.

Proposition 10 For an application problem, there are 1 + zjﬁg‘(ai) mautation set pairs.

;2 There is exactly one pair for Root. For other nodes, the mutation sets are determined by
what function labels the parent node, and which child of the parent the node is. Parent nodes
are of type 1. If the label of the parent is f;, then it can have exactly a; different children.

The above implies that the information expressed in the normal form can be expressed with
2-(1+ ELiﬁ'(ai)) different function sets, while only two sets (one pair) are needed in lil-gp
itself. Now we show how these sets alone are sufficient to initialize CG'P lil-gp programs with
only valid trees, to mutate valid trees into valid trees, and to crossover valid trees into valid

trees.

10

Proposition 11 For any non-root node N of a valid program at least one of the two mutation
sets is guaranteed not to be empty. The same is true for Root (see proposition 12).

. Suppose N is labeled with f;. If N is an internal node, then f; € Fy. If N is a leaf, then
fi € Tn.

Example 4 Here are selected examples of mutation sets generated for example 3:

Troot = {fY}

Froot = {f1,fos f3}
751 = {f4,f6,f7}
Fy = {f fo}

3.2.4 Constraint feasibility

Unfortunately constraints may be so severe that only empty or only infinite trees are valid.
In the first case, GP would fail to initialize trees (or it would try infinitely). In the second
case, GP would run out of memory or it would fail, as in the first case, if size restrictions were
imposed. To avoid such problems, this could be detected early and the troublesome functions
can be identified and possibly removed from the function set. We exclude the empty tree
from being valid. In other words, a tree must contain at least one node to constitute a
potential solution.

Proposition 12 If (Treot = 0) A (Froot = 0) then no valid trees exist.

There is no way to label the Root. Thus, valid (nonempty) trees do not exist. Stated
differently, a valid tree cannot have both of these sets empty.

Proposition 12 identifies trivial cases when no valid trees exist because only empty trees are
valid. However, a more common problem might be that only infinite trees exist.

Example 5 Consider a function f; € Fy such that Je.,(F} = F\{f;} in the normal form.
In other words, on the given argument the function can only call itself. It can be verified that
any node N being the ™ child of any node labeled with f; will have the following mutation
sets (proposition 8): Ty = 0 and Fnx = {f:}. This means that the child node can only be
labeled the same way as the parent: f;. Recursively, the same will apply to its j** child. Note
that the same can happen through indirect recursion as well.

Definition 9 We say that a subtree whose root is labeled f; can be finitely instantiated
without- (cbfiw-)F" C F iff finite valid trees without labels from F' do exist.

11

Proposition 13 A tree with its root labeled f; cannot be finitely instantiated without func-
tions from F') (f; ebfiw — F') iff either is true

Jjea(T =0NF = {f:})

Fjea (T7 =10 /\vfke}'] \(F'u{fi}) ~(fi cbfiw — (F'U{fi}))

o If the sets T;* are nonempty for all a; children, all the children can be instantiated to
leaves. Any child having T = 0 and only allowing recursive calls (first case) will necessarily
create an infinite tree. Any such child which also allows other type I function calls must
be eventually instantiated with a finite tree - only indirect recursion would obviously lead to
infinite trees - those are excluded in the second case.

Proposition 13 helps identify functions causing only infinite trees to be valid. Such cases
can be reported to the user. Moreover, the troublesome functions can be removed from
consideration.

This feature, along with useless functions, is not currently implemented. Montana [10]
presents a procedure which also takes tree depth into account.

3.2.5 CGP lil-gp mutation

lil-gp mutates a tree by selecting a random node (different probabilities for internal and
external nodes). The mutated node becomes the root of a subtree, which is grown as deter-
mined by some parameters. To stop growing, a terminal function is used as the label. To
force growing, a type I function is used as the label. In CGP lil-gp the only difference is that
a subset of the original functions provides candidates for labels.

Operator 1 (Mutation) To mutate a node N, first determine the kind of the node (either
Root, or otherwise what the label of the parent is and which child of that parent N is). I
the growth is to continue, label the node with a random element of Fn and continue growing
the proper number of subtrees, each grown recursively with the same mutation operator.
Otherwise, select a random element of Ty, instantiate it if from Fyrp, and stop expanding
N. If growing a tree and Fy = 0, then select a member of Ty (guaranteed not to be empty
under proposition 11). If stopping the growth and Ty = 0, then select a member of Fy (this
will unfortunately extend the tree, but it is guaranteed to stop according to proposition 13).

Proposition 14 If a valid tree is selected for mutation, operator 1 will always produce a
valid tree. Moreover, this is done with only constant overhead.

- The mutation sets express exactly the same information as Ts ecs and Fspecs. Moreover,
the only tmplementation difference is to consult one of 1 + ZZ L (a;) instead of a single set
of function labels in lil-gp. Which set to consult is immediately determined from the parent
node and can be accessed in constant time given proper data structure.

12

Example 6 Assume the mutation sets of example /. Assume mutating parentl as in figure
1. Assume the node N s selected for mutation. It is the 1st child of a node labeled with f3.
Thus, Tn = T3 = {f1, fe, [} and Fx = Fi = {f1, f2}. If the current mode is to grow the
tree, then the mutated node will be randomly labeled with either fi or fo. If the current node
15 to generate a leaf, then label N with either fy, fs, or fr.

3.2.6 CGP lil-gp initialization

Operator 2 (Create a valid tree) To generate a valid random tree, create the Root node,
and mutate it using the mutation operator.

Proposition 15 If Treot # OV Froot # O and functions such that trees with such roots
cannot cbfiw — O are removed from F then operator 2 will create a tree with at least one
node, the tree will be finite and valid with respect to constraints.

. Because of the conditions at least one node can be labaled. The functions remaining in the
mutation sets can label trees with finite elements and guarantee validity.

3.2.7 CGP lil-gp crossover

The idea to be followed is to generate one offspring by replacing a selected subtree from
parentl with a subtree selected from parent2. To generate two offspring, the same may be
repeated after swapping the parents.

Operator 3 (Crossover) Suppose that node N from parentl is selected to receive a material
from parent2. First determine Fyn and Ty. Assume that Fy is the set of labels appearing in
parent?2. Then, (Fx U Ty) N Fy is the set of labels determining which subtrees from parent2
can replace the subtree of parentl starting with N. In other words, any subtree of parent?2
whose root is labeled with one of (FyUTyn) N Fy can replace N and still generate a valid tree.

Proposition 16 If two valid trees are selected for crossover, the operator will always produce
a valid tree. Moreover, this is done with only the same (order) computational complezity.

. For the first part, arguments follow those of proposition 14 since crossover is based on
the same mutation sets. Crossover is implemented in lil-gp in such a way that a random
number up to the number of nodes in parent2 is generated, and then the tree is traversed
until the numbered node is encountered (can be done separately for internal and external
nodes). Therefore, crossover’s complexity is in the size of the tree O(n).

CGP lil-gp does not know ahead of the traversal how many nodes will be found applicable.
During the traversal, applicable nodes are indexed for constant-time access and they are
counted. At the end of the tree, a random number up to the counter is generated, and the
proper node is immediately accessed. On average, this requires traverasl twice as long, but

13

in the same order.
Instead of generating indexed constant-time-access structures, another traversal may follow.
This does not change the overall complexity (adds another O(n)).

< Insert Figl >
Figure 1: Illustration of mutation and crossover.

Example 7 Assume mutation sets of example 4. Assume parentl and parent2 as in figure
1. Assume the node N 1is selected for replacing with a subtree of parent2. It is the 1st child
of a node labeled with f3. Then, Ty = T3+ = {fu4, fo, [} and Fy = F} = {f1, fo}, and only
the subtrees with the shaded roots can be used to replace N. Crossover would select a random
element from a so marked set of nodes, and move the corresponding subtree.

4 Illustrative Experiment

In this section, we follow a practical example intended to illustrate how problem-specific
knowledge can be used to come up with various constraints. In this experiment, we explore
different constraints that can be used to express, and thus restrict, some of the redundant
solutions from being explored by GP. This is intended as illustration, but we also explore
the implications of such restrictions on the behavior of GP. In fact, this issue arises in any
state-space search, and has yet to be addressed. We hope that our tool will help in studying
this issue.

We will use the widely studied 11-multiplexer problem [8]. Multiplexer is a boolean circuit
with a number of inputs and exactly one output. In practical applications, a multiplexer is
used to propagate exactly one of the inputs to the output. For example, in the computer
CPU (central processing unit) multiplexers are used to pass binary bits (via a group of
multiplexers) from exactly one location (e.g., one register) to the ALU (arithmetic-logic unit).
Multiplexer has two kinds of binary inputs: address and data. The address combination
determines which of the data inputs propagates to the output. Thus, for a address bits, there
are 2% data bits. 11-multiplexer has 3 address and 8 data bits. Let us call them ag...as and
do . ..d7, respectively. For example, when the address is 110 (the boolean formula asaag),
then dg is passed to the output.

11-multiplexer implements a boolean function, which can be expressed in DNF (disjunctive
normal form) as:

a2a1a0d7 V agala_odg V Cl2a_1a0d5 V a2a1a0d4 V a_2a1a0d3 V Cl_2a1a_0d2 V a2a1a0d1 V a2a1agd0

In [8], Koza has proposed to use the following function set F; = {and, or,not,if} and termi-
nals Fry = {ag...as,dy...d7} (no Fryp functions) for evolving the 11-multiplexer function

14

with GP. In this case, GP evolves trees which are labeled with the above primitive elements,
each element having the standard interpretation. The only feedback to this evolution is the
evaluation (environment), which assigns a fitness value to each tree based on the number of
the possible 2048 input combinations which compute the correct output bit.

The function set is obviously complete, thus satisfying sufficiency. However, the set is also
redundant - a number of type I subsets, such as {and, not}, are known to be sufficient to
represent any boolean formula. Thus, by placing restrictions on function use, we may reduce
the amount of redundant subspaces in the representation space. However, we do not know
what function sets make it easier, or more difficult, to solve this problem by evolution.
In fact, the following experiments will spark very interesting observations suggesting that
sufficiency itself is not strong enough to predict learning properties - in addition to providing
the necessary functions/terminals, one should also provide ”the right” functions/terminals.

As to closure, it is trivially satisfied for this problem since all terminals (address/data sensors)
and all type I functions return boolean. Thus, this problem does not have any invalid
subspaces - all constraints will be used only to reduce the number of redundant/undesired
trees. Even given this triviality, it is a very interesting problem.

We set a number of experiments, intended to illustrate how CGP [lil-gp can be used to
utilize various constraints, drawn from problem-specific knowledge. For each case, we repeat
and average 10 independent runs, with a population of 2000, 0.85/0.1/0.05 probabilities for
crossover/selection/mutation, and otherwise the default parameters. We report averages of
best solutions generated at 5-iteration increments (discrete learning curves) while running
for 100 iterations.

Previously, we observed that the constraint language allows redundant specifications. In fact,
many of the constraints we subsequently use can be expressed in a number of different ways
(it is the translator that generates unique equivalent constraints). To make the presentation
more systematic, we assume that Tspecs stay constant, and all constraints are expressed
with Fspecs. In one case, however, we illustrate how the same constraints can be expressed
with different Tspecs. The generic Tspecs we use do not impose any constraints. Thus,

THo" = T* = {and, or,not,if aq...as,dy...d7}

where ‘¥’ indicates any possible value, here meaning that all sets are the same.

4.1 Unconstrained 11-multiplexer with lilgp (base experiment)

Even though it is not our current intention here to evaluate the impact that the reduction
of redundant subspaces may have on search properties, we set a benchmark obtained from
unconstrained [il-gp on the same problem. In this experiment, we evolve 11-multiplexer solu-
tions using the above function set and no constraints. Thus, we recreate Koza’s experiments,
except that we use lil-gp (and not CGP lil-gp either).

The remaining experiments all use CGP lil-gp.

15

4.2 Experiment Ey: unconstrained 11-multiplexer with CGP lil-gp

This is the same base experiment except that it is run with CGP lil-gp. Thus, there are no
constraints (all Fspecs are empty). This experiment may be treated as informal validation -
formal validation/verification is done separately and will be reported elsewhere.

4.3 Experiment Fi: using sufficient set {and, not}

We observe that {and, not} is a sufficient type I function set. Thus, we run an experiment
with only these two type I functions. While in this specific case it is also possible to run
lil-gp with only these functions (by modifying and then recompiling the program), this is
not our objective. Instead, we show how this particular constraint can be presented in CGP
lil-gp. Our constraint is that of the four type I functions, ¢f and or be not used at all. This
can be expressed with the following Fspecs:

FROOt:F::{if,OT} F*:(Z)

We should note that even though {and,not} is a sufficient set, the 11-multiplexer function
expressed with these two functions is necessarily more complex. Thus, we should not expect
any payoff from this constraint (this is another example of problem-specific knowledge). In
other words, we suspect that this is not "the right” sufficient set.

4.4 Experiment Ey: DNF

We attempt to generate DNF (disjunctive normal form) solutions. Obviously, if must be
excluded. However, this is not sufficient. We must also ensure that or is distributed over
and, and that not applies to type II functions (atoms) only. This can be expressed (one of
possible options) with the following Fspecs:

FRoot — {Zf} F* — @
=0 Fy,={if,or,and,not}
(:nd = {Zfa OT} Fo*r = {Zf}

4.5 Experiment FEj3: structure-restricted DNF

The above DNF specification leaves many interpretation-isomorphic trees. In this experi-
ment, we intend to remove some of those redundancies (though not all). We constrain the
trees to grow conjunctions and disjunctions to the left only (thus, we prohibit right-recursive
calls on or and and). This is accomplished with the following modifications to Fspecs of Es:

FRoot — {Zf} F* — @
Fy=0 F,={if or,and,not}

16

Falnd{ifa OT} Faan = {Zfa or, and}
Fo{ify Fo ={if,or}

Previous experience with other evolutionary algorithms using DNF representation suggest
that DNF is "the right” representation (GIL system, [5]). Thus, we would expect both F,
and Fs3 to do relatively well. We will shortly observe that (and speculate why) this is not
the case.

4.6 Experiment F4: using {if} only

Here we observe that the type I function set F; = {if} is completely sufficient for the task
of learning the 11-multiplexer. Even though studying that is not our explicit objective, we
may compare the learning characteristics of this experiment with those of other complete
function sets (Fy, Fs, and Fj3), giving us some insights as to what functions make it easier
for GP to evolve solutions to the 11-multiplexer problem. Our observations will be rather
striking.

Restricting trees to use this function only can be accomplished with the following Fspecs:

Floot = Fr = {and, or,not} F, =0

* * — * — 3
F, =F; ,=F, 6 =irrelevant

4.7 Experiment EF5: E; with problem-specific knowledge

Now, suppose that in addition to observing that {if} is a sufficient type I function set we also
use some additional problem-specific knowledge. For example, suppose we know that the
first three bits are addresses and the others are data bits. Knowing the interpretation of i f
(which we do since we implement it), we may further conclude that the condition argument
(#1) should test addresses, and the other arguments should compute and thus return data
bits. This constraint could be completely expressed with a slightly enlarged function set.
To avoid extra complexity, we express a somehow lesser constraint, one which restricts only
immediate arguments (in the original theory it is possible to specify the stronger constraint
for this function set, because that theory is based on sets rather than functions [6]). This
can be expressed with the following Fspecs:

FRoot — Land, or,not, ag, a1, as} F, = ()
F; = {and,or,not,dy . .. dr}
F; = Fj; = {and, or, not, ag, ay, as}
Fr =F; , = F! , = irrelevant
or the same Fspecs as those of Fy plus the following Tspecs (this is just for illustration;
however, as indicated earlier, Tspecs are intended to restrict closure):

irzlf = {if7a07a17a2}
T =Th =T = {if.dy...d7}

17

4.8 Experiment Fg: E5 with further heuristic knowledge

Further suppose that we prevent trees of E5 from using ¢f on its first argument. This further
reduces redundancy, while still allowing solutions to evolve. This can be accomplished with:

[Root — {and7 or,not, agy, a, CLQ}F* = @

Fl; = {and,or,not,if dy...dz7}
F}; = Fjs = {and, or, not, ag, a1, as}

* * _ 1
Fy =F; ,=F,, = irrelevant

4.9 Experiment F;: Eg relaxed

Finally, suppose that we want to allow another function to enrich our explored search space
— not to be used in the condition part of if. However, we make sure that it only applies
to non-negated address bits. This of course introduces additional redundancy. This can be
accomplished with:

FERoot — Land, or,not, ag, a1, as} F, = ()
- @1%3: Eand, or,if,dy...dr}

= I}y = {and, or,not, ag, a1, ax}
Fooy = F'\ {ao, a1, a2}

* *
Fy = F; , = irrelevant

With the above, E; will evolve solutions of the form illustrated in figure 2.
< Insert Fig2 >

Figure 2: Solution form for F;.

4.10 Experimental results and discussion

The results are very interesting, some even striking. To illustrate them, we present two
figures. Figure 3 presents quality of the best solutions captured in 5-iteration intervals
(averaged over 5 independent runs). In cases when a run finds the perfect (2048) tree before
the 100th iteration, its 2048 evaluation is used for averaging in subsequent iterations.

Figure 4 presents complexity, measured by the number of nodes, of the same best trees.
For each run which completes before the 100th iteration, complexity 0 is used for averaging
on subsequent generations. This way the curves are directly proportional to average time
needed to evaluate an individual (since no more work is necessary after a solution is found).
In other words, lower complexity would result in lower processing times per generation.
Moreover, the area bounded by each curve is directly proportional to the total time needed
for evolution (with a bound 100 iterations).

18

First, when constraints are not present (base and FEy), both lil-gp and CGP lil-gp perform
very similar searches (discrepancies result from a different number of random calls, thus
resulting in stochastically different runs). As indicated before, this is not intended to serve
as verification/validation. More systematic experiments are used to accomplish that, with
extra processing to ensure the same random calls take place - in which case both programs
explore exactly the same trees. Because the runs were very similar here, figures 3 and 4
report averages from these two experiments.

Forcing evolution with {and, not} type I set (E7), even though it dramatically reduces the
number of redundant solutions being explored, has a disastrous effect. It seems that the most
important reason for this degradation is that, as pointed out shortly, i f is extremely efficient
in solving this problem with GP. Moreover, 11-multiplexer expressions using {and, not} are
necessarily more complex. This would require extra processing to evolve - as seen in Figure
3, the learning curve has not saturated after 100 iterations.

Forcing DNF functions to evolve (E,) has equally disastrous effects on the program. In
this case, even further restrictions on tree structures (Ej3) failed to compensate for the dis-
advantage. It seems that the reasons are similar to those above - if will prove to be the
most effective and thus extremely important. The fact that GP fails to efficiently evolve
DNF solutions is striking when compared against another evolutionary program designed
for machine learning. GIL [5] is a genetic algorithm with specialized DNF representation,
specialized inductive operators, and evolutionary state-space search controlled by inductive
heuristics. In reported experiments, while evolving solutions to the same function, but in
a more challenging environment in which only 200ur DNF GP evolved less than 90Even
though a direct comparison was not an objective here, one may draw some conclusions. In
this case, both programs were using the same representation (DNF). The only difference
is that CGP lil-gp used only blind crossover /mutation, fired with static probabilities, while
GIL used operators modeling the inductive methodology, whose firing was controlled by
heuristics. This suggests that such problem-specific knowledge is extremely important to
evolutionary problem solving.

< Insert Fig3 >

Figure 3: Comparison of the quality of the best-of-population tree.

Because of similar results, figures 3 and 4 report averages of Fy, E,, and Fjs.

In the other experiments we investigate the utility of the i f function for this specific problem.
The reason for this experiment is that our previous results with restricted but still sufficient
function sets failed to improve search characteristics, instead degrading the performance and
leading to our suspicion that this interpretation-rich function is extremely important for
solving this problem with GP. Thus, F, was set to evolve with only one type I function: ¢ f.
Results are strikingly obvious: perfect solutions finally emerge from this evolution, on the

19

average after about 70 iterations. However, time complexity increases due to the increase in
tree sizes (figure 4).

Increased tree sizes translate directly into longer processing time per iteration. Thus, the
wall-clock performance might not necessarily improve. To alleviate the problem, we used
additional problem-specific information about different interpretation of address and data
bits (E5). This leads not only to further speed up in evolution (figure 3). The evolving trees
also have the smallest sizes from among all experiments (figure 4). This result supports our
previous conjecture that problem-specific knowledge is crucial here. It also illustrates how
the generic CGP lil-gp can utilize this kind of information (GIL, on the other hand, was
designed and implemented with such problem-specific knowledge from the beginning).

In other words, this result indicates that it is indeed important to provide ”the right” and
minimal set of functions for GP. For example, comparing results from Ej, and E, one may
see a dramatic improvement despite the fact that both experiments use the identified if
function. This indicates that reducing the redundant subspace pays off in this case, but only
because ”the right” subspace was pruned away.

< Insert Figd >

Figure 4: Comparison of complexity needed for evolving solutions in 100 generations (com-
plexity 0 used on finished runs).

Finally, providing additional heuristic about the desired solutions, and thus pruning away
other otherwise valid solutions, leads to even better speed ups (Fs and E7 in figure 3 are av-
eraged since they produced indistinguishable curves). This further supports our observation
that providing such information is advantageous not only to generate solutions with some
specific characteristics but to speeding up evolution as well. Unfortunately, usually this can
only be done by a careful redesign of the algorithm /representation/operators, or the function
set in GP. In CGP, no changes are needed.

Between Eg and E7 it is worthwhile to point out that Eg, which uses less redundant search
space, explores trees of slightly lower complexity. Finally, between the two and Ej, it is
interesting to observe that while the former evolve perfect solutions in many fewer gener-
ations, this involves trees of larger sizes. In fact, in terms of clock-time performance, Ej
outperforms these two (areas in figure 4).

5 Summary
This paper describes a method to prune constraints-identified subspaces from being explored
in GP search. The constraints are allowed in a user-friendly language aimed at expressing

syntax and semantics-based restrictions to closure. Specific constraints lead to the exclusion
of syntactically invalid, redundant, or simply undesired trees from ever being explored. Such

20

pruning may not only lead to more efficient problem solving with lil-gp. When studied
systematically, it may also give insights about pruning redundant subspaces from any state-
space search.

We have presented a complete methodology and illustrated it with an example. We have
also used the 11-multiplexer problem to illustrate practical application of the methodology.
Even though illustration was our primary goal, some interesting observations were made.

It has been obvious that the function set proposed by Koza for solving this problem is
redundant. Our experiments suggest that reducing those redundancies, and thus reducing
the search space, is not necessarily advantageous. However, if ”the right” choices are made,
a tremendous payoff can be expected. This is further amplified by using additional problem-
specific knowledge. C'GP lil-gp allows us to express such information with a generic constraint
language, alleviating the need for devising specialized representation/operators. However, by
comparing the results with those of another specialized algorithm, we may observe that such
a specialized algorithm makes it advantageously possible to implement other problem-specific
information and heuristics.

In the future, we plan to make more systematic testing aimed at supporting the observations
made here. In particular, we did not even explore the methodology’s impact on the more
serious problem of invalid subspaces, where we expect the benefits to amplify. We are also
currently extending the implementation for ADFs (automatically defined functions), which
will allow similar capabilities to Montana’s generic functions [10] yet more general (as our
crossover is more general).

One should point out that the current constraint specification language does not allow for
arbitrary constraints to be expressed. In particular, this [il-gp’s version is even weaker than
the originally proposed methodology. Thus, for the future we also plan to explore extending
the language and/or this implementation of lil-gp.

References

[1] Leonard Bolc & Jerzy Cytowski. Search Methods for Artificial Intelligence. Academic
Press, 1992.

2] Lawrence Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

(3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley, 1989.

[4] Holland, J. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[5] Cezary Z. Janikow. "A Knowledge-Intensive GA for Supervised Learning”. Machine
Learning 13 (1993), pp. 189-228.

21

6] Cezary Z. Janikow. ”Constrained Genetic Programming”. Submitted to Evolutionary
Computation.

[7] Kenneth E. Kinnear, Jr. (ed.) Advances in Genetic Programming. The MIT Press, 1994.
[8] John R. Koza. Genetic Programming. The MIT Press, 1992.
9] John R. Koza. Genetic Programming II. The MIT Press, 1994.

[10] David J. Montana. "Strongly typed genetic programming”. Evolutionary Computation,
Vol. 3, No. 2, 1995.

[11] Douglas Zonker & Bill Punch. lil-gp 1.0 User’s Manual. zonker@isl.cps.msu.edu.

22

