
Abstract

PLAUTZ, MICHAEL BRIAN. Evaluating the Computational Requirements of Efficient
MPPT Algorithms and Relaxed Digital Control Methods on Embedded Systems. (Under the
direction of Dr. Alexander Dean).

 This thesis takes a look at two different methods related to increasing energy

efficiency on embedded systems, and evaluates the computational requirements of each

method on a low-end microcontroller (MCU). The first method looks at different Maximum

Power Point Tracking (MPPT) algorithms used to track the maximum power point for solar

PV panels, and implements them using an MCU controlled boost converter. The methods

explored are both an open-loop and closed-loop Perturb & Observe (P&O), Incremental

Conductance (InCond), and Current Sweep. Each algorithm was implemented using

floating-point and integer arithmetic. It was found that since low-end MCUs typically lack

hardware support for floating-point arithmetic, each algorithm ran in significantly less clock

cycles using integer arithmetic than using floating-point arithmetic. Also each integer MPPT

algorithm performed as well or better than their floating-point equivalent. This study also

examines the relationship between computational demand and algorithm efficiency.

 The second method related to increased energy efficiency attempts to make a bridge

between real-time scheduling theory, digital control theory, and power electronics theory.

By relaxing some of the constraints of digital control theory, this study looks at reducing the

computational demand incurred by using an MCU to run a digital compensator control loop

for a buck converter. Traditionally, a digital compensator samples at a frequency equivalent

to the switching frequency of the buck or boost converter. This thesis builds on the

assumption that the load of buck converter will spend a majority of the time in steady-state,

and in steady-state, the line will not have to be sampled as frequently. The effect of lowering

the sampling rate for a buck converter is explored in great mathematical detail. Several

methods for running the control loop at both a lower and a higher frequency depending on

transient behavior of the load are proposed and discussed. This thesis also explores using

real-time scheduling theory to integrate the digital compensator into a higher-end MCU

rather than using a dedicated MCU for DC-DC load line regulation.

© Copyright 2012 by Michael B. Plautz

All Rights Reserved

Evaluating the Computational Requirements of Efficient MPPT Algorithms and Relaxed
Digital Control Methods on Embedded Systems

by
Michael Brian Plautz

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Engineering

Raleigh, North Carolina

2012

APPROVED BY:

_____________________________ ________________________________
Dr. Alexander Dean Dr. Subhashish Bharracharya
Committee Co-Chair Committee Co-Chair

Dr. Troy Nagle

ii

Dedication

To my lovely, beautiful wife, Kristin, who has been very supportive through this entire

process.

And, to my parents, Douglas and Sally.

In special memory of Nicholas F. Hardesty (1953 – 2012).

iii

Biography

Michael Plautz is a native North Carolinian, born in Goldsboro, North Carolina on March

2nd, 1987 and grew up in Cary, North Carolina. His interest in computers began at a

young age when he was introduced to several computer languages, including C and

QBASIC, upon which he began teaching himself and developing his knowledge of

computer programming. He graduated from Green Hope High School and then graduated

summa cum laude with two undergraduate degrees in Electrical Engineering and

Computer Engineering and a minor in Music from North Carolina State University.

Michael worked with Dr. Alexander Dean to write a textbook as an undergraduate student

before entering graduate school under the direction of Dr. Dean in pursuit of his master’s

degree. Through the course of his college, he has interned at several companies, including

Longent, LLC, Corning, Inc, and IBM. He has accepted a full time offer for IBM prior to

his graduation.

Michael has made a hobby out of programming microcontrollers and writing GUIs for

them in Java. Aside from this, Michael’s favorite pass time is to write and play music. He

is a trained percussionist, though enjoys playing guitar and piano as well. He loves the

outdoors, and received his Eagle Scout award while in high school. He spent two years

away from college as an undergraduate in Colorado serving a mission for The Church of

Jesus Christ of Latter-Day Saints.

Michael has been happily married to his wife Kristin for three years. She also attends

North Carolina State University, in pursuit of a Bachelor of Arts degree in Sociology.

iv

Acknowledgements

It has been my pleasure to work with such esteemed colleagues and learn under their

direction. I would like to thank Dr. Alexander Dean for being very supportive of me

through the course my education. He has been very understanding, as well as educational

and entertaining. I would like to thank Dr. Subhashish Bhattacharya for imparting of his

vast knowledge with me, including his knowledge of power electronics. I would also like

to thank Dr. Troy Nagle for teaching a course in one of my very favorite subjects, and

allowing me to ask him questions about the material on Skype at various hours. I would

also like to thank the ECE graduate and undergraduate department for their help in making

my graduation possible.

A special thanks goes to my research team, who has been insurmountably helpful in

pursuit of my research, and has essentially responded to my every need in terms of my

academics. Thank you, Avik Juneja, for the research you have conducted that I was able

to build upon. Thank you, Mihir Shah, Shikhar Singh, and Tharunachalam Pindicura, for

allowing me to springboard off of the research you have conducted. And thank you, Rohit

Taneja and Miguel Rufino for allowing me to confer with you whenever I had a question

about the research.

A very special thanks goes to my wife, Kristin, for supporting my decision to go further

with my education, and who has been very patient with me as I have labored through

getting my degrees. Also, a very special thanks goes to my parents, Douglas and Sally,

for inspiring me to go to college and pursue higher education. Thank you to my brothers

and sisters, for no longer picking on me now that I have made something of myself.

Thank you to my best friend, colleague, and former roommate Deepak Veerapandian, for

always engaging in intelligent discussion with me. Also, thank you to my little dog Zoey

who has brought me joy when stress weighed heavily on me.

v

Table of Contents

List of Figures .. viii

List of Tables .. xii

1. Introduction ..1

1.1 Significance of the Study ..1

1.2 Motivation ...2

1.3 Background ...2

1.4 Related Work ...7

1.4.1 Use of Microcontrollers for Digital Control in Power Electronics7

1.4.2 The Relationship Between Control Loop Frequency and Operating Voltage8

1.4.3 MPPT Algorithms for Solar PV Panels ...9

1.5 Outline of the Rest of the Document ...10

2. Relaxing Constraints of Digital Control Theory ..11

2.1 The Nyquist Sampling Theorem ...11

2.2 Slowing Down the Sampling Rate ..11

2.3 Impact of Slowing Down the Sampling Rate ..14

2.4 Modeling Continuous Domain Transfer Functions in the Discrete Domain20

2.5 Impact of Slowing Down the Sampling Rate of a Digital Compensator23

2.6 Integer Approximation ..30

2.6.1 Integer Arithmetic versus Floating-Point Arithmetic ..30

2.6.2 Integer Arithmetic versus Fixed-Point Arithmetic ..36

2.6.3 Impact of Integer Approximation on a Digital Compensator39

3. Computational Requirements of PV Solar Panel MPPT Control48

3.1 Various MPPT Algorithms ..48

3.1.1 Perturb and Observe Algorithm ...49

3.1.2 Incremental Conductance ...50

3.1.3 Current Sweep ..51

3.1.4 Closed-Loop Perturb and Observe ...52

3.2 MPPT Apparatus ...53

vi

3.2.1 Hardware ..53

3.2.2 Software ...54

3.3 Performance of MPPT Algorithms Using Floating-Point Arithmetic58

3.3.1 P&O Performance ..58

3.3.2 Closed-Loop P&O Performance ..59

3.3.3 InCond Performance ..60

3.3.4 Current Sweep Performance ..61

3.3.5 Performance Versus Changing Other Parameters ..62

3.3.6 Comparison of Performance of Floating-Point MPPT Algorithms64

3.4 Performance of MPPT Algorithms Using Integer Arithmetic65

3.4.1 Basis for Using Integer Approximation ...65

3.4.2 P&O Performance ..67

3.4.3 Closed-Loop P&O Performance ..68

3.4.4 InCond Performance ..69

3.4.5 Current Sweep Performance ..71

3.4.6 Performance Under Other Circumstances ...72

3.4.7 Comparison of Performance of Integer MPPT Algorithms73

3.5 Comparison of Floating-Point MPPT and Integer MPPT ...73

4. Computational Requirements of SMPS Digital Control ..81

4.1 Proposed Methods for Digital Control of SMPS ..81

4.1.1 Traditional Sampling Method ..82

4.1.2 Varied Sampling Frequency Method ...83

4.1.3 Varied Sampling Frequency and Hold Method ...85

4.1.4 Emergency Mode Only Method...88

4.1.5 Pseudo-Adaptive Control Method ...90

4.2 Computational Requirements ..93

5. Discussion and Analysis of Results ..103

5.1 MPPT Applications ...103

5.2 RTOS Applications ...106

vii

5.2.1 Using an RTOS ..106

5.2.2 Real-time Scheduling Analysis using Rate Monotonic Scheduling107

5.3 Cost Analysis ...111

5.4 Future Work ..112

5.4.1 Characterizing the Impact of Loss of Precision in Digital Control112

5.4.2 Tuning Optimized MPPT Algorithms ...112

5.4.3 Time Responses of Intelligent and Relaxed Digital Control112

5.4.4 Determining the Impact of Having MPPT in a Solar Powered Load Line

Regulated System ...113

5.5 Conclusion ...113

References ..115

Appendix ..117

Appendix A Acronyms Used within the Document ..118

Appendix B Buck Converter AC Small Signal Analysis...119

Appendix C Code Structure for MPPT Software ..133

viii

List of Figures

Figure 1. Schematic of Buck Converter Used in this Study ... 4

Figure 2. Schematic of Boost Converter Used in this Study .. 4

Figure 3. Power Curve of a Typical Large PV Panel [2] .. 5

Figure 4. Impact of Lowering Task Frequency on Transient Response 8

Figure 5. The Relationship Between Vmargin and ftask at a 5 V Operating Point 9

Figure 6. Characterization of Typical DC Loads ... 12

Figure 7. Small Signal AC Equivalent Model of Buck Converter 14

Figure 8. System Block Diagram of Buck Converter ... 14

Figure 9. Bode Plots of Plant Transfer Functions .. 16

Figure 10. G(s) Sampled at Various Frequencies ... 17

Figure 11. Open-Loop Poles and Zeros of the Plant ... 18

Figure 12. Movement of Poles and Zeros with Changed Sampling Frequency 18

Figure 13. Z-plane Grid with Lines of Constant Damping and Constant Natural Frequency

... 18

Figure 14. Z-plane Grid of Plant Transfer Function Poles and Zeros 20

Figure 15. Block Diagram of a Numerical PID Compensator .. 22

Figure 16. Bode Diagram of Uncompensated and Compensated Systems with Phase

Margin and Gain Margin Displayed ... 24

Figure 17. Step Response of Uncompensated and Compensated Systems 24

Figure 18. Root Locus of Compensated System with Closed Loop Gains Close to 1

Chosen... 24

Figure 19. Bode Plot of System at Different Frequencies .. 26

Figure 20. System Step Responses at Different Sampling Frequencies 27

Figure 21. W-plane Poles and Zeros of the PID Compensator with Changing Sampling

Frequency .. 29

Figure 22. Z-plane Graph of Poles and Zeros of High-Pass Filter H(z) 31

Figure 23. Z-plane Graph of Poles and Zeros of Truncated High-Pass Filter H(z) 32

Figure 24. Effect of Loss of Precision on Poles and Zeros of Plant Transfer Function 33

ix

Figure 25. Excerpt from RL78 Assembly of a Floating-Point Multiplication 34

Figure 26. Excerpt from RL78 Assembly of an Integer Multiplication 35

Figure 27. Movement of the z-plane PID Compensator Zeros with different values of KRES.

... 44

Figure 28. Compared System Step Responses of the Uncompensated System and PID

Compensated System with different values of KRES ... 46

Figure 29. Power Curve of PV Panel .. 48

Figure 30. Flowchart of P&O Algorithm .. 49

Figure 31. Flowchart of InCond Algorithm .. 51

Figure 32. Graphic Representation of the Closed-Loop P&O Method 52

Figure 33. Schematic of the MPPT Apparatus Used for each Test 54

Figure 34. PPMonitor GUI Used to Monitor and Control the RL78 MPPT Algorithms ... 56

Figure 35. PPMonitor Scope Output versus Oscilloscope Output for Sudden Increase and

Decrease of Duty Cycle .. 57

Figure 36. PPMonitor Scope Output versus Oscilloscope Output for Sudden Increase in

Duty Cycle .. 57

Figure 37. PPMonitor Scope Output versus Oscilloscope Output for Momentary

Shadowing of PV Panel .. 57

Figure 38. Floating-Point Simple P&O Performance ... 58

Figure 39. Floating-Point Closed-Loop P&O Performance ... 59

Figure 40. Floating-Point InCond Performance .. 60

Figure 41. Floating-Point Current Sweep Performance .. 61

Figure 42. MPP Achieved by Manual Tuning with the POT compared Floating-Point

Closed-Loop P&O MPPT. .. 62

Figure 43. Floating-Point Simple P&O Performance with Varied Task Frequencies 63

Figure 44. Integer Simple P&O Performance ... 67

Figure 45. Integer Closed-Loop P&O Performance ... 68

Figure 46. Integer InCond Performance Based on VREF Adjustment 69

Figure 47. Integer InCond Perfromance Based on Duty Cycle Adjustment 70

x

Figure 48. Integer Current Sweep Performance ... 71

Figure 49. Integer Performance of P&O Algorithm Recovering from Complete Shading

and 100% Duty Cycle ... 72

Figure 50. MPPT Efficiency versus Clock Cycle Count .. 79

Figure 51. Projected Efficiency versus Cycle Count with algorithm tuning 80

Figure 52. Relationship of Control Methods in terms of Relaxed Constrains 81

Figure 53. Output Voltage Sampled at Switching Frequency .. 82

Figure 54. Flowchart for Simple Varied Frequency Algorithm ... 84

Figure 55. Output Voltage Sampled at Switching using Varied Frequency Method 85

Figure 56. How Samples are Used in the Simple Varied Frequency Method 86

Figure 57. How Samples are Used in the Varied Frequency and Hold Method 86

Figure 58. Output Voltage Sampled at Switching using Varied Frequency and Hold

Method .. 87

Figure 59. Flowchart for Emergency Mode Only Algorithm ... 89

Figure 60. Output Voltage Sampled at Switching using the Emergency Mode Only

Method .. 90

Figure 61. Voltage Sampled at Switching using the Pseudo-Adaptive Control Method. . 92

Figure 62. Implementation of Difference Equation Using Arrays 94

Figure 63. Implementation of Difference Equation Using Non-Indexed Global Variables

... 96

Figure 64. Graphical Comparison of Execution Times of Control Methods using Arrays 99

Figure 65. Graphical Representation of Execution Times of Control Methods without

Arrays .. 100

Figure 66. Comparison of Execution Times of Control Methods with and witout Arrays

... 101

Figure 67. Schematic of MPPT Enabled Device that also Employs AVS 104

Figure 68. Using a Single Processor versus Having a Dedicated Control Processor 106

Figure 69. Control Loop Utilization based on Method and Task Frequency 109

xi

Figure 70. Minimum Processor Speed Required for Control Loop Task to Run at Different

Frequencies with U = 1 ... 110

Figure 71. Synchronous Buck Converter Circuit with Losses Included 119

Figure 72. Buck Converter in Mode (1).. 120

Figure 73. Buck Converter in Mode (2).. 120

Figure 74. Circuit Derived from Eqn (87) .. 127

Figure 75. Circuit Derived from Eqn (88) .. 127

Figure 76. Circuit Derived from Eqn (89) .. 127

Figure 77. Complete Small-Small AC Equivalent Model of Boost Converter 128

Figure 78. Circuit Used to Derive ZOUT(s) .. 131

Figure 79. Flowchart of MPPT Software on the RL78 ... 138

xii

List of Tables

Table 1. System Gain Margins and Phase Margins at Various Sampling Frequencies26

Table 2. Coefficients of High-Pass Filter H(z) ..31

Table 3. Comparison of Number of Instructions Required for Integer and Floating-Point

Multiplication ...36

Table 4. Fixed-Point Arithmetic Basic Operations Summary ...37

Table 5. Comparison of Fixed-Point Arithmetic Methods ..38

Table 6. Numerator Coefficients of the Actual PID Compensator ..45

Table 7. Integer Approximated Numerator Coefficents of the PID Compensator45

Table 8. Comparison of Floating-Point MPPT Algorithms ...74

Table 9. Comparison of Integer MPPT Algorithms...75

Table 10. Comparison of Execution Times (in instruction cycles) of the Same Algorithms

Run with Floating-Point and Integer Arithmetic ...76

Table 11. Comparison of Execution Times of each Control Method Using Indexed Arrays ..95

Table 12. Comparison of Execution Times of each Control Method Using Non-Indexed

Global Variables ..97

Table 13. Comparison of MPPT Processor Utilization Values ...108

Table 14. List of Capabilities versus Cost of MCUs in the RL78 family111

Table 15. Component Values for Buck Converter...132

Table 16. List of Files and Descriptions of each Applilet Generated File134

Table 17. List of Files and Descriptions of each User Defined File136

1

1. Introduction

1.1 Significance of the Study
Today, there are a plethora of reasons to conserve energy. These reasons may range from

scarcity of non-renewable energy to scaling down high costs of energy. A common thread

among all of these reasons is the fact that no matter what the source of energy is, there as a

cost associated with using it. As a result, a tremendous amount of research is being

conducted in the realm of energy use reduction. Because cost is a factor in just about every

area of business, the idea is that reducing energy use will reduce costs.

This study targets the relationship between cost ‒ evaluated in dollars, computation power,

etc. ‒ and measures to reduce energy use, or make energy use more efficient. The focus of

this study is how this applies to embedded systems and microcontrollers, which represent a

large portion of all computers in the world today. Although an individual microcontroller

may only consume on the order of milliwatts of energy, the high abundance of

microcontrollers in the world warrants the need for energy efficiency with each

microcontroller. Technology implemented on a small device will have huge impact as it is

then implemented on a large scale.

Specifically, two areas of energy efficiency are explored in this study: (1) Using an algorithm

to achieve the highest power output of a photovoltaic (PV) panel as the input power source to

an embedded system and (2) Using reduced computational digital control to achieve adequate

and correct performance of a buck converter powering peripheral devices. Knowing and

improving the computational requirements of such algorithms gives advantages in two ways.

This means that either (1) a slower, cheaper microcontroller may be used to achieve similar

performance compared to something more expensive, or (2) these computations may be

performed as periodic tasks on the same microcontroller controlling the peripherals. Under

the latter condition, the need to have a separate device to control a buck or boost converter is

eliminated.

2

1.2 Motivation
Since the lifetime of an embedded system is typically several years, the consideration for

having a renewable energy source is an excellent choice. Typical embedded systems that use

non-renewable energy are powered either by batteries or by AC wall power, so two major

tradeoffs with using renewable energy such as a solar PV panel are (1) cost of a PV panel and

(2) availability of input power. Where AC wall power is generally constantly available, and

batteries occasionally need to be charged or replaced, power from PV panels is not always

available due to the inevitable absence of light. This can be compensated by storing the solar

generated energy in a rechargeable battery. However, two additional considerations arise

from doing so: (1) biasing the load to get the maximum power out of the PV panel, and (2)

boosting or compensating the PV panel’s voltage to be sufficient to charge the battery. If the

cost of taking both of these factors into consideration is reduced, then the choice of having a

PV panel as a power source, despite a higher initial cost, can lead to substantial savings in

cost and energy.

In a related concept, both cost and use of energy are important factors to control and be

aware of in an embedded system. When determining an appropriate method of DC-DC load

line regulation in an embedded system, two common approaches typically arise: the use of a

linear regulator or the use of a switching converter. Although linear regulators are cheap

compared to switching converters, they do not come close to matching the efficiency of a

switching converter. Since switching converters are much more efficient, their higher cost

can be justified by the amount of wasted energy they prevent and in turn the amount of cost

saved. A large portion of the cost of a switching converter is the control mechanism used to

regulate DC-DC voltage conversion [1]. A target of research for years has been on reducing

the cost of the control mechanism, and as it is lowered, switching converters become a more

feasible and obvious choice for DC-DC power regulation, especially for embedded systems.

1.3 Background
In both of the areas that this study targets, control and control theory is at the heart of each

concept. Control, typically meaning feedback control, has traditionally been implemented in

analog circuitry. The choice of using analog circuitry has been because of its availability and

3

relative low cost to alternative options. As a result, there are many control systems that exist

in analog circuitry, as well as papers and research that supports using analog methods to

perform feedback control. In the recent years alternative methods ‒ such as digital control ‒

have begun to be as cheap or cheaper than analog methods. As semiconductors and

computer technology have improved, it has become much more feasible to use digital control

in place of analog control. Aside from cost, digital control is (1) flexible and scalable, easy

to change, (2) less sensitive to aging, and (3) less sensitive to noise. Plausible downsides to

using digital control over analog control include (1) round-off and computational error, and

(2) delay in computation, and (3) more complexity in design [6]. However, even taking these

three downsides into account, this study focuses on just how different the performance is

with these are all taken into account.

4

Figure 1. Schematic of Buck Converter Used in this Study

L

100 μH
D

C
47μF

NMOS

PWM

ADC in

1Ω Zener

V in
+

-

V out

BD

Figure 2. Schematic of Boost Converter Used in this Study

5

For Switched Mode Power Supplies (SMPS) switching converters, analog control feedback

has traditionally been used, but digital control has made a presence in the last decade. Using

digital control is highly justifiable especially for SMPS because of the need for a Pulse Width

Modulation (PWM) signal to control the Duty Cycle (D) for the transistor switches.

Although a PWM signal can easily be generated from analog circuitry, most modern

microcontrollers have the capability to generate a PWM signal without incurring a high

computational cost. Instead of using operational amplifiers and linear components to build a

compensator, a microcontroller simply must use an A/D converter to quantize the output

voltage, perform a computation via a difference equation, and update a register that

automatically takes care of the PWM signal. Therefore, the complexity becomes manifest by

(1) choosing a fast enough microprocessor with an adequate A/D converter, and (2)

designing a digital compensator that will allow the SMPS to meet specifications under

varying conditions.

Figure 3. Power Curve of a Typical Large PV Panel [2]

For a solar PV panel, getting the maximum output power (i.e. maximum solar efficiency) is

achieved by biasing the output voltage and current of the PV panel. This is normally

accomplished by biasing the amount of input impedance that the PV panel sees as a load.

6

The output power then becomes a function of the output voltage, according to the power-

voltage curve intrinsic to a solar PV panel. When connecting a buck or a boost converter to a

PV panel, the input impedance becomes a function of many factors, including load resistance

and duty cycle. If all other things are assumed constant, biasing the input impedance of the

switching converter can be done simply by adjusting the duty cycle. Because of the nature of

the power-voltage curve of a PV panel (see Figure 3), there is a maximum power point

achieved at a particular duty cycle value, and Maximum Power Point Tracking (MPPT) is a

method used to control the duty cycle to attain the maximum power. These algorithms have

been proven to be effective, and have traditionally been implemented in combinations of

analog circuitry and digital logic. For similar reasons to those of an SMPS, microcontrollers

now pose as a viable option because of their ability to perform calculations.

A method to achieve optimal efficiency of energy use is by regulating the voltage through

Aggressive Voltage Scaling (AVS). This involves using an SMPS to regulate an output

voltage. The application of AVS to microcontrollers within embedded systems is manifest

by having a microcontroller sample an output voltage and then use a digital compensator in

software to adjust the duty cycle accordingly. The digital compensator is run periodically in

a control loop that can either match the switching frequency of the transistors in the SMPS or

it can run slower to conserve computational power. What this allows for is two things; either

(1) the output voltage can be reduced to the minimum allowed voltage required by the load

that is being powered, with the control loop running as fast as possible to ensure that the

output voltage never dips below this threshold, or (2) the control loop can be run slower to

conserve computational power and the operational voltage is raised a fair amount above the

load’s minimum threshold so that the digital controller will have time to respond and regulate

the voltage if it should drop due to some disturbance [4]. This is based on the fact that with a

time varying load, voltage will naturally drop if current consumed by the load increases.

This also applies to keeping output voltage below a load’s maximum voltage threshold.

What makes AVS aggressive is its ability to use a single microcontroller to handle multiple

voltage domains within a single system. For example, with a single power supply, such as a

7

battery or a PV panel, four voltage domains may be managed, where one domain is boosted

above the input voltage, two may be bucked down below the input voltage, and one may be

bucked to one of the same voltages as another domain, but have tighter constraints and

therefore a more sophisticated digital compensator. Using a single microcontroller is a

different approach to the more prevalent method of giving each individual SMPS its own

dedicated compensator. While using a single microcontroller to regulate multiple power

domains, software timing constraints must also be met because each domain will have its

own dedicated digital compensator running at a different frequency depending on the

constrains for that domain. These software timing constraints can be realized by use of a

Real-Time Operating System (RTOS). Using an RTOS to achieve optimal performance, it is

important to know the computational demand a digital compensator will have, which is

dependent upon the system characteristics and the constraints that must be met for the load.

This study focuses on determining the computational demand for regulating input power

from a PV panel or output voltage for a load based on different constraints.

1.4 Related Work

1.4.1 Use of Microcontrollers for Digital Control in Power Electronics [3]
The advance has been made in the last decade to go from using analog circuitry to control an

SMPS to using a digital compensator. This paper proposes implementing a digital

compensator specifically on a microcontroller (MCU) – as opposed to strict digital logic –

and explores some of the limitations and factors that must be overcome by modeling

traditional analog control theory on a digital scale. A few of the factors that are explored are

(1) MCU clock speed, (2) ADC resolution, (3) ADC conversion time, (4) PWM resolution,

and (5) control loop frequency. Any reduction is control loop frequency relative to the

switching frequency discussed in this paper has more to do with the limitations of the MCU

than it does with intentionally lowering the control loop frequency; the intention was to use

digital control to closely mimic analog control. The conclusions of this paper are that control

implemented on an MCU will (1) ease the design process, (2) allow the control to be

scalable, and (3) reduce the amount of passive components required for control.

8

1.4.2 The Relationship Between Control Loop Frequency and Operating Voltage [4]
In a recent paper, Juneja et al. explored the real-time characteristics of digital control for

SMPS implemented in software on MCUs. The paper involved modeling the behavior of a

particular buck converter, verifying that model by comparing simulation to actual output, and

designing a digital compensator to regulate the output. The paper aims to explore practical

software implementations of digital compensators on an embedded system. Therefore,

different frequencies (other than the SMPS switching frequency) for the control task are

explored, and the effect that varying the frequency has on the closed-loop response is

analyzed. This behavior is embodied in Figure 4.

Figure 4. Impact of Lowering Task Frequency on Transient Response. The black curve displays the open-loop
response, while each colored curve shows the closed-loop response at different task frequencies. The voltage margin,
Vmargin, is defined by how far the voltage falls before compensation. [4]

9

Figure 5. The Relationship Between Vmargin and ftask at a 5 V Operating Point. [4]

It is recognized that many loads are going to have a target minimum and maximum operation

range, Vmax and Vmin, and operation of the load will have to stay within these limits. The

proposed measure of compensation then becomes raising the load’s operating voltage by a

defined voltage margin, Vmargin, which will allow the voltage to fall further with lower task

frequencies when loading, yet keep the operating voltage above Vmin. As long as the voltage

margin does not push the load’s operating voltage above Vmax, the task frequency can be

lowered with a growing Vmargin. Similarly, the load’s operating voltage can be reduced by

Vmargin closer to Vmin so that it will not exceed Vmax when unloading. Figure 5 displays the

relationship between the control loop task frequency and Vmargin.

1.4.3 MPPT Algorithms for Solar PV Panels [2]
Morales [2] did an in depth survey and study of the efficiency of different MPPT algorithms

for PV panels. The survey started by identifying various algorithms that have been the

subject of research for years prior. The survey resulted in identifying three particular

algorithms that were suitable for medium to large PV panels. The first two are called “hill-

climbing” methods, and include Perturb and Observe (P&O), and Incremental Conductance

(InCond). The third identified method was Fuzzy Logic Control (FLC). Several other

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500

V
m

ar
gi

n

Control Loop Frequency, ftask (KHz)

Relationship between Vmargin and ftask

10

algorithms were proposed as well, including Neural Networks, Constant Fractional

Reference, and Current Sweep.

To be able to test and compare the efficiency of each MPPT algorithm, a simplified

theoretical model was constructed. This simulation was intended to model actual sunlight

conditions, which include increases and decreases in both solar irradiation and temperature.

To compare additional details of each of the algorithms’ performance, factors about the

simulation were varied between runs, for example, the irradiation gradient over time.

The findings were that efficiency must be measured on more than just a simple percentage.

Efficiency of an MPPT algorithm is also characterized by how well and how quickly the

algorithm responds to changes in temperature and irradiation. As far as each algorithm’s

efficiency, the two that performed the best were the P&O and InCond methods. The FLC

algorithm performed well, but did not outperform either of the more simple “hill-climbing”

methods, P&O or InCond, so it was concluded that the extra cost in performance did not

justify the complexity of logic. Using a modified P&O algorithm that included extra rules

was determined to be better than the FLC control. The simulations indicated that both hill

climbing algorithms were able to achieve around 99% efficiency.

1.5 Outline of the Rest of the Document
The rest of the document will proceed in this order. Chapter 2 discusses the theoretical

impact of relaxing some of the constraints of digital control theory targeting reduced

computational demand. Chapter 3 discusses the computational impact of using various

MPPT algorithms to achieve maximum output power of a PV panel. Chapter 4 discusses the

computational impact of different methods of relaxed digital control. Chapter 5 is a

collaboration of results and a final discussion on the significance of these findings.

11

2. Relaxing Constraints of Digital Control Theory

2.1 The Nyquist Sampling Theorem
When adding a sampler (analog-to-digital converter) and a signal reconstructor (digital-to-

analog converter) to an analog line, the Nyquist Sampling Theorem states that a sampled

signal can be reconstructed perfectly if it is sampled at a rate that is twice the highest

frequency present in the sampled signal [5]. This is to say that if the highest frequency in a

signal is known, the sample rate should be chosen to be at least double that frequency to

prevent signal corruption on the output side. This is a necessary constraint for digital signal

processing and typically for digital control. However, when using digital control to control

an SMPS, there is no interest in recreating an output signal. The only necessity is that a

PWM signal is generated to control the switching transistors of the SMPS. This provides

justification for exploring the impact of reducing the sampling rate below what the Nyquist

Sampling Theorem mandates.

2.2 Slowing Down the Sampling Rate
One of the limitations of a microcontroller is how fast it can run. Ideally, a system could

receive input, process it, and send it out with no delay, which is a characteristic of an analog

system. However, since a microcontroller is being used, what is being gained in scalability is

being lost in instantaneity, and the speed at which data is processed must be considered. The

sample rate can be chosen according to the Nyquist Sampling Theorem, but several

constraints may be relaxed because the signal is not being sampled with the intent of

reconstruction. Since the SMPS being used in this case is a DC-DC converter, the first

assumption that can be made is that the signal is primarily a DC signal, and higher

frequencies can be ignored and are not the focus of control. The following figures show the

characterization of typical DC loads.

12

Figure 6a. Voltage and Current Response to a Servomotor making a full turn.

Figure 6b. Voltage and Current Response to a Step Load of 10Ω

Figure 6. Characterization of Typical DC Loads. Both graphs are voltage response to a sudden increase in load
current draw. The top curve for each represnets the voltage, and the bottom curve represents the current.

DC loads tend to be characterized by sudden changes in voltage due to current consumption

shooting up or down. These sudden changes in voltage are the primary focus of control, so

for this reason, the sample rate must be high enough to prevent the voltage from falling too

low or raising too high. Traditionally, the sample rate of the output voltage is set to the

switching frequency of the converter. There is little justification for it to be any higher than

the switching frequency, because since the PWM signal is purely digital, it can only take a

single value per period. For this reason, the maximum sampling rate need not be any higher

13

than the switching frequency, so the each new value of D is based on each new sample of the

output voltage.

If the digital compensator is implemented in a microcontroller as a periodic task, the

sampling rate of the output signal determines the task frequency. Higher task frequency on a

microcontroller has one of two implications: (1) higher utilization on a processor running

many periodic tasks, or (2) less time in sleep mode for a processor trying to conserve power.

In either of these cases, there is value gained in lowering the tasking frequency, and

consequently lowering the sampling frequency. If the performance of the digital

compensator can still be favorable with a reduced sampling rate, then relaxing these

constrains becomes beneficial.

Referring to Figure 6a and Figure 6b, the output voltage drops when the device turns “on.”

The goal of the compensator is to keep the output voltage constant regardless of how often

the device turns on or off. As described by [4], how much the voltage falls before being

compensated and brought back up is related to how fast it is being compensated. Therefore,

one method for setting the sampling rate of a DC-DC converter is based on the maximum and

minimum allowed voltages for a device around the reference operating voltage.

Another constraint that can be relaxed has to do with the fact that the signals are primarily

DC signals. A majority of the time, a signal will be in steady-state, held at a certain voltage.

Only less frequently does the current change dramatically. For this reason, it is reasonable to

change the sample rate dynamically based on being in steady-state or oscillation. While the

signal is primarily in steady-state mode, the sample rate can be much lower, but as soon as

the voltage begins to drop or rise due to change in current, the signal can switch to

emergency mode and the sample rate can increase to quickly compensate the signal back to

steady-state mode. Being able to switch between steady-state mode and emergency mode

allows for the control task utilization to only infrequently be high.

14

2.3 Impact of Slowing Down the Sampling Rate
Appendix B details how to construct a linear model of a DC-DC converter plant for an

otherwise nonlinear system. Using the linear model around a quiescent operating point, the

system can be treated as a plant that can be controlled using traditional feedback closed

control loops. Figure 7 shows the linearized AC equivalent small-signal model of the DC-

DC converter. Figure 8 shows the block diagram of the DC-DC converter as a linear system,

and Eqns (1) and (2) show the transfer functions of the resulting system.

Figure 7. Small Signal AC Equivalent Model of Buck Converter

Figure 8. System Block Diagram of Buck Converter

15

𝐺𝑣𝑑(𝑠) =
0.000282𝑠 + 10

4.9 × 10−9𝑠2 + 5.064 × 10−5𝑠 + 1

(1)

𝐺(𝑠) = �
1 − 𝑒−𝑠𝑡

𝑠
� 𝑒−3.5×10−6𝑠 0.000282𝑠 + 10

4.9 × 10−9𝑠2 + 5.064 × 10−5𝑠 + 1

(2)

This system, typical of a common power electronics system, is unlike traditional closed-loop

feedback systems because the input to the control loop is actually just a reference voltage,

and the actual input voltage to the system that is either being boosted or bucked is treated as a

disturbance near the output of the system. This is also true of the load, which fluctuations in

both the load and the input voltage are treated as disturbances that need to be compensated

via changes in the duty cycle. Note the difference between the control-to-output transfer

function, Gvd(s), and the plant transfer function, G(s), which includes a zero-order hold

(ZOH), the delay imposed by using a microcontroller, as well as transfer gains, which

ultimately all equate to 1 when multiplied together. The z-domain transform of the plant

transfer function is shown in Eqn (3), and is acquired by using an s-plane to z-plane mapping

of 𝑧 = 𝑒𝑠𝑇, where the sampling period T is the inverse of the sampling frequency of 150

kHz.

𝐺(𝑧) = 𝑧−1
0.1975𝑧2 + 0.08058𝑧 − 0.1868

𝑧2 − 1.922𝑧 + 0.9307

(3)

Eqn (1) shows the bode plot of the control-to-output transfer function (Gvd(s)), Eqn (2) shows

the plant transfer function (G(s)), and Eqn (3) shows the transformed z-domain transfer

function (G(z)). The bode plot in Figure 9 demonstrates the effect of the delay on the phase

of the transfer function, as well as the effect of sampling the transfer function. The bode

diagram here for the sampled z-domain transfer function cuts off at half the sampling

frequency, or the Nyquist frequency; beyond this frequency, the graph is periodic. Although

the graphs differ in high frequency behavior, they are primarily the same over the lower span

of typical operating frequencies, including the corner frequency.

16

Figure 9. Bode Plots of Plant Transfer Functions

Because the output signal is primarily a DC signal, it is possible to lower the sampling rate

down below the converter switching frequency without a tremendous amount of data

corruption. Several lower sampling frequencies were chosen, and Figure 10 shows the

impact that the lower sampling frequencies have on the bode plot of the transfer function

G(s).

-60

-40

-20

0

20

40

M
ag

ni
tu

de
 (d

B)

10
0

10
1

10
2

10
3

-360

-270

-180

-90

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (kHz)

Gvd
Gs
Gz

17

Figure 10. G(s) Sampled at Various Frequencies

For each of the sampling frequencies present in Figure 10, the bode plot of the transfer

function cuts off at half the sampling frequency, or the Nyquist frequency. For the part of the

plot that exists before the Nyquist frequency cutoff, each plot continues to resemble the

original plot of the continuous-time plant transfer function G(s). Only when the sampling

frequency reduces so low that the Nyquist frequency cuts off the plot’s corner frequency does

the sampled plant transfer function no longer bear resemblance to the original plant transfer

function.

Another interesting effect that lowering the sampling rate has is on the movement of the

poles and zeros of the plant transfer function. Figure 11 shows the open-loop poles of the

plant. Figure 12 shows the movement of the poles with reducing the sampling rate. They

move along a constant-zeta line, while what is reduced is the relative undamped natural

frequency, which is based on the sampling period T (the reciprocal of the sampling

frequency). Figure 13 shows the z-plane grid within the unit circle of stability.

-40

-20

0

20

40

M
ag

ni
tu

de
 (d

B)

10
-2

10
-1

10
0

10
1

10
2

-360

-270

-180

-90

0
Ph

as
e

(d
eg

)

Bode Diagram

Frequency (kHz)

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

18

Figure 11. Open-Loop Poles and Zeros of the Plant

Figure 12. Movement of Poles and Zeros with Changed
Sampling Frequency

Figure 13. Z-plane Grid with Lines of Constant Damping and Constant Natural Frequency

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

 1π/T

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

 1π/T

0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

19

What Figure 12 helps make clear is that the characteristics of the plant – which come from

the plant’s continuous-time characteristic equation – stay the same despite changing the

sampling rate. The characteristic equation of a second-order continuous-time transfer

function takes the form

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝑤𝑛2 = 0

(4)

and from this, the damping factor and undamped natural frequency can be determined.

Figure 14 shows the same movement of the poles as Figure 12, but along the specific

damping factor line, ζ = 0.3693, and through lines of constant undamped natural frequencies,

ωn = 1.46 × 104 radians/sec. The lines of undamped natural frequency represented in Figure

13 and Figure 14 are calculated by

𝜔𝑧 =
𝜋𝑓𝑛
𝑓𝑠

=
𝜔𝑛
𝑓𝑠

(5)

Only when the sampling frequency becomes too low does the system become altered to the

point where its characteristic equation no longer represents the same system. This is

demonstrated first by Figure 10, where the corner frequency of the bode plot is essentially cut

off due to such a low sampling frequency of 5 kHz, and again in Figure 14, where the

movement of the zeros becomes odd. Above the sampling frequency of 10 kHz, both zeros

move in towards z = 0. Around and below the sampling frequency of 10 kHz, the left zero on

the z-plane begins to again move away from the z = 0 point. The z-plane relativity of poles

and zeros no longer holds at such low sampling frequencies.

20

Figure 14a. Full View of Graph

Figure 14b. Closer View of Graph
Near z = 1

Figure 14. Z-plane Grid of Plant Transfer Function Poles and Zeros

As long as the sampling frequency stays high enough above the corner frequency, the

sampling rate can be reduced enough to slow the control task frequency down yet continue to

model the same system.

2.4 Modeling Continuous Domain Transfer Functions in the Discrete
Domain

Typical design procedures for digital compensators involve design in the continuous domain.

In the end, most systems operate in the continuous domain, even if a system involves a

sampler. When going from the continuous domain to the discrete domain, several methods

may be employed. The method used to take the plant transfer function G(s) from the

continuous domain to the discrete domain to produce G(z) used a Zero-Order Hold (ZOH)

along with a mapping of 𝑧 = 𝑒𝑠𝑇. This involves defining a modified version of a transfer

function H(s) as H*(s), which is a version of H(s) that is only defined at discrete intervals of

the sampling period T. A zero-order hold is then applied to H*(s), resulting in 𝐻�(𝑠), which

is defined over all time, and takes the discrete values of H*(s) and holds them over each

Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

-1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0972
0.146
0.194

0.292

0.583

1.46

2.92

0.0972
0.146
0.194

0.292

0.583

1.46

2.92

0.369

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

0.8 0.9 1

0.0972

0.146

0.194

0.292

0.0972

0.146

0.194

0.292

0.369

21

interval span of length T. H(z) is then just evaluated from 𝐻�(𝑠) where z = esT. In a single

equation, the transformation of h(t) to H(z) using the ZOH method is

𝐻(𝑧) = ��ℎ(𝑘𝑇)𝑒−𝑘𝑇𝑠
∞

𝑘=0

� �
1 − 𝑒−𝑠𝑇

𝑠 �
𝑒𝑠𝑇=𝑧

(6)

Phillips and Nagle [6] make a good argument for doing compensator design in the w-plane

over the s-plane. The reasoning is that the w-plane to z-plane mapping is very simple and

hardly loses any precision, and relatively low pole frequencies in both the s-plane and w-

plane are nearly identical. The s-plane to w-plane mapping can be described by

𝜔𝑤 =
2
𝑇

tan
𝜔𝑠𝑇

2

(7)

where w = jωw and s = jωs. When 𝜔𝑠𝑇
2
≪ 1, ωw ≈ ωs. This mapping comes in handy

especially for design of PID controllers in the w-plane. In the w-plane, a PID controller may

take the form shown in Eqn (8).

𝐷(𝑤) = 𝐾𝑃 +
𝐾𝐼
𝑤

+ 𝐾𝐷𝑤

(8)

This uses s-plane integrator and differentiator relationships. When designed in the w-plane, a

PID controller may be designed irrespective of the sampling period T. With this design, a w-

plane compensator may be mapped to a z-plane function using trapezoidal integration and

trapezoidal differentiation, which both come from approximations of 𝑧 = 𝑒𝑠𝑡. Eqn (9) shows

the w-plane to z-plane mapping for a trapezoidal integrator and a trapezoidal differentiator:

Trapezoidal Integrator Trapezoidal Differentiator

1
𝑤

=
𝑇
2
𝑧 + 1
𝑧 − 1

𝑤 =
𝑧 − 1
𝑧𝑇

(9)

This method of designing a z-plane PID compensator in the w-plane is arguably preferred

over the brute-force method of z-plane PID compensator design, where differentiation and

integration of the signal are done numerically in the discrete domain, and the values of KP,

22

KI, and KD are applied to the proportional, integral, and differential parts of the fed back

signal. The brute force method is demonstrated in Figure 15.

Σ

Numerical
Integrator

Numerical
Differentiator

E(z)

KI

KP

KD

M(z)

Figure 15. Block Diagram of a Numerical PID Compensator

Alternatively, designing a z-plane PID compensator in the w-plane will always result in a

transfer function in the form

𝐷(𝑧) =
𝑎0𝑧2 + 𝑎1𝑧 + 𝑎2

𝑧(𝑧 − 1)

(10)

where a0, a1, and a2 are expressed by the relationships:

𝑎0 = 𝐾𝑃 +
𝐾𝐼𝑇

2
+
𝐾𝐷
𝑇

(11a)

𝑎1 =
𝐾𝐼𝑇

2
− 𝐾𝑃 −

2𝐾𝐷
𝑇

(11b)

𝑎2 =
𝐾𝐷
𝑇

(11c)

When implemented on a digital compensator, the transfer function becomes a very simple

second-order difference equation:

𝑑[𝑛] = 𝑑[𝑛 − 1] + 𝑎0𝑒[𝑛] + 𝑎1𝑒[𝑛 − 1] + 𝑎2𝑒[𝑛 − 2]

(12)

23

This method of PID control, which involves three multiplications and three additions,

becomes much less computationally demanding on the microcontroller compared to the brute

force method, which would involve additional multiplications and additions due to numerical

integration and differentiation of the signal.

2.5 Impact of Slowing Down the Sampling Rate of a Digital Compensator
Referring to the block diagram in Figure 8, the buck converter with continuous-domain

transfer function G(s) described in Eqn (2) and discrete-domain transfer function G(z) in Eqn

(3) can be applied a digital PID controller designed in the w-plane in the form:

𝐷(𝑤) = 0.9177 +
10000
𝑤

+ 8.284 × 10−6𝑤

(13)

Using the sampling frequency equal to the buck converter’s switching frequency of 150 kHz,

this maps to the z-plane using the relation in Eqn (9):

𝐷(𝑧) =
2.193𝑧2 − 3.368𝑧 + 1.242

𝑧2 − 𝑧

(14)

This results in a compensated bode plot with phase margin and gain margin values displayed

in Figure 16 and the root locus in Figure 18 shows the movement of closed loop poles over

different open-loop gain values. Closed-loop gain values near 1 are chosen on the root-locus

diagram to show where the closed-loop poles will end up for a gain of 1. Note that only two

of the closed-loop poles are shown because all imaginary poles are reflexive in a real-valued

system [7]. Figure 17 additionally shows the step response of the system. The step response

models a step-input of VREF changing immediately from 0 V to 1 V.

24

Figure 16. Bode Diagram of Uncompensated and
Compensated Systems with Phase Margin and Gain
Margin Displayed

Figure 17. Step Response of Uncompensated and
Compensated Systems

Figure 18. Root Locus of Compensated System with Closed Loop Gains Close to 1 Chosen

-40

-20

0

20

40

60

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

-360

-270

-180

-90

0

Ph
as

e
(d

eg
)

Bode Diagram
Gm = 7.34 dB (at 43.7 kHz) , Pm = 67.5 deg (at 12.6 kHz)

Frequency (kHz)

Gz
Gz*Dz

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

Am
pl

itu
de

Gz
Gz*Dz

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

System: untitled1
Gain: 0.948
Pole: -0.0389 + 0.572i
Damping: 0.322
Overshoot (%): 34.4
Frequency (rad/s): 2.59e+05

System: untitled1
Gain: 0.948
Pole: 0.828 - 0.178i
Damping: 0.617
Overshoot (%): 8.52
Frequency (rad/s): 4.04e+04

Root Locus

Real Axis

Im
ag

in
ar

y
Ax

is

25

This specific PID compensator was chosen after much tuning and accomplishes several

things. First, it eliminates steady-state error to a step. Figure 17 shows that the

uncompensated system step response will not settle to a value equal to the step it received.

Adding the compensator eliminated the steady-state error because it turns the system into a

Type-I system. A Type-N system is defined by how many powers of (𝑧 − 1)𝑁 are in the

denominator in the z-domain, or how many powers of 𝑠𝑁 or 𝑤𝑁 are in the denominator in the

s-domain or w-domain. By proof [6], all Type-I systems have 0% steady-state error to a step.

Using the method described in Eqns (8), (9), and (10), all PID compensators will always be

of Type-I because they will always have at least one single power of (𝑧 − 1) in the

denominator. This is one reason the choice of a PID compensator is optimal. Another thing

the PID compensator accomplishes is reducing overshoot while keeping the rise time fast,

which is also demonstrated in Figure 17. This comes from proper tuning of the PID

controller.

When reducing the sampling frequency of the plant, this alters the behavior of the digital

controller, which is designed for a specific sampling period, T. That is, the digital controller

D(z) is mapped to the z-plane from the w-plane based on a specific sampling period, T. Two

natural choices for a design decision arise from lowering the sampling frequency: (1) derive

different PID compensators for different values of T based on the same w-plane PID

compensator, or (2) use the same PID compensator designed for a specific value of T and

verify that it still behaves favorably at greater values of T (i.e. lower sampling rates). The

first method is a method of pseudo-adaptive control, which means that the transfer function

changes dynamically. It is however only pseudo-adaptive because it involves modeling the

same w-plane PID compensator, but calculating different values of a0, a1, and a2 (see Eqn

(11)) for different sampling frequencies.

Although using a digital compensator designed for one sampling frequency at a different

sampling frequency is not a traditionally accepted method, the effect that lowering the

sampling frequency has on a digital controller is notable. The effect that lowering the

26

sampling frequency has can be modeled in three different ways: (1) the effect on the bode

plot, (2) the effect on the step response, and (3) the effect on the system’s poles and zeros.

Figure 19. Bode Plot of System at Different Frequencies

Table 1. System Gain Margins and Phase
Margins at Various Sampling Frequencies.
“Inf” implies no -180° crossing for the phase
margin.
Sampling
Frequenc
y

Gain
Margin

Phase
Margin

150 kHz 7.34 dB 67.5°
100 kHz 6.35 dB 57.2°
75 kHz 4.94 dB 31.4°
50 kHz -1.65 dB Inf
25 kHz -10.4 dB Inf
10 kHz -22.7 dB Inf
5 kHz -35.7 dB Inf

-50

0

50

100

M
ag

ni
tu

de
 (d

B)

10
-3

10
-2

10
-1

10
0

10
1

10
2

-360

-270

-180

-90

0

90

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (kHz)

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

27

Figure 20. System Step Responses at Different Sampling Frequencies

What Table 1 shows is that for decreasing the sampling frequency, the phase margin also

decreases for this PID compensated system, until the phase margin disappears, which is listed

as “Inf” for infinity. The phase margin is directly related to the damping factor, ζ, by the

equation:

𝜁 =
sin𝜙𝑀

2�cos𝜙𝑀

(15)

The percent overshoot is in turn directly related to ζ by the equation:

%𝑂. 𝑆. = 𝑒

−𝜁𝜋

�1−𝜁2 × 100%

(16)

As the phase margin decreases, the damping factor decreases as well, moving the system

closer to oscillation. This is displayed in Figure 20, as the percent overshoot increases with

decreased sampling frequency, and the system oscillates more in response to a step. Figure

20 does not display step responses to sampling frequencies below a sampling frequency of 75

kHz, because those systems are unstable.

0 1 2 3 4 5 6 7

x 10
-4

0

0.5

1

1.5

Step Response

Time (seconds)

Am
pl

itu
de

f = 150 kHz
f = 100 kHz
f = 75 kHz

28

Since the digital compensator represents the same z-plane poles and zeros for changing

values of T, the effect that changing the sampling frequency has on the poles and zeros must

be looked at in the w-plane. As Eqns (8), (9), and (10) detail how to go from the w-plane to

the z-plane, going from the z-plane to the w-plane can be solved by reversing the process.

Eqn (17) transforms the relationship that a0, a1, and a2 have to KP, KI, KD, and T into a matrix

equation, and Eqn (18) represents the solution to that equation.

⎣
⎢
⎢
⎢
⎡ 1 𝑇

2
1
𝑇

−1 𝑇
2

−2
𝑇

0 0 1
𝑇 ⎦
⎥
⎥
⎥
⎤
�
𝐾𝑃
𝐾𝐼
𝐾𝐷
� = �

𝑎0
𝑎1
𝑎2
�

(17)

�
𝐾𝑃
𝐾𝐼
𝐾𝐷
� =

⎣
⎢
⎢
⎢
⎡ 1 𝑇

2
1
𝑇

−1 𝑇
2

−2
𝑇

0 0 1
𝑇 ⎦
⎥
⎥
⎥
⎤
−1

�
𝑎0
𝑎1
𝑎2
�

(18)

From Eqn (8), a pole-zero form of a w-plane PID compensator transfer function may be

derived:

𝐷(𝑤) =
𝐾𝐷𝑤2 + 𝐾𝑃𝑤 + 𝐾𝐼

𝑤

(19)

Using the relationships in Eqns (18) and (19), and values for a0, a1, and a2 from Eqn (14) of

2.193, -3.368, and 1.242 respectively, the w-plane poles and zeros can be equated. Figure 21

displays how the w-plane poles and zeros move as the sampling period, T changes. What

Figure 21 reveals is that the zeros are the only factors of the transfer function that move, and

they move linearly with T away from w = 0. Based on Eqn (19), all sampling frequencies

that D(w) is calculated for will have one pole at w = 0, irrespective of the sampling period.

The sampling frequency alone will never turn the PID controller itself into an unstable

controller, however, the simulations indicate that the sampling frequency still has impact on

the entire system.

29

Figure 21a. Full View of the Poles and Zeros on the w-plane

Figure 21b. Zoomed View near w = 0

Figure 21. W-plane Poles and Zeros of the PID Compensator with Changing Sampling Frequency

What all of this data suggests is that it is possible to use a digital PID compensator design for

one sampling frequency at lower sampling frequencies up to a certain point. Once the entire

system’s phase margin becomes nonexistent, the system goes unstable. Though the bode plot

suggests different behavior around the corner frequency as the sampling frequency is

lowered, the low-frequency behavior is still similar for lower sampling frequency, which is

important for loads operating in steady-state DC mode. When applying this principle to a

microcontroller, if the output voltage is being sampled in different frequency modes – for

example, steady-state mode and emergency mode – then the amount of oscillation and the

degree of overshoot that occurs is based on the amount of time it takes to switch between

modes, from a slower sampling rate to a quicker sampling rate. This means that as long as

the output voltage is in steady-state, the system can run at a sample at a lower frequency and

use the same transfer function as when the system samples at a higher frequency to

-10 -8 -6 -4 -2 0 2

x 10
4

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

w -plane

Real Axis (seconds-1)

Im
ag

in
ar

y
Ax

is
 (s

ec
on

ds
-1

)

f = 150 kHz
f = 100 kHz
f = 75 kHz
f = 50 kHz
f = 25 kHz
f = 10 kHz
f = 5 kHz

-8000 -6000 -4000 -2000 0

30

compensate for changes in output voltage. Though this is a different approach than standard

digital control theory warrants, it saves in computational and implementation cost.

2.6 Integer Approximation

2.6.1 Integer Arithmetic versus Floating-Point Arithmetic
Often the goal in mathematical modeling is to achieve as much precision as the platform

warrants. This ensures that the mathematical systems model real life systems as close as

possible. In these cases, loss of precision can result in corruption of data, and a mathematical

model that inaccurately models a real life system. For instance, the transfer function in Eqn

(20) represents a Chebyshev Type-II high-pass filter designed to eliminate signal drifting or

wandering.

𝐻(𝑧) =
0.9374 − 4.6828𝑧−1 + 9.3609𝑧−2 − 9.3609𝑧−3 + 4.6828𝑧−4 − 0.9374𝑧−5

1 − 4.866𝑧−1 + 9.4778𝑧−2 − 9.2363𝑧−3 + 4.5034𝑧−4 − 0.8789𝑧−5

(20)

The z-plane graphing of the poles and zeros of this transfer function results in the graph in

Figure 22.

31

Figure 22a. Full z-plane Unit Circle View of the Poles and Zeros

Figure 22b. Zoomed In View of the
Graph

Figure 22. Z-plane Graph of Poles and Zeros of High-Pass Filter H(z)

In this transfer function, the poles and zeros are extremely close to the point z = 1. This

allows for only the lowest frequencies to be attenuated. The z coefficients in H(z) are

actually condensed versions of the coefficients. Table 2 lists the actual precise coefficients,

where an and bn correspond to anz-n denominator coefficients and bnz-n numerator

coefficients.

Table 2. Coefficients of High-Pass Filter H(z)

b0 0.937482248528358 a0 1.000000000000000
b1 -4.682785333663319 a1 -4.866051787992316
b2 9.360949324688169 a2 9.477802313600998
b3 -9.360949324688171 a3 -9.236291867014341
b4 4.682785333663323 a4 4.503414878846232
b5 -0.937482248528359 a5 -0.878872966305784

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

z-plane

0.94 0.96 0.98 1 1.02 1.04

32

When the same transfer function is implemented with the same coefficients rounded to four

decimal places, the behavior of the transfer function changes drastically, and the z-plane

poles and zeros move quite noticeably. This is demonstrated in Figure 23.

Figure 23a. Full z-plane Unit Circle View of the Poles and Zeros

Figure 23b. Zoomed In View of the
Graph

Figure 23. Z-plane Graph of Poles and Zeros of Truncated High-Pass Filter H(z)

This behavior may be surprising, because rounding to four decimal places may seem to be an

appropriate amount of rounding to maintain precision. However, the zeros have moved

closer in to z = 1, and two of the poles have even moved outside of the unit circle, rendering

the filter completely unstable. Two factors that a responsible for this are (1) because the

poles are so close to the right edge of the unit circle, z = 1, and (2) because the filter is a

relatively high-order transfer function. In a second-order system where the poles are further

from the z = 1 point on the unit circle, this level of precision is not required. Figure 24 shows

a graph of the poles and zeros on the z-plane of the z-transformed buck converter plant

transfer function. The graph overlaps the poles and zeros of different decimal precisions.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3

Real Part

Im
ag

in
ar

y
P

ar
t

z-plane

0.9 0.95 1 1.05

3

p a e

33

Figure 24a. Full View of z-plane Poles and Zeros

Figure 24b. Zoomed in View of z-plane at z=1

Figure 24. Effect of Loss of Precision on Poles and Zeros of Plant Transfer Function

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

No Rounding
4 Digits
3 Digits
2 Digits

0.75 0.8 0.85 0.9 0.95 1 1.05

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

No Rounding
4 Digits
3 Digits
2 Digits

34

As Figure 24 shows, the effect of loss of decimal precision on the poles and zeros of the plant

transfer function is minimal and essentially negligible, especially compared to the effect it

has on the sixth-order high-pass filter. The movement of the poles and zeros based on the

loss of precision is somewhat arbitrary, and depends on the base in which the precision is lost

– which in this case is base ten – and what the polynomial factors to, which is directly what

the poles and zeros come from.

Another conclusion that Figure 24 leads to is that in this case, floating-point precision is not a

strong requirement. This opens the door to other methods of calculation that may not as

computationally intensive as floating-point arithmetic. Because modern microcontrollers

tend to operate on a single chip (excluding peripherals), only high-end, more expensive

microcontrollers will include a Floating-Point Unit (FPU) implemented in hardware to

perform floating-point calculations. Since this study focuses on more cost effective MCUs

that tend to lack FPUs, floating-point arithmetic is typically done in software. The following

figure demonstrates what a floating-point multiplication becomes in terms of instructions on

the RL78 MCU:

Voltage = ADC_value * V_PER_BIT;
027FC AF2EF0 MOVW AX, N:ADC_value
027FF 12 MOVW BX, AX
02800 31FF SARW AX, 15
02802 33 XCHW AX, BC
02803 FDE104 CALL N:?F_SL2F
02806 FD4C05 CALL N:?F_MUL
0280E BF3EF0 MOVW N:Voltage, AX
02811 13 MOVW AX, BC
02812 BF40F0 MOVW N:0xF040, AX
02815 12 MOVW BC, AX

Subroutine #
Instr.

Subroutines
Called

F_SL2F 57 WRKSEG_PUSH_L09
WRKSEG_POP_L09

F_MUL 331 WRKSEG_PUSH_L09
WRKSEG_POP_L09
__fmthrr

WRKSEG_PUSH_L09 48 MOVE_LONG_L06

WRKSEG_POP_L09 48 MOVE_LONG_L06

MOVE_LONG_L06 39 -

__fmthrr 22 _matherr

_matherr 25 -

Figure 25. Excerpt from RL78 Assembly of a Floating-Point Multiplication. In the table on the left, the four columns
indicate (1) the instruction address, (2) the instruction opcode, (3) the instruction, and (4) the operands. The table on
the right indicates for each subroutine the number of instructions in the subroutine and which additional subroutines
it calls.

35

This operation thus takes on two steps: (1) signed long to floating-point (F_SL2F), and (2),

floating-point multiplication (F_MUL). As displayed in Figure 25, the first operation,

F_SL2F calls two additional subroutines within it, WRKSEG_PUSH_L09 and

WRKSEG_POP_L09, each adding instruction cycles to the length of the original F_SL2F

subroutine. Then the F_MUL subroutine, which is 331 instructions long, operates as a

complex web of loops such that the amount of cycles taken depends each time on the

operands given for multiplication. F_MUL also calls the WRKSEG_PUSH_L09 and

WRKSEG_POP_L09 subroutines, as well as one other subroutine, __fmthrr, which also calls

_matherr. All together, floating-point multiplication is a computationally expensive

operation when it is required to be done in software.

On the same MCU, the RL78, integer arithmetic is significantly less costly. The RL78 is a

16-bit MCU, so doing 8-bit times 8-bit multiplication to result in a 16-bit product may be

handled by a single instruction. This may take one to two clock cycles, according to the

RL78’s software manual [9]. However, 16-bits is a more standard word length, so integer

multiplication will more practically be 16-bit times 16-bit multiplication resulting in a 32-bit

product. As the RL78 has a 16-bit word length, 16-bit by 16-bit multiplication is

implemented in software. The following figure demonstrates what 16-bit multiplication

becomes in terms of instructions on the RL78 MCU:

power_32[0] = voltage_16[0] * current_16[0];
02932 AF68F0 MOVW AX, N: 0xF068
02935 C1 PUSH AX
02936 AF66F0 MOVW AX, N:current_16
02939 C1 PUSH AX
0293A DB60F0 MOVW BC, N:0xF060
0293D AF5EF0 MOVW AX, N:voltage_16
02940 FD2F09 CALL N:?L_MUL_L03
02943 BF6EF0 MOVW N:power_32, AX
02946 13 MOWV AX, BC
02947 BF70F0 MOVW N:0xF070, AX
0294A 12 MOVW BC, AX

Subroutine # Instr. Subroutines
Called

L_MUL_L03 83 -

Figure 26. Excerpt from RL78 Assembly of an Integer Multiplication. In the table on the left, the four columns
indicate (1) the instruction address, (2) the instruction opcode, (3) the instruction, and (4) the operands. The table on
the right indicates for each subroutine the number of instructions in the subroutine and which additional subroutines
it calls.

36

Although the multiplication still must be done via a call to a subroutine, the long integer

multiplication (L_MUL_L03) subroutine only involves a single loop, which iterates far fewer

times compared to the complex network of loops in the F_MUL subroutine.

Although it is a generally accepted idea that software integer multiplication requires

significantly less instruction cycles than software floating-point multiplication, Table 3

points out just how much the advantage is specifically for the RL78 platform. This study in

Chapter 3 and Chapter 4 will show the impact of reduction of precision in calculations.

Table 3. Comparison of Number of Instructions Required for Integer
and Floating-Point Multiplication

Method Number of Instructions
Integer Multiplication 94
Floating-Point Multiplication 793

2.6.2 Integer Arithmetic versus Fixed-Point Arithmetic
Fixed-point arithmetic tends to offer a feasible solution to resolving computational demand

compared to floating-point arithmetic. [8] details the operation of fixed-point arithmetic,

which is summarized in Table 4.

37

Table 4. Fixed-Point Arithmetic Basic Operations Summary

Definition

𝑎 =
𝐴
𝑆𝐴

, 𝑏 =
𝐵
𝑆𝐵

𝑆𝐴 → 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐴
𝑆𝐵 → 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐵

𝑤ℎ𝑒𝑟𝑒 𝑆𝐴 𝑎𝑛𝑑 𝑆𝐵 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓
𝑡ℎ𝑒 𝑏𝑎𝑠𝑒

Basic Arithmetic
Addition

𝑎 + 𝑏 =
𝐴 + 𝐵
𝑆

, where 𝑆 ≡ 𝑆𝐴 = 𝑆𝐵

Subtraction

𝑎 − 𝑏 =
𝐴 − 𝐵
𝑆

, where 𝑆 ≡ 𝑆𝐴 = 𝑆𝐵

Multiplication

𝑎 × 𝑏 =
𝐴 × 𝐵
𝑆𝐴𝐵

, where 𝑆𝐴𝐵 = 𝑆𝐴 × 𝑆𝐵

Division

𝑎 ÷ 𝑏 =
𝐴 ÷ 𝐵
𝑆𝐴𝐵

, where 𝑆𝐴𝐵 = 𝑆𝐴 ÷ 𝑆𝐵

In fixed-point arithmetic, all arithmetic is broken down into integer operations. In the case of

both addition and subtraction, the result can be achieved in a single operation, given that the

scaling factors of both operands are equal. If they are not equal, additional operations,

usually bit shifts in base two, must be done to make the scaling factors equal. In the case of

both multiplication and division, two operations are required to achieve the result; one for the

operands, and one for the scaling factors. Both multiplication and division do not require

that the scaling factors be equal, however since most calculations are combinations of

addition and multiplication, the scaling factors will eventually have to be balanced.

Furthermore, if division is done such that it is reduced to only two divisions – one for the

operands and one for the scaling factors – then high loss of precision can occur, so an added

multiplier can be implemented as shown in Eqn (21) such that the precision will not be as

heavily altered by the division. Though this maintains precision, it adds one extra

multiplication and one extra division.

𝑎 ÷ 𝑏 =
𝐾𝐴 ÷ 𝐵
𝑆𝐾𝐴𝐵

, where 𝑆𝐾𝐴𝐵 = 𝐾(𝑆𝐴 ÷ 𝑆𝐵), and 𝑆𝐴𝐵 =
𝑆𝐾𝐴𝐵
𝐾

(21)

38

One method that avoids deciding whether or not to have to balance the operands’ scaling

factors before addition or subtraction involves all fixed-point variables to always result in the

same scaling factor after every multiplication or division. What this entails is that after each

multiplication or division, the scaling factor and underlying integer must be shifted

accordingly to match the standard scaling factor. Table 5 discusses the advantages and

disadvantages to having a constant scaling factor.

Table 5. Comparison of Fixed-Point Arithmetic Methods

Variable Scaling Factors Constant Scaling Factor
Advantages

• Multiplication and division are
limited to just two operations

• Precision can adjust based on the
variable

Disadvantages
• Scaling factors must be checked

and adjusted if not equal before
addition and subtraction

• Special functions must be defined
for all arithmetic operations

Advantages
• Since scaling factors do not need to

be checked before addition or
subtraction, both can be implemented
using the + or – operators without
implementing special functions

• Only need special functions
implemented for multiplication and
division

Disadvantages
• Multiplication and division involve

an extra step for balancing the scaling
factor

• Potential loss of precision because
scaling factor does not adjust based
on operation

In both cases, whether or not the scaling factor is constant, a fixed-point implementation will

often require two design constraints to be met: (1) a fixed-point number is stored as some

form of abstract data-type, where the underlying integer is kept separate from the scaling

factor, and (2) special functions are implemented for each arithmetic operation, as well as

39

converting to and back from integer, and perhaps to floating-point if necessary. The first

constraint may be dropped for the case when the scaling factor is constant, and all fixed-point

numbers may be stored as integers. However, the second constraint is required, and Table 5

details to what extent it is required based on whether or not a constant scaling factor is used.

Because of these constraints, the implementation of fixed-point arithmetic still requires some

additional complexity. It is possible to avoid the complexity of fixed-point arithmetic

altogether if the mathematics is done correctly prior to implementation of a digital controller

on an MCU.

2.6.3 Impact of Integer Approximation on a Digital Compensator
One of the limitations mentioned in the beginning of this section had to do with how fast an

MCU could run its tasks, which provided justification for exploring the impact of slowing

down the sampling rate. Another important limitation of an MCU is how calculations and

arithmetic are done. The method for calculation affects both speed and memory usage. As

discussed in the section comparing floating-point arithmetic to integer arithmetic, if the poles

and zeros – bust most importantly the poles – are far enough away from the edge of the unit

circle, and the order of the system is low enough, a reasonable amount of precision may be

lost without significantly impacting the performance of the system.

The digital PID compensator may be implemented by the following discrete difference

equation

𝑑[𝑛] = 𝑑[𝑛 − 1] + 2.193𝑒[𝑛] − 3.368𝑒[𝑛 − 1] + 1.242𝑒[𝑛 − 2]

(22)

where d[n], the output signal, represents the new duty cycle value D, and e[n] represents the

error signal, the result of the summing junction of VREF and the fed back output voltage signal

(see Figure 8). Since the output voltage signal is sampled, e[n] is simply calculated in

software by:

𝑒[𝑛] = 𝑉𝑅𝐸𝐹 − 𝑉𝑂𝑈𝑇

(23)

40

In Eqn (23), VOUT is the normalized value of the ADC sampled output voltage. The

difference equation in Eqn (22) is implemented with being rounded to three decimal places,

which Figure 24 displays is not far from the actual system’s poles.

The ADC on this specific MCU, the TI-TMS320F28335 has a resolution of 16 bits, and a

reference voltage of 3 V. The conversion of ADC value to real-value voltage, where the

negative reference voltage of the ADC is 0 V, is represented by the relationship:

𝑉𝐴𝐷𝐶 = 𝐾𝐴𝐷𝐶 × 𝐴𝐷𝐶𝑣𝑎𝑙 , where 𝐾𝐴𝐷𝐶 =
𝑉𝑅𝐸𝐹−𝐴𝐷𝐶
𝐴𝐷𝐶𝑚𝑎𝑥

(24)

To limit the ADC measured voltage to below its VREF-ADC value, a voltage divider exists that

reduces ADC measured voltage to 15 of its actual value. To compensate for this, an additional

gain, KDIV is added to the formula so that the calculated VOUT value, based on the ADC value,

matches the voltage at the output, as described in Eqn (25).

𝑉𝑂𝑈𝑇 = 𝐾𝐷𝐼𝑉 × 𝐾𝐴𝐷𝐶 × 𝐴𝐷𝐶𝑣𝑎𝑙
𝑉𝑂𝑈𝑇 = 𝐾𝐷𝐼𝑉 × 𝑉𝐴𝐷𝐶

(25)

The gains being discussed are all represented by a single block Kadc in the block diagram in

Figure 8, which includes the voltage divider, the voltage to ADC value conversion, the ADC

value back to voltage conversion KADC, and the multiplier gain KDIV.

The same relationship of Eqn (25) can be applied to the reference voltage VREF to form an

integer equivalent value that VREF equates to, called ADCref:

𝑉𝑅𝐸𝐹 = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐴𝐷𝐶𝑟𝑒𝑓

(26)

The calculation for the error signal in Eqn (23) then becomes the difference of two scaled

integers,

𝑒[𝑛] = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐴𝐷𝐶𝑟𝑒𝑓 − 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐴𝐷𝐶𝑣𝑎𝑙

(27)

41

which may be factored into

𝑒[𝑛] = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶(𝐴𝐷𝐶𝑟𝑒𝑓 − 𝐴𝐷𝐶𝑣𝑎𝑙)

(28)

Where ADCref is a reference ADC value for ADCval, in place of VREF, which was a reference

voltage for VOUT. The difference of these two integers is now the error integer, EI[n], such

that

𝐸𝐼[𝑛] = 𝐴𝐷𝐶𝑟𝑒𝑓 − 𝐴𝐷𝐶𝑣𝑎𝑙

(29)

which becomes a scaled version of the error voltage, e[n], as follows:

𝑒[𝑛] = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛]

(30)

An N-order difference equation requires that N past values be stored. In the case of this

second-order PID controller, two previous values of each of the input and output are stored.

If instead of the previous calculated error voltages (e[n]) being stored, the previously

calculated error integers (EI[n]) are stored, the difference equation,

𝑑[𝑛] = 𝑑[𝑛 − 1] + 𝑎0𝑒[𝑛] + 𝑎1𝑒[𝑛 − 1] + 𝑎2𝑒[𝑛 − 2]

(31)

may be substituted with the relationship in Eqn (30) to yield:

𝑑[𝑛] = 𝑑[𝑛 − 1] + 𝑎0𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛] + 𝑎1𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 1] + 𝑎2𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 2]

(32)

Now with the difference equation in this form, and the error integer values being stored, the

difference equation is operating on integer input values instead of floating-point input values.

The difference equation could be completely turned into integer multiplications if each factor

were multiplied by a resolution scaling factor, KRES. With no resolution scaling factor (i.e.

KRES = 1), implementing the difference equation in Eqn (22) with only integer arithmetic

would result in severe truncation, as the original coefficients are still floating point values.

Adding the resolution scaling factor, the difference equation becomes:

42

𝐾𝑅𝐸𝑆𝑑[𝑛] = 𝐾𝑅𝐸𝑆𝑑[𝑛 − 1] + 𝑎0𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛] + 𝑎1𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 1] + 𝑎2𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝐸𝐼[𝑛 − 2]

(33)

Since KRES, KDIV, and KADC will be the same for every calculation, and a0, a1, and a2 do not

change with time, several substitutions may be made

𝐷𝐼[𝑛] = 𝐾𝑅𝐸𝑆𝑑[𝑛]

(34a)

𝐴𝐼0 = 𝑎0𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶

(34b)

𝐴𝐼1 = 𝑎1𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶

(34c)

𝐴𝐼2 = 𝑎2𝐾𝑅𝐸𝑆𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶

(34d)

where the subscript “I” indicates a scaled integer equivalent of the coefficient. Adding these

substitutions into the difference equation results in a completely integer form of the

difference equation:

𝐷𝐼[𝑛] = 𝐷𝐼[𝑛 − 1] + 𝐴𝐼0𝐸𝐼[𝑛] + 𝐴𝐼1𝐸𝐼[𝑛 − 1] + 𝐴𝐼2𝐸𝐼[𝑛 − 2]

(35)

Now only past integer values are being stored, including past values of DI[n] instead of past

values of d[n]. The conversion of DI[n] to d[n] may be done by dividing by KRES, or bit

shifting if KRES is an even multiple of the base, which is the goal. However, since the duty

cycle of a PWM on an MCU is typically set by adjusting the value of a PWM control register

to a positive integer value, normally 8-bit or 16-bit, the actual value of d[n] may be

disregarded, and an alternate gain, KPWM may be used to turn the value of DI[n] to a PWM

control register value.

With AI0, AI1, and AI2 calculated and implemented in the difference equation, the digital PID

controller can now be done entirely with integer addition and integer multiplication. This is

preferred over fixed-point calculation because no additional data types or functions need to

be implemented to take care of the arithmetic operations. Additionally, because of the use of

a PID compensator designed in the w-plane, only one previous value of the output needs to

be stored in this case. The convenience of using a PID controller also allows for the previous

43

output value, d[n-1], or DI[n-1] to not have to be multiplied by a coefficient. This is another

factor in the choice of a PID compensator.

With the PID controller completely implemented in integer arithmetic, the gain KRES controls

the degree of resolution or precision. On a 16-bit MCU like the RL78, 32-bit multiplication

can be done easily. Since both ADCval[n] and EI[n] will always be 16-bits or less (due to 16

bits of ADC resolution), then as long as each AI coefficient is also less than 16 bits (or 15 bits

to accommodate signed integers), then all integer multiplication will be able to be

implemented using normal integer arithmetic. Tuning KRES adjusts the accuracy of the PID

compensator’s zeros to the actual compensator, and thus the performance of the compensator.

Figure 27 shows how the zeros move with different values of KRES. The poles are not

affected since the only change in coefficients is in the numerator of the transfer function.

44

Figure 27a. Full View of the z-plane Poles and Zeros

Figure 27b. Very Close View of the Left Zero

Figure 27c. Very Close View of the Right Zero. Notice the overlapping Zeros.

Figure 27d. Even Closer View of the Right Zero. Notice the Distinction Between Zeros

Figure 27. Movement of the z-plane PID Compensator Zeros with different values of KRES. The legend in (a)
indicates how many bits KRES is, that is 2N.

Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Dz
Dz_12
Dz_16
Dz_20
Dz_24

0.61 0.612 0.614 0.616 0.618 0.62 0.622 0.624 0.626 0.628 0.63

0

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0

0.9185 0.919 0.9195 0.92 0.9205 0.921 0.9215
-0.5

0

45

Figure 27 shows the convergence of zeros as the KRES value increases in bits. Reversing the

relationships in Eqns (34b) - (34d), the actual PID compensator that the integer approximated

coefficients model is shown in Table 6 and Table 7. The integer approximated coefficients

converge to the actual coefficients as KRES is increased.

Table 6. Numerator Coefficients of the Actual PID Compensator

Coefficient Actual D(z) Floating-Point D(z)
a0 2.193038614630750 2.193
a1 -3.368340122095999 -3.368
a2 1.242001507465248 1.242

Table 7. Integer Approximated Numerator Coefficents of the PID Compensator

D(z) with KRES = 212 D(z) with KRES = 216
AI0 2 a0 2.133333333333333 AI0 33 a0 2.2000000000000
AI1 -3 a1 -3.20000000000000 AI1 -51 a1 -3.4000000000000
AI2 1 a2 1.06666666666667 AI2 19 a2 1.2666666666667

D(z) with KRES = 220 D(z) with KRES = 224
AI0 526 a0 2.191666666666667 AI0 8421 a0 2.1929687500000
AI1 -803 a1 -3.36666666666667 AI1 -12934 a1 -3.368229166667
AI2 298 a2 1.241666666666667 AI2 4769 a2 1.2419270833333

Figure 28 demonstrates the effect of loss of precision in zeros by graphing the step responses

of the integer approximated against the uncompensated system and the actual compensator.

46

Figure 28. Compared System Step Responses of the Uncompensated System and PID Compensated System with
different values of KRES

One thing that is curious is the behavior of D(z) when KRES is 12 bits. The PID compensator

no longer eliminates steady-state error. Looking at Figure 27 where the poles and zeros are

graphed, and looking at the factored transfer function,

𝐷(𝑧) =
2.1333(𝑧 − 1)(𝑧 − 0.5)

𝑧(𝑧 − 1)

(36)

the rounded zero (z – 1) in the numerator ends up canceling out the (z – 1) pole in the

denominator, resulting in the transfer function

𝐷(𝑧) =
2.133(𝑧 − 0.5)

𝑧

(37)

which is a simple first-order lag compensator. This is also shown in Figure 27, as the zero at

z = 1 overlaps the pole at z = 1 for KRES = 212. All of the rest of the compensators model the

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

Am
pl

itu
de

G(z)
D(z)*G(z), 12 bits
D(z)*G(z), 16 bits
D(z)*G(z), 20 bits
D(z)*G(z), 24 bits
D(z)*G(z)

47

original compensator quite closely, and since in Figure 28 the graph of the actual PID

compensator step response overlaps all others, there is very little visible difference in step

response at and above KRES = 220.

Even with a KRES as high as 224, the AI0, AI1, and AI2 coefficients are still much less than the

15-bit suggested maximum value of 32767 (215 – 1), and all coefficients could be increased,

even though KRES may be greater than 232. As long as DI[n] can be properly mapped to a

correct value for a PWM control register, KRES can be made as high as integer multiplication

allows on the MCU. Since the number of instruction cycles for an integer multiplication is

virtually independent of how large the operands are, there is no extra cost in gaining

precision by increasing KRES. However, it has also been demonstrated that even with medium

precision – where only three decimal places are matched – the behavior of integer

approximation is still acceptable.

48

3. Computational Requirements of PV Solar Panel MPPT Control

3.1 Various MPPT Algorithms
To determine the computational requirements of MPPT, several algorithms were chosen.

Morales [2] suggests several MPPT algorithms that were theoretically tested. These

algorithms include (1) Perturb & Observe (P&O), (2) Incremental Conductance (InCond),

and (3) Current Sweep. In addition, a modification to the traditional P&O method, which is

essentially an open-loop method, is explored – a closed-loop P&O algorithm. All methods

require a measurement of voltage and current, so that their product, power, may be

maximized. A boost converter apparatus, detailed in Figure 2, is used to bias the voltage by

adjusting the duty cycle. Figure 29 shows the power curve of the PV panel used in this

study.

Figure 29. Power Curve of PV Panel

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Po
w

er
 (W

)

Voltage (V)

PV Panel Power Curve

49

3.1.1 Perturb and Observe Algorithm
This method of tracking the maximum power point (MPP) is computationally light, and

simply involves adjusting the duty cycle up or down based on if the current measured power

is greater than the previously measured power. Every time the power is sampled, the duty

cycle is adjusted. If the current measured power is greater than the last, keep moving the

duty cycle in the direction it has been moving. If the power is less than the previous power,

move the duty cycle in the opposite direction that it has been moving. Ideally, this will end

up fluctuating right around the MPP, but unfortunately, this does result in fluctuation. Figure

30 shows this algorithm in a flow chart.

Figure 30. Flowchart of P&O Algorithm. The parameters Direction and Delta are global variables that are held
between calls to the algorithm.

50

3.1.2 Incremental Conductance
The InCond method is similar to the P&O method, but instead of adjusting the duty cycle

based on comparing the current power sample to the previous power sample, the duty cycle

adjustment is based on the mathematical curvature of the curve. Below the MPP (to the left),

the derivative of the curve, 𝑑𝑃𝑑𝑉, is positive. Above the MPP (to the right), the derivative of the

curve is negative. The algorithm then follows as such. If 𝑑𝑃𝑑𝑉 is positive, increase the duty

cycle towards the maximum power point. If 𝑑𝑃𝑑𝑉 is negative, then decrease the duty cycle

towards the MPP. This method is intended to reduce the amount of oscillation compared to

the P&O method. However, this method requires calculation of 𝑑𝑃𝑑𝑉, which may simply be

done using a difference quotient. If the calculated 𝑑𝑃𝑑𝑉 is inaccurate, then the method will fail

to work properly. If calculated properly, then the InCond method will certainly reduce

oscillation around the MPP.

An alternative implementation of this method involves having a target VREF, which is

increased or decreased based on whether 𝑑𝑃𝑑𝑉 is negative or positive. The basic InCond

method is detailed in the flow chart in Figure 31.

51

Figure 31. Flowchart of InCond Algorithm

3.1.3 Current Sweep
The Current Sweep method is fundamentally simple, and involves sweeping the current over

a range, and capturing the power at each current value. The current is then set to value

corresponding to the greatest power, or the MPP. In this implementation, the current is

adjusted simply by changing the duty cycle. After the current sweep and after the current is

set to achieve the MPP, the current may be swept again after a period of time to ensure that

the algorithm is responding to changes in solar irradiation. Also, the current does not

necessarily have to be swept over the entire range if it is known that the MPP lies within a

smaller current range. Tuning this algorithm requires that all of these parameters be set

appropriately.

52

3.1.4 Closed-Loop Perturb and Observe
This method is a modification to the simple P&O method that closes the loop. This

algorithm runs in two modes, open-loop and closed-loop mode. Open-loop mode operates

just like the normal P&O mode. A threshold and a wait period are both set, and when the

power exceeds this threshold for longer than the wait period, the algorithm enters closed-loop

mode. In closed-loop mode, the average voltage is recorded as VREF, and the voltage is

maintained at VREF using a simple closed-loop. An additional reset period is defined, and if

the power falls below the threshold for the reset period, the algorithm switches back to open-

loop mode where normal P&O MPPT occurs to try to again raise the power above the

threshold. Tuning this algorithm requires correctly defining the threshold value, the begin

wait time, and the reset wait time. This algorithm is intended to bring the power up faster

when it falls due to shading, hence having a VREF and a closed-loop. This algorithm is also

intended to reduce the amount of oscillation compared to the simple P&O method, and is

based on the irradiation not changing rapidly, as is the case with solar irradiation. Figure 32

displays a power versus time graph embodying this algorithm.

Figure 32. Graphic Representation of the Closed-Loop P&O Method. The yellow periods represent when the
algorithm is in normal open-loop P&O mode, and the green period represents when the algorithm is in closed-loop
P&O mode.

53

3.2 MPPT Apparatus

3.2.1 Hardware
The MPPT apparatus, displayed in Figure 33 uses a small solar PV panel fed into a boost

converter which is controlled by a Renesas RL78 MCU, which also measures the input and

output voltage and current. On the output side of the boost converter is simply a resistive

load. The voltage is measured through a high resistance voltage divider. The input and

output currents are measured by using an ADC to measure the voltage across a 1Ω resistor.

Since the voltage across the 1Ω resistor at the input side of the apparatus is negatively biased

with respect to the ground, a current sensing op amp is used to reverse the voltage before

feeding it into the ADC. This is done as an alternative to having a 1Ω resistor at the positive

(+) side of the PV panel, because this would require two different voltage dividers for each

side of the current sensing resistor, and since the RL78 does not have simultaneous ADC

channel reading – but instead has sweep channel reading – the boost converter voltage ripple

would affect the integrity of that reading. Using the current sensing op amp proved to be a

more effective way to read the input voltage. The boost converter schematic is shown in

Figure 2.

54

Boost Converter

PV
Panel

RL78
MCU

+

-

1Ω

10kΩ

68kΩ 90kΩ

10kΩ

10kΩ POT
Set to

approx. 50Ω

1Ω
+

-

+

-

30kΩ

1kΩ

MAX9920 IC
A

VIN + VOUT +

D
VIN - / GND VOUT -

ADC‒>VIN

ADC‒>IIN

ADC‒>VOUT

ADC‒>IOUT

Duty
Cycle

56

55

54

53

40

13

+VCC

GND

15

RS+

RS-

+5V

GND

REFIN

FB

OUT

LOAD

Figure 33. Schematic of the MPPT Apparatus Used for each Test

3.2.2 Software
Each of the MPPT algorithms mentioned in the previous section were implemented in C on

the RL78. Appendix C details the structure of the C code. They were implemented in such a

fashion that allowed the algorithm to be switched dynamically at run-time. Also, each of the

four algorithms were implemented using both floating-point and integer arithmetic. A

counter-timer was implemented to count every cycle so each algorithm’s best-case, average,

and worst-case execution time could be determined. Other control factors include:

• MPPT Sampling Rate – The rate at which the power is sampled can be set. The

default sampling rate was set at 20 Hz. Though this seems low, this is appropriately

set because the changes in solar irradiation are slow compared to the MCU

computational speed [2].

• Duty Cycle Delta – For each MPPT method, if control is based on the duty cycle

instead of a reference voltage, this is the value by which the duty cycle changes

between samples.

55

• Lower and Upper Duty Cycle Limit – for the boost converter, it can easily be

determined that above a certain duty cycle value, there is no increase in power.

Setting limits allow for the power to never have to fall too low in ranges where the

power cannot be boosted.

• ADC Read Mode – The ADC can sample the voltage and current in three different

modes:

o Asynchronous – the current and voltage are sampled independently of the

MPPT task.

o Synchronous – the current and voltage are sampled within the MPPT task

prior to MPPT calculation.

o Semi-synchronous – the ADC is started at the end of the MPPT task so the

current and voltage values are ready at the beginning of the next iteration of

the MPPT task.

• Calculation Mode – The calculation can either be done with floating-point or integer

arithmetic.

Since human interaction with the RL78 MCU itself is rather limited, a GUI was implemented

in Java to be able to control and monitor the MPPT apparatus’ performance. The RL78 was

connected to a PC using standard serial communication at 115200 baud, and the GUI, called

“PPMonitor” for Power-Point Monitor, allowed the RL78 to be controlled and also for input

and output power, voltage, or current to be seen over time. Figure 34 shows a picture of the

GUI.

56

Figure 34. PPMonitor GUI Used to Monitor and Control the RL78 MPPT Algorithms

The top scope, graphed in red shows the input power, current, or voltage. The bottom scope,

graphed in blue, shows the output power, current, or voltage. In Figure 34, both the input

and output are set to display the power. On the far right of each scope, the scope upper limit

is displayed at the top, the current value is displayed in the middle, and the scope lower limit

is displayed on the bottom. The time increases from the left to the right (like a traditional

oscilloscope), and each of the light grey vertical bars on the scope represent one second

intervals. The GUI allows the duty cycle to also be manually adjusted either by the slider or

by the potentiometer wheel on the RL78.

57

Figure 35. PPMonitor Scope Output versus Oscilloscope Output for Sudden Increase and Decrease of Duty Cycle

Figure 36. PPMonitor Scope Output versus Oscilloscope Output for Sudden Increase in Duty Cycle

Figure 37. PPMonitor Scope Output versus Oscilloscope Output for Momentary Shadowing of PV Panel

58

The figures on page 57 show the comparison of an oscilloscope measuring output power to

PPMonitor measuring output power. In all of the oscilloscope screenshots, the yellow curve

on top represents the voltage, the blue curve on the bottom represents the current, and the

purple curve in the middle represents the power. Using this GUI program, each of the four

MPPT algorithms were run. For each algorithm, the computational count was measured, the

performance was compared, and the efficiency was taken into account.

3.3 Performance of MPPT Algorithms Using Floating-Point Arithmetic
Each of the four algorithms were run with the PPMonitor monitoring and controlling the

MPPT apparatus. The power was calculated using floating-point normalized values of

voltage and power, so it would be accurate to the actual power being outputted by the boost

converter. For each of the test runs, momentary shading and partial shading was done to see

how well the algorithm bounced back from quick changes in solar irradiation. Each

algorithm was also run several times, and the figures that display the performance of the

algorithm represent the average performance of the algorithm after several runs.

3.3.1 P&O Performance
Figure 38 shows the performance using the simple floating-point P&O algorithm for MPPT.

Figure 38. Floating-Point Simple P&O Performance

59

3.3.2 Closed-Loop P&O Performance
Figure 39 shows the performance using the closed-loop floating-point P&O algorithm for

MPPT.

Figure 39. Floating-Point Closed-Loop P&O Performance

60

3.3.3 InCond Performance
Figure 40 shows the performance using the floating-point InCond algorithm for MPPT.

Figure 40. Floating-Point InCond Performance

61

3.3.4 Current Sweep Performance
Figure 41 shows the performance using the floating-point Current Sweep algorithm for

MPPT. In this specific run of the Current Sweep algorithm, the duty cycle is swept across

the entire range of D, 0 to 1. The sweep obviously makes the output power into a hill, and

the algorithm does a pretty good job at putting the duty cycle to the MPPT after the sweep is

over. In this run, the sweep takes about 24 seconds, which is quite a long time to suffer

power loss.

Figure 41. Floating-Point Current Sweep Performance

62

3.3.5 Performance Versus Changing Other Parameters
Using the potentiometer wheel (POT) attached as a peripheral to the RL78, the duty cycle

was manually controlled up and down until the MPP was achieved. For an additional test,

the MPP achieved by the POT was compared to the MPP achieved by the closed loop P&O

method. Figure 42 shows the comparison, with the MPP achieved by the POT on the left,

and then the MPP achieved by the closed-loop P&O follows it on the right, separated by a

brief recovery period for the closed-loop P&O method.

Figure 42. MPP Achieved by Manual Tuning with the POT compared Floating-Point Closed-Loop P&O MPPT.

63

As an additional test, the MPPT algorithm frequency was adjusted to see the impact of

slowing down the MPPT algorithm on its performance. Figure 43 displays the PPMonitor

scope running the simple P&O algorithm at varied frequencies. Where the vertical grey bars

are closer together are where the algorithm frequency was lower – there were less samples in

a second.

Figure 43. Floating-Point Simple P&O Performance with Varied Task Frequencies

64

3.3.6 Comparison of Performance of Floating-Point MPPT Algorithms
All tests were run in the same brief period with the same amount of solar irradiation on the

PV panel used. The PV panel’s power curve in Figure 29 indicates that the maximum power

should be a little over 1 W, however even with manual tuning with the POT, the maximum

power achieved was right around 0.5 W – 0.6 W. Perhaps the difference in power was due to

losses within the boost converter, but even roughly 50% to 60% efficiency is still favorable.

In each of the four MPPT algorithms, temporary shading over the PV panel was done to see

how well the MPPT algorithm recovered from shading. In every single one of them, the

recovery back to the MPP was virtually as instantaneous as the shading was removed from

the PV panel. Interestingly enough, in this test, the simple P&O algorithm achieved the

greatest power. Since this study focuses less on the achieving the best efficiency of each

algorithm – and more on the computational requirements of each algorithm – there was only

a minimal amount of tuning for each algorithm. With additional tuning, it is likely that the

other MPPT algorithms would be able to produce a greater amount of power. This is also

true with the comparison of the closed-loop P&O method compared to manual duty cycle

adjustment with the POT; it is likely that with additional tuning, this algorithm would match

the power level achieved by manually adjusting the duty cycle.

Figure 43 shows the impact slowing the MPPT algorithm frequency down has. It appears

that 20 Hz was an appropriate choice, because any slower and the MPP begins to fall and

fluctuate more. It was determined that there was little to no benefit from increasing the

MPPT frequency above 20 Hz, as changes in solar irradiation tend not to be much faster than

that frequency.

In both the InCond and P&O algorithm runs, the duty cycle was limited to the range 0% to

20%. Through testing, it was determined that with this PV panel, adjusting the boost

converter switching frequency above 20% made the output power plummet. Including this

limitation added a very small amount of computational overhead for a very large amount of

performance improvement.

65

3.4 Performance of MPPT Algorithms Using Integer Arithmetic

3.4.1 Basis for Using Integer Approximation
In the floating-point versions of each MPPT algorithm, the voltage and current were sampled

with the ADC according to the schematic of the MPPT apparatus in Figure 33. These values

were scaled to floating-point values of the voltage and current, as shown in Eqn (38) so that

they would be accurate measurements of actual voltage and current.

𝑉𝐹𝑃 = 𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝑉𝐴𝐷𝐶

(38a)

𝐼𝐹𝑃 = 𝐾𝐴𝐷𝐶𝐼𝐴𝐷𝐶

(38b)

Since the voltage was measured through a voltage divider, KDIV represents the value to scale

the voltage back up. KDIV is based on resistor values and is calculated by:

𝐾𝐷𝐼𝑉 =
𝑅𝐴

𝑅𝐴 + 𝑅𝐵

(39)

The ADC conversion factor, KADC, is represented by Eqn (40), where VREF is the internal

reference voltage of the RL78, 1.45 V, and ADCmax is the maximum value that the ADC can

encode.

𝐾𝐴𝐷𝐶 =
𝑉𝑅𝐸𝐹

𝐴𝐷𝐶𝑚𝑎𝑥
=

1.45
1023

= 1.417 × 10−3

(40)

The calculation of power is then given as

𝑃𝐹𝑃 = 𝑉𝐹𝑃𝐼𝐹𝑃

(41)

which when substituted with the relationships of Eqn (38) becomes

𝑃𝐹𝑃 = (𝐾𝐷𝐼𝑉𝐾𝐴𝐷𝐶𝑉𝐴𝐷𝐶)(𝐾𝐴𝐷𝐶𝐼𝐴𝐷𝐶)

(42)

and simplifies to:

𝑃𝐹𝑃 = 𝐾𝐷𝐼𝑉(𝐾𝐴𝐷𝐶)2𝑉𝐴𝐷𝐶𝐼𝐴𝐷𝐶

(43)

66

If the integer calculated power, PINT is defined as the product of the voltage and current

values read straight by the ADC, then PINT could be expressed as:

𝑃𝐼𝑁𝑇 = 𝑉𝐴𝐷𝐶𝐼𝐴𝐷𝐶

(44)

Substituting Eqn (44) into Eqn (43) yields

𝑃𝐹𝑃 = 𝐾𝐼𝑁𝑇𝑃𝐼𝑁𝑇

(45)

where KINT is defined by:

𝐾𝐼𝑁𝑇 = (𝐾𝐷𝐼𝑉)(𝐾𝐴𝐷𝐶)2

(46)

What Eqn (44) shows is that the relationship between floating-point power and integer power

is completely linear by a factor of KINT. Since all of the algorithms simply require a

comparison of the current measured power sample to the previous measured power sample,

there is no need for the floating-point power PFP to be calculated. All of the same

comparisons – greater than and less than – with the integer power PINT will give the same

arithmetic result.

It is also important to note that on a 16-bit architecture like the RL78 that supports 32-bit

words, the values for voltage and current should both be below 16 bits so as not to overflow a

32-bit word containing the power.

Using this basis, all of the MPPT algorithms were evaluated using integer arithmetic instead

of floating-point arithmetic. The values of the voltage and power sent from the RL78 to

PPMonitor are in integer form, so properly reading them requires multiplying them by their

respective KINT factors. The same momentary PV panel shading was done to evaluate how

well the algorithms bounced back from momentary shading.

67

3.4.2 P&O Performance
Figure 44 shows the performance using the simple integer P&O algorithm for MPPT.

Figure 44. Integer Simple P&O Performance

68

3.4.3 Closed-Loop P&O Performance
Figure 45 shows the performance using the closed-loop integer P&O algorithm for MPPT.

Figure 45. Integer Closed-Loop P&O Performance

69

3.4.4 InCond Performance
Figure 46 shows the performance using the integer InCond algorithm for MPPT.

Figure 46. Integer InCond Performance Based on VREF Adjustment

70

Some of the parameters were changed in an attempt to tune the algorithm, like using a duty

cycle reference instead of a voltage reference, and the resulting performance using the integer

InCond algorithm for MPPT is shown in Figure 47.

Figure 47. Integer InCond Perfromance Based on Duty Cycle Adjustment

71

Compared to the integer InCond performance in Figure 46, the power peaks at a higher

value, but slides down in wedges. This is likely due to improper tuning of duty cycle

adjustment based on the calculated value of 𝑑𝑃𝑑𝑉 and could be corrected with further tuning.

Though the power peaks displayed in the scope in Figure 47 are higher than the average

power displayed in the scope in Figure 46 – where control is based on VREF instead of

adjusting the duty cycle – the algorithm in Figure 46 produces a much more stable result.

3.4.5 Current Sweep Performance
Figure 48 shows the performance using the integer Current Sweep algorithm for MPPT. In

this test run of the integer Current Sweep algorithm, the duty cycle boundaries are set to only

sweep from a duty cycle value of 0% to a value of 40%. It was determined that the MPP will

always lie within this range. In Figure 48, the output power scope on the left shows the

trailing end of a previous held duty cycle, a brief current sweep (i.e. duty cycle sweep), and

the power being adjusted to the MPP.

Figure 48. Integer Current Sweep Performance

72

3.4.6 Performance Under Other Circumstances
Figure 49 shows the integer P&O method used to bounce the power back from zero. At the

start, the POT was used to adjust the duty cycle to 100%, which consequently produces zero

power. At the same time, the PV panel was completely shaded. Where the output power and

input voltage suddenly rise is when the panel was unshaded and simple integer P&O MPPT

control was simultaneously initiated. Once this happens, the P&O algorithm does a good job

at finding the MPP, but takes approximately 30 seconds to rise and settle. Though the

algorithm eventually gets the power to settle, the time it takes to do so gives reason to

consider other algorithms.

Figure 49. Integer Performance of P&O Algorithm Recovering from Complete Shading and 100% Duty Cycle

73

3.4.7 Comparison of Performance of Integer MPPT Algorithms
As with the floating-point algorithm test runs, all test runs were taken in the same brief

period with the same amount of solar irradiation on the PV panel. For each of the four

MPPT algorithms, handling recovery from PV panel shading was done well by each. The

recovery to the MPP was nearly as instantaneous as the shading was removed from the PV

panel.

As with the floating-point MPPT algorithms, the figures displayed in the PPMonitor screen

shots represent the average performance after several runs of each algorithm. The two

algorithms that appeared achieve the greatest power were the Current Sweep and simple

P&O methods. This may be somewhat surprising since both of these algorithms are the least

complex. However, with complexity of an algorithm comes tuning, and improper tuning will

not yield the best performance. Although the InCond and closed-loop P&O algorithms did

not achieve greater power levels than the Current Sweep and P&O methods, proper tuning

would likely allow for them to perform as well as or perhaps outperform the other

algorithms.

The output power scope in Figure 49 shows how long it takes to bounce back from 0 power

using simple duty-cycle-limited P&O control. The fact that this takes so long is the reason

other algorithms may be performed. Though in steady-state the P&O algorithm performs

well, evaluating the performance of the P&O algorithm must take more into account than the

power level achieved, like how long it takes recover and respond to changes in overall solar

irradiation. Also, the amount of fluctuation from the P&O algorithm is evident in Figure 44

compared to other methods like InCond (see Figure 46) and closed-loop P&O (see Figure

45), where the ripple is much thinner. The fluctuation ripple is also another factor to take

into account when comparing and evaluating performance.

3.5 Comparison of Floating-Point MPPT and Integer MPPT
Evaluating surface level performance, both Table 8 and Table 9 compare the maximum

power achieved by each algorithm and the computational demand of each algorithm in terms

of clock cycles. Since all of the integer algorithms calculated power based on raw ADC

74

values, the raw ADC values along with the corresponding actual calculated values of power

are included as well. The conversion from integer power to actual calculated (or floating-

point) power is given in Eqn (45). The KINT value comes from Eqn (46), and is based on the

KADC value in Eqn (40) and the KDIV value in Eqn (39), which is based on the resistor values

of RA = 10kΩ and RB = 90kΩ, as shown in Figure 33. The resulting KINT value is 2.009×10-5.

Table 8. Comparison of Floating-Point MPPT Algorithms

Floating-Point MPPT

Algorithm Maximum

Power (W)

Best-Case

Execution Time

(cycles)

Average

Execution Time

(cycles)

Worst-Case

Execution Time

(cycles)

Simple P&O 0.4452 14435 14497 14547

Closed-Loop

P&O

0.3223 22169 24406 25109

InCond 0.3680 16936 17700 21912

Current Sweep 0.3653 31 90 14577

75

Table 9. Comparison of Integer MPPT Algorithms

Integer MPPT

Algorithm Maximum

Integer

Power (no

units)

Calculated

Maximum

Power (W)

Best-Case

Execution

Time

(cycles)

Average

Execution

Time

(cycles)

Worst-Case

Execution

Time

(cycles)

Simple P&O 23529 0.4727 248 254 288

Closed-Loop

P&O

18669 0.3751 321 543 1226

InCond 11869 0.2385 457 5853 6460

Current

Sweep

27621 0.5550 31 91 250

The data in these tables is quite interesting. These are surface level comparisons because

they do not necessarily weigh dynamic performance of power maximization, but instead only

report the maximum over about a minute span. At the surface, however, the maximum

power is achieved best by the simple P&O and Current Sweep algorithms in both the

floating-point case and the integer case. As mentioned previously though, proper tuning

would likely increase the maximum power level that the other algorithms achieve.

In the floating-point case, the closed-loop P&O was the most computationally intensive.

Despite the extra overhead, the algorithm it is based on, the simple P&O method, achieved a

higher power level. The closed-loop P&O method is designed to prevent oscillation and

recover faster from shading. What all of the PPMonitor scope screenshots indicate is that

recovery from shading is nearly instantaneous, so the extra computational overhead incurred

by closing the loop is unnecessary. At the expense of extra tuning, additional clock cycles,

and a degree of output power, the power fluctuation ripple is reduced. The takeaway from

76

this is that the closed-loop P&O method as implemented is not worth the extra computational

cost compared to the P&O method.

Table 10. Comparison of Execution Times (in instruction cycles) of the Same Algorithms Run with Floating-Point
and Integer Arithmetic. The ratio is the floating-point execution time divided by the integer execution time.

 Best-Case

Algorithm Floating-Point Ratio Integer

P&O 14435 58.206 248

Closed-Loop

P&O

22169 69.062 321

InCond 16936 37.059 457

Current Sweep 31 1.000 31

 Average

Algorithm Floating-Point Ratio Integer

P&O 14497 57.075 254

Closed-Loop

P&O

24406 44.947 543

InCond 17700 3.024 5853

Current Sweep 90 0.989 91

 Worst-Case

Algorithm Floating-Point Ratio Integer

P&O 14547 50.510 288

Closed-Loop

P&O

25109 20.480 1226

InCond 21912 3.392 6460

Current Sweep 14577 58.308 250

77

In the integer case, the closed-loop P&O did not end up being the most computationally

intensive. The InCond algorithm took this spot.

Table 10 shows the ratio of the number of clock cycles for the floating-point algorithms

compared to the integer algorithms for the best-case, average, and worst-case execution

times. Every algorithm but the InCond algorithm had a significant speedup. This may be

surprising at first, but one thing that the InCond algorithm requires that all of the others do

not is division, which is required to calculate 𝑑𝑃𝑑𝑉. What the low speedup ratio indicates is that

integer division is still a costly operation, and that there is not as much of a gap between

floating-point division and integer division as there is for floating-point multiplication and

integer multiplication. Referring to the RL78’s instruction set architecture manual [9], a 16-

bit register multiplication takes 2 clock cycles while a 16-bit register division takes 17 clock

cycles.

Compared to the P&O and Current Sweep algorithms for both the floating-point and integer

cases, the InCond algorithms take more clock cycles. With proper tuning, the power

fluctuation ripple can be eliminated and the algorithm can respond faster to changes in solar

irradiation. If this is a requirement, then perhaps the relatively high amount of clock cycles

required to perform this calculation may be worth the gained benefit. Although the speedup

between floating-point and integer InCond algorithms is little, it is still noticeably sped up,

making it a viable choice for an MPPT algorithm.

The Current Sweep algorithm is also of special interest, because its average execution time is

considerably lower than all the rest for the level of power it achieves. Referring to Table 8

and Table 9, there is no use in comparing the best-case or average execution times of the

Current Sweep algorithm, because in both the floating-point and integer cases, the algorithm

spends the greatest amount of time in idle mode, where in the control task, it simply checks

to see if its timer has reached the reset value, and if not, increments the timer. Once the timer

reaches its reset value is where the current sweep begins. Comparing the worst-case

execution times is most appropriate for comparing the performance of the floating-point and

integer versions of Current Sweep algorithm. This reveals an enormous speedup in the

78

integer case. This algorithm proves to be a very effective method as long as (1) there is not a

lot of change in solar irradiation, and (2) the load can suffer momentary dips in power due to

the current sweep. Through experimentation, the limits of the current sweep can be set so

that the load does not see a heavy loss of power. However, this method would not deliver the

maximum power in a setting where solar irradiation fluctuates frequently.

Taking all data into account, Figure 50 shows a comparison of the efficiency of each

algorithm versus the best-case, average, and worst-case execution times. Figure 51 lists

projected efficiency with tuning, with projected efficiency based on Morales [2]. Morales

listed a 99% efficiency found from simulations for both P&O and InCond in his study. The

projected efficiency shown in this figure is simply just the average of Morales’ projected

efficiency, 99%, and the measured efficiency in this study. This is to account for possible

imperfections in the MPPT apparatus that limit efficiency.

Something that these graphs help reveal is that there is no benefit gained by having extra

precision using floating-point arithmetic with any of these algorithms. Each one of these

algorithms is based on a mathematical inequality that compares a previous value to a current

value. Since the only difference between floating-point power and integer power is a linear

scaling factor (KINT), the greater-than or less-than inequalities will return the same result no

matter how the values are scaled. However, if an algorithm is chosen where the duty cycle is

specifically calculated, such as using a difference equation, then the impact of losing

floating-point precision may further need to be taken into account, as was discussed in

Section 2.6.

One might expect somewhat of a direct relationship between efficiency and computational

demand. However, there is much more to take into account than just raw efficiency, so the

choice of best MPPT algorithm comes down to the properties of the boost converter, the

characteristics of the PV panel and solar irradiation, and the demand of the load.

79

Figure 50a. Full View of Chart

Figure 50b. Zoomed in View of Chart

Figure 50c. Logarithmic View of Chart

Figure 50. MPPT Efficiency versus Clock Cycle Count. Each vertical lines represents best-case (left), average
(middle), and worst-case (right) execution times.

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Clock Cycles

E
ffi

ci
en

cy

MPPT Efficiency vs. Clock Cycle Count

FP P&O
FP CL P&O
FP InCond
FP CS
INT P&O
INT CL P&O
INT InCond
INT CS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

Clock Cycles

E
ffi

ci
en

cy

MPPT Efficiency vs. Clock Cycle Count

 FP P&O
FP CL P&O
FP InCond
FP CS
INT P&O
INT CL P&O
INT InCond
INT CS

10
1

10
2

10
3

10
4

10
5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Clock Cycles

Ef
fic

ie
nc

y

MPPT Efficiency vs. Clock Cycle Count

FP P&O
FP CL P&O
FP InCond
FP CS
INT P&O
INT CL P&O
INT InCond
INT CS

80

Figure 51a. Full View of Chart

Figure 51b. Zoomed in View of Chart

Figure 51c. Logarithmic View of Chart

Figure 51. Projected Efficiency versus Cycle Count with algorithm tuning. All projected efficiencies are shown as
dotted lines. Each vertical lines represents best-case (left), average (middle), and worst-case (right) execution times.

0 0.5 1 1.5 2 2.5 3

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Clock Cycles

Ef
fic

ie
nc

y

MPPT Projected Efficiency vs. Clock Cycle Count

FP P&O
FP CL
FP InCond
FP CS
INT P&O
INT CL
INT InCond
INT CS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Clock Cycles

E
ff

ic
ie

nc
y

MPPT Projected Efficiency vs. Clock Cycle Count

FP P&O
FP CL
FP InCond
FP CS
INT P&O
INT CL
INT InCond
INT CS

10
1

10
2

10
3

10
4

10
5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Clock Cycles

E
ffi

ci
en

cy

MPPT Projected Efficiency vs. Clock Cycle Count

FP P&O
FP CL
FP InCond
FP CS
INT P&O
INT CL
INT InCond
INT CS

81

4. Computational Requirements of SMPS Digital Control
This chapter focuses on proposed methods for reduced computational digital control for an

SMPS based on relaxing the constraints of digital control theory. With each proposed

method, the computational requirements for each method were calculated using both

floating-point and integer arithmetic on the RL78, and the results are compared.

4.1 Proposed Methods for Digital Control of SMPS
Several methods for relaxed digital control are proposed in this section. All of them are

based on the traditional sampling method for digital control. Each subsequent method

relaxes one additional constraint than the one before in an attempt to reduce processor utility.

Figure 52 shows this relationship.

Figure 52. Relationship of Control Methods in terms of Relaxed Constrains

82

4.1.1 Traditional Sampling Method
The traditional method for closed-loop SMPS control has the sampling frequency at the same

frequency as the switching frequency. This idea comes from analog control, where the duty

cycle is constantly updated because no digital components are involved. It is also understood

that there is little need to sample any faster than the switching frequency, since the duty cycle

can only be updated once per PWM period as a result of being a digital signal. Using this

method, a digital controller samples at the rate of the switching frequency, and using the

sampled values with a digital controller, the duty cycle is adjusted accordingly only once per

switching period. This transient behavior is modeled in Figure 53.

Figure 53. Output Voltage Sampled at Switching Frequency. The output voltage (top) is sampled at the rate of the
sampler (in blue) to produce the sampled signal (bottom).

83

4.1.2 Varied Sampling Frequency Method
What has been discussed in Chapter 2 reveals that it is possible to use a digital compensator

designed for one sampling frequency at other, slower frequencies. This can be done to a

certain point while still avoiding adverse effects. The algorithm is set up such that there are

two modes of operation, (1) steady-state mode and (2) emergency mode. A typical DC load

will spend the majority of its time in steady-state mode, and only go to emergency mode

when the voltage drops or rises due to changes in load current. Within the algorithm, a check

is made to see if the voltage is outside of the threshold range (which should be defined as a

smaller subset of the load’s operating range). If so, a threshold flag is set, and a reset counter

is cleared. After determining the mode of operation, if in steady-state mode and the

threshold flag is set, then move to emergency mode. If in emergency mode, and the reset

counter exceeds a certain reset value, that is an indication the output voltage has not

oscillated outside of the threshold range for a given amount of time. If this is the case, the

task can move back to steady-state mode. In either case, the output line is sampled, and each

sample is run through the difference equation no matter what the frequency is. This behavior

is diagramed in Figure 54.

84

Figure 54. Flowchart for Simple Varied Frequency Algorithm

The reason for doing this is twofold. First, the only thing that has to be changed about the

control task is its frequency. The computations from the digital compensator will be the

same each time the control task is run, regardless of the frequency. The overhead in

determining the operation mode simply consists of several true/false checks and one

comparison. The low overhead in determining the mode may justify using this algorithm.

Second, this reduces the amount of design overhead for the digital compensator, compared to

pseudo-adaptive control. The transient behavior of this method is diagramed in Figure 55.

85

Figure 55. Output Voltage Sampled at Switching using Varied Frequency Method. The output voltage (top) is
sampled at the rate of the sampler (in blue) to produce the sampled signal (bottom). The sampling rate increases
when the voltage drops, and again decreases when the signal reaches steady-state.

4.1.3 Varied Sampling Frequency and Hold Method
This method is very similar to the varied sampling frequency method, but the way the voltage

samples are read is different. While in steady-state mode, the output voltage is sampled at a

much slower frequency than in emergency mode, but in between samples, each value is held.

This is done because of the assumption that while in steady-state mode, the output voltage

will be DC, so there should hardly be any variance between samples. When the control task

gets called, instead of running the difference equation on the last two samples that have been

taken (as in the simple varied sampling method), it runs it on the last two samples held from

the previous sample. Figure 56 and Figure 57 highlight the difference between the two

methods.

86

Figure 56. How Samples are Used in the Simple Varied Frequency Method. The blue line indicates how often the
sampler is reading samples.

Figure 57. How Samples are Used in the Varied Frequency and Hold Method. The blue line indicates how often the
sampler is reading samples.

Using the varied frequency and hold method, all samples that the control task sees are taken

as if they are sampled at the switching frequency, whether or not the system is operating in

steady-state mode or emergency mode. Because of the DC nature of steady-state signals, this

method is intended to closely model the behavior of the traditional sampling method without

as high a level of processor utilization.

Since a second-order PID compensator is being used, only the two previous values of each

signal will be needed (only one for the duty cycle). This algorithm’s behavior is based on the

simple varied frequency method, but at the beginning of the control task, the previous values

are decided. If in steady-state mode, the previous two values of the sampled signal will

simply just be equal to e[n-1], or the previous sample. Since only one previous value of the

duty cycle is needed, it will still always be just d[n-1] in steady-state mode or emergency

mode. This results in using:

87

𝑒[𝑛 − 2] = 𝑒[𝑛 − 1]

(47)

Though this may not be a large change, if a more complex compensator is used, perhaps one

that is third- or fourth-order, then more substitutions would need to be made, for both e[n]

and d[n]. Since this second-order PID compensator is sufficient for the buck converter, the

only substitution that needs to be made for this method is the one in Eqn (47) if the algorithm

is in steady-state mode. The transient behavior of this method is diagrammed in Figure 58,

which is similar to Figure 55 except that the sampled value is held between ADC samples.

Figure 58. Output Voltage Sampled at Switching using Varied Frequency and Hold Method. The output voltage
(top) is sampled at the rate of the sampler (in blue) and held between samples to produce the sampled signal
(bottom). The sampling rate increases when the voltage drops and again decreases when the signal reaches steady-
state.

88

4.1.4 Emergency Mode Only Method
Assuming that the voltage will not heavily stray while in steady-state mode, the control task

may simply not need to be run at all until the voltage drops, entering emergency mode. If

this is the case, then the control task either does not need to run at all in steady-state mode, or

only needs to run minimally, just to check whether or not the output signal has exceeded the

threshold range.

The RL78 provides a handy feature in which the ADC can be set to continuously sample, but

only generate a hardware interrupt if the sampled value falls outside of a certain range. This

can be very useful for the emergency mode only method, because the control task may not

even have to run – freeing up some processor utilization – until emergency mode begins.

The task then starts periodically until steady-state has again been reached. Unfortunately on

the RL78, this means that there is no hardware interrupt for any of the ADC channels unless

the value falls outside of this range, and no interrupt if it falls within this range during steady-

state mode. This is okay if the processor that the control task is running on can dedicate the

ADC strictly to the SMPS control, but if the same ADC is needed to sample other channels,

then the emergency mode only method will have to be implemented according to the

flowchart in Figure 59, which is very similar to the flowchart in Figure 54.

Though this appears to be as dense of an algorithm as the other algorithms that include

updating the duty cycle in steady-state mode, this algorithm does one comparison and

immediately leaves if false. This save on computational time allows this method to conserve

processing demand while in steady-state mode.

89

Figure 59. Flowchart for Emergency Mode Only Algorithm

90

The transient behavior of this algorithm is diagrammed in Figure 60.

Figure 60. Output Voltage Sampled at Switching using the Emergency Mode Only Method. The output voltage (top)
is sampled at the rate of the sampler (in blue) to produce the sampled signal (bottom). The sampling starts when the
voltage drops, and stops when the signal reaches steady-state.

4.1.5 Pseudo-Adaptive Control Method
The mathematics in Chapter 2 detailed the impact that slowing the sampling rate had on the

digital compensator. It was calculated that after being slowed down to a certain point, the

digital compensator would become unstable if given a step input. This is why in the other

methods, the sampling rate had to immediately increase upon changes in the voltage;

otherwise, the system surely would go unstable. When a difference equation from a z-

domain transfer function that is designed for one sampling frequency is used at slower

sampling frequencies, what is actually happening is that the difference equation starts

modeling a different w-plane or s-plane compensator. This is what the w-plane pole

91

movement in Figure 21 shows. To compensate for the change in sampling frequency, all that

must be done is the w-plane compensator must be remapped to the z-plane based on the

correct sampling period T. In the case of the PID compensator, this will only affect the

numerator coefficients, a0, a1, and a2, which are the coefficients in the difference equation for

the error values, e[n].

Adaptive control in its most simple form implies that a compensator will vary with time to

adapt to the plant that it controls. This is different than classical control, where a controller is

designed for a plant and is used without changing. If the PID compensator is mapped from

the w-plane to the z-plane using two different values for T, then two compensators will

result. The control task can then be implemented just as in the flowchart of Figure 54, except

when the operation mode switches back and forth between steady-state and emergency

modes, the coefficients for the difference equation switch also. The w-plane compensator

coefficients could be stored in the program on the MCU, and the difference equation

coefficients could be recalculated each time based on the value T that is being switched to.

This may be done according to the relationship in Eqn (9). Repetitive calculations like this

may become computationally heavy, so a more conservative approach would be to

precalculate the difference equation coefficients for each sampling frequency that will be

used, namely steady-state mode and emergency mode. The fact that the compensator

changes over time implies that this is adaptive control, though since it is precalculated, it is

more or less pseudo-adaptive.

The transient behavior of this approach is diagrammed in Figure 61, though the difference

equation changes as the sampling rate changes.

92

Figure 61. Voltage Sampled at Switching using the Pseudo-Adaptive Control Method. The output voltage (top) is
sampled at the rate of the sampler (in blue) to produce the sampled signal (bottom). The sampling rate increases
when the voltage drops, and again decreases when the signal reaches steady-state. The control task employs different
difference equations for different frequencies.

93

4.2 Computational Requirements
Each method was implemented in C on the RL78 using both floating-point arithmetic and

integer arithmetic, as detailed in Section 2.6.3. The actual performance of the algorithm was

not evaluated in this study, but the number of computational cycles and computational time

was evaluated for each method.

When implementing these methods in software, an error signal was calculated from the

sampled voltage, and that value, along with previous error and duty values, were put through

a difference equation. The duty value, which ideally represents a value between 0 and 1, is

finally multiplied by a correction gain value, k, which helps correct for any imperfections in

the circuit model – for example, losses in the circuit that were not accounted for in the circuit

analysis. Using floating-point arithmetic, k, which may be from 0.05 to 5.0, can simply be

represented as a real value, and multiplied by the final duty.

In integer arithmetic, representing the same values is a two step process. If k for instance is

3.63, the easiest way to get this same result is to break k into a numerator and a denominator

value, kn and kd. In this case, kn could be 363 and kd could be 100, which is similar to how

this is taken care of in fixed-point arithmetic. Doing this may be able to achieve an accurate

result, but it involves adding an integer division. In floating-point arithmetic, the same

process can be accomplished with a single multiplication. The impact that adding this

division has is that the speedup between floating-point and integer arithmetic is reduced.

An alternate way to accomplish this is by appropriately using bit shifts. 3.63 can also be

represented as 𝑁
𝐾𝑅𝐸𝑆

, where KRES is a resolution scaling factor that is a power of 2, and N is an

approximation. 3.63 can be approximated by the value 37171024, which evaluates to 3.6299.

Using this method, the integer multiplication by k becomes a multiplication followed by a bit

shift, which is a single instruction as opposed to a very costly division. This helps increase

the speedup between floating-point and integer arithmetic while maintaining precision.

The error/difference equation/gain factor – based on Eqns (22) and (23) – were first

implemented using arrays as demonstrated in Figure 62.

94

e[n] = V_ref – V_out;

d[n] = d[n-1] + 2.193*e[n] – 3.368*e[n-1] + 1.242*e[n-2];

comp = d[n] * k;
Figure 62. Implementation of Difference Equation Using Arrays

The methods were run using floating-point arithmetic, integer arithmetic with division, and

integer arithmetic without division. Table 11 displays the best-case, average, and worst-case

execution times in terms of instruction cycles, as well as task length in microseconds, which

was measured using an oscilloscope.

95

Table 11. Comparison of Execution Times of each Control Method Using Indexed Arrays

 Method Best-Case

Execution

Time (cycles)

Average

Execution

Time (cycles)

Worst-Case

Execution

Time

(cycles)

Task

Execution

Time (μsec)

Fl
oa

tin
g-

Po
in

t

Traditional 11915 11917 11956 360

Varied Sampling

Frequency

13362 13382 13410 420

Varied Sampling

Frequency and Hold

59 12098 13241 412

Emergency Mode Only 1333 12106 13351 408

Pseudo-Adaptive

Control

11643 11648 11707 356

In
te

ge
r w

ith
 D

iv
is

io
n

Traditional 9135 9230 9376 284

Varied Sampling

Frequency

9153 9324 9418 288 – 296

Varied Sampling

Frequency and Hold

9158 9324 9423 288 – 296

Emergency Mode Only 9784 9918 10054 308

Pseudo-Adaptive

Control

13575 13580 13618 420

In
te

ge
r w

ith
ou

t D
iv

is
io

n

Traditional 7062 7064 7105 220

Varied Sampling

Frequency

7107 7116 7142 220

Varied Sampling

Frequency and Hold

7107 7116 7142 220

Emergency Mode Only 7741 7750 7773 240

Pseudo-Adaptive

Control

11623 11627 11667 364

96

Though there is definitely a visible speedup between the floating-point and integer cases, it is

not as drastic as the speedup seen between floating-point and integer cases with the MPPT

algorithms. In the MPPT algorithms, there was a single multiplication for power, and then

most other computations were comparisons. These algorithms are characterized by

multiplications and additions, so they will naturally take require more instruction cycles than

the MPPT algorithms. There is also a noticeable difference between using division and

replacing division with bit shifting. There is about a 2500 instruction difference when

leaving out division.

One thing that Table 11 leads to is the maximum task frequency for the task at 100%

utilization. This indicates the absolute maximum frequency this task could run at

theoretically, but normally not practically, due to things like context switches between

interrupts. Referring to the fastest case in the table, the traditional method in integer

arithmetic without division, the average task execution time of 220 μsec would become an

task frequency of approximately 4.5 kHz, and this is at 100% processor utilization. This is

still far from the 150 kHz switching frequency that the buck converter is designed for.

In an attempt to try to boost system performance, the array implementation of the

error/difference equation/gain factor was replaced with the implementation in Figure 63.

en0 = V_ref – V_out;

dn = dn1 + 2.193*en0 – 3.368*en1 + 1.242*en2;

comp = dn * k;

dn1 = dn;

en2 = en1;

en1 = en0;

Figure 63. Implementation of Difference Equation Using Non-Indexed Global Variables

Storing each previous value in a non-indexed global variable, as well as doing a manual

value shift, indeed helped reduce the number of computations for each algorithm. Table 12

compares them.

97

Table 12. Comparison of Execution Times of each Control Method Using Non-Indexed Global Variables

 Method Best-Case

Execution

Time (cycles)

Average

Execution

Time (cycles)

Worst-Case

Execution

Time

(cycles)

Task

Execution

Time (μsec)

Fl
oa

tin
g-

Po
in

t

Traditional 11083 11148 11193 340

Varied Sampling

Frequency

11292 12302 12680 348 – 368

Varied Sampling

Frequency and Hold

11351 12326 12714 390

Emergency Mode Only 11290 12522 12676 390

Pseudo-Adaptive

Control

10980 11045 11139 340

In
te

ge
r w

ith
 D

iv
is

io
n

Traditional 4201 4268 4344 132

Varied Sampling

Frequency

24 2603 4385 134

Varied Sampling

Frequency and Hold

23 2816 4385 134

Emergency Mode Only 4881 4951 5037 154

Pseudo-Adaptive

Control

4014 4277 4350 133

In
te

ge
r w

ith
ou

t D
iv

is
io

n

Traditional 2211 2213 2254 69

Varied Sampling

Frequency

2257 2263 2288 70

Varied Sampling

Frequency and Hold

2257 2263 2291 70

Emergency Mode Only 29 2621 2909 90

Pseudo-Adaptive

Control

2217 2218 2260 70

98

Making this change had a small impact on the floating-point implementations, but reduced

the execution time compared to using array indexing by half or more. There continued to be

about a 2500 instruction cycle difference between integer with and without division, that in

this case now results in an additional 50% reduction. For the integer without division cases

compared to array indexed and non array indexed variables, there is between a 3 and 4 times

speedup. The best case scenario in this case, the integer without division traditional control

method, has an execution time of 69 μsec. This equates to a maximum task frequency of

about 14.5 kHz, which continues to be far from the switching frequency of 150 kHz that the

boost converter was designed for. However, if the compensator were to be remapped from

the w-plane to the z-plane with a sampling period of about 69 μsec, for example 75 μsec,

then it is likely that this could still be used to adequately control the buck converter. This also

implies that the RL78 would a dedicated processor, because 100% utilization leaves no room

for other tasks.

Though the integer with no division traditional control method achieves the lowest task

execution time, this is to be expected, because it is the method with the least amount of

intricacy. This method involves no checks to determine what operation mode it is in and

which mode it must turn to. However, the methods that do include these checks are not far

behind the traditional mode. The overhead in including these checks for the varied sampling

frequency and the varied sampling frequency and hold methods only adds 1 μsec to the

average execution time. Since both of these methods involve the task running slower for

most of the time, this 1 μsec of overhead is worth its improvement. Also, in every case, the

varied sampling frequency and varied sampling frequency and hold methods have very

similar execution times, because they are essentially the same algorithms in this case.

 Figure 64 is a graphical representation of the data in Table 11, and Figure 65 is a graphical

representation of the data in Table 12. Figure 66 compares the execution times of the control

methods with and without arrays.

99

Figure 64. Graphical Comparison of Execution Times of Control Methods using Arrays

0
2000
4000
6000
8000

10000
12000
14000
16000

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Floating-Point Integer with
Division

Integer without
Division

N
um

be
r o

f C
yc

le
s

Method

Control Execution Times with Arrays

Worst-Case Execution Time

Average Execution Time

Best-Case Execution Time

100

Figure 65. Graphical Representation of Execution Times of Control Methods without Arrays

0

2000

4000

6000

8000

10000

12000

14000

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Floating-Point Integer with
Division

Integer without
Division

N
um

be
r o

f C
yc

le
s

Method

Control Execution Time without Arrays

Worst-Case Execution Time

Average Execution Time

Best-Case Execution Time

101

Figure 66. Comparison of Execution Times of Control Methods with and witout Arrays

0

50

100

150

200

250

300

350

400

450

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Tr
ad

iti
on

al

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y

Va
rie

d
Sa

m
pl

in
g

Fr
eq

ue
nc

y
an

d
Ho

ld

Em
er

ge
nc

y
M

od
e

O
nl

y

Ps
eu

do
-A

da
pt

iv
e

Co
nt

ro
l

Floating-Point Integer with
Division

Integer without
Division

Ex
ec

ut
io

n
Ti

m
e

(μ
se

c)

Method

Comparison Between Using and Not Using
Arrays

With Arrays

Without Arrays

102

Though the most relaxed method, the emergency only method, may have a slightly higher

execution time than the varied sampling frequency methods, its best-case execution time,

according to its flowchart in Figure 59, makes it so this method is hardly felt by the processor

when it is not in emergency mode. This is not evident in the data because these tests were to

check average execution time when in emergency mode or in both emergency and steady-

state modes, but not just steady-state mode alone.

One thing that these tables do not show is the portion that these methods’ task periods will be

equal their worst-case execution times. These relaxed methods warrant that the control task

is only to be run at the switching frequency while the system operates in emergency mode,

which typically will only be a small portion of the load’s operation time – even if it is fairly

frequent. This essentially represents when the load transitions from “off” to “on” or from

“on” to “off”. This comparison of how often the task frequency matches the switching

frequency and how often is lower than the task frequency is omitted because it is heavily

dependent on the transient behavior of the load; it is different for every case. Rather, this

information is a starting point for determining processor utilization based on a given method.

103

5. Discussion and Analysis of Results

5.1 MPPT Applications
Consider the schematic in Figure 67. This represents the combination of MPPT control and

AVS techniques to maximize the efficiency of a device entirely powered off of a PV panel.

To explain this schematic, a power control MCU lies at the heart of this, controlling the boost

converter required for MPPT and the DC-DC Point-of-Load (POL) converters for the two

loads shown. The MCU runs periodic tasks, sampling voltages (and input current for MPPT

to calculate power) and running control calculations to set the duty cycle of each switching

converter. A rechargeable battery exists as the central energy storage component, and each

device, including the MCU, receives its power off of an input voltage bus from the battery.

The PV panel, along with the MPPT stage, charges the battery, and the MPPT guarantees that

the battery will always receive the maximum power. A path selection feature exists so that

this system may be able to recover from loss of power. If the MCU does not signal the path

selector to give PV power to the boost converter (as on reset), then the PV power goes

straight to charging the battery. Once the battery is charged at a high enough level, the MCU

may switch the path selector back so that the PV power goes to the boost converter, again

ensuring the maximum power.

104

PV Panel

Boost Converter

MCU

Boost Converter

Buck Converter

Load 1

Load 2

Input Voltage Bus

MPPT Stage AVS Stage

MPPT
Boost

PWM Duty
Cycle

Input Current

Path Selection Control

Rechargeable
Battery

Path
Selection

+VCC

Load 1 Boost PWM

Load 2 Buck PWM

Load 2 Output
Voltage Feedback

Load 1 Output Voltage Feedback
+

-
GND

VIN VOUT

VIN

VOUT

DD

VIN VOUT

D

Figure 67. Schematic of MPPT Enabled Device that also Employs AVS

Having the AVS stage included in this circuit allows for the same off-the-shelf MCU that

performs MPPT to run control tasks for the switching converters and allows for the

generation of multiple voltage domains.

If the MPPT stage were removed from the circuit, and the PV panel just connected straight to

the battery to directly charge it, the input voltage bus would waver due to the inevitable

frequent changes with solar irradiation. This may not be a problem with regard to the DC-

DC POL converters for the loads, for the MCU would still control each converter and keep

the voltage regulated within the operation range of each load. However the problem would

come if instead of using traditional power electronics control, an alternative method were

used, like pseudo-adaptive control or emergency mode only control. If using traditional

control, the sampling frequency (and consequently the task frequency) does not change, so

fluctuating input voltage would have no effect on the processor utilization. If an alternative

control method were used that is designed to relieve some of the processor’s utilization, then

a wavering input voltage would mean the task would have to more frequently run at a higher

frequency to keep the DC-DC POL converters voltage regulated. Since one of the main

goals of this study is to lower the processor utilization, then all measures need to be taken to

105

allow that to happen. In other words, the wavering input voltage caused by the absence of

the MPPT stage would require the control tasks for the DC-DC POLs to work harder.

Therefore, having the MPPT stage allows for the processor utilization to be kept down.

An example of an application of this specific circuit to a device is an e-book tablet reader. A

typical e-book reader is designed with advanced LCD technology so that even in daylight,

the screen does not have a glare, allowing the reader to read e-books outside in the daylight.

In doors and in darker areas, a backlight lights the display, allowing the reader to read e-

books in areas with less light. A typical e-book reader is also flat, about the size of a

person’s hand, and includes interfacing technology aside from the display, like a camera, an

SD-card reader, a Wi-fi connection, a Bluetooth connection etc. These properties make an e-

book reader a viable candidate for this technology. Each peripheral could be powered from

the central voltage bus, and since each of the named devices tend to have different operating

voltage requirements, implementing AVS by using a flexible MCU to control multiple

voltage domains would be ideal. Additionally, the fact that device is flat may allow for the

entire back of the device to be replaced by a flat PV panel. Since this device is intended for

outdoor use, hence the advanced LCD technology, it is likely that it would frequently be in

areas where it could be charged with solar energy. The device could last outside for as long

as it was light before having to be charged like a normal tablet. Since research for energy

efficiency is at such a high level of interest, especially for tablet devices, this would be an

ideal application.

More specifically to this study, a P&O method or a properly tuned InCond method may work

best for a device like this, where the irradiation conditions are frequently changing. Though

the Current Sweep method may achieve high efficiency with little computational cost, a

device like this (1) could not suffer periodic losses of power, and (2) would keep having its

irradiation change.

106

5.2 RTOS Applications

5.2.1 Using an RTOS
What this study has tested and found is the worst-case computational requirements of

implementing various measures of control for both MPPT and load line regulation. Since

each of these tasks have to be run periodically with a defined period, using an RTOS on an

MCU is a logical design choice. Since power regulation is typically done for devices with

MCUs, two design methodologies can be employed from the decision to use an RTOS. The

design may either (1) combine all tasks, including device software tasks and

control/regulation tasks onto one processor, or (2) use a cheaper, dedicated processor for all

of the control/regulation separate from the processor running the device software tasks.

Figure 68 illustrates the difference between the two.

Figure 68. Using a Single Processor versus Having a Dedicated Control Processor

107

Using the first method, if the main MCU is both fast enough and has enough resources

available, the need for an extra dedicated control processor is eliminated. This method is

more in line with the goal of the study. The downside to this method is that the main MCU

must completely dedicate as many PWM signals as there are voltage domains to regulate.

This may also be true of the ADC, but if the ADC has a multiplexor that allows for switching

between many different channels, then dedicating ADC channels to each switching converter

may not necessarily be an issue. The ADC will only have to sample the voltage as frequently

as the task is run. The upside to this method opens doors to more efficient and intelligent

control. Since the main MCU can decide or predict when a peripheral will turn on and off

and what its load behavior is like (the user also decides when peripherals turn on or off), the

MCU can signal to the control tasks that a load line is about to change, and load line

compensation can be taken care of proactively instead of reactively. Through great amounts

of tuning, it is possible to significantly reduce the need for digital control in a system where

the main MCU can predict the changes in the load.

Using the second method, which models a more traditional approach to load line regulation,

the main MCU is virtually free of having to deal with control, and the schedulability

discussed in this study would only have to apply to the regulation MCU. However,

intelligent control may still exist if there is communication between the two MCUs.

The following sections are brief analysis of how the findings of the computational

requirements found in this study may be applied to real-time scheduling analysis.

5.2.2 Real-time Scheduling Analysis using Rate Monotonic Scheduling
Chapter 3 reveals that using integer arithmetic with MPPT outperforms using floating-point

arithmetic on an MCU that lacks an FPU. Using Rate Monotonic Scheduling (RMS), a set of

tasks are always schedulable if the utilization U, found in Eqn (48) is less than UMax, found in

Eqn (49), based on the number of tasks m [10].

𝑈 = �
𝑇𝑖
𝜏𝑖

𝑚

𝑖=1

(48)

108

𝑈𝑀𝑎𝑥 = 𝑚�21 𝑚⁄ − 1� (49)

For MPPT on the RL78, the task frequency τi is set at 20 Hz. The execution times in Chapter

3 were based on instruction cycles, and since the RL78 runs at 32 MHz, the worst-case

execution time Ti can be calculated by

𝜏𝑖 =
#𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠
𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

=
#𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

32 × 106

(50)

If the processor were strictly dedicated running the MPPT task (m = 1), then UMax would

equate to 1, and U could be used to calculate the values in Table 13 based on the worst-case

execution time of each algorithm. Table 13 also calculates the minimum processor frequency

for U be run at UMax.

One thing that Table 13 indicates is that with such low values of U, the MPPT algorithm is

hardly taxing the processor at all. This leaves room for MPPT to be implemented on an

MCU like the RL78, along with many other tasks. Further schedulability analysis for this

case is application specific.

Table 13. Comparison of MPPT Processor Utilization Values

Algorithm Cycles Ti U Slowest

fprocessor

P&O 288 9.0 μsec 0.00018 5.76 kHz

Closed

Loop P&O

1226 38.3 μsec 0.00077 24.5 kHz

InCond 6460 201.9 μsec 0.00404 129.2 kHz

Current

Sweep

250 7.8 μsec 0.00016 5 kHz

109

The same analysis can be done with the digital control task methods by taking the worst-case

execution time of the fastest performing digital-control loop methods, the integer arithmetic

without division and without arrays. However, since there is not one defined control task

frequency, multiple frequencies are explored. Figure 69 graphs the utilization of each

method based on task frequency, and Figure 70 graphs the minimum processor speed

required for each method to run at U = 1 for each task frequency.

Figure 69. Control Loop Utilization based on Method and Task Frequency. The red line indicates UMax.

0

0.5

1

1.5

2

2.5

3

3.5

4

5000 10000 15000 20000 30000 40000

U
til

iz
at

io
n

Task Frequency (Hz)

Utilization based on Method and Task
Frequency

Traditional

Varied Frequencies

Varied Frequencies and Hold

Emergency Mode Only

Pseudo-Adaptive

110

Figure 70. Minimum Processor Speed Required for Control Loop Task to Run at Different Frequencies with U = 1

What these figures reveal is that even with a very optimized version of a control task, the

utilization with one task reaches 1 very easily with low task frequencies. If the control loop

provides sufficient performance at the low frequencies, then using a processor like the RL78

will be acceptable. Otherwise, the RL78 may not be a good platform for high frequency

control for an SMPS, though these results all model the worst-case execution times. On the

other hand, Figure 70 shows how fast a processor must be to implement the same algorithms

on other processors, given the worst-case number of cycles each method incurred. The TI-

TMS320F28335 DSP, another MCU used for buck and boost converter regulation, does

include an FPU and runs at 150 MHz. Though more costly of an MCU, the TI DSP may be

considered as an alternative to the RL78 for this purpose. As it is more costly of an MCU, it

may be able to better take the place of a main MCU in a system (as in Figure 68), and control

both device peripherals and voltage.

0
50

100
150
200
250
300
350
400
450
500

5000 10000 30000 60000 75000 100000 150000

Pr
oc

es
so

r F
re

qu
en

cy
 (M

Hz
)

Task Frequency (Hz)

Slowest Processor Frequency for U = 1

Traditional

Varied Frequencies

Varied Frequencies and Hold

Emergency Mode Only

Pseudo-Adaptive

111

5.3 Cost Analysis
Pindicura [1] used the same RL78/G13 with boost converter apparatus to develop a high-

brightness LED driver. In this study, the RL78 with the boost converter was simply used for

MPPT control. Table 13 displays the different minimum processor frequency to have U = 1

for each of the integer arithmetic based MPPT algorithms. These frequencies are low

compared to the 32 MHz normal operating frequency of the RL78, and they are much lower

than most MCUs. Table 14 shows a list of the cost of different MCUs within the RL78

family with respect to the capability of each MCU.

Table 14. List of Capabilities versus Cost of MCUs in the RL78 family [1]

Clock
(MHz)

RAM (kB) Memory
(kB)

ADC
channels

I/O Unit cost
for 1,000
($)

24 0.5 4 11 22 0.7395
24 1 12 11 22 1.015
24 1.5 16 11 22 1.0875
32 2 16 9 28 1.498
32 2 32 12 38 1.792
32 4 64 12 38 2.058
32 8 96 12 38 2.254
32 23 512 12 38 3.915

The MCU used in this study has a unit cost (based on 1000) of $2.058. Using some of the

other, lower end MCUs in this family, the price could be cut by nearly two thirds. The fact

that MPPT tends to be so computationally light is why PICs are a common choice for MPPT

control. However, since the design goal that this study focuses on is more with the intent to

use an MCU in an apparatus like Figure 67 details, the motivation for choosing an MCU is

more based on meeting the needs of being able to schedule multiple control tasks to control

multiple voltage domains.

112

5.4 Future Work

5.4.1 Characterizing the Impact of Loss of Precision in Digital Control
When comparing loss of precision for a sixth-order filter to the loss of precision for a second-

order plant (see Section 2.6.3), it was only determined through experimentation and brief

simulation that loss of decimal precision is a negligible loss for low-order systems whose

poles are not too near the z = 1 point of the z-plane. As precision on an MCU is a limited

resource, losing as much precision as possible while maintaining adequate performance is

essential. Therefore, an essential study for this would be to determine and characterize the

change in performance as a function of loss of decimal precision, with respect to MCUs.

5.4.2 Tuning Optimized MPPT Algorithms
This study put more emphasis on the computational requirements of different MPPT

algorithms implemented in software rather than how efficient each algorithm was. A

minimal amount of tuning went into trying to get the greatest efficiency of each algorithm,

but it is clear that with more tuning, each algorithm could likely do a better job at obtaining

the MPP, both in transient and in steady-state. A study that combines the optimized

simulations performed by Morales [2] and the computational requirements obtained in this

study would be helpful at determining MPPT efficiency as a function of computational

requirements.

5.4.3 Time Responses of Intelligent and Relaxed Digital Control
The basis and reasoning, as well as the raw computational requirements, of relaxed digital

control were explored in this study. The transient responses (in terms of step response) were

simulated, but not obtained experimentally. An important study would be to parameterize

the relationship between a load’s operating voltage range (Vmin and Vmax), the minimum

control task frequency, the threshold range for which the control task leaves steady-state

mode and enters emergency mode, the voltage margin Vmargin, and the different control

methods proposed in this study. Also, it may also be necessary to have more than just two

operation modes. Perhaps an additional recovery mode could exist that transitions between

emergency mode and steady-state mode, at a control frequency between that of emergency

mode and steady-state mode.

113

Additionally, real-time scheduling analysis on each of these methods would be helpful to

determine the varying processor utility (caused by switching between operation modes)

based on the transient requirements of the load. Though simple schedulability analysis with

RMS bases utility on a task’s worst-case execution time, more complex schedulability

analysis would determine how this can be balanced. Implementing the software and control

for whole system on an MCU would allow for more intelligent control to take place (as

described in Section 5.2.1), and understanding this would be essential.

5.4.4 Determining the Impact of Having MPPT in a Solar Powered Load Line Regulated
System

Referring to Figure 67, the MPPT exists to prevent wavering of the input voltage to each

switching converter. If the switching converters are set up in such a way that their control

task frequency changes depending which operation mode it is in, then it is certain that a

fluctuating input line (without MPPT) would cause the control tasks to operate more

frequently, consuming more processor utilization. A study that implements the schematic in

Figure 67 and determines how much the processor utilization is helped by having MPPT

would be useful. Also, measuring and maximizing the amount of efficiency in this type of

circuit would make a big impact in the realm of small electronics.

5.5 Conclusion
One of the main claims of this study is that the extra cost incurred by raising energy

efficiency is worth what is added in price. This is because any powered device will always

either need to be recharged or powered off of wall power, which will incur some cost.

Increasing efficiency is a long term savings, because the less energy is wasted due to poor

efficiency with cheaper hardware, the less the cost will be replenishing the energy in the

future. Though this study does not examine the length of time versus relative savings, it can

still be said that to some extent, this claim is true regardless.

The application of this technology to real world devices, as described in Section 5.1, makes

exploration of this subject important. Since MCUs are implemented on such a large scale,

the savings in energy on one MCU becomes multiplied. This makes this area of research an

easy target for reducing energy use.

114

Knowing the computational requirements of both MPPT and DC-DC load line digital control

opens the door to new ways of integrating power electronics control with using relaxed

digital control theory as it applies to real-time scheduling theory. Being able to revolutionize

the way that DC-DC regulation is done allows for this method of efficient power conversion

to be a more accessible means of providing power to various devices, promoting the general

increase of efficiency.

115

References

[1] Pindicura, T, “Analysis of Microcontroller based High Brightness LED Drivers—a

Cost Oriented Approach to understand the relation between Computational

Requriements and DC-DC Converter components,” North Carolina State University,

North Carolina, USA, 2012.

[2] Morales, D. S. “Maximum Power Point Tracking Applications for Photovoltaic

Applications,” Aalto University, Helsinki, Finland, 2010.

[3] D. Maksimović, R. Zane and R. Erickson, “Impact of Digital Control in Power

Electronics,” in Proceedings of 2004 International Symposium on Power

Semiconductor Devices & ICs, Kitakyushu.

[4] A. Juneja, A. G. Dean and S. Bhattacharya, “Understanding the Real-Time

Characteristics of Closed-Loop Control Software for Switched-Mode Power Supplies,”

Technical Report, Raleigh: North Carolina State University, 2012.

[5] P. Horowitz and W. Hill, “The Art of Electronics,” 2nd edition, New York: Cambridge

University Press, 1989.

[6] C. L. Phillips and H. T. Nagle, “Digital Control System Analysis and Design,” 3rd

edition, New Jersey: Prentice Hall, Inc., 1995.

[7] J. G. Proakis and D. G. Monolakis, “Digital Signal Processing: Principles, Algorithms

and Applications,” 4th edition, Pearson Prentice Hall, 2007.

[8] R. Yates, “Fixed-Point Arithmetic: An Introduction,” North Carolina: Digital Signal

Labs, 2009.

[9] Renesas, “RL78 family User’s Manual for Software,” [Online]. Available:

http://documentation.renesas.com/doc/products/mpumcu/doc/rl78/r01us0015ej_rl78.pdf

116

[10] A. Burns and A. Wellings, “Real-Time Systems and Programming Languages: Ada 95,

real-time Java, and real-time POSIX,” 3rd edition, New York: Addison-Wesley, 2001.

[11] R. W. Erickson, “Fundamentals of Power Electronics,” 2nd edition, Massachusetts:

Kluwer Academic, 2001.

117

Appendix

118

Appendix A
Acronyms Used within the Document
A/D Analog-to-Digital
AC Alternating Current
ADC Analog-to-Digital Converter
ADT Abstract Data Type
AVS Aggressive Voltage Scaling
C C programming language
D Duty cycle
DC Direct Current
FLC Fuzzy Logic Control
FPU Floating-Point Unit
GPIO General Purpose Input/Output
GUI Graphical User Interface
InCond Incremental Conductance
LED Light Emitting Diode
MCU Microcontroller Unit
MPP Maximum Power Point
MPPT Maximum Power Point Tracking
P&O Perturb and Observer
PIC Peripheral Interface Controller
PID Proportional-Integral-Derivative
POL Point-of-Load
POT Potentiometer
PV Photovoltaic
PWM Pulse Width Modulation
RL78 Renesas Microcontroller
RMS Rate Monotonic Scheduling
RTOS Real –Time Operating System
SMPS Switch Mode Power Supply
T Sampling Time
TI Texas Instruments
U Processor Utilization
UART Universal Asynchronous Receive/Transmit

119

Appendix B
Buck Converter AC Small Signal Analysis
Though an SMPS has nonlinear components, it may behave linearly around a given operating

point. Erickson [11] outlines a method for obtaining a linear model for an SMPS by

generating an AC equivalent small-signal model. The following analysis details how the

small-signal model in Figure 7 was derived from the synchronous buck converter in Figure

71.

Starting with the synchronous buck converter, the losses of each component are added.

DC

L

rds

rds

RL

C

rc

Rovg(t)

+

-

vo(t)

Figure 71. Synchronous Buck Converter Circuit with Losses Included

120

Proper analysis must be done in two modes: (1) transistor 1 on/transistor 2 off, and (2)

transistor 1 off/transistor 2 on. Figure 72 and Figure 73 display this:

DC

L

rds RL

C

rc

Rovg(t)

+

-

vo(t)

ig(t) ic(t)

il(t)

+

-
vc(t)

-

+

+++

Figure 72. Buck Converter in Mode (1)

DC

L

rds

RL

C

rc

Rovg(t)

+

-

vo(t)

iL(t)
iC(t)

+ +

+

+

+

-

- -

-

-

Figure 73. Buck Converter in Mode (2)

For ease of calculation, two substitutions are made:

𝑅𝑙𝑜𝑠𝑠 = 𝑟𝑑𝑠 + 𝑅𝐿

(51)

𝑅𝑂𝐶 = 𝑅𝑜 + 𝑟𝑐

(52)

121

Starting with mode (1), a KVL and KCL are used to obtain the state space model for this

mode.

𝐿
𝑑𝑖(𝑡)
𝑑𝑡

= 𝑣𝑔(𝑡) − 𝑖(𝑡)(𝑟𝑑𝑠 + 𝑅𝐿) − 𝑣(𝑡)

(53)

𝐶
𝑑𝑣(𝑡)
𝑑𝑡

=
𝑅𝑜
𝑅𝑂𝐶

�𝑖(𝑡) �1 −
𝑟𝑐𝑅𝑙𝑜𝑠𝑠𝐶

𝐿
� − 𝑣(𝑡) �

1
𝑅𝑜

+
𝑟𝐶𝐶
𝐿
� + 𝑣𝑔(𝑡)

𝑟𝐶𝐶
𝐿
�

(54)

𝑖𝑔(𝑡) = 𝑖(𝑡)

(55)

 A1 B1

�𝐿 0
0 𝐶�

𝑑
𝑑𝑡
� 𝑖(𝑡)𝑣(𝑡)� = �

−𝑅𝑙𝑜𝑠𝑠 −1
𝑅𝑜
𝑅𝑂𝐶

�1 −
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� −

𝑅𝑜
𝑅𝑂𝐶

�
1
𝑅𝑂

+
𝑟𝑐𝐶
𝐿
�� �

𝑖(𝑡)
𝑣(𝑡)� + �

1
𝑟𝑐𝐶
𝐿

𝑅𝑜
𝑅𝑂𝐶

� �𝑣𝑔(𝑡)�

(56)

 C1 E1

𝑖𝑔(𝑡) = [1 0] � 𝑖(𝑡)𝑣(𝑡)� + [0]�𝑣𝑔(𝑡)�

(57)

In mode (2), similar analysis is done with a KVL and a KCL to obtain the state space model

for mode (2).

𝐿
𝑑𝑖(𝑡)
𝑑𝑡

= −𝑖(𝑡)(𝑅𝐿 + 𝑟𝑑𝑠) − 𝑣(𝑡)

(58)

𝑖𝑐(𝑡) = 𝑖(𝑡) − 𝑣(𝑡)
𝑅𝑜

; 𝑣𝑐(𝑡) + 𝑖𝑐(𝑡)𝑟𝑐 − 𝑣(𝑡) = 0 → 𝑣𝑐(𝑡) = 𝑣(𝑡) − 𝑖𝑐(𝑡)𝑟𝑐

(59)

𝑣𝑐(𝑡) = 𝑣(𝑡) − 𝑖(𝑡)𝑟𝑐 +
𝑣(𝑡)
𝑅𝑜

𝑟𝑐

(60)

122

𝐶
𝑑𝑣𝑐(𝑡)
𝑑𝑡

= 𝐶 �
𝑑𝑣(𝑡)
𝑑𝑡

−
𝑑𝑖(𝑡)
𝑑𝑡

+
𝑑𝑣(𝑡)
𝑑𝑡

𝑟𝑐
𝑅𝑜
�

(61)

𝑖𝑐 = 𝐶 ��1 +
𝑟𝑐
𝑅𝑜
�
𝑑𝑣(𝑡)
𝑑𝑡

−
𝑑𝑖(𝑡)
𝑑𝑡

𝑟𝑐�

(62)

𝑖𝑐 = 𝐶 ��1 +
𝑟𝑐
𝑅𝑜
�
𝑑𝑣(𝑡)
𝑑𝑡

−
𝑟𝑐
𝐿

(−𝑖(𝑡)𝑅𝑙𝑜𝑠𝑠 − 𝑣(𝑡))�

(63)

𝑖𝑐 = 𝐶 ��1 +
𝑟𝑐
𝑅𝑜
�
𝑑𝑣(𝑡)
𝑑𝑡

−
𝑟𝑐
𝐿

+ 𝑖(𝑡)
𝑟𝑐𝑅𝑙𝑜𝑠𝑠
𝐿

− 𝑣(𝑡)
𝑟𝑐
𝐿
�

(64)

𝑖(𝑡) −
𝑣(𝑡)
𝑅𝑜

= 𝐶 ��1 +
𝑟𝑐
𝑅𝑜
�
𝑑𝑣(𝑡)
𝑑𝑡

−
𝑟𝑐
𝐿

+ 𝑖(𝑡)
𝑟𝑐𝑅𝑙𝑜𝑠𝑠
𝐿

− 𝑣(𝑡)
𝑟𝑐
𝐿
�

(65)

𝐶
𝑑𝑣(𝑡)
𝑑𝑡

�1 +
𝑟𝑐
𝑅𝑜
� = 𝑖(𝑡) �1 −

𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿

� − 𝑣(𝑡) �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
�

(66)

𝐶
𝑑𝑣(𝑡)
𝑑𝑡

=
𝑅𝑜
𝑅𝑂𝐶

�𝑖(𝑡) �1 −
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� − 𝑣(𝑡) �

1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
��

(67)

𝑖𝑔(𝑡) = 0

(68)

123

 A2 B2

�𝐿 0
0 𝐶�

𝑑
𝑑𝑡
� 𝑖(𝑡)𝑣(𝑡)� = �

−𝑅𝑙𝑜𝑠𝑠 −1
𝑅𝑜
𝑅𝑂𝐶

�1 −
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� −

𝑅𝑜
𝑅𝑂𝐶

�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
�� �

𝑖(𝑡)
𝑣(𝑡)� + �00� �𝑣𝑔(𝑡)�

(69)

 C2 E2

𝑖𝑔(𝑡) = [0 0] � 𝑖(𝑡)𝑣(𝑡)� + [0]�𝑣𝑔(𝑡)�

(70)

Using the state space averaging method, the A, B, C, and E matrices are defined as:

𝐴 = 𝐷𝐴1 + 𝐷′𝐴2 = 𝐷 �
−𝑅𝑙𝑜𝑠𝑠 −1

𝑅𝑜
𝑅𝑂𝐶

�1 −
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� −

𝑅𝑜
𝑅𝑂𝐶

�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
�� + 𝐷′ �

−𝑅𝑙𝑜𝑠𝑠 −1
𝑅𝑜
𝑅𝑂𝐶

�1 −
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� −

𝑅𝑜
𝑅𝑂𝐶

�1 +
𝑟𝑐𝐶
𝐿
��

(71)

𝐴 = (𝐷 + 𝐷′) �
−𝑅𝑙𝑜𝑠𝑠 −1

𝑅𝑜

𝑅𝑂𝐶
�1 −

𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
� −

𝑅𝑜

𝑅𝑂𝐶
� 1

𝑅𝑜
+

𝑟𝑐𝐶

𝐿
��; (𝐷 + 𝐷′) = 1; 𝑅𝑜

𝑅𝑂𝐶
≈ 1; 1 − 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿
≈ 1

(72)

𝐴 = �
−𝑅𝑙𝑜𝑠𝑠 −1

1 −�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 ��

𝐵 = 𝐷𝐵1 + 𝐷′𝐵2 �
𝐷

𝐷
𝑟𝑐𝐶
𝐿
�

𝐶 = 𝐷𝐶1 + 𝐷′𝐶2[𝐷 0]

𝐸 = 𝐷𝐸1 + 𝐷′𝐸2[0]

(73)

The DC model is then constructed from the averaged state space variables by setting the

transient components (i.e. the derivatives) to zero:

�00� = �
−𝑅𝑙𝑜𝑠𝑠 −1

1 −�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 �� �

𝐼
𝑉� + �

𝐷

𝐷
𝑟𝑐𝐶
𝐿
� �𝑉𝑔�

(74)

124

� 𝐼𝑉� = �
1

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 � + 1

� �− �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 1

−1 −𝑅𝑙𝑜𝑠𝑠
� �

𝐷

𝐷
𝑟𝑐𝐶
𝐿
� �𝑉𝑔�

(75)

� 𝐼𝑉� = �
1

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 �

�

⎣
⎢
⎢
⎡𝐷
𝑟𝑐𝐶
𝐿
−
𝐷
𝑅𝑜

− 𝐷
𝑟𝑐𝐶
𝐿

𝐷 − 𝐷
𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿 ⎦
⎥
⎥
⎤
�𝑉𝑔�

(76)

𝐼 =
−𝐷 𝑅𝑜�

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 � + 1

𝑉𝑔

(77)

𝑉 =
𝐷 − 𝐷𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿

𝑅𝑙𝑜𝑠𝑠 �
1
𝑅𝑜

+ 𝑟𝑐𝐶
𝐿 �

𝑉𝑔

(78)

�𝑉 = 𝐷𝑉𝑔; 𝐼 = −
𝐷
𝑅𝑜

𝑉𝑔 when
𝑅𝑙𝑜𝑠𝑠

𝑟𝑐𝐶
𝐿
≪ 1

𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

≪ 1
�

(79)

𝐼𝑔 = [𝐷 0] � 𝐼𝑉� + 0

(80)

𝐼𝑔 = 𝐷𝐼

(81)

The linearized model may be combined with the perturbed model using the rule:

𝐾
𝑑𝑥�(𝑡)
𝑑𝑡

= 𝐴𝑥�(𝑡) + 𝐵𝑢�(𝑡) + {(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢}�̂�(𝑡)

𝑦�(𝑡) = 𝐶𝑥�(𝑡) + 𝐸𝑢�(𝑡) + {(𝐶1 − 𝐶2)𝑥 + (𝐸1 − 𝐸2)𝑢}�̂�(𝑡)

(82)

125

This requires calculating {(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢} and {(𝐶1 − 𝐶2)𝑥 + (𝐸1 − 𝐸2)𝑢}.

Solving for the two quantities,

{(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢} = �0 0
0 0� �

𝐼
𝑉� + �

1
𝑟𝑐𝐶
𝐿
� �𝑉𝑔�

(83)

{(𝐴1 − 𝐴2)𝑥 + (𝐵1 − 𝐵2)𝑢} = �
𝑉𝑔

𝑉𝑔𝑟𝑐𝐶
𝐿

�

(84)

{(𝐶1 − 𝐶2)𝑥 + (𝐸1 − 𝐸2)𝑢} = [1 0] � 𝐼𝑉� = 𝐼

(85)

the small-signal state space model may be formulated using this result, the rule in Eqn (82),

and matrices of the averaged state space model of Eqn (73):

�𝐿 0
0 𝐶�

𝑑
𝑑𝑡
� 𝚤̂(𝑡)𝑣�(𝑡)�

= �
−𝑅𝑙𝑜𝑠𝑠 −1

1 −�
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 �� �

𝚤̂(𝑡)
𝑣�(𝑡)� + �

𝐷

𝐷
𝑟𝑐𝐶
𝐿
� 𝑣�𝑔(𝑡)

+ �
𝑉𝑔

𝑉𝑔𝑟𝑐𝐶
𝐿

� �̂�(𝑡)

�𝚤�̂�(𝑡)� = [𝐷 0] � 𝚤̂(𝑡)𝑣�(𝑡)� + [0] + 𝐼�̂�(𝑡)

(86)

The small-signal equations come directly from the small-signal state space model:

𝐿
𝑑𝚤̂(𝑡)
𝑑𝑡

= −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑡) − 𝑣�(𝑡) + 𝐷𝑣�𝑔(𝑡) + 𝑉𝑔�̂�(𝑡)

(87)

𝐶
𝑑𝑣�(𝑡)
𝑑𝑡

= 𝚤̂(𝑡) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 𝑣�(𝑡) +

𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑡) +
𝑉𝑔𝑟𝑐𝐶
𝐿

�̂�(𝑡)

(88)

126

𝚤�̂�(𝑡) = 𝐷𝚤̂(𝑡) + 𝐼�̂�(𝑡)

(89)

The small-signal model of the circuit is formed by treating each of these equations either a

KVL or a KCL, and reversing the process used to obtain a Kirchhoff equation. Eqn (87)

becomes a KVL since the primary component, 𝐿 𝑑�̂�(𝑡)
𝑑𝑡

, is a voltage. Eqn (88) and Eqn (89)

both become KCL equations because both primary components, 𝐶 𝑑𝑣�(𝑡)
𝑑𝑡

 and 𝚤�̂�(𝑡) are

currents. Figure 74, Figure 75, and Figure 76 are all circuit manifestations of each of these

equations. Note that the quantity, 𝑍𝐿 is an impedance equivalent of the 𝑟𝑐𝐶𝐿 term in Eqn (88)

such that 𝑍𝐿 = 𝐿
𝑟𝑐𝐶

.

127

Dvg(t)

L

Rloss

Vgd(t)

+
-

+

^

+- -

di
dt

i(t)^

v(t)^

Figure 74. Circuit Derived from Eqn (87)

RoZL C v(t)i(t)
VgrcCd(t) DrcCvg(t)

L L

+

-

^
^ ^

^

Figure 75. Circuit Derived from Eqn (88)

vg(t) ^DC

ig(t)

Id(t) Di(t)
^^

Figure 76. Circuit Derived from Eqn (89)

128

The full small signal model comes from combining the three of these together. This can be

accomplished by using the following substitutions. All current branches in Figure 75 are

directly in parallel with one another, which means that the voltage, 𝑣�(𝑡) is the voltage across

each branch. In Figure 74, the voltage across the voltage source on the right is 𝑣�(𝑡).

Furthermore, the incoming current, 𝚤̂(𝑡), on the leftmost branch of Figure 75 matches the

outgoing current of the loop in Figure 74. As both of these match one another, the

substitution can be made by substituting the voltage source 𝑣�(𝑡) on the right side of Figure

74 with the entire circuit of Figure 75 by replacing the incoming current, 𝚤̂(𝑡), which is where

the substitution occurs for that circuit.

The circuits of Figure 74 and Figure 76 may be attached by treating the rightmost current

source of Figure 76, 𝐷𝚤̂(𝑡), and the leftmost voltage source of Figure 74, 𝐷𝑣�𝑔(𝑡) as an ideal

transformer model. The combination of the three circuits results in the AC equivalent small-

signal model, diagramed in Figure 77.

RoZL C v(t)
VgrcCd(t) DrcCVg(t)

L L

+

-

^ ^
vg(t)

L

Rloss

Vgd(t)^

ig(t)

Id(t)

1:D

^

^

^

^

Figure 77. Complete Small-Small AC Equivalent Model of Boost Converter

129

The system’s transfer functions can be obtained by doing Laplace transforms of the small-

signal equations, Eqns (87), (88), and (89).

𝑠𝐿𝚤̂(𝑠) = −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑠) − 𝑣�(𝑠) + 𝐷𝑣�𝑔(𝑠) + 𝑉𝑔�̂�(𝑠)

(90)

𝑠𝐶𝑣�(𝑠) = 𝚤̂(𝑠) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 𝑣�(𝑠) +

𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑠) +
𝑉𝑔𝑟𝑐𝐶
𝐿

�̂�(𝑠)

(91)

𝚤̂(𝑠) = 𝐷𝚤̂(𝑠) + 𝐼�̂�(𝑠)

(92)

The line-to-output transfer function, 𝐺𝑣𝑔(𝑠), may be obtained by taking the Laplace

transformed equations in Eqns (90), (91), and (92) with the perturbed duty cycle value, �̂�(𝑠),

set to 0. This results in:

𝑠𝐿𝚤̂(𝑠) = −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑠) − 𝑣�(𝑠) + 𝐷𝑣�𝑔(𝑠)

(93)

𝚤̂(𝑠) =
𝐷𝑣�𝑔(𝑠) − 𝑣�(𝑠)
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

(94)

𝑠𝐶𝑣�(𝑠) = 𝚤̂(𝑠) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿 � 𝑣�(𝑠) +

𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑠)

(95)

𝑣�(𝑠) �𝑠𝐶 +
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
� =

𝐷𝑣�𝑔(𝑠) − 𝑣�(𝑠)
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

+
𝐷𝑟𝑐𝐶
𝐿

𝑣�𝑔(𝑠)

(96)

𝑣�(𝑠) �𝑠𝐶 +
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿

+
1

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
� = 𝑣�𝑔(𝑠) �

𝐷𝑟𝑐𝐶
𝐿

+
𝐷

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
�

(97)

𝐺𝑣𝑔(𝑠) =
𝑣�(𝑠)
𝑣�𝑔(𝑠) =

𝑠𝐷𝑟𝑐𝐶 + 𝐷𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 + 𝐷

𝑠2𝐿𝐶 + 𝑠𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑠𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

+ 𝑠𝑟𝑐𝐶 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 + 1

(98)

130

𝐺𝑣𝑔(𝑠) =
�𝐷 + 𝐷𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿 � + 𝑠𝐷𝑟𝑐𝐶

�1 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 + 𝑅𝑙𝑜𝑠𝑠

𝑅𝑜
� + � 𝐿𝑅𝑜 + 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2

(99)

𝐺𝑣𝑔(𝑠) ≈
𝐷 + 𝐷𝑟𝑐𝐶𝑠

�1 + 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

� + � 𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2

(100)

The control-to-output transfer function, 𝐺𝑣𝑑(𝑠), may be obtained in a similar manner, by

taking the Laplace transformed equations in Eqn (90), (91), and (92) with the perturbed

generation voltage, 𝑣�𝑔(𝑠), set to 0. This results in:

𝑠𝐿𝚤̂(𝑠) = −𝑅𝑙𝑜𝑠𝑠𝚤̂(𝑠) − 𝑣�(𝑠) + 𝑉𝑔�̂�(𝑠)

(101)

𝚤̂(𝑠) =
𝑉𝑔�̂�(𝑠) − 𝑣�(𝑠)
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

(102)

𝑠𝐶𝑣�(𝑠) = 𝚤̂(𝑠) − �
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿
� 𝑣�(𝑠) +

𝑟𝑐𝐶
𝐿
𝑉𝑔�̂�(𝑠)

(103)

𝑣�(𝑠) �𝑠𝐶 +
1
𝑅𝑜

+
𝑟𝑐𝐶
𝐿

+
1

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
� = �̂�(𝑠) �𝑉𝑔 +

𝑟𝑐𝐶
𝐿

+
𝑉𝑔

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
�

(104)

𝐺𝑣𝑑(𝑠) =
𝑣�(𝑠)
�̂�(𝑠)

=
𝑉𝑔�𝑟𝑐𝐶𝑠 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶

𝐿 + 1�

�1 + 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

� + � 𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2

(105)

𝐺𝑣𝑑(𝑠) ≈
𝑉𝑔 + 𝑉𝑔𝑟𝑐𝐶𝑠

�1 + 𝑅𝑙𝑜𝑠𝑠
𝑅𝑜

� + � 𝐿
𝑅𝑜

+ 𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶� 𝑠 + 𝐿𝐶𝑠2

(106)

131

The final fragment of the transfer function is obtained from the AC equivalent small-signal

model by taking 𝑣�𝑔(𝑠) and �̂�(𝑠) as zero. Making these substitutions results in the circuit in

Figure 78.

sL

Rloss

ZL sC Ro

1

Zout

Figure 78. Circuit Used to Derive ZOUT(s)

The output impedance 𝑍𝑜𝑢𝑡 is calculated by finding the resistance seen by the load 𝑅𝑜. This

may be done according to Ohm’s law, where 𝑍 = 𝑉
𝐼 . In this case, V may be treated as 1 V,

and I may be treated as a sum of the current in all three remaining branches, resulting in:

𝑍𝑜𝑢𝑡(𝑠) = �
1

𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠
+
𝑟𝑐𝐶
𝐿

+ 𝑠𝐶�
−1

(107)

𝑍𝑜𝑢𝑡(𝑠) =
𝑠𝐿 + 𝑅𝑙𝑜𝑠𝑠

�1 + 𝑅𝑙𝑜𝑠𝑠𝑟𝑐𝐶
𝐿 � + (𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶)𝑠 + 𝐿𝐶𝑠2

(108)

𝑍𝑜𝑢𝑡(𝑠) ≈
𝑅𝑙𝑜𝑠𝑠 �1 + 𝐿

𝑅𝑙𝑜𝑠𝑠
𝑠�

1 + (𝑅𝑙𝑜𝑠𝑠𝐶 + 𝑟𝑐𝐶)𝑠 + 𝐿𝐶𝑠2

(109)

With 𝐺𝑣𝑔(𝑠), 𝐺𝑣𝑑(𝑠), and 𝑍𝑜𝑢𝑡(𝑠), all components of the block diagram in Figure 8 are

defined. The 𝐺𝑣𝑑(𝑠) transfer function listed in Eqn (1) is obtained by applying the values in

132

Table 15 to the 𝐺𝑣𝑑(𝑠) transfer function in Eqn (106). The resulting transfer function is

again listed in Eqn (110).

𝐺𝑣𝑑(𝑠) =
0.000282𝑠 + 10

4.9 × 10−9𝑠2 + 5.064 × 10−5𝑠 + 1

(110)

Table 15. Component Values for Buck Converter

Symbol Value Description Symbol Description
Vg 10 V Input Voltage D Duty Cycle
L 100 μH Inductance Vo Output Voltage
C 47 μF Output

Capacitor
I Inductor

Voltage
Ro 10Ω Load Resistance 𝑣�𝑔(𝑡) Input Voltage

Perturbation
rds 0.027Ω MOSFET ON

resistance
�̂�(𝑡) Duty Cycle

Perturbation
RL 0.025Ω Inductor ESR
rc 0.6Ω Capacitor ESR
Rloss RL+rds Loss

Components

All of these calculations come from power electronic circuit analysis performed by Avik

Juneja, a fellow Ph.D. student under Dr. Alexander Dean.

133

Appendix C
Code Structure for MPPT Software
The code on the Renesas RL78 MCU controls the boost converter and samples both the input

and output current and voltage (see Figure 33). The code is organized into two sections:

• Code Generated Automatically By Applilet – Applilet is a program developed to make

peripheral configuration easy. The program includes a GUI and allows a user to sort

through menus and options, and will automatically generate the code that configures

the peripherals as well as the main file. Each general peripheral gets its own file, with

an API consisting of several control functions, and leaves room for the user to decide

how to directly interact with the peripherals.

• User Source Code – This contains all additional code defined directly by the user to

perform calculations, functions, and algorithms that define the control of the program.

This code interacts with the peripherals via the API automatically generated for each

peripheral by Applilet.

The following tables list the files for the Applilet code and the user source code and what

their purpose is.

134

Table 16. List of Files and Descriptions of each Applilet Generated File

File Group Description Relevant Functions

r_adc.c

r_adc_user.c

r_cg_adc.h

Control for the ADC.

Configures the ADC to

sweep read multiple

channels and store the

result.

R_ADC_Create(), R_ADC_Start(),

R_ADC_Set_OperationOn(),

R_ADC_Get_Result()

r_cgc.c

r_cgc_user.c

r_cg_cgc.h

Control for the Clock

Generator. The clock

generator is initialized on

start up and not

reconfigured after.

R_CGC_Create()

r_intc.c

r_intc_user.c

r_cg_intc.h

Control for the GPIO

Hardware Interrupts.

These are attached to the

push buttons on board

R_INTC_Create(), R_INTC0_Start(),

R_INTC1_Start(), R_INTC2_Start()

r_it.c

r_it_user.c

r_cg_it.h

Control for the Interval

Timer. Synchronized

with the primary

processing task.

R_IT_Create(), R_IT_Start()

r_main.c

r_cg_macrodriver.h

r_cg_userdefine.h

File containing the main()

function. Also contains

macro definitions used in

all other files.

main()

r_port.c

r_port_user.c

r_cg_port.h

Initialization for the

GPIO Ports. Initialized

on start up and not

reconfigured after.

R_PORT_Create()

135

Table 16 Continued

r_serial.c

r_serial_user.c

r_cg_serial.h

Control for the Serial

Array Unit. This

specifically controls

UART2, which

communicates with the

GUI.

R_SAU1_Create(), R_UART2_Start(),

R_UART2_Send(),R_UART2_Receive(),

R_UART2_Callback_RecieveEnd(),

r_systeminit.c Initialization for the

Entire System. This

method calls all

initialization functions for

each peripheral.

R_Systeminit()

r_timer.c

r_timer_user.c

r_cg_timer.h

Control for the Timer

Array Unit. Controls

PWM signal, instruction

cycle counter, and MPPT

control task.

R_TAU0_Create(),

R_TAU0_Channel0_Start(),

R_TAU0_Channel4_Start(),

R_TAU0_Channel7_Start(),

R_TAU0_Channel7_Stop()

136

Table 17. List of Files and Descriptions of each User Defined File

File Group Description Relevant Functions

cb.c

cb.h

Defines the API for the Circular

Buffer ADT. Used by the UART.

circular_buffer_init(),

circular_buffer_write(),

circular_buffer_read(),

circular_buffer_empty()

function.c

function.h

Processing and calculation

functions accessed by all of the

other user source code.

MCU_Init(), Handle_LEDs(),

Handle_Buttons(),

Set_Duty_Cycle(),

Map_Value(), map_value_16(),

fp_abs(), int_abs_32(),

CalculatePower(),

set_channel_output(),

calculate_power_16()

lcd.c

lcd.h

Functions controlling the LCD if

the LCD is available.

LCDInit(), LCDPrintf(),

LCDUpdate()

MPPT.c

MPPT.h

MPPT Algorithms and

Initializations

MPPT_Init(),

set_MPPT_mode(),

set_MPPT_variable(),

Run_MPPT_Algorithm()

parse.c

parse.h

Serial communications parsing

functions. Contains functions to

parse and execute received

messages.

strlen(), parse_input(),

process_command(),

set_variable()

uart.c

uart.h

Higher level API for accessing

the UART. Automatically

utilizes circular buffers.

export_uart_data(),

transmit_uart_data()

137

Before entering main(), the system automatically calls R_systeminit() to initialize all of the

peripherals (all of the Create() functions). In main(), the MCU_Init() function is called,

which essentially starts all of the peripherals, including the UART, timers, GPIO interrupts,

and ADC. This function also initializes the circular buffers used with the UART and

command processing, and the MPPT parameters. Upon complete initialization, the program

sends out a reset signal.

The program then continues in a while(1) loop where both periodic tasks run. The two

periodic tasks are:

• Processing Task – This task is run at 20 Hz. This takes care of all of the processing

that happens beyond the MPPT algorithm. This checks to see if any pushbuttons

were pressed, handles the LEDs, processes any input data received from the UART,

and transmits any UART data that has been exported to the UART buffer. If the POT

is controlling the duty cycle, then that is handled in this task. If the ADC is running

in asynchronous mode, that is handled in this task as well.

• MPPT Task – This task is run at 20 Hz, but may be varied. This task runs the

currently selected MPPT algorithm via a function pointer. During the course of

running the algorithm, the channel 7 timer of serial array unit 0 is run and stopped to

see how many instruction cycles the algorithm takes. After the algorithm is run, the

sampled voltage, current, and power, as well as algorithm cycle count, is exported to

the UART buffer.

The behavior of the code is detailed in the flowchart in Figure 79.

138

Figure 79. Flowchart of MPPT Software on the RL78

	Abstract
	Dedication
	Biography
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Significance of the Study
	1.2 Motivation
	1.3 Background
	1.4 Related Work
	1.4.1 Use of Microcontrollers for Digital Control in Power Electronics [3]
	1.4.2 The Relationship Between Control Loop Frequency and Operating Voltage [4]
	1.4.3 MPPT Algorithms for Solar PV Panels [2]

	1.5 Outline of the Rest of the Document

	2. Relaxing Constraints of Digital Control Theory
	2.1 The Nyquist Sampling Theorem
	2.2 Slowing Down the Sampling Rate
	2.3 Impact of Slowing Down the Sampling Rate
	2.4 Modeling Continuous Domain Transfer Functions in the Discrete Domain
	2.5 Impact of Slowing Down the Sampling Rate of a Digital Compensator
	2.6 Integer Approximation
	2.6.1 Integer Arithmetic versus Floating-Point Arithmetic
	2.6.2 Integer Arithmetic versus Fixed-Point Arithmetic
	2.6.3 Impact of Integer Approximation on a Digital Compensator

	3. Computational Requirements of PV Solar Panel MPPT Control
	3.1 Various MPPT Algorithms
	3.1.1 Perturb and Observe Algorithm
	3.1.2 Incremental Conductance
	3.1.3 Current Sweep
	3.1.4 Closed-Loop Perturb and Observe

	3.2 MPPT Apparatus
	3.2.1 Hardware
	3.2.2 Software

	3.3 Performance of MPPT Algorithms Using Floating-Point Arithmetic
	3.3.1 P&O Performance
	3.3.2 Closed-Loop P&O Performance
	3.3.3 InCond Performance
	3.3.4 Current Sweep Performance
	3.3.5 Performance Versus Changing Other Parameters
	3.3.6 Comparison of Performance of Floating-Point MPPT Algorithms

	3.4 Performance of MPPT Algorithms Using Integer Arithmetic
	3.4.1 Basis for Using Integer Approximation
	3.4.2 P&O Performance
	3.4.3 Closed-Loop P&O Performance
	3.4.4 InCond Performance
	3.4.5 Current Sweep Performance
	3.4.6 Performance Under Other Circumstances
	3.4.7 Comparison of Performance of Integer MPPT Algorithms

	3.5 Comparison of Floating-Point MPPT and Integer MPPT

	4. Computational Requirements of SMPS Digital Control
	4.1 Proposed Methods for Digital Control of SMPS
	4.1.1 Traditional Sampling Method
	4.1.2 Varied Sampling Frequency Method
	4.1.3 Varied Sampling Frequency and Hold Method
	4.1.4 Emergency Mode Only Method
	4.1.5 Pseudo-Adaptive Control Method

	4.2 Computational Requirements

	5. Discussion and Analysis of Results
	5.1 MPPT Applications
	5.2 RTOS Applications
	5.2.1 Using an RTOS
	5.2.2 Real-time Scheduling Analysis using Rate Monotonic Scheduling

	5.3 Cost Analysis
	5.4 Future Work
	5.4.1 Characterizing the Impact of Loss of Precision in Digital Control
	5.4.2 Tuning Optimized MPPT Algorithms
	5.4.3 Time Responses of Intelligent and Relaxed Digital Control
	5.4.4 Determining the Impact of Having MPPT in a Solar Powered Load Line Regulated System

	5.5 Conclusion

	References
	Appendix
	Appendix A Acronyms Used within the Document
	Appendix B Buck Converter AC Small Signal Analysis
	Appendix C Code Structure for MPPT Software

