
Abstract 

PLAUTZ, MICHAEL BRIAN.  Evaluating the Computational Requirements of Efficient 
MPPT Algorithms and Relaxed Digital Control Methods on Embedded Systems.  (Under the 
direction of Dr. Alexander Dean). 

 This thesis takes a look at two different methods related to increasing energy 

efficiency on embedded systems, and evaluates the computational requirements of each 

method on a low-end microcontroller (MCU).  The first method looks at different Maximum 

Power Point Tracking (MPPT) algorithms used to track the maximum power point for solar 

PV panels, and implements them using an MCU controlled boost converter.  The methods 

explored are both an open-loop and closed-loop Perturb & Observe (P&O), Incremental 

Conductance (InCond), and Current Sweep.  Each algorithm was implemented using 

floating-point and integer arithmetic.  It was found that since low-end MCUs typically lack 

hardware support for floating-point arithmetic, each algorithm ran in significantly less clock 

cycles using integer arithmetic than using floating-point arithmetic.  Also each integer MPPT 

algorithm performed as well or better than their floating-point equivalent.  This study also 

examines the relationship between computational demand and algorithm efficiency. 

 The second method related to increased energy efficiency attempts to make a bridge 

between real-time scheduling theory, digital control theory, and power electronics theory.  

By relaxing some of the constraints of digital control theory, this study looks at reducing the 

computational demand incurred by using an MCU to run a digital compensator control loop 

for a buck converter.  Traditionally, a digital compensator samples at a frequency equivalent 

to the switching frequency of the buck or boost converter.  This thesis builds on the 

assumption that the load of buck converter will spend a majority of the time in steady-state, 

and in steady-state, the line will not have to be sampled as frequently.  The effect of lowering 

the sampling rate for a buck converter is explored in great mathematical detail.  Several 

methods for running the control loop at both a lower and a higher frequency depending on 

transient behavior of the load are proposed and discussed.  This thesis also explores using 

real-time scheduling theory to integrate the digital compensator into a higher-end MCU 

rather than using a dedicated MCU for DC-DC load line regulation. 
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1. Introduction 

1.1 Significance of the Study 
Today, there are a plethora of reasons to conserve energy.  These reasons may range from 

scarcity of non-renewable energy to scaling down high costs of energy.  A common thread 

among all of these reasons is the fact that no matter what the source of energy is, there as a 

cost associated with using it.  As a result, a tremendous amount of research is being 

conducted in the realm of energy use reduction.  Because cost is a factor in just about every 

area of business, the idea is that reducing energy use will reduce costs. 

This study targets the relationship between cost ‒ evaluated in dollars, computation power, 

etc. ‒ and measures to reduce energy use, or make energy use more efficient.  The focus of 

this study is how this applies to embedded systems and microcontrollers, which represent a 

large portion of all computers in the world today.  Although an individual microcontroller 

may only consume on the order of milliwatts of energy, the high abundance of 

microcontrollers in the world warrants the need for energy efficiency with each 

microcontroller.  Technology implemented on a small device will have huge impact as it is 

then implemented on a large scale.   

Specifically, two areas of energy efficiency are explored in this study: (1) Using an algorithm 

to achieve the highest power output of a photovoltaic (PV) panel as the input power source to 

an embedded system and (2) Using reduced computational digital control to achieve adequate 

and correct performance of a buck converter powering peripheral devices.  Knowing and 

improving the computational requirements of such algorithms gives advantages in two ways.  

This means that either (1) a slower, cheaper microcontroller may be used to achieve similar 

performance compared to something more expensive, or (2) these computations may be 

performed as periodic tasks on the same microcontroller controlling the peripherals.  Under 

the latter condition, the need to have a separate device to control a buck or boost converter is 

eliminated. 



 
 
2 

 

1.2 Motivation 
Since the lifetime of an embedded system is typically several years, the consideration for 

having a renewable energy source is an excellent choice.  Typical embedded systems that use 

non-renewable energy are powered either by batteries or by AC wall power, so two major 

tradeoffs with using renewable energy such as a solar PV panel are (1) cost of a PV panel and 

(2) availability of input power.  Where AC wall power is generally constantly available, and 

batteries occasionally need to be charged or replaced, power from PV panels is not always 

available due to the inevitable absence of light.  This can be compensated by storing the solar 

generated energy in a rechargeable battery.  However, two additional considerations arise 

from doing so: (1) biasing the load to get the maximum power out of the PV panel, and (2) 

boosting or compensating the PV panel’s voltage to be sufficient to charge the battery.  If the 

cost of taking both of these factors into consideration is reduced, then the choice of having a 

PV panel as a power source, despite a higher initial cost, can lead to substantial savings in 

cost and energy. 

In a related concept, both cost and use of energy are important factors to control and be 

aware of in an embedded system.  When determining an appropriate method of DC-DC load 

line regulation in an embedded system, two common approaches typically arise: the use of a 

linear regulator or the use of a switching converter.  Although linear regulators are cheap 

compared to switching converters, they do not come close to matching the efficiency of a 

switching converter.  Since switching converters are much more efficient, their higher cost 

can be justified by the amount of wasted energy they prevent and in turn the amount of cost 

saved.  A large portion of the cost of a switching converter is the control mechanism used to 

regulate DC-DC voltage conversion [1].  A target of research for years has been on reducing 

the cost of the control mechanism, and as it is lowered, switching converters become a more 

feasible and obvious choice for DC-DC power regulation, especially for embedded systems. 

1.3 Background 
In both of the areas that this study targets, control and control theory is at the heart of each 

concept.  Control, typically meaning feedback control, has traditionally been implemented in 

analog circuitry.  The choice of using analog circuitry has been because of its availability and 
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relative low cost to alternative options.  As a result, there are many control systems that exist 

in analog circuitry, as well as papers and research that supports using analog methods to 

perform feedback control.  In the recent years alternative methods ‒ such as digital control ‒ 

have begun to be as cheap or cheaper than analog methods.  As semiconductors and 

computer technology have improved, it has become much more feasible to use digital control 

in place of analog control.  Aside from cost, digital control is (1) flexible and scalable, easy 

to change, (2) less sensitive to aging, and (3) less sensitive to noise.  Plausible downsides to 

using digital control over analog control include (1) round-off and computational error, and 

(2) delay in computation, and (3) more complexity in design [6].  However, even taking these 

three downsides into account, this study focuses on just how different the performance is 

with these are all taken into account.  
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Figure 1. Schematic of Buck Converter Used in this Study 
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Figure 2. Schematic of Boost Converter Used in this Study 
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For Switched Mode Power Supplies (SMPS) switching converters, analog control feedback 

has traditionally been used, but digital control has made a presence in the last decade.  Using 

digital control is highly justifiable especially for SMPS because of the need for a Pulse Width 

Modulation (PWM) signal to control the Duty Cycle (D) for the transistor switches.  

Although a PWM signal can easily be generated from analog circuitry, most modern 

microcontrollers have the capability to generate a PWM signal without incurring a high 

computational cost.  Instead of using operational amplifiers and linear components to build a 

compensator, a microcontroller simply must use an A/D converter to quantize the output 

voltage, perform a computation via a difference equation, and update a register that 

automatically takes care of the PWM signal.  Therefore, the complexity becomes manifest by 

(1) choosing a fast enough microprocessor with an adequate A/D converter, and (2) 

designing a digital compensator that will allow the SMPS to meet specifications under 

varying conditions. 

 

 

Figure 3. Power Curve of a Typical Large PV Panel [2] 

 

For a solar PV panel, getting the maximum output power (i.e. maximum solar efficiency) is 

achieved by biasing the output voltage and current of the PV panel.  This is normally 

accomplished by biasing the amount of input impedance that the PV panel sees as a load.  
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The output power then becomes a function of the output voltage, according to the power-

voltage curve intrinsic to a solar PV panel.  When connecting a buck or a boost converter to a 

PV panel, the input impedance becomes a function of many factors, including load resistance 

and duty cycle.  If all other things are assumed constant, biasing the input impedance of the 

switching converter can be done simply by adjusting the duty cycle.  Because of the nature of 

the power-voltage curve of a PV panel (see Figure 3), there is a maximum power point 

achieved at a particular duty cycle value, and Maximum Power Point Tracking (MPPT) is a 

method used to control the duty cycle to attain the maximum power.  These algorithms have 

been proven to be effective, and have traditionally been implemented in combinations of 

analog circuitry and digital logic.  For similar reasons to those of an SMPS, microcontrollers 

now pose as a viable option because of their ability to perform calculations. 

A method to achieve optimal efficiency of energy use is by regulating the voltage through 

Aggressive Voltage Scaling (AVS).  This involves using an SMPS to regulate an output 

voltage.  The application of AVS to microcontrollers within embedded systems is manifest 

by having a microcontroller sample an output voltage and then use a digital compensator in 

software to adjust the duty cycle accordingly.  The digital compensator is run periodically in 

a control loop that can either match the switching frequency of the transistors in the SMPS or 

it can run slower to conserve computational power.  What this allows for is two things; either 

(1) the output voltage can be reduced to the minimum allowed voltage required by the load 

that is being powered, with the control loop running as fast as possible to ensure that the 

output voltage never dips below this threshold, or (2) the control loop can be run slower to 

conserve computational power and the operational voltage is raised a fair amount above the 

load’s minimum threshold so that the digital controller will have time to respond and regulate 

the voltage if it should drop due to some disturbance [4].  This is based on the fact that with a 

time varying load, voltage will naturally drop if current consumed by the load increases.  

This also applies to keeping output voltage below a load’s maximum voltage threshold. 

What makes AVS aggressive is its ability to use a single microcontroller to handle multiple 

voltage domains within a single system.  For example, with a single power supply, such as a 
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battery or a PV panel, four voltage domains may be managed, where one domain is boosted 

above the input voltage, two may be bucked down below the input voltage, and one may be 

bucked to one of the same voltages as another domain, but have tighter constraints and 

therefore a more sophisticated digital compensator.  Using a single microcontroller is a 

different approach to the more prevalent method of giving each individual SMPS its own 

dedicated compensator.  While using a single microcontroller to regulate multiple power 

domains, software timing constraints must also be met because each domain will have its 

own dedicated digital compensator running at a different frequency depending on the 

constrains for that domain.  These software timing constraints can be realized by use of a 

Real-Time Operating System (RTOS).  Using an RTOS to achieve optimal performance, it is 

important to know the computational demand a digital compensator will have, which is 

dependent upon the system characteristics and the constraints that must be met for the load.  

This study focuses on determining the computational demand for regulating input power 

from a PV panel or output voltage for a load based on different constraints. 

1.4 Related Work 

1.4.1 Use of Microcontrollers for Digital Control in Power Electronics [3] 
The advance has been made in the last decade to go from using analog circuitry to control an 

SMPS to using a digital compensator.  This paper proposes implementing a digital 

compensator specifically on a microcontroller (MCU) – as opposed to strict digital logic – 

and explores some of the limitations and factors that must be overcome by modeling 

traditional analog control theory on a digital scale.  A few of the factors that are explored are 

(1) MCU clock speed, (2) ADC resolution, (3) ADC conversion time, (4) PWM resolution, 

and (5) control loop frequency.  Any reduction is control loop frequency relative to the 

switching frequency discussed in this paper has more to do with the limitations of the MCU 

than it does with intentionally lowering the control loop frequency; the intention was to use 

digital control to closely mimic analog control.  The conclusions of this paper are that control 

implemented on an MCU will (1) ease the design process, (2) allow the control to be 

scalable, and (3) reduce the amount of passive components required for control.   
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1.4.2 The Relationship Between Control Loop Frequency and Operating Voltage [4] 
In a recent paper, Juneja et al. explored the real-time characteristics of digital control for 

SMPS implemented in software on MCUs.  The paper involved modeling the behavior of a 

particular buck converter, verifying that model by comparing simulation to actual output, and 

designing a digital compensator to regulate the output.  The paper aims to explore practical 

software implementations of digital compensators on an embedded system.  Therefore, 

different frequencies (other than the SMPS switching frequency) for the control task are 

explored, and the effect that varying the frequency has on the closed-loop response is 

analyzed.  This behavior is embodied in Figure 4.  

 

 
Figure 4. Impact of Lowering Task Frequency on Transient Response.  The black curve displays the open-loop 
response, while each colored curve shows the closed-loop response at different task frequencies.  The voltage margin, 
Vmargin, is defined by how far the voltage falls before compensation. [4] 
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Figure 5. The Relationship Between Vmargin and ftask at a 5 V Operating Point. [4] 

 

 

It is recognized that many loads are going to have a target minimum and maximum operation 

range, Vmax and Vmin, and operation of the load will have to stay within these limits.  The 

proposed measure of compensation then becomes raising the load’s operating voltage by a 

defined voltage margin, Vmargin, which will allow the voltage to fall further with lower task 

frequencies when loading, yet keep the operating voltage above Vmin.  As long as the voltage 

margin does not push the load’s operating voltage above Vmax, the task frequency can be 

lowered with a growing Vmargin.  Similarly, the load’s operating voltage can be reduced by 

Vmargin closer to Vmin so that it will not exceed Vmax when unloading.  Figure 5 displays the 

relationship between the control loop task frequency and Vmargin. 

1.4.3 MPPT Algorithms for Solar PV Panels [2] 
Morales [2] did an in depth survey and study of the efficiency of different MPPT algorithms 

for PV panels.  The survey started by identifying various algorithms that have been the 

subject of research for years prior.  The survey resulted in identifying three particular 

algorithms that were suitable for medium to large PV panels.  The first two are called “hill-

climbing” methods, and include Perturb and Observe (P&O), and Incremental Conductance 

(InCond).  The third identified method was Fuzzy Logic Control (FLC).  Several other 
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algorithms were proposed as well, including Neural Networks, Constant Fractional 

Reference, and Current Sweep. 

To be able to test and compare the efficiency of each MPPT algorithm, a simplified 

theoretical model was constructed.  This simulation was intended to model actual sunlight 

conditions, which include increases and decreases in both solar irradiation and temperature.  

To compare additional details of each of the algorithms’ performance, factors about the 

simulation were varied between runs, for example, the irradiation gradient over time. 

The findings were that efficiency must be measured on more than just a simple percentage.  

Efficiency of an MPPT algorithm is also characterized by how well and how quickly the 

algorithm responds to changes in temperature and irradiation.  As far as each algorithm’s 

efficiency, the two that performed the best were the P&O and InCond methods.  The FLC 

algorithm performed well, but did not outperform either of the more simple “hill-climbing” 

methods, P&O or InCond, so it was concluded that the extra cost in performance did not 

justify the complexity of logic.  Using a modified P&O algorithm that included extra rules 

was determined to be better than the FLC control.  The simulations indicated that both hill 

climbing algorithms were able to achieve around 99% efficiency. 

1.5 Outline of the Rest of the Document 
The rest of the document will proceed in this order.  Chapter 2 discusses the theoretical 

impact of relaxing some of the constraints of digital control theory targeting reduced 

computational demand.  Chapter 3 discusses the computational impact of using various 

MPPT algorithms to achieve maximum output power of a PV panel.  Chapter 4 discusses the 

computational impact of different methods of relaxed digital control.  Chapter 5 is a 

collaboration of results and a final discussion on the significance of these findings. 
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2. Relaxing Constraints of Digital Control Theory 

2.1 The Nyquist Sampling Theorem 
When adding a sampler (analog-to-digital converter) and a signal reconstructor (digital-to-

analog converter) to an analog line, the Nyquist Sampling Theorem states that a sampled 

signal can be reconstructed perfectly if it is sampled at a rate that is twice the highest 

frequency present in the sampled signal [5].  This is to say that if the highest frequency in a 

signal is known, the sample rate should be chosen to be at least double that frequency to 

prevent signal corruption on the output side.  This is a necessary constraint for digital signal 

processing and typically for digital control.  However, when using digital control to control 

an SMPS, there is no interest in recreating an output signal.  The only necessity is that a 

PWM signal is generated to control the switching transistors of the SMPS.  This provides 

justification for exploring the impact of reducing the sampling rate below what the Nyquist 

Sampling Theorem mandates.  

2.2 Slowing Down the Sampling Rate 
One of the limitations of a microcontroller is how fast it can run.  Ideally, a system could 

receive input, process it, and send it out with no delay, which is a characteristic of an analog 

system.  However, since a microcontroller is being used, what is being gained in scalability is 

being lost in instantaneity, and the speed at which data is processed must be considered.  The 

sample rate can be chosen according to the Nyquist Sampling Theorem, but several 

constraints may be relaxed because the signal is not being sampled with the intent of 

reconstruction.  Since the SMPS being used in this case is a DC-DC converter, the first 

assumption that can be made is that the signal is primarily a DC signal, and higher 

frequencies can be ignored and are not the focus of control.  The following figures show the 

characterization of typical DC loads. 
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Figure 6a. Voltage and Current Response to a Servomotor making a full turn. 

 
 
 

 
Figure 6b. Voltage and Current Response to a Step Load of 10Ω 

 
Figure 6.  Characterization of Typical DC Loads.  Both graphs are voltage response to a sudden increase in load 
current draw.  The top curve for each represnets the voltage, and the bottom curve represents the current. 

 

DC loads tend to be characterized by sudden changes in voltage due to current consumption 

shooting up or down.  These sudden changes in voltage are the primary focus of control, so 

for this reason, the sample rate must be high enough to prevent the voltage from falling too 

low or raising too high.  Traditionally, the sample rate of the output voltage is set to the 

switching frequency of the converter.  There is little justification for it to be any higher than 

the switching frequency, because since the PWM signal is purely digital, it can only take a 

single value per period.  For this reason, the maximum sampling rate need not be any higher 
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than the switching frequency, so the each new value of D is based on each new sample of the 

output voltage. 

If the digital compensator is implemented in a microcontroller as a periodic task, the 

sampling rate of the output signal determines the task frequency. Higher task frequency on a 

microcontroller has one of two implications: (1) higher utilization on a processor running 

many periodic tasks, or (2) less time in sleep mode for a processor trying to conserve power.  

In either of these cases, there is value gained in lowering the tasking frequency, and 

consequently lowering the sampling frequency.  If the performance of the digital 

compensator can still be favorable with a reduced sampling rate, then relaxing these 

constrains becomes beneficial. 

Referring to Figure 6a and Figure 6b, the output voltage drops when the device turns “on.”  

The goal of the compensator is to keep the output voltage constant regardless of how often 

the device turns on or off.  As described by [4], how much the voltage falls before being 

compensated and brought back up is related to how fast it is being compensated.  Therefore, 

one method for setting the sampling rate of a DC-DC converter is based on the maximum and 

minimum allowed voltages for a device around the reference operating voltage. 

Another constraint that can be relaxed has to do with the fact that the signals are primarily 

DC signals.  A majority of the time, a signal will be in steady-state, held at a certain voltage.  

Only less frequently does the current change dramatically.  For this reason, it is reasonable to 

change the sample rate dynamically based on being in steady-state or oscillation.  While the 

signal is primarily in steady-state mode, the sample rate can be much lower, but as soon as 

the voltage begins to drop or rise due to change in current, the signal can switch to 

emergency mode and the sample rate can increase to quickly compensate the signal back to 

steady-state mode.  Being able to switch between steady-state mode and emergency mode 

allows for the control task utilization to only infrequently be high. 
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2.3 Impact of Slowing Down the Sampling Rate 
Appendix B details how to construct a linear model of a DC-DC converter plant for an 

otherwise nonlinear system.  Using the linear model around a quiescent operating point, the 

system can be treated as a plant that can be controlled using traditional feedback closed 

control loops.  Figure 7 shows the linearized AC equivalent small-signal model of the DC-

DC converter.  Figure 8 shows the block diagram of the DC-DC converter as a linear system, 

and Eqns (1) and (2) show the transfer functions of the resulting system. 

 

 

Figure 7. Small Signal AC Equivalent Model of Buck Converter 

 

 

Figure 8. System Block Diagram of Buck Converter 

 

 



 
 

15 
 

𝐺𝑣𝑑(𝑠) =
0.000282𝑠 + 10

4.9 × 10−9𝑠2 + 5.064 × 10−5𝑠 + 1
 

 

 
(1) 

𝐺(𝑠) = �
1 − 𝑒−𝑠𝑡

𝑠
� 𝑒−3.5×10−6𝑠 0.000282𝑠 + 10

4.9 × 10−9𝑠2 + 5.064 × 10−5𝑠 + 1
 

 

 
(2) 

This system, typical of a common power electronics system, is unlike traditional closed-loop 

feedback systems because the input to the control loop is actually just a reference voltage, 

and the actual input voltage to the system that is either being boosted or bucked is treated as a 

disturbance near the output of the system.  This is also true of the load, which fluctuations in 

both the load and the input voltage are treated as disturbances that need to be compensated 

via changes in the duty cycle.  Note the difference between the control-to-output transfer 

function, Gvd(s), and the plant transfer function, G(s), which includes a zero-order hold 

(ZOH), the delay imposed by using a microcontroller, as well as transfer gains, which 

ultimately all equate to 1 when multiplied together.  The z-domain transform of the plant 

transfer function is shown in Eqn (3), and is acquired by using an s-plane to z-plane mapping 

of 𝑧 = 𝑒𝑠𝑇, where the sampling period T is the inverse of the sampling frequency of 150 

kHz. 

𝐺(𝑧) = 𝑧−1
0.1975𝑧2 + 0.08058𝑧 − 0.1868

𝑧2 − 1.922𝑧 + 0.9307
 

 

 
(3) 

Eqn (1) shows the bode plot of the control-to-output transfer function (Gvd(s)), Eqn (2) shows 

the plant transfer function (G(s)), and Eqn (3) shows the transformed z-domain transfer 

function (G(z)).  The bode plot in Figure 9 demonstrates the effect of the delay on the phase 

of the transfer function, as well as the effect of sampling the transfer function.  The bode 

diagram here for the sampled z-domain transfer function cuts off at half the sampling 

frequency, or the Nyquist frequency; beyond this frequency, the graph is periodic.  Although 

the graphs differ in high frequency behavior, they are primarily the same over the lower span 

of typical operating frequencies, including the corner frequency. 
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Figure 9.  Bode Plots of Plant Transfer Functions 

 

Because the output signal is primarily a DC signal, it is possible to lower the sampling rate 

down below the converter switching frequency without a tremendous amount of data 

corruption.  Several lower sampling frequencies were chosen, and Figure 10 shows the 

impact that the lower sampling frequencies have on the bode plot of the transfer function 

G(s). 
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Figure 10. G(s) Sampled at Various Frequencies 

 

For each of the sampling frequencies present in Figure 10, the bode plot of the transfer 

function cuts off at half the sampling frequency, or the Nyquist frequency.  For the part of the 

plot that exists before the Nyquist frequency cutoff, each plot continues to resemble the 

original plot of the continuous-time plant transfer function G(s).  Only when the sampling 

frequency reduces so low that the Nyquist frequency cuts off the plot’s corner frequency does 

the sampled plant transfer function no longer bear resemblance to the original plant transfer 

function. 

Another interesting effect that lowering the sampling rate has is on the movement of the 

poles and zeros of the plant transfer function.  Figure 11 shows the open-loop poles of the 

plant.  Figure 12 shows the movement of the poles with reducing the sampling rate.  They 

move along a constant-zeta line, while what is reduced is the relative undamped natural 

frequency, which is based on the sampling period T (the reciprocal of the sampling 

frequency).  Figure 13 shows the z-plane grid within the unit circle of stability. 
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Figure 11. Open-Loop Poles and Zeros of the Plant 
 

 
Figure 12. Movement of Poles and Zeros with Changed 
Sampling Frequency 

 

 

Figure 13. Z-plane Grid with Lines of Constant Damping and Constant Natural Frequency 

  

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
Ax

is

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

 
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
Ax

is

f  = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

 1π/T

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

 1π/T

0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

 

 
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
Ax

is

f  = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz



 
 

19 
 

What Figure 12 helps make clear is that the characteristics of the plant – which come from 

the plant’s continuous-time characteristic equation – stay the same despite changing the 

sampling rate.  The characteristic equation of a second-order continuous-time transfer 

function takes the form 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝑤𝑛2 = 0 
 

(4) 

and from this, the damping factor and undamped natural frequency can be determined.  

Figure 14 shows the same movement of the poles as Figure 12, but along the specific 

damping factor line, ζ = 0.3693, and through lines of constant undamped natural frequencies, 

ωn = 1.46 × 104 radians/sec.  The lines of undamped natural frequency represented in Figure 

13 and Figure 14 are calculated by  

𝜔𝑧 =
𝜋𝑓𝑛
𝑓𝑠

=
𝜔𝑛
𝑓𝑠

 

 

 
(5) 

Only when the sampling frequency becomes too low does the system become altered to the 

point where its characteristic equation no longer represents the same system.  This is 

demonstrated first by Figure 10, where the corner frequency of the bode plot is essentially cut 

off due to such a low sampling frequency of 5 kHz, and again in Figure 14, where the 

movement of the zeros becomes odd.  Above the sampling frequency of 10 kHz, both zeros 

move in towards z = 0.  Around and below the sampling frequency of 10 kHz, the left zero on 

the z-plane begins to again move away from the z = 0 point.  The z-plane relativity of poles 

and zeros no longer holds at such low sampling frequencies. 
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Figure 14a. Full View of Graph 

 
 

 
Figure 14b. Closer View of Graph 
Near z = 1 

Figure 14. Z-plane Grid of Plant Transfer Function Poles and Zeros 

 

As long as the sampling frequency stays high enough above the corner frequency, the 

sampling rate can be reduced enough to slow the control task frequency down yet continue to 

model the same system. 

2.4 Modeling Continuous Domain Transfer Functions in the Discrete 
Domain 

Typical design procedures for digital compensators involve design in the continuous domain.  

In the end, most systems operate in the continuous domain, even if a system involves a 

sampler.  When going from the continuous domain to the discrete domain, several methods 

may be employed.  The method used to take the plant transfer function G(s) from the 

continuous domain to the discrete domain to produce G(z) used a Zero-Order Hold (ZOH) 

along with a mapping of 𝑧 = 𝑒𝑠𝑇.  This involves defining a modified version of a transfer 

function H(s) as H*(s), which is a version of H(s) that is only defined at discrete intervals of 

the sampling period T.  A zero-order hold is then applied to H*(s), resulting in 𝐻�(𝑠), which 

is defined over all time, and takes the discrete values of H*(s) and holds them over each 

Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
Ax

is

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0972
0.146
0.194

0.292

0.583

1.46

2.92

0.0972
0.146
0.194

0.292

0.583

1.46

2.92

0.369

 

 

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

 

 
 

0.8 0.9 1

0.0972

0.146

0.194

0.292

0.0972

0.146

0.194

0.292

0.369

 

 
   
   
   
   
   
   
   



 
 

21 
 

interval span of length T.  H(z) is then just evaluated from 𝐻�(𝑠) where z = esT.  In a single 

equation, the transformation of h(t) to H(z) using the ZOH method is 

𝐻(𝑧) = ��ℎ(𝑘𝑇)𝑒−𝑘𝑇𝑠
∞

𝑘=0

� �
1 − 𝑒−𝑠𝑇

𝑠 �
𝑒𝑠𝑇=𝑧

 

 

 
(6) 

Phillips and Nagle [6] make a good argument for doing compensator design in the w-plane 

over the s-plane.  The reasoning is that the w-plane to z-plane mapping is very simple and 

hardly loses any precision, and relatively low pole frequencies in both the s-plane and w-

plane are nearly identical.  The s-plane to w-plane mapping can be described by 

𝜔𝑤 =
2
𝑇

tan
𝜔𝑠𝑇

2
 

 

(7) 

where w = jωw and s = jωs.  When 𝜔𝑠𝑇
2
≪ 1, ωw ≈ ωs.  This mapping comes in handy 

especially for design of PID controllers in the w-plane.  In the w-plane, a PID controller may 

take the form shown in Eqn (8). 

𝐷(𝑤) = 𝐾𝑃 +
𝐾𝐼
𝑤

+ 𝐾𝐷𝑤 

 

(8) 

This uses s-plane integrator and differentiator relationships.  When designed in the w-plane, a 

PID controller may be designed irrespective of the sampling period T.  With this design, a w-

plane compensator may be mapped to a z-plane function using trapezoidal integration and 

trapezoidal differentiation, which both come from approximations of 𝑧 = 𝑒𝑠𝑡.  Eqn (9) shows 

the w-plane to z-plane mapping for a trapezoidal integrator and a trapezoidal differentiator: 

Trapezoidal Integrator Trapezoidal Differentiator  

1
𝑤

=
𝑇
2
𝑧 + 1
𝑧 − 1

 

 

𝑤 =
𝑧 − 1
𝑧𝑇

 
(9) 

This method of designing a z-plane PID compensator in the w-plane is arguably preferred 

over the brute-force method of z-plane PID compensator design, where differentiation and 

integration of the signal are done numerically in the discrete domain, and the values of KP, 
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KI, and KD are applied to the proportional, integral, and differential parts of the fed back 

signal.  The brute force method is demonstrated in Figure 15. 

 

Σ

Numerical 
Integrator

Numerical 
Differentiator

E(z)

KI

KP

KD

M(z)

 

Figure 15. Block Diagram of a Numerical PID Compensator 

 

 

Alternatively, designing a z-plane PID compensator in the w-plane will always result in a 

transfer function in the form 

𝐷(𝑧) =
𝑎0𝑧2 + 𝑎1𝑧 + 𝑎2

𝑧(𝑧 − 1)
 

 

 
(10) 

where a0, a1, and a2 are expressed by the relationships: 

𝑎0 = 𝐾𝑃 +
𝐾𝐼𝑇

2
+
𝐾𝐷
𝑇

  
(11a) 
 

𝑎1 =
𝐾𝐼𝑇

2
− 𝐾𝑃 −

2𝐾𝐷
𝑇

 
(11b) 

𝑎2 =
𝐾𝐷
𝑇

 

 

(11c) 

When implemented on a digital compensator, the transfer function becomes a very simple 

second-order difference equation: 

𝑑[𝑛] = 𝑑[𝑛 − 1] + 𝑎0𝑒[𝑛] + 𝑎1𝑒[𝑛 − 1] + 𝑎2𝑒[𝑛 − 2] 
 

(12) 
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This method of PID control, which involves three multiplications and three additions, 

becomes much less computationally demanding on the microcontroller compared to the brute 

force method, which would involve additional multiplications and additions due to numerical 

integration and differentiation of the signal. 

2.5 Impact of Slowing Down the Sampling Rate of a Digital Compensator 
Referring to the block diagram in Figure 8, the buck converter with continuous-domain 

transfer function G(s) described in Eqn (2) and discrete-domain transfer function G(z) in Eqn 

(3) can be applied a digital PID controller designed in the w-plane in the form: 

𝐷(𝑤) = 0.9177 +
10000
𝑤

+ 8.284 × 10−6𝑤 

 

 
(13) 

Using the sampling frequency equal to the buck converter’s switching frequency of 150 kHz, 

this maps to the z-plane using the relation in Eqn (9): 

𝐷(𝑧) =
2.193𝑧2 − 3.368𝑧 + 1.242

𝑧2 − 𝑧
 

 

 
(14) 

This results in a compensated bode plot with phase margin and gain margin values displayed 

in Figure 16 and the root locus in Figure 18 shows the movement of closed loop poles over 

different open-loop gain values.  Closed-loop gain values near 1 are chosen on the root-locus 

diagram to show where the closed-loop poles will end up for a gain of 1.  Note that only two 

of the closed-loop poles are shown because all imaginary poles are reflexive in a real-valued 

system [7].  Figure 17 additionally shows the step response of the system.  The step response 

models a step-input of VREF changing immediately from 0 V to 1 V.   
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Figure 16. Bode Diagram of Uncompensated and 
Compensated Systems with Phase Margin and Gain 
Margin Displayed 

 
Figure 17. Step Response of Uncompensated and 
Compensated Systems 

 

 

 

Figure 18. Root Locus of Compensated System with Closed Loop Gains Close to 1 Chosen 
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This specific PID compensator was chosen after much tuning and accomplishes several 

things.  First, it eliminates steady-state error to a step.  Figure 17 shows that the 

uncompensated system step response will not settle to a value equal to the step it received.  

Adding the compensator eliminated the steady-state error because it turns the system into a 

Type-I system.  A Type-N system is defined by how many powers of (𝑧 − 1)𝑁 are in the 

denominator in the z-domain, or how many powers of 𝑠𝑁 or 𝑤𝑁 are in the denominator in the 

s-domain or w-domain.  By proof [6], all Type-I systems have 0% steady-state error to a step.  

Using the method described in Eqns (8), (9), and (10), all PID compensators will always be 

of Type-I because they will always have at least one single power of (𝑧 − 1) in the 

denominator.  This is one reason the choice of a PID compensator is optimal.  Another thing 

the PID compensator accomplishes is reducing overshoot while keeping the rise time fast, 

which is also demonstrated in Figure 17.  This comes from proper tuning of the PID 

controller. 

When reducing the sampling frequency of the plant, this alters the behavior of the digital 

controller, which is designed for a specific sampling period, T.  That is, the digital controller 

D(z) is mapped to the z-plane from the w-plane based on a specific sampling period, T.  Two 

natural choices for a design decision arise from lowering the sampling frequency: (1) derive 

different PID compensators for different values of T based on the same w-plane PID 

compensator, or (2) use the same PID compensator designed for a specific value of T and 

verify that it still behaves favorably at greater values of T (i.e. lower sampling rates).  The 

first method is a method of pseudo-adaptive control, which means that the transfer function 

changes dynamically.  It is however only pseudo-adaptive because it involves modeling the 

same w-plane PID compensator, but calculating different values of a0, a1, and a2 (see Eqn 

(11)) for different sampling frequencies. 

Although using a digital compensator designed for one sampling frequency at a different 

sampling frequency is not a traditionally accepted method, the effect that lowering the 

sampling frequency has on a digital controller is notable.  The effect that lowering the 
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sampling frequency has can be modeled in three different ways: (1) the effect on the bode 

plot, (2) the effect on the step response, and (3) the effect on the system’s poles and zeros. 

 

 
Figure 19. Bode Plot of System at Different Frequencies 

 

 

 
Table 1. System Gain Margins and Phase 
Margins at Various Sampling Frequencies.  
“Inf” implies no -180° crossing for the phase 
margin. 
Sampling 
Frequenc
y 

Gain 
Margin 

Phase 
Margin 

150 kHz 7.34 dB 67.5° 
100 kHz 6.35 dB 57.2° 
75 kHz 4.94 dB 31.4° 
50 kHz -1.65 dB Inf 
25 kHz -10.4 dB Inf 
10 kHz -22.7 dB Inf 
5 kHz -35.7 dB Inf 
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Figure 20. System Step Responses at Different Sampling Frequencies 

 

What Table 1 shows is that for decreasing the sampling frequency, the phase margin also 

decreases for this PID compensated system, until the phase margin disappears, which is listed 

as “Inf” for infinity.  The phase margin is directly related to the damping factor, ζ, by the 

equation: 

𝜁 =
sin𝜙𝑀

2�cos𝜙𝑀
 

 

 
(15) 

The percent overshoot is in turn directly related to ζ by the equation: 

%𝑂. 𝑆. = 𝑒

−𝜁𝜋

�1−𝜁2 × 100% 
 

 
(16) 
 

As the phase margin decreases, the damping factor decreases as well, moving the system 

closer to oscillation.  This is displayed in Figure 20, as the percent overshoot increases with 

decreased sampling frequency, and the system oscillates more in response to a step.  Figure 

20 does not display step responses to sampling frequencies below a sampling frequency of 75 

kHz, because those systems are unstable. 
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Since the digital compensator represents the same z-plane poles and zeros for changing 

values of T, the effect that changing the sampling frequency has on the poles and zeros must 

be looked at in the w-plane.  As Eqns (8), (9), and (10) detail how to go from the w-plane to 

the z-plane, going from the z-plane to the w-plane can be solved by reversing the process.  

Eqn (17) transforms the relationship that a0, a1, and a2 have to KP, KI, KD, and T into a matrix 

equation, and Eqn (18) represents the solution to that equation. 

⎣
⎢
⎢
⎢
⎡ 1 𝑇

2
1
𝑇

−1 𝑇
2

−2
𝑇

0 0 1
𝑇 ⎦
⎥
⎥
⎥
⎤
�
𝐾𝑃
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(17) 
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(18) 
 

From Eqn (8), a pole-zero form of a w-plane PID compensator transfer function may be 

derived: 

𝐷(𝑤) =
𝐾𝐷𝑤2 + 𝐾𝑃𝑤 + 𝐾𝐼

𝑤
 

 

 
(19) 

Using the relationships in Eqns (18) and (19), and values for a0, a1, and a2 from Eqn (14) of 

2.193, -3.368, and 1.242 respectively, the w-plane poles and zeros can be equated.  Figure 21 

displays how the w-plane poles and zeros move as the sampling period, T changes.  What 

Figure 21 reveals is that the zeros are the only factors of the transfer function that move, and 

they move linearly with T away from w = 0.  Based on Eqn (19), all sampling frequencies 

that D(w) is calculated for will have one pole at w = 0, irrespective of the sampling period.  

The sampling frequency alone will never turn the PID controller itself into an unstable 

controller, however, the simulations indicate that the sampling frequency still has impact on 

the entire system. 
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Figure 21a. Full View of the Poles and Zeros on the w-plane 

 
 

 
 

 
 
Figure 21b. Zoomed View near w = 0 

Figure 21. W-plane Poles and Zeros of the PID Compensator with Changing Sampling Frequency 

 

What all of this data suggests is that it is possible to use a digital PID compensator design for 

one sampling frequency at lower sampling frequencies up to a certain point.  Once the entire 

system’s phase margin becomes nonexistent, the system goes unstable.  Though the bode plot 

suggests different behavior around the corner frequency as the sampling frequency is 

lowered, the low-frequency behavior is still similar for lower sampling frequency, which is 

important for loads operating in steady-state DC mode. When applying this principle to a 

microcontroller, if the output voltage is being sampled in different frequency modes – for 

example, steady-state mode and emergency mode – then the amount of oscillation and the 

degree of overshoot that occurs is based on the amount of time it takes to switch between 

modes, from a slower sampling rate to a quicker sampling rate.  This means that as long as 

the output voltage is in steady-state, the system can run at a sample at a lower frequency and 

use the same transfer function as when the system samples at a higher frequency to 
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compensate for changes in output voltage.  Though this is a different approach than standard 

digital control theory warrants, it saves in computational and implementation cost. 

2.6 Integer Approximation 

2.6.1 Integer Arithmetic versus Floating-Point Arithmetic 
Often the goal in mathematical modeling is to achieve as much precision as the platform 

warrants.  This ensures that the mathematical systems model real life systems as close as 

possible.  In these cases, loss of precision can result in corruption of data, and a mathematical 

model that inaccurately models a real life system.  For instance, the transfer function in Eqn 

(20) represents a Chebyshev Type-II high-pass filter designed to eliminate signal drifting or 

wandering. 

𝐻(𝑧) =
0.9374 − 4.6828𝑧−1 + 9.3609𝑧−2 − 9.3609𝑧−3 + 4.6828𝑧−4 − 0.9374𝑧−5

1 − 4.866𝑧−1 + 9.4778𝑧−2 − 9.2363𝑧−3 + 4.5034𝑧−4 − 0.8789𝑧−5
 

 

 
(20) 

The z-plane graphing of the poles and zeros of this transfer function results in the graph in 

Figure 22. 
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Figure 22a. Full z-plane Unit Circle View of the Poles and Zeros 
 

 
Figure 22b. Zoomed In View of the 
Graph 

Figure 22. Z-plane Graph of Poles and Zeros of High-Pass Filter H(z) 

 

In this transfer function, the poles and zeros are extremely close to the point z = 1.  This 

allows for only the lowest frequencies to be attenuated.  The z coefficients in H(z) are 

actually condensed versions of the coefficients.  Table 2 lists the actual precise coefficients, 

where an and bn correspond to anz-n denominator coefficients and bnz-n numerator 

coefficients. 

 

Table 2. Coefficients of High-Pass Filter H(z) 

b0 0.937482248528358 a0 1.000000000000000 
b1 -4.682785333663319 a1 -4.866051787992316 
b2 9.360949324688169 a2 9.477802313600998 
b3 -9.360949324688171 a3 -9.236291867014341 
b4 4.682785333663323 a4 4.503414878846232 
b5 -0.937482248528359 a5 -0.878872966305784 
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When the same transfer function is implemented with the same coefficients rounded to four 

decimal places, the behavior of the transfer function changes drastically, and the z-plane 

poles and zeros move quite noticeably.  This is demonstrated in Figure 23. 

 

 
Figure 23a. Full z-plane Unit Circle View of the Poles and Zeros 
 

 
Figure 23b. Zoomed In View of the 
Graph 

Figure 23. Z-plane Graph of Poles and Zeros of Truncated High-Pass Filter H(z) 

 

This behavior may be surprising, because rounding to four decimal places may seem to be an 

appropriate amount of rounding to maintain precision.  However, the zeros have moved 

closer in to z = 1, and two of the poles have even moved outside of the unit circle, rendering 

the filter completely unstable.  Two factors that a responsible for this are (1) because the 

poles are so close to the right edge of the unit circle, z = 1, and (2) because the filter is a 

relatively high-order transfer function.  In a second-order system where the poles are further 

from the z = 1 point on the unit circle, this level of precision is not required.  Figure 24 shows 

a graph of the poles and zeros on the z-plane of the z-transformed buck converter plant 

transfer function.  The graph overlaps the poles and zeros of different decimal precisions.  
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Figure 24a. Full View of z-plane Poles and Zeros 

 

 
Figure 24b. Zoomed in View of z-plane at z=1 

 

Figure 24. Effect of Loss of Precision on Poles and Zeros of Plant Transfer Function 
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As Figure 24 shows, the effect of loss of decimal precision on the poles and zeros of the plant 

transfer function is minimal and essentially negligible, especially compared to the effect it 

has on the sixth-order high-pass filter.  The movement of the poles and zeros based on the 

loss of precision is somewhat arbitrary, and depends on the base in which the precision is lost 

– which in this case is base ten – and what the polynomial factors to, which is directly what 

the poles and zeros come from. 

Another conclusion that Figure 24 leads to is that in this case, floating-point precision is not a 

strong requirement.  This opens the door to other methods of calculation that may not as 

computationally intensive as floating-point arithmetic.  Because modern microcontrollers 

tend to operate on a single chip (excluding peripherals), only high-end, more expensive 

microcontrollers will include a Floating-Point Unit (FPU) implemented in hardware to 

perform floating-point calculations.  Since this study focuses on more cost effective MCUs 

that tend to lack FPUs, floating-point arithmetic is typically done in software.  The following 

figure demonstrates what a floating-point multiplication becomes in terms of instructions on 

the RL78 MCU: 

 

 
Voltage = ADC_value * V_PER_BIT; 
027FC AF2EF0  MOVW  AX, N:ADC_value 
027FF 12  MOVW  BX, AX 
02800 31FF  SARW  AX, 15 
02802 33  XCHW  AX, BC 
02803 FDE104  CALL  N:?F_SL2F 
02806 FD4C05  CALL  N:?F_MUL 
0280E BF3EF0  MOVW  N:Voltage, AX 
02811 13  MOVW  AX, BC 
02812 BF40F0  MOVW  N:0xF040, AX 
02815 12  MOVW  BC, AX 

Subroutine # 
Instr. 

Subroutines 
Called 

F_SL2F 57 WRKSEG_PUSH_L09 
WRKSEG_POP_L09 

F_MUL 331 WRKSEG_PUSH_L09 
WRKSEG_POP_L09 
__fmthrr 

WRKSEG_PUSH_L09 48 MOVE_LONG_L06 

WRKSEG_POP_L09 48 MOVE_LONG_L06 

MOVE_LONG_L06 39 - 

__fmthrr 22 _matherr 

_matherr 25 - 

Figure 25. Excerpt from RL78 Assembly of a Floating-Point Multiplication.  In the table on the left, the four columns 
indicate (1) the instruction address, (2) the instruction opcode, (3) the instruction, and (4) the operands.  The table on 
the right indicates for each subroutine the number of instructions in the subroutine and which additional subroutines 
it calls. 
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This operation thus takes on two steps: (1) signed long to floating-point (F_SL2F), and (2), 

floating-point multiplication (F_MUL).  As displayed in Figure 25, the first operation, 

F_SL2F calls two additional subroutines within it, WRKSEG_PUSH_L09 and 

WRKSEG_POP_L09, each adding instruction cycles to the length of the original F_SL2F 

subroutine.  Then the F_MUL subroutine, which is 331 instructions long, operates as a 

complex web of loops such that the amount of cycles taken depends each time on the 

operands given for multiplication.  F_MUL also calls the WRKSEG_PUSH_L09 and 

WRKSEG_POP_L09 subroutines, as well as one other subroutine, __fmthrr, which also calls 

_matherr.  All together, floating-point multiplication is a computationally expensive 

operation when it is required to be done in software. 

On the same MCU, the RL78, integer arithmetic is significantly less costly.  The RL78 is a 

16-bit MCU, so doing 8-bit times 8-bit multiplication to result in a 16-bit product may be 

handled by a single instruction.  This may take one to two clock cycles, according to the 

RL78’s software manual [9].  However, 16-bits is a more standard word length, so integer 

multiplication will more practically be 16-bit times 16-bit multiplication resulting in a 32-bit 

product.  As the RL78 has a 16-bit word length, 16-bit by 16-bit multiplication is 

implemented in software.  The following figure demonstrates what 16-bit multiplication 

becomes in terms of instructions on the RL78 MCU: 

 

 
power_32[0] = voltage_16[0] * current_16[0]; 
02932 AF68F0  MOVW  AX, N: 0xF068 
02935 C1  PUSH  AX 
02936 AF66F0  MOVW  AX, N:current_16 
02939 C1  PUSH  AX 
0293A DB60F0  MOVW  BC, N:0xF060 
0293D AF5EF0  MOVW  AX, N:voltage_16 
02940 FD2F09  CALL  N:?L_MUL_L03 
02943 BF6EF0  MOVW  N:power_32, AX 
02946 13  MOWV  AX, BC 
02947 BF70F0  MOVW  N:0xF070, AX 
0294A 12  MOVW  BC, AX 

Subroutine # Instr. Subroutines 
Called 

L_MUL_L03 83 - 

 

Figure 26. Excerpt from RL78 Assembly of an Integer Multiplication.  In the table on the left, the four columns 
indicate (1) the instruction address, (2) the instruction opcode, (3) the instruction, and (4) the operands.  The table on 
the right indicates for each subroutine the number of instructions in the subroutine and which additional subroutines 
it calls. 
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Although the multiplication still must be done via a call to a subroutine, the long integer 

multiplication (L_MUL_L03) subroutine only involves a single loop, which iterates far fewer 

times compared to the complex network of loops in the F_MUL subroutine. 

Although it is a generally accepted idea that software integer multiplication requires 

significantly less instruction cycles than software floating-point multiplication, Table 3 

points out just how much the advantage is specifically for the RL78 platform.  This study in 

Chapter 3 and Chapter 4 will show the impact of reduction of precision in calculations. 

 

Table 3. Comparison of Number of Instructions Required for Integer  
and Floating-Point Multiplication 

Method Number of Instructions 
Integer Multiplication 94 
Floating-Point Multiplication 793 
 
 

 

2.6.2 Integer Arithmetic versus Fixed-Point Arithmetic 
Fixed-point arithmetic tends to offer a feasible solution to resolving computational demand 

compared to floating-point arithmetic.  [8] details the operation of fixed-point arithmetic, 

which is summarized in Table 4. 
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Table 4. Fixed-Point Arithmetic Basic Operations Summary 

Definition 
 

𝑎 =
𝐴
𝑆𝐴

, 𝑏 =
𝐵
𝑆𝐵

 

 

𝑆𝐴 → 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐴 
𝑆𝐵 → 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐵 

𝑤ℎ𝑒𝑟𝑒 𝑆𝐴 𝑎𝑛𝑑 𝑆𝐵 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓  
𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 

Basic Arithmetic 
Addition 

𝑎 + 𝑏 =
𝐴 + 𝐵
𝑆

, where 𝑆 ≡ 𝑆𝐴 = 𝑆𝐵 

 

Subtraction 

𝑎 − 𝑏 =
𝐴 − 𝐵
𝑆

, where 𝑆 ≡ 𝑆𝐴 = 𝑆𝐵 

Multiplication 

𝑎 × 𝑏 =
𝐴 × 𝐵
𝑆𝐴𝐵

, where 𝑆𝐴𝐵 = 𝑆𝐴 × 𝑆𝐵 

Division 

𝑎 ÷ 𝑏 =
𝐴 ÷ 𝐵
𝑆𝐴𝐵

, where 𝑆𝐴𝐵 = 𝑆𝐴 ÷ 𝑆𝐵 

 

 

In fixed-point arithmetic, all arithmetic is broken down into integer operations.  In the case of 

both addition and subtraction, the result can be achieved in a single operation, given that the 

scaling factors of both operands are equal.  If they are not equal, additional operations, 

usually bit shifts in base two, must be done to make the scaling factors equal.  In the case of 

both multiplication and division, two operations are required to achieve the result; one for the 

operands, and one for the scaling factors.  Both multiplication and division do not require 

that the scaling factors be equal, however since most calculations are combinations of 

addition and multiplication, the scaling factors will eventually have to be balanced.  

Furthermore, if division is done such that it is reduced to only two divisions – one for the 

operands and one for the scaling factors – then high loss of precision can occur, so an added 

multiplier can be implemented as shown in Eqn (21) such that the precision will not be as 

heavily altered by the division.  Though this maintains precision, it adds one extra 

multiplication and one extra division. 

𝑎 ÷ 𝑏 =
𝐾𝐴 ÷ 𝐵
𝑆𝐾𝐴𝐵

, where 𝑆𝐾𝐴𝐵 = 𝐾(𝑆𝐴 ÷ 𝑆𝐵), and 𝑆𝐴𝐵 =
𝑆𝐾𝐴𝐵
𝐾

 
 
(21) 
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One method that avoids deciding whether or not to have to balance the operands’ scaling 

factors before addition or subtraction involves all fixed-point variables to always result in the 

same scaling factor after every multiplication or division.  What this entails is that after each 

multiplication or division, the scaling factor and underlying integer must be shifted 

accordingly to match the standard scaling factor.  Table 5 discusses the advantages and 

disadvantages to having a constant scaling factor. 

 

Table 5. Comparison of Fixed-Point Arithmetic Methods 

Variable Scaling Factors Constant Scaling Factor 
Advantages 

• Multiplication and division are 
limited to just two operations 

• Precision can adjust based on the 
variable 

Disadvantages 
• Scaling factors must be checked 

and adjusted if not equal before 
addition and subtraction 

• Special functions must be defined 
for all arithmetic operations 

Advantages 
• Since scaling factors do not need to 

be checked before addition or 
subtraction, both can be implemented 
using the + or – operators without 
implementing special functions 

• Only need special functions 
implemented for multiplication and 
division 

Disadvantages 
• Multiplication and division involve 

an extra step for balancing the scaling 
factor 

• Potential loss of precision because 
scaling factor does not adjust based 
on operation 

 

 

In both cases, whether or not the scaling factor is constant, a fixed-point implementation will 

often require two design constraints to be met: (1) a fixed-point number is stored as some 

form of abstract data-type, where the underlying integer is kept separate from the scaling 

factor, and (2) special functions are implemented for each arithmetic operation, as well as 
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converting to and back from integer, and perhaps to floating-point if necessary.  The first 

constraint may be dropped for the case when the scaling factor is constant, and all fixed-point 

numbers may be stored as integers.  However, the second constraint is required, and Table 5 

details to what extent it is required based on whether or not a constant scaling factor is used. 

Because of these constraints, the implementation of fixed-point arithmetic still requires some 

additional complexity.  It is possible to avoid the complexity of fixed-point arithmetic 

altogether if the mathematics is done correctly prior to implementation of a digital controller 

on an MCU. 

2.6.3 Impact of Integer Approximation on a Digital Compensator 
One of the limitations mentioned in the beginning of this section had to do with how fast an 

MCU could run its tasks, which provided justification for exploring the impact of slowing 

down the sampling rate.  Another important limitation of an MCU is how calculations and 

arithmetic are done.  The method for calculation affects both speed and memory usage.  As 

discussed in the section comparing floating-point arithmetic to integer arithmetic, if the poles 

and zeros – bust most importantly the poles – are far enough away from the edge of the unit 

circle, and the order of the system is low enough, a reasonable amount of precision may be 

lost without significantly impacting the performance of the system. 

The digital PID compensator may be implemented by the following discrete difference 

equation 

𝑑[𝑛] = 𝑑[𝑛 − 1] + 2.193𝑒[𝑛] − 3.368𝑒[𝑛 − 1] + 1.242𝑒[𝑛 − 2] 
 

(22) 

where d[n], the output signal, represents the new duty cycle value D, and e[n] represents the 

error signal, the result of the summing junction of VREF and the fed back output voltage signal 

(see Figure 8).  Since the output voltage signal is sampled, e[n] is simply calculated in 

software by: 

𝑒[𝑛] = 𝑉𝑅𝐸𝐹 − 𝑉𝑂𝑈𝑇 
 

(23) 
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In Eqn (23), VOUT is the normalized value of the ADC sampled output voltage.  The 

difference equation in Eqn (22) is implemented with being rounded to three decimal places, 

which Figure 24 displays is not far from the actual system’s poles. 

The ADC on this specific MCU, the TI-TMS320F28335 has a resolution of 16 bits, and a 

reference voltage of 3 V.  The conversion of ADC value to real-value voltage, where the 

negative reference voltage of the ADC is 0 V, is represented by the relationship: 

𝑉𝐴𝐷𝐶 = 𝐾𝐴𝐷𝐶 × 𝐴𝐷𝐶𝑣𝑎𝑙 , where 𝐾𝐴𝐷𝐶 =
𝑉𝑅𝐸𝐹−𝐴𝐷𝐶
𝐴𝐷𝐶𝑚𝑎𝑥

 

 

 
(24) 

To limit the ADC measured voltage to below its VREF-ADC value, a voltage divider exists that 

reduces ADC measured voltage to 15 of its actual value.  To compensate for this, an additional 

gain, KDIV is added to the formula so that the calculated VOUT value, based on the ADC value, 

matches the voltage at the output, as described in Eqn (25). 

𝑉𝑂𝑈𝑇 = 𝐾𝐷𝐼𝑉 × 𝐾𝐴𝐷𝐶 × 𝐴𝐷𝐶𝑣𝑎𝑙 
𝑉𝑂𝑈𝑇 = 𝐾𝐷𝐼𝑉 × 𝑉𝐴𝐷𝐶 

 

 
(25) 

The gains being discussed are all represented by a single block Kadc in the block diagram in 

Figure 8, which includes the voltage divider, the voltage to ADC value conversion, the ADC 

value back to voltage conversion KADC, and the multiplier gain KDIV. 

The same relationship of Eqn (25) can be applied to the reference voltage VREF to form an 

integer equivalent value that VREF equates to, called ADCref: 

𝑉𝑅𝐸𝐹 = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐴𝐷𝐶𝑟𝑒𝑓 

 

(26) 

The calculation for the error signal in Eqn (23) then becomes the difference of two scaled 

integers, 

𝑒[𝑛] = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐴𝐷𝐶𝑟𝑒𝑓 − 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐴𝐷𝐶𝑣𝑎𝑙 

 

(27) 
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which may be factored into 

𝑒[𝑛] = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶(𝐴𝐷𝐶𝑟𝑒𝑓 − 𝐴𝐷𝐶𝑣𝑎𝑙) 

 

(28) 

Where ADCref is a reference ADC value for ADCval, in place of VREF, which was a reference 

voltage for VOUT.  The difference of these two integers is now the error integer, EI[n], such 

that 

𝐸𝐼[𝑛] = 𝐴𝐷𝐶𝑟𝑒𝑓 − 𝐴𝐷𝐶𝑣𝑎𝑙 

 

(29) 

which becomes a scaled version of the error voltage, e[n], as follows: 

𝑒[𝑛] = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛] 

 

(30) 

An N-order difference equation requires that N past values be stored.  In the case of this 

second-order PID controller, two previous values of each of the input and output are stored.  

If instead of the previous calculated error voltages (e[n]) being stored, the previously 

calculated error integers (EI[n]) are stored, the difference equation, 

𝑑[𝑛] = 𝑑[𝑛 − 1] + 𝑎0𝑒[𝑛] + 𝑎1𝑒[𝑛 − 1] + 𝑎2𝑒[𝑛 − 2] 
 

(31) 

may be substituted with the relationship in Eqn (30) to yield: 

𝑑[𝑛] = 𝑑[𝑛 − 1] + 𝑎0𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛] + 𝑎1𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 1] + 𝑎2𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 2] 

 
(32) 

Now with the difference equation in this form, and the error integer values being stored, the 

difference equation is operating on integer input values instead of floating-point input values.  

The difference equation could be completely turned into integer multiplications if each factor 

were multiplied by a resolution scaling factor, KRES.  With no resolution scaling factor (i.e. 

KRES = 1), implementing the difference equation in Eqn (22) with only integer arithmetic 

would result in severe truncation, as the original coefficients are still floating point values.  

Adding the resolution scaling factor, the difference equation becomes: 
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𝐾𝑅𝐸𝑆𝑑[𝑛] = 𝐾𝑅𝐸𝑆𝑑[𝑛 − 1] + 𝑎0𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛] + 𝑎1𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 1] + 𝑎2𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 2] 
 

(33) 

Since KRES, KDIV, and KADC will be the same for every calculation, and a0, a1, and a2 do not 

change with time, several substitutions may be made 

𝐷𝐼[𝑛] = 𝐾𝑅𝐸𝑆𝑑[𝑛] 
 

(34a) 

𝐴𝐼0 = 𝑎0𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶 
 

(34b) 

𝐴𝐼1 = 𝑎1𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶 
 

(34c) 

𝐴𝐼2 = 𝑎2𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶 
 

(34d) 

where the subscript “I” indicates a scaled integer equivalent of the coefficient.  Adding these 

substitutions into the difference equation results in a completely integer form of the 

difference equation: 

𝐷𝐼[𝑛] = 𝐷𝐼[𝑛 − 1] + 𝐴𝐼0𝐸𝐼[𝑛] + 𝐴𝐼1𝐸𝐼[𝑛 − 1] + 𝐴𝐼2𝐸𝐼[𝑛 − 2] 
 

(35) 

Now only past integer values are being stored, including past values of DI[n] instead of past 

values of d[n].  The conversion of DI[n] to d[n] may be done by dividing by KRES, or bit 

shifting if KRES is an even multiple of the base, which is the goal.  However, since the duty 

cycle of a PWM on an MCU is typically set by adjusting the value of a PWM control register 

to a positive integer value, normally 8-bit or 16-bit, the actual value of d[n] may be 

disregarded, and an alternate gain, KPWM may be used to turn the value of DI[n] to a PWM 

control register value. 

With AI0, AI1, and AI2 calculated and implemented in the difference equation, the digital PID 

controller can now be done entirely with integer addition and integer multiplication.  This is 

preferred over fixed-point calculation because no additional data types or functions need to 

be implemented to take care of the arithmetic operations.  Additionally, because of the use of 

a PID compensator designed in the w-plane, only one previous value of the output needs to 

be stored in this case.  The convenience of using a PID controller also allows for the previous 
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output value, d[n-1], or DI[n-1] to not have to be multiplied by a coefficient.  This is another 

factor in the choice of a PID compensator. 

With the PID controller completely implemented in integer arithmetic, the gain KRES controls 

the degree of resolution or precision.  On a 16-bit MCU like the RL78, 32-bit multiplication 

can be done easily.  Since both ADCval[n] and EI[n] will always be 16-bits or less (due to 16 

bits of ADC resolution), then as long as each AI coefficient is also less than 16 bits (or 15 bits 

to accommodate signed integers), then all integer multiplication will be able to be 

implemented using normal integer arithmetic.  Tuning KRES adjusts the accuracy of the PID 

compensator’s zeros to the actual compensator, and thus the performance of the compensator.  

Figure 27 shows how the zeros move with different values of KRES.  The poles are not 

affected since the only change in coefficients is in the numerator of the transfer function. 
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Figure 27a. Full View of the z-plane Poles and Zeros 

 
Figure 27b. Very Close View of the Left Zero 

 
Figure 27c. Very Close View of the Right Zero.  Notice the overlapping Zeros. 

 
Figure 27d.  Even Closer View of the Right Zero.  Notice the Distinction Between Zeros 

Figure 27. Movement of the z-plane PID Compensator Zeros with different values of KRES.  The legend in (a) 
indicates how many bits KRES is, that is 2N. 
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Figure 27 shows the convergence of zeros as the KRES value increases in bits.  Reversing the 

relationships in Eqns (34b) - (34d), the actual PID compensator that the integer approximated 

coefficients model is shown in Table 6 and Table 7.  The integer approximated coefficients 

converge to the actual coefficients as KRES is increased. 

 

Table 6. Numerator Coefficients of the Actual PID Compensator 

Coefficient Actual D(z) Floating-Point D(z) 
a0 2.193038614630750      2.193 
a1 -3.368340122095999 -3.368 
a2 1.242001507465248 1.242 

 

 

Table 7. Integer Approximated Numerator Coefficents of the PID Compensator 

D(z) with KRES = 212 D(z) with KRES = 216 
AI0 2 a0 2.133333333333333   AI0 33 a0 2.2000000000000 
AI1 -3 a1 -3.20000000000000 AI1 -51 a1 -3.4000000000000 
AI2 1 a2  1.06666666666667 AI2 19 a2 1.2666666666667 

D(z) with KRES = 220 D(z) with KRES = 224 
AI0 526 a0 2.191666666666667   AI0 8421 a0 2.1929687500000 
AI1 -803 a1 -3.36666666666667    AI1 -12934 a1 -3.368229166667 
AI2 298 a2 1.241666666666667 AI2 4769 a2 1.2419270833333 

 

 

Figure 28 demonstrates the effect of loss of precision in zeros by graphing the step responses 

of the integer approximated against the uncompensated system and the actual compensator. 



 
 

46 
 

 

Figure 28. Compared System Step Responses of the Uncompensated System and PID Compensated System with 
different values of KRES 

 

One thing that is curious is the behavior of D(z) when KRES is 12 bits.  The PID compensator 

no longer eliminates steady-state error.  Looking at Figure 27 where the poles and zeros are 

graphed, and looking at the factored transfer function, 

𝐷(𝑧) =
2.1333(𝑧 − 1)(𝑧 − 0.5)

𝑧(𝑧 − 1)
 

 

 
(36) 

the rounded zero (z – 1) in the numerator ends up canceling out the (z – 1) pole in the 

denominator, resulting in the transfer function 

𝐷(𝑧) =
2.133(𝑧 − 0.5)

𝑧
 

 

 
(37) 

which is a simple first-order lag compensator.  This is also shown in Figure 27, as the zero at 

z = 1 overlaps the pole at z = 1 for KRES = 212.  All of the rest of the compensators model the 
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original compensator quite closely, and since in Figure 28 the graph of the actual PID 

compensator step response overlaps all others, there is very little visible difference in step 

response at and above KRES = 220. 

Even with a KRES as high as 224, the AI0, AI1, and AI2 coefficients are still much less than the 

15-bit suggested maximum value of 32767 (215 – 1), and all coefficients could be increased, 

even though KRES may be greater than 232.  As long as DI[n] can be properly mapped to a 

correct value for a PWM control register, KRES can be made as high as integer multiplication 

allows on the MCU.  Since the number of instruction cycles for an integer multiplication is 

virtually independent of how large the operands are, there is no extra cost in gaining 

precision by increasing KRES.  However, it has also been demonstrated that even with medium 

precision – where only three decimal places are matched – the behavior of integer 

approximation is still acceptable. 
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3. Computational Requirements of PV Solar Panel MPPT Control 

3.1 Various MPPT Algorithms 
To determine the computational requirements of MPPT, several algorithms were chosen.  

Morales [2] suggests several MPPT algorithms that were theoretically tested.  These 

algorithms include (1) Perturb & Observe (P&O), (2) Incremental Conductance (InCond), 

and (3) Current Sweep.  In addition, a modification to the traditional P&O method, which is 

essentially an open-loop method, is explored – a closed-loop P&O algorithm.  All methods 

require a measurement of voltage and current, so that their product, power, may be 

maximized.  A boost converter apparatus, detailed in Figure 2, is used to bias the voltage by 

adjusting the duty cycle.  Figure 29 shows the power curve of the PV panel used in this 

study. 

 

 

 

Figure 29. Power Curve of PV Panel 
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3.1.1 Perturb and Observe Algorithm 
This method of tracking the maximum power point (MPP) is computationally light, and 

simply involves adjusting the duty cycle up or down based on if the current measured power 

is greater than the previously measured power.  Every time the power is sampled, the duty 

cycle is adjusted.  If the current measured power is greater than the last, keep moving the 

duty cycle in the direction it has been moving.  If the power is less than the previous power, 

move the duty cycle in the opposite direction that it has been moving.  Ideally, this will end 

up fluctuating right around the MPP, but unfortunately, this does result in fluctuation.  Figure 

30 shows this algorithm in a flow chart. 

 

 

 

Figure 30. Flowchart of P&O Algorithm.  The parameters Direction and Delta are global variables that are held 
between calls to the algorithm. 
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3.1.2 Incremental Conductance 
The InCond method is similar to the P&O method, but instead of adjusting the duty cycle 

based on comparing the current power sample to the previous power sample, the duty cycle 

adjustment is based on the mathematical curvature of the curve.  Below the MPP (to the left), 

the derivative of the curve, 𝑑𝑃𝑑𝑉, is positive.  Above the MPP (to the right), the derivative of the 

curve is negative.  The algorithm then follows as such.  If 𝑑𝑃𝑑𝑉 is positive, increase the duty 

cycle towards the maximum power point.  If 𝑑𝑃𝑑𝑉 is negative, then decrease the duty cycle 

towards the MPP.  This method is intended to reduce the amount of oscillation compared to 

the P&O method.  However, this method requires calculation of 𝑑𝑃𝑑𝑉, which may simply be 

done using a difference quotient.  If the calculated 𝑑𝑃𝑑𝑉 is inaccurate, then the method will fail 

to work properly.  If calculated properly, then the InCond method will certainly reduce 

oscillation around the MPP. 

An alternative implementation of this method involves having a target VREF, which is 

increased or decreased based on whether 𝑑𝑃𝑑𝑉 is negative or positive.  The basic InCond 

method is detailed in the flow chart in Figure 31. 
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Figure 31. Flowchart of InCond Algorithm 

 

3.1.3 Current Sweep 
The Current Sweep method is fundamentally simple, and involves sweeping the current over 

a range, and capturing the power at each current value.  The current is then set to value 

corresponding to the greatest power, or the MPP.  In this implementation, the current is 

adjusted simply by changing the duty cycle.  After the current sweep and after the current is 

set to achieve the MPP, the current may be swept again after a period of time to ensure that 

the algorithm is responding to changes in solar irradiation.  Also, the current does not 

necessarily have to be swept over the entire range if it is known that the MPP lies within a 

smaller current range.  Tuning this algorithm requires that all of these parameters be set 

appropriately. 
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3.1.4 Closed-Loop Perturb and Observe 
This method is a modification to the simple P&O method that closes the loop.  This 

algorithm runs in two modes, open-loop and closed-loop mode.  Open-loop mode operates 

just like the normal P&O mode.  A threshold and a wait period are both set, and when the 

power exceeds this threshold for longer than the wait period, the algorithm enters closed-loop 

mode. In closed-loop mode, the average voltage is recorded as VREF, and the voltage is 

maintained at VREF using a simple closed-loop.  An additional reset period is defined, and if 

the power falls below the threshold for the reset period, the algorithm switches back to open-

loop mode where normal P&O MPPT occurs to try to again raise the power above the 

threshold.  Tuning this algorithm requires correctly defining the threshold value, the begin 

wait time, and the reset wait time.  This algorithm is intended to bring the power up faster 

when it falls due to shading, hence having a VREF and a closed-loop.  This algorithm is also 

intended to reduce the amount of oscillation compared to the simple P&O method, and is 

based on the irradiation not changing rapidly, as is the case with solar irradiation.  Figure 32 

displays a power versus time graph embodying this algorithm. 

 

 
Figure 32. Graphic Representation of the Closed-Loop P&O Method.  The yellow periods represent when the 
algorithm is in normal open-loop P&O mode, and the green period represents when the algorithm is in closed-loop 
P&O mode. 
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3.2 MPPT Apparatus 

3.2.1 Hardware 
The MPPT apparatus, displayed in Figure 33 uses a small solar PV panel fed into a boost 

converter which is controlled by a Renesas RL78 MCU, which also measures the input and 

output voltage and current.  On the output side of the boost converter is simply a resistive 

load.  The voltage is measured through a high resistance voltage divider.  The input and 

output currents are measured by using an ADC to measure the voltage across a 1Ω resistor.  

Since the voltage across the 1Ω resistor at the input side of the apparatus is negatively biased 

with respect to the ground, a current sensing op amp is used to reverse the voltage before 

feeding it into the ADC.  This is done as an alternative to having a 1Ω resistor at the positive 

(+) side of the PV panel, because this would require two different voltage dividers for each 

side of the current sensing resistor, and since the RL78 does not have simultaneous ADC 

channel reading – but instead has sweep channel reading – the boost converter voltage ripple 

would affect the integrity of that reading.  Using the current sensing op amp proved to be a 

more effective way to read the input voltage.  The boost converter schematic is shown in 

Figure 2. 
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Figure 33. Schematic of the MPPT Apparatus Used for each Test 

 

 

3.2.2 Software 
Each of the MPPT algorithms mentioned in the previous section were implemented in C on 

the RL78.  Appendix C details the structure of the C code.  They were implemented in such a 

fashion that allowed the algorithm to be switched dynamically at run-time.  Also, each of the 

four algorithms were implemented using both floating-point and integer arithmetic.  A 

counter-timer was implemented to count every cycle so each algorithm’s best-case, average, 

and worst-case execution time could be determined.  Other control factors include: 

• MPPT Sampling Rate – The rate at which the power is sampled can be set.  The 

default sampling rate was set at 20 Hz. Though this seems low, this is appropriately 

set because the changes in solar irradiation are slow compared to the MCU 

computational speed [2]. 

• Duty Cycle Delta – For each MPPT method, if control is based on the duty cycle 

instead of a reference voltage, this is the value by which the duty cycle changes 

between samples. 
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• Lower and Upper Duty Cycle Limit – for the boost converter, it can easily be 

determined that above a certain duty cycle value, there is no increase in power.  

Setting limits allow for the power to never have to fall too low in ranges where the 

power cannot be boosted. 

• ADC Read Mode – The ADC can sample the voltage and current in three different 

modes: 

o Asynchronous – the current and voltage are sampled independently of the 

MPPT task. 

o Synchronous – the current and voltage are sampled within the MPPT task 

prior to MPPT calculation. 

o Semi-synchronous – the ADC is started at the end of the MPPT task so the 

current and voltage values are ready at the beginning of the next iteration of 

the MPPT task. 

• Calculation Mode – The calculation can either be done with floating-point or integer 

arithmetic. 

Since human interaction with the RL78 MCU itself is rather limited, a GUI was implemented 

in Java to be able to control and monitor the MPPT apparatus’ performance.  The RL78 was 

connected to a PC using standard serial communication at 115200 baud, and the GUI, called 

“PPMonitor” for Power-Point Monitor, allowed the RL78 to be controlled and also for input 

and output power, voltage, or current to be seen over time.  Figure 34 shows a picture of the 

GUI. 
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Figure 34. PPMonitor GUI Used to Monitor and Control the RL78 MPPT Algorithms 

 

The top scope, graphed in red shows the input power, current, or voltage.  The bottom scope, 

graphed in blue, shows the output power, current, or voltage.  In Figure 34, both the input 

and output are set to display the power.  On the far right of each scope, the scope upper limit 

is displayed at the top, the current value is displayed in the middle, and the scope lower limit 

is displayed on the bottom.  The time increases from the left to the right (like a traditional 

oscilloscope), and each of the light grey vertical bars on the scope represent one second 

intervals.  The GUI allows the duty cycle to also be manually adjusted either by the slider or 

by the potentiometer wheel on the RL78. 
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Figure 35. PPMonitor Scope Output versus Oscilloscope Output for Sudden Increase and Decrease of Duty Cycle 

 

 

 
 

Figure 36. PPMonitor Scope Output versus Oscilloscope Output for Sudden Increase in Duty Cycle 

 

 
 

Figure 37. PPMonitor Scope Output versus Oscilloscope Output for Momentary Shadowing of PV Panel 
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The figures on page 57 show the comparison of an oscilloscope measuring output power to 

PPMonitor measuring output power.  In all of the oscilloscope screenshots, the yellow curve 

on top represents the voltage, the blue curve on the bottom represents the current, and the 

purple curve in the middle represents the power.  Using this GUI program, each of the four 

MPPT algorithms were run.  For each algorithm, the computational count was measured, the 

performance was compared, and the efficiency was taken into account. 

3.3 Performance of MPPT Algorithms Using Floating-Point Arithmetic 
Each of the four algorithms were run with the PPMonitor monitoring and controlling the 

MPPT apparatus.  The power was calculated using floating-point normalized values of 

voltage and power, so it would be accurate to the actual power being outputted by the boost 

converter.  For each of the test runs, momentary shading and partial shading was done to see 

how well the algorithm bounced back from quick changes in solar irradiation.  Each 

algorithm was also run several times, and the figures that display the performance of the 

algorithm represent the average performance of the algorithm after several runs. 

3.3.1 P&O Performance 
Figure 38 shows the performance using the simple floating-point P&O algorithm for MPPT. 

 

 

Figure 38. Floating-Point Simple P&O Performance 



 
 

59 
 

3.3.2 Closed-Loop P&O Performance 
Figure 39 shows the performance using the closed-loop floating-point P&O algorithm for 

MPPT. 

 

 

Figure 39. Floating-Point Closed-Loop P&O Performance 
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3.3.3 InCond Performance 
Figure 40 shows the performance using the floating-point InCond algorithm for MPPT. 

 

 

Figure 40. Floating-Point InCond Performance 
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3.3.4 Current Sweep Performance 
Figure 41 shows the performance using the floating-point Current Sweep algorithm for 

MPPT.  In this specific run of the Current Sweep algorithm, the duty cycle is swept across 

the entire range of D, 0 to 1.  The sweep obviously makes the output power into a hill, and 

the algorithm does a pretty good job at putting the duty cycle to the MPPT after the sweep is 

over.  In this run, the sweep takes about 24 seconds, which is quite a long time to suffer 

power loss. 

 

 

Figure 41. Floating-Point Current Sweep Performance 
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3.3.5 Performance Versus Changing Other Parameters 
Using the potentiometer wheel (POT) attached as a peripheral to the RL78, the duty cycle 

was manually controlled up and down until the MPP was achieved.  For an additional test, 

the MPP achieved by the POT was compared to the MPP achieved by the closed loop P&O 

method.  Figure 42 shows the comparison, with the MPP achieved by the POT on the left, 

and then the MPP achieved by the closed-loop P&O follows it on the right, separated by a 

brief recovery period for the closed-loop P&O method. 

 

 

Figure 42. MPP Achieved by Manual Tuning with the POT compared Floating-Point Closed-Loop P&O MPPT. 
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As an additional test, the MPPT algorithm frequency was adjusted to see the impact of 

slowing down the MPPT algorithm on its performance.  Figure 43 displays the PPMonitor 

scope running the simple P&O algorithm at varied frequencies.  Where the vertical grey bars 

are closer together are where the algorithm frequency was lower – there were less samples in 

a second. 

 

 

Figure 43. Floating-Point Simple P&O Performance with Varied Task Frequencies 

  



 
 

64 
 

3.3.6 Comparison of Performance of Floating-Point MPPT Algorithms 
All tests were run in the same brief period with the same amount of solar irradiation on the 

PV panel used.  The PV panel’s power curve in Figure 29 indicates that the maximum power 

should be a little over 1 W, however even with manual tuning with the POT, the maximum 

power achieved was right around 0.5 W – 0.6 W.  Perhaps the difference in power was due to 

losses within the boost converter, but even roughly 50% to 60% efficiency is still favorable. 

In each of the four MPPT algorithms, temporary shading over the PV panel was done to see 

how well the MPPT algorithm recovered from shading.  In every single one of them, the 

recovery back to the MPP was virtually as instantaneous as the shading was removed from 

the PV panel.  Interestingly enough, in this test, the simple P&O algorithm achieved the 

greatest power.  Since this study focuses less on the achieving the best efficiency of each 

algorithm – and more on the computational requirements of each algorithm – there was only 

a minimal amount of tuning for each algorithm.  With additional tuning, it is likely that the 

other MPPT algorithms would be able to produce a greater amount of power.  This is also 

true with the comparison of the closed-loop P&O method compared to manual duty cycle 

adjustment with the POT; it is likely that with additional tuning, this algorithm would match 

the power level achieved by manually adjusting the duty cycle. 

Figure 43 shows the impact slowing the MPPT algorithm frequency down has.  It appears 

that 20 Hz was an appropriate choice, because any slower and the MPP begins to fall and 

fluctuate more.  It was determined that there was little to no benefit from increasing the 

MPPT frequency above 20 Hz, as changes in solar irradiation tend not to be much faster than 

that frequency. 

In both the InCond and P&O algorithm runs, the duty cycle was limited to the range 0% to 

20%.  Through testing, it was determined that with this PV panel, adjusting the boost 

converter switching frequency above 20% made the output power plummet.  Including this 

limitation added a very small amount of computational overhead for a very large amount of 

performance improvement. 
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3.4 Performance of MPPT Algorithms Using Integer Arithmetic 

3.4.1 Basis for Using Integer Approximation 
In the floating-point versions of each MPPT algorithm, the voltage and current were sampled 

with the ADC according to the schematic of the MPPT apparatus in Figure 33.  These values 

were scaled to floating-point values of the voltage and current, as shown in Eqn (38) so that 

they would be accurate measurements of actual voltage and current. 

𝑉𝐹𝑃 = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝑉𝐴𝐷𝐶 
 

(38a) 

𝐼𝐹𝑃 = 𝐾𝐴𝐷𝐶𝐼𝐴𝐷𝐶  
 

(38b) 

Since the voltage was measured through a voltage divider, KDIV represents the value to scale 

the voltage back up.  KDIV is based on resistor values and is calculated by:  

𝐾𝐷𝐼𝑉 =
𝑅𝐴

𝑅𝐴 + 𝑅𝐵
 

 

 
(39) 

The ADC conversion factor, KADC, is represented by Eqn (40), where VREF is the internal 

reference voltage of the RL78, 1.45 V, and ADCmax is the maximum value that the ADC can 

encode. 

𝐾𝐴𝐷𝐶 =
𝑉𝑅𝐸𝐹

𝐴𝐷𝐶𝑚𝑎𝑥
=

1.45
1023

= 1.417 × 10−3 

 

 
(40) 

The calculation of power is then given as 

𝑃𝐹𝑃 = 𝑉𝐹𝑃𝐼𝐹𝑃 
 

(41) 

which when substituted with the relationships of Eqn (38) becomes 

𝑃𝐹𝑃 = (𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝑉𝐴𝐷𝐶)(𝐾𝐴𝐷𝐶𝐼𝐴𝐷𝐶) 
 

(42) 

and simplifies to: 

𝑃𝐹𝑃 = 𝐾𝐷𝐼𝑉(𝐾𝐴𝐷𝐶)2𝑉𝐴𝐷𝐶𝐼𝐴𝐷𝐶 
 

(43) 
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If the integer calculated power, PINT is defined as the product of the voltage and current 

values read straight by the ADC, then PINT could be expressed as: 

𝑃𝐼𝑁𝑇 = 𝑉𝐴𝐷𝐶𝐼𝐴𝐷𝐶 
 

(44) 

Substituting Eqn (44) into Eqn (43) yields 

𝑃𝐹𝑃 = 𝐾𝐼𝑁𝑇𝑃𝐼𝑁𝑇 
 

(45) 

where KINT is defined by: 

𝐾𝐼𝑁𝑇 = (𝐾𝐷𝐼𝑉)(𝐾𝐴𝐷𝐶)2 
 

(46) 

What Eqn (44) shows is that the relationship between floating-point power and integer power 

is completely linear by a factor of KINT.  Since all of the algorithms simply require a 

comparison of the current measured power sample to the previous measured power sample, 

there is no need for the floating-point power PFP to be calculated.  All of the same 

comparisons – greater than and less than – with the integer power PINT will give the same 

arithmetic result. 

It is also important to note that on a 16-bit architecture like the RL78 that supports 32-bit 

words, the values for voltage and current should both be below 16 bits so as not to overflow a 

32-bit word containing the power. 

Using this basis, all of the MPPT algorithms were evaluated using integer arithmetic instead 

of floating-point arithmetic.  The values of the voltage and power sent from the RL78 to 

PPMonitor are in integer form, so properly reading them requires multiplying them by their 

respective KINT factors.  The same momentary PV panel shading was done to evaluate how 

well the algorithms bounced back from momentary shading. 
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3.4.2 P&O Performance 
Figure 44 shows the performance using the simple integer P&O algorithm for MPPT. 

 

 

Figure 44. Integer Simple P&O Performance 
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3.4.3 Closed-Loop P&O Performance 
Figure 45 shows the performance using the closed-loop integer P&O algorithm for MPPT. 

 

 

Figure 45. Integer Closed-Loop P&O Performance 
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3.4.4 InCond Performance 
Figure 46 shows the performance using the integer InCond algorithm for MPPT. 

 

 

Figure 46. Integer InCond Performance Based on VREF Adjustment 
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Some of the parameters were changed in an attempt to tune the algorithm, like using a duty 

cycle reference instead of a voltage reference, and the resulting performance using the integer 

InCond algorithm for MPPT is shown in Figure 47. 

 

 

Figure 47. Integer InCond Perfromance Based on Duty Cycle Adjustment 
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Compared to the integer InCond performance in Figure 46, the power peaks at a higher 

value, but slides down in wedges.  This is likely due to improper tuning of duty cycle 

adjustment based on the calculated value of 𝑑𝑃𝑑𝑉 and could be corrected with further tuning.  

Though the power peaks displayed in the scope in Figure 47 are higher than the average 

power displayed in the scope in Figure 46 – where control is based on VREF instead of 

adjusting the duty cycle – the algorithm in Figure 46 produces a much more stable result. 

3.4.5 Current Sweep Performance 
Figure 48 shows the performance using the integer Current Sweep algorithm for MPPT.  In 

this test run of the integer Current Sweep algorithm, the duty cycle boundaries are set to only 

sweep from a duty cycle value of 0% to a value of 40%.  It was determined that the MPP will 

always lie within this range.  In Figure 48, the output power scope on the left shows the 

trailing end of a previous held duty cycle, a brief current sweep (i.e. duty cycle sweep), and 

the power being adjusted to the MPP. 

 

 

Figure 48. Integer Current Sweep Performance 
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3.4.6 Performance Under Other Circumstances 
Figure 49 shows the integer P&O method used to bounce the power back from zero.  At the 

start, the POT was used to adjust the duty cycle to 100%, which consequently produces zero 

power.  At the same time, the PV panel was completely shaded.  Where the output power and 

input voltage suddenly rise is when the panel was unshaded and simple integer P&O MPPT 

control was simultaneously initiated.  Once this happens, the P&O algorithm does a good job 

at finding the MPP, but takes approximately 30 seconds to rise and settle.  Though the 

algorithm eventually gets the power to settle, the time it takes to do so gives reason to 

consider other algorithms. 

 

 

Figure 49. Integer Performance of P&O Algorithm Recovering from Complete Shading and 100% Duty Cycle 
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3.4.7 Comparison of Performance of Integer MPPT Algorithms 
As with the floating-point algorithm test runs, all test runs were taken in the same brief 

period with the same amount of solar irradiation on the PV panel.  For each of the four 

MPPT algorithms, handling recovery from PV panel shading was done well by each.  The 

recovery to the MPP was nearly as instantaneous as the shading was removed from the PV 

panel.   

As with the floating-point MPPT algorithms, the figures displayed in the PPMonitor screen 

shots represent the average performance after several runs of each algorithm.  The two 

algorithms that appeared achieve the greatest power were the Current Sweep and simple 

P&O methods.  This may be somewhat surprising since both of these algorithms are the least 

complex.  However, with complexity of an algorithm comes tuning, and improper tuning will 

not yield the best performance.  Although the InCond and closed-loop P&O algorithms did 

not achieve greater power levels than the Current Sweep and P&O methods, proper tuning 

would likely allow for them to perform as well as or perhaps outperform the other 

algorithms.  

The output power scope in Figure 49 shows how long it takes to bounce back from 0 power 

using simple duty-cycle-limited P&O control.  The fact that this takes so long is the reason 

other algorithms may be performed.  Though in steady-state the P&O algorithm performs 

well, evaluating the performance of the P&O algorithm must take more into account than the 

power level achieved, like how long it takes recover and respond to changes in overall solar 

irradiation.  Also, the amount of fluctuation from the P&O algorithm is evident in Figure 44 

compared to other methods like InCond (see Figure 46) and closed-loop P&O (see Figure 

45), where the ripple is much thinner.  The fluctuation ripple is also another factor to take 

into account when comparing and evaluating performance. 

3.5 Comparison of Floating-Point MPPT and Integer MPPT 
Evaluating surface level performance, both Table 8 and Table 9 compare the maximum 

power achieved by each algorithm and the computational demand of each algorithm in terms 

of clock cycles.  Since all of the integer algorithms calculated power based on raw ADC 
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values, the raw ADC values along with the corresponding actual calculated values of power 

are included as well.  The conversion from integer power to actual calculated (or floating-

point) power is given in Eqn (45).  The KINT value comes from Eqn (46), and is based on the 

KADC value in Eqn (40) and the KDIV value in Eqn (39), which is based on the resistor values 

of RA = 10kΩ and RB = 90kΩ, as shown in Figure 33.  The resulting KINT value is 2.009×10-5. 

 

 

Table 8. Comparison of Floating-Point MPPT Algorithms 

Floating-Point MPPT 

Algorithm Maximum 

Power (W) 

Best-Case 

Execution Time 

(cycles) 

Average 

Execution Time  

(cycles) 

Worst-Case 

Execution Time 

(cycles) 

Simple P&O 0.4452 14435 14497 14547 

Closed-Loop 

P&O 

0.3223 22169 24406 25109 

InCond 0.3680 16936 17700 21912 

Current Sweep 0.3653 31 90 14577 
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Table 9. Comparison of Integer MPPT Algorithms 

Integer MPPT 

Algorithm Maximum 

Integer 

Power (no 

units) 

Calculated 

Maximum 

Power (W) 

Best-Case 

Execution 

Time 

(cycles) 

Average 

Execution 

Time 

(cycles) 

Worst-Case 

Execution 

Time 

(cycles) 

Simple P&O 23529 0.4727 248 254 288 

Closed-Loop 

P&O 

18669 0.3751 321 543 1226 

InCond 11869 0.2385 457 5853 6460 

Current 

Sweep 

27621 0.5550 31 91 250 

 

 

The data in these tables is quite interesting.  These are surface level comparisons because 

they do not necessarily weigh dynamic performance of power maximization, but instead only 

report the maximum over about a minute span.  At the surface, however, the maximum 

power is achieved best by the simple P&O and Current Sweep algorithms in both the 

floating-point case and the integer case.  As mentioned previously though, proper tuning 

would likely increase the maximum power level that the other algorithms achieve.   

In the floating-point case, the closed-loop P&O was the most computationally intensive.  

Despite the extra overhead, the algorithm it is based on, the simple P&O method, achieved a 

higher power level.  The closed-loop P&O method is designed to prevent oscillation and 

recover faster from shading.  What all of the PPMonitor scope screenshots indicate is that 

recovery from shading is nearly instantaneous, so the extra computational overhead incurred 

by closing the loop is unnecessary.  At the expense of extra tuning, additional clock cycles, 

and a degree of output power, the power fluctuation ripple is reduced.  The takeaway from 
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this is that the closed-loop P&O method as implemented is not worth the extra computational 

cost compared to the P&O method. 

 

Table 10. Comparison of Execution Times (in instruction cycles) of the Same Algorithms Run with Floating-Point 
and Integer Arithmetic.  The ratio is the floating-point execution time divided by the integer execution time. 

 Best-Case 

Algorithm Floating-Point Ratio Integer 

P&O 14435 58.206 248 

Closed-Loop 

P&O 

22169 69.062 321 

InCond 16936 37.059 457 

Current Sweep 31 1.000 31 

 Average 

Algorithm Floating-Point Ratio Integer 

P&O 14497 57.075 254 

Closed-Loop 

P&O 

24406 44.947 543 

InCond 17700 3.024 5853 

Current Sweep 90 0.989 91 

 Worst-Case 

Algorithm Floating-Point Ratio Integer 

P&O 14547 50.510 288 

Closed-Loop 

P&O 

25109 20.480 1226 

InCond 21912 3.392 6460 

Current Sweep 14577 58.308 250 
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In the integer case, the closed-loop P&O did not end up being the most computationally 

intensive.  The InCond algorithm took this spot.   

Table 10 shows the ratio of the number of clock cycles for the floating-point algorithms 

compared to the integer algorithms for the best-case, average, and worst-case execution 

times.  Every algorithm but the InCond algorithm had a significant speedup.  This may be 

surprising at first, but one thing that the InCond algorithm requires that all of the others do 

not is division, which is required to calculate 𝑑𝑃𝑑𝑉.  What the low speedup ratio indicates is that 

integer division is still a costly operation, and that there is not as much of a gap between 

floating-point division and integer division as there is for floating-point multiplication and 

integer multiplication.  Referring to the RL78’s instruction set architecture manual [9], a 16-

bit register multiplication takes 2 clock cycles while a 16-bit register division takes 17 clock 

cycles. 

Compared to the P&O and Current Sweep algorithms for both the floating-point and integer 

cases, the InCond algorithms take more clock cycles.  With proper tuning, the power 

fluctuation ripple can be eliminated and the algorithm can respond faster to changes in solar 

irradiation.  If this is a requirement, then perhaps the relatively high amount of clock cycles 

required to perform this calculation may be worth the gained benefit.  Although the speedup 

between floating-point and integer InCond algorithms is little, it is still noticeably sped up, 

making it a viable choice for an MPPT algorithm. 

The Current Sweep algorithm is also of special interest, because its average execution time is 

considerably lower than all the rest for the level of power it achieves.  Referring to Table 8 

and Table 9, there is no use in comparing the best-case or average execution times of the 

Current Sweep algorithm, because in both the floating-point and integer cases, the algorithm 

spends the greatest amount of time in idle mode, where in the control task, it simply checks 

to see if its timer has reached the reset value, and if not, increments the timer.  Once the timer 

reaches its reset value is where the current sweep begins.  Comparing the worst-case 

execution times is most appropriate for comparing the performance of the floating-point and 

integer versions of Current Sweep algorithm.  This reveals an enormous speedup in the 
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integer case.  This algorithm proves to be a very effective method as long as (1) there is not a 

lot of change in solar irradiation, and (2) the load can suffer momentary dips in power due to 

the current sweep.  Through experimentation, the limits of the current sweep can be set so 

that the load does not see a heavy loss of power.  However, this method would not deliver the 

maximum power in a setting where solar irradiation fluctuates frequently. 

Taking all data into account, Figure 50 shows a comparison of the efficiency of each 

algorithm versus the best-case, average, and worst-case execution times.  Figure 51 lists 

projected efficiency with tuning, with projected efficiency based on Morales [2].  Morales 

listed a 99% efficiency found from simulations for both P&O and InCond in his study.  The 

projected efficiency shown in this figure is simply just the average of Morales’ projected 

efficiency, 99%, and the measured efficiency in this study.  This is to account for possible 

imperfections in the MPPT apparatus that limit efficiency.   

Something that these graphs help reveal is that there is no benefit gained by having extra 

precision using floating-point arithmetic with any of these algorithms.  Each one of these 

algorithms is based on a mathematical inequality that compares a previous value to a current 

value.  Since the only difference between floating-point power and integer power is a linear 

scaling factor (KINT), the greater-than or less-than inequalities will return the same result no 

matter how the values are scaled.  However, if an algorithm is chosen where the duty cycle is 

specifically calculated, such as using a difference equation, then the impact of losing 

floating-point precision may further need to be taken into account, as was discussed in 

Section 2.6. 

One might expect somewhat of a direct relationship between efficiency and computational 

demand.  However, there is much more to take into account than just raw efficiency, so the 

choice of best MPPT algorithm comes down to the properties of the boost converter, the 

characteristics of the PV panel and solar irradiation, and the demand of the load. 
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Figure 50a.  Full View of Chart 

 

 
Figure 50b. Zoomed in View of Chart 

 

 
Figure 50c. Logarithmic View of Chart 

 
Figure 50. MPPT Efficiency versus Clock Cycle Count.   Each vertical lines represents best-case (left), average 
(middle), and worst-case (right) execution times. 
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Figure 51a. Full View of Chart 

 

 
Figure 51b. Zoomed in View of Chart 

 

 
Figure 51c. Logarithmic View of Chart 

 
Figure 51. Projected Efficiency versus Cycle Count with algorithm tuning.  All projected efficiencies are shown as 
dotted lines.  Each vertical lines represents best-case (left), average (middle), and worst-case (right) execution times. 

0 0.5 1 1.5 2 2.5 3

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Clock Cycles

Ef
fic

ie
nc

y

MPPT Projected Efficiency vs. Clock Cycle Count

 

 

FP P&O
FP CL
FP InCond
FP CS
INT P&O
INT CL
INT InCond
INT CS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Clock Cycles

E
ff

ic
ie

nc
y

MPPT Projected Efficiency vs. Clock Cycle Count

 

 

FP P&O
FP CL
FP InCond
FP CS
INT P&O
INT CL
INT InCond
INT CS

10
1

10
2

10
3

10
4

10
5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Clock Cycles

E
ffi

ci
en

cy

MPPT Projected Efficiency vs. Clock Cycle Count

 

 

FP P&O
FP CL
FP InCond
FP CS
INT P&O
INT CL
INT InCond
INT CS



 
 

81 
 

4. Computational Requirements of SMPS Digital Control 
This chapter focuses on proposed methods for reduced computational digital control for an 

SMPS based on relaxing the constraints of digital control theory.  With each proposed 

method, the computational requirements for each method were calculated using both 

floating-point and integer arithmetic on the RL78, and the results are compared. 

4.1 Proposed Methods for Digital Control of SMPS  
Several methods for relaxed digital control are proposed in this section.  All of them are 

based on the traditional sampling method for digital control.  Each subsequent method 

relaxes one additional constraint than the one before in an attempt to reduce processor utility.  

Figure 52 shows this relationship. 

 

 

 

Figure 52. Relationship of Control Methods in terms of Relaxed Constrains 
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4.1.1 Traditional Sampling Method 
The traditional method for closed-loop SMPS control has the sampling frequency at the same 

frequency as the switching frequency.  This idea comes from analog control, where the duty 

cycle is constantly updated because no digital components are involved.  It is also understood 

that there is little need to sample any faster than the switching frequency, since the duty cycle 

can only be updated once per PWM period as a result of being a digital signal.  Using this 

method, a digital controller samples at the rate of the switching frequency, and using the 

sampled values with a digital controller, the duty cycle is adjusted accordingly only once per 

switching period.  This transient behavior is modeled in Figure 53. 

 

 

 

Figure 53. Output Voltage Sampled at Switching Frequency.  The output voltage (top) is sampled at the rate of the 
sampler (in blue) to produce the sampled signal (bottom). 
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4.1.2 Varied Sampling Frequency Method 
What has been discussed in Chapter 2 reveals that it is possible to use a digital compensator 

designed for one sampling frequency at other, slower frequencies. This can be done to a 

certain point while still avoiding adverse effects.  The algorithm is set up such that there are 

two modes of operation, (1) steady-state mode and (2) emergency mode.  A typical DC load 

will spend the majority of its time in steady-state mode, and only go to emergency mode 

when the voltage drops or rises due to changes in load current.  Within the algorithm, a check 

is made to see if the voltage is outside of the threshold range (which should be defined as a 

smaller subset of the load’s operating range).  If so, a threshold flag is set, and a reset counter 

is cleared.  After determining the mode of operation, if in steady-state mode and the 

threshold flag is set, then move to emergency mode.  If in emergency mode, and the reset 

counter exceeds a certain reset value, that is an indication the output voltage has not 

oscillated outside of the threshold range for a given amount of time.  If this is the case, the 

task can move back to steady-state mode.  In either case, the output line is sampled, and each 

sample is run through the difference equation no matter what the frequency is.  This behavior 

is diagramed in Figure 54. 
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Figure 54. Flowchart for Simple Varied Frequency Algorithm 

 

The reason for doing this is twofold. First, the only thing that has to be changed about the 

control task is its frequency.  The computations from the digital compensator will be the 

same each time the control task is run, regardless of the frequency.  The overhead in 

determining the operation mode simply consists of several true/false checks and one 

comparison.  The low overhead in determining the mode may justify using this algorithm.  

Second, this reduces the amount of design overhead for the digital compensator, compared to 

pseudo-adaptive control.  The transient behavior of this method is diagramed in Figure 55. 
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Figure 55. Output Voltage Sampled at Switching using Varied Frequency Method.  The output voltage (top) is 
sampled at the rate of the sampler (in blue) to produce the sampled signal (bottom).  The sampling rate increases 
when the voltage drops, and again decreases when the signal reaches steady-state. 

 

4.1.3 Varied Sampling Frequency and Hold Method 
This method is very similar to the varied sampling frequency method, but the way the voltage 

samples are read is different.  While in steady-state mode, the output voltage is sampled at a 

much slower frequency than in emergency mode, but in between samples, each value is held.  

This is done because of the assumption that while in steady-state mode, the output voltage 

will be DC, so there should hardly be any variance between samples.  When the control task 

gets called, instead of running the difference equation on the last two samples that have been 

taken (as in the simple varied sampling method), it runs it on the last two samples held from 

the previous sample.  Figure 56 and Figure 57 highlight the difference between the two 

methods. 
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Figure 56. How Samples are Used in the Simple Varied Frequency Method.  The blue line indicates how often the 
sampler is reading samples. 

 

 

Figure 57. How Samples are Used in the Varied Frequency and Hold Method.  The blue line indicates how often the 
sampler is reading samples. 

 

Using the varied frequency and hold method, all samples that the control task sees are taken 

as if they are sampled at the switching frequency, whether or not the system is operating in 

steady-state mode or emergency mode.  Because of the DC nature of steady-state signals, this 

method is intended to closely model the behavior of the traditional sampling method without 

as high a level of processor utilization. 

Since a second-order PID compensator is being used, only the two previous values of each 

signal will be needed (only one for the duty cycle).  This algorithm’s behavior is based on the 

simple varied frequency method, but at the beginning of the control task, the previous values 

are decided.  If in steady-state mode, the previous two values of the sampled signal will 

simply just be equal to e[n-1], or the previous sample.  Since only one previous value of the 

duty cycle is needed, it will still always be just d[n-1] in steady-state mode or emergency 

mode.  This results in using: 
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𝑒[𝑛 − 2] = 𝑒[𝑛 − 1] 

 

(47) 

Though this may not be a large change, if a more complex compensator is used, perhaps one 

that is third- or fourth-order, then more substitutions would need to be made, for both e[n] 

and d[n].  Since this second-order PID compensator is sufficient for the buck converter, the 

only substitution that needs to be made for this method is the one in Eqn (47) if the algorithm 

is in steady-state mode. The transient behavior of this method is diagrammed in Figure 58, 

which is similar to Figure 55 except that the sampled value is held between ADC samples. 

 

 

Figure 58. Output Voltage Sampled at Switching using Varied Frequency and Hold Method.  The output voltage 
(top) is sampled at the rate of the sampler (in blue) and held between samples to produce the sampled signal 
(bottom).  The sampling rate increases when the voltage drops and again decreases when the signal reaches steady-
state. 
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4.1.4 Emergency Mode Only Method 
Assuming that the voltage will not heavily stray while in steady-state mode, the control task 

may simply not need to be run at all until the voltage drops, entering emergency mode.  If 

this is the case, then the control task either does not need to run at all in steady-state mode, or 

only needs to run minimally, just to check whether or not the output signal has exceeded the 

threshold range. 

The RL78 provides a handy feature in which the ADC can be set to continuously sample, but 

only generate a hardware interrupt if the sampled value falls outside of a certain range.  This 

can be very useful for the emergency mode only method, because the control task may not 

even have to run – freeing up some processor utilization – until emergency mode begins.  

The task then starts periodically until steady-state has again been reached.  Unfortunately on 

the RL78, this means that there is no hardware interrupt for any of the ADC channels unless 

the value falls outside of this range, and no interrupt if it falls within this range during steady-

state mode.  This is okay if the processor that the control task is running on can dedicate the 

ADC strictly to the SMPS control, but if the same ADC is needed to sample other channels, 

then the emergency mode only method will have to be implemented according to the 

flowchart in Figure 59, which is very similar to the flowchart in Figure 54.  

Though this appears to be as dense of an algorithm as the other algorithms that include 

updating the duty cycle in steady-state mode, this algorithm does one comparison and 

immediately leaves if false.  This save on computational time allows this method to conserve 

processing demand while in steady-state mode. 
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Figure 59. Flowchart for Emergency Mode Only Algorithm 
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The transient behavior of this algorithm is diagrammed in Figure 60. 

 

 

Figure 60. Output Voltage Sampled at Switching using the Emergency Mode Only Method.  The output voltage (top) 
is sampled at the rate of the sampler (in blue) to produce the sampled signal (bottom).  The sampling starts when the 
voltage drops, and stops when the signal reaches steady-state. 

 

4.1.5 Pseudo-Adaptive Control Method 
The mathematics in Chapter 2 detailed the impact that slowing the sampling rate had on the 

digital compensator.  It was calculated that after being slowed down to a certain point, the 

digital compensator would become unstable if given a step input.  This is why in the other 

methods, the sampling rate had to immediately increase upon changes in the voltage; 

otherwise, the system surely would go unstable.  When a difference equation from a z-

domain transfer function that is designed for one sampling frequency is used at slower 

sampling frequencies, what is actually happening is that the difference equation starts 

modeling a different w-plane or s-plane compensator.  This is what the w-plane pole 



 
 

91 
 

movement in Figure 21 shows.  To compensate for the change in sampling frequency, all that 

must be done is the w-plane compensator must be remapped to the z-plane based on the 

correct sampling period T.  In the case of the PID compensator, this will only affect the 

numerator coefficients, a0, a1, and a2, which are the coefficients in the difference equation for 

the error values, e[n]. 

Adaptive control in its most simple form implies that a compensator will vary with time to 

adapt to the plant that it controls.  This is different than classical control, where a controller is 

designed for a plant and is used without changing.  If the PID compensator is mapped from 

the w-plane to the z-plane using two different values for T, then two compensators will 

result.  The control task can then be implemented just as in the flowchart of Figure 54, except 

when the operation mode switches back and forth between steady-state and emergency 

modes, the coefficients for the difference equation switch also.  The w-plane compensator 

coefficients could be stored in the program on the MCU, and the difference equation 

coefficients could be recalculated each time based on the value T that is being switched to.  

This may be done according to the relationship in Eqn (9).  Repetitive calculations like this 

may become computationally heavy, so a more conservative approach would be to 

precalculate the difference equation coefficients for each sampling frequency that will be 

used, namely steady-state mode and emergency mode.  The fact that the compensator 

changes over time implies that this is adaptive control, though since it is precalculated, it is 

more or less pseudo-adaptive. 

The transient behavior of this approach is diagrammed in Figure 61, though the difference 

equation changes as the sampling rate changes. 
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Figure 61. Voltage Sampled at Switching using the Pseudo-Adaptive Control Method.  The output voltage (top) is 
sampled at the rate of the sampler (in blue) to produce the sampled signal (bottom).  The sampling rate increases 
when the voltage drops, and again decreases when the signal reaches steady-state.  The control task employs different 
difference equations for different frequencies. 
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4.2 Computational Requirements 
Each method was implemented in C on the RL78 using both floating-point arithmetic and 

integer arithmetic, as detailed in Section 2.6.3.  The actual performance of the algorithm was 

not evaluated in this study, but the number of computational cycles and computational time 

was evaluated for each method. 

When implementing these methods in software, an error signal was calculated from the 

sampled voltage, and that value, along with previous error and duty values, were put through 

a difference equation.  The duty value, which ideally represents a value between 0 and 1, is 

finally multiplied by a correction gain value, k, which helps correct for any imperfections in 

the circuit model – for example, losses in the circuit that were not accounted for in the circuit 

analysis.  Using floating-point arithmetic, k, which may be from 0.05 to 5.0, can simply be 

represented as a real value, and multiplied by the final duty.  

In integer arithmetic, representing the same values is a two step process.  If k for instance is 

3.63, the easiest way to get this same result is to break k into a numerator and a denominator 

value, kn and kd.  In this case, kn could be 363 and kd could be 100, which is similar to how 

this is taken care of in fixed-point arithmetic.  Doing this may be able to achieve an accurate 

result, but it involves adding an integer division.  In floating-point arithmetic, the same 

process can be accomplished with a single multiplication.  The impact that adding this 

division has is that the speedup between floating-point and integer arithmetic is reduced.   

An alternate way to accomplish this is by appropriately using bit shifts.  3.63 can also be 

represented as 𝑁
𝐾𝑅𝐸𝑆

, where KRES is a resolution scaling factor that is a power of 2, and N is an 

approximation.  3.63 can be approximated by the value 37171024, which evaluates to 3.6299.  

Using this method, the integer multiplication by k becomes a multiplication followed by a bit 

shift, which is a single instruction as opposed to a very costly division.  This helps increase 

the speedup between floating-point and integer arithmetic while maintaining precision. 

The error/difference equation/gain factor – based on Eqns (22) and (23) – were first 

implemented using arrays as demonstrated in Figure 62. 
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e[n] = V_ref – V_out; 

d[n] = d[n-1] + 2.193*e[n] – 3.368*e[n-1] + 1.242*e[n-2]; 

comp = d[n] * k; 
Figure 62. Implementation of Difference Equation Using Arrays 

 

The methods were run using floating-point arithmetic, integer arithmetic with division, and 

integer arithmetic without division.  Table 11 displays the best-case, average, and worst-case 

execution times in terms of instruction cycles, as well as task length in microseconds, which 

was measured using an oscilloscope. 
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Table 11. Comparison of Execution Times of each Control Method Using Indexed Arrays 

           Method Best-Case 

Execution 

Time (cycles) 

Average 

Execution 

Time (cycles) 

Worst-Case 

Execution 

Time 

(cycles) 

Task 

Execution 

Time (μsec) 

Fl
oa

tin
g-

Po
in

t 

Traditional 11915 11917 11956 360 

Varied Sampling 

Frequency 

13362 13382 13410 420 

Varied Sampling 

Frequency and Hold 

59 12098 13241 412 

Emergency Mode Only 1333 12106 13351 408 

Pseudo-Adaptive 

Control 

11643 11648 11707 356 

In
te

ge
r w

ith
 D

iv
is

io
n 

Traditional 9135 9230 9376 284 

Varied Sampling 

Frequency 

9153 9324 9418 288 – 296 

Varied Sampling 

Frequency and Hold 

9158 9324 9423 288 – 296 

Emergency Mode Only 9784 9918 10054 308 

Pseudo-Adaptive 

Control 

13575 13580 13618 420 

In
te

ge
r w

ith
ou

t D
iv

is
io

n 

Traditional 7062 7064 7105 220 

Varied Sampling 

Frequency 

7107 7116 7142 220 

Varied Sampling 

Frequency and Hold 

7107 7116 7142 220 

Emergency Mode Only 7741 7750 7773 240 

Pseudo-Adaptive 

Control 

11623 11627 11667 364 
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Though there is definitely a visible speedup between the floating-point and integer cases, it is 

not as drastic as the speedup seen between floating-point and integer cases with the MPPT 

algorithms.  In the MPPT algorithms, there was a single multiplication for power, and then 

most other computations were comparisons.  These algorithms are characterized by 

multiplications and additions, so they will naturally take require more instruction cycles than 

the MPPT algorithms.  There is also a noticeable difference between using division and 

replacing division with bit shifting.  There is about a 2500 instruction difference when 

leaving out division. 

One thing that Table 11 leads to is the maximum task frequency for the task at 100% 

utilization.  This indicates the absolute maximum frequency this task could run at 

theoretically, but normally not practically, due to things like context switches between 

interrupts.  Referring to the fastest case in the table, the traditional method in integer 

arithmetic without division, the average task execution time of 220 μsec would become an 

task frequency of approximately 4.5 kHz, and this is at 100% processor utilization.  This is 

still far from the 150 kHz switching frequency that the buck converter is designed for. 

In an attempt to try to boost system performance, the array implementation of the 

error/difference equation/gain factor was replaced with the implementation in Figure 63.   

en0 = V_ref – V_out; 

dn = dn1 + 2.193*en0 – 3.368*en1 + 1.242*en2; 

comp = dn * k; 

dn1 = dn; 

en2 = en1; 

en1 = en0; 

Figure 63. Implementation of Difference Equation Using Non-Indexed Global Variables 

Storing each previous value in a non-indexed global variable, as well as doing a manual 

value shift, indeed helped reduce the number of computations for each algorithm.  Table 12 

compares them. 
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Table 12. Comparison of Execution Times of each Control Method Using Non-Indexed Global Variables 

           Method Best-Case 

Execution 

Time (cycles) 

Average 

Execution 

Time (cycles) 

Worst-Case 

Execution 

Time 

(cycles) 

Task 

Execution 

Time (μsec) 

Fl
oa

tin
g-

Po
in

t 

Traditional 11083 11148 11193 340 

Varied Sampling 

Frequency 

11292 12302 12680 348 – 368 

Varied Sampling 

Frequency and Hold 

11351 12326 12714 390 

Emergency Mode Only 11290 12522 12676 390 

Pseudo-Adaptive 

Control 

10980 11045 11139 340 

In
te

ge
r w

ith
 D

iv
is

io
n 

Traditional 4201 4268 4344 132 

Varied Sampling 

Frequency 

24 2603 4385 134 

Varied Sampling 

Frequency and Hold 

23 2816 4385 134 

Emergency Mode Only 4881 4951 5037 154 

Pseudo-Adaptive 

Control 

4014 4277 4350 133 

In
te

ge
r w

ith
ou

t D
iv

is
io

n 

Traditional 2211 2213 2254 69 

Varied Sampling 

Frequency 

2257 2263 2288 70 

Varied Sampling 

Frequency and Hold 

2257 2263 2291 70 

Emergency Mode Only 29 2621 2909 90 

Pseudo-Adaptive 

Control 

2217 2218 2260 70 
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Making this change had a small impact on the floating-point implementations, but reduced 

the execution time compared to using array indexing by half or more.  There continued to be 

about a 2500 instruction cycle difference between integer with and without division, that in 

this case now results in an additional 50% reduction.  For the integer without division cases 

compared to array indexed and non array indexed variables, there is between a 3 and 4 times 

speedup.  The best case scenario in this case, the integer without division traditional control 

method, has an execution time of 69 μsec.  This equates to a maximum task frequency of 

about 14.5 kHz, which continues to be far from the switching frequency of 150 kHz that the 

boost converter was designed for.  However, if the compensator were to be remapped from 

the w-plane to the z-plane with a sampling period of about 69 μsec, for example 75 μsec, 

then it is likely that this could still be used to adequately control the buck converter. This also 

implies that the RL78 would a dedicated processor, because 100% utilization leaves no room 

for other tasks.  

Though the integer with no division traditional control method achieves the lowest task 

execution time, this is to be expected, because it is the method with the least amount of 

intricacy.  This method involves no checks to determine what operation mode it is in and 

which mode it must turn to.  However, the methods that do include these checks are not far 

behind the traditional mode.  The overhead in including these checks for the varied sampling 

frequency and the varied sampling frequency and hold methods only adds 1 μsec to the 

average execution time.  Since both of these methods involve the task running slower for 

most of the time, this 1 μsec of overhead is worth its improvement.  Also, in every case, the 

varied sampling frequency and varied sampling frequency and hold methods have very 

similar execution times, because they are essentially the same algorithms in this case. 

 Figure 64 is a graphical representation of the data in Table 11, and Figure 65 is a graphical 

representation of the data in Table 12.  Figure 66 compares the execution times of the control 

methods with and without arrays. 
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Figure 64. Graphical Comparison of Execution Times of Control Methods using Arrays 
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Figure 65. Graphical Representation of Execution Times of Control Methods without Arrays 
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Figure 66. Comparison of Execution Times of Control Methods with and witout Arrays 
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Though the most relaxed method, the emergency only method, may have a slightly higher 

execution time than the varied sampling frequency methods, its best-case execution time, 

according to its flowchart in Figure 59, makes it so this method is hardly felt by the processor 

when it is not in emergency mode.  This is not evident in the data because these tests were to 

check average execution time when in emergency mode or in both emergency and steady-

state modes, but not just steady-state mode alone. 

One thing that these tables do not show is the portion that these methods’ task periods will be 

equal their worst-case execution times.  These relaxed methods warrant that the control task 

is only to be run at the switching frequency while the system operates in emergency mode, 

which typically will only be a small portion of the load’s operation time – even if it is fairly 

frequent.  This essentially represents when the load transitions from “off” to “on” or from 

“on” to “off”.  This comparison of how often the task frequency matches the switching 

frequency and how often is lower than the task frequency is omitted because it is heavily 

dependent on the transient behavior of the load; it is different for every case.  Rather, this 

information is a starting point for determining processor utilization based on a given method. 
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5. Discussion and Analysis of Results 

5.1 MPPT Applications 
Consider the schematic in Figure 67.  This represents the combination of MPPT control and 

AVS techniques to maximize the efficiency of a device entirely powered off of a PV panel.  

To explain this schematic, a power control MCU lies at the heart of this, controlling the boost 

converter required for MPPT and the DC-DC Point-of-Load (POL) converters for the two 

loads shown.  The MCU runs periodic tasks, sampling voltages (and input current for MPPT 

to calculate power) and running control calculations to set the duty cycle of each switching 

converter.  A rechargeable battery exists as the central energy storage component, and each 

device, including the MCU, receives its power off of an input voltage bus from the battery.  

The PV panel, along with the MPPT stage, charges the battery, and the MPPT guarantees that 

the battery will always receive the maximum power.  A path selection feature exists so that 

this system may be able to recover from loss of power.  If the MCU does not signal the path 

selector to give PV power to the boost converter (as on reset), then the PV power goes 

straight to charging the battery.  Once the battery is charged at a high enough level, the MCU 

may switch the path selector back so that the PV power goes to the boost converter, again 

ensuring the maximum power. 
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Figure 67. Schematic of MPPT Enabled Device that also Employs AVS 

 

Having the AVS stage included in this circuit allows for the same off-the-shelf MCU that 

performs MPPT to run control tasks for the switching converters and allows for the 

generation of multiple voltage domains. 

If the MPPT stage were removed from the circuit, and the PV panel just connected straight to 

the battery to directly charge it, the input voltage bus would waver due to the inevitable 

frequent changes with solar irradiation.  This may not be a problem with regard to the DC-

DC POL converters for the loads, for the MCU would still control each converter and keep 

the voltage regulated within the operation range of each load.  However the problem would 

come if instead of using traditional power electronics control, an alternative method were 

used, like pseudo-adaptive control or emergency mode only control.  If using traditional 

control, the sampling frequency (and consequently the task frequency) does not change, so 

fluctuating input voltage would have no effect on the processor utilization.  If an alternative 

control method were used that is designed to relieve some of the processor’s utilization, then 

a wavering input voltage would mean the task would have to more frequently run at a higher 

frequency to keep the DC-DC POL converters voltage regulated.   Since one of the main 

goals of this study is to lower the processor utilization, then all measures need to be taken to 
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allow that to happen.  In other words, the wavering input voltage caused by the absence of 

the MPPT stage would require the control tasks for the DC-DC POLs to work harder.  

Therefore, having the MPPT stage allows for the processor utilization to be kept down. 

An example of an application of this specific circuit to a device is an e-book tablet reader.  A 

typical e-book reader is designed with advanced LCD technology so that even in daylight, 

the screen does not have a glare, allowing the reader to read e-books outside in the daylight.  

In doors and in darker areas, a backlight lights the display, allowing the reader to read e-

books in areas with less light.  A typical e-book reader is also flat, about the size of a 

person’s hand, and includes interfacing technology aside from the display, like a camera, an 

SD-card reader, a Wi-fi connection, a Bluetooth connection etc.  These properties make an e-

book reader a viable candidate for this technology.  Each peripheral could be powered from 

the central voltage bus, and since each of the named devices tend to have different operating 

voltage requirements, implementing AVS by using a flexible MCU to control multiple 

voltage domains would be ideal.  Additionally, the fact that device is flat may allow for the 

entire back of the device to be replaced by a flat PV panel.  Since this device is intended for 

outdoor use, hence the advanced LCD technology, it is likely that it would frequently be in 

areas where it could be charged with solar energy.  The device could last outside for as long 

as it was light before having to be charged like a normal tablet.  Since research for energy 

efficiency is at such a high level of interest, especially for tablet devices, this would be an 

ideal application. 

More specifically to this study, a P&O method or a properly tuned InCond method may work 

best for a device like this, where the irradiation conditions are frequently changing.  Though 

the Current Sweep method may achieve high efficiency with little computational cost, a 

device like this (1) could not suffer periodic losses of power, and (2) would keep having its 

irradiation change. 



 
 

106 
 

5.2 RTOS Applications 

5.2.1 Using an RTOS 
What this study has tested and found is the worst-case computational requirements of 

implementing various measures of control for both MPPT and load line regulation.  Since 

each of these tasks have to be run periodically with a defined period, using an RTOS on an 

MCU is a logical design choice.  Since power regulation is typically done for devices with 

MCUs, two design methodologies can be employed from the decision to use an RTOS.  The 

design may either (1) combine all tasks, including device software tasks and 

control/regulation tasks onto one processor, or (2) use a cheaper, dedicated processor for all 

of the control/regulation separate from the processor running the device software tasks.  

Figure 68 illustrates the difference between the two. 

 

 

Figure 68. Using a Single Processor versus Having a Dedicated Control Processor 
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Using the first method, if the main MCU is both fast enough and has enough resources 

available, the need for an extra dedicated control processor is eliminated.  This method is 

more in line with the goal of the study.  The downside to this method is that the main MCU 

must completely dedicate as many PWM signals as there are voltage domains to regulate.  

This may also be true of the ADC, but if the ADC has a multiplexor that allows for switching 

between many different channels, then dedicating ADC channels to each switching converter 

may not necessarily be an issue.  The ADC will only have to sample the voltage as frequently 

as the task is run.  The upside to this method opens doors to more efficient and intelligent 

control.  Since the main MCU can decide or predict when a peripheral will turn on and off 

and what its load behavior is like (the user also decides when peripherals turn on or off), the 

MCU can signal to the control tasks that a load line is about to change, and load line 

compensation can be taken care of proactively instead of reactively.  Through great amounts 

of tuning, it is possible to significantly reduce the need for digital control in a system where 

the main MCU can predict the changes in the load. 

Using the second method, which models a more traditional approach to load line regulation, 

the main MCU is virtually free of having to deal with control, and the schedulability 

discussed in this study would only have to apply to the regulation MCU.  However, 

intelligent control may still exist if there is communication between the two MCUs. 

The following sections are brief analysis of how the findings of the computational 

requirements found in this study may be applied to real-time scheduling analysis. 

5.2.2 Real-time Scheduling Analysis using Rate Monotonic Scheduling 
Chapter 3 reveals that using integer arithmetic with MPPT outperforms using floating-point 

arithmetic on an MCU that lacks an FPU.  Using Rate Monotonic Scheduling (RMS), a set of 

tasks are always schedulable if the utilization U, found in Eqn (48) is less than UMax, found in 

Eqn (49), based on the number of tasks m [10].   

𝑈 = �
𝑇𝑖
𝜏𝑖

𝑚

𝑖=1

 
 
(48) 
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𝑈𝑀𝑎𝑥 = 𝑚�21 𝑚⁄ − 1� (49) 
 

For MPPT on the RL78, the task frequency τi is set at 20 Hz.  The execution times in Chapter 

3 were based on instruction cycles, and since the RL78 runs at 32 MHz, the worst-case 

execution time Ti can be calculated by 

𝜏𝑖 =
#𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠
𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

=
#𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

32 × 106
 

 

 
(50) 

If the processor were strictly dedicated running the MPPT task (m = 1), then UMax would 

equate to 1, and U could be used to calculate the values in Table 13 based on the worst-case 

execution time of each algorithm.  Table 13 also calculates the minimum processor frequency 

for U be run at UMax. 

One thing that Table 13 indicates is that with such low values of U, the MPPT algorithm is 

hardly taxing the processor at all.  This leaves room for MPPT to be implemented on an 

MCU like the RL78, along with many other tasks.  Further schedulability analysis for this 

case is application specific.   

 

 

Table 13. Comparison of MPPT Processor Utilization Values 

Algorithm Cycles Ti U Slowest 

fprocessor 

P&O 288 9.0 μsec 0.00018 5.76 kHz 

Closed 

Loop P&O 

1226 38.3 μsec 0.00077 24.5 kHz 

InCond 6460 201.9 μsec 0.00404 129.2 kHz 

Current 

Sweep 

250 7.8 μsec 0.00016 5 kHz 
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The same analysis can be done with the digital control task methods by taking the worst-case 

execution time of the fastest performing digital-control loop methods, the integer arithmetic 

without division and without arrays.  However, since there is not one defined control task 

frequency, multiple frequencies are explored.  Figure 69 graphs the utilization of each 

method based on task frequency, and Figure 70 graphs the minimum processor speed 

required for each method to run at U = 1 for each task frequency. 

 

 

Figure 69. Control Loop Utilization based on Method and Task Frequency.  The red line indicates UMax. 
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Figure 70. Minimum Processor Speed Required for Control Loop Task to Run at Different Frequencies with U = 1 

 

What these figures reveal is that even with a very optimized version of a control task, the 

utilization with one task reaches 1 very easily with low task frequencies.  If the control loop 

provides sufficient performance at the low frequencies, then using a processor like the RL78 

will be acceptable.  Otherwise, the RL78 may not be a good platform for high frequency 

control for an SMPS, though these results all model the worst-case execution times.  On the 

other hand, Figure 70 shows how fast a processor must be to implement the same algorithms 

on other processors, given the worst-case number of cycles each method incurred.  The TI-

TMS320F28335 DSP, another MCU used for buck and boost converter regulation, does 

include an FPU and runs at 150 MHz.  Though more costly of an MCU, the TI DSP may be 

considered as an alternative to the RL78 for this purpose.  As it is more costly of an MCU, it 

may be able to better take the place of a main MCU in a system (as in Figure 68), and control 

both device peripherals and voltage. 
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5.3 Cost Analysis 
Pindicura [1] used the same RL78/G13 with boost converter apparatus to develop a high-

brightness LED driver.  In this study, the RL78 with the boost converter was simply used for 

MPPT control.  Table 13 displays the different minimum processor frequency to have U = 1 

for each of the integer arithmetic based MPPT algorithms.  These frequencies are low 

compared to the 32 MHz normal operating frequency of the RL78, and they are much lower 

than most MCUs.  Table 14 shows a list of the cost of different MCUs within the RL78 

family with respect to the capability of each MCU. 

 

Table 14. List of Capabilities versus Cost of MCUs in the RL78 family [1] 

Clock 
(MHz)  

RAM (kB)  Memory 
(kB)  

ADC 
channels  

# I/O  Unit cost 
for 1,000 
($)  

24  0.5  4  11  22  0.7395  
24  1  12  11  22  1.015  
24  1.5  16  11  22  1.0875  
32  2  16  9  28  1.498  
32  2  32  12  38  1.792  
32  4  64  12  38  2.058  
32  8  96  12  38  2.254  
32  23  512  12  38  3.915  

 

 

The MCU used in this study has a unit cost (based on 1000) of $2.058.  Using some of the 

other, lower end MCUs in this family, the price could be cut by nearly two thirds.  The fact 

that MPPT tends to be so computationally light is why PICs are a common choice for MPPT 

control.  However, since the design goal that this study focuses on is more with the intent to 

use an MCU in an apparatus like Figure 67 details, the motivation for choosing an MCU is 

more based on meeting the needs of being able to schedule multiple control tasks to control 

multiple voltage domains. 
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5.4 Future Work 

5.4.1 Characterizing the Impact of Loss of Precision in Digital Control 
When comparing loss of precision for a sixth-order filter to the loss of precision for a second-

order plant (see Section 2.6.3), it was only determined through experimentation and brief 

simulation that loss of decimal precision is a negligible loss for low-order systems whose 

poles are not too near the z = 1 point of the z-plane.  As precision on an MCU is a limited 

resource, losing as much precision as possible while maintaining adequate performance is 

essential.  Therefore, an essential study for this would be to determine and characterize the 

change in performance as a function of loss of decimal precision, with respect to MCUs. 

5.4.2 Tuning Optimized MPPT Algorithms 
This study put more emphasis on the computational requirements of different MPPT 

algorithms implemented in software rather than how efficient each algorithm was.  A 

minimal amount of tuning went into trying to get the greatest efficiency of each algorithm, 

but it is clear that with more tuning, each algorithm could likely do a better job at obtaining 

the MPP, both in transient and in steady-state.  A study that combines the optimized 

simulations performed by Morales [2] and the computational requirements obtained in this 

study would be helpful at determining MPPT efficiency as a function of computational 

requirements. 

5.4.3 Time Responses of Intelligent and Relaxed Digital Control 
The basis and reasoning, as well as the raw computational requirements, of relaxed digital 

control were explored in this study.  The transient responses (in terms of step response) were 

simulated, but not obtained experimentally.  An important study would be to parameterize 

the relationship between a load’s operating voltage range (Vmin and Vmax), the minimum 

control task frequency, the threshold range for which the control task leaves steady-state 

mode and enters emergency mode, the voltage margin Vmargin, and the different control 

methods proposed in this study.  Also, it may also be necessary to have more than just two 

operation modes.  Perhaps an additional recovery mode could exist that transitions between 

emergency mode and steady-state mode, at a control frequency between that of emergency 

mode and steady-state mode. 
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Additionally, real-time scheduling analysis on each of these methods would be helpful to 

determine the varying processor utility (caused by switching between operation modes) 

based on the transient requirements of the load.  Though simple schedulability analysis with 

RMS bases utility on a task’s worst-case execution time, more complex schedulability 

analysis would determine how this can be balanced.  Implementing the software and control 

for whole system on an MCU would allow for more intelligent control to take place (as 

described in Section 5.2.1), and understanding this would be essential. 

5.4.4 Determining the Impact of Having MPPT in a Solar Powered Load Line Regulated 
System 

Referring to Figure 67, the MPPT exists to prevent wavering of the input voltage to each 

switching converter.  If the switching converters are set up in such a way that their control 

task frequency changes depending which operation mode it is in, then it is certain that a 

fluctuating input line (without MPPT) would cause the control tasks to operate more 

frequently, consuming more processor utilization.  A study that implements the schematic in 

Figure 67 and determines how much the processor utilization is helped by having MPPT 

would be useful.  Also, measuring and maximizing the amount of efficiency in this type of 

circuit would make a big impact in the realm of small electronics. 

5.5 Conclusion 
One of the main claims of this study is that the extra cost incurred by raising energy 

efficiency is worth what is added in price.  This is because any powered device will always 

either need to be recharged or powered off of wall power, which will incur some cost.  

Increasing efficiency is a long term savings, because the less energy is wasted due to poor 

efficiency with cheaper hardware, the less the cost will be replenishing the energy in the 

future.  Though this study does not examine the length of time versus relative savings, it can 

still be said that to some extent, this claim is true regardless. 

The application of this technology to real world devices, as described in Section 5.1, makes 

exploration of this subject important.  Since MCUs are implemented on such a large scale, 

the savings in energy on one MCU becomes multiplied.  This makes this area of research an 

easy target for reducing energy use.   



 
 

114 
 

Knowing the computational requirements of both MPPT and DC-DC load line digital control 

opens the door to new ways of integrating power electronics control with using relaxed 

digital control theory as it applies to real-time scheduling theory.  Being able to revolutionize 

the way that DC-DC regulation is done allows for this method of efficient power conversion 

to be a more accessible means of providing power to various devices, promoting the general 

increase of efficiency. 
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Appendix A  
Acronyms Used within the Document 
A/D Analog-to-Digital 
AC Alternating Current 
ADC Analog-to-Digital Converter 
ADT Abstract Data Type 
AVS Aggressive Voltage Scaling 
C C programming language 
D Duty cycle 
DC Direct Current 
FLC Fuzzy Logic Control 
FPU Floating-Point Unit 
GPIO General Purpose Input/Output 
GUI Graphical User Interface 
InCond Incremental Conductance 
LED Light Emitting Diode 
MCU Microcontroller Unit 
MPP Maximum Power Point 
MPPT Maximum Power Point Tracking 
P&O Perturb and Observer 
PIC Peripheral Interface Controller 
PID Proportional-Integral-Derivative 
POL Point-of-Load 
POT Potentiometer 
PV Photovoltaic 
PWM Pulse Width Modulation 
RL78 Renesas Microcontroller 
RMS Rate Monotonic Scheduling 
RTOS Real –Time Operating System 
SMPS Switch Mode Power Supply 
T Sampling Time 
TI Texas Instruments 
U Processor Utilization 
UART Universal Asynchronous Receive/Transmit 

 

  



 
 

119 
 

Appendix B  
Buck Converter AC Small Signal Analysis 
Though an SMPS has nonlinear components, it may behave linearly around a given operating 

point.  Erickson [11] outlines a method for obtaining a linear model for an SMPS by 

generating an AC equivalent small-signal model.  The following analysis details how the 

small-signal model in Figure 7 was derived from the synchronous buck converter in Figure 

71. 

Starting with the synchronous buck converter, the losses of each component are added. 

 

DC

L

rds

rds

RL

C

rc

Rovg(t)

+

-

vo(t)

 

Figure 71. Synchronous Buck Converter Circuit with Losses Included 
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Proper analysis must be done in two modes: (1) transistor 1 on/transistor 2 off, and (2) 

transistor 1 off/transistor 2 on.  Figure 72 and Figure 73 display this: 

 

DC
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-
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-

---
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+++

 
Figure 72. Buck Converter in Mode (1) 
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Figure 73. Buck Converter in Mode (2) 

 

 

For ease of calculation, two substitutions are made: 

𝑅𝑙𝑜𝑠𝑠 = 𝑟𝑑𝑠 + 𝑅𝐿 

 

(51) 

𝑅𝑂𝐶 = 𝑅𝑜 + 𝑟𝑐 

 

(52) 
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Starting with mode (1), a KVL and KCL are used to obtain the state space model for this 

mode. 

𝐿
𝑑𝑖(𝑡)
𝑑𝑡

= 𝑣𝑔(𝑡) − 𝑖(𝑡)(𝑟𝑑𝑠 + 𝑅𝐿) − 𝑣(𝑡) 

 

 
(53) 

𝐶
𝑑𝑣(𝑡)
𝑑𝑡

=
𝑅𝑜
𝑅𝑂𝐶

�𝑖(𝑡) �1 −
𝑟𝑐𝑅𝑙𝑜𝑠𝑠𝐶

𝐿
� − 𝑣(𝑡) �

1
𝑅𝑜

+
𝑟𝐶𝐶
𝐿
� + 𝑣𝑔(𝑡)

𝑟𝐶𝐶
𝐿
� 

 

 
(54) 

𝑖𝑔(𝑡) = 𝑖(𝑡) 

 

(55) 

                                                          A1                                         B1  

�𝐿 0
0 𝐶�

𝑑
𝑑𝑡
� 𝑖(𝑡)𝑣(𝑡)� = �

−𝑅𝑙𝑜𝑠𝑠 −1
𝑅𝑜
𝑅𝑂𝐶

�1 −
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� −

𝑅𝑜
𝑅𝑂𝐶

�
1
𝑅𝑂

+
𝑟𝑐𝐶
𝐿
�� �

𝑖(𝑡)
𝑣(𝑡)� + �

1
𝑟𝑐𝐶
𝐿

𝑅𝑜
𝑅𝑂𝐶

� �𝑣𝑔(𝑡)� 

 

 
(56) 
 

                                                   C1                    E1   

𝑖𝑔(𝑡) = [1 0] � 𝑖(𝑡)𝑣(𝑡)� + [0]�𝑣𝑔(𝑡)� 

 

 
(57) 
 

In mode (2), similar analysis is done with a KVL and a KCL to obtain the state space model 

for mode (2). 

𝐿
𝑑𝑖(𝑡)
𝑑𝑡

= −𝑖(𝑡)(𝑅𝐿 + 𝑟𝑑𝑠) − 𝑣(𝑡) 

 

 
(58) 

𝑖𝑐(𝑡) = 𝑖(𝑡) − 𝑣(𝑡)
𝑅𝑜

; 𝑣𝑐(𝑡) + 𝑖𝑐(𝑡)𝑟𝑐 − 𝑣(𝑡) = 0 → 𝑣𝑐(𝑡) = 𝑣(𝑡) − 𝑖𝑐(𝑡)𝑟𝑐 

 

 
(59) 

𝑣𝑐(𝑡) = 𝑣(𝑡) − 𝑖(𝑡)𝑟𝑐 +
𝑣(𝑡)
𝑅𝑜

𝑟𝑐 

 

 
(60) 



 
 

122 
 

𝐶
𝑑𝑣𝑐(𝑡)
𝑑𝑡
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𝑑𝑣(𝑡)
𝑑𝑡
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                                                    C2                   E2  
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(70) 

Using the state space averaging method, the A, B, C, and E matrices are defined as: 
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(73) 

The DC model is then constructed from the averaged state space variables by setting the 

transient components (i.e. the derivatives) to zero: 

 

�00� = �
−𝑅𝑙𝑜𝑠𝑠 −1

1 −�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 �� �

𝐼
𝑉� + �

𝐷

𝐷
𝑟𝑐𝐶
𝐿
� �𝑉𝑔� 

 

 
 
(74) 
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� 𝐼𝑉� = �
1

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 � + 1

� �− �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 1

−1 −𝑅𝑙𝑜𝑠𝑠
� �

𝐷

𝐷
𝑟𝑐𝐶
𝐿
� �𝑉𝑔� 

 

 
 
(75) 

� 𝐼𝑉� = �
1

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 �

�

⎣
⎢
⎢
⎡𝐷
𝑟𝑐𝐶
𝐿
−
𝐷
𝑅𝑜

− 𝐷
𝑟𝑐𝐶
𝐿

𝐷 − 𝐷
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿 ⎦
⎥
⎥
⎤
�𝑉𝑔� 

 

 
 
(76) 

𝐼 =
−𝐷 𝑅𝑜�

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 � + 1

𝑉𝑔 

 

 
 
(77) 

𝑉 =
𝐷 − 𝐷𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 �

𝑉𝑔 

 

 
(78) 

�𝑉 = 𝐷𝑉𝑔; 𝐼 = −
𝐷
𝑅𝑜

𝑉𝑔 when 
𝑅𝑙𝑜𝑠𝑠

𝑟𝑐𝐶
𝐿
≪ 1

𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

≪ 1
� 

 

 
 
(79) 

𝐼𝑔 = [𝐷 0] � 𝐼𝑉� + 0 

 

(80) 

𝐼𝑔 = 𝐷𝐼 

 

(81) 

The linearized model may be combined with the perturbed model using the rule: 

𝐾
𝑑𝑥�(𝑡)
𝑑𝑡

= 𝐴𝑥�(𝑡) + 𝐵𝑢�(𝑡) + {(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢}�̂�(𝑡) 

𝑦�(𝑡) = 𝐶𝑥�(𝑡) + 𝐸𝑢�(𝑡) + {(𝐶1 − 𝐶2)𝑥 + (𝐸1 − 𝐸2)𝑢}�̂�(𝑡) 

 

 
 
(82) 
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This requires calculating {(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢} and {(𝐶1 − 𝐶2)𝑥 + (𝐸1 − 𝐸2)𝑢}.  

Solving for the two quantities, 

{(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢} = �0 0
0 0� �

𝐼
𝑉� + �

1
𝑟𝑐𝐶
𝐿
� �𝑉𝑔� 

 

 
(83) 

{(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢} = �
𝑉𝑔

𝑉𝑔𝑟𝑐𝐶
𝐿

� 

 

 
(84) 

{(𝐶1 − 𝐶2)𝑥 + (𝐸1 − 𝐸2)𝑢} = [1 0] � 𝐼𝑉� = 𝐼 

 

(85) 

the small-signal state space model may be formulated using this result, the rule in Eqn (82), 

and matrices of the averaged state space model of Eqn (73): 

�𝐿 0
0 𝐶�

𝑑
𝑑𝑡
� 𝚤̂(𝑡)𝑣�(𝑡)�

= �
−𝑅𝑙𝑜𝑠𝑠 −1

1 −�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 �� �

𝚤̂(𝑡)
𝑣�(𝑡)� + �

𝐷

𝐷
𝑟𝑐𝐶
𝐿
� 𝑣�𝑔(𝑡)

+ �
𝑉𝑔

𝑉𝑔𝑟𝑐𝐶
𝐿

� �̂�(𝑡) 

�𝚤�̂�(𝑡)� = [𝐷 0] � 𝚤̂(𝑡)𝑣�(𝑡)� + [0] + 𝐼�̂�(𝑡) 

 
 
(86) 

The small-signal equations come directly from the small-signal state space model: 

𝐿
𝑑𝚤̂(𝑡)
𝑑𝑡

= −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑡) − 𝑣�(𝑡) + 𝐷𝑣�𝑔(𝑡) + 𝑉𝑔�̂�(𝑡) 

 

 
(87) 

𝐶
𝑑𝑣�(𝑡)
𝑑𝑡

= 𝚤̂(𝑡) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 𝑣�(𝑡) +

𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑡) +
𝑉𝑔𝑟𝑐𝐶
𝐿

�̂�(𝑡) 
 
(88) 
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𝚤�̂�(𝑡) = 𝐷𝚤̂(𝑡) + 𝐼�̂�(𝑡) 

 

(89) 

The small-signal model of the circuit is formed by treating each of these equations either a 

KVL or a KCL, and reversing the process used to obtain a Kirchhoff equation.  Eqn (87) 

becomes a KVL since the primary component, 𝐿 𝑑�̂�(𝑡)
𝑑𝑡

, is a voltage.  Eqn (88) and Eqn (89) 

both become KCL equations because both primary components, 𝐶 𝑑𝑣�(𝑡)
𝑑𝑡

 and 𝚤�̂�(𝑡) are 

currents.  Figure 74, Figure 75, and Figure 76 are all circuit manifestations of each of these 

equations.  Note that the quantity, 𝑍𝐿 is an impedance equivalent of the 𝑟𝑐𝐶𝐿  term in Eqn (88) 

such that 𝑍𝐿 = 𝐿
𝑟𝑐𝐶

. 
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Dvg(t)

L

Rloss

Vgd(t)

+
-

+

^

+- -

di
dt

i(t)^

v(t)^

 
Figure 74. Circuit Derived from Eqn (87) 

 

 

RoZL C v(t)i(t)
VgrcCd(t) DrcCvg(t)

L L

+

-

^
^ ^

^

 
Figure 75. Circuit Derived from Eqn (88) 

 

 

vg(t) ^DC

ig(t)

Id(t) Di(t)
^^

 
Figure 76. Circuit Derived from Eqn (89) 
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The full small signal model comes from combining the three of these together.  This can be 

accomplished by using the following substitutions.  All current branches in Figure 75 are 

directly in parallel with one another, which means that the voltage, 𝑣�(𝑡) is the voltage across 

each branch.  In Figure 74, the voltage across the voltage source on the right is 𝑣�(𝑡).  

Furthermore, the incoming current, 𝚤̂(𝑡), on the leftmost branch of Figure 75 matches the 

outgoing current of the loop in Figure 74.  As both of these match one another, the 

substitution can be made by substituting the voltage source 𝑣�(𝑡) on the right side of Figure 

74 with the entire circuit of Figure 75 by replacing the incoming current, 𝚤̂(𝑡), which is where 

the substitution occurs for that circuit. 

The circuits of Figure 74 and Figure 76 may be attached by treating the rightmost current 

source of Figure 76, 𝐷𝚤̂(𝑡), and the leftmost voltage source of Figure 74, 𝐷𝑣�𝑔(𝑡) as an ideal 

transformer model.  The combination of the three circuits results in the AC equivalent small-

signal model, diagramed in Figure 77. 

 

 

RoZL C v(t)
VgrcCd(t) DrcCVg(t)

L L

+

-

^ ^
vg(t)

L

Rloss

Vgd(t)^

ig(t)

Id(t)

1:D

^

^

^

^

 

Figure 77. Complete Small-Small AC Equivalent Model of Boost Converter 
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The system’s transfer functions can be obtained by doing Laplace transforms of the small-

signal equations, Eqns (87), (88), and (89). 

𝑠𝐿𝚤̂(𝑠) = −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑠) − 𝑣�(𝑠) + 𝐷𝑣�𝑔(𝑠) + 𝑉𝑔�̂�(𝑠) 

 

(90) 

𝑠𝐶𝑣�(𝑠) = 𝚤̂(𝑠) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 𝑣�(𝑠) +

𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑠) +
𝑉𝑔𝑟𝑐𝐶
𝐿

�̂�(𝑠) 

 

 
(91) 

𝚤̂(𝑠) = 𝐷𝚤̂(𝑠) + 𝐼�̂�(𝑠) 

 

(92) 

The line-to-output transfer function, 𝐺𝑣𝑔(𝑠), may be obtained by taking the Laplace 

transformed equations in Eqns (90), (91), and (92) with the perturbed duty cycle value, �̂�(𝑠), 

set to 0.  This results in: 

𝑠𝐿𝚤̂(𝑠) = −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑠) − 𝑣�(𝑠) + 𝐷𝑣�𝑔(𝑠) 

 

(93) 

𝚤̂(𝑠) =
𝐷𝑣�𝑔(𝑠) − 𝑣�(𝑠)
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

 

 

 
(94) 

𝑠𝐶𝑣�(𝑠) = 𝚤̂(𝑠) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 𝑣�(𝑠) +

𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑠) 

 

 
(95) 

𝑣�(𝑠) �𝑠𝐶 +
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
� =

𝐷𝑣�𝑔(𝑠) − 𝑣�(𝑠)
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

+
𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑠) 

 

 
(96) 

𝑣�(𝑠) �𝑠𝐶 +
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿

+
1

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
� = 𝑣�𝑔(𝑠) �

𝐷𝑟𝑐𝐶
𝐿

+
𝐷

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
� 

 

 
(97) 

𝐺𝑣𝑔(𝑠) =
𝑣�(𝑠)
𝑣�𝑔(𝑠) =

𝑠𝐷𝑟𝑐𝐶 + 𝐷𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 + 𝐷

𝑠2𝐿𝐶 + 𝑠𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑠𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

+ 𝑠𝑟𝑐𝐶 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 + 1

 
 
(98) 
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𝐺𝑣𝑔(𝑠) =
�𝐷 + 𝐷𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿 � + 𝑠𝐷𝑟𝑐𝐶

�1 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 + 𝑅𝑙𝑜𝑠𝑠

𝑅𝑜
� + � 𝐿𝑅𝑜 + 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2

 

 

 
(99) 

𝐺𝑣𝑔(𝑠) ≈
𝐷 + 𝐷𝑟𝑐𝐶𝑠

�1 + 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

� + � 𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2
 

 

 
(100) 

The control-to-output transfer function, 𝐺𝑣𝑑(𝑠), may be obtained in a similar manner, by 

taking the Laplace transformed equations in Eqn (90), (91), and (92) with the perturbed 

generation voltage, 𝑣�𝑔(𝑠), set to 0.  This results in: 

𝑠𝐿𝚤̂(𝑠) = −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑠) − 𝑣�(𝑠) + 𝑉𝑔�̂�(𝑠) 

 

(101) 

𝚤̂(𝑠) =
𝑉𝑔�̂�(𝑠) − 𝑣�(𝑠)
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

 

 

 
(102) 

𝑠𝐶𝑣�(𝑠) = 𝚤̂(𝑠) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
� 𝑣�(𝑠) +

𝑟𝑐𝐶
𝐿
𝑉𝑔�̂�(𝑠) 

 

 
(103) 

𝑣�(𝑠) �𝑠𝐶 +
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿

+
1

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
� = �̂�(𝑠) �𝑉𝑔 +

𝑟𝑐𝐶
𝐿

+
𝑉𝑔

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
� 

 

 
(104) 

𝐺𝑣𝑑(𝑠) =
𝑣�(𝑠)
�̂�(𝑠)

=
𝑉𝑔�𝑟𝑐𝐶𝑠 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿 + 1�

�1 + 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

� + � 𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2
 

 

 
(105) 

𝐺𝑣𝑑(𝑠) ≈
𝑉𝑔 + 𝑉𝑔𝑟𝑐𝐶𝑠

�1 + 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

� + � 𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2
 

 

 
(106) 
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The final fragment of the transfer function is obtained from the AC equivalent small-signal 

model by taking 𝑣�𝑔(𝑠) and �̂�(𝑠) as zero.  Making these substitutions results in the circuit in 

Figure 78.   

 

sL

Rloss

ZL sC Ro

_1_

Zout

 

Figure 78. Circuit Used to Derive ZOUT(s) 

 

The output impedance 𝑍𝑜𝑢𝑡 is calculated by finding the resistance seen by the load 𝑅𝑜.  This 

may be done according to Ohm’s law, where 𝑍 = 𝑉
𝐼 .  In this case, V may be treated as 1 V, 

and I may be treated as a sum of the current in all three remaining branches, resulting in: 

𝑍𝑜𝑢𝑡(𝑠) = �
1

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
+
𝑟𝑐𝐶
𝐿

+ 𝑠𝐶�
−1

 

 

 
(107) 

𝑍𝑜𝑢𝑡(𝑠) =
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

�1 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 � + (𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶)𝑠 + 𝐿𝐶𝑠2

 

 

 
(108) 

𝑍𝑜𝑢𝑡(𝑠) ≈
𝑅𝑙𝑜𝑠𝑠 �1 + 𝐿

𝑅𝑙𝑜𝑠𝑠
𝑠�

1 + (𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶)𝑠 + 𝐿𝐶𝑠2
 

 

 
(109) 

With 𝐺𝑣𝑔(𝑠), 𝐺𝑣𝑑(𝑠), and 𝑍𝑜𝑢𝑡(𝑠), all components of the block diagram in Figure 8 are 

defined.  The 𝐺𝑣𝑑(𝑠) transfer function listed in Eqn (1) is obtained by applying the values in 
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Table 15 to the 𝐺𝑣𝑑(𝑠) transfer function in Eqn (106).  The resulting transfer function is 

again listed in Eqn (110). 

𝐺𝑣𝑑(𝑠) =
0.000282𝑠 + 10

4.9 × 10−9𝑠2 + 5.064 × 10−5𝑠 + 1
 

 

 

 
(110) 

Table 15. Component Values for Buck Converter 

Symbol Value Description Symbol Description 
Vg 10 V Input Voltage D Duty Cycle 
L 100 μH Inductance Vo Output Voltage 
C 47 μF Output 

Capacitor 
I Inductor 

Voltage 
Ro 10Ω Load Resistance 𝑣�𝑔(𝑡)  Input Voltage 

Perturbation 
rds 0.027Ω MOSFET ON 

resistance 
�̂�(𝑡)  Duty Cycle 

Perturbation 
RL 0.025Ω Inductor ESR   
rc 0.6Ω Capacitor ESR   
Rloss RL+rds Loss 

Components 
  

 

 

All of these calculations come from power electronic circuit analysis performed by Avik 

Juneja, a fellow Ph.D. student under Dr. Alexander Dean. 
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Appendix C  
Code Structure for MPPT Software 
The code on the Renesas RL78 MCU controls the boost converter and samples both the input 

and output current and voltage (see Figure 33).  The code is organized into two sections: 

• Code Generated Automatically By Applilet – Applilet is a program developed to make 

peripheral configuration easy.  The program includes a GUI and allows a user to sort 

through menus and options, and will automatically generate the code that configures 

the peripherals as well as the main file.  Each general peripheral gets its own file, with 

an API consisting of several control functions, and leaves room for the user to decide 

how to directly interact with the peripherals. 

• User Source Code – This contains all additional code defined directly by the user to 

perform calculations, functions, and algorithms that define the control of the program.  

This code interacts with the peripherals via the API automatically generated for each 

peripheral by Applilet. 

The following tables list the files for the Applilet code and the user source code and what 

their purpose is. 
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Table 16. List of Files and Descriptions of each Applilet Generated File 

File Group Description Relevant Functions 

r_adc.c 

r_adc_user.c 

r_cg_adc.h 

Control for the ADC.  

Configures the ADC to 

sweep read multiple 

channels and store the 

result.  

R_ADC_Create(), R_ADC_Start(), 

R_ADC_Set_OperationOn(), 

R_ADC_Get_Result() 

r_cgc.c 

r_cgc_user.c 

r_cg_cgc.h 

Control for the Clock 

Generator.  The clock 

generator is initialized on 

start up and not 

reconfigured after. 

R_CGC_Create() 

r_intc.c 

r_intc_user.c 

r_cg_intc.h 

Control for the GPIO 

Hardware Interrupts.  

These are attached to the 

push buttons on board 

R_INTC_Create(), R_INTC0_Start(), 

R_INTC1_Start(), R_INTC2_Start() 

r_it.c 

r_it_user.c 

r_cg_it.h 

Control for the Interval 

Timer.  Synchronized 

with the primary 

processing task. 

R_IT_Create(), R_IT_Start() 

r_main.c 

r_cg_macrodriver.h 

r_cg_userdefine.h 

File containing the main() 

function.  Also contains 

macro definitions used in 

all other files. 

main() 

r_port.c 

r_port_user.c 

r_cg_port.h 

Initialization for the 

GPIO Ports.  Initialized 

on start up and not 

reconfigured after. 

R_PORT_Create() 
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Table 16 Continued 

r_serial.c 

r_serial_user.c 

r_cg_serial.h 

Control for the Serial 

Array Unit.  This 

specifically controls 

UART2, which 

communicates with the 

GUI. 

R_SAU1_Create(), R_UART2_Start(), 

R_UART2_Send(),R_UART2_Receive(), 

R_UART2_Callback_RecieveEnd(), 

r_systeminit.c Initialization for the 

Entire System.  This 

method calls all 

initialization functions for 

each peripheral. 

R_Systeminit() 

r_timer.c 

r_timer_user.c 

r_cg_timer.h 

Control for the Timer 

Array Unit.  Controls 

PWM signal, instruction 

cycle counter, and MPPT 

control task. 

R_TAU0_Create(), 

R_TAU0_Channel0_Start(), 

R_TAU0_Channel4_Start(), 

R_TAU0_Channel7_Start(), 

R_TAU0_Channel7_Stop() 
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Table 17. List of Files and Descriptions of each User Defined File 

File Group Description Relevant Functions 

cb.c 

cb.h 

Defines the API for the Circular 

Buffer ADT.  Used by the UART. 

circular_buffer_init(), 

circular_buffer_write(), 

circular_buffer_read(), 

circular_buffer_empty() 

function.c 

function.h 

Processing and calculation 

functions accessed by all of the 

other user source code. 

MCU_Init(), Handle_LEDs(), 

Handle_Buttons(), 

Set_Duty_Cycle(), 

Map_Value(), map_value_16(), 

fp_abs(), int_abs_32(), 

CalculatePower(),  

set_channel_output(), 

calculate_power_16() 

lcd.c 

lcd.h 

Functions controlling the LCD if 

the LCD is available. 

LCDInit(), LCDPrintf(), 

LCDUpdate() 

MPPT.c 

MPPT.h 

MPPT Algorithms and 

Initializations 

MPPT_Init(),  

set_MPPT_mode(), 

set_MPPT_variable(), 

Run_MPPT_Algorithm() 

parse.c 

parse.h 

Serial communications parsing 

functions.  Contains functions to 

parse and execute received 

messages. 

strlen(), parse_input(), 

process_command(), 

set_variable() 

uart.c 

uart.h 

Higher level API for accessing 

the UART.  Automatically 

utilizes circular buffers. 

export_uart_data(), 

transmit_uart_data() 
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Before entering main(), the system automatically calls R_systeminit() to initialize all of the 

peripherals (all of the Create() functions).  In main(), the MCU_Init() function is called, 

which essentially starts all of the peripherals, including the UART, timers, GPIO interrupts, 

and ADC.  This function also initializes the circular buffers used with the UART and 

command processing, and the MPPT parameters.  Upon complete initialization, the program 

sends out a reset signal. 

The program then continues in a while(1) loop where both periodic tasks run.  The two 

periodic tasks are: 

• Processing Task – This task is run at 20 Hz.  This takes care of all of the processing 

that happens beyond the MPPT algorithm.  This checks to see if any pushbuttons 

were pressed, handles the LEDs, processes any input data received from the UART, 

and transmits any UART data that has been exported to the UART buffer.  If the POT 

is controlling the duty cycle, then that is handled in this task.  If the ADC is running 

in asynchronous mode, that is handled in this task as well. 

• MPPT Task – This task is run at 20 Hz, but may be varied.  This task runs the 

currently selected MPPT algorithm via a function pointer.  During the course of 

running the algorithm, the channel 7 timer of serial array unit 0 is run and stopped to 

see how many instruction cycles the algorithm takes.  After the algorithm is run, the 

sampled voltage, current, and power, as well as algorithm cycle count, is exported to 

the UART buffer. 

The behavior of the code is detailed in the flowchart in Figure 79. 
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Figure 79. Flowchart of MPPT Software on the RL78 
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