
Processor performance

in real-time systems

Roger Johansson

Department of Computer Engineering

Chalmers University of Technology

S{412 96 G�oteborg

Sweden.

E-mail: roger@ce.chalmers.se

October 9, 1992

Abstract

During the last decade, RISC (Reduced Instruction Set Computer) processors, intro-

duced mainly in work station applications, have brought excellent performance at low

costs. In real time system design, the question arises; How do RISC processors comply to

the speci�c demands of such a system?

This thesis describes seven RISC processors from an architectural point of view. Their

ability to perform in a real-time system is elaborated and reported. Finally, real-time

system hardware considerations are made from six di�erent designs using three di�erent

processors. The system hardware considerations shows that in a real-time system design

there is not very much to gain with a modern, general purpose RISC design such as

SPARC. On the contrary, while the estimated performance for SPARC was just about the

level of THOR, the board area became approximatly 40% larger, the power consumption

70% more and the expected failure became 45 % greater.

This thesis is a revised version of two reports earlier published as a part of the ES-

TEC "RISC evaluation study ". performed by Saab Space (contract number 8686/89/NL

/JG(SC)) during late 1990, namely: "Work Package 3: Survey of commercial

RISC processors, Part 2: Detailed Architectural Survey" and "Work Pack-

age 4, Evaluation of processor configurations, part 1: Hardware Designs".

Keywords: Hard Real-Time Systems, RISC-architectures.

Contents

1 The Background Of RISC 16

1.1 Computer Architecture : 16

1.2 Trends in computer architectures : 17

1.3 Considerations that lead to the RISC : 18

1.4 A RISC design decision graph : 19

1.5 Early RISCs : 20

1.6 A brief overwiev of some RISC projects : 22

2 Description Of RISC Architectures 24

2.1 Motorola MC88100 : 25

2.1.1 MC88100 instruction set : 25

2.1.2 MC88100 data formats : 25

2.1.3 MC88100 registers : 26

2.1.4 MC88100 instruction formats/addressing modes : : : : : : : : : : : 26

2.1.5 MC88100 processor states : 33

2.1.6 MC 88100 pipelining : 35

2.2 Intel 80960KB : 36

2.2.1 80960 KB instruction set : 36

2.2.2 80960KB data formats : 36

2.2.3 80960KB registers : 37

1

2.2.4 80960KB instruction formats : 39

2.2.5 80960KB addressing Modes : 42

2.2.6 80960 KB processor states : 44

2.3 AMD Am29000 : 45

2.3.1 Am29000 instruction set : 45

2.3.2 Am29000 data formats : 45

2.3.3 Am29000 register description : 46

2.3.4 Am29000 instruction format : 49

2.3.5 Am29000 processor states : 50

2.3.6 Am29000 pipelining : 51

2.4 MIPS R2000 processor : 53

2.4.1 R2000 instruction set : 53

2.4.2 R2000 data formats : 53

2.4.3 R2000 register description : 53

2.4.4 R2000 instruction format : 54

2.4.5 R2000 processor states : 55

2.4.6 R2000 pipeline : 56

2.5 Cypress SPARC CY7C600 : 57

2.5.1 SPARC instruction set : 57

2.5.2 SPARC data formats : 58

2.5.3 SPARC registers : 58

2.5.4 SPARC instruction formats/addressing modes : : : : : : : : : : : : : 60

2.5.5 SPARC traps and exceptions : 62

2.6 INMOS T800 transputer : 64

2.6.1 T800 data formats : 64

2.6.2 T800 instruction set : 64

2

2.6.3 T800 instruction formats and addressing modes : : : : : : : : : : : : 64

2.6.4 The T800 registers : 65

2.7 Saab-Ericsson Space THOR : 66

2.7.1 THOR instruction set : 66

2.7.2 THOR data types : 66

2.7.3 THOR instruction formats and addressing modes : : : : : : : : : : : 66

2.7.4 THOR registers : 68

2.7.5 THOR processing states : 71

2.8 Conclusions : 71

3 Real-Time System requirements 74

3.1 Subprogram Calls : 75

3.1.1 MC 88100 register conventions : 75

3.1.2 I80960KB register conventions : 76

3.1.3 Am29000 register conventions : 77

3.1.4 MIPS R2000 register conventions : 77

3.1.5 SPARC register conventions : 78

3.1.6 T800 /THOR : 78

3.2 Deviation from normal execution : 78

3.2.1 MC 88100 : 79

3.2.2 I80960KB : 79

3.2.3 Am29000 : 80

3.2.4 MIPS R2000 : 81

3.2.5 SPARC : 81

3.2.6 T800 : 81

3.2.7 THOR : 82

3

3.3 Task Switch : 83

3.4 Real Time System Support : 85

3.4.1 MC88100 : 85

3.4.2 i80960 : 86

3.4.3 Am29000 : 86

3.4.4 R2000 : 86

3.4.5 SPARC : 87

3.4.6 T800 : 87

3.4.7 THOR : 87

3.5 Conclusions : 87

4 System Hardware Considerations 90

4.1 General notes on the designs : 91

4.2 Execution Rate Estimation : 91

4.3 Memory Power Consumtion : 93

4.4 Instruction Mix : 94

4.5 Notes on the Failure Rate estimation : 94

4.6 The HDO con�gurations : 94

4.7 T800 HDO con�guration : 95

4.7.1 T800 Read memory cycle (external memory) : : : : : : : : : : : : : 96

4.7.2 T800 HDO con�g execution rate : 97

4.8 THOR HDO con�guration : 98

4.8.1 THOR Read memory Cycle : 99

4.8.2 THOR HDO con�guration execution rate : : : : : : : : : : : : : : : 99

4.9 SPARC HDO con�guration : 100

4.9.1 SPARC Read Cycle : 101

4

4.9.2 SPARC HDO con�guration execution rate : : : : : : : : : : : : : : : 101

4.10 The HSO con�gurations : 102

4.11 General Notes on the HSO con�gurations : : : : : : : : : : : : : : : : : : : 102

4.12 T800 HSO con�guration : 103

4.12.1 T800 HSO con�guration execution rate : : : : : : : : : : : : : : : : 103

4.13 THOR HSO con�guration : 103

4.13.1 THOR HSO con�g execution rate : : : : : : : : : : : : : : : : : : : 104

4.14 SPARC HSO con�guration : 104

4.14.1 SPARC HSO con�guration execution rate : : : : : : : : : : : : : : : 104

4.15 Summary of Results : 105

4.16 Conclusions : 105

5 Concluding Remarks 107

A Instruction set summaries 111

A.1 MC88100 instruction set summary : 111

A.2 I80960 KB instruction set summary : 114

A.3 Am29000 instruction set summary : 121

A.4 R2000 instruction set summary : 125

A.5 SPARC CY7C601 instruction set summary : : : : : : : : : : : : : : : : : : 128

A.6 T800 instruction set summary : 132

A.7 THOR instruction set summary : 138

B Processor Context Switch 141

B.1 MC88100 : 142

B.1.1 PCB search : 142

B.1.2 Register Store : 142

B.2 I80960KB : 143

5

B.2.1 PCB search : 143

B.2.2 Register Store : 143

B.2.3 Register Restore : 143

B.3 Am29000 : 145

B.3.1 PCB search : 145

B.3.2 Register Store/Restore : 145

B.4 MIPS R2000 : 146

B.4.1 PCB search : 146

B.4.2 Register Store/Restore : 146

B.5 SPARC : 147

B.5.1 PCB search : 147

B.5.2 Register Store/Restore : 147

B.6 T800 PCB search : 147

B.7 THOR PCB search : 149

C Schematics 151

6

List of Tables

2.1 MC88100 general purpose registers : 27

2.2 MC88100
oating point registers : 27

2.3 MC88100 control registers : 28

2.4 MC88100 internal registers : 29

2.5 MC88100 Triadic register and 10-bits immediate instruction formats : : : : 29

2.6 MC88100 16-bit immediate and control register addressing instruction formats 30

2.7 MC88100 indexed addressing instruction formats : : : : : : : : : : : : : : : 31

2.8 MC88100 Flow control; triadic register and 9-bit vector table index instruc-

tion formats : 32

2.9 MC88100 16-bit displacement and 26-bit displacement instruction formats : 33

2.10 80960KB REG-instruction format : 39

2.11 80960KB COBR-instruction format : 40

2.12 80960 CTRL-instruction format : 41

2.13 80960 MEMA,MEMB instruction formats : : : : : : : : : : : : : : : : : : : 41

2.14 Am29000 general purpose registers : 46

2.15 Am29000 special purpose registers : 48

2.16 Am29000 instruction formats : 49

2.17 Am29000 exception vectors : 52

2.18 R2000, instruction formats : 54

2.19 SPARC Register Addressing : 58

7

2.20 SPARC format 1 and format 2 instruction formats : : : : : : : : : : : : : : 60

2.21 SPARC format 3 instruction formats : 61

2.22 SPARC trap vector table : 63

2.23 THOR instruction formats : 67

2.24 THOR registers : 68

2.25 THOR Task Control Registers : 70

2.26 THOR exception numbers : 72

3.1 Number of cycles required to search the PCB-list : : : : : : : : : : : : : : : 84

3.2 Number of cycles required for storing/restoring processor context : : : : : : 84

3.3 Total time required for a process switch (estimated) : : : : : : : : : : : : : 85

4.1 Summary: real-time system con�guration : : : : : : : : : : : : : : : : : : : 106

4.2 Summary: general purpose system con�guration : : : : : : : : : : : : : : : 106

A.1 MC88100 Integer Arithmetic Instructions : : : : : : : : : : : : : : : : : : : 111

A.2 MC88100 Logical Instructions : 112

A.3 MC88100 Flow Control Instructions : 112

A.4 MC88100 Floating Point Instructions : 112

A.5 MC88100 Bit-Field Instructions : 113

A.6 MC88100 Load/Store/Exchange Instructions : : : : : : : : : : : : : : : : : 113

A.7 I80960KB Load/Store instructions : 114

A.8 I80960KB Integer arithmetic instructions : : : : : : : : : : : : : : : : : : : 114

A.9 I80960KB Move instructions : 115

A.10 I80960KB Shift, rotate and logical instructions : : : : : : : : : : : : : : : : 115

A.11 I80960KB Compare, conditional compare instructions : : : : : : : : : : : : 115

A.12 I80960KB Branch instructions : 116

A.13 I80960KB Compare and branch instructions : : : : : : : : : : : : : : : : : : 116

8

A.14 I80960KB Bit, bit�eld instructions : 117

A.15 I80960KB Call/return instructions : 117

A.16 I80960KB Conditional fault instructions : 117

A.17 I80960KB Processor management instructions : : : : : : : : : : : : : : : : : 118

A.18 I80960KB Synchronous load and move instructions : : : : : : : : : : : : : : 118

A.19 I80960KB Floating point instructions : 119

A.20 I80960KB Floating point instructions (continued) : : : : : : : : : : : : : : : 120

A.21 I80960KB Decimal arithmetic instructions : : : : : : : : : : : : : : : : : : : 120

A.22 I80960KB Miscellanous instructions : 120

A.23 Am29000 Integer arithmetic instructions : 121

A.24 Am29000 Compare instructions : 122

A.25 Am29000 Logical/shift instructions : 122

A.26 Am29000 Data movement instructions : 123

A.27 Am29000 Constant instructions : 123

A.28 Am29000 Branch instructions : 123

A.29 Am29000 Floating-point instructions : 124

A.30 Am29000 Miscellaneous instructions : 124

A.31 R2000 Load/Store instructions : 125

A.32 R2000 Computational instructions : 125

A.33 R2000 Shift instructions : 126

A.34 R2000 Jump/branch instructions : 126

A.35 R2000 Multiply/divide instructions : 126

A.36 R2000 Special/coprocessor instructions : 127

A.37 SPARC Arithmetic/Logical/Shift instructions : : : : : : : : : : : : : : : : : 128

A.38 SPARC Load/Store instructions : 129

A.39 SPARC Control Transfer instructions (continued) : : : : : : : : : : : : : : : 130

9

A.40 SPARC Control Transfer instructions : 131

A.41 SPARC Read/Write control register operations : : : : : : : : : : : : : : : : 131

A.42 SPARC Miscellaneous instructions : 131

A.43 T800 Function codes : 132

A.44 T800 Arithmetic/Logical operations : 132

A.45 T800 Long arithmetic operations : 133

A.46 T800 General operations : 133

A.47 T800 2D block move operations : 133

A.48 T800 CRC and bit operations : 133

A.49 T800 Indexing/array operations : 134

A.50 T800 Timer handling operations : 134

A.51 T800 Input/Output operations : 134

A.52 T800 Control operations : 135

A.53 T800 Scheduling operations : 135

A.54 T800 Error handling operations : 135

A.55 T800 Processor initialisation operations : 135

A.56 T800 Floating point Load/Store operations : : : : : : : : : : : : : : : : : : 136

A.57 T800 Floating point general operations : 136

A.58 T800 Floating point rounding operations : 136

A.59 T800 Floating point error operations : 136

A.60 T800 Floating point comparison operations : : : : : : : : : : : : : : : : : : 137

A.61 T800 Floating point conversion operations : : : : : : : : : : : : : : : : : : : 137

A.62 T800 Floating point arithmetic operations : : : : : : : : : : : : : : : : : : : 137

A.63 THOR Arithmetic instructions : 138

A.64 THOR Move instructions : 138

A.65 THOR Logical instructions : 139

10

A.66 THOR Shift instructions : 139

A.67 THOR Compare instructions : 139

A.68 THOR Control instructions : 140

11

List of Figures

1.1 A Risc Design Decision Graph : 21

2.1 Three overlapping windows and globals : 59

B.1 Process Control Block structure : 141

B.2 MC88100 multiple store sequence : 150

B.3 MC88100 multiple load sequence : 150

B.4 I80960KB multiple store sequence : 150

B.5 I80960KB multiple load sequence : 150

B.6 MIPS R2000 multiple load (store) sequence : : : : : : : : : : : : : : : : : : 150

C.1 T800 HDO-con�guration : 152

C.2 THOR HDO-con�guration : 153

C.3 SPARC HDO-con�guration : 154

C.4 T800 and SPARC EDAC : 155

C.5 T800,THOR and SPARC memory : 156

C.6 T800 HSO-con�guration : 157

C.7 THOR HSO-con�guration : 158

C.8 SPARC HSO-con�guration : 159

12

Introduction

As computers become smaller, faster and more reliable the range of computer appli-

cations has grown. From the computers initial role as equation solvers, their usage has

extended into several areas from toys to spacecraft control.

A rapidly expanding area of computer exploitation is applications that require infor-
mation processing in order to carry out their prime function rather than do the information

processing as a prime function. These types of computer applications are called real-time
systems. A real-time system can be understood as any information processing activity

or system which has to respond to externally generated input stimuli within a �nite and

speci�ed period [You82] . In a hard real-time system the ability to respond within a spec-

i�ed time is as important as producing a correct result. That is, if the response or result

arrives to late it is of no use. The system will eventually crash or become unable to ful�ll

it's task. A dedicated application system such as for process control etc is an embedded

system. Throughout this thesis the terms "real-time system" will be used in the meaning

of an embedded, hard real-time system. During the last decade, RISC (Reduced Instruction

Set Computer) processors, introduced mainly in work station applications, have brought

excellent performance at low costs. In real time system design, the question arises; How

do RISC processors comply to the speci�c demands of such a system?

This thesis describes seven RISC processors from an architectural point of view. Their

ability to perform in a real-time system is elaborated and reported. Finally, real-time

system hardware considerations are made from six di�erent designs using three di�erent

processors. The subject will be treated as follows: chapter 1 will recapture the development

path leading to today's RISC architectures. In chapter 2, di�erent processors will be

described in detail from an architectural point of view. Chapter 3 will give a thorough

discussion of real-time systems requirements and how the studied processors meet these

demands. A real-time system's hardware requirements tend to degrade the total system

performance, which is the reason why hardware considerations are emphasised in chapter

4. Chapter 5 gives concluding remarks.

Seven di�erent processors have been selected for this study. One selection criterion

was to include RISC processors commonly used today. The following selection was made:

� "Motorola MC 88100"

� "Intel Iapx80960".

13

� "MIPS R2000 (R3000)"

� "Cypress SPARC "

Another criterion was to select processors which are claimed by their manufacturers to

facilitate real-time system support and to be suitable for this range of applications. From

this group of processors the following selection was made:

� "Advanced Micro Devices Am 29000"

� "Inmos T800 transputer"

� "Saab-Ericsson Space THOR"

From lack of su�cient time another selection had to be made for the hardware consid-

erations in chapter 4. The three processors (SPARC, T800 and THOR) that were selected,

were considered as providing information representative for the entire group.

This thesis is a revised version of two reports earlier published as a part of the ES-

TEC "RISC evaluation study ". performed by Saab-Space (contract number 8686/89/NL

/JG(SC)) during late 1990, namely: "Work Package 3: Survey of commercial

RISC processors, Part 2: Detailed Architectural Survey" and "Work Pack-

age 4, Evaluation of processor configurations, part 1: Hardware Designs".

14

Acknowledgements

I wish to thank my supervisor, Jan Torin, He is a major contributor to this work.

I also thank:

Jiri Gaisler, who pointed out disambiguities in the original reports.

Jonas Vasell, who contributed with valuable aspects on the �rst three chapters.

Mats Svenningsson, for his willingness of sharing his great knowledge in numerous

discussions, his ideas and encouragement.

Arne Carlsson, who shared his great experience from the design and construction of

real-time systems.

15

Chapter 1

The Background Of RISC

1.1 Computer Architecture

A Computer is a high-speed device that performs arithmetic operations and symbol ma-

nipulation through a set of machine dependent instructions. A computer consists of several

important parts; there are memory systems, input/output devices ranging within a large

scale of complexity, the Central Processing Unit (CPU) with datapaths, control unit and

other subsystems.

There are at least two principal di�erent ways of managing the central processing.

One of these is the data-
ow machine, another is the von Neumann- machine. A von

Neumann-machine does information processing by sequentially executing algoritms which

are organized as programs and stored in a memory. The programs detail interpretation

and processing of information coded as data and stored in the same memory. The von

Neumann-machine consists consequently of at least one processor that sequentially inter-

prets instructions in the program and a primary memory that stores program and data.

These architectures may degrade performance from the so called "von Neumann bottle-

neck" which means that execution speed is highly dependent of the rate at which primary

memory can be accessed, the memory bandwith. This comes from the fact that code (pro-

cessor instructions) and data resides in the same memory and are accessed sequentially.

Hence, the presence of data obstructs the speed of instruction fetching. This is a fact with

in
uence on RISC design considerations.

The principle of a "stored program" or a von-Neumann architecture can be imple-

mented in several ways which has also been done. To distinguish between di�erent von

Neumann-architectures we speak more generally about computer architecture. This con-

cept, created by Amdahl while working with the IBM 360, can be summarized as:

The image that the computer presents to the machine language programmer

and the compiler writer.

16

Consequently, the processors instruction set, its registers, and other details that are

essential for programming the device. The coding and interpretation of a program consti-

tutes the instruction set, thus, this is a main component of a computer architecture. The

register �le is heavily utilized by a compiler writer, thus it is another major component

of the architecture. Di�erent instructions exhibit di�erent execution times, therefore in

some special occasions, there is need for the programmer to know something about the

CPU-datapaths or at least the instruction timing.

Recently the term "computer architecture" has been given an extended meaning,

[Hen90], which makes it cover computer hardware and computer organization as well.

For the subject as treated in this work however, Amdahls de�nition will su�ce.

1.2 Trends in computer architectures

To gain understanding of the design decisions behind RISC-machines it is necessary to

recapture the historical development of processors and their instruction-sets. Ever since

the �rst digital processing units, the instruction sets have been extended and the instruc-

tions have grown in complexity. The MARK-1 (1948) had seven quite simple instructions

while a mainframe from the late seventies such as VAX has over 300 instructions. Some of

these instructions are extremely complex requiring a large amount of hardware and several

clock cycles to be executed. This, in turn, leads to sophisticated technics for pipelining,

prefetching and the use of cache memories. This development, from small and simple to

large and complex instruction-sets is remarkable when it comes to single chip processors.

For example, if comparing the Motorola 6800 with the 68020 we �nd that eleven new ad-

dressing modes have been added, the number of instructions has doubled, new functions

have been added for instruction caches and coprocessors. Furthermore the instructions

complexity has grown tremendously.

The general trend towards modern CISC (Complex Instruction Set Computer) is a

result of several factors. New models within a computer family have to be compatible

with their predecessors. As a result the number of functional units in the processor

increases. In this way new functions can be added in new machines without wasting earlier

software development e�orts. Several e�orts have been done to decrease the "semantic

gap" between high level programming languages and the instruction set. This has been

done by implementing instructions that were close to the high level statements. Such

instructions have a tendency of being extremely complex and not applicable for every

possible language. Thus, it turns out that the compiler can not make use of these special

instructions. Meanwhile these instructions require a lot of hardware which in many cases

increases the processor cycle time.

To make the machines run faster, designers have moved functions from assembly pro-

gram to microcode and further on from microcode to hardware. By adding extra hardware

in the decoding unit one could get to a point where a machine cycle has to be lengthened.

Thus, adding a certain instruction may slow down the execution of every instruction in

the set. Development tools and methods used in the design of large VLSI circuits, is a

17

support for design of large architectures.

Microcoding is a particular interesting technic that encourages complex instructions.

It is a structured way of implementing, creating and modifying those algoritms that control

the execution of complex instructions in the processor. The steady grow of CISC-functions

is further supported by large micromemorys. It is easy to add a new instruction if only

there is room enough in the micromemory.

1.3 Considerations that lead to the RISC

At least historically, in most computer applications, a program written in assembly lan-

guage exhibits the shortest execution times. This has been due to the fact that assembly

language programmers know the computer architecture well and are capable of taking ev-

ery advantage of it. It is di�cult to accomplish this in an automatic manner and for general

cases which are the requirements for compiler to generate code. However, assembly lan-

guage programming, as a way of increasing program performance su�ers from some heavy

disadvantages. It is probably the most time-consuming method to write software. Thus it

is very expensive and yields results much later than high level programming. Hence, for a

new processor architecture theres has to be a compiler for a high level language.

It has been found that it is di�cult to construct an e�cient compiler for a computer

with a large instruction set. The compiler cannot make use of all of the sophisticated

instructions that the architecture o�ers. Therefore, the compiler uses simpler instructions

and generates larger code, thus making programs run slower, and wasting primary memory

in a way that should not be needed if an assembly language programmer wrote the same

piece of code. With the experience of these facts some designers began to question whether

CISCs are as fast as they could be, bearing the capabilities of the underlying technology

in mind. A few designers o�ered the hyphothesis that increased performance should be

possible through a streamlined design and instruction set simplicity, hence a Reduced

Instruction Set Computer [MIP87].

Consider this expression for processor performance,

P =
Time

Task
= C T I

where:

� C = cycles/instruction

� T = time/cycle

� I = instructions/task

It is clear that P should be kept as small as possible under given the circumstances. There

must be at least three di�erent ways of minimizing P.

18

1. Reduce the number of cycles per instruction.

2. Reduce the time per cycle.

3. Reduce the number of instructions per task.

Let us have a closer look at each of these.

1. The cycle time could be made very small through pipelining technics. I.e, several

instructions can be executed simultaneously, each one occupying di�erent stages of

the pipeline. This will keep most of the hardware busy most of the time. The cycle

time will be equivalent to the slowest stage in the pipeline. Hence, pipelining is a

way of reducing C.

2. T can only be kept low through the use of instructions that can be decoded and exe-

cuted by non-complex, and thereby fast, subsystems, therefore, keeping instructions

simple will decrease T.

3. I can, theoretically, be made as low as 1, I.e when there exists an instruction for each

high-level program construction that a task can constitute. This is hard to achieve

but the principle is clear. Complex instructions are required to minimize I.

As we can see, there is no way of meeting all of these requirements at the same time.

In fact, there are several contradictions in the requirements such as 1) and 3), 2) and 3),

and a closer look will show even more.

The RISC approach is to reduce C and T. This can only be done at "the cost of" I. To

minimize this cost, one attempts to reduce I with the aid of highly optimizing compilers.

Therefore, one must bear in mind, that the absence of such program development tools

will dramatically a�ect a RISC system.

1.4 A RISC design decision graph

The RISC approach leads to several design decisions. Figure 1.1 illustrates how funda-

mental criteria lead to design decisions that constitutes a RISC-processor.

An attempt to acheive single cycle execution, i.e reduce C, without a�ecting cycle time

T leads to a pipe-lined architecture. The pipe-line should be divided into stages wich all

meet the cycle-time requirement stated as T.

To fully exploit the advantages of a pipe-line, a uniform instruction fetch and execu-

tion must be accomplished. This may possibly be disturbed by data-dependencies which

prevent an early stage of an instruction from being executed before a later stage of the

preceeding instruction has been completed. Changes in program
ow forces a stop/
ush

and re�ll of the pipe-line. A score- board mechanism that indicates registers in use will

19

detect data- dependencies. Pipe-line forwarding technique may prove helpful for reducing

the penalties. Delayed branch, (which means that the instruction immediatly following

a branch, conditional or unconditional is always executed) is used to reduce penalty as-

sociated with changes in program
ow. However, this requires a careful strategy by the

compiler. Optimising compilers could take advantage from this feature.

A uniform instruction execution can only be acheived by using uniform instructions.

This leads to a rather simple and reduced instruction set. Data should be accessed within

a single cycle, therefore a large, on chip, register �le is needed in the top of the memory

hierarchy. Since instructions/addressing modes should be kept simple, and data should

be kept in registers there are strong implications for special load/store instructions that

perform data tra�c, hence the commonly used name load/store- architecture.

A large register �le will create signi�cant 'overhead' in the case of context switch. A

special support for such occasions is therefore needed. Optimising compilers could provide

such support. Register windows is another way of reducing context switch overhead.

Approximately 20 percent of the executed instructions are used about 80 percent of

the time spent executing a program [Rad83], the so called "20/80-rule" . Analysing the

instruction mix shows that simple instructions dominate among these 20 percent [Hen90].

We can see strong needs for careful code generation or the increase of performance may be

outbalanced by an increase of static and dynamic instruction count. This is a very strong

implication for optimizing compilers.

For implementation, a constant chip area should be maintained. A simple decoding

logic saves chip and implies simple instructions.

Uniform instruction execution demands uniform instruction fetch. One instruction

should be fetched in each cycle but disturbances from data tra�c make this di�cult

to acheive. Since the memory bandwidth is assumed to be constant we have another

implication for a large on-chip register �le.

We may thus conclude: The RISC high performance relies heavily on : low cycle

time, single cycle execution which implies a Reduced Instruction Set with simple, uniform

instructions and e�cient optimising compilers.

1.5 Early RISCs

The RISC concept was, in fact, adapted very early by Seymour Cray in an e�ort to

design a very fast vector processor. The CDC 6600 was register based and all operations

used data from registers local to the arithmetic units. The instruction set was simple

and executions were pipelined. Cray realized that all operations must be simpli�ed for

maximal performance. One bottleneck in processing may cause all other operations to

degrade performance.[Sie82]

Starting in the mid 1970s, the IBM 801 research team investigated the e�ect of a small

20

Figure 1.1: A Risc Design Decision Graph

21

instruction set and optimizing compiler design on computer performance . They performed

dynamic studies of the frequency of use of di�erent instructions in application programs. In

these studies, they found that approximately 20 percent of the available instructions were

used 80 percent of the time. Also, complexity of the control unit necessary to support

rarely used instructions slows the execution of all instructions. Thus through careful

study of program characteristics, one can specify a smaller instruction set consisting only

of instructions which are used most of the time, and are executed quickly.[Rad83]

The �rst major university RISC research project was at the University of California,

Berkeley . David Patterson, Carlos S�equin and a group of graduate students investi-

gated the e�ective use of VLSI in microprocessor design. The Berkeley RISC concept was

adopted by Sun Microsystems where the SPARC architecture was de�ned.[Pat82]

Shortly after the Berkeley group began its work, researchers at Stanford University, un-

der the direction of John Hennessy , began looking into the relationship between computers

and compilers. Their research evolved into the design and implementation of optimizing

compilers and reduced instruction sets. Since this research pointed to the need for sin-

gle cycle instruction sets, issues related to complex,deep pipelines were also investigated.

This research resulted in a RISC processor for VLSI that is commonly referred to as "the

Stanford MIPS" (Microprocessor without Interlocked Pipeline Stages). [Hen84]

1.6 A brief overwiev of some RISC projects

Berkeley SPUR (Symbolic Processing Using RISC) is a multiprocessor research machine

for investigations in paralell processing [Hil85] [Hil86]. The SPUR processor is a general-

purpose RISC with support for LISP and
oating point arithmetic. From 6 to 12 SPUR

processors may be attached to shared memory and shared I/O devices by the SPUR bus.

University of Wisconsin PIPE (Parallel Instructions and Pipelined Execution) project

was an attempt to reduce three common processor bottlenecks with a reduced architecture

[Smi83]. In the PIPE, programs are decomposed in separate address and computation

tasks. Two independent identical processors performs these tasks. An access processor

is responsible for all memory addressing and access operations. An execute processor

performs all data processing.

Reading University RIMMS(Reduced Instruction Set architecture for Multi- Micropro-

cessor Systems) resulted from a study of CPU design for SIMD and MIMD multiprocessor

systems [Mil83]. The research group saw that the performance gains through concurrency

have the potential beeing much more signi�cant than performance gains throuh increased

device speeds.

The Ben-Gurion University MODHEL RISC system [Tab87] was intended as an in-

vestigation tool in the study of RISC computing systems . The MODHEL system can

be used in experiments with benchmark programs in studies aimed at �nding an optimal

instruction set.

22

Hewlett-Packard has developed a family of computers based upon RISC design. Two

of these computers, the Series 930 and the Series 950 are realizations of the HP Precision

Architecture [Bir85] RISC-type system.

The IBM 6151 RT PC is basically a workstation which uses the IBM ROMP (Research

O�ce products division MicroProcessor) and a MMU (Memory Management Unit) [Hin86]

The ROMP/MMU represents one of the commercial spino�s from the IBM 801 research

project.

23

Chapter 2

Description Of RISC

Architectures

In this chapter a detailed description of seven RISC processors, mostly from an architec-

tural point of view, will be given. Basic features that will be described are:

� Instruction Set

� Data formats

� CPU register description

� Instruction formats and addressing modes

� Processor states

The following literature was chosen as sources (See the bibliography for a complete

reference): "MC88100 RISC microprocessor user's manual" [Mot90], "80960KB program-

mer's reference manual" [Int88], "MIPS R2000 RISC architecture" [MIP87], "SPARC

RISC user's guide" [ROS90], "The Transputer databook" [Inm89], "Am29000 streamlined

instruction processor user manual" [Adv88], "THOR, Stack RISC microprocessor instruc-

tion set architecture for prototype chip"[Saa92]. For THOR, additional information was

gathered from draft-issues of a forthcoming user's manual.

The purpose of this chapter is to give a standardised description of the selected RISC

processors. The varying ways of implementing
oating point support, memory manage-

ment etc, will only be mentioned brie
y and no detailed descriptions will be given.

24

2.1 Motorola MC88100

In early 1988, Motorola Inc. presented 88000. The basic architecture consists of a processor

chip, MC88100 and two identical cache chips, MC88200. This o�ers a full system solution

for a reduced instruction set architecture. The MC88100 has capability for concurrent

operations. There are four execution units: the Integer/Bit-Field Unit and the Floating

Point Unit execute data manipulation instructions. The Data Unit performs data memory

accesses while the Instruction Unit performs instruction prefetches. There are separate

data and instruction memory ports (Harvard Bus Structure) and pipelined Load and Store

operations. The MC88100 also has three internal buses; a source 1 bus, a source 2 bus

and a destination bus that are used for passing operands between the register �le and the

di�erent execution units.

2.1.1 MC88100 instruction set

The MC88100 instruction set contains 51 instructions. All integer arithmetic, logical,

bit�eld and certain
ow-control instructions execute in a single clock cycle. Memory

access and
oating point instructions are performed by dedicated execution units. All

instructions are implemented directly in hardware, precluding the need for microcoded

operations. An instruction set summary is given in appendix.

2.1.2 MC88100 data formats

� Integer signed (2's complement) and unsigned data formats: 64-bits (double word),

32-bits (word), 16- bits (half-word), 8-bits (byte). Data items are aligned so that they

do not cross word boundaries, i.e half-words may have only even addresses, words

may have addresses divisible by four, double words may have addresses divisible by

eight and byte data may be placed at any address. An attempt to cause misaligned

access causes an exeption (if enabled).

� Signed and unsigned bit �elds from 1 to 32 bits.

� IEE 754 single precision (32 bits)
oating point. IEE 754 double precision (64 bits)

oating point

Bytes and half-words are packed, in memory, according to the "little endian" or the "big-

endian"-scheme. The byte ordering in e�ect is controlled by a bit in the processor status

register. A signed byte or half-word stored in a register is automatically signed-extended.

Data is placed in the least signi�cant part while remaining bits are �lled with the sign of

the data value. In the case of unsigned byte or half-word the most signi�cant part of the

register is �lled with zeros. The least signi�cant bit in a data item is denoted b0, the next

bit b1 and so on.

25

2.1.3 MC88100 registers

The register set consists of general-purpose registers, registers dedicated for
oating point

operations and control-registers. There are also some internal registers, not available in

any of the register models; they can only be used and modi�ed indirectly.

General Purpose registers

r0-r31 (table 2.1)contain program data. Their usage are dedicated due to software con-

ventions (further discussed in chapter 3). All of these registers with the exeption of r0

(constant zero) has read/write access. A write operation to r0 has no e�ect.

Floating-point operation registers

fcr1-fcr7 are used to hold
oating point operands and results while the rest holds various

status from the
oating-point unit (table 2.2).

Control Registers

Control registers (table 2.3) contain status, execution control and exception processing

information. Some of the registers have read/write access; others are read only.

Internal Registers

Internal registers (table 2.4) located in the register �le/sequencer and instruction unit

control instruction execution and data availability. These registers are not explicitly ac-

cessible for the programmer.

2.1.4 MC88100 instruction formats/addressing modes

All instructions are 32 bits in length. Immediate operands and displacements are encoded

in the instruction word. All other operands are located in registers which can be moved

to and from memory with load and store instructions.

There are three instruction types:
ow control, data memory accesses and register to

register operations. Each type has unique addressing capabilities. Flow control instruction

references are made by the instruction unit. Data memory access instructions address

those sections of memory that contain program data. Register to register instructions

access only the general purpose registers or, in some cases, the control registers.

26

name proposed usage

r0 zero

r1 subroutine return pointer

r2-r9 called procedure parameter registers

r10-r13 called procedure temporary registers

r14-r25 calling procedure reserved registers

r26 linker

r27 linker

r28 linker

r29 linker

r30 frame pointer

r31 stack pointer

Table 2.1: MC88100 general purpose registers

name usage

fcr0 f.p. exeption cause register

fcr1 f.p. source operand 1 high register

fcr2 f.p. source operand 1 low register

fcr3 f.p. source operand 2 high register

fcr4 f.p. source operand 2 low register

fcr5 precise operation type register

fcr6 f.p. result high register

fcr7 f.p. result low register

fcr8 f.p. imprecise operation type register

fcr62 f.p. user status register

fcr63 f.p. user control register

Table 2.2: MC88100
oating point registers

27

name usage

cr0 processor identi�cation register

cr1 processor status register

cr2 exeption time processor status register

cr3 shadow scoreboard register

cr4 shadow execute instruction pointer

cr5 shadow next instruction pointer

cr6 shadow fetched instruction pointer

cr7 vector base register

cr8 transaction register 0

cr9 data register 0

cr10 address register 0

cr11 transaction register 1

cr12 data register 1

cr13 address register 1

cr14 transaction register 2

cr15 data register 2

cr16 address register 2

cr17 supervisor storage register 0

cr18 supervisor storage register 1

cr19 supervisor storage register 2

cr20 supervisor storage register 3

Table 2.3: MC88100 control registers

28

name function

XIP eXecute Instruction Pointer

contains the address of the instruction that is

currently being executed.

NIP Next Instruction Pointer

contains the address of the instruction that is

currently being received from memory and decoded by

the instruction unit.

FIP Fetch Instruction Pointer

points to the memory location of the next accessed

instruction. For sequential execution FIP=XIP+4.

Jump target addresses are received from the jump

instruction operand. Unconditional branch addresses

are computed from the XIP and a 26-bit signed

displacement, i.e. FIP=XIP+d26. Conditional branch

addresses for the branch taken case are calculated

as FIP=XIP+d16.

SB Scoreboard Register

contains a bit corresponding to each register r1-

r31. If a bit is set the corresponding register is

currently in use.

Table 2.4: MC88100 internal registers

Register to Register Instructions

Depending on instruction this format provides four addressing modes.

1. Triadic Register Addressing uses three �ve-bit �elds to specify two source register

�elds S1,S2 and a destination register �eld D. The OPCODE �eld directs processing

to the integer unit or the
oating point unit. Not every instruction uses all three

register selection �elds. For arithmetic and logical instructions there is a SUBOPCODE

�eld wich speci�es the full operation

2. Register with 10-bit immediate addressing is used in bit-�eld instructions. Data in

rS1 is processed and the result is placed in rD. The 10- bit immediate value represents

Triadic register 10-bit immediate

bits encoding bits encoding

31-26 OPCODE 31-26 OPCODE

25-21 D 25-21 D

20-16 S1 20-16 S1

15-5 SUBOPCODE 15-10 SUBOPCODE

4-0 S2 9-0 IMM10

Table 2.5: MC88100 Triadic register and 10-bits immediate instruction formats

29

16-bit immediate control register

bits encoding bits encoding

31-26 OPCODE 31-26 OPCODE

25-21 D 25-21 D

20-16 S1 20-16 S1

15-0 IMM16 15-14 OP

13-11 SFU

10-5 CRS/CRD

4-0 S2

Table 2.6: MC88100 16-bit immediate and control register addressing instruction formats

two 5-bit �elds specifying the bit-�eld width and o�set respectively.

3. Register with 16-bit immediate addressing is used by arithmetic and logical instruc-

tions requiring a 16-bit (unsigned) immediate value.This value is zero-extended be-

fore processed by any arithmetical instruction.

4. Control Register Addressing is used to reference the general control and FPU control

registers. General purpose registers may be loaded from, stored to or exchanged

with the control registers. The CRS/CRD �eld speci�es the control register which is

a source register in the case of a load instruction, a destination register otherwise.

The D-�eld speci�es a general-purpose register that is loaded with the contents of

the selected control register. This �eld is ignored in store operations. The S1 �eld

speci�es the general purpose register whose contents are to be transferred to the

selected control register. This �eld is ignored in load instructions. The OP �eld

identi�es the particular instruction. The SFU �eld speci�es a special function unit

accessed by the instruction: the value zero speci�es the integer control unit registers,

the value one speci�es the
oating point unit registers. Other values (2-7) cause an

SFU precise exception for the addressed SFU. The S2 �eld �nally, must contain the

same value as the S1 �eld (for decoding purposes).

Data Memory Access Instructions

MC88100 supports three adressing modes for accessing data in memory or to generate a

memory address. Address calculations are performed by the use of unsigned arithmetic.

Over
ows are not detected and results are truncated to the number of available bits.

1. Register Indirect with 16-bits zero-extended immediate index.

The contents of rS1 is added to the 16-bit zero- extended immediate index contained

in the I16 �eld of the instruction. The result is a data memory address. This address

is:

� (for LDA instruction) loaded into the register speci�ed by the D �eld

� (for STORE and EXCHANGE instructions) used as the memory address where

contents of D �eld register are stored

30

immediate index register index

bits encoding bits encoding

31-26 OPCODE 31-26 OPCODE

25-21 D 25-21 D

20-16 S1 20-16 S1

15-0 I16 15-5 SUBOPCODE

4-0 S2

Table 2.7: MC88100 indexed addressing instruction formats

� (for LOAD instruction) used as the memory address from which the D �eld

register is loaded.

2. Register indirect with index is similar to the previous mode but contents of register

speci�ed by the S2 �eld are used as index rather than as immediate value. SUBOPCODE

�eld speci�es the particular instruction.

3. Register indirect with scaled index The index is scaled by the size of the access

before it is used in the address calculation. Here, SUBOPCODE speci�es the particular

instruction as well as the scaling factor.

Flow Control Instructions

Flow control instruction address or reference instruction memory by the use of four dif-

ferent addressing modes. Address calculations are performed using signed arithmetic.

Over
ows are not detected and results are truncated to the number of available bits.

1. Triadic Register Addressing is used to specify the target of a jump instruction or the

operands of a trap-on-bound instruction. All three of the operands do not have to be

used. The SUBOPCODE identi�es the particular instruction. For jump instructions the

S2 �eld speci�ed register contents are placed in the FIP, causing program execution

to be transferred to that address. The lower two bits of S2 �eld register are ignored

so that FIP contains a word address. The S1 and D �elds are ignored. For trap-

generating bound-checks instructions the data in registers speci�ed by S1 and S2

�elds are compared. A trap is taken if the source 1 data is greater than the source 2

data (unsigned). The D �eld is ignored. If the trap is taken, execution is transferred

to the bound check exception vector by concatenation of the VBR, bounds-check

exception vector and three trailing zeroes, forming a 30-bits instruction address.

2. Register with 9-bit vector table index is used by bit test trap instructions where the

bit in S1 �eld register speci�ed by the B5 �eld is tested for either a set or clear

condition. It is also used by the conditional trap instructions where the source 2

register is tested for the conditions speci�ed in the M5 �eld (see below). In either

case, if the test condition is true, the contents of VBR is concatenated with the

VEC9 �eld of the instruction and three trailing zeroes. Exception processing starts

31

triadic register 9-bit vector table

bits encoding bits encoding

31-26 OPCODE 31-26 OPCODE

25-21 D 25-21 B5/M5

20-16 S1 20-16 S1

15-5 SUBOPCODE 15-9 SUBOPCODE

4-0 S2 8-0 VEC9

Table 2.8: MC88100 Flow control; triadic register and 9-bit vector table index instruction

formats

at the vector speci�ed by the resulting address. The SUBOPCODE �eld speci�es the

particular instruction. The M5 �eld speci�es which out of four possible conditions to

test out:

� bit 25 Reserved, must be zero

� bit 24 Maximum negative number

� bit 23 Less than zero

� bit 22 Equal to zero

� bit 21 Greater than zero

Note that multiple conditions can be speci�ed by setting more than one bit in this

�eld.

3. Register with 16-bit displacement/immediate is used by branch and trap instructions

for target address and test condition generation. The OPCODE �eld identi�es the

particular instruction. For bit test branch instructions the bit in source 1, speci�ed

by the B5 �eld is tested for either a set or clear condition. For condition test branch

instructions source 1 is tested for the condition(s) speci�ed in the M5 �eld. In either

case, if the test condition is true, the 16-bit displacement speci�ed in the instruction

D16 �eld is shifted left two positions and sign-extended to 32 bits. This value is added

to the XIP and the result is loaded into FIP, thus program execution is transferred

to that address. For trap-generating bound-check instructions the data in source

1 is compared to the speci�ed immediate operand. A trap is taken if the register

data is greater than the (unsigned) operand. If the trap is taken, the bounds-check

vector number is combined with VBR, the result is concatenated with three trailing

zeroes and loaded into the FIP. Exception processing begins from the bounds-check

exception vector.

4. 26-bit branch displacement

This form is used to specify the branch target instruction in unconditional branch

instructions which use a sign-extended 26- bit displacement to calculate the loca-

tion of a new target instruction. The displacement is shifted left by two bits and

sign-extended to 32 bits. The two least signi�cant bits are cleared to force word

alignement. This value is then added to the XIP to form the address of the target

instruction. The computed address is placed in the FIP, causing program execution

to be transferred to that address. The OPCODE �eld identi�es the particular branch

instruction.

32

16-bit displacement 26-bit displacement

bits encoding bits encoding

31-26 OPCODE 31-26 OPCODE

25-21 B5/M5 25-0 D26

20-16 S1

15-0 D16

Table 2.9: MC88100 16-bit displacement and 26-bit displacement instruction formats

2.1.5 MC88100 processor states

The MC88100 may be in one of three states:

� Normal instruction execution

� Exception

� Reset

Normal Execution

During normal execution the processor operates at either the supervisor or user level of

privilege. These levels de�nes which memory space is accessed during external bus trans-

actions and which registers are available to the programmer. When operating in supervisor

mode memory access reference the supervisor address space in data or instruction memory.

This mode allows execution of all instructions and allows access to all control registers

and general purpose registers.

Kernel software typically executes in supervisor mode. The kernel may provide services

such as resource allocation, exception handling and software execution control. Execution

control normally includes control of user programs and protecting the system from acci-

dental corruption by a user program.

The user mode changes to supervisor mode if:

� an exception occurs

� a reset is signalled

� a trap instruction is executed by a user program

� an interrupt or memory access fault occur

33

Exceptions

Exceptions are conditions that causes the processor to suspend execution of the current

stream and perform exception processing. Exceptions can occur at any time during normal

instruction execution. Exceptions are recognized internally when the processor is between

instructions.

Exceptions occur due to to four types of conditions:

� Interrupts which are signalled externally

� Externally signaled errors (such as bus errors)

� Internally recognized errors (such as zero-divide)

� Trap instructions

The processor begins exception handling at the next instruction boundary after the

event is recognized. It freezes the execution context in "shadow-" and "exception time

registers", which also precludes other interrupts from occuring, and enters the supervisor

mode. The FPU is disabled and the data unit is allowed to complete pending accesses.

Instruction execution transfers in an orderly manner to the appropriate interrupt han-

dler routine which is de�ned by the "exception vector" associated with that particular

interrupt.

Exceptions fall into two categories: precise and imprecise. With a precise exception,

the exact processor context, when the exception occured, is available, and the exact cause

of the exception is always known. With an imprecise exception, the exact processor

context is not known when the exception is processed. The context is not known because

concurrent operations have a�ected the information that comprises the processor context.

The integer unit maintains copies of certain internal registers for use during MC88100

exception processing. The data unit and FPU also maintain copies of internal registers

to allow full recovery when exceptions occur. The copies of internal registers are referred

to as shadow registers and are updated on every clock cycle when shadowing is enabled.

For shadowing to occur, it must be speci�cally enabled. This may be done by clearing the

"shadow freeze bit" in PSR or by executing an rte-instruction. The shadow freeze bit is

set by hardware when an exception is processed in order to preserve the processor context.

"Exception vectors" are entry points into the interrupt handler routines. The MC88100

maintain a vector table consisting of 512 exception vectors on a 4 KB memory page pointed

to by the vector base address in the "vector base address register" (VBR).

Each interrupt and "exception vector" has a corresponding number which is generated

by hardware or speci�ed as a nine-bit �eld in a trap instruction. This number is used as

an index into the vector table. Each "exception vector" is two instructions (eight bytes)

34

long. "Exception vectors" 0-127 are reserved for various events while "exception vectors"

128-511 are user de�ned.

Due to concurrent execution units of the MC88100 multiple exceptions can occur at

the same time whithin the processor. When this happens they are recognized by the

processor according to a prede�ned priority. Exceptions that have the same priority never

occur simultaneously.

2.1.6 MC 88100 pipelining

There are four separate execution units which allow MC88100 to perform up to �ve dif-

ferent operations simultanously:

� Access program memory

� Execute an arithmetic ,logical or bit-�eld instruction

� Access data memory

� Execute
oating point or integer divide instruction

� Execute
oating point or integer multiply instruction

The instruction unit pipeline supplies the appropriate execution unit with instructions

that are to be executed by a concurrent pipeline. Data memory access instructions are

dispatched to the data unit, whereas
oating point ,integer multiply and integer divide

instructions are dispatched to the FPU. The FPU contains two pipelines handling
oating

point add, subtract, compare and conversions between integer and
oating-point, as well

as integer and
oating-point divide instructions. All other instructions are executed by

the integer unit, or instruction unit for branches, in one machine cycle.

All execution units contain an additional level of parallelism. Instruction decode and

source operand fetches from the registers are performed simultanously. Branch instruction

decode and branch target address calculation are performed in parallel with the next

instruction fetch. Three internal register buses allow three simultaneous register accesses.

35

2.2 Intel 80960KB

The 80960KB is an implementation of the 80960 32-bit architecture from Intel. This

architecture has been designed to meet the needs of embedded applications such as machine

control, robotics, process control, avionics and instrumentation.

The architecture provides 32 registers, 28 of which are available for general use. These

are divided into two types; globals and locals. There is a 512 byte instruction cache on

chip and multiple set of local registers. Execution of some instructions may me overlapped.

This is accomplished by register scoreboarding.

2.2.1 80960 KB instruction set

The 80960 KB processor implements all the instructions in the 80960 instruction set, which

includes all of the data movement, arithmetic, logical, and program control instructions

commonly found in computer architectures. The processor also includes a set of
oating-

point instructions and several instructions to handle architectural extensions found in the

processor. All instructions are 32 bits long and aligned on 32 bit boundaries. There are

over 50 instructions that can be executed in a single clockcycle. A summary of the 80960

KB instruction set is given in Appendix B.

The processor provides a mode and stack switching mechanism called the user-supervisor

protection model. This protection model allows a system to be designed in which kernel

code and data resides in the same address space as the user code and data, but access to

the kernel procedures (called supervisor procedures) is only allowed through a controlled

interface. This interface is provided by the system procedure table.

2.2.2 80960KB data formats

The 80960KB operates on seven data types. Integer, real, ordinal and decimal data types

can be thought of as numeric data types. The remaining types, bit- �eld, triple word and

quad word, represent grouping of bits or bytes that the processor can operate on as a

whole, regardless of the nature of the data contained in the group.

Integers are signed whole numbers, which are stored and operated on in two's comple-

ment format. The processor recognizes four sizes of integers: 8-bit (byte integers), 16 bit

(short integers), 32-bit (integers) and 64-bit (long integers).

Ordinals are a general purpose data type. The processor recognizes four sizes of or-

dinals: 8-bit (byte ordinals), 16-bit (short ordinals), 32-bit (ordinals), and 64-bit (long

ordinals). The processor uses ordinals for both numeric and non- numeric operations. For

numeric operations, ordinals are treated as unsigned whole numbers. The processor pro-

vides several arithmetic instructions that operate on ordinals. For non-numeric operations,

ordinals contain bit-�elds, byte strings, and Boolean values.

36

Reals are
oating point numbers. The processor recognizes three sizes of reals: 32-bit

(reals), 64- bit (long reals), and 80-bit (extended reals). The real number format conforms

to the IEEE standard for binary
oating point arithmetic.

The processor provides three instructions that perform operations on decimal values

when the values are presented in ASCII-format. Each decimal digit is contained in the

least signi�cant byte of an ordinal (32 bits). For decimal operations, bit 8 through 31 of

the ordinal containing the decimal are ignored.

An individual bit is speci�ed for a bit operation by giving its bit number in the ordinal

in which it resides. The least signi�cant bit of a 32 bit ordinal is b0. The most signi�cant

bit is b31. A bit-�eld is a contignous sequence of bits of from 0 to 32 bits in length within

a 32-bit ordinal. A bit �eld is de�ned by giving its length in bits and the bit number of

its lowest numbered bit.

Triple and Quad words refer to consecutive bytes in memory or in registers; a triple

word is 12 bytes and a quad word is 16 bytes. These data types facilitate the moving of

blocks of bytes.

2.2.3 80960KB registers

The processor provides three types of data registers: global,
oating-point and local. The

16 global registers (g0-g15) constitute a set of general purpose registers, the contents of

which are preserved across procedure boundaries. The 4
oating point registers are pro-

vided to support extended
oating point arithmetic. Their contents are also preserved

across procedure boundaries. The 16 local registers (r0-r15) are provided to hold param-

eters speci�c to a procedure. For each procedure that is called, the processor allocates a

separate set of 16 local registers. For any one procedure within a program, 36 registers

are thus available; the 16 global registers, the 4
oating point registers and the 16 local

registers. These are all maintained on the processor chip.

Global Registers

The 16 global registers are 32-bits registers. Registers g0 through g14 are general purpose

registers, g15 is reserved for the current frame pointer (FP). The FP contains the address

of the �rst byte in the current stack frame.

Floating-Point Registers

The four
oating-point registers (fp0 through fp3) are 80-bits registers. These registers can

be accessed only as operands of
oating-point instructions. All numbers stored in these

registers are stored in extended real format. The processor automatically converts
oating

point values from real or long-real format into extended real format when a
oating point

37

register is used as a destination for an instruction.

Local Registers

The 16 local registers are 32-bits registers, like the global registers. The purpose of the

local registers is to provide a separate set of registers aside from the global and
oating

point registers, for each active procedure. Each time a procedure is called, the processor

automatically sets up a new set of local registers for that procedure and saves the local

registers for the calling procedure.

Local registers r0 through r2 are reserved for special functions as follows: register r0

contains the previous frame pointer (PFP), r1 contains the stack pointer (SP) and r2

contains the return instruction pointer (RIP). The processor accesses the local registers

at the same speed as it does the global registers.

Register Scoreboarding

A mechanism called register scoreboarding can, in certain situations, permit instructions

to execute concurrently. While an instruction is being executed, the processor sets a

scoreboard bit to indicate that a particular register or group of registers is being used

in an operation. If the instruction that follows does not use registers in that group, the

processor, is in some instances able to execute those instructions before execution of the

prior instruction is complete.

Instruction Pointer

The instruction pointer (IP) is the address of the instruction currently being executed.

This address is 32 bits and the 2 least signi�cant bits are always zero. Instructions in the

processor are one or two words long. The IP gives the address of the lowest order byte of

the �rst word of the instruction.

Arithmetic Controls

The processor arithmetic controls are made up of a set of 32 bits. These bits include

condition codes,
oating-point control and status bits, integer control and status bits and

a bit that controls faulting on imprecise faults, i.e faults where the entire processor status

is not known.

38

bits encoding

31-24 OPCODE

23-19 SRC/DST

18-14 SRC2

13 M3

12 M2

11 M1

10-7 OPCODE

6-5 0

4-0 SRC1

Table 2.10: 80960KB REG-instruction format

Process and Trace Controls

The processors process controls are a set of 32 bits that control or show the current

execution state of the processor. The trace controls are a set of 32 bits that control the

tracing facilities of the processor.

2.2.4 80960KB instruction formats

All of the 80960KB instructions are one word long and begin on word boundaries. One

group of instructions allows a second word which contains a 32-bit displacement. There

are four basic instruction formats: REG,COBR,CTRL and MEM. Each instruction has

only one format which is de�ned by the opcode �eld of the instruction.

REG format

The REG-format (Table 2.10) is for operations that are performed on data contained in

the global, local or
oating point registers.

The opcode is 12 bits long and is split between bits 7 through 10 and bits 24 through

31. The SRC1 and SRC2 operand �elds specify source operands for the instruction. The

operands can be either literals or registers. The mode bits, M1 for SRC1 , M2 for SRC2 and

the instruction type,
oating-point or non-
oating point, determine whether an operand

is a register or a literal. For non-
oating point instructions, if a mode bit is set to 0, the

respective SRC1 or SRC2 �eld speci�es a global or local register. If the mode bit is set to

1, the �eld speci�es an ordinal literal (5 bits) in the range of 0 to 31. For
oating-point

instructions, if the mode bit is set to 0, the respective SRC1 or SRC2 �eld speci�es a register

just as it does for non-
oating point instructions. If the mode bit is set to 1 the �eld

speci�es either a
oating point register or one of the two real number literals (+0.0 or

+1.0).

The SRC/DST �eld can specify either a source operand or a destination operand or

39

bits encoding

31-24 OPCODE

23-19 SRC1

18-14 SRC2

13 M1

12-2 DISPLACEMENT

1-0 0

Table 2.11: 80960KB COBR-instruction format

both depending on the instruction. The mode bit M3 and the instruction type determine

how this �eld is used. For non-
oating point instructions, if M3 is clear the SRC/DST is a

global or local register. If M3 is set the SRC/DST operand can be used only as a src operand

that is an ordinal literal. For
oating-point instructions the SRC/DST �eld is only used to

encode the destination operands. If M3 is clear the destination operand is a global or local

register. If M3 is set the destination operand is a
oating point register.

COBR format

The COBR format (Table 2.11) is used primarily for control-and- branch-instructions.

The opcode �eld is 8 bits. The SRC1 and SRC2 �elds specify source operands for the

instruction. The SRC1 �eld can specify either a global or local register or a literal as

determined by mode bit M1. The SRC2 �eld can only specify a local or global register.

The displacement �eld contains a signed, two's complement number that speci�es a word

displacement. The processor uses this value to compute the address of a target instruction

that the processor goes to as a result of a comparison. The displacement �eld can range

from �2
10
to 2

10
�1. To determine the IP of the target instruction, the processor converts

the displacement value to a byte displacement. It then adds the resulting byte displacement

to the IP of the next instruction.

CTRL format

The CTRL (Table 2.12) format is used for instructions that branch to a new IP, including

the branch-if,"bal" and "call" instructions. The return instruction also uses this format.

The opcode �eld for this format is 8 bits. The instructions that use this format have no

operands. The target address for a branch is speci�ed with the DISPLACEMENT �eld in the

same manner as is done with the COBR format instructions. Here, the DISPLACEMENT

�eld speci�es a word displacement that can range from �2
21

to 2
21
� 1. For the "return"

instruction DISPLACEMENT �eld are ignored.

40

bits encoding

31-24 OPCODE

23-2 DISPLACEMENT

1-0 0

Table 2.12: 80960 CTRL-instruction format

MEMA MEMB

bits encoding

31-24 OPCODE 31-24 OPCODE

23-19 SRC/DST 23-19 SRC/DST

18-14 ABASE 18-14 ABASE

13 MD 13-10 MODE

12 0 9-7 SCALE

11-0 OFFSET 6-5 0

4-0 INDEX

Table 2.13: 80960 MEMA,MEMB instruction formats

MEM format

The MEM(A) or MEM(B), (table 2.13) ,formats is used for instructions that require a

memory address to be computed. These instructions include the load-, store- and "lda"

instructions. Also, the extended versions of the branch, branch-and-link, and call in-

structions uses this format. The MEMB format o�ers the option of including a 32-bit

displacement contained in a second word, to the instruction. Bit 12 of the �rst word of

the instruction determines whether the format is MEMA (clear) or MEMB (set).

1. MEMA format

For both formats the opcode �eld is 8 bits long. The SRC/DST �eld speci�es a global

or local register. For load-instructions, the SRC/DST �eld speci�es the destination

register for a word loaded into the processor from memory or, for operands larger

than one word, the �rst of successive destination registers. For store instructions,

this �eld speci�es the register or group of registers that contain the source operand

to be stored in memory.

The mode bit (or for MEMB mode bits) determine the address mode used for the

instruction.

The MEMA format provides two addressing modes: absolute o�set and register

indirect with o�set. The o�set �eld speci�es an unsigned byte o�set from 0 to

4096. The ABASE �eld speci�es a global or local register that contains an address in

memory. The address is interpreted as either a virtual address or a physical address

depending on whether the processor is operating in virtual addressing or physical

addressing mode respectivly.

For the absolute o�set addressing mode (the MD bit is clear), the processor interprets

the o�set �eld as an o�set from byte 0 of the current address space. The ABASE �eld

41

is ignored. The use of this addressing mode along with the "lda" instruction allows

a constant of from 0 to 4096 to be loaded into a register.

For the register indirect with o�set addressing mode (the MD bit is set), the value

in the OFFSET �eld is added to the address in the ABASE register. Setting the o�set

value to zero creates a register indirect addressing mode, however, this operation

can generally be carried out faster by using the MEMB version of this addressing

mode.

2. MEMB format

The MEMB format provides seven addressing modes: absolute displacement, regis-

ter indirect, register indirect with displacement, register indirect with index, register

indirect with index and displacement, index with displacement, IP with displace-

ment. The ABASE and INDEX �elds specify local or global registers, the contents of

which are used in the address computation. When the INDEX �eld is used in an ad-

dressing mode, the processor automatically scales the value in the index register by

the amount speci�ed in the SCALE �eld. The optional displacement �eld is contained

in the word following the instruction word. The displacement is a 32 bit signed,

two's complement value.

2.2.5 80960KB addressing Modes

The processor o�ers 11 modes for addressing operands. These modes are grouped as

follows: Literal, Register, Absolute, Register Indirect, Register Indirect with displacement,

IP with displacement. Most of the instructions use only the literal and register modes.

The remaining modes are used for memory related instructions.

Literals

The processor recognizes two types of literals: ordinal literal and
oating point literal. An

ordinal literal can range from 0 to 31 (5 bits). When an ordinal literal is used as an operand

the processor expands it to 32 bits by adding leading zeroes. If the instruction speci�es

an operand larger than 32 bits, the processor zero-extends the value to the operand size.

If an ordinal literal is used in an instruction that requires integer operands, the processor

treats the literal as a positive integer value.

The processor also recognizes two
oating point literals(+0.0 and +1.0). These
oat-

ing point literals can only be used with
oating point instructions. As with the ordinal

literals, the processor converts the
oating point literals to the operand size speci�ed by

the instruction.

A few of the
oating point instructions use both
oating-point and non
oating-point

operands, e.g the convert integer to real-instructions. Ordinal can be used in these in-

structions for non-
oating point operands.

42

Register

A register is referenced as an operand by giving the register number. Both
oating point

and non
oating point instructions can reference global and local registers in this way.

However
oating point registers can only be referenced in conjunction with
oating-point

instructions.

Absolute

Absolute addressing is used to reference a memory location directly as an o�set from

address 0 of the address space ranging from �2
31
to 2

31
. At the machine level two absolute

addressing modes are provided, depending on the instruction format, i.e MEMA or MEMB.

For the MEMB format the o�set is an integer called a displacement ranging from �2
31

to

2
31
� 1. After evaluating an absolute address, the assembler will convert the address into

an o�set and select the appropriate machine-level instruction type and addressing mode.

Register Indirect

The Register Indirect addressing modes allow an address to be speci�ed with an ordinal

value (32 bits) in a register or with an o�set or displacement added to a value in a register.

Here the value in the register is referred to as the address base.

Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the

value in a register. The index is speci�ed by means of a value placed in a register. This

index value is then multiplied by the scale factor. The allowable scale factors are 1,2,4,8

and 16. A displacement may also be added to the address base and scaled index.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained

in a register and multiplied by a scaling constant before the displacement is added to it.

IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions

to make them IP relative. With this mode the displacement plus a constant of 8 is added

to the IP of the instruction.

43

2.2.6 80960 KB processor states

The 80960 KB has four di�erent operating states: executing, interrupted, stopped and

stopped-interrupted. The processor is placed in one of two states (executing or stopped)

at initialization. After that the processor and software controls the processor's state.

The processor can switch between the executing and interrupted states or between the

stopped and stopped-interrupted states. However, the processor never switches from the

executing state to the stopped state unless it detects a series of fault conditions that it

cannot handle.

Interrupts, IACs and Faults

The processor de�nes two methods of asynchronously requesting services from the proces-

sor: interrupts and IAC (InterAgent Communication) messages. Interrupts are the more

common of the two.

An interrupt is a break in the control
ow of a program so that the processor can

handle a more urgent chore. Interrupt requests are generally sent to the processor from an

external source, often to request I/O services. When the processor receives an interrupt

request, it temporarily stops work on its current task and begins work on an interrupt

handling procedure. Upon completion of the interrupt handling procedure, the processor

generally returns to the task that was interrupted and continues work where it left o�.

Interrupts also have a priority, which the processor uses to determine whether to service

the interrupt immediatly or to postpone the service until a later time.

The 80960 KB processor provides an alternate method of communicating with other

agents in the system called IAC messages, or simply IACs. Using the IAC mechanism,

other agents on the system bus are able to communicate with the processor through

messages that are exchanged in a reserved section of memory.

Like interrupts, IACs are used to request that the processor stop work on its current

task and begin work on another task. However, where an interrupt generally causes an

temporary break in the execution of a program, an IAC often causes a permanent change

in the control
ow of the processor.

While executing instructions, the processor is able to recognize certain conditions that

could cause it to return an inappropriate result or that could cause it to go down a wrong

and possibly disastrous path. One example of such a condition is a divisor operand of zero

in a divide operation. Another example is an instruction with an invalid opcode. These

conditions are called faults. The processor handles faults almost the same way that it

handles interrupts. When the processor detects a fault, it automatically stops its current

processing activity and begins work on a fault-handling procedure.

44

2.3 AMD Am29000

In 1987, Advanced Micro Devices (AMD) released the �rst microprocessor ever designed

by the company, the Am29000. The processor operates at a 25 MHz clock rate and a 40

ns instruction cycle time. AMD claims that it can hit a peak execution rate at 25 mips

and a sustained performance level at 17 mips. Am29000 is an "enhanced RISC design",

meaning that key RISC concepts have been combined with conventional design to reach

highest possible performance. Among other things it features a four-stage pipeline, 128

bytes instruction branch target cache and an on chip memory management unit.

2.3.1 Am29000 instruction set

The Am29000 instruction set contains 112 instructions divided into 9 classes: integer

arithmetic, compare, logical, shift, data movement, constant,
oating point, branch and

miscellanous instructions. The processor executes all instructions in a single cycle except

for interrupt returns, load multiple and store multiple. The complete instruction set is

given in Appendix B.

There are two mutually-exclusive modes of program execution; the supervisor mode

and the user mode. In the supervisor mode executing programs have access to all pro-

cessor resources. In the user mode, certain processor resources may not be accessed; any

attempted access causes a trap.

2.3.2 Am29000 data formats

A word is de�ned as 32 bits of data. A half-word consists of 16 bits and a double-word

consists of 64 bits. Bytes are 8 bits in length. Within a word, bits are numbered in

increasing order from right to left, starting with the number 0 for the least signi�cant bit.

Within a word, bytes and half-words are numbered in increasing order from left to right

starting with 0 (big endian scheme) or right to left (little endian scheme) as controlled by

the processor con�guration register.

Most instructions deal directly with word-length integer data; integers may be either

signed or unsigned depending on the instruction. Some instruction (e.g AND) treat word

length operands as strings of bits. In addition, there is support for character, half-word,

and Boolean data types. Floating point data (single and double precision) are de�ned but

not directly supported by processor hardware.

The processor supports character data through extraction (EXBYTE) and insertion

(INBYTE) operations on word length operands, and by a compare (CPBYTE) operation

on byte length �elds within words.

The processor supports half-word data through extraction (EXHW) and insertion

(INHW) operations on word-length operands. There is also an Extract Half Word Sign

45

absolute
register general purpose register
number

0 Indirect Pointer Access

1 Stack Pointer

2-63 Not Implemented

64-127 Global Registers 64-127

128 Local Register 125

129 Local Register 126

130 Local Register 127

129 Local Register 0

131 Local Register 1

... ...

254 Local Register 123

255 Local Register 124

Table 2.14: Am29000 general purpose registers

Extended instruction (EXHWS) which acts similar to EXHW.

The Boolean format used by the processor is such that the Boolean values TRUE and

FALSE are represented by 1 or 0 respectively, in the most signi�cant bit of a word.

The
oating point format de�ned for the processor conforms to the IEEE Floating

Point standard P754.

2.3.3 Am29000 register description

The Am29000 has three classes of registers which are accessible by instructions. These

are: general-purpose registers, special- purpose registers and translation-look-aside bu�er

(TLB) registers. Any operation available can be performed on the general-purpose regis-

ters, while the special purpose registers and the TLB registers are accessed only by explicit

data movement to or from a general purpose register. Table 2.14 lists the 192 general

purpose registers and their functions.

The following terminology is used to describe the addressing of general-purpose regis-

ters:

1. Register Number is a software level number for a general purpose register (0-255).

2. Global Register Number is a software level number for a global register ranging from

0-127.

3. Local Register Number is a software level number for a local register ranging from

0-127.

46

4. Absolute Register number is a hardware level number used to select a general purpose

register in the Register File. These numbers range from 0-255.

The 192 registers are divided into 64 global and 126 local registers. Global registers

are addressed with absolute register numbers while local registers are addressed relative

to an internal stackpointer. The general purpose registers may be accessed indirectly,

with the register number speci�ed by the content of a special purpose register rather than

the instruction �eld. Three independent indirect register numbers are contained in three

separate special-purpose registers. The number for Global Register 0 speci�es indirect

register-addressing. An instruction can specify an indirect register for any or all of the

source operands or result.

General registers may be partitioned into segments of 16 registers for the purpose of

access protection. A register in a protected segment may be accessed only by a program

executing in the Supervisor mode. An attempted access by a User-mode program causes

a trap to occur.

The Am29000 contains 23 special purpose registers which provide controls and data

for certain processor functions. Special Purpose registers are accessed by data movement

only. Any special purpose register can be written with the contents of any general purpose

register and vice versa. Some special purpose registers are protected and can be accessed

only in the Supervisor mode. This restriction applies to both read and write accesses.

Any User mode program violation of this restriction causes a trap to occur.

The special-purpose registers are partitioned into protected an unprotected registers.

Special purpose registers numbered 0-127 and 160-255 are protected and the remaining

are unprotected. Not all of these are implemented. The special purpose registers and their

de�nitions are listed in table 2.15.

Vector Base Area Address - De�nes the beginning of the interrupt/trap Vector Area.

Old Processor Status - Stores a copy of the current processor status when an interrupt

or trap is taken. It is later used to restore the current processor status on an interrupt

return.

Current Processor Status - contains control information associated with the currently

executing process such as interrupt disables and the supervisor mode bit.

Con�guration - contains control information which normally varies only from system

to system and is usually set only during system initialisation.

Channel Address - Contains the address associated with an external access and retains

the address if the access does not complete successfully. The Channel Address Register

in conjunction with the Channel Data and Channel Control registers allow restarting of

unsuccessfull external accesses.

Channel Data - Contains Data associated with a store operation and retains data if

the operation does not complete successfully.

47

register register
number protected registers number unprotected registers

0 Vector Base Address 128 Indirect Pointer C

1 Old Processor Status 129 Indirect Pointer B

2 Current Processor Status 130 Indirect Pointer A

3 Con�guration 131 Q

4 Channel Address 132 ALU Status

5 Channel Data 133 Byte Pointer

6 Channel Control 134 Funnel Shift Count

7 Register Bank Protect 135 Load/Store Count Remaining

8 Timer Counter

9 Timer Reload

10 Program Counter 0

11 Program Counter 1

12 Program Counter 2

13 MMU Con�guration

14 LRU Recommendation

Table 2.15: Am29000 special purpose registers

Channel Control - Contains information associated with a channel operation and re-

tains this information if the operation does not complete successfully.

Register Bank Protect - Restricts access of User Mode programs to speci�ed groups

of registers. This facilitates register banking for multi-tasking applications and protects

operating system parameters kept in the global registers from corruption by User mode

programs.

Timer Counter- supports real-time control and other timing related functions.

Timer Reload- maintains synchronisation of the Timer Control. It includes control bits
for the Timer facility.

Program Counter 0 - Contains the address of the instruction being decoded when an

interrupt or trap is taken. The processor restarts this instruction upon interrupt return.

Program Counter 1 - Contains the address of the instruction being executed when an

interrupt or trap is taken. The processor restarts this instruction upon interrupt return.

Program Counter 2 - Contains the address of the instruction just completed when an

interrupt or trap is taken. This address is provided for information only and does not

participate in an interrupt return.

MMU Con�guration - Allows selection of various memory management options.

LRU Recommendation - Simpli�es the reload of entries in the translation look-aside

bu�er by providing information on the least recently used entry of the TLB when a TLB

miss occurs.

48

bits encoding

31-22 OP

22 A/M

21-16 RC

I17..I10

I15..I8

VN

CE/CNTL

15-8 RA

SA

7-0 RB

RB or I

I9..I2

I7..I0

UI/RND/FD/FS

Table 2.16: Am29000 instruction formats

The unprotected special-purpose registers are de�ned as follows:

Indirect Pointer C - Allows the indirect access of a general purpose register.

Indirect Pointer B - Allows the indirect access of a general purpose register.

Indirect Pointer A - Allows the indirect access of a general purpose register.

Q - Provides additional operand bits for multiply and divide operations.

ALU Status - Contains information about the outcome of arithmetic and logical oper-

ations and holds residual control for certain instruction operations.

Byte Pointer - Contains an index of a byte or half-word within a word. This register

is also accessible via the ALU status register.

Funnel Shift Count - Provides a bit o�set for the extraction of word-length �elds from

double word operands. This register is also accessible via the ALU status register.

Load/Store Count Remaining - Maintains a count of the number of loads and stores

remaining for load-multiple and store-multiple operations. The count is initialised to the

total number of loads or stores to be performed before the operation is initiated. This

register is also accessible via the Channel Control Register.

2.3.4 Am29000 instruction format

All instructions for the Am29000 are 32 bits in length, and are divided into four �elds.

These �elds have several alternative de�nitions. In certain instructions, one or more �elds

are not used, and are reserved for future use.

49

The instruction format is shown in table 2.16 and the various �elds are interpreted as

follows:

� OP, this �eld contains an operation code de�nig the operation to be performed. In

some instructions the least signi�cant bit selects between two possible operands. For

this reason this bit is sometimes labelled A or M with the following interpretations:

Absolute, the A-bit is to di�erentiate between program- counter relative (A=0) and

absolute (A=1) instruction addresses when these addresses appear within instruc-

tions.

IMmediate, the M-bit selects between a register operand (M=0) and an immediate

operand (M=1) when the alternative is allowed by the instruction

� RC, the RC �eld contains a global or local register number

� I17..I10, this �eld contains the most signi�cant 8 bits of a 16- bit instruction

address. This is a word address and may be program counter relative or absolute,

depending on the A bit of the operation code.

� I15..I8, this �eld contains the most signi�cant 8 bits of a 16- bit instruction.

� VN, this �eld contains an 8-bit trap vector number

� CE/CNTL, this �eld controls a load or store access

� RA, the RA-�eld contains a global or local register number

� SA, the SA-�eld contains a special register number

� RB, the RB-�eld contains a global or local register number

� RB or I, this �eld contains either a global or local register number, or an 8-bit

instruction constant depending on the value of the M-bit of the operation code.

� I9..I2, this �eld contains the least signi�cant 8 bits of a 16- bit instruction address.

This is a word address, and may be program counter relative or absolute, depending

on the A-bit of the operation code.

� I7..I0, this �eld contains the least signi�cant 8 bits of a 16 bits instruction constant

� UI/RND/FD/FS, this �eld controls the operation of the CONVERT instruction.

2.3.5 Am29000 processor states

Normal program
ow may be preempted by an interrupt or trap for which the processor is

enabled. The e�ect on the processor is identical for interrupts and traps; the distinction is

in the di�erent mechanisms by which the interrupt and traps are enabled. The intension

is that interrupts be used for suspending current program execution and causing another

program to execute, while traps be used to report errors and exception conditions.

50

An interrupt or trap is said to occur when all conditions which de�ne the interrupt

or trap are met. An interrupt or trap which occurs is not necessarily recognized by the

processor, either because of various enables or because of the processor's operational mode.

An interrupt is taken when the processor recognizes the interrupt and alters its behaviour

accordingly.

Interrupts are caused by signals applied to any of the external inputs INTR0 - INTR3

or by a timer facility. The processor may be disabled from taking certain interrupts by

the masking capability provided by the "Disable all interrupts and traps" (DA), "Disable

Interrupts" (DI) bit and "Interrupt Mask"(IM) �eld in the current processor status reg-

ister. The INTR0 cannot be disabled by the IM-�eld, thus its a non-maskable interrupt

line.

Traps are caused by signals applied to one of the inputs TRAP0-TRAP1 or by excep-

tional conditions such as protection violation.

Interrupt and trap processing relies on the existence of a user managed vector area in

external instruction/data memory or instruction read only memory (instruction ROM).

The Vector Area begins at an address speci�ed by the Vector Area base Address Register,

and provides for 256 di�erent exception handling routines. The processor reserves 32

routines for system operation and 32 routines for FP multiply and divide instructions.

When an exception is taken, the processor determines an 8-bit vector number as-

sociated with the exception. Vector numbers are either prede�ned or speci�ed by an

instruction causing the trap as shown in table 2.17.

2.3.6 Am29000 pipelining

The Am29000 implements a four-stage pipeline for instruction execution. The four stages

are: fetch, decode, execute and write back. During the fetch stage, the Instruction Fetch

Unit IFU determines the location of the next processor instruction to the decode stage.

The instruction is fetched either from the Instruction Prefetch Bu�er, the Branch Target

Cache, or an external instruction memory. During the decode stage the Execution Unit EU

decodes the instruction selected during the fetch stage and fetches and/or assembles the

required operands. It also evaluates addresses for branches, loads and stores. During the

execute stage, the Execution Unit EU performs the operation speci�ed by the instruction.

In the case of branches, loads, and stores the Memory Management Unit MMU performs

address translation if required. During the write-back stage, the results of the operation

performed during the execution stage are stored. In the case of branches, loads and stores

the physical address resulting from translation during the execute stage is transmitted to

an external device or memory.

Most pipeline dependencies which are internal to the processor are handled by forward-

ing logic in the processor. For these dependencies which result from the external system,

the Pipeline Hold mode insures proper operation. In a few special cases the processor

pipeline is exposed to software executing on the Am29000.

51

vector exception

0 Illegal Opcode

2 Unaligned Address

3 Out of Range

4 Coprocessor Not Present

5 Coprocessor Exception

6 Instruction Access Violation

7 Data Access Violation

8 User Mode Instruction TLB-miss

9 User Mode Data TLB-miss

10 Supervisor Mode Instruction TLB-miss

11 Supervisor Mode Data TLB-miss

12 Instruction TLB protection violation

13 Data TLB protection violation

14 Timer

15 Trace

16 INTR0

17 INTR1

18 INTR2

19 INTR3

20 TRAP0

21 TRAP1

22-63 Reserved or associated with FP-instructions

64-255 User de�ned

Table 2.17: Am29000 exception vectors

52

2.4 MIPS R2000 processor

The R2000 is based on research work carried out at Stanford in the beginning of the eight-

ies. Especially a base level instruction set was proposed from the experience gained during

work with optimizing compilers. The R2000 processor consists of two tightly coupled pro-

cessors implemented on a single chip. The �rst processor is a full 32-bit RISC CPU. The

second processor is a system control coprocessor (CP0), containing a TLB (Translation

Lookaside Bu�er) and control registers to support a virtual memory subsystem and sepa-

rate caches for instruction and data. A predecessor, R3000, adds a
oating-point processor

to R2000. Thus, what is said in this chapter also applies to the R3000 microprocessor.

2.4.1 R2000 instruction set

The R2000 instruction set contains 74 instructions divided into 6 groups: load/store,

computational, jump and branch, coprocessor, coprocessor 0,and special instructions. A

summary is given in Appendix B.

The R2000 has two operating modes: user mode and kernel mode. The R2000 normally

operates in the user mode until en exception is detected forcing it into kernel mode. It

remains in kernel mode until an Restore From Exception instruction is executed.

2.4.2 R2000 data formats

The R2000 de�nes a 32-bit word, a 16-bit halfword and an 8-bit byte. The byte ordering is

con�gurable (con�guration occurs during hardware reset) into either big-endian or little-

endian byte ordering. Bit 0 is always the least signi�cant (rightmost) bit. Thus bit-

designations are always little-endian. The R2000 uses byte-addressing with alignment

constraints, for half word and word accesses; half word accesses must be aligned on an

even byte boundary and word accesses must be aligned on a byte boundary divisible

by four. Special instructions are provided for addressing words that are not aligned on

4-byte (word) boundaries (Load/Store-Word- Left/Right; LWL,LWR,SWL,SWR). These

instructions are used in pairs to provide addressing of misaligned words with one additional

instruction cycle over that required for aligned words.

2.4.3 R2000 register description

The register set consists of general-purpose registers as well as dedicated registers.

� The R2000 provides 32 general purpose 32-bit registers. r0 .. r31 each consists of a

single word. The registers are treated symmetrically with two exeptions. Register r0

is hardwired to a zero value and r31 is the link register for jump and link instructions.

53

I-type J-type R-type

bits encoding bits encoding bits encoding

31-26 OP 31-26 OP 31-26 OP

25-21 RS 25-0 TARGET 25-21 RS

20-16 RT 20-16 RT

15-0 IMMEDIATE 15-11 RD

10-6 SHAMT

5-0 FUNC

Table 2.18: R2000, instruction formats

� The two multiply/divide registers (HI,LO) store the double-word, 64-bits result of

multiply operations and the quotient and remainder of divide operations.

� A 32-bit program counter.

� Exception Handling Registers:

{ the Cause register describe the last exception.

{ the EPC (Exception Program Counter) contains the address where processing

can resume after an exception has been serviced.

{ the Status register contains all major status bits.

{ the BadVAddr(Bad Virtual Address) register saves the entire bad virtual ad-

dress for any addressing exception.

{ the Context register provides information useful for a software TLB exception

handler.

{ the PRId(Processor Revision Identi�er) register contains information that iden-

ti�es the implementation revision level of the Processor and System Control

Coprocessor.

2.4.4 R2000 instruction format

Every R2000 instruction consists of a single word (32 bits) aligned on a word boundary.

There are three instruction formats described in table 2.18,

The interpretation of the �elds are as follows:

� OP is a 6-bit operation code

� RS is a 5-bit source register speci�er

� RT is a 5-bit target register (source/destination) or branch condition

� IMMEDIATE is a 16-bit immediate branch displacement or address displacement

� TARGET is a 26-bit jump target address

54

� RD is a 5-bit shift amount

� FUNCT is a 6-bit function �eld

2.4.5 R2000 processor states

The normal instruction execution may be preempted by an exception. When the R2000

detects an exception, the normal sequence of instruction execution is suspended; the pro-

cessor is forced into Kernel mode where it can respond to the abnormal or asynchronous

event. When an exception occurs, the R2000 loads the EPC (Exception Program Counter)

with an appropriate restart location where execution may resume after the exception has

been serviced. The restart location in the EPC is the address of the instruction which

caused the exception or, if the instruction was executing in a branch delay slot, the address

of the branch instruction immediatly preceeding the delay slot. The R2000 aborts the cur-

rent instruction, which may be an instruction causing the exception, and also aborts all

those following in the instruction pipeline which have already began execution. The R2000

then performs a direct jump into a designated exception handler routine.

The following exceptions are recognised by the R2000:

� Reset Assertion of the R2000's reset signal causes an exception that transfers control
to the special vector at address 0xBFC00000

� UTLB miss User TLB miss. A reference is made to a page that has no matching

TLB entry.

� TLB miss A referenced TLB entry's valid bit is not set or there is a reference to a

page that has no matching TLB entry.

� TLB modi�ed During a store operation, the valid bit is set but the Dirty bit is not

set.

� Bus Error Assertion of the R2000's BERR* signal due to such external events as

bus timeout, backplane bus parity errors, invalid physical address or invalid access

type.

� Address Error Attempt to load, fetch or store an unaligned word; that is, a word or

halfword at an address not evenly divisible by 4 or 2 respectively. Also caused by

reference to a virtual address with most signi�cant bit set while in user mode.

� Over
ow Two's complement over
ow during add or subtract.

� System Call Execution of the syscall instruction.

� Breakpoint Execution of the break instruction.

� Reserved Instruction Execution of an instruction with an unde�ned or reserved major

operation code, or a special instruction whose minor opcode is unde�ned.

55

� Coprocessor Unusable Execution of a coprocessor instruction when the CU (Copro-

cessor Usable) bit is not set for the target processor.

� Interrupt Assertion of one of the R2000's six hardware interrupt inputs or setting of

one of the two software interrupt bits in the Cause Register.

2.4.6 R2000 pipeline

The execution of a single instruction consists of �ve pipeline stages:

1. IF Instruction Fetch. Access the TLB and calculate the instruction address required

to read an instruction from the I-cache. The instruction is not actually read into the

processor until the beginning of the RD pipe-stage.

2. RD Read any required operands from CPU-registers while decoding the instruction.

3. ALU Perform the required operation on instruction operands.

4. MEM Access memory (D-Cache) if required(for Load/Store instructions)

5. WB Write back ALU results or value loaded from D- cache to register �le.

Each of these steps require approximatly one CPU- cycle.

The R2000 uses di�erent technique internally to enable execution of all instructions

in a single cycle. However, as discussed earlier, there are load and store instruction as

well as jump and branch which could disturb the smooth
ow of instructions through the

pipeline. In R2000, the execution continues, despite the delay. Loads ,jumps and branches

do not interrupt the normal
ow of instructions through the pipeline. The processor always

executes the instruction immediately following one of these "delayed" instructions. Instead

of having the processor deal with pipeline delays, the R2000 turns over the responsibility

for dealing with delayed instructions to software.

56

2.5 Cypress SPARC CY7C600

The SPARC (Scalable Processor ARChitecture), designed by Sun Microsystems is an

open computer architecture. SPARC is an architecturally driven standard, with binary

compatibility of software between processor versions ensured by enforcing compliance to

the architecture standard. CY7C600 chip set is a 32-bit custom CMOS implementation

of the SPARC architecture, currently available in clock speed of 40 MHz. The chip set

includes integer unit,
oating point unit, cache/memory management controllers and cache

RAMs. In this chapter the integer unit as well as the
oating point unit will be referred

to with the name SPARC.

2.5.1 SPARC instruction set

SPARC de�nes 55 basic integer instructions, 14 basic
oating point instructions and two

coprocessor-operate instruction formats. The instructions fall into �ve basic categories:

load/store, arithmetic/logical/shift, control transfer, read/write control register, and
oat-

ing point-operate/coprocessor-operate.

Load and store instructions are the only way to access memory or external registers.

Addresses are calculated using the contents of two registers or one register and a constant.

The destination may be either an integer unit,
oating point unit or coprocessor register,

which either supplies or receives the data.

SPARC employs a supervisor/user mode model of operation. The state determines

which address space is accessed with the ASI bits (see below) and whether or not privi-

leged instructions may be used. Privileged instructions restrict control register access to

supervisor software, preventing user programs from accidentally altering the state of the

machine.

Whenever an address is sent to the address bus, the processor also generates 8 bits of

address space identi�er (ASI). The ASI pins identify for the external system which of the

256 possible address spaces is to be accessed. The address space identi�er is intended for

use by the operating system software, and the instructions that specify a particular ASI

value are privileged and can only be executed in supervisor mode.

Arithmetical/logical/shift instructions compute a result using two source operands and

place the result in a destination register. In addition to standard arithmetic this processor

includes tagged arithmetic operations to support languages such as LISP and Prolog.

Control transfer instructions include jumps, calls, branches and traps. A summary of the

complete instruction set is given in Appendix B.

57

Register numbers Name

r[24] to r[31] ins
r[16] to r[23] locals

r[8] to r[15] outs
r[0] to r[7] globals

Table 2.19: SPARC Register Addressing

2.5.2 SPARC data formats

SPARC supports nine data types. Integer data types includes byte, unsigned byte, half-
word, unsigned halfword, word and unsigned word. The IEEE
oating point types include

single, double and extended. A byte is 8 bit wide, a halfword is 16 bits, a word is 32 bits,

a single is 32 bits, a double is 64 bits and an extended is 128 bits.

2.5.3 SPARC registers

The integer unit has two types of registers associated with it: working registers r regis-
ters and control/status registers. Working registers are used for normal operations, and

control/status registers keep track of control and the state of the IU. The FPU has 32

working registers (called f registers), and two control/status registers: the Floating-point

State Register (FSR), and the Floating-point Queue (FQ). All r registers are 32 bits wide.
They are divided into 8 global registers and 7 blocks called windows. Each window con-

tain 24 r registers. The windows are addressed by the CWP, a �eld of the Processor

State register (PSR). The CWP is incremented by a RESTORE or RETT instruction

and decremented by a SAVE instruction. The active window is de�ned as the window

currently pointed to by the CWP. The Window Invalid Mask (WIM) is a register which,

under software control, detects the occurence of IU register �le over
ows and under
ows.

The registers in each window are divided into ins ,outs and locals. Registers are

addressed as shown in table 2.19. The globals may be addressed when any window is

active.

Each window shares its ins and outs with adjacent windows. The register overlap in

such a way that, given a register with address o where 7 < o < 16, o refers to exactly

the same register as (o + 16) after the CWP is decremented by 1 modulo 7 (points to

the next window). The windows are joined together in a circular stack, where the highest

numbered window is adjacent to the lowest. The outs of window 6 are the ins of window

0.

The global register r[0] is hardwired to zero. Thus reading this register yields a zero

result while writing to it has no e�ect.

The out register r[15] is used for storing the return address when a CALL instruction

is executed.

58

previous window

r[31]

. ins

r[24]

r[23]

. locals
r[16] active window

r[15 r[31]

. outs . ins

r[8] r[24]

r[23]

. locals
r[16] next window

r[15] r[31]

. outs . ins
r[8] r[24]

r[23]

. locals

r[16]

r[15]

. outs
r[8]

r[7]

. globals
r[0]

Figure 2.1: Three overlapping windows and globals

Because the processor logically provides new locals and outs after every procedure call,
register local values need not be saved and restored across calls. Figure 2.1 shows how

parameters may be passed to and from subroutines.

The IU's control/status registers are all 32-bit read/write registers unless speci�ed

otherwise. They include the program counters (PC and nPC) the Processor State Register

(PSR), the Window Invalid Mask Register (WIM), the Trap Base Register (TBR), and

the Multiply step (Y) register. The PC contains the address of the instruction currently

being executed and nPC hold the address of the next instruction to be executed assuming

no trap occurs.

The 32-bit PSR contains various �elds describing the state of the IU. Among these

are: ICC which contains the IU's condition codes. These bits are modi�ed by dedicated

instructions and by the WRPSR (write processor status register) instruction. The EC bit

determines whether or not the coprocessor is enabled. The EF bit determines whether or

not the FPU is enabled. Processor interrupt level is re
ected by the contents in PIL �eld.

The processor only accepts interrupts whose interrupt level is greater than the value in

59

PIL. The S bit determines whether the processor is in supervisor mode or not. Supervisor

mode can only be entered by a software or hardware trap. The PS bit contains the value

of the S bit at the time of the most recent trap. ET is the Trap Enable bit. When it

is set, traps are enabled. When ET is disabled, all asynchronous traps are ignored. A

synchronous trap will cause the processor to halt and enter "error mode", i.e perform a

RESET. CWP comprise the Current Window Pointer, which points to the current active r

register window. It is decremented by traps and the SAVE instruction, and incremented

by RESTORE and RETT instructions.

The Window Invalid Mask Register (WIM) is used to determine whether a window

over
ow or window under
ow trap should be generated by a SAVE,RESTORE or RETT

instruction. Each bit in the WIM corresponds to a window. The register may be written by

WRWIM and read by RDWIM instructions. Bits corresponding to nonexistent windows

read as zeroes and values written are ignored.

The Trap Base register (TBR) contains three �elds that generate the address of the

trap handler when a trap occur. The Trap Base Address TBA, which is controlled by

software. It contains the most signi�cant 20 bits of the trap table address. The TBA �eld

can be written by the WRTBR instruction. The trap type (tt) �eld is an 8-bit �eld that

is written by the processor at the time of a trap, and retains its value until the next trap.

It provides an o�set into the trap table. The WRTBR instruction does not a�ect the tt

�eld.

In addition to this there is a Floating Point State Register (FPR) that contain FPU

mode and status information.

2.5.4 SPARC instruction formats/addressing modes

The SPARC instructions are classi�ed into three major formats, simply called format1,
format 2 and format 3. These are summarised in tables 2.20 and 2.21. Two formats

include subformats.

The OP �eld selects formats(format1,format2 or format3).

1. The format 1 is used by the CALL instruction and contains a 30-bit sign-extended

format 1 format 2
SETHI BRANCH

bits encoding bits encoding bits encoding

31-30 OP 31-30 OP 31-30 OP

29-0 DISP30 29-25 RD 29 A

24-22 OP2 28-25 TCOND

21-0 IMM22 24-22 OP2

21-0 DISP22

Table 2.20: SPARC format 1 and format 2 instruction formats

60

other integer instructions FP/COPROC operations

bits encoding bits encoding bits encoding

31-30 OP 31-30 OP 31-30 OP

29-25 RD 29-25 RD 29-25 RD

24-19 OP3 24-19 OP3 24-19 OP3

18-14 RS1 18-14 RS1 18-14 RS1

13 0 13 1 13-5 OPF/OPC

12-5 ASI 12-0 SIMM13 21-0 RS2

4-0 RS2

Table 2.21: SPARC format 3 instruction formats

word displacement, DISP30.

2. The format 2 is used by SETHI and branch-instructions:

� OP2 contains instruction opcode for format 2.

� RD, For store instructions, this register selects an r register (or an r register

pair), or an f register (or an f register pair) to be the source. For all other

instructions, this �eld selects an r register (or an r register pair), or an f

register (or an f register pair) to be the destination.

� The A bit means "annul" in format 2 instructions. This bit changes the be-

haviour of the instruction encountered immediatly after a control transfer.

� TCOND, This �eld selects the condition code for format 2 instructions.

� The IMM22 �eld contains 22-bit constant value used by the SETHI instruction.

� DISP22, This �eld contains a 22-bit sign-extended value used for PC-relative

addressing when a branch is taken.

3. Remaining instruction uses format 3:

� The OP3 op3 �eld selects one of the format 3 opcodes.

� ASI, This 8-bit �eld is the address space identi�er generated by load/store

alternate instructions.

� RS1, This 5-bit �eld selects the �rst source operand from either the r registers
for integer instructions, a f register for
oating point instructions or a c register

for coprocessor instructions.

� RS2, This 5-bit �eld selects the second source operand from either the r registers
for integer instructions, a f register for
oating point instructions or a c register

for coprocessor instructions.

� SIMM13, This �eld is a sign-extended 13-bit immediate value used as the second
ALU operand. It is sign-extended to full word size when used.

� OPF/OPC, This 9-bit �eld identi�es a
oating point operate(FPop) instruction

or a coprocessor operate (CPop) instruction.

61

2.5.5 SPARC traps and exceptions

SPARC supports three types of traps: synchronous,
oating-point/coprocessor and asyn-

chronous. Asynchronous traps are also called interrupts. Synchronous traps are caused by
an instruction and occur before the instruction is completed. Floating-point/coprocessor

traps are caused by
oating-point/coprocessor instructions and occur before the instruc-

tion is completed. Asynchronous traps occur when an external event interrupts the pro-

cessor. They are not related to any particular instruction and occur between the execution

of instructions.

An instruction is de�ned to be trapped if any trap occurs during the course of its

execution. If multiple traps occur during one instruction, the highest priority trap is taken.

Lower priority traps are ignored because the traps are arranged under the assumption that

the lower priority traps persist ,recur or are meaningless due to the presence of the higher

priority trap. The ET-bit in the PSR must be set for traps to occur normally. If a

synchronous trap occur while traps are disabled the processor halts and enters an error

state.

The Trap Base Register (TBR) generates the exact address of a trap handling routine.

When a trap occurs, the hardware writes a value into the trap type (tt)�eld of the TBR.

This uniquely identi�es the trap and serves as an o�set into the table whose starting

address is given by the TBA �eld of the TBR. The 8-bit wide tt �eld allows for 256

distinct types of traps as de�ned in table 2.22.

62

Trap Priority tt

reset 1 -

instruction access exception 2 1

illegal instruction 3 2

privileged instruction 4 3

fp disabled 5 4

cp disabled 5 36

window over
ow 6 5

window under
ow 7 6

mem address not aligned 8 7

fp exception 9 8

cp exception 9 40

data access exception 10 9

tag over
ow 11 10

trap instruction 12 128-255

interrupt level 15 13 31

interrupt level 14 14 30

interrupt level 13 15 29

interrupt level 12 16 28

interrupt level 11 17 27

interrupt level 10 18 26

interrupt level 9 19 25

interrupt level 8 20 24

interrupt level 7 21 23

interrupt level 6 22 22

interrupt level 5 23 21

interrupt level 4 24 20

interrupt level 3 25 19

interrupt level 2 26 18

interrupt level 1 27 17

Table 2.22: SPARC trap vector table

63

2.6 INMOS T800 transputer

Transputer is a family of 16-bit and 32-bit processors. It is a RISC designed for multipro-

cessor applications. The architecture allow multiprocessor network of arbitrary size and

topology to be built. A word-length independent architecture allows the same software

to run on any Transputer. Inmos has developed "OCCAM", a language that provides a

model for concurrency and communication for all Transputers.

The Transputer has a stack oriented instruction set. Most of the instruction operates

on top of an evaluation stack. It has extensive hardware support for concurrency and

special communication links supporting large multiprocessor systems.

The IMS T800 is a 32-bit microcomputer with a 64-bit
oating point unit and graphics

support. It has 4 KBytes on-chip RAM, a con�gurable memory interface and four standard

INMOS communication links.

2.6.1 T800 data formats

The OCCAM model provides 7 di�erent data formats:

1. BOOL is a true or false value.

2. BYTE is an unsigned 8-bit number.

3. INT16 is a signed 16-bit number.

4. INT32 is a signed 32-bit number.

5. REAL32 conforms to the IEEE-754 single precision standard.

6. REAL64 conforms to the IEEE-754 double precision standard.

2.6.2 T800 instruction set

The T800 provides a vast instruction set with groups of instructions not found among

conventional RISCs. Besides loads/stores, integer arithmetic/logical,
oating point arith-

metics control transfer and control operation instructions there are block moves, cyclic

redundancy check, timer handling ,scheduling instructions to mention a few. There are

also facilities for real-time-system software debugging. An instruction set summary is

given in Appendix B.

2.6.3 T800 instruction formats and addressing modes

All instructions have the same format designed to give a compact representation. Each

instruction consists of a single byte divided into two 4-bits parts. The four most signi�cant

64

bits of the byte are the function code and the four least signi�cant bits are a data value.

This representation provides for sixteen functions, each with a data value ranging from

0-15. Ten of these are used to encode the most important functions. Two more function

codes allow the instruction to be extended in length; pre�x and negative pre�x. All instruc-

tions are executed by loading the four data bits into the least signi�cant four bits of the

operand register, which is then used as the instructions operand. All instructions except

the pre�x instructions end by clearing the operand register, ready for the next instruction.

The pre�x instruction loads its four data bits into the operand register and then shifts

the operand register left four bits. The negative pre�x instruction is similar, except that

it complements the operand register before the shifts. Consequently, operands can be

extended to any length up to the length of the operand register by a sequence of pre�x

instructions. In particular, operands in the range -256 to 255 can be represented using

one pre�x.

2.6.4 The T800 registers

Expressions are evaluated on the evaluation stack formed by three registers. No hardware

mechanism is provided to detect that more than three values are loaded onto the stack.

The entire user accessible register set consists of:

� The Workspace Pointer which points to an area for local variables.

� The Instruction Pointer which points to the next instruction to be executed.

� The Operand Register which is used in the formation of instruction operands.

� Three registers A,B and C which form an Evaluation stack. The Evaluation stack is

used for expression evaluation, to hold the operands of scheduling and communica-

tion instructions, and to hold parameters of procedure calls.

65

2.7 Saab-Ericsson Space THOR

THOR is a microprocessor primarily intended for embedded real time systems. Among

other things it facilitates Ada-(programming language) hardware support, i.e dedicated

registers and instructions for implementation of Ada Task Switches , Rendezvous, Inter-
rupts, Exceptions and Real-Time Clock. Similar to the Inmos T800, THOR performs

operations on an Evaluation Stack. In addition to this, data can be accessed Relative
to the top of stack. This makes THOR an interesting synthesis of a traditional stack-

computer architecture, and a Reduced Instruction Set Computer. The microprocessor has

built-in test support that allows test and debug of hardware/software. Like the T800,

multiprocessor con�gurations are encouraged by the processor architecture.

2.7.1 THOR instruction set

The instruction set is made up from 76 di�erent instructions. Some of these are protected

when the processor is running in user mode. There is an unusual group of instructions

supporting the ADA "task" concept added as extensive support for the ADA programming

language. A summary of all instructions is given in Appendix B.

Instructions may be executed either in privileged mode or user mode. When in privi-

leged mode all instructions can be executed, and no memory protection checks are made,

apart from ensuring that addresses are within the 2 GByte address space. In user mode

all accesses to each task's stack are protected from access by any other task using memory

protect registers (see below). When in user mode some instructions are privileged, an an

exception will occur on an attempt to execute them.

2.7.2 THOR data types

Di�erent instruction operates on one (or more) of the following data types: 32-bit integer

(unsigned/signed), 32-bit IEE-754 single precision
oating point.

2.7.3 THOR instruction formats and addressing modes

There are �ve di�erent instruction formats (Table 2.23). The format determines the

instruction length (in bytes) and how to interpret the parameter (if present).

A 16-bit encoded instruction designated "2". The format designated "2a" is still

encoded in 16-bits but includes a parameter "P" which is interpreted as a twos complement

value -127 - 128. The format "2b" is identical with "2a" except from the interpretation

of the parameter "P". In this format it is interpreted as a binary value 0-255. The

format "4a" is encoded in 32 bits and contains a parameter which is interpreted as a twos

complement number �2
23
to2

23
� 1. The format "4b" is identical with "4a" except from

66

bits 2 2a/b 4a/b

16-8 opcode opcode -

7-0 ext. opcode parameter -

31-24 - - opcode

23-0 - - parameter

Table 2.23: THOR instruction formats

the interpretation of the parameter "P". In this format it is interpreted as a binary value

0 to 2
24
� 1. All instructions with operands use the stack top as implicit source and/or

destination operand e�ective address. There are �ve di�erent addressing modes: Stack

relative, program counter relative, indirect, immediate and register.

Stack Relative addressing mode

The Operand E�ective Address is calculated relative to the top of stack (TOS), either

implicit or by adding the parameter to TOS.

Program Counter Relative addressing mode

The Operand E�ective Address is calculated relative to PC by adding the parameter and

PC (shifted right one bit to get word boundary alignment).

Indirect (X) addressing mode

The Operand E�ective Address is calculated by adding the parameter and the value on

the stack top appearing two instructions previously.

PC Indirect addressing mode

The Operand E�ective Address is calculated by adding PC (shifted right one bit) and the

value on the stack top appearing two instructions previously.

TOS Indirect addressing mode

The Operand E�ective Address is calculated by adding TOS and the value on the stack

top appearing two instructions previously.

67

Mnemonic Name Size(bits)

CR Con�guration Register 32

EAR Error Address Register 31

SIR Signal Input Register 8

SOR Signal Output Register 4

RTL Real Time Clock (MSL) 32

RTM Real Time Clock (MSH) 32

TP Task Pointer 3

IR Identi�cation Register 32

Table 2.24: THOR registers

Immediate (I)

The Operand E�ective Address is the TOS, and the source operand is part of the instruc-

tion.

Register (R)

The parameter designates the register to be used either as source or as destination operand.

2.7.4 THOR registers

The processor maintains on-chip registers as described in table 2.24.

The Con�guration Register is used for hardware speci�c parameters and includes

the following �elds:

� CLK Clock Frequency is used to set a division factor (1 to 255) of the chip clock to

get the real time clock and delay register frequency, nominally 1 MHz. Clocks are

stopped when this �eld is zero.

� CC Cache Control controls the use of data and instruction cache.

� RM Controls the IEE-754
oating point Rounding Mode.

� S Determines the Scheduling Mode used.

� F Enables
ow control.

� B Enables bus timeout exception.

� WSWaitstate , sets the number of waitstates in the �rst 1 GByte of memory. From

0 up to 6 waitstates can be used. Setting this �eld to 7 indicates use of the Ready
signal.

68

� DC Data Check sets the data error checking mode in the �rst 1 GByte of memory.

Mode may be one of: Odd/Even Parity, EDAC or disabled.

The Error Address Register (EAR) is set to the �rst external memory address

which caused an error. The register contains a word address.

The Identi�cation Register (IR) is a read-only register holding the chip manufac-

turer identity, part number and version number.

The Real-Time-Clock (RTL,RTM) is a 64 bits value read as two 32-bit registers.

Incrementation of this register is due to contents in the Con�guration Register.

The Signal Registers are used to hold the status of the chip signals used for mul-

tiprocessing and interrupts. There is one input register (SIR) and one output register

(SOR). Each bit in the registers corresponds to a signal on the chip. There are 6 inputs

and 4 outputs.

The Task Pointer (TP) points to the task information block in memory.

The Delay Register (DR) is the delay counter. It holds the delay of the task. This

is a two's complement integer. Normally the register is decremented every microsecond.

When decremented below zero (and this task's Status Register DLY
ag is set) scheduling

is performed.

The Task Register (TR) holds task status information for each of the on-chip tasks.

TR holds the following information:

� Ready Flag (RF) is set when the task is ready to execute.

� Delay Flag (DF) is set when the task is delayed.

� Accept Wait Flag (AW) is set when this task is waiting for an accept statement.

� Entry Call Flag (EF) is set when this task is performing an entry call.

� Remote Task Flag (RT) is set when this task is doing a rendevouz with a remote

task.

� Queued Entry Flag (QE) is set when queued calls exist for an entry called by this

task.

� Rendevouz Field (RZ) is set to the calling task number when a rendevouz with

this task starts, or de�nes the entry number when this task performs an entry call.

� Priority Field (PR) re
ects the tasks priority.

� Accept Field (AR), when an entry call is pending the bit corresponding to the

calling task is set.

69

Mnemonic Name Size(bits)

RR Result Register 32

ER Exception Register 31

SR Status Register 32

TOS Top of Stack 29

TOP Top Register 32

PC Program Counter 31

EOS End of Stack 29

BOS Beginning of Stack 29

Table 2.25: THOR Task Control Registers

For each task there is a Task Control Block (TCB) on the processor chip. The

TCB's have identical sets of registers as described in table 2.25.

The Result Register (RR) holds the least signi�cant half of arithmetic instructions

that yuilds 64-bit results.

The Exception Register (ER) points to the exception information block in the stack.

ER is a word pointer.

The Status Register (SR) holds condition codes, hardware exception numbers and

Ada support information as follows:

� The Negative Flag (N), Zero Flag (Z) Carry Flag (C) and Unsigned Flag (U)

is set according to arithmetic conditions.

� The Task Switch Inhibited Flag (TSI) is set when no task switch should occur

for this task.

� The User Mode Flag (UM) is set when this task is in user mode.

The TOS register points at the word on top of stack.

The TOP register holds the word at the stack top (pointed at by TOS). The 32 words

next to top of the runtime stack are cached on the processor chip.

The Program Counter (PC) holds the address of the last instruction read from

memory. This address is a halfword address.

BOS and EOS de�nes the region in memory where this task's data stack is located.

The memory protection check is active in user mode. If an access using the stack addressing

mode is not within BOS and EOS, or if TOS would move outside BOS or EOS an exception

is raised.

70

2.7.5 THOR processing states

Normal executing may be preempted by an interrupt condition, by an internal generated

exception or by exceptions raised by software

THOR interrupt handling

THOR:s six input pins (re
ected in SIR) is regarded as di�erent priority interrupt pins.

Anyone turning to an active state forces an interrupt condition. Upon receiving an in-

terrupt, THOR activates a hardware scheduler, the interrupt priority which also may be

regarded as a task number, causes the scheduler to dispatch the corresponding task. This

mechanism may be used to synchronise tasks running under di�erent microprocessors in a

multiprocessor environment. The entire scheme has some similarities with a conventional

vectored interrupt. External events is thus rapidly gaining the microprocessors attention

which ensures a minimal interrupt latency time.

THOR exception handling

THOR exception handling has adapted the Ada language de�nition. To each fragment of

code, or rather, each subprogram, there exists an "Exception Information Block", dynam-

ically allocated and initialised before the subprogram entrance. This provides for di�erent

exception processing in di�erent subprograms of same type of exception. This strategy

obviously decrease the overhead required by a software kernel. To each exception there

is a corresponding Exception number. The �rst 15 numbers are de�ned by hardware (ta-

ble 2.26) but they can also be raised by software, remaining exception numbers are user

de�ned.

2.8 Conclusions

Historically the major goal with developing new processor architectures has been to acheive

increased performance without dramatical increase of the cost. The RISC approach, single

cycle execution, o�ers high performance at resonable costs. Current RISC architectures

are characterisized by:

� a large register �le

� instructions that are fast to decode

� pipelined execution

� few addressing modes

� �xed instruction format

71

Number Exception Description

1 Bus Error An external memory access failed to

complete within 255 clock cycles.

2 Address Error Attempt to access non physical or

protected memory

3 Data Error Uncorrectable error in data read

4 Instruction Error Attempt to execute privileged instruction

in user mode, or illegal instruction

5 Jump Error Attempt to jump to, call or return to

an invalid address

6 Reserved

7 Reserved

8 Constraint Error A constraint of a CLL or CUL instruction

was not satis�ed

9 Access Check Attempt to use a zero indirect address with

the PSHX and POPX instructions, i.e follow

a null pointer

10 Storage Error Attempt to access memory outside the task's

stack in user mode

11 Over
ow Check Over
ow of signed integer or
oat

arithmetic operation

12 Under
ow Check Under
ow or denormalised result of
oat

arithmetic operation

13 Division Check Attempt to divide by zero

14 Illegal Operation Illegal
oat arithmetic instruction

caused by any denormalised/NaN operand

15 Tasking Error Reserved for future use, currently not

raised by hardware

Table 2.26: THOR exception numbers

72

In combination with careful memory hierarchy design, memory management units and

oating point support, on chip or of chip by a coprocessor, these RISC processors seems

suitable for embedded systems such as laser printers and other general purpose systems

such as work-stations.

These observations are true for MC88100, I80960, R2000, Am29000 and SPARC.

T800 and THOR shows another approach, these processors facilitates stack architectures

which eliminates the need for a large register �le. The instruction format is
exible while

pipelined execution is maintained and few addressing modes are available.

73

Chapter 3

Real-Time System requirements

The design of reduced instruction set computers is guided by a design philosophy. It does

not rely upon inclusion of a set of required features. There is no strict de�nition of what

constitutes a RISC-design. However one may observe some common features. Pipelining

is used in all RISC designs to provide simultaneous execution of multiple instructions.

Simple instructions/addressing modes are used. This results in an instruction decoder

that is small, fast and easy to design. With few addressing modes it is easier to map

instructions onto a pipeline since the pipeline can be designed to avoid computation related

con
icts. A carefully designed memory hierarchy is required for increased processing

speed. A typical hierarchy includes high speed registers, cache (bu�ers) located on the

CPU chip, memory management schemes to support o�-chip cache and memory devices.

The hierarchy must permit fetching of instructions and operands at a rate that is high

enough to prevent pipeline stalls. Optimizing Compilers provide a mechanism to prevent

or reduce the number of pipeline faults by reorganizing code.

From these observation we may conclude that RISC designs are intended for personal

computers, work-stations and embedded systems where high performance is the primary

goal.

In a real-time system, high performance is of course desirable. However the set of needs

extends due to the speci�c tasks that the system should carry out. Real-time systems must

provide rapid process switches and fast interrupt handling so as to meet time requirements.

It must be able to perform real-time synchronisation of events. High-level language support

and optimizing compilers are essential and fall into several underlying characteristics, for

example:

� The instructions set should be a suitable target for high level languages used for

real-time systems.

� Real-time systems require reliable memory devices, which in turn are large, power

consuming and expensive. Consequently there is an implicit demand for compilers

that produce dense code for the target processor.

74

� Subprograms are frequently used by application programmers and the processor

should provide for subprogram calls with a minimum of overhead.

This chapter will discuss essential real-time system support provided by the studied

processors. That includes subprogram calls, interrupt handling, process switch, real-time

synchronisation facilities and debug support. Other aspects on the high level language

support are not within the scope of this work.

3.1 Subprogram Calls

A subprogram call is a result of a high level language function/procedure call statement. In

the case of func(p1,p2 ... ,pn);, the compilers function is to generate code for a subprogram

call with n parameters. The traditional way to do this is to push the n parameters

on stack and perform a subroutine (subprogram) call, then modify the stackpointer and

continue. But this requires at least n memory accesses with possible penalty and degraded

performance. Thus, it is preferable to hold and pass the parameters in registers. This is

made possible by a large number of registers and conventions for the use of these register.

That is; directives for the compiler writer of how to dispose the register set. The register

usage conventions are connected with the processor architecture and these conventions

will be described in the next paragraphs.

Besides parameter passing a compiler generates speci�c code for a subprogram, which

is to be executed before the actual, translated high-level program (subprogram entry) as

well as after the high-level program (subprogram exit). Subprogram entry code, should for

example, allocate memory required for local variables, possibly perform stack checking,

check pointers for valid memory accesses i.e limits for memory space that the subprogram

may access. Some high level languages, such as ADA, supports di�erentiated error han-

dling; i.e di�erent subprograms use di�erent error handling routines for the same type of

error, which will cause extra overhead during run-time. As examples of subprogram exit
code we have deallocation of local variables, placing return values at appropriate location

and possibly error checking.

In real-time systems it often turns out that stack-checking, memory access violation

checking and di�erentiated error handling must be discarded in favour of more dense code

and faster execution. However, during the debug phase of real-time system software, these

facilities may be of great importance.

3.1.1 MC 88100 register conventions

The outline of the MC88100 general purpose registers is described in paragraph 2.1.3,

page 26 The register usage are as follows:

75

� Register r0 always contains zero, which is used in instructions requiring the constant

zero as an operand. This is a hardware convention; the software can write to r0 but

this operation has no e�ect.

� Register r1 contains the return pointer generated by bsr or jsr to subroutine instruc-
tions. This is a hardware convention; both of these instructions overwrite the data

in r1 when they execute. However, this register is not protected; software can read

or overwrite the return pointer (or any other data) contained in r1.

� Registers r9 through r2 are used for passing parameters to a called routine. These

registers can be overwritten by the called routine. This is a software convention.

� Registers r13 through r10 are used for temporary storage. They can be overwritten

by a called routine but do not contain parameters for the called routine. This is a

software convention.

� Registers r25 through r14 are used as data storage for the current routine. A called

routine must ensure that the data in these registers is returned without modi�cation

when it �nishes execution. These registers must be preserved for the calling routine.

This is a software convention.

� Registers r29 through r26 are reserved for use by the linker, which is a software

convention.

� Register r30 is reserved for use as a software frame pointer, which is a software

convention.

� Register r31 is reserved for use as a software stack pointer, which is a software

convention.

Thus, the architecture gives good support to subprogram calls with up to eight param-

eters passed in registers. It should be noted though, that nested subprogram calls require

stacking of registers used for parameters during the previous call.

3.1.2 I80960KB register conventions

The 80960 provides sets of 16 local register for each subprogram. There are 4 sets of these

registers on chip. If a nesting depth larger than 4 is used, the processor automatically saves

the local register contents on stack, thus freeing local registers for use by the subprogram.

The global register g15 is reserved for use as a Frame Pointer. Local registers r0,r1 and

r2 are reserved for use as: Previous Frame Pointer, Stack Pointer and Return Instruction

Pointer, respectively.

Parameters are passed using global registers accessible regardless of which local register

set is currently active, thus 15 parameters could conveniently be passed to (or from) a

subprogram. Nested calls therefore requires stacking of parameters.

76

3.1.3 Am29000 register conventions

The Am29000 utilises a large, on chip register set which is organized as a run-time stack.

When a subprogram is called, a new activation record, or "stack frame" is allocated. This

record includes local variables, arguments to the subprogram and a return address. A

compiler targeted to the Am29000 should use two run-time stacks for activation records:

one for often used scalar data and another for structured data and additional scalar data.

The scalar portion of the activation record can then be mapped into the processor's local

registers, because of the stack-pointer addressing which applies to the local registers.

Allocation and de-allocation of activation records can occur largely within the con�nes

of the local registers. The term "stack-cache" refers to the use of local registers to cache

a portion of the activation record stack.

The principle of locality of reference - which allows any cache to be e�ective - also

applies to the stack cache. The entries in the stack cache are likely to remain there for

re-use, because the dynamic nesting depth of activated procedures tends to remain near a

given depth for long periods of time. As a result, the size of the run-time stack does not

change very much over long intervals of program execution.

Since activation records are allocated and de-allocated within the local registers, most

procedure linkage can occur without external references. Also, during procedure execu-

tion, most data accesses occur without external references, because the scalar data in an

activation record is most frequently referenced. Activation records are typically small,

so the 128 locations in the local register �le can hold many activation records from the

run-time stack.

3.1.4 MIPS R2000 register conventions

Mips R200 assembler denotes the 32 general purpose registers $0,$1 $31. The register

usage are as follows:

� Register $0 always contains zero, which is used in instructions requiring the constant

zero as an operand.

� Register $1 is reserved for the assembler.

� Registers $2 and $3 are used for expression evaluations and to hold integer function

results. They are also used to pass the static link when calling nested procedures.

� Registers $4 through $7 are used to pass the �rst 4 words of integer type actual

arguments; their values are not preserved across procedure calls.

� Registers $8 through $15 are used for temporary storage. Their values are not

preserved across procedure calls.

� Registers $16 through $23 are saved registers; their values must be preserved across

procedure calls.

77

� Registers $24 and $25 are used for expression evaluation; their values are not pre-

served across procedure calls.

� Registers $26 and $27 are reserved for the operating system kernel.

� Register $28 contains the global pointer.

� Register $29 contains the stack pointer.

� Register $30 is a saved register (like $16 ...$23).

� Register $31 contains the return address. Used for expression evaluation.

According to software conventions, four (or fewer) parameters could be passed in reg-

isters.

3.1.5 SPARC register conventions

The organisation of SPARC register windows was described in paragraph 2.5.3, page 58.

Figure 2.1,(page 59) shows how 32 general purpose registers are divided into 4 groups. The

"outs" (8 registers) in the active window are are identical to the ins of the next window.

The out register r[15] is used for saving current address by the CALL instruction. Thus

seven parameters may be passed, using registers, during a subprogram call. By software

convention, fewer parameters can be assumed thus providing additional local registers. If

a nesting depth exceeds 4, a trap occurs and the real-time kernel must take approriate

actions.

3.1.6 T800 /THOR

Both T800 and THOR are stack architectures. Consequently parameters are passed via

the stack. In THOR, 32 words from Top of Stack and downwords are re
ected in registers

on chip. A writeback mechanism provide for consistency with memory contents. The

writeback is simultaneous with other processor activities.

3.2 Deviation from normal execution

By "normal
ow of instruction execution" we generally mean the execution of sequential

instructions in memory, JUMP, BRANCH and CALL instructions, in short an easily

predetermined behaviour from the computer system. A break in normal
ow of instruction

execution is an event of some kind, such as:

� An interrupt, normally caused by an external device pulling a dedicated pin on the

processor active. That is: A system activity.

78

� An exception, caused by the execution of an instruction preventing �nishing execu-

tion of the instruction. Examples are: Arithmetic faults (divide by zero, attempt to

draw the root from a negative number etc), violation of permissions such as attempt

to access supervisor memory in user mode, attempt to execute privileged instruc-

tions etc. An exception is also raised when a page fault occur in a virtual memory

system. An exception condition may leave the registers in a consistent state so that

the elimination of the cause and the restart of the instruction will give correct re-

sults. Such exceptions are often called faults . An exception that potentially leaves

the registers and memory in an indeterminate state is often called abort.

� A trap, caused by a special instruction and providing method of implementing op-

erating system calls etc. A trap may be conditional such as TRAP on OVERFLOW

and used in conjunction with arithmetic operations.

Real-time systems are event-driven, i.e an external event should a�ect the internal state

of the system and/or require som form of attention. In a real-time system, the ability to

respond to such an event within a speci�ed time is a major requirement. Hardware support

for event handling is provided by the processor's interrupt mechanism. The following

paragraphs describes these mechanisms.

3.2.1 MC 88100

Upon recognition of an interrupt the MC 88100 acts as follows:

1. Finish current instruction (synchronize)

2. Freeze all pipelines except the data unit

3. Allow data unit to complete (or fault)

4. Freeze all shadow registers and copy the PSR to the TPSR.

5. Set new PSR to indicate exception processing

6. Generate vector

7. Prefetch vector and vector+4

3.2.2 I80960KB

Whenever the processor receives an interrupt signal, it performs the following action;

1. It temporarily stops work on its current task, whether it is working on a program or

another interrupt procedure.

2. It reads the interrupt vector.

79

3. It compares the priority of the vector with the processor's current priority.

4. If the interrupt priority is higher than that of the processor, the processor continues

as described below.

5. If the priority is equal to or less than that of the processor the processor sets the

appropriate priority bit and vector bit in pending interrupt record and continues

work on its current task.

When the processor in executing state decides to service the interrupt it:

1. saves the current state of process controls and arithmetic controls in an interrupt

record on the stack that the processor is currently using.

2. if the execution of an instruction was suspended the processor includes a resumption

record for the instruction in the current stack and sets the resume
ag in the saved

process controls.

3. switches to the interrupted state.

4. sets the state
ag in the process controls to interrupted, its execution mode to

supervisor, and its priority to the priority of the interrupt.

5. clears trace-fault-pending and trace-enable
ags.

6. allocates a new frame on the interrupt stack and switches to the interrupt stack.

7. sets the frame return status �eld.

8. performs an implicit call-extended operation at the address speci�ed by the interrupt

table for the speci�ed interrupt vector.

3.2.3 Am29000

The following operations are performed by the processor when an interrupt or trap is

taken:

1. Instruction execution is suspended

2. Instruction fetching is suspended

3. Any in-progress load or store operation is completed. Any additional operations are

cancelled in the case of load-multiple and store multiple.

4. The contents of the Current Processor Status Register are copied into the Old Pro-

cessor Status Register.

5. The Current Status register is modi�ed to indicate interrupt(trap).

80

6. The address of the �rst instruction of the interrupt or trap handler is determined.

7. The processor determines whether or not the �rst instruction is in instruction ROM.

8. An instruction fetch is initiated using the instruction address as determined in pre-

vious steps. At this point, normal execution resumes.

3.2.4 MIPS R2000

An interrupt exception occur as a result of hardware signal or by execution of special

instructions.

1. The R2000 branches to the general exception vector for this exception.

2. the IP �eld in the Cause register shows which of six external interrupts are pending,

and the SW �eld in the Cause register shows which of two software interrupts are

pending. More than one interrupt can be pending at a time.

3. The R2000 saves the Kernel/User previous, Interrupt Enable previous, Kernel/User

current, and Interrupt Enable current bits of the Status register in the Kernel/User
old, Interrupt Enable old, Kernel/User previous and Interrupt Enable previous bits

respectivly, and clears the Kernel/User current and Interrupt Enable current bits.

3.2.5 SPARC

An interrupt is a special case of trap condition. A trap causes the following action:

1. It disables traps

2. It copies the S �eld of the PSR into the PS �eld and then sets the S �eld to 1.

3. It decrements the CWP by 1 modulo 7.

4. It saves the PC and nPC into r[17] and r[18], respectively of the new window.

5. It sets the tt �eld of the TBR to the appropriate value.

6. If the trap is not a reset, it writes the PC with the contents of TBR, and the nPC

with the contents of TBR+4. If the trap is a RESET, it loads the PC with 0 and

the nPC with 4.

3.2.6 T800

The T800 EventReq and EventAck pins provide an asynchronous handshake interface be-

tween an external event and an internal process. When an external event (interrupt) pulls

81

EventReq active the external event channel (additional to the external link channels) is

made ready to communicate with a process. When both the event channel and the process

are ready the processor pulls EventAck active and the process, if waiting, is scheduled.

Only one process may use the event channel at any given time. If no process requires

an event to occur EventAck will never be activated.

If the process is a high priority one and no other high priority process is running, the

latency is typically 19 processor cycles. Setting a high priority task to wait for an event

input allows the user to interrupt a transputer program running at low priority. The

following functions take place:

� Sample EventReq at pad and synchronise.

� Edge detect the synchronised EventReq and form the interrupt request.

� Sample interrupt vector for microcode ROM in the CPU.

� Execute the interrupt routine for Event rather than the next instruction.

The time taken activating EventReq to the execution of the microcode interrupt handler

in the CPU is four cycles.

3.2.7 THOR

THOR interrupt handling is described in paragraph 2.7.5. As opposed to a more general

interrupt handling approach, THOR gives hardware support for synchronisation between

processes running on di�erent processors. On the other hand, in a single processor system,

interrupts may be treated in a more conventional and general manner.

The hardware de�ned exceptions are listed in table 2.26. All of these exceptions can

also be raised by software. The Exception Register (ER) is used when an exception

is raised. It points to an Exception Information Block in the stack. This block holds

the program counter for the exception handler to call, and the pointer to the next (outer

scope) Exception Information Block. When a hardware generated exception is raised, the

following actions occur:

� Top of stack is set to the value of ER,

� Stack top value, i.e address of the exception handler is popped into PC,

� Stack top value (now the new ER) is popped into ER,

� The exception number is pushed, according to the preceding table.

Control transfers to appropriate exception handler.

82

3.3 Task Switch

In a real-time environment each program under execution constitutes a process. Another
name for a process is a task, both terms will used here. For each process there must exist:

� A Process Control Block (PCB) used by the operating system to maintain the pro-

cess. Entries in the PCB may also be used by the process itself.

� Data Space, where the process data resides.

� Code Space, where the process code resides. May in some cases be shared by several

processes.

In addition to this we must add the procesor context to fully describe a process at any

time. A processor's context is characterised by:

� Accessible register contents

� Internal (unaccessible) register contents

� Processor internal state

During a context switch at least the processor internal state and the internal register

contents must be preserved, or the processor must be allowed to proceed until a well de�ned

state is reached. For example, the current instruction is allowed to complete. Furthermore,

to allow restart of the interrupted program, the status register, stack and program counter

must be saved. For a process switch, obviously the entire processor context must be saved

which also includes the accessible registers.

A common method is to let the process stackpointer reside in the upper region of data

space (growing downwards). The stackpointer itself, upon a process switch, is stored in

the actual process PCB. That is: A minimum of operations performed to freeze a process

and maintain the ability to restart it at any later time for the operating system must be:

1. Save the entire processor context by pushing it onto the stack.

2. Store stackpointer value in the PCB.

The process can be restarted simply by loading the stackpointer (from PCB) and

pulling processor context from the stack.

For a complete process Switch the old process must be preserved, a new process must

be selected and started. That is: at least two processor context switches and the selection

contribute to the total time required. In a system with several runable processes the

operating system must choose the one with highest priority. There might for example be

83

Processor Processor Cycles

MC88100 148

I80960KB 136

Am29000 133

MIPSR2000 145

SPARC 144

T800 hardware implemented

THOR hardware implemented

Table 3.1: Number of cycles required to search the PCB-list

Processor Register �le Register �le

save(cycles) restore (cycles)

MC88100 62 94

I80960KB 160 238

Am29000 195 195

MIPSR2000 62 62

SPARC 272 272

T800
1 1

THOR
1 1

Table 3.2: Number of cycles required for storing/restoring processor context

aSpecial hardware support for process switch makes these abundant

processes waiting for IO, or processes waiting for synchronization with other processes in

the system. In other words: Every process PCB has to be checked regarding the process

status (runable or not) and priority to pick the runable process with the highest priority.

The e�ency of this activity is of major importance for a real time system where the

overall function relies on the systems ability to respond to external events and schedule

an appropriate process.

As an example of process switch in small real-time systems a simple case was analyzed

for the studied processors. A real-time system with ten runable processes is considered.

A complete process switch is assumed accomplished by: storing old process context -

selecting a new process - load the new process context into processor registers. Table 3.1

summarises the processor cycles required to complete a search in the list of PCB:s for each

processor. The number of cycles required for storing/restoring processor context is given

in table 3.2. From these �gures and the systems clock frequency the total time required

to perform a process switch could be estimated (Table 3.3).

For THOR and T800 there is hardware support for rescheduling while for the other

processors, process switch had to be programmed. Assembly language listings of these

programs, and notes about the calculations giving the �gures are gathered in Appendix

B.

84

Processor Freq. Total Time

(MHz) (mikro seconds)

MC88100 25 12.2

I80960KB 25 21.4

Am29000 40 13.1

MIPSR2000 40 6.8

SPARC 40 17.2

T800 30 less than 1

THOR 20 less than 1

Table 3.3: Total time required for a process switch (estimated)

3.4 Real Time System Support

As stated earlier in this chapter a real-time system should provide synchronisation between

events. This requires data structures for wait- and delay queues and a timer function used

to maintain system time and for process delay purposes. Another important issue is

the problem with synchronising (local) system time with "global" time, i.e di�erent real-

time systems in cooperation should be able to use this global time for di�erent purposes.

Moreover, the system should provide an accurate delay time for processes that require

it. It should be noted that we are really addressing an issue that is di�erent from a

conventional real-time clock in a work-station application.

Real-time system software needs careful debugging and testing. Traditionally, pro-

cessors give support for this through a "trace"-instruction, i.e by executing one machine

instruction at a time and then returning control to some debugging tool or monitor. In a

real time system, which is event driven, a more extensive support would be desirable to

catch transient erronous behaviour resulting from special occurances of events.

The environments in which real-time systems mostly reside and the tasks that they

most often perform makes contiguous service or service during operation di�cult or im-

possible to carry out. This makes hardware debugging facilities and fault-tolerant aspects

central in real-time system design. The following paragraphs summarize support related

to:

� Timer facilities

� Software/Hardware debugging

� Fault tolerance

3.4.1 MC88100

The processor can be forced to a "serial mode" by setting one bit in the status register.

This, signi�cantly reduces machine throughput but is useful for debug purposes. Besides

85

from that, software debugging must be accomplished by the use of general trap handling

facilities.

MC88100 include comparator circuits at the output to support fault detection. There

are several possible con�gurations possible for master/checker operation and other redun-

dant designs.

3.4.2 i80960

To support debugging systems, the i80960 provides a mechanism for monitoring processor

activity by means of trace events. The processor can be con�gured to detect seven di�erent

trace events, including the instruction execution, branch events, calls, supervisor calls,

returns, prereturns and breakpoints. When the processor detects a trace event, it signals

a trace fault and calls a fault handler.

3.4.3 Am29000

Software debug is supported by the Trace Facility which guarantees exactly one trap after

the execution of any instruction in a program being tested. This allows a debug routine

to follow the execution of instructions, and to determine the state of the processor and

system at the end of each instruction.

The processor has a built in Timer Facility which can be con�gured to cause periodic

interrupts. The Timer Facility consists of 2 special purpose registers , the Timer Counter

and the Timer Reload registers, which are accessible only to supervisor mode programs.

The Timer Facility may be used to perform precise timing of system events.

Each Am29000 output has associated logic which compares the signal on the output

with the signal which the processor is providing internally to the output driver. The

processor signals situations where the output of any enebled driver does not agree with

its input. For a single processor, the output comparision detects short circuits in output

signals, but does not detect open circuits. It is possible to connect a second processor in

parallel with the �rst, where the second processor has its outputs disabled due to the Test

mode. The second processor detects open-circuit signals, as well as providing a check of

the output of the �rst processor.

3.4.4 R2000

The instruction set includes a BREAK instruction which causes a BREAK-trap to occur.

Control is transferred to the applicable system routine.

86

3.4.5 SPARC

Software debugging is only supported by the means of general trap instructions.

3.4.6 T800

Software debugging is supported by a variety of instructions that a�ects status bits. When

the processor "Analyse" pin is taken high the transputer will halt at a descheduling point.

The T800 o�ers the possibility to respond di�erently on interrupts depending on the

processor's current mode.

The T800 incorporate a timer. The implementation directly supports the occam model

of time. Each process can have its own independent timer which can be used for internal

management or real time scheduling. Hardware redundancy is acheived by the means of

multiple transputer con�gurations.

3.4.7 THOR

THOR has a built in real time clock to keep track of system time. Furthermore, each

process has a Delay register, causing interrupt after a speci�ed delay. This provides for

an e�cient implementation of a high level language (real-time) delay function since kernel

software is released from polling a "delay queue" each time a scheduling is to be performed.

Also the unique TASK-instructions implemented in THOR serves as a powerful support for

introducing the ADA-task concept as constituting a process in a real-time system. There

are instructions for scheduling and delaying tasks as well as performing "rendezvous"

between tasks.

THOR provides hardware selfcheck as well as an Error Detection And Correction

(EDAC) unit, for check of processor communication with memory, on chip.

3.5 Conclusions

The large register �le present in several of the studied processors allows optimizing compil-

ers to arrange for fast subprogram calls by passing parameters in registers. When a large

register �le is available there is a good chance that all, or most of, the parameters could be

passed this way. The MC88100 and R2000 are good examples. Both architectures provide

large register sets and the usage of these registers could be optimized by a compiler. The

drawback here comes in the case of nested subprogram calls: only the highest program

level can take full advantage of this construction. With a register window design, as in

SPARC or I80960KB, it is possible to increase the number of program levels that will

bene�t from parameters passed in registers. However, the fundamental problem remains

87

since even very large register �les may be exhausted. A stack architecture such as T800

or THOR provides a natural convention: stacking of all parameters. This is simple and

straightforward and there are no di�culties with nested calls. Furthermore, with THOR,

since the 32 bytes close to top of stack are present in on chip registers it is possible to take

advantage of the rapidness with register passing without having to bother with save and

restore in the case of nested calls. Am29000, �nally, provides a solution similar to SPARC.

The large number of registers and the use of a run-time stack made up by registers could

be thought of as register windows where the calling and the called program share a set of

registers.

All of the studied processors treat interrupts in a similar manner. The elapsed time

between an interrupt and the point at which processing starts at the appropriate interrupt

handler address can be regarded as the interrupt latency time and is divided into three

phases:

1. Finish current instruction (does not apply to exception).

2. Check interrupt priority level versus current processor level, i.e whether the interrupt

should be serviced or not.

3. Save enough processor status to be able to continue processing after the interrupt

has been serviced.

Finishing current instruction causes no signi�cant delay provided that no possible

instruction (from the instruction set) may last for more than one, or a few cycles. This is

true for today's RISC-architectures. Processor activities are assigned priorities determined

by the type of activity. For example, reset handling has the highest priority and thus

cannot be interrupted. Interrupts are assigned priorities to predetermine the behaviour

when simultaneous events occur and to assure that no high priority processor activity may

be interrupted. The saved processor status required to restart an interrupted program is

determined by the activities required to service the interrupt. In general, the processor

does not save general register contents when servicing an interrupt. The interrupt handler

routine is responsible for saving and restoring register contents which might be altered by

the service routine.

Since a real-time system, according to the conventions described in the Introduction

of this thesis, must have the ability to respond within a �nite time, and events, external

from the system, may require immediate attention, the question of fast rescheduling be-

comes important. Process switches in real-time systems can be a time-consuming matter.

Moreover, since processes are created and removed dynamically it becomes very di�cult to

predict the time spent on these activities. In analyzing the processor's ability to perform

fast task-switches the important observations are:

� The register �le should be reasonably sized since a task-switch (process-switch) re-

quires the entire processor context to be exchanged.

88

� Hardware support for task-switches is an essential feature to reduce the time spent

for rescheduling.

A large register �le will delay processor context switch signi�cantly. Therefore, a large

register �le, which has proved essential for increase of system performance could become a

bottleneck with unpredictable consequenses. From paragraph 3.3 we may conclude that

a stack architecture, such as T800 or THOR, with hardware support for process switches

provides considerably better performance than any of the other processors.

In applications where speed is far beyond human control and the tolerances are small

there are often needs for precise time-handling, i.e processes that require a precise delay

should get that delay and nothing else. Three of the studied processors addressed these

issues with on-chip timer facilities: Am29000, T800 and THOR.

Real-time systems are used to maintain surveillance and control processes where a

system failure might have disastrous consequenses: Nuclear plants, aircrafts, spacecrafts

just to mention a few. In the years to come we will see even more applications with

steadily growing demands for reliability and security. Consequently hardware/software

debugging support and fault tolerance are also important parts of real-time system design.

All of the processors provide some kind of software debug support. Furthermore T800

provides facilities that makes real-time debugging possible to a limited extent. Built-

in fault tolerance support such as selfcheck, memory error detection (and correction) is

provided only by THOR while MC88100 and Am29000 provides support for redundant

designs.

89

Chapter 4

System Hardware Considerations

A physical real-time system, when used in aerospace for example, must meet some im-

portant needs. It should be small in size, have low weight and low power consumption.

The system should be reliable and thus only high quality components, at least military

quali�ed, should be used. Fault tolerance support is desirable and memory errors must

be detected and preferably corrected. (See [Jan90] for a thourougly description of re-

quirements on microcomputers in critical applications.) The purpose with this chapter

is to highlight how demands on system hardware impacts on system performance and

dependability.

This chapter discusses six computer designs that use the Inmos T800 Transputer, the

Saab-Ericsson Space THOR and the Cypress SPARC microprocessors respectively in order

to evaluate hardware aspects of the three processors in two di�erent con�gurations:

� A Real-time System application, called the High Dependability Oriented con�gura-

tion, (HDO). The HDO con�guration should be thought of as an on board computer

for a space craft.

� A general purpose (embedded) system application called the High Speed Oriented

con�guration, (HSO).

The designs, which not are realised, are considered comparable at cost and analyzed

to give an estimation of:

� maximum possible instruction execution rate

� required number of devices

� area of printed circuit board

90

� power consumtion

� failure rate

4.1 General notes on the designs

In the schematics (see appendix C), readability is emphasised. The diagrams are not

complete but rather focus on devices with major impact on the con�guration function and

performance. For each design a description of a memory read cycle is given and analysis

is carried out.

Estimations are performed using worst case assumptions. The designs are optimised

for the highest possible clockfrequency i.e no attempt is made to reduce wait state penalties
due to high clock frequence.

4.2 Execution Rate Estimation

The instruction mix is made up from:

� x1 = percentage arithmetical/logical instructions

� x2 = percentage jump/branch instructions

� x3 = percentage load/store instructions

� x4 = percentage
oating/point instructions

as a consequense: x1 + x2 + x3 + x4 = 1 for a large number of executed instructions.

Parameters that describes the processor in e�ect are:

� X1, the number of processor cycles required to execute an arithmetical/logical in-

struction

� X2, composed by: 0:1X21+ 0:9X22 where

{ X21 is the number of processor cycles required for a "branch not taken" in-

struction

{ X22 is the number of processor cycles required for a "branch taken" instruction

Hence, it is assumed that 90% of all conditional branches are taken.

91

� X3, denotes the number of processor cycles required to execute a load/ store instruc-

tion. For simplicity these are considered equal in this sense.

� X4, denotes the number of processor cycles required for the execution of a
oating

point instruction.

In order to describe wait state penalties and di�erent instruction formats the following

parameters are introduced:

� W denotes the number of wait states required for a read bus cycle, determined by

the system con�guration.

� U denotes the averages number of instructions that becomes available for execution

as a result of one (32+8 bits) fetch. If, for example 70% of the instruction set consists

of instructions encoded in 16 bits and the rest are encoded in 32 bits, then:

U = 0:7 � 2 + 0:3 = 1:7

� Y (W;U) denotes average cycles required to feed the processor with one instruction.

This is a function of wait state penalties and instruction format:

Y =
1 +W

U

cycles

instruction

Since instruction fetch and execution is performed simultaneously in a pipe-lined archi-

tecture we write:

Z1 = max[X1; Y (W;U)]

Z2 = max[X2; Y (W;U)]

Z3 = X3 +W

Z4 = max[X4; Y (W;U)]

We obtain an expression for the Execution Rate Estimation, ERE:

ERE = Z1x1 + Z2x2 + Z3x3 + Z4x4(cycles)

where ERE denotes the average number of cycles required to execute one instruction.

Including the cycle time CT in seconds, we arrive at a �nal expression for the execution

rate:

ER =
1

ERE CT

instructions

second

92

4.3 Memory Power Consumtion

The memory used in the HDO con�guration, (64k nibble) Cypress CY7C194 is a 24 pin

device with 35 ns access time. Memory is organized as 40 bits words (32 data and 8 check

bits) thus each memory access will activate all of the ten devices.

If we de�ne the Average Memory Activity, (AMA) as the fraction of processor cycles

that accesses memory in an instruction mix, the memory power consumtion could be

estimated as:

Paverage = AMA Pactive + (1�AMA) Pstandby

For this memory device:

Pactive = 650mW

Pstandby = 100mW

Determination of AMA is complicated by several factors. The memory device needs

typically one cycle to enter standby mode after beeing accessed. Obviously, the memory

power requirement depends on the instruction execution order. If, for example, load/store

instructions were ordered as every other instruction rather than consecutive instructions

then there would be more memory "active" cycles since we actually need two consecutive

cycles that do not access memory to reach the "standby" mode. In the estimations, the

instruction order as well as wait state cycles are ignored and AMA is considered a function

of:

1. Instruction Fetch Rate

2. Instruction Mix

3. Instruction Execution Timing

Instruction Fetch Rate is limited by the instruction format. For example, with an

instruction format of 32 bits and assuming single cycle execution of all instructions every

cycle needs an instruction fetch. A shorter instruction format, i.e more dense code, will

decrease the need for instruction fetches.

The Instruction Mix is essential since, for example, load/store instructions introduces
extra memory accesses ,thus increasing AMA.

Instruction Execution Timing a�ects memory activity since the fact that all instruc-

tions do not execute in one cycle will reduce the need for instruction fetches. Thus the

higher execution times, the lower the AMA.

Here, AMA is estimated by:

AMA =
1

U
(
x1

X1

+
x2

X2

+
x3

X3

+
x4

X4

) (%)

93

4.4 Instruction Mix

The following instruction mix is assumed:

� 50% arithmetical/logical instructions

� 25% jump/branch instructions

� 10% load/store instructions

� 15%
oating point instructions

4.5 Notes on the Failure Rate estimation

Failure rate estimation is carried out according to the MIL- HDBK-217-E. For temperature

acceleration factor calculation the thermal resistivity factor was used whenever it was

available from manufacturer's documentation. However, since such information was rare,

assumptions had to be made about the junction temperature. For complex circuits, such

as CPU:s and FPU a junction temperature of 110 degrees Celsius was assumed. For all

others, a junction temperature of 80 degrees Celsius was assumed.

4.6 The HDO con�gurations

Special requirements for the HDO con�guration are:

� microprocessor with 256kB primary memory

� only space quali�ed components

� low power consumtion

� small printed circuit board area

The HDO con�guration designs consists of:

� cpu

� 256 kB of static random access memory

� error detection and correction circuitry

� real time clock

94

In the failure rate estimation for HDO con�guration the following assumptions were

made:

� Quality Factor = S (0.25)

� Voltage Factor = 1

� Application Environment Factor = Space Flight (0.9)

The T800 and SPARC designs both utilise an "error detection and correction unit"

(EDAC). The introduced delay (36 ns, worst case for the EDAC in use) is inserted by the

EDAC control and assures that memory "Ready" signal will not be asserted until correct

data is guaranteed. THOR has a built in EDAC so there is no need for this unit in the

THOR HDO con�guration.

4.7 T800 HDO con�guration

T800 chip running at 17.5 MHz is available in mil spec. Since the T800 has an on chip

timer, no such peripheral device is required.

Component list

Device Qty Power [mW] Area [mm2] FITS

U1 T800-G17S 1 1200(1 1451 532

U2-U5 74ACT245 4 40 220 3

U6 74ACT08 1 30 154 3

U7 74ACT244 1 40 220 3

U8,U9 74HCT373 2 38 220 3

U11 74ACT04 1 34 154 3

U12 OTO5 1 100 270 27

U13,U14 54HCT393 2 30 220 3

MU1-MU10

CY7C194(35) 10 189(2 255 218

EU1 IDT49C460B 1 625 1944 92

EU2 CYC7C361-L66DMB 1 750 280 170

EU3 74ACT32 1 29 154 3

EU4 OTO50 1 100 270 27

EU5-EU8 74ACT245 4 40 220 3

EU9 74ACT244 1 40 220 3

1) Estimated for the current application

2) Average according to AMA

95

4.7.1 T800 Read memory cycle (external memory)

� T1: Address setup time before address valid strobe

� T2: Address hold time after address valid strobe

� T3: Time for the bus to go to tristate on a read cycle, or to present valid data on a

write cycle

� T4,T5: Time for the read or write data pulse

� T6: Time for the bus to remain in tristate after the end of read, or for data to remain

valid after the end of write

For the selected device, 1 Tm = 28.5 ns.

1. Address is latched at the falling edge of T1. Address setup time is "a-8" = 20.5 ns.

The 373 requires typically 5 ns, thus it is su�cient with T1 = 1 Tm.

2. Address hold after falling edge of T1 is "b-9" = 19.5 ns. The 373 needs typically 6

ns, thus T2 = 1 Tm.

3. For T3,T4 and T5, CS* is asserted at the end of T1, during a read cycle, data is

latched at the falling edge of T5. Bu�er propagation delay is 11 ns. T800 needs

stable data 25 ns before it is latched, memory require 35 ns from CS*, the EDAC

is 36 ns , Hence: (35+11+36+25) = 107 ns violates T3=T4=T5 = 1Tm (85.5 ns),

and two extra Tm:s are required.

96

4. With T6 = 1 Tm we arrive at a total of 8 Tm, ie 228 ns for an external memory

cycle.Thus a memory read bus cycle is equivalent to 228/57 = 4 processor cycles.

4.7.2 T800 HDO con�g execution rate

The following parameters were chosen to describe the T800 con�guration:

X1 = 2

X21 = 2; X22 = 4; X2 = 3:8

X3 = 2

X4 = 8

The manufacturer claims that about 70% of executed instructions are encoded in a

single byte [Inm89] p.195. From the current instruction mix we assume that 50% of the

instructions are encoded in 8 bits, 30% of the instructions are encoded in 16 bits, the rest

are encoded in 32 bits. This gives U = 2 and with W = 3 from the previous section we

have:

Y (W;U) = 2

Thus:

Z1 = X1 = 2

Z2 = X2 = 3:8

Z3 = 5

Z4 = X4 = 8

leading to:

ER =
1

3:65 57

1

ns
= 4:8MmixedIPS

For the memory activity we obtain:

AMA = 0:18

The total memory power requirement: 189 mW/device.

97

4.8 THOR HDO con�guration

The THOR has on-chip timer, thus no such peripheral device. Furthermore, THOR has

a built in EDAC. Thus no such peripheral device either. The chip is not yet available.

Actual �gures concerning the THOR chip are obtained from simulations in Genesil Silicon

Compiler, from these simulations assuming components satisfying military range require-

ments, the clock frequency will be 15 MHz.

Component list

Device Qty Power [mW] Area [mm2] FITS

U1 THOR 1 1500 2450 78

U2-U6 74ACT245 5 36 220 3

U7 74ACT138 1 41 220 3

U8-U10 74ACT244 3 36 220 3

U11 OTO16 1 100 270 26

U12 74ACT04 1 30 154 3

U13,U14 54HCT393 2 26 220 3

MU1-MU10

CY7C194(35) 10 326(* 255 218

*) Average according to AMA

98

4.8.1 THOR Read memory Cycle

Assuming a need for 5 ns setup before data is latched. Taking into account the delay

introduced by the '138, 16 ns. Memory requires 35 ns from CS* to valid data.Data bus

bu�ers delay data by 11 ns. Thus wee need a cycle time:

15 + 16 + 35 + 11 + 5 = 82ns

The THOR cycle time is 67 ns and therefore, one wait state is required.

4.8.2 THOR HDO con�guration execution rate

The following parameters were chosen to describe the THOR con�guration:

X1 = 1

X2 = 1

X3 = 2

X4 = 4

95% of THOR instructions are encoded in 16 bits, the rest are encoded in 32 bits,

hence U = 1:95 and with W = 1 from previous section:

Y (W;U) = 1:03

99

Thus:

Z1 = Y (W;U) = 1:03

Z2 = Y (W;U) = 1:03

Z3 = 3

Z4 = X4 = 4

leading to:

ER =
1

1:673 67

1

ns
= 8:9MmixedIPS

For the memory activity

AMA = 0:410

The total memory power requirement: 326 mW/device.

4.9 SPARC HDO con�guration

The CY7C601 chip running at 25 MHz is available in mil spec.

Component list

Device Qty Power [mW] Area [mm2] FITS

U1 CY7C601 1 1750 1998 365

U2 CY7C344 1 1000 289 170

U3(* CY7C602 1 1750 1600 358

U4-U6 74ACT244 3 59 220 3

U11 74ACT04 1 50 154 3

U12 MC146818 1 20 255 49

MU1-MU10

CY7C194(35) 10 650 255 218

EU1 IDT49C460B 1 625 1944 92

EU2 CYC7C361 1 750 280 170

EU3 74ACT32 1 44 154 3

EU4 OTO50 1 100 270 27

EU5-EU8 74ACT245 4 59 220 3

EU9 74ACT244 1 59 220 3

*) Not Available in mil spec

100

4.9.1 SPARC Read Cycle

Delays:

� A2-A17 to CS* PLD decoder 20 ns

� memory data setup time 35 ns

� edac delay 36 ns

� data bus bu�er 11 ns

Required: From stable address to data latched:

20 + 35 + 36 + 11 = 102ns

Available (3 processor cycles):

120 + 7� 3 = 124ns

Therefore, a bus read cycle will require 3 processor cycles which implies 2 wait states.

4.9.2 SPARC HDO con�guration execution rate

The following parameters were chosen to describe the SPARC con�guration:

X1 = 1

101

X2 = 1

X3 = 3

X4 = 4

A SPARC instruction is encoded in 32 bits so U = 1. From the previous sectionW = 2,

and:

Y (W;U) = 3

thus:

Z1 = Y (W;U) = 3

Z2 = Y (W;U) = 3

Z3 = 5

Z4 = X4 = 4

leading to

ER =
1

3:35 40

1

ns
= 7:5MmixedIPS

The memory power-down facility may not be used since it is not possible to deassert

memory chip-select during interlocks and so the total memory power requirement is 650

mW/device

4.10 The HSO con�gurations

The HSO con�guration is intendeded to estimate peak performance for a computer system

with 1 MByte of memory. It consists of:

� microprocessor with 1 MByte of static random access memory

4.11 General Notes on the HSO con�gurations

The HSO con�guration is accomplished by eliminating the EDAC circuitry and changing

the memory devices from the HDO con�guration. Glue logic, except from address decod-

ing and bus bu�ers is implemented using macro cells. The memory is built from eight

64k*16 bit, 25 ns static rams. Address decoding is performed by high speed PAL devices,

eliminating any address bus skew which otherwise may arise in high clock frequency sys-

tems. Failure Rate Estimations assumes commercial quality components and a "Ground,

benign" environment.

102

4.12 T800 HSO con�guration

Component list

Device Qty Power [mW] Area [mm2] FITS

U1 T800-G30S 1 1200 1451 13907

U2 CY7C343 1 775 311 4527

U3-U7 74ACT245 5 71 220 490

U8-U11 74ACT244 4 71 220 490

MU1-MU8 CYM1624 8 2750 442 11242

MU9-MU10 CY7C338 2 750 226 3398

4.12.1 T800 HSO con�guration execution rate

From the T800 read cycle diagram, and with the chosen con�guration, we conclude that an

external memory read cycle may be performed without wait state penalty. This also implies

that there is nothing to gain from a cache memory. It should, however, be emphasised

that the T800 internal memory (4 kByte) is not considered.

Hence W = 2, U = 2 leading to Y (W;U) = 1:5 and:

Z1 = 2

Z2 = 3:8

Z3 = 4

Z4 = 8

The HSO T800 con�guration runs at 30 MHz and thus:

ER =
1

3:55 33

1

ns
= 8:5MmixedIPS

4.13 THOR HSO con�guration

Component list

Device Qty Power [mW] Area [mm2] FITS

U1 THOR 1 1500 2450 78

U2 CY7C343 1 775 311 4527

MU1-MU8 CYM1624 8 2750 442 11242

MU9-MU10 CY7C338 2 750 226 3398

MU11-MU14 74ACT245 4 35 220 490

MU15-MU17 74ACT244 3 60 220 490

103

4.13.1 THOR HSO con�g execution rate

In the proposed con�guration, THOR (25 MHz) does not require any wait state so: W = 0,

U = 1:95 leading to Y (U;W) = 0:51 and:

Z1 = 1

Z2 = 1

Z3 = 2

Z4 = 4

�nally:

ER =
1

1:75 40

1

ns
= 14:3MmixedIPS

4.14 SPARC HSO con�guration

Component list

Device Qty Power [mW] Area [mm2] FITS

U1 CY7C601 1 3250 1998 14063

U2 CY7C602 1 2250 1600 13979

U3-U4 CY7C157 2 1250 397 11303

U5 CY7C604 1 3250 2554 14116

U6 CY7C343 1 775 311 4527

MU1-MU8 CYM1624 8 2750 442 11242

MU9-MU10 CY7C338 2 750 226 3398

MU11-MU14 74ACT245 4 95 220 490

MU15-MU17 74ACT244 3 95 220 490

4.14.1 SPARC HSO con�guration execution rate

The SPARC con�guration utilises a 64 kByte cache memory. Experience has shown that

for a cache of this size, a hit rate of 90 % is probable. Denoting a 32-bit word fetched

from the cache Zx(C) we write:

ERE = (Z1x1 + Z2x2 + Z3x3 + Z4x4) 0:10+

(Z1(C)x1 + Z2(C)x2 + Z3(C)x3 + Z4(C)x4) 0:9

104

Timing analysis (carried out as in 4.9.1) shows that a cache miss will cost one wait

state. An access whithin cache may be done without wait state. Hence:

Z1 = 2

Z2 = 2

Z3 = 4

Z4 = 4

and:

Z1(C) = 1

Z2(C) = 1

Z3(C) = 3

Z4(C) = 4

The HSO con�guration runs at 40 MHz and from this:

ER =
1

1:735 25

1

ns
= 23 MmixedIPS

4.15 Summary of Results

As shown in table 4.2, the designs that were intended to show maximum performance

clearly favours the SPARC. This is not very suprising. The SPARC cpu is available in a 40

MHz version and o�ers an architecture designed for single cycle execution of instructions.

The �gures of power requirement and the required board area indicates the price for this

superior performance.

Table 4.1 however, gives another picture. The restrictions made on the real-time

system con�guration degrades total SPARC system performance notably, here it is com-

parable with both THOR and T800. The explanation lies in the absence of cache memory.

and the presence of an EDAC which prevents the system from gaining from the bene�ts

that the SPARC architecture o�ers. At the same time the expected failure rate and the

total board area required are considerably larger than for THOR. The power requirement

more than doubled compared to both T800 and THOR.

4.16 Conclusions

The system hardware considerations shows that in a real-time system design there is not

very much to gain with a modern, general purpose RISC design such as SPARC. On the

contrary, while the estimated performance for SPARC was just about the level of THOR,

the board area became approximatly 40% larger, the power consumption 70% more and

the expected failure became 45 % greater.

105

T800 THOR SPARC

17.5 15 25 Clock Frequency (MHz)

4.8 8.9 7.5 Mixed instruction execution rate (MmixedIPS)

32 24 27 Number of required devices

10307 7844 11254 Total area for devices (mm2)

5294 5271 13061 Total power requirement (mW)

3079 2320 3392 Failure Intensity (FITS)

Table 4.1: Summary: real-time system con�guration

T800 THOR SPARC

30 25 40 Clock Frequency (MHz)

8.5 14.3 23.0 Mixed instruction execution rate (MmixedIPS)

21 19 23 Number of Required Devices

7730 8289 12785 Total area for devices (mm2)

26114 26020 36190 Total Power Requirement (mW)

119576 104767 169453 Failure Intensity (FITS)

Table 4.2: Summary: general purpose system con�guration

106

Chapter 5

Concluding Remarks

Several descisions has to be made during the design of a new computer architecture.

These descisions are based upon the designers experience as well as the systems require-

ments. From RISC-design concepts, several high performance microprocessors has been

constructed.

In this thesis, we have studied how seven di�erent microprocessors could perform in

real-time systems. Four of these processors are general purpose RISC processors: Motorola

88100, Intel 80960kb, MIPS R2000 and Cypress SPARC, while three processors: AMD

29000, Inmos T800 and Saab-Ericsson Space THOR are targeted for real-time systems.

From observations in this study we may conclude that important real-time requirements

such as fault tolerance, precise time handling and rapid response on external events (pro-

cess switch) and debug facilities has not had a major in
uence on the design of the general

purpose processors. Rather, they are optimized for highest possible execution rate.

A real-time system requirement such as fault-tolerance places several restrictions on

the system hardware design. It turns out that a high execution rate cannot be maintained

due to the fact that memory devices for these applications are to slow. Moreover, since

the communication between processor and memory must be checked (by dedicated logic)

the memory bandwith is further reduced.

Precise time handling is essential for the control of several processes in real-time system

applications. The general purpose processors relies on timer-functions provided by other

devices in the system and this is probably not su�cient.

The ability to respond within a �nite time on an external event is dependent of the

processors support for a software process switch. Minimizing the latency of switch between

to processes requires hardware support for this event. The general purpose processors do

not provide such support.

107

Debug capabilities of hardware as well as software are necessary for the design of high

dependable systems such as real-time systems. The general purpose processor's do not

provide extensive support for debugging of a real-time system.

Am29000, despite that the manufacturer claims it to be designed for real-time systems,

is similar to the general purpose processors.

T800 has several features which support real-time systems while THOR is the only, of

the studied processors, that seems to be dedicated for use in real-time systems.

108

Bibliography

[Adv88] Advanced Micro Devices. Am29000 streamlined instruction processor, 1988.

[Bir85] Birnbaum J.S. , Worley W.S. Beyond risc: High precision architecture. Hewlett
Packard Journal, vol 36(no 8):pp 4{10, August 1985.

[Hen84] Hennessy J.L. Vlsi processor architecture. IEE Transactions on Computers, vol
C-33(no 12):pp 1221{1246, December 1984.

[Hen90] Hennessy J.L.,Pattersson D.A. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann publishers, San Mateo, California, 1990.

[Hil85] Hill M.D. et alt. Spur: A vlsi multiprocessor workstation. Technical report,

Computer Science Division, University of California, Berkeley, December 1985.

[Hil86] Hill M.D. et alt. Design decisions in spur. IEE Computer, vol 19(no 11):pp 8{22,

November 1986.

[Hin86] Hindin H.J. Ibm risc workstation features 40-bit addressing. ComputerDesign,

pages pp 28{30, February 1986.

[Inm89] Inmos limited. Transputer databook, second edition, 1989.

[Int88] Intel Corporation. 80960KB programmer's reference manual, 1988.

[Jan90] Jan Torin. Characterisation of microcomputers for embedded real time systems

- directions and basic criteria. Technical report, Department of Computer Engi-

neering, Chalmers University of Technology, 1990.

[Mil83] Milutinovi�c V.M., editor. High Level Languages in Computer Architecture. Com-
puter Science Press Inc, Oxford, 1983.

[MIP87] MIPS Computer Systems Inc. MIPS R2000 RISC architecture, 1987.

[Mot90] Motorola Inc. MC88100 RISC microprocessor user's manual, second edition,

1990.

[Pat82] Patterson D.A.,S�equin C.H. A vlsi risc. Computer, pages pp 8{22, September

1982.

[Rad83] Radin G. The ibm 801 minicomputer. IBM Journal R&D, vol 27(no 3):pp 237{

246, May 1983.

109

[ROS90] ROSS technology, Inc. SPARC RISC user's guide, 1990.

[Saa92] Saab Ericsson Space. Stack RISC microprocessor instruction set architecture for
prototype chip, 1992.

[Sie82] Siewiorek D.P.,Bell C.G.,Newell A. Computer Structures: Principles and Exam-
ples. McGraw-Hill, Singapore, 1982.

[Smi83] Smith J.E.,Pleszkun A.R.,Katz R.H.,Goodman J.R. Pipe: A high performance

vlsi architecture. Proceedings of IEE International Workshop on computer sys-
tems organisation, March 1983.

[Tab87] Tabak D. RISC Architecture. John Wiley & Sons Inc, New York, 1987.

[You82] Young S.J. Real Time Languages: Design and Development. Ellis Horwood,

Chichester, 1982.

110

Appendix A

Instruction set summaries

A.1 MC88100 instruction set summary

Instruction Operands Name

ADD rD,rS1,IMM16 integer add

ADD.CAR rd,rS1,rS2

ADDU.CAR rD,rS1,IMM16 unsigned integer add

rD,rS1,rS2

CMP rD,rS1,IMM16 integer compare

rD,rS1,rS2

DIV rD,rS1,IMM16 integer divide

rD,rS1,rS2

DIVU rD,rS1,IMM16 integer unsigned divide

rD,rS1,rS2

MUL rD,rS1,IMM16 integer multiply

rD,rS1,rS2

SUB rD,rS1,IMM16 integer subtract

SUB.CAR rD,rS1,rS2

SUBU rD,rS1,IMM16 integer unsigned subtract

SUBU.CAR rD,rS1,rS2

Table A.1: MC88100 Integer Arithmetic Instructions

111

Instruction Operands Name

AND.U rD,rS1,IMM16 logical and

AND.C rD,rS1,S2 logical and

MASK.U rD,rS1,IMM16 logical mask immediate

OR.U rD,rS1,IMM16 logical or

OR.C rD,rS1,rS2 logical or

XOR.U rD,rS1,IMM16 logical exclusive or

XOR.C rD,rS1,rS2 logical exclusive or

Table A.2: MC88100 Logical Instructions

Instruction Operands Name

JMP.N rS2 unconditional jump

JSR.N rS2 jump to subroutine

BB0.N B5,rS1,D16 branch on bit clear

BB1.N B5,rS1,D16 branch on bit set

BCND.N M5,rS1,D16 branch on condition met

BR.N D26 unconditional branch

TB0 B5,rS1,VEC9 trap on bit clear

TB1 B5,rS1,VEC9 trap on bit set

TBND rS1,IMM16 trap on bounds check

rS1,rS2

TCND M5,rS1,VEC9 conditional trap

RTE return from exeption

Table A.3: MC88100 Flow Control Instructions

Instruction Operands Name

FADD.FSZ rD,rS1,rS2
oating point add

FCMP.FSZ rD,rS1,rS2
oating point compare

FDIV.FSZ rD,rS1,rS2
oating point divide

FLDCR rD,,fcrS load from
oating point control register

FLT.FSZ rD,rS2 convert integer to
oating point

FMUL.FSZ rD,rS1,rS2
oating point multiply

FSTCR rD,fcrD store to
oating point control register

FSUB.FSZ rD,rS1,rS2
oating point subtract

FXCR rD,rS,fcrS/D exhange
oatin point control registers

INT.FSZ rD,rS2 round
oating point to integer

TRNC.FSZ rD,rS2 truncate
oating point

Table A.4: MC88100 Floating Point Instructions

112

Instruction Operands Name

CLR rD,rS1,IMM10 clear bit-�eld

rD,rS1,rS2

EXT rD,rS1,IMM10 extract bit-�eld

rD,rS1,rS2

EXTU rD,rS1,IMM10 extract unsigned bit-�eld

rD,rS1,rS2

FF0 rD,rS2 �nd �rst bit clear

FF1 rD,rS2 �nd �rst bit set

MAK rD,rS1,IMM10 make bit-�eld

rD,rS1,rS2

ROT rD,rS1,IMM10 rotate register (only 5 bits of IMM10 used)

rD,rS1,rS2

SET rD,rS1,IMM10 set bit-�eld

rD,rS1,rS2

Table A.5: MC88100 Bit-Field Instructions

Instruction Operands Name

LD.SZ rD,rS1,IMM16 load register rD from memory at address rS1+IMM16

LD.SZ.USR rD,rS1,rS2 load from address rS1+rS2 or rS1+(rS2[scale]

rD,rS1,(rS2) Scale might be 0,1,2 or 3

LDA.SZ rD,rS1,IMM16 load address

rD,rS1,rS2

rD,rS1,(rS2)

LDCR rD,crS load from control register

ST.SZ rD,rS1,IMM16 store contents of rD in memory rS1+IMM16

ST.SZ.USR rD,rS1,rS2 store in rS1+rS2 or rS1+(rS2[Scale]

rD,rS1,(rS2)

STCR rD,crD store to control register

XMEM.BU rD,rS1,IMM16 exhange register with memory

XMEM.BU.USR rD,rS1,rS2

rD,rS1,(rS2)

XCR rD,rS,crS/D exhange control register

Table A.6: MC88100 Load/Store/Exchange Instructions

113

A.2 I80960 KB instruction set summary

Instruction Operands Name

LD src,dst load

LDOB src,dst load ordinal byte

LDOS src,dst load ordinal short

LDIB src,dst load integer byte

LDIS src,dst load integer short

LDL src,dst load long

LDT src,dst load triple

LDQ src,dst load quad

LDA src,dst load address

ST src,dst store

STOB src,dst store ordinal byte

STOS src,dst store ordinal short

STIB src,dst store integer byte

STIS src,dst store integer short

STL src,dst store long

STT src,dst store triple

STQ src,dst store quad

Table A.7: I80960KB Load/Store instructions

Instruction Operands Name

ADDI src1,src2,dst add integer

ADDO src1,src2,dst add ordinal

SUBI src1,src2,dst subtract integer

SUBO src1,src2,dst subtract ordinal

MULI src1,src2,dst multiply integer

MULO src1.src2,dst multiply ordinal

DIVI src1,src2,dst divide integer

DIVO src1,src2,dst divide ordinal

ADDC src1,src2,dst add ordinal with carry

SUBC src1,src2,dst subtract ordinal with carry

EMUL src1,src2,dst extended multiply

EDIV src1,src2,dst extended divide

REMI src1,src2,dst remainder integer

REMO src1,src2,dst remainder ordinal

MODI src1,src2,dst modulo integer

Table A.8: I80960KB Integer arithmetic instructions

114

Instruction Operands Name

MOV src,dst move

MOVL src,dst move long

MOVT src,dst move triple

MOVQ src,dst move quad

Table A.9: I80960KB Move instructions

Instruction Operands Name

SHLO len,src,dst shift left ordinal

SHRO len,src,dst shift right ordinal

SHLI len,src,dst shift left integer

SHRI len,src,dst shift right integer

SHRDI len,src,dst shift right dividing integer

AND src1,src2,dst A and B

ANDNOT src1,src2,dst A and (not B)

NOTAND src1,src2,dst (not A) and B

OR src1,src2,dst A or B

NOR src1,src2,dst (not A) and (not B)

XOR src1,src2,dst not (A=B)

XNOR src1,src2,dst A=B

NOT src1,src2,dst not A

NOTOR src1,src2,dst (not A) or B

ORNOT src1,src2,dst A or (not B)

NAND src1,src2,dst (not A) or (not B)

Table A.10: I80960KB Shift, rotate and logical instructions

Instruction Operands Name

CMPI src1,src2 compare integer

CMPO src1,src2 compare ordinal

CONCMPI src1,src2 conditional compare integer

CONCMPO src1,src2 conditional compare ordinal

CMPINCI src1,src2,dst compare and increment integer

CMPINCO src1,src2,dst compare and increment ordinal

Table A.11: I80960KB Compare, conditional compare instructions

115

Instruction Operands Name

B targ branch

BX targ branch extended

BAL targ branch and link

BALX targ,dst branch and link extended

BE targ branch if equal

BNE targ branch if not equal

BL targ branch if less

BLE targ branch if less than or equal

BG targ branch if greater

BGE targ branch if greater or equal

BO targ branch if ordered

BNO targ branch if unordered

Table A.12: I80960KB Branch instructions

Instruction Operands Name

CMPIBE src1,src2,targ compare integer, branch if equal

CMPIBNE src1,src2,targ compare integer, branch if not equal

CMPIBL src1,src2,targ compare integer, branch if not less

CMPIBLE src1,src2,targ compare integer, branch if not less or equal

CMPIBG src1,src2,targ compare integer, branch if greater

CMPIBGE src1,src2,targ compare integer, branch if greater

CMPIBO src1,src2,targ compare integer, branch if ordered

CMPIBNO src1,src2,targ compare integer, branch if unordered

CMPOBE src1,src2,targ compare ordinal, branch if equal

CMPOBNE src1,src2,targ compare ordinal, branch if not equal

CMPOBL src1,src2,targ compare ordinal, branch if not less

CMPOBLE src1,src2,targ compare ordinal, branch if not less or equal

CMPOBG src1,src2,targ compare ordinal, branch if greater

CMPOBGE src1,src2,targ compare ordinal, branch if greater

BBS bitpos,src,targ check bit, branch if set

BBC bitpos,src,targ check bit, branch if clear

Table A.13: I80960KB Compare and branch instructions

116

Instruction Operands Name

SETBIT bitpos,src,dst set bit

CLRBIT bitpos,src,dst clear bit

NOTBIT bitpos,src,dst not bit (bit toggle)

CHKBIT bitpos,src check bit

ALTERBIT bitpos,src2,dst alter bit

SCANBIT src,dst scan for bit

SPANBIT src,dst span over bit

EXTRACT bitpos,len,src/dst extract bits

MODIFY mask,src,src/dst modify bit

Table A.14: I80960KB Bit, bit�eld instructions

Instruction Operands Name

CALL targ call a new precedure

CALLS targ call a system procedure

CALLX targ call extended

RET return from procedure

Table A.15: I80960KB Call/return instructions

Instruction Operands Name

FAULTE fault if equal

FAULTNE fault if not equal

FAULTL fault if less

FAULTLE fault if less or equal

FAULTG fault if greater

FAULTGE fault if greater or equal

FAULTO fault if ordered

FAULTNO fault if unordered

Table A.16: I80960KB Conditional fault instructions

117

Instruction Operands Name

MODTC mask,src,dst modify trace controls

MARK generate breakpoint trace-event

FMARK force mark

MODPC src,mask,src/dst modify process controls

FLUSHREG
ush local registers

MODAC mask,src,dst modify arithmetic control

TESTE dst test for equal

TESTNE dst test for not equal

TESTL dst test for less

TESTLE dst test for less or equal

TESTG dst test for greater

TESTGE dst test for greater or equal

TESTO dst test for ordered

TESTNO dst test for unordered

Table A.17: I80960KB Processor management instructions

Instruction Operands Name

SYNCF synchronize faults

SYNLD src,dst synchronize load

SYNMOV dst,src synchronous move

SYNMOVL dst,src synchronous move long

SYNMOVQ dst,src synchronous move quad

Table A.18: I80960KB Synchronous load and move instructions

118

Instruction Operands Name

ADDR src1,src2,dst add real

ADDL src1,src2,dst add long real

ATADD src/dst,src,dst atomic add

ATANR src1,src2,dst arctangent real

ATANRL src1,src2,dst arctangent long real

ATMOD src,mask,src/dst atomic modify

CLASSR src classify real

CLASSRL src classify long real

CMPOR src1,src2 compare ordered real

CMPORL src1,src2 compare ordered long real

CMPR src1,src2 compare real

CMPRL src1,src2 compare long real

COSR src,dst cosine real

COSRL src,dst cosine long real

CPYRSRE src1,src2,dst copy sign real extended

CPYSRE src1,src2,dst copy reversed sign real extended

CVTILR src,dst convert long integer to real

CVTIR src,dst convert integer to real

CVTRI src,dst convert real to integer

CVTRIL src,dst convert real to integer long

CVTZRI src,dst convert truncated real to integer

CVTZRIL src,dst convert truncated real to long integer

DIVR src1,src2,dst divide real

DIVRL src1,src2,dst divide long real

EXPR src,dst exponent real

EXPRL src,dst exponent long real

LOGBNR src,dst log binary real

LOGBNRL src,dst log binary long real

LOGEPR src1,src2,dst log epsilon real

LOGEPRL src,1src2,dst log epsilon long real

LOGR src1,src2,dst log real

LOGRL src1,src2,dst log long real

MOVR src,dst move real

MOVRL src,dst move long real

MOVRE src,dst move extended real

MULR src1.src2,dst multiply real

MULRL src1.src2,dst multiply long real

REMR src1,src2,dst remainder real

REMRL src1,src2,dst remainder long real

ROUNDR src,dst round real

ROUNDRL src,dst round long real

SCALER src1,src2,dst scale real

SCALERL src1,src2,dst scale long real

Table A.19: I80960KB Floating point instructions

119

Instruction Operands Name

SINR src,dst sine real

SINRL src,dst sine long real

SQRT src,dst square root real

SQRTRL src,dst square root long real

SUBQ src1,src2,dst subtract ordinal with carry

SUBR src1,src2,dst subtract real

SUBRL src1,src2,dst subtract long real

TANR src,dst tangent real

TANRL src,dst tangent long real

Table A.20: I80960KB Floating point instructions (continued)

Instruction Operands Name

DMOVT src,dst decimal move and test

DSUBC src1,src2,dst decimal subtract with carry

DADDC src1,src2,dst decimal add with carry

Table A.21: I80960KB Decimal arithmetic instructions

Instruction Operands Name

SCANBYTE src1,src2 scan byte for equality

ROTATE len,src,dst rotate bits

CMPDECI src1,src2,dst compare and decrement integer

CMPPDECO src1,src2,dst compare and decrement ordinal

Table A.22: I80960KB Miscellanous instructions

120

A.3 Am29000 instruction set summary

Instruction Operands Comments

ADD rc,ra,[rb|const8] add

ADDS rc,ra,[rb|const8] signed add

ADDC rc,ra,[rb|const8] add with carry

ADDCS rc,ra,[rb|const8] signed add with carry

ADDCU rc,ra,[rb|const8] unsigned add with carry

SUB rc,ra,[rb|const8] subtract

SUBC rc,ra,[rb|const8] subtract with carry

SUBCS rc,ra,[rb|const8] subtract with carry, signed

SUBCU rc,ra,[rb|const8] subtract with carry, unsigned

SUBR rs,ra,[rb|const8] subtract reverse

SUBRC rs,ra,[rb|const8] subtract reverse with carry

SUBRCS rs,ra,[rb|const8] subtract reverse with carry, signed

SUBRCU rs,ra,[rb|const8] subtract reverse with carry, unsigned

SUBRS rs,ra,[rb|const8] subtract reverse signed

SUBRU rs,ra,[rb|const8] subtract reverse unsigned

SUBS rs,ra,[rb|const8] subtract signed

SUBU rs,ra,[rb|const8] subtract unsigned

MULTIPLU rc,ra,rb integer multiply unsigned

MULTIPLY rc,ra,rb integer multiply signed

MUL rc,ra,[rb|const8] multiply step

MULL rc,ra,[rb|const8] multiply last step

MULU rc,ra,[rb|const8] multiply step unsigned

DIV rc,ra,[rb|const8] divide step

DIVIDE rc,ra,rb integer divide, signed

DIVIDU rc,ra,rb integer divide, unsigned

DIV0 rc,[rb|const8] divide initialize

DIVL rc,ra,rb divide last step

DIVREM rc,ra,[rb|const8] divide remainder

Table A.23: Am29000 Integer arithmetic instructions

121

Instruction Operands Comments

CPBYTE rc,ra,[rb|const8] compare bytes

CPEQ rc,ra,[rb|const8] compare equal to

CPGE rc,ra,[rb|const8] compare greater than or equal to

CPGEU rc,ra,[rb|const8] compare greater than or equal to,unsigned

CPGT rc,ra,[rb|const8] compare greater than

CPGTU rc,ra,[rb|const8] compare greater than, unsigned

CPLE rc,ra,[rb|const8] compare less than or equal to

CPLEU rc,ra,[rb|const8] compare less than or equal to, unsigned

CPLT rc,ra,[rb|const8] compare less than

CPLTU rc,ra,[rb|const8] compare less than, unsigned

CPNEQ rc,ra,[rb|const8] compare not equal to

ASEQ vn,ra,[rb|const8] assert equal to

ASGE vn,ra,[rb|const8] assert greater than or equal to

ASGEU vn,ra,[rb|const8] assert greater than or equal to, unsigned

ASGT vn,ra,[rb|const8] assert greater than

ASGT vn,ra,[rb|const8] assert greater than,unsigned

ASLE vn,ra,[rb|const8] assert less than or equal to

ASLEU vn,ra,[rb|const8] assert less than or equal to,unsigned

ASLT vn,ra,[rb|const8] assert less than

ASLTU vn,ra,[rb|const8] assert less than,unsigned

ASNEQ vn,ra,[rb|const8] assert not equal to

Table A.24: Am29000 Compare instructions

Instruction Operands Comments

AND rc,ra,[rc|const8] and logical

ANDN rc,ra,[rb|const8] and not logical

NAND rc,ra,[rb|const8] nand logical

NOR rc,ra,[rb|const8] nor logical

OR rc,ra,[rb|const8] or logical

XOR rs,ra,[rb|const8] exclusive or logical

XNOR rs,ra,[rb|const8] exclusive nor logical

SLL rc,ra,[rb|const8] shift left logical

SRA rc,ra,[rb|const8] shift right arithmetic

SRL rc,ra,[rb|const8] shift right logical

EXTRACT rc,ra,[rb|const8] extract word, bit-aligned

Table A.25: Am29000 Logical/shift instructions

122

Instruction Operands Comments

LOAD ce,cntl,ra,[rb|const8] load

LOADL ce,cntl,ra,[rb|const8] load and lock

LOADM ce,cntl,ra,[rb|const8] load multiple

LOADSET ce,cntl,ra,[rb|const8] load and set

STORE ce,cntl,ra,[rb|const8] store

STOREL ce,cntl,ra,[rb|const8] store and lock

STOREM ce,cntl,ra,[rb|const8] store multiple

EXBYTE rc,ra,[rb|const8] extract byte

EXHW rc,ra,[rb|const8] extract half-word

EXHWS rc,ra extract half-word, sign extended

INBYTE rc,ra,[rb|const8] insert byte

INHW rc,ra,[rb|const8] insert half word

MFSR rc,spid move from special register

MFTLB rc,ra move from translation look-aside bu�er register

MTSR spid,rb move to special register

MTSRIM spid,const16 move to special register immediate

MTTLB ra,rb move to translation look aside bu�er register

Table A.26: Am29000 Data movement instructions

Instruction Operands Comments

CONST ra,const16 constant

CONSTH ra,const16 constant high

CONSTN ra,const16 constant negative

Table A.27: Am29000 Constant instructions

Instruction Operands Comments

CALL ra,target call subroutine

CALLI ra,rb call subroutine, indirect

JMP target jump

JMPF ra,target jump false

JMPFDEC ra,target jump false and decrement

JMPFI ra,rb jump false indirect

JMPI rb jump indirect

JMPT ra,target jump true

JMPTI ra,rb jump true indirect

Table A.28: Am29000 Branch instructions

123

Instruction Operands Comments

DADD rc,ra,rb
oating point add, double precision

DDIV rc,ra,rb
oating point division, double precision

DEQ rc,ra,rb
oating point equal to, double precision

DGE rc,ra,rb f.p greater than or equal to, d.p

DGE rc,ra,rb f.p greater than d.p

DMUL rc,ra,rb f.p multiply, d.p

DSUB rc,ra,rb f.p subtract, d.p

FADD rc,ra,rb f.p add, single precision

FDIV rc,ra,rb f.p divide, s.p

FEQ rc,ra,rb f.p equal to, s.p

FGE rc,ra,rb f.p greater than or equal to, s.p

FGT rc,ra,rb f.p greater than, s.p

FMUL rc,ra,rb f.p multiply, s.p

FSUB rc,ra,rb f.p subtract, s.p

Table A.29: Am29000 Floating-point instructions

Instruction Operands Comments

EMULATE vn,ra,rb trap to software emulation routine

HALT enter halt mode

INV invalidate

IRET interrupt return

IRETINV interrupt return and invalidate

SETIP rc,ra,rb set indirect pointers

CLZ rc,[rb|const8] count leading zeros

CONVERT rc,ra,[conversion] convert data format

Table A.30: Am29000 Miscellaneous instructions

124

A.4 R2000 instruction set summary

Instruction Operands Comments

LB rt,o�set(base) load byte o�set addr signed

LBU rt,o�set(base) load byte o�set addr unsigned

LH rt,o�set(base) load halfword o�set addr signed

LHU rt,o�set(base) load halfword o�set addr usigned

LW rt,o�set(base) load word o�set addr signed

LWCz rt,o�set(base) load word to coprosessor

LWL rt,o�set(base) load word left

LWR rt,o�set(base) load word right

SB rt,o�set(base) store byte

SH rt,o�set(base) store halfword

SW rt,o�set(base) store word

SWCz rt,o�set(base) store word from coprocessor z

SWL rt,o�set(base) store word left

Table A.31: R2000 Load/Store instructions

Instruction Operands Comments

ADD rd,rs,rt signed add,trap on over
ow

ADDI rt,rs,immediate signed immediate add,trap on over
ow

ADDIU rt,rs,immediate unsigned immediate add

ADDU rd,rs,rt unsigned add

SLT rd,rs,rt set on less than

SLTI rt,rs,immediate set on less than immediate

SLTIU rt,rs,immediate set on less than immediate unsigned

SLTU rd,rs,rt set on less than unsigned

AND rd,rs,rt logical and

ANDI rt,rs,immediate logical and immediate

LUI rt,immediate load upper word immediate

OR rd,rs,rt logical OR

ORI rt,rs,immediate logical OR immediate

XOR rd,rs,rt logical exclusive or

XORI rt,rs,immediate logical exclusive or immediate

SUB rd,rs,rt subtract

SUBU rd,rs,rt subtract unsigned

NOR rd,rs,rt logical NOR

Table A.32: R2000 Computational instructions

125

Instruction Operands Comments

SLL rd,rt,amount shift left logical

SLLV rd,rt,rs shift left logical variable

SRA rd,rt,amount shift right arithmetic

SRAV rd,rt,rs shift right arithmetic variable

SRL rd,rt,amount shift right logical

SRLV rd,rt,rs shift right logical variable

Table A.33: R2000 Shift instructions

Instruction Operands Comments

BCzF o�set branch if false, coprocessor z condition is tested

BCzT o�set branch if true, coprocessor z condition is tested

BEQ rs,rt,o�set branch if equal

BGEZ rs,o�set branch on greater than/equal to zero

BGEZAL rs,o�set branch on greater than/equal to zero

BGTZ rs,o�set branch on greater than zero

BLEZ rs,o�set branch on less than/ equal to zero

BLTZ rs,o�set branch on less than zero

BLTZAL rs,o�set branch on less than/ equal to zero

BNE rs,rt,o�set branch on not equal

BREAK breakpoint trap

J target unconditional jump

JAL target unconditional jump and link

JALR rs jump and link register

JALR rd,rs jump and link register

JR rs jump register

Table A.34: R2000 Jump/branch instructions

Instruction Operands Comments

MULT rs,rt multiply

MULTU rs,rt unsigned multiply

DIV rs,rt signed divide

DIVU rs,rt unsigned divide

MFLO rd move from register LO

MFHI rd move from register HI

MTLO rs move to register LO

MTHI rs move to register HI

Table A.35: R2000 Multiply/divide instructions

126

Instruction Operands Comments

MFC0 rt,rd move from system control coprocessor

MFCz rt,rd move from coprocessor z

MTC0 rt,rd move to system control coprocessor

MTCz rt,rd move to coprocessor

RFE restore from exeption

SYSCALL system call

TLBP probe TLB for matching entry

TLBR read indexed TLB entry

TLBWI write indexed TLB entry

TLBWR write random TLB entry

CFCz rt,rd move control from coprocessor z

COPz cofun coprocessor operation

CTCz rt,rd move control to coprocessor z

Table A.36: R2000 Special/coprocessor instructions

127

A.5 SPARC CY7C601 instruction set summary

Instruction Operands Comments

ADD rs1,rs2/imm,rd integer add

ADDcc rs1,rs2/imm,rd integer add, modify icc

ADDX rs1,rs2/imm,rd integer add with carry

ADDXcc rs1,rs2/imm,rd integer add with carry, modify icc

TADDCC rs1,rs2/imm,rd tagged add and modify icc

TADDCCTV rs1,rs2/imm,rd tagged add, modify icc and trap on over
ow

AND rs1,rs2/imm,rd logical and

ANDcc rs1,rs2/imm,rd logical and, modify icc

ANDN rs1,rs2/imm,rd logical and not

ANDNcc rs1,rs2/imm,rd logical and not, modify icc

SUB rs1,rs2/imm,rd subtract integer

SUBcc rs1,rs2/imm,rd subtract integer, modify icc

SUBX rs1,rs2/imm,rd subtract with carry

SUBXcc rs1,rs2/imm,rd subtract with carry, modify icc

TSUBCC rs1,rs2/imm,rd tagged subtract and modify icc

TSUBCCTV rs1,rs2/imm,rd tagged subtract, modify icc and trap on over
ow

MULSCC rs1,rs2/imm,rd multiply step

OR rs1,rs2/imm,rd inclusive or

ORCC rs1,rs2/imm,rd inclusive or, modify icc

ORN rs1,rs2/imm,rd inclusive or not

ORNCC rs1,rs2/imm,rd inclusive or not, modify icc

XOR rs1,rs2/imm,tbr exclusive or

XORCC rs1,rs2/imm,tbr exclusive or and modify icc

XNOR rs1,rs2/imm,tbr exclusive nor

XNORCC rs1,rs2/imm,tbr exclusive nor and modify icc

SLL rs1,rs2/imm,rd shift left logical

SRL rs1,rs2/imm,rd shift right logical

SRA rs1,rs2/imm,rd shift right arithmetic

SETHI const,rd zero least sign 10 bits, replace high order bits

Table A.37: SPARC Arithmetic/Logical/Shift instructions

128

Instruction Operands Comments

LDSB [address],rd load signed byte

LDSBA [address]asi,rd load signed byte from alternate space

LDSH [address],rd load signed halfword

LDSHA [address]asi,rd load signed halfword from alternate space

LDUB [address],rd load unsigned byte

LDUBA [address]asi,rd load unsigned byte from alternate space

LDUH [address],rd load unsigned halfword

LDUHA [address]asi,rd load unsigned halfword from alternate space

LD [address],rd load word

LDA [address]asi,rd load word from alternate space

LDD [address],rd load doubleword

LDDA [address]asi,rd load doubleword from alternate space

LDF [address],frd load
oating-point register

LDDF [address],frd load double
oating-point register

LDFSR [address],fsr load
oating-point state register

LDC [address],creg load coprocessor register

LDDC [address],creg load double coprocessor register

LDCSR [address],creg load coprocessor state register

LDSTUB [address],rd atomic load-store unsigned byte

LDSTUBA [address]asi,rd atomic load-store unsigned byte from alternate space

STB rd,[address] store byte

STBA rd,[address] asi store byte into alternate space

STH rd,[address] store halfword

STHA rd,[address] asi store halfword into alternate space

ST rd,[address] store word

STA rd,[address] asi store word into alternate space

STD rd,[address] store doubleword

STDA rd,[address] asi store doubleword into alternate space

STF frd,[address] store
oating-point

STDF frd,[address] store double
oating-point

STFSR fsr,[address] store
oating-point state register

STDFQ fq,[address] store double
oating-point queue

STC creg,[address] store coprocessor

STDC creg,[address] store double coprocessor

STCSR csr,[address] store coprocessor state register

STDCQ cq,[address] store double coprocessor queue

SWAP [source],rd swap register with memory

SWAPA [regsource]asi,rd swap register with alternate space memory

Table A.38: SPARC Load/Store instructions

129

Instruction Operands Comments

SAVE rs1,rs2/imm,rd save callers window

RESTORE rs1,rs2/imm,rd restore callers window

RETT address return from trap

BA label branch always

BN label branch never

BNE label branch on not equal

BE label branch on equal

BG label branch on greater

BLE label branch on less or equal

BGE label branch on greater or equal

BL label branch on less

BGU label branch on greater unsigned

BLEU label branch on less or equal unsigned

BCC label branch on carry clear

BCS label branch on carry set

BPOS label branch on positive

BNEG label branch on negative

BVC label branch on over
ow clear

BVS label branch on over
ow set

FBA label
oating point branch always

FBN label
oating point branch never

FBU label
oating point branch on unordered

FBG label
oating point branch on greater

FBUG label
oating point branch on unordered or greater

FBL label
oating point branch on less

FBUL label
oating point branch on unordered or less

FBLG label
oating point branch on less or greater

FBNE label
oating point branch on not equal

FBE label
oating point branch on equal

FBUE label
oating point branch on unordered or equal

FBGE label
oating point branch on greater or equal

FBUGE label
oating point branch on unordered or greater or equal

FBLE label
oating point branch on less or equal

FBULE label
oating point branch on unordered or less or equal

FBO label
oating point branch on unordered

CBA label branch always (on coprocessor condition)

CBN label branch never (on coprocessor condition)

CBx label branch on coprocessor x condition

CBxy label branch on coprocessor x or y condition

CBxyz label branch on coprocessor x or y or z condition

CALL label call subroutine

JMPL address,rd jump and link

TA address trap always

TN address trap never

Table A.39: SPARC Control Transfer instructions (continued)

130

Instruction Operands Comments

TNE address trap on not equal

TE address trap on equal

TG address trap on greater

TLE address trap on less or equal

TGE address trap on greater or equal

TL address trap on less

TGU address trap on greater unsigned

TLEU address trap on less or equal unsigned

TCC address trap on carry clear

TCS address trap on carry set

TPOS address trap on positive

TNEG address trap on negative

TVC address trap on over
ow clear

TVS address trap on over
ow set

Table A.40: SPARC Control Transfer instructions

Instruction Operands Comments

RDY y,rd read y register

RDPSR psr,rd read processor state register

RDWIM wim,rd read window invalid mask register

RDTBR tbr,rd read trap base register

WRY rs1,rs2/imm,y write y register

WRPSR rs1,rs2/imm,psr write processor state register

WRWIM rs1,rs2/imm,wim write window invalid mask register

WRTBR rs1,rs2/imm,tbr write trap base register

Table A.41: SPARC Read/Write control register operations

Instruction Operands Comments

CPop coprocessor operations

FPop coprocessor operations

UNIMP const22 unimplemented instruction

IFLUSH address
ush instruction cache

Table A.42: SPARC Miscellaneous instructions

131

A.6 T800 instruction set summary

Instruction Operand Comments

J adress jump

LDLP constant load local pointer

PFIX pre�x

LDNL constant load non local

LDC constant load constant

LDNLP constant load non local pointer

NFIX negative pre�x

LDL constant load local

ADC constant add constant

CALL adress call subroutine

CJ adress conditional jump

AJW constant adjust workspace

EQC constant equals constant

STL constant store local

STNL constant store non local

OPR operate

Table A.43: T800 Function codes

Instruction Comments

AND logical and

OR logical or

XOR logical xor

NOT bitwise not

SHL shift left

SHR shift right

ADD add

SUB subtract

MUL multiply

FMUL fractional multiply

DIV div

REM remainder

GT greater than

DIFF di�erence

SUM sum

PROD product for positive(negative) register A

Table A.44: T800 Arithmetic/Logical operations

132

Instruction Comments

LADD long add

LSUB long sub

LSUM long sum

LDIFF long di�

LMUL long multiply

LDIV long divide

LSHL long shift left

LSHR long shift right

NORM normalise

Table A.45: T800 Long arithmetic operations

Instruction Comments

REV reverse

XWORD extend to word

CWORD check word

XDBLE extend to double

CSNGL check single

MINT minimum integer

DUP duplicate top of stack

Table A.46: T800 General operations

Instruction Comments

MOVE2DINIT initialise data for 2D block move

MOVE2DALL 2D block copy

MOVE2DNONZERO 2D block copy non-zero bytes

MOVE2DZERO 2D block copy zero bytes

Table A.47: T800 2D block move operations

Instruction Comments

CRCWORD calculate crc on word

CRCBYTE calculate crc on byte

BITCNT count bits set in word

BITREVWORD reverse bits in word

BITREVNBITS reverse bottom n bits in word

Table A.48: T800 CRC and bit operations

133

Instruction Comments

BSUB byte subscript

WSUB word subscript

WSUBDB word double word subscript

BCNT byte count

WCNT word count

LB load byte

SB store byte

MOVE move message

Table A.49: T800 Indexing/array operations

Instruction Comments

LDTIMER load timer

TIN timer input

TALT timer alt start

TALTWT timer alt wait

ENBT enable timer

DIST disable timer

Table A.50: T800 Timer handling operations

Instruction Comments

IN input message

OUT output message

OUTWORD output word

OUTBYTE output byte

ALT alt start

ALTWT alt wait

ALTEND alt end

ENBS enable skip

DISS disable skip

RESETCH reset channel

ENBC enable channel

DISC disable channel

Table A.51: T800 Input/Output operations

134

Instruction Comments

RET return

LDPI load pointer to instruction

GAJW general adjust workspace

GCALL general call

LEND loop end

Table A.52: T800 Control operations

Instruction Comments

STARTP start process

ENDP end process

RUNP run process

LDPRI load current priority

Table A.53: T800 Scheduling operations

Instruction Comments

CSUB0 check subscript from 0

CCNT1 check count from 1

TESTERR test error and clear

STOPERR stop on error

SETERR set error

CLRHALTERR clear halt-on-error

SETHALTERR set halt-on-error

TESTHALTERR test halt-on-error

Table A.54: T800 Error handling operations

Instruction Comments

TESTPRANAL test processor analysing

SAVEH save high priority registers

SAVEL save low priority registers

STHF store high priority front pointer

STHB store high priority back pointer

STLF store low priority front pointer

STLB store low priority back pointer

STTIMER store timer

Table A.55: T800 Processor initialisation operations

135

Instruction Comments

FPLDNLSN fp load non-local single

FPLDNLDB fp load non-local double

FPLDNLSNI fp load non-local indexed single

FPLDNLDBI fp load non-local indexed double

FPLDZEROSN fp load zero single

FPLDZERODB fp load zero double

FPLDNLADDSN fp load non-local and add single

FPLDNLADDDB fp load non-local and add double

FPLDNLMULSN fp load non-local and multiply single

FPLDNLMULDB fp load non-local and multiply double

FPSTNLSN fp store non-local single

FPSTNLDB fp store non-local double

FPSTNLI32 fp store non-local int32

Table A.56: T800 Floating point Load/Store operations

Instruction Comments

FPENTRY
oating point unit entry

FPREV
oating point reverse

FPDUP
oating point duplicate

Table A.57: T800 Floating point general operations

Instruction Comments

FPURN set rounding mode to round nearest

FPURZ set rounding mode to round zero

FPURP set rounding mode to round positive

FPURM set rounding mode to round minus

Table A.58: T800 Floating point rounding operations

Instruction Comments

FPCHKERROR check fp error

FPTESTERROR test fp error false and clear

FPUSETERROR set fp error

FPUCLEARERROR clear fp error

Table A.59: T800 Floating point error operations

136

Instruction Comments

FPGT fp greater than

FPEQ fp equality

FPORDERED fp orderability

FPNAN fp not a number

FPNOTFINITE fp not �nite

FPUCHKI32 check in range of type int32

FPUCHKI64 check in range of type int64

Table A.60: T800 Floating point comparison operations

Instruction Comments

FPUR32TOR64 real 32 to real 64

FPUR64TOR32 real 64 to real 32

FPRTOI32 real to int 32

FPI32TOR32 int 32 to real 32

FPI32TOR64 int 32 to real 64

FPB32TOR64 bit 32 to real 64

FPUNOROUND real 64 to real 32, no round

FPINT round to
oating integer

Table A.61: T800 Floating point conversion operations

Instruction Comments

FPADD
oating-point add

FPSUB
oating-point subtract

FPMUL
oating-point multiply

FPDIV
oating-point divide

FPUABS
oating-point absolute

FPREMFIRST
oating-point remainder �rst step

FPREMSTEP
oating-point remainder iteration

FPUSQRTFIRST
oating-point square root �rst step

FPUSQRTSTEP
oating-point square root step

FPUSQRTLAST
oating-point square root end

FPUEXPINC32 multiply by 2 EE 32

FPUEXPDEC32 divide by 2 EE 32

FPUMULBY2 multiply by 2

FPUDIVBY2 divide by 2

Table A.62: T800 Floating point arithmetic operations

137

A.7 THOR instruction set summary

Instruction Operands Comments

ADD expr add integer

ADDF expr add
oat

ADDI expr add immediate

ADDU expr add unsigned

DIV expr divide integer

DIVF expr divide
oat

MOD expr modulus

MUL expr multiply integer

MULF expr multiply
oat

MULI expr multiply immediatly

MULL expr multiply long

MULU expr multiply unsigned

SUB expr subtract

SBR expr subtract reversed

SUBF expr subtract
oat

SBRF expr subtract reversed
oat

SUBU expr subtract unsigned

SBRU expr subtract reversed unsigned

ABS convert to absolute value

INT convert
oat to integer

FLT convert signed integer to
oat

Table A.63: THOR Arithmetic instructions

Instruction Operands Comments

PSH expr push value onto stack

PSHI expr push immediate

PSHR reg[,expr] push register

PSHX expr push indexed

POP expr pop value from stack

POPR reg[,expr] pop register

POPX expr pop indirect

LDX expr load indirect

Table A.64: THOR Move instructions

138

Instruction Operands Comments

AND expr logical and

ANDI expr logical and immediate

FBC �rst bit changed

NOT logical not

OR expr logical or

ORI expr logical or immediate

XOR expr logical exclusive or

Table A.65: THOR Logical instructions

Instruction Operands Comments

SL expr shift left

SLD expr shift left dynamic

SR expr shift right

SRA expr shift right arithmetic

SRAD expr shift right arithmetic dynamic

SRD expr shift right dynamic

SRDL expr shift right dynamic long

Table A.66: THOR Shift instructions

Instruction Operands Comments

CLL expr compare lower limit

CMP expr compare

CMPF expr compare
oat

CMPU expr compare unsigned

CUL expr compare upper limit

Table A.67: THOR Compare instructions

139

Instruction Operands Comments

CALL expr call subprogram

CALLP expr call protected

CLRF expr clear
ags

FLUSH
ush cache

HLT enter halt mode

JR expr jump relative

JREQ expr jump relative on equal

JRGE expr jump relative on greater than or equal

JRGT expr jump relative on greater than

JRLE expr jump relative on less than or equal

JRLT expr jump relative on less than

JRNE expr jump relative on not equal

JRX expr jump relative indirect

MTOS expr move top of stack

NOP no operation

RET return

RETU return to user mode

SETF expr set
ags

TEST expr test signed integer

RAISE raise exception

TREG change TCB

TA task accept

TAE task accept end

TAS task accept start

TCA task conditional accept

TCE expr task conditional entrycall

TDLY task delay

TE expr task entrycall

TEE task entrycall end

TPTR task pointer

TSCH task schedule

Table A.68: THOR Control instructions

140

Appendix B

Processor Context Switch

Figure B.1 describes the Process Control Block structure. The PCB:s search may be

accomplished by the following (formal) scheme: (Figures within curly brackets denotes

number of times each instruction are executed for a complete search).

; PCB search (generic) , exits with task identification

; number (T.ID) in r4, task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

move PCB0PTR,r2 address of first PCB in r2 {1}

move r2,r5 ptr to hi priority task {1}

move 10,r1 number of PCB:s to search {1}

move 0,r3 initial priority (lowest) {1}

move 0,r4 initial PCB ID (undefined) {1}

.L1: cmp (r2)T.PRI,r3 check PCB priority {10}

jmple .L2 branch if previous is greater {10}

move r2)T.PRI,r3 substitute new priority {1}

move (r2)T.ID,r4 remember task ID {1}

move r2,r5 remember PCB ptr {1}

.L2: move (r2)T.NEXT,r2 get next PCB pointer {10}

sub 1,r1 exit ... {10}

cmp 0,r1 .. when .. {10}

jmpne .L1 .. all PCB:s searched {9}

T.NEXT

...

T.PRI

T.ID

Figure B.1: Process Control Block structure

In the following paragraphs, the generic code will be translated to assembly code for

the respective processors. The total amount of required machine cycles used to perform the

141

PCB search will be approximated. Register names are generalised to increase readability,

thus the register naming conventions proposed by each manufacturer are not always used.

It is assumed that "r0" is a "hard-wired-zero" register. It is further assumed that only

one substitution of PCB is needed. Figures within curly brackets denotes the assumed

number of processor cycles with respect to possible pipeline penalties. The code is not

tested and not aimed for practical use.

The number of clock cycles required for storing/restoring processor context is estimated

by considering a multiple store as well as a multiple load sequence. Since we are interested

in the architectures impact only, we assume no wait state penalty from slow memory

devices.

B.1 MC88100

B.1.1 PCB search

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

lda.h r2,r0,PCB0PTR address of first PCB in r2 {1}

add r5,r0,r2 ptr to hi priority task {1}

add r1,r0,10 number of PCB:s to search {1}

add r3,r0,0 initial priority (lowest) {1}

add r4,r0,0 initial PCB ID (undefined) {1}

.L1: ld.b r6,r2,T.PRI priority to r6 (memory access) {40}

cmp r7,r3,r6 compare priorities, result in r7 {10}

bb1 HS.BIT,r7,.L2 branch if previous is greater {19}

add r3,r0,r6 substitute new priority {1}

lda.h r4,r2,T.ID remember task ID (memory access) {4}

add r5,r0,r5 remember PCB ptr {1}

.L2: lda.h r2,r2,T.NEXT get next PCB pointer (memory access) {40}

sub r1,r1,1 exit ... {10}

bcnd gt0,r1,.L1 .. when all PCB:s searched {18}

B.1.2 Register Store

Figure B.2 outlines pipe-line occupation during multiple store. cycles 4-6 are memory

data accesses that prevents instruction fetch, therefore MC88100 will �nish 3 stores within

every sixth cycle and so storing 31 registers will use (31*6/3) 62 cycles.

142

Register Restore

From �gure B.3 we conclude: cycles 4-6 are memory data accesses that prevents in-

struction fetch, therefore MC88100 will �nish 3 loads within every tenth cycle. During

the last cycle, a prefetch of next instruction is possible, thus, loading 31 registers will be

accomplished within ((31*9)/3)+1 cycles.

B.2 I80960KB

B.2.1 PCB search

Assuming Normal case execution time. Register "moves" are word sized.

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

lda PCB0PTR,r2 address of first PCB in r2 {1}

move r2,r5 ptr to hi priority task {1}

move 10,r1 number of PCB:s to search {1}

move 0,r3 initial priority (lowest) {1}

move 0,r4 initial PCB ID (undefined) {1}

.L1: ldl T.PRI(r2),r6 (memory access) {40}

cmpibge has to wait for r6 ...

cmpibge r3,r6,.L2 branch if previous is greater {30}

move r6,r3 substitute new priority {1}

ldl T.ID(r2),r4 remember task ID (memory access) {2}

move r2,r5 remember PCB ptr {1}

.L2: ldl T.NEXT(r2),r2 get next PCB pointer (memory access) {20}

subo r1,1,r1 exit ... {10}

cmpobg r1,r0,.L1 .. when all PCB:s searched {27}

B.2.2 Register Store

Cycles 4-6 (�gure B.4) are memory data accesses that prevents instruction fetch, therefore

I80960KB will �nish 3 stores within every sixth cycle and so storing 80 registers will use

(80*6)/3) 160 cycles.

B.2.3 Register Restore

Cycles 4-9 are memory data accesses that prevents instruction fetch, therefore I80960 will

�nish 3 loads within every tenth cycle. During the last cycle, a prefetch of next instruction

143

is possible, thus, loading 80 registers will be accomplished within ((79*9)/3)+1 cycles.

144

B.3 Am29000

B.3.1 PCB search

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

const r2,(PCB0PTR & 0xFFFF) {1}

consth r2,((PCB0PTR >> 16) & 0xFFFF) {1}

; load immediate into r2 done

add r5,r2,0 ptr to hi priority task {1}

const r1,10 number of PCB:s to search {1}

const r3,0 initial priority (lowest) {1}

const r4,0 initial PCB ID (undefined) {1}

.L1: add r7,r2,T.PRI compute address of priority in r7 {10}

feedforward, no penality for r7

load 0,CNTL,r8,r7 get priority into r8(memory access) {30}

wait for r8

cplt r9,r3,r8 compute boolean into r9 {10}

jmpf r9,.L2 branch if previous greater {2}

nop always executed .. {10}

add r3,r8,0 remember new priority {1}

add r7,r2,T.ID compute address of new task ID into r7 {1}

load 0,CNTL,r4,r7 remember task ID (memory access) {1}

add r5,r2,0 remember PCB ptr {1}

.L2: add r7,r2,T.NEXT compute address of next PCB ptr {10}

load 0,CNTL,r2,r7 get next PCB pointer (memory access) {10}

sub r1,r1,1 one more ... {1}

cpeq r9,r1,0 compute boolean into r9 {10}

jmpf r9,.L1 continue until done {20}

nop always executed {10}

....

....

B.3.2 Register Store/Restore

The "Load Multiple" and "Store Multiple" instructions allows the entire register �le to

be restored or saved in a single instruction. Thus loading as well as storing (192 registers)

will be accomplished within 4+191 cycles.

145

B.4 MIPS R2000

B.4.1 PCB search

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

lui r2,(PCB0PTR >> 16) {1}

ori r2,r2,(PCB0PTR & 0x FFFF) {1}

; load immediate into r2 done

or r5,r0,r2 copy into r5 {1}

ori r1,r0,9 number of PCB:s-1 to search {1}

ori r3,r0,0 initial priority (lowest) {1}

ori r4,r0,0 initial PCB ID (undefined) {1}

.L1: lb r8,T.PRI(r2) priority (memory access) {10}

nop delay slot {10}

sltu r9,r3,r8 compare priorities, result in r9 {10}

nop delay slot {10}

blez r9,.L2 branch if previous is greater {10}

nop delay slot {10}

ori r3,r8,0 substitute new priority {1}

lb r4,T.ID(r2) remember task ID (memory access) {1}

ori r5,r2,0 remember PCB ptr {1}

.L2: lhu r6,T.NEXT(r2) PCB pointer(high) (memory access) {10}

lh r7,T.NEXT+2(r2) PCB pointer(low) (memory access) {10}

addi r1,r1,-1 {10}

or r2,r6,r7 move result into r2 {10}

sltu r9,r1,r0 compute bool into r9 {10}

nop delay slot {10}

blez r9,.L1 exit when all PCB:s searched {9}

nop (delayed branch) {9}

....

....

B.4.2 Register Store/Restore

Pipeline stalls while data is read from memory, or stored in memory (see �gure B.6)

since this prevents the processor from fetching the next instruction. Thus R2000 loads (or

stores) 3 registers within 6 cycles which makes a total of 31*6/3 cycles.

146

B.5 SPARC

B.5.1 PCB search

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

sethi (PCB0PTR >> 10),r2

add r2,(PCBPTR & 0x3FF),r2

; load immediate into r2 done ...

add r2,0,r5 ptr to hi priority task {1}

add r0,10,r1 number of PCB:s to search {1}

add r0,0,r3 initial priority (lowest) {1}

add r0,0,r4 initial PCB ID (undefined) {1}

.L1: ldub r2+T.PRI,r6 r6 temp hold, priority (memory access) {1}

sub r6,r3,r7 compare priorities, result in r7 {1}

ble,a .L2 branch if previous is greater {1}

add r0,r6,r3 substitute new priority {1}

ldub r2+T.ID,r4 remember task ID (memory access) {1}

add r0,r2,r5 remember PCB ptr {1}

.L2: ld r2+T.NEXT,r2 get next PCB pointer (memory access) {1}

sub r1,1,r1 exit ... {1}

bne,a .L1 .. when all PCB:s searched {1}

....

....

B.5.2 Register Store/Restore

The SPARC pipeline is similar to the R2000 and the same pipeline stalls occurs (�gure

B.6. Thus loading as well as storing the entire SPARC register �le will use 136*6/3 cycles.

B.6 T800 PCB search

For the T800 there is no need for a software process scheduler since there is hardware sup-

port for this in the processor. The T800 can run several processes concurrently. Processes

may be assigned either high or low priority and there may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent

processes to be executed together, sharing the processor time. At any time, a concurrent

process may be:

147

� Active

{ Being executed

{ On a list waiting to be executed

� Inactive

{ Ready to input

{ Ready to output

{ Waiting until a speci�ed time

The scheduler operates in such a way that inactive processes do not consume any

processor time. It allocates a portion of the processors time to each process in turn.

Active processes waiting to be executed are held in two linked lists of process workspace,

one of high priority processes and one of low priority processes. Each list is implemented

using two registers, one of which points to the �rst process in the list, the other to the

last.

Each process runs until it has completed its action, but is descheduled whilst waiting

for communication from another process or transputer, or for a time to complete. In order

for several processes to operate in parallel, a low priority process is only permitted to run

for a maximum of two time slices before it is forcibly descheduled at the next descheduling

point. The time slice period is approximately 1 ms.

A process can only be descheduled on certain instructions, known as descheduling

points. As a result, en expression evaluation can be guarenteed to execute without the

process being timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process

workspace and the next process taken from the list. Process scheduling pointers are

updated by instructions which cause scheduling operations, and should not be altered

directly. Actual process switch times are less than 1 micro second, as little state needs to

be saved and its not necessary to save the evaluation stack on rescheduling.

The T800 supports two levels of priority. Priority 1 (low priority) processes are ex-

ecuted whenever there are no active priority 0 (high priority) processes. High priority

processes are expected to execute for a short time. If one or more high priority processes

are able to proceed, then one is selected and runs until it has to wait for a communication,

a timer input or it completes processing. If no process at high priority is able to proceed,

but one or more processes at low priority are able to proceed, then one is selected. If

there are n low priority processes, then the maximum latency from the time at which a

low priority process becomes active to the time when it starts processing is 2n-2 timeslice

periods. It is then able to execute for between one and two timeslice periods, less any time

taken by high priority processes. This assumes that no process monopolises the transputer

time; that is: has a distribution of descheduling points.

148

B.7 THOR PCB search

THOR , like the T800, facilitates hardware support for task switching. There are 6

di�erent "Signal In" pins (SI0-SI5) which functionality equals ordinary interrupt signal

lines. There are further four di�erent SIGNAL OUT (SO0-SO3). Each SIGNAL IN is

corresponding to a speci�c task, so that, when a SIGNAL IN occurs the hardware will

ensure that the corresponding task will be scheduled next. This mechanism provides for a

very rapid response to external events, and indeed supports multiprocessor con�gurations

where di�erent tasks may run in separate processors and the synchronisation between

these tasks is accomplished throug the SIGNAL OUT and SIGNAL IN pins.

Fast software taskscheduling is accomplished by hardware. The chip include registers

aimed to hold task related data i.e PCB. The mechanism insures that the highest priority

process will be scheduled next. Priorities range between 1-32. It further insures that a

delayed task receives immediate attention att the end of the delay. THOR, thus, do not

need a software kernel to perform process scheduling.

Due to the stack architecture of THOR there are very little context to be saved and

so it is reasonably to assume a process switch time below 1 microsecond.

149

Pipeline occupation cycle by cycle

fetch 1 fetch 2 fetch 3 stall stall stall fetch 4

dec 1 dec 2 dec 3

exe 1 exe 2 exe 3

addr1 addr2 addr3

data1 data2 data3

Figure B.2: MC88100 multiple store sequence

Pipeline occupation cycle by cycle

fetch 1 fetch 2 fetch 3 stall stall stall stall stall stall fetch 4

dec 1 dec 2 dec 3

exe 1 exe 2 exe 3

addr1 addr2 addr3

data1 data2 data3

writ1 writ2 writ3

Figure B.3: MC88100 multiple load sequence

Pipeline occupation cycle by cycle

fetch 1 fetch 2 fetch 3 stall stall stall fetch 4

dec 1 dec 2 dec 3

exe 1 exe 2 exe 3

addr1 addr2 addr3

data1 data2 data3

Figure B.4: I80960KB multiple store sequence

Pipeline occupation cycle by cycle

fetch 1 fetch 2 fetch3 stall stall stall stall stall stall fetch 4

dec 1 dec 2 dec 3

e�add1 e�add2 e�add3

addr1 addr2 addr3

data1 data2 data3

writ1 writ2 writ3

Figure B.5: I80960KB multiple load sequence

Pipeline occupation cycle by cycle

fetch 1 fetch 2 fetch 3 stall stall stall fetch 4

dec 1 dec 2 dec 3

exe 1 exe 2 exe 3

write1 write2 write3

Figure B.6: MIPS R2000 multiple load (store) sequence

150

Appendix C

Schematics

151

Figure C.1: T800 HDO-con�guration

152

Figure C.2: THOR HDO-con�guration

153

Figure C.3: SPARC HDO-con�guration

154

Figure C.4: T800 and SPARC EDAC

155

Figure C.5: T800,THOR and SPARC memory

156

Figure C.6: T800 HSO-con�guration

157

Figure C.7: THOR HSO-con�guration

158

Figure C.8: SPARC HSO-con�guration

159

