

User’s Manual

TimeStorm®

Version 4.2

TimeStorm User’s Manual

i

Contents

TimeStorm Overview ...1

Installing TimeStorm ..2

Host System Requirements .. 2

What TimeStorm Installs .. 2

License Management ... 2

Creating a TimeStorm License .. 3

Installing the License .. 4

Installing TimeStorm... 5

TimeStorm and Eclipse ...6

Eclipse Terminology .. 6

Workspace ... 6

Projects .. 6

Wizards .. 6

Workbench ... 6

Views and Editors ... 7

Perspectives ... 8

Source Code Control Systems... 8

Using Your Own Source Code Control System ... 8

Using Source Code Control Plug-in .. 8

Using Source Code Control Command Line ... 9

Embedded Development with TimeStorm .. 10

Development Host and Target Board ... 10

Working with Toolchains .. 10

Timesys Toolchains .. 11

User-Supplied Toolchains .. 11

Adding Your Own Toolchain .. 12

TimeStorm User’s Manual

ii

Managing Build Configurations and Managed Makefiles .. 13

Types of makefile Management .. 14

Building with Host Compiler .. 14

Working with Hardware Targets .. 15

Target RFS .. 15

Hardware Targets Window .. 15

TAB 1: Download .. 16

TAB 2: Execute .. 18

TAB 3: Raw Log ... 19

Hardware Target Console .. 20

Run/Debug Configurations ... 22

Creating a New Run Configuration .. 22

Main Panel ... 22

Arguments Panel ... 23

Environment Panel .. 24

Debugger Panel ... 25

Source Panel .. 28

Target Panel ... 29

Download Files Panel .. 29

Common Panel .. 31

Creating an Application Project .. 33

Create New Project .. 33

Project Panel.. 33

Select Build Configuration Panel ... 34

Select a Toolchain Panel .. 35

Creating Static and Shared Libraries .. 36

Static versus Shared Libraries .. 36

Editing and Building .. 37

How TimeStorm Builds a Project .. 38

TimeStorm User’s Manual

iii

Changing the Toolchain for an Existing Project .. 39

Remote versus Local Application Debugging ... 40

Debugging on the Development Host.. 40

Development Host Debugging Strategies .. 40

Building Related Projects in a Workspace .. 41

Qt Development with TimeStorm ... 43

Remote System Explorer .. 46

Other tools .. 47

Advanced Topics .. 48

Automatic Updates ... 48

Update Process ... 48

Disabling Updates ... 49

Building from the Command Line ... 50

Auxiliary Files .. 51

Using Source Code Control from the Command-line ... 51

About Timesys ... 52

timestorm-manual-tk.doc#_Toc322944699

TimeStorm User’s Manual

1

TimeStorm Overview
TimeStorm is an Eclipse-based integrated development environment (IDE) for embedded application

development. TimeStorm supports:

 C/C++ application development

 Qt application development

 Toolchain Management

 Remote Target Management

 Remote Target Console

 Remote Run / Debug of applications

 Remote System Explorer

 Gprof

 Gcov

 Callgraph*

 LTTng*

 OProfile*

 Valgrind*

* For use on host only – currently there is no remote target support for these features.

 These features are meant for code running on your host.

TimeStorm User’s Manual

2

Installing TimeStorm

Host System Requirements

Requirement Linux

Operating System Version  Fedora 15

 Ubuntu 11.04

 Other recent 32-bit or 64-bit Linux distributions

(NOTE: There are known issues with Ubuntu 11.10)

Memory 1 GB

Disk Space 250 MB

What TimeStorm Installs

During the initial installation, the TimeStorm IDE installs everything it needs to run. TimeStorm is

written in Java™ and native code, so in order to ensure that no incompatibilities arise when using

TimeStorm with the default version of Java on the host machine, TimeStorm installs a Java Runtime

Environment™ that it alone uses.

In order to compile programs, TimeStorm must have a toolchain. By default, TimeStorm uses the

toolchain on the system. LinuxLink Starting Points as well as builds using the LinuxLink Factory build

system provide cross-compilation toolchains. The installation process for a LinuxLink Starting Point puts

the toolchain and any other supporting files in the correct location, no additional configuration are

necessary. Working with Toolchains is described later in this guide.

In order to communicate with the target, TimeStorm must be able to communicate with the board using

one of several methods. TimeStorm can use telnet/ftp or ssh/scp to communicate with the board, and it

has been tested using busybox telnetd, inetutils telnet/ftp servers and the dropbear ssh/scp servers. As

an alternative, if the previous network services are not available, TimeStorm can communicate with the

board over a connection to the serial console and copy files into a local NFS share.

In order to use TimeStorm, it must have a valid license. The license management is described in the

following chapter.

License Management

After installing TimeStorm software, you must install the software license file that enables the features

that you have purchased.

TimeStorm 4.2 uses node-locked licenses which are text files with a .lic file extension. A node-locked

license enables TimeStorm features on one machine only and is restricted to the hardware address of

the machine. The licenses are keyed to the MAC address of the system. Once a license is installed and

TimeStorm User’s Manual

3

used, it cannot be moved to a machine with a different MAC address. If needed, you can move the

license to a different machine by creating a new license and installing it on the new machine.

NOTE: Since the TimeStorm 4.2 license system is based on a different technology than the TimeStorm 3.x

series of products, you must obtain a new license for TimeStorm 4.2.

Creating a TimeStorm License

To create a license for TimeStorm tools, you must have a LinuxLink seat assigned to you.

 You can create a new license for TimeStorm three times within the life of the subscription.

 If you need to create additional licenses beyond this limit, contact Timesys. These requests are

handled on a case-by-case basis.

 Team Manager — If you are the Team Manager of your LinuxLink account, you can create a

license for all the seats within your account.

 Developer — If you are a Developer, you can create licenses for the seats assigned to you.

To create a TimeStorm license:

1. Note the MAC address of the machine on which you will be using TimeStorm. You may use any

of the network interfaces, however if you are running TimeStorm in a Virtual Box environment,

make sure you use the MAC address of the NIC inside the virtual machine.

2. Log into your LinuxLink account (https://linuxlink.timesys.com/) via a web browser, and then:

o If you are a Team Manager, click on the team name at the top of the page.

o If you are a Developer click on the user name at the top of the page.

3. Scroll to the bottom of the page, and click the ‘Edit Licenses’ button in the Active Licenses area.

4. Next, click the ‘Create‘ button located to the right of the user of the seat for which you want to

create the license.

o Enter the MAC address and a descriptive name for the license. It can be helpful to

include the type of operating system and computer that will use the license.

o The license expiration date and the user’s email address are entered automatically.

o Choose to create a license for TimeStorm 4.x. NOTE: Licenses generated for TimeStorm

3.x will not work with TimeStorm 4.2, so be sure to select the correct version when

generating the license.

o Click ‘Next’ to generate the license. You are given the option of editing the CC field and

the text of the message that will be used to send the license file.

TimeStorm User’s Manual

4

o Click ‘Send.’ An email with the attached license is sent, and the contents of the license

file are displayed.

o Save the license on the computer you will be using for TimeStorm. LinuxLink will keep

the license on file, so it can be retrieved at any time.

Installing the License

Installing a license involves copying your license file into the appropriate directory on the TimeStorm

host. License files are typically delivered as text file attachments to email messages from Timesys. You

can rename a license file, but you must retain the .lic file extension. To install the license locally, you can

do one of the following:

 From within the ‘Create a License’ window, click the Download link and save the license file on

the TimeStorm host at a location described below.

OR

 Save the emailed license attachment on the TimeStorm host to one of the locations described

below.

At startup time, TimeStorm will automatically detect license files if they are stored locally on the

TimeStorm host in one of three locations/directories. The order and locations in which TimeStorm

checks for license files are outlined, below:

1. <user home directory>/.timesys/timestorm/licenses

The TimeStorm user's home directory is typically something like /home/<username> on Linux

systems.

o Licenses copied to this location will work for this user for all version-compatible

TimeStorm installations on this computer.

2. <TimeStorm installation directory>/licenses

TimeStorm checks for a directory named ‘licenses’ that is located within the TimeStorm

installation directory.

o This licenses directory is created automatically when TimeStorm is installed. Licenses

installed in this directory will work for this installation of TimeStorm only.

3. /etc/timesys/timestorm/licenses

TimeStorm checks for this directory under the system-wide configuration area (/etc). This

directory is not automatically created; you will need to create it manually if you wish to store

license under /etc.

o Licenses copied to this location will work for all version-compatible TimeStorm

installations on this computer.

TimeStorm User’s Manual

5

Installing TimeStorm

TimeStorm is available in 32 bit and 64 bit versions. Depending on whether you are running a 32 bit or a

64 bit OS, select and download the 32 bit or 64 bit version of TimeStorm.

To install TimeStorm:

1. Open a terminal and change directory to the location where you want to install TimeStorm.

2. Use the following command to uncompress the archive on your host, and extract its contents

(the build number <build_num>, will vary):

tar -zxf timestorm-full-install-4.2.0.<build_num>.tgz

3. TimeStorm is installed within the directory “timestorm-4.2”. You can start TimeStorm with the

following command:

./timestorm-4.2/timestorm

TimeStorm User’s Manual

6

TimeStorm and Eclipse
TimeStorm is based on the Eclipse IDE, first published by IBM and now maintained by the Eclipse

Foundation. TimeStorm is designed to conform to the Eclipse standards as closely as possible, using as

much of the existing user interface language as possible.

This section defines the basics of the Eclipse environment and explains how Timesys has extended

Eclipse by adding features that make TimeStorm unique to embedded developers.

Eclipse Terminology

Workspace

The workspace is the top-level container for all of the information kept by TimeStorm. When starting

TimeStorm, the user selects a workspace and uses only that workspace. Users may have more than one

workspace, but TimeStorm uses only one at a time. When using TimeStorm, users can switch

workspaces.

Projects

Projects in TimeStorm are different than workspaces in that the workspace contains projects, and

projects are the entity responsible for creating binaries. A workspace frequently contains several

projects: one for building the application binaries, another for creating a library, etc. Using the

workspace, these projects can be coordinated to produce the software binaries for the target board.

Wizards

Every project in TimeStorm is created with a wizard. Wizards in TimeStorm ask the user for basic project

information and will create a simple, working project that is used as the base for additional work.

Workbench

The TimeStorm IDE graphical user interface is called the Workbench. Workbench features are part of

the standard Eclipse development environment, which serves as the basis for TimeStorm IDE. The

Workbench is composed of editors, views and perspectives.

TimeStorm User’s Manual

7

The Eclipse Workbench is presented into one or more windows. These windows could be either views or

editors, as shown in Figure 1. A perspective defines the visual arrangement of the Workbench windows.

Figure 1: TimeStorm Workbench

The Workbench is documented more completely in the online Workbench User Guide, which is available

from the TimeStorm Help menu.

Views and Editors

Views support editors and provide alternative presentations as well as ways to navigate information in

your workspace. For example, the Project Explorer view (shown in Figure 1, above) displays projects in

the current workspace. Views have their own menus, and some views have their own toolbars. The

actions represented by buttons on view toolbars affect only the items within that view.

Editors are stacked in the center. You can associate different editors with different types of files.

Double-clicking a file to open it will open the associated editor in the workbench (shown in Figure 1,

above).

TimeStorm User’s Manual

8

Perspectives

You can rearrange the views and editors in your workbench as you prefer. The saved arrangements of

views and editors are called Perspectives. There are no constraints as to what views appear in a

perspective; however, the views are typically related in some way. TimeStorm ships with several

perspectives, for example:

 C/C++: Views and menu items that are customized for applications, libraries and driver

development

 Debug: Shows debugging controls (step in, step over, step return, terminate, etc.) and

information (variables, breakpoints, threads, etc.)

 Qt C++: Includes views for Qt Widget box, Action Editor, Signal Slot Editor, etc.

 Git Repository Exploring: Includes explorer view for adding, browsing and managing Git

repository

When TimeStorm initially opens, it loads the C/C++ perspective by default. If you create a new project of

a different type, TimeStorm switches to the appropriate perspective automatically. By default,

TimeStorm saves your current perspective settings when you exit TimeStorm and reestablishes it when

you start again. If you want the workbench to revert to the standard layout for the current perspective,

use the Window > Reset Perspective menu.

Based on working preferences, perspectives can be changed and/or additional perspectives can be

created by the TimeStorm user.

Source Code Control Systems

TimeStorm relies on the Eclipse framework to provide integration with source code control (SCC)

systems. The open nature of Eclipse has resulted in integration of many source code controls systems.

TimeStorm bundles Egit that work with git. TimeStorm users are free to select a SCC that best matches

their needs.

Using Your Own Source Code Control System

TimeStorm can be used with any source code control systems. If the source code control system in use

at your company isn’t directly supported by TimeStorm, you can still use it to manage your development

tasks. There are two strategies, using a vendor supplied plug-in or doing source code control from the

command-line.

Using Source Code Control Plug-in

Many vendors have plug-ins that can be added to an existing TimeStorm installation. Since TimeStorm is

built on Eclipse, a plug-in that is compatible with the Eclipse used to make TimeStorm can be used

without modification. Follow the directions supplied by the vendor to add the plug-in to TimeStorm.

TimeStorm User’s Manual

9

Using Source Code Control Command Line

Some source code control systems do not have Eclipse-based plug-ins. You can still use these, but you’ll

need to do so from the command-line. When using a SCC command-line tool, follow these guidelines

 DO NOT version control the .metadata directory

TimeStorm maintains a .metadata directory under the workspace. This directory contains

temporary information related to the workspace and should not be checked into version

control.

 Do not make any files starting with “.” Read-only

TimeStorm creates files in project directories starting with . to store any project related

information. These files can be checked into version control, but must read/write on the local

file system. Some source code control managers make all files read-only unless otherwise

instructed.

 When initially checking out a project, put in the directory of an existing project.

To add the project to the workspace, create a project with the wizard (you can delete all of the

files) and use the SCC to do the initial check out of the project files into that directory. After the

check out, return to TimeStorm, and refresh the project by pressing F5 which will enable

TimeStorm to recognize the newly checked-out files.

TimeStorm User’s Manual

10

Embedded Development with TimeStorm
Embedded development is different from traditional development because:

 The target machine is usually different hardware architecture than the host machine, and

 The target machine lacks the resources necessary to be used as a development machine.

Development Host and Target Board

The development host is the machine where TimeStorm runs and source code is compiled for the target

board. The target board is the location where the code that is compiled on the development host will

eventually be debugged and deployed. Because, target boards often do not have the resources (like

RAM or fixed storage), processing power or peripherals (such as a monitor, keyboard or network

connection) to support a development environment, engineers typically don’t do their development

directly on the target.

TimeStorm bridges the gap between the more powerful development host and less powerful target

board through the following features:

 Toolchain Management – TimeStorm keeps track of any toolchains that are installed on the

development host as part of a Timesys Starting Point or are created with the Factory build

system.

 Build Configurations – Build Configurations connect a toolchain with a project. Each project can

have many build configurations and each build configuration can have its own settings to control

how the software is built. By default, TimeStorm creates three build configurations for new

projects: 1.) Release, 2.) Debug and 3.)Profile.

 Target Management – TimeStorm includes a tool for communicating with a target, enabling

target information to be stored in one location and shared by those features needing to reach a

remote machine.

 Remote Run/Debug Configurations – In order to run and debug the code created for the target,

TimeStorm includes Run and Debug configurations that use the targets defined by the user to

download code and properly configure the run-time environment of the target.

Working with Toolchains

Toolchains include the tools required to compile your applications. Toolchains that you use with

TimeStorm for remote development allow you to compile on one platform your applications for use on

another platform. They include appropriate cross-compilers, debugging software, and other utilities that

NOTE: A 'starting point' is Timesys' terminology for a pre-built BSP/SDK. A starting point is a

platform and toolchain that has been specified by Timesys and is pre-built and available for

download from the Timesys LinuxLink Web site.

TimeStorm User’s Manual

11

work with your target processor. Build configurations for TimeStorm projects specify which toolchain to

use when building your project. You can set different toolchains in different build configurations.

Timesys Toolchains

TimeStorm is designed to automatically detect Linux toolchains from Timesys Starting Points that have

been installed using the install shell script as the “root” user.

To display the list of toolchains recognized by TimeStorm:

1. From the main menu, select Window > Preferences.

2. From within the Preferences panel, select TimeStorm > Toolchains as shown in Figure 2.

3. To View the toolchain properties, select the toolchain and click the ‘View’ button.

NOTE: Timesys toolchains that are automatically detected cannot be edited. If you want to

modify tools or properties for a Timesys toolchain, you must add it as a user-defined toolchain.

Figure 2: Toolchain Management

NOTE: Both automatically detected and any added user-defined toolchains will appear in this list.

User-Supplied Toolchains

If your toolchain is not from a Timesys Starting Point, you must import your toolchain to make it

available to TimeStorm. The next section, titled ‘Adding Your Own Toolchain,’ gives detailed instructions

for adding a user-defined toolchain to your TimeStorm Workspace so that it will be available for use in

TimeStorm projects.

When using a toolchain that was not provided by Timesys, you must ensure the toolchain's compatibility

with TimeStorm and with the other elements of your development environment. The toolchain must be

GNU-based, which ensures that cross-compilers and other required utilities are available on the

TimeStorm User’s Manual

12

appropriate path and have the correct permissions for access by the TimeStorm user. In order to

perform remote debugging in TimeStorm, the toolchain must include GDB version 5.2.1 or later.

Adding Your Own Toolchain

To add a new user-defined toolchain:

1. Click the ‘Add’ button (shown in Figure 2) to invoke the ‘Add Toolchain’ wizard.

2. Within the Add Toolchain wizard (Figure 3), specify where the toolchain is installed. Use the

‘Browse’ button to specify the directory that contains the toolchain's binary files.

Figure 3: Toolchain Management, Toolchain Directory

3. Click the ‘Next’ button.

Figure 4: Toolchain Management, Detected Tools

TimeStorm User’s Manual

13

Figure 4 on the previous page shows the list of tools that have been detected in the specified

directory. Toolchains using gcc with a cross-compiler prefix will be automatically detected.

4. Modify /Edit the toolchain’s name and description (optional)

Each tool chain has a Name, Description, ID and a location. TimeStorm uses the toolchain

identifier (ID) as an internal reference; the name and description are used to identify the

toolchain to users. You can customize the name, description, and identifier for this toolchain.

Identifiers and names must be unique; that is, two different toolchains on one system cannot

have the same identifier or the exact same name.

The next panel (shown in Figure 5), allows you to modify the toolchain's name and description. If

your toolchain has acceptable default values, modifying the name and description information is

optional.

Figure 5: Toolchain Management, Name and ID

Managing Build Configurations and Managed Makefiles

TimeStorm uses build configurations to control how TimeStorm C and C++ projects are compiled and

built. A build configuration is a collection of build settings associated with a project that contains the

following information.

 Compiler – What compiler to use to build the software. TimeStorm projects have the added

benefit of enabling the user to create Build Configurations that use a cross-compiler.

 Compiler Settings – Settings such as the optimization level, ANSI compliance and warnings.

 Linker Settings – Settings that specify what libraries to use and where they can be found.

By switching from one build configuration to another, you can quickly and easily change the build

settings for your project.

TimeStorm User’s Manual

14

Types of makefile Management

TimeStorm has two different ways of managing the make files in a project, as outlined below.

1. C/C++ Executable, Shared Library, and Static Library Projects — The make file for these projects

are generated using the settings from the project build configurations. These projects may use a

TimeStorm Cross-Compile Toolchain.

2. Makefile projects — In these projects, the make file is under complete control of the user.

TimeStorm does not attempt to examine the project and generate a make file before the build.

Use this option when working with projects that already have an existing make file, or when

complete control of the make file is necessary.

Build configurations are part of the project properties. To see the build configurations for a project,

right-click on a project, select ‘Propertie,’ and then select C/C++ Build > Settings. The current build

configuration will appear on the right side of the dialog. Use the ‘Manage Configurations’ button to add,

rename or delete build configurations.

Building with Host Compiler

Since TimeStorm allows the user to create multiple build configurations for a project, users will

frequently create a build configuration that executes the host compiler (the compiler that produces

code to be executed on the host machine) so that the program can be tested without the additional

overhead involved with remote debugging. Since most problems are algorithmic in nature, this strategy

reduces the amount of development time and is an oft-used strategy used by embedded developers.

To access the build configuration panel:

 Right-click on the project, and select ‘Properties.’

 In the properties panel, select C/C++ Build > Settings.

To use the toolchain on the host machine:

 Select the ‘Cross Toolchain’ tab in the build configuration panel then select the ‘Native

Toolchain’ option.

 The ‘Native Toolchain’ will be appended with text describing the type of platform (for example,

‘(i686-linux)’).

 When using the host compiler, ensure that all of the libraries, both inside of the workspace and

toolchain have been compiled for the host platform.

TimeStorm User’s Manual

15

Working with Hardware Targets

Before you can run and or debug on a remote target, TimeStorm will require information about the

target(s). TimeStorm uses this information to determine how and where data should be copied to the

target, and the method of communication that TimeStorm should use between the host and the target.

This is done through the Hardware Targets window.

Target RFS

To download files to the target, the target should be booted with an RFS that includes an FTP server or

an SSH server that supports scp, or booted using the NFS share on the host. To communicate with the

target, the target should be booted with an RFS that includes a telnet server, or SSH server, or

connected to the hosted via the serial port. The pre-built SDK from Timesys includes dropbear that

supports both scp and ssh. If you are creating your own SDK using the Timesys FREE Edition (Web

Factory), there are many packages from which you can choose for ftp, telnet and ssh. The available

packages are listed below.

 ftp: proftpd, pure-ftpd, vsftpd, ncftp

 scp: dropbear, openssh

 telnet: netkit-telnet

 ssh: dropbear, openssh

Hardware Targets Window

The Hardware Targets window enables you to:

 Add a target to the list of registered targets.

 Edit the information for a registered target.

 Delete a target from the list of registered targets.

 Check connectivity from the host to a target.

You can access the Hardware Targets window either by clicking the Hardware Targets toolbar button

or by selecting Run > Hardware Targets from the main menu, as shown in Figure 6, below.

Figure 6: Hardware Targets Menu

TimeStorm User’s Manual

16

Setting up a target requires information for the following three tabs:

TAB 1: Download — How to download files to the target (shown in Figure 7),

TAB 2: Execute — How to communicate to execute on the target (shown in Figure 8) and

TAB 3: Raw Log — How to test the connectivity between the host and the target (shown in Figure 9).

TAB 1: Download

TimeStorm allows files to be downloaded to the target in a few different methods. You will be

prompted to select one of the options below.

FTP – Files will be downloaded from the host to the target using FTP.

SCP – Files will be downloaded from the host to the target using SCP.

NFS – TimeStorm will copy the files locally in the target Root File System (RFS) mounted over

NFS.

None – The host will be connected to the target, but no data will be downloaded. You can then

do any needed downloading using the console.

FTP/SCP Settings

The corresponding fields for both the FTP and SCP options (shown in Figure 7) are as follows:

IP Address — Enter either the IP address or the hostname of the target. If you use a

hostname, your network must include access to a Domain Name Server (DNS) lookup

facility.

User Name — Enter the user name for FTP or SCP login on the target, as appropriate.

Password — Enter a non-blank password for FTP or SCP login, as appropriate.

Destination Directory — Enter the path to which the files will be transferred on the target.

FTP settings sometimes restrict the location of files copied to a directory under the home

directory of the user. Therefore, the actual destination directory depends on the

configuration of your FTP software. In some cases, directories specified in this panel are

appended to the user’s home directory on the target. Ensure the user name that you

specified has read/write permissions to the destination directory.

Link to Execution — When this checkbox is selected, all of the information listed in the fields

corresponding to the FTP or SCP option is automatically entered into the fields in the

Execute tab. Those fields are not editable in the ‘Execute’ tab when this checkbox is

TimeStorm User’s Manual

17

selected. This checkbox is selected by default. When this checkbox is deselected, you must

manually enter the corresponding information in the fields in the ‘Execute’ tab.

Figure 7: Download Tab

NFS Settings

The corresponding fields for the NFS option (shown in Figure 7) are as follows:

RFS Base Directory— Use the Browse button to select the location of the RFS on the host.

This location is where the target’s root filesystem is mounted over NFS; for example,

/home/user/timesys/boardname/rfs, where user is the current username and

boardname is the name of the target board.

Destination Directory — Use the Browse button to select the location in the RFS to where

the files will be downloaded. The directory must be within the RFS Base Directory location

that was selected. Ensure that you have read/write permissions to the destination directory.

After you have entered the required information in this tab, select the ‘Execute’ tab, and enter the

appropriate information.

TimeStorm User’s Manual

18

TAB 2: Execute

Use the Execute tab (shown in Figure 8) to specify the communication method that TimeStorm uses

between the host and the target.

Within this tab, you can select from the following communication methods between the host and

the target:

Telnet – Communication between the host and the target will occur when using Telnet.

SSH – Communication between the host and the target will occur when using secure shell (SSH).

Serial – Communication between the host and the target will occur using the serial connection.

You must fill in all of the corresponding fields for the method that you choose. TimeStorm answers

the login and password prompts presented by the Telnet or SSH server on the target, based on the

data that you enter in this tab.

Figure 8: Execute Tab

Telnet/SSH Settings

The corresponding field for both the Telnet and SSH options are as follows:

IP Address — Enter either the IP address or the hostname of the target. If you use a

hostname, your network must include access to a DNS lookup facility.

TimeStorm User’s Manual

19

The execution IP Address field is also used when connecting to gdbserver for TCP-based

remote debugging. This field must be provided regardless of connection method to use

TCP-based debugging.

Serial Settings

The corresponding fields for the Serial option are as follows:

Skip login — If you are connecting directly to the target’s bootloader, and thus will not get a

login prompt, select this option. The rest of the common details will be grayed out.

Serial Port — Enter the host's serial port; for example, /dev/ttyS0. If you use this option, be

sure that the user that you specified has the proper permissions to access the serial port.

Baud Rate— Use the drop-down list to select the appropriate baud rate for serial

communication. The default rate is 9600 bps.

Common Settings for All Options

The common fields for all three options in the Execute tab are as follows:

User Name — Enter your user name for a Telnet, SSH, or serial login, as appropriate, on the

target.

Password — Enter a non-blank password for the Telnet, SSH, or serial login, as appropriate,

on the target. Note that the Timesys pre-built SDK does not set the root password in the

RFS. You have to set the password for the root user after the target boots, and enter the

password in this text field.

Working Directory — Enter the directory to which control will be transferred after

TimeStorm logs in to the target. By default, this is the same path to which the data will be

transferred on the target. This directory must already exist.

TAB 3: Raw Log

After you register a target, you can check the connectivity to that target at any time. Each time you

add a target or edit information for a target, Timesys recommends that you perform a connectivity

check to verify that the host can communicate with the target. The target connectivity check does

not occur automatically upon registering or applying changes to a target.

NOTE: If the ‘Link to Execution’ checkbox is selected in the Download tab, the information in the

fields corresponding to the FTP or SCP option in the Download tab is automatically entered into

the common fields and the IP Address field in the Execute tab. In this case, the fields are not

editable as long as the ‘Link to Execution’ checkbox is selected in the Download tab.

TimeStorm User’s Manual

20

To verify connectivity to a target, select the target in the left panel of the ‘Targets’ window and click

the ‘Check Link’ button. The Raw Log tab (shown in Figure 9) becomes active when the check starts.

If the host communicates successfully with the target, a ‘Target Check – Passed’ message

(shown in figure 9) is displayed in the ‘Raw Log’ tab of the’ Targets’ window.

Figure 9: Output from Check Link

Hardware Target Console

When you remotely run or debug an application on your hardware target, a console view is launched

and the commands being run on the target and the target’s console output are displayed in the view. If

you directly want to interact with the target, like run some commands on the target, copy files to/from

the target, etc., you can launch a target console by clicking the icon in the toolbar or by clikcing

Run > Hardware Target Console. This will open the ‘Choose a Target’ dialog, as shown in Figure 10.

Select the target you want to open the console, and click ‘OK.’

TimeStorm User’s Manual

21

Figure 10: Choose target for target console

TimeStorm connects to the target using the Execution Settings, Telnet, ssh or serial, configured for the

target and opens a console view, as shown in Figure 11.

Figure 11: Hardware Target console

The connection used with the target is displayed at the top of the console view. In the console view, you

can type commands you want to run on the target and view the output. Please note that this is a basic

console view and various control characters and special characters may not be displayed well. This

console view will be good for viewing the boot loader output (using a serial connection), run basic

commands, like browse file system, change file permissions etc, and copy files to/from the target.

TimeStorm User’s Manual

22

Use the icons on the top right corner of the view to copy the console output to a file, send a ctrl+c

command to the target, clear the console and disconnect from the target.

Run/Debug Configurations

TimeStorm IDE uses Run configurations to store download and execution information for your

applications. Although Run configurations are part of the basic Eclipse IDE, TimeStorm Run

configurations are customized to support executing and debugging a program and its libraries on a

remote target.

The C/C++ Development User Guide online help includes additional information about TimeStorm's

debugging tools.

Creating a New Run Configuration

To create a new run configuration, select Run > Run Configurations… from the main menu. Select the

type of configuration that you want in the ‘Configurations’ list, and click ‘New’ icon or double-click the

‘Configuration type’ to add a new configuration. Then, use the tabbed panels on the right to select and

configure the run options. Different options appear depending on the type of run configuration that you

create.

TimeStorm projects typically use one of the following types of run configurations:

C/C++ Application — Runs a C or C++ project on the local system. Use this option if when running or

debugging an application built with the host compiler

TimeStorm C/C++ Remote — Runs or installs a C or C++ project on a remote target. Use this option

to debug programs built with this cross-compiler.

Main Panel

In the Main panel (shown in Figure 12), specify the project to run with this configuration. You can

use the ‘Browse’ button to search for your project name. After filling in the project name, use the

‘Search Project’ button to find the executable file that you want to transfer and run.

TimeStorm User’s Manual

23

Figure 12: Main Panel

Arguments Panel

In the Arguments panel (shown in Figure 13), you can specify execution details for your application.

Only the C/C++ Remote projects have the ‘Remote Working Directory’ option.

Figure 13: Arguments Panel

C/C++ Program Arguments — You can specify values to pass to the application by typing them

in the ‘C/C++ Program Arguments’ field. Separate values with spaces. Values are passed in the

order in which you list them here.

Remote Working Directory — In the Remote ‘Working Directory’ field, you can specify the

directory from which to run the application on the target. TimeStorm switches to this directory

path before executing the application.

If you do not change the value of this field from "." the application runs from the target user’s

home directory.

Command to Execute — In the ‘Command to Execute’ field, enter the exact command to use

when running the application. This value is required. The default value is to run the specified

program within the working directory. Uncheck ‘Use default command’ to change this value.

Keep in mind the directory structure on your target when constructing this command. For

example, if you have copied your application file to a directory named /apps but you want to

execute it from a working directory named /home/test, you must include the path to your

application in your command.

For example:

../../apps/my_app

TimeStorm User’s Manual

24

Environment Panel

In the ‘Environment’ panel (shown in Figure 14), you can set environment variables for the target.

Figure 14: Environment Panel

The panel shown in Figure 14 contains the following buttons:

New — Click the ‘New’ button to create a new entry, and the ‘New Environment Variable’ dialog

will appears, as shown in Figure 15, below. Click the ‘Variables’ button to select the variables

that you want to use. Then, click ‘OK’ twice.

Figure 15: Adding a New Environment Variable

Select — Click the ‘Select‘ button to import environment variables from the host file system.

Edit — To change an entry, select it from the list, and click the ‘Edit’ button.

Remove — To delete an entry, select it from the list, and click the ‘Remove’ button.

TimeStorm User’s Manual

25

Debugger Panel

In the Debugger panel, shown in Figure 16, you can configure how to debug your project.

Figure 46: Debugger Panel

This panel contains the following options:

Toolchain — Choose the toolchain to use from the drop-down list of defined toolchains. The

path to the debugger executable is set automatically when you choose a toolchain from the list.

By default, the toolchain will be the same as the toolchain of the project.

To use a debugger in TimeStorm, you must associate the debugger with a toolchain. You can

associate any debugger with a toolchain that you define.

Stop at main() on startup — Select this checkbox if you want execution to pause when your

application starts. (This option is selected by default.)

Automatically track the values of variables — Select this checkbox if you want to have the

values of variables displayed in the ‘Variables’ view while your project is being debugged. (This

option is selected by default.)

Debugger Options — This section of the panel includes two tabs: 1.) Main and 2.) Shared

Libraries. The ‘Main’ tab is shown in Figure 16, above.

TimeStorm User’s Manual

26

Main — This tab includes the following fields:

GDB Debugger — This field automatically displays the default debugger for the

toolchain that you have installed and is read-only.

GDB command file — This field allows you to specify a .gdb-command file using the

Browse button. The debugger will execute the commands specified in this file.

Connection Type — This field allows you to choose whether to use TCP or Serial to

establish a debugger connection between host and target. Note that this connection is

in addition to the execution-type that you specified in your hardware target. In order to

use serial, you must have another serial port in addition to the one being used as the

target console.

GDB Server Port — This field lets you specify the port number used for debugging when

TCP connection type is selected. This field is visible only when TCP connection type is

selected.

Target device — This indicates the name of the serial device on the target to use for the

debugger connection. Host and target device must be connected with an appropriate

serial cable. This field is only visible when Serial connection type is selected.

Host device — This indicates the name of the serial device on the host (where

TimeStorm is running) to use for the debugger connection. Host and target device must

be connected with an appropriate serial cable. This field is only visible when Serial

connection type is selected.

Serial baud — This indicates the baud rate to use on the serial line for debugger

communication. The default rate of 115200 should be used unless you are having serial

communication issues. This field is only visible when Serial connection type is selected.

Shared Libraries — This tab is shown in the following Figure 17:

TimeStorm User’s Manual

27

Figure 57: Shared Libraries

The Shared Libraries tab includes the following options:

Directories — This field specifies any additional directories for the debugger to search to

find shared libraries (with debugging symbols). By default the debugger will

automatically search the paths specified in the project's build settings (see option

below). Use the ‘Add’ button if you want to add other paths. Use the ‘Up’ and ‘Down’

buttons to move through the list of directories. Use the ‘Remove’ button to delete a

path.

Load shared library symbols automatically — Select this checkbox if you want these

library symbols to be displayed as loaded in the ‘Shared Libraries’ view and if you want

the debugger to hit any breakpoints in the shared library project. (This option is selected

by default.)

Stop on shared library events — Select this checkbox if you want the debugger to stop

at shared library events, even before it hits breakpoints in the source code. (This option

is not selected by default.)

TimeStorm User’s Manual

28

Search linker paths from project build settings — This option is selected by default and

will enable the debugger to automatically search all of the linker library path specified in

the project's build settings. These will be searched in addition to any paths specified in

the Directories field above. To deselect this option, uncheck the box.

Source Panel

The Source panel (Figure 18) shows the location of the source files for the project.

Figure 68: Source Panel

Source Lookup Path — This field shows the project being run, as well as any projects that it

references.

Add — You can add arbitrary source file locations by using the Add button. These locations are

searched after the generic locations, from the top to the bottom item in order.

Edit, Remove, Up, Down — The other buttons to the right of the list allow you to edit, remove,

or reorder the list items, and to restore the default information.

Search for duplicate source files on the path — Selecting this checkbox causes TimeStorm to

notify the user if it is unable to determine which source file corresponds to an executing binary

file. For example, if you have two source files with the same filename in different directories of

the search path, TimeStorm is unable to determine which file is related to the binary file with

that name. If this checkbox is selected, TimeStorm displays a message and asks the user to select

which file to use. This checkbox is not selected by default.

TimeStorm User’s Manual

29

Target Panel

The Target panel (shown in Figure 19), allows you to select the hardware target used when you run

the application.

Figure 79: Targets Panel

In the Target panel, use the drop-down menu to select a hardware target that you have registered

with TimeStorm. If you have not yet registered a hardware target, click ‘Manage targets’ to open the

Hardware Targets management utility.

If you have problems maintaining a connection to the target when using this run configuration,

consider increasing the value in the timeout setting.

Settings made in the ‘Launch Timeout’ panel only affect run configurations; they do not affect

timeout settings for the ‘Console’ view or for any other use of Telnet or FTP.

Download Files Panel

In the ‘Download Files’ panel (shown in Figure 20), you can select the files that TimeStorm transfers

to your target. You can use this panel to download additional files to your target, along with your

application.

Telnet and FTP timeout values for run configurations can be set from the TimeStorm

Preferences panel. From the main TimeStorm menu, select Window > Preferences and open

the TimeStorm > Launch Timeout item.

TimeStorm User’s Manual

30

Figure 20: Download Files Panel

The application specified in the File field is listed as [Target Program]. This is the application that

will be run. You can change where it is downloaded by selecting it and clicking Edit.

If the program links in shared libraries, then these libraries will be downloaded to the target as well and

the Files field is listed as [Target Program and Libraries]. These libraries will be

downloaded to the same location as the target program. To download the program and libraries to

separate locations, remove the default entry and re-add each as a separate entry.

File paths are interpreted as relative to the target directory to which you download files. If you transfer

files by using FTP, the actual destination directories depend on the configuration of your FTP software.

In some cases, directories specified in this panel are appended to the user’s home directory on the

target.

This panel contains the following buttons:

Add File – Use the ‘Add File’ button to specify additional files to transfer, along with the application.

These files are transferred every time you transfer the application file.

Edit – To change where the application (or any other file in this list) is installed, select it and click

‘Edit’ to change its destination directory.

Remove – To eliminate a file from the items to download, select it in the list and click the ‘Remove’

button.

Download Now – The ‘Download Now’ button copies files immediately, without running the

application.

TimeStorm User’s Manual

31

Restore Default – The ‘Restore Default’ button resets the panel to its initial state (download only

the application and its libraries).

Common Panel

The ‘Common’ panel (shown in Figure 21), sets options for sharing this run configuration among

multiple projects.

Figure 21: Common Panel

The options with the Common Panel include:

Local File — By default, run configurations are saved with the workspace state files, so they can

only be used with projects in the current workspace. (This setting corresponds to the ‘Local file’

radio button on this panel.) However, you can make the configuration available for use in other

workspaces by choosing the ‘Shared file’ radio button.

NOTE: Downloaded files overwrite any identically named files on the target without giving a

warning. TimeStorm will not create destination directories on the target, so be sure to create

them before launching the configuration.

TimeStorm User’s Manual

32

Shared File — When you select this option, the run configuration is saved as a .launch file that

can be imported into another TimeStorm workspace. Optionally, you can specify a different

location for the file so that it is more easily accessible to multiple projects.

Display in Favorites Menu — You can select whether to include this run configuration on the

main ‘Run’ and ‘Debug’ menus. For example, if you select the ‘Run’ checkbox, the run

configuration always appears in the ‘Run History’ submenu.

You can choose to include the run configuration in either menu, both menus, or neither menu.

Launch in Background — Selecting the ‘Launch in background’ checkbox causes this run

configuration to run as a background thread. Running as a background thread is the default

value. Clear this checkbox if you want to run in the foreground, along with other TimeStorm

processing.

NOTE: The other options in this panel are Eclipse features that are not currently supported in

TimeStorm.

TimeStorm User’s Manual

33

Creating an Application Project

Application projects are created by using the New C or C++ Project wizard. TimeStorm uses the existing

CDT C and C++ Project wizards, but adds the ability to select a cross-toolchain. By creating a project with

cross-toolchain, TimeStorm will be able to build the project with one or more of the toolchains placed in

the system when installing a Timesys starting point.

Create New Project

To create a new application project:

Open the ‘New Project’ wizard by choosing File > New > Project from the main menu. OR Click the

‘New’ button and use the drop-down menu to the right of the button to choose ‘Project’.

1. Choose a C or C++ Project. The new C/C++ Wizard (shown in Figure 22) can be used to create

several different types of projects, including ‘Executable’ and ‘Shared and Static Library’. This

section will focus on creating an Executable project. Shared and static library projects are

covered in the Creating Shared and Static Libraries section of this manual.

Project Panel

1. Under the ‘Project Type’ heading, expand the Executable type and select the source code

template you would like to use.

2. Under the Toolchains heading select the TimeStorm Cross-Compile Toolchain.

3. Click ‘Next’ to bring up the ‘Select Configurations’ panel (shown in Figure 23).

Figure 22: New C/C++ Project Wizard

TimeStorm User’s Manual

34

Select Build Configuration Panel

In this panel, TimeStorm will suggest creating three build configurations that contain the

compilation settings for the project. Build configurations work together with the toolchain and

project to create the makefile that TimeStorm uses for the build. For more information on Build

Configurations, please see the How TimeStorm Builds a Project section.

Figure 23: Select Build Configuration panel

By default, TimeStorm creates three Build Configurations for new projects:

Debug — This setting performs no code optimization and attaches complete debugging information.

These settings are designed make debugging as easy as possible.

Release — This setting has the highest compiler code optimization settings. The output will not

include any debugging symbols. Code compiled with this configuration is ready for production use.

GnuProfiler — This setting builds the software with debugging information as well as code to collect

profiling information via GNU gprof.

TimeStorm User’s Manual

35

Select a Toolchain Panel

The next panel in the wizard (shown in figure 24) asks the user to select a toolchain. The entries in

this list appear because the user has installed a Timesys Starting Point or have added the toolchain

manually. Please refer to the Working with Toolchains section to understand how TimeStorm

manages toolchains. The toolchain can be changed later within the project’s property page.

Figure 24: Select Cross Toolchain

Once the ‘Finish’ button is clicked, the project will be created in the Workspace.

TimeStorm User’s Manual

36

Creating Static and Shared Libraries

Library projects are created by using the ‘New C or C++ Project’ wizard, shown in Figure 25. TimeStorm

uses the existing CDT C and C++ Project wizards, but adds the ability to select a cross-toolchain. By

creating a project with cross-toolchain, TimeStorm will be able to build the project with one or more of

the toolchains placed on the system when installing a LinuxLink.

Open the New Project wizard by choosing File > New > Project from the main menu or by clicking the

‘New’ button . Optionally, use the drop-down menu to the right of the button to choose ‘Project.’

Choose a C or C++ Project.

Figure 25: New C/C++ Project Wizard, Creating Libraries

Static versus Shared Libraries

Static and shared libraries allow the user to place certain functionality outside of the main program,

frequently so the same library can be shared across projects. Static libraries are incorporated by copying

the bits into the main program at link time while shared libraries are linked into the program before it

runs by a dynamic library loader. Shared libraries can also be accessed when the program is running by

loading the libraries into memory and calling functions, without the linking step before the program

runs.

TimeStorm User’s Manual

37

 Library Type

Feature Static Shared

Output File Name lib<project name>.a Lib<project name>.so

Can Update at Run-time No Yes

Dynamic Loader Needed No Yes

Code Shared Across

Applications

No Yes

Select the TimeStorm Cross-Compile Toolchain from the list of toolchains populated, installed from a

Timesys Starting Point or added manually to TimeStorm. The toolchain can be changed later in the

Project’s Property page (see Changing the Toolchain for an Existing Project). Next select the

configurations: Debug, Profile, and Release. After clicking the ‘Finish’ button, the project will be created

in the Workspace.

Editing and Building

After starting development using the wizard, TimeStorm works like a standard IDE. When new files are

added to the project, TimeStorm will add them to the project’s make file and will use the program’s

extension to determine what tool to use for the build process.

Extension Build Program

.c, .C C compiler

.c++, .cxx, .cpp, .cc C++ compiler

.s Assembler

To add an include file, source file, or create a sub directory to a project, right click on the project, choose

‘New’ to see different file options. Give the appropriate file extension when specifying the file name.

To build the application, select Project > Build Project from the menu. TimeStorm will build the project

with the active build configuration and display any errors or warnings in the problems view. During the

build process, TimeStorm generates a make file for the project based on the active build configuration as

described below in the How TimeStorm Builds a Project section of the manual. A project created by a

TimeStorm wizard is designed to build without any errors or warnings.

TimeStorm User’s Manual

38

How TimeStorm Builds a Project

TimeStorm uses Build Configurations to control the project build process. When creating a project using

a wizard, several build configurations will be created by TimeStorm and associated with the project.

One of these build configurations is the “active” configuration (as illustrated by the star in the

illustration, below) and that will be used by default when creating a build. Any build configuration can

be selected as the active configuration, as this concept exists so the user does not need to select which

build settings to use when creating a build.

Figure 26, below, shows the relationship between the project, build configurations, toolchains and the

make files generated by TimeStorm.

Figure 26: Relationship Between Project, Build Configuration, Toolchain and Makefile

The following describes how TimeStorm uses the makefile and build config to build the project.

TimeStorm will use the default build configuration, following these steps:

1. Create a directory with the name of the build configuration — The output for the build is

stored under a directory that matches the name of the build configuration used for the build. If

this directory does not exist, it will be created. TimeStorm must have the ability to create

directories in the workspace or this operation will result in an error.

2. Scan the project, create a makefile that invokes the appropriate build program for the source

file — Before the build process occurs, TimeStorm will scan the project for files it knows how to

build based on extension, ignoring files that it does not know how to handle. For those files that

it knows how to process, TimeStorm will then examine the files, calculate dependencies, and

emit a standard GNU makefile.

TimeStorm User’s Manual

39

3. Execute the makefile, display results in the Console Window — After creating the makefile,

TimeStorm uses GNU to perform the build. The results of the build process are displayed in the

Console window.

4. Scan the results, create markers for errors and warnings — After the build, the results are

scanned and TimeStorm translates errors and warnings for files into markers that appear next to

the offending line and in the problems view.

Changing the Toolchain for an Existing Project

If you want to switch to a different cross toolchain or if you want to check if your code compiles with a

native toolchain, you can change the toolchain used by a project after creating it.

To change the toolchain (shown in Figure 27):

1. Right-click on the project, and then click ‘Properties’

2. In the ‘Properties’ window, expand C/C++ build and click ‘Settings.’ The project’s build settings is

displayed in the right hand side.

3. Click the ‘Cross toolchain’ tab, and select the toolchain you want to use with the project.

NOTE: The toolchain you are changing is for the build configuration displayed at the top of the

page.

4. Make sure to ‘Clean’ and ‘Build’ the project after you change the toolchain.

Figure 27: Changing the Toolchain for an Existing Project

TimeStorm User’s Manual

40

Remote versus Local Application Debugging

Application debugging can occur on the host machine or the target board, depending on how the

application was built. When debugging on the local machine, the program needs to be built with the

host’s compiler.

For most projects, it makes sense for debugging to happen on the host machine, as debugging remotely

is slower due to the communications link. In addition, most code problems are algorithmic in nature,

meaning that the code itself contains problems, independent of where the code is running. This means

developers can be very productive by debugging the code on their host machine and then recompiling it

for final testing on the target. Some things, like timing, performance or access to specialized devices,

cannot be tested on the host machine and in this case remote debugging is the right tool to use from the

start.

Debugging on the Development Host

When debugging on the development host, select Run > Debug Configurations… from the main menu,

and use the C/C++ Application configuration from the debug run configuration dialog.

This run configuration shares many of the same panels as the C/C++ Remote Run configuration and

works in much the same way. Just like with the C/C++ Remote Run configuration, the user needs to

specify what project and application will be used for debugging and has control over the environment

variables and source code locations.

Development Host Debugging Strategies

Since it may not be possible to create a complete environment for running a program on the host

machine, the recommended strategy is to build “scaffolding” code to emulate the target device and

create an environment similar to the target. To minimize the development efforts for this scaffolding

code, engineers will not put effort into creating a high-fidelity emulation, but one good enough to

exercise the code in question.

In addition, the host machine is frequently configured to be similar in file structure as the remote

machine or a directory is created to resemble the root file system of the target and the program

performs a chroot() when starting. Following this strategy allows the developer to create a separate

environment that is closer to that of the target, that is with the same set of files, permissions, libraries

and device nodes without interfering with the host machine’s configuration. The chroot() strategy also

helps reduce regressions that can happen when recompiling and testing the program on the target

machine.

TimeStorm User’s Manual

41

Building Related Projects in a Workspace

In TimeStorm, projects are not hierarchical. This is much different than other systems where a project is

frequently structured as a top-level directory with a directory for each component, with those

directories nesting downward.

For example:

top-level-dir/

 application

 shared-lib-1/

 static-lib-1/

 static-lib-2/

 shared-lib-2/

 static-lib-1/

 static-lib-2/

In this project, the user would typically write a make file that built the projects in the following order:

shared-lib-2/static-lib-2/

shared-lib-2/static-lib-1/

shared-lib-1/static-lib-2/

shared-lib-1/static-lib-1/

application/

In TimeStorm, since all of the projects are peers of each other, enforcing the build order would occur

through ‘Project References’, which is part of the project properties. To access the Project References:

1. Open the ‘Project Properties’ dialog by right-clicking and selecting ‘Properties.’

2. Select the ‘Project References’ entry on the left. The dialog will look like the following, shown in

Figure 28.

TimeStorm User’s Manual

42

Figure 28: Project References Panel

By selecting entries in this dialog, TimeStorm will build those projects before the current project (if, in

fact, they needed to be rebuilt). Project references can be nested several levels deep, so that if a

referenced project has other references, those references also will be rebuilt, if necessary. This ensures

that the top-level project has all of its dependencies built before starting its build. In this way, the

developer has the same degree of control as one would have when using a traditional “nested” make

file.

TimeStorm User’s Manual

43

Qt Development with TimeStorm
Qt is a cross-platform application and UI framework with APIs for C++ programming. TimeStorm is

bundled with the Qt Eclipse integration plugins. These plugins will help in developing Qt applications

using a Timesys SDK, and remotely running and debugging the Qt applications on target. Timesys SDKs

that include Qt are configured to work easily with TimeStorm. These are a few main steps that get you

started developing Qt applications using TimeStorm:

1. Switch to Qt perspective: Click Window > Open Perspective > Other > Qt C++

2. Configure TimeStorm for Qt: To create Qt projects and develop Qt applications, you have to

configure TimeStorm for Qt by adding the Qt version you want to use. You can add multiple Qt

versions to TimeStorm – native Qt, Qt specific to your board. To add a Qt version, click Window

> Preferences > Qt > Add. A dialog (as shown below in Figure 29) is opened.

Figure 29: Configuring Qt

3. Enter a name for the Qt version

4. Select the Bin Path — Click ‘Browse’ to select the bin folder of the toolchain that includes Qt.

5. Include Path — The include path will be automatically set: you need not change it.

TimeStorm User’s Manual

44

6. Click the ‘Finish’ Button. Now TimeStorm is set to use the Qt version you have added.

To Create a Qt project and develop a Qt application:

1. Click File > New > Project > Qt > Qt Console Project / Qt Gui Project to launch the project wizard

2. Fill in the project name and other details

3. Click the ‘Finish’ button.

During development, you may want to first develop and debug your Qt apps on the host and then

rebuild them for the target board.

To switch the Qt version:

1. Right-click on the project, and click Properties > Qt Properties.

2. Select the Qt version you want to use (as shown in Figure 30).

Figure 30: Changing Qt version for a project

TimeStorm User’s Manual

45

After booting the board with the SDK that includes Qt, you will be able to remotely run / debug the Qt

apps on the Hardware target.

To Run / Debug Qt an application on the Target:

1. Follow the procedure explained in Run / Debug Configurations.

TimeStorm User’s Manual

46

Remote System Explorer
Remote System Explorer (or RSE in short) is the new addition from Eclipse for remote target interaction.

RSE allows you to define targets, explore target file system, and run and debug applications on target.

Timesys recommends using the ‘Hardware Target’ functionality provided by Timesys as explained in the

Working with Hardware Targets section, because:

 RSE using SSH does not work with dropbear

 RSE does not support serial connection

 RSE does not support NFS

To use RSE with boards running Timesys SDK:

 Include openssh package in your target RFS. RSE requires a sftp server on the target and the

dropbear ssh server does not include an sftp server.

 When defining a connection in RSE, choose ‘SSH only’ system type.

After you define a target connection in RSE, you will be able to browse the target file system, copy files

between local host and target, and open a terminal console to the target.

For additional information on RSE, refer to the Help included in TimeStorm by selecting Help > Help

Contents.

TimeStorm User’s Manual

47

Other tools
TimeStorm bundles other useful tools from the Eclipse community http://www.eclipse.org/linuxtools

For detailed help on how to use the tools, please refer to the Help included in TimeStorm by selecting

Help > Help Contents. Below is a summary of the tools:

 Gprof — Profile an application using gprof and visualize the gmon.out files generated by gprof

instrumentation. To learn how to use gprof with TimeStorm, read

https://linuxlink.timesys.com/docs/wiki/engineering/HOWTO_Use_Gprof_with_TimeStorm.

 Gcov — Test code coverage in program using gcov and visualize the gcda and gcno files

generated by gcov intrumentation. To learn how to use gcov with TimeStorm, read

https://linuxlink.timesys.com/docs/wiki/engineering/HOWTO_Use_Gcov_with_TimeStorm.

 LTTng* — Linux Trace Toolkit, is a high-performance tracing tool for Linux that efficiently

handles large amounts of trace data. Initially focused on the Linux kernel, its technology has

been extended to support user space tracing (UST). From TimeStorm, you can configure and

control LTTng, collect the trace data, and visualize and analyze the trace data.

 OProfile* — A powerful profiling tool an d using TimeStorm you will be able to configure

OProfile, gather OProfile data and visualize it.

 Valgrind* — A powerful tool that can be used from TimeStorm for profiling applications.

*For use on host only — currently there is no remote target support. These features are meant

 for code running on your host.

http://www.eclipse.org/linuxtools
https://linuxlink.timesys.com/docs/wiki/engineering/HOWTO_Use_Gprof_with_TimeStorm
https://linuxlink.timesys.com/docs/wiki/engineering/HOWTO_Use_Gcov_with_TimeStorm

TimeStorm User’s Manual

48

Advanced Topics

Automatic Updates

The standalone TimeStorm IDE will automatically search for updates from Timesys when it starts by

contacting http://updates.timesys.com/timestorm. When updates are available, a dialog will appear

asking whether or not the updates should be installed.

To update the TimeStorm plugins installed in a third-party Eclipse IDE:

 Select Help > Software Updates from the menu.

Update Process

The update process will show you where TimeStorm found updates (shown in Figure 31). When

TimeStorm was installed, it was configured to look at a specified Timesys URL. Other plug-ins may also

have added a URL for automatic updates, so this dialog may show additional features.

Figure 31: Updates Panel

http://updates.timesys.com/

TimeStorm User’s Manual

49

The next few dialogs will display the license and the exact parts of the software that TimeStorm will be

updating.

1. After accepting the license, press the ‘Finish’ button to begin installation of the update.

TimeStorm will download the update in the background. The progress of the download is

shown in the bottom right corner of the main winow (shown in Figure 32).

2. When the download finishes, restart TimeStorm in order for the update process to be

completed.

Figure 32: Updating TimeStorm Components

Disabling Updates

To stop TimeStorm from checking for updates:

1. Open the ‘Preferences’ panel, and navigate to Install/Update > Automatic Updates.

Figure 33: Toggle Automatic Updates

2. On the right side of the panel, uncheck the “Automatically find new updates and notify me” box,

and click the ‘OK’ button (shown in Figure 33).

TimeStorm User’s Manual

50

Building from the Command Line

TimeStorm has been designed so that projects can be built from the command-line as well as the IDE.

This feature exists so that customers with build systems can easily integrate projects created with

TimeStorm into their automated build system.

As part of the build process, TimeStorm scans the current project and builds a list of files in the project

as well as the dependencies on other files in the project. TimeStorm then uses that dependency list,

along with the information in the build configuration, to create several GNU make files. TimeStorm then

builds the project by executing make with the generated files to perform the build steps. Each build

configuration creates a make file in a directory named after the build configuration under the project

directory.

For example:

<workspace>/my-project/Debug/

 makefile

<workspace>/my-project/Profile/

 makefile

The make file overrides the following standard variables to control what tools are used in the standard

make build rules.

RANLIB

CPP

AS

AR

OBJCOPY

DEBUGGER

STRIP

OBJDUMP

CC

NM

CXX

LD

Each of these tools is changed to use the location the tool chain of the development host. If the location

is different on the build machine, one of the following strategies followed:

Create symlinks — This is the easiest path. On the build machine, create symbolic links to the tools in

the location where the make file expects them to be. Going this route introduces a configuration

dependency on the build machine, so this should documented by the build team, and, in the best of

situations, a script should be created to automate the creation of the links.

Set environment variables — With make, if an environment variable is set, it will not be overridden by a

make variable. The script that runs the make file will need to set all of these variables to the right

location before invoking make.

TimeStorm User’s Manual

51

Auxiliary Files

TimeStorm will over-write the make file each time is performs a build. In order to allow for maximum

customization, TimeStorm builds the make file with several optionally included files. Optionally included

files are incorporated into the make file if they exist; otherwise, if the file does not exist, the reference

to the file is ignored.

TimeStorm optionally includes these files:

../makefile.init — This file is called at the beginning of the makefile. It can be used to customize

initialization.

../makefile.defs — This file is called after initialization, but before objects are compiled. It can be

used to supply custom macro definitions.

../makefile.targets — This file is called at the end of the makefile. It can be used to supply

customized target information.

Notice TimeStorm will look for the files in the parent of the build configuration directory. This makes it

easy to share make file customizations across build configurations.

Using Source Code Control from the Command-line

Some organizations use a source code control (SCC) system that can only be used from the command-

line or some other external tool. TimeStorm can be used with these tools as long as care is taken in

what files are placed under source control and other configuration measures are taken. This section lists

out the files and directories that should not be placed under SCC and other per-file configuration

information.

File or Directory/ Notes

Workspace

<workspace>/.metadata

This directory contains state information, such as window

positioning, for the current workspace.

Exclude this entire directory from SCC management.

C / C++ Projects

<workspace>/<c project>/.cproject

<workspace>/<c project>/.products

<workspace>/<c project>/.project

These files contain project-oriented information, such as what

appears in the properties dialog for a project.

Add all of these files into source control.

About Timesys
Timesys is the provider of LinuxLink, a high-productivity software development framework that

dramatically simplifies and speeds up embedded Linux application development. The LinuxLink framework

includes the Linux kernel, cross-toolchain, application development IDE, an award winning build system

called Factory, a vast library of middleware packages, software stacks and libraries, documentation and

expert technical support. LinuxLink enables development teams to consistently build and maintain a

custom, open source embedded Linux platform through regularly updated Linux sources, proven

middleware packages, and a scriptable GNU-based build environment. LinuxLink reduces the time,

resources, risk and cost associated with building a product based on open source Linux.For more

information, visit: www.timesys.com.

Timesys Corporation

925 Liberty Avenue

Pittsburgh, PA 15222

1.888.432.8463

+1.412.232.3250

Fax: +1.412.232.9818

® 2002-2012 Timesys Corporation. All rights reserved.

Timesys, the Timesys logo, TimeStorm and Factory are trademarks of Timesys Corporation. Fedora is a trademark of Red Hat, Inc.
Fortran is a trademark of Lahey Computer Systems Inc. Java and Java Runtime Environment are trademarks of Oracle Corporation.
Linux is a trademark of Linus Torvalds in the United States and other countries. Qt is a trademark of Nokia Corporation in Finland
and/or other countries worldwide. Ubuntu is a registered trademark of Canonical Ltd. All other trademarks and product names are
the property of their respective owners.

http://www.timesys.com/

