
Projection of HyperPro DocumentMariza Andrade da Silva BigonhaAbdelAli Ed-Dbali 1Roberto da Silva BigonhaFl�avia Peligrinelli RibeiroPierre Deransart 2Jos�e de SiqueiraUniversidade Federal de Minas GeraisDepartamento de Ciência da Computa�c~aoAbstractHyperPro is documentation and development tool for constraint logic programming systems.It integrates logic program elements and texts , so it may be viewed as a system for thedevelopment of executable documentation. Projection is a mechanism for extracting andexporting relevant pieces of code or text according to speci�c criteria.Keywords: HyperPro, Constraint Logic Programming, Projections.
1University of Orl�eans, France2Institut National de Recherche en Informatique et en Automatique{France

1 IntroductionThe HyperPro system is a Thot-based documentation and development tool for ConstraintLogic Programming (CLP) systems. It is described in [3]. Thot is a structured editing toolwith hypertext editing facilities. For a presentation of the Thot editor functionalities andfeatures, the interested reader can refer to the Thot documentation ([7],[9],[8]).Basic HyperPro documents are stored internally in a tree structure which depends on eachdocument style de�ned by the user.Thot editor o�ers the possibility to integrate gradually new applications to existing ones,so the HyperPro system [3] evolved in di�erent steps.In this paper will be de�ned two newly HyperPro functionalities which are: projections andexportation introduced in the new HyperPro release of the Thot-based structure, presentationand translation schemas, called Basic HyperPro [2], which de�nes a special style for logicprogram .Basic HyperPro aims to document CLP programs giving its users the possibility to edit,in a homogeneous and integrated environment, di�erent versions of programs, commentsabout them, information for formal veri�cation and debugging purposes, as the possibilityto execute, debug and test the programs as well. All the attempts and development historyof CLP programs can therefore be integrated and consistently documented within an uniqueenvironment gathering together a hypertext editor, di�erent CLP interpreters and syntacticalveri�ers, as di�erent debugging and veri�cation tools as well.2 Basic HyperPro Document StructureThe Basic HyperPro document is basically a Thot report document. It must have a title, asequence of at least one section, a table of contents and a cross-reference index. Optionally,it can contain the date, the authors' names and their a�liations, keywords, bibliographicalreferences, annexes and a versions index.In Basic HyperPro a paragraph may be also a relation de�nition. At least one relationde�nition should be present in a Basic HyperPro document.A relation de�nition is de�ned by a relation title, and a list of at least one predicatede�nition. The relation title is a predicate indicator, that is, the predicate name and its arity,or just a name, in which case it denotes a packet of goals or directives, that can be seen as aspecial case of relations. The relation title also contains a reference to a predicate de�nition,followed optionally by a list of references to predicate de�nitions that de�ne di�erent versionsof a program.A predicate de�nition is formed by three items : informal comments, assertions and packetof clauses. Informal comments are a sequence of paragraphs. Assertions are a sequence oflines of text and are optional.Packets of clauses can be Prolog or CLP(FD) clauses [6]. Clauses include directives, goals,facts and rules. The predications in the clauses body may have references or not to therelations which de�ne them. This will actually de�ne the current version of a program in aBasic HyperPro document. At least one predicate de�nition is obligatory in every relationde�nition.When a predicate de�nition is introduced, the �elds for informal comments and packet ofclauses are initially empty. The optional �elds are presented if the user explicitly indicatesso. However, the obligatory �elds do not need to be �lled in immediately after their insertionin the document.

3 Basic HyperPro Functionalities and UtilitiesThe main functionalities provided by Basic HyperPro are views of di�erent parts of thedocument and indexes associated with di�erent utilities, such as program testing and syntacticveri�cation for some pre-de�ned CLP and logic programming languages. These functionalitiesand utilities are de�ned in terms of programs versions. In this paper we are interested inprojections and document exporting facilities, the description of the other features can befound in [2].3.1 Program VersionsProgram versions is an important issue when de�ning, documenting and developing programs.Specially when developing and documenting CLP programs, the user needs to de�ne, test anddocument di�erent versions of his programs. For that, he may de�ne for any relation, di�erentversions of its predicate de�nitions which are documented and managed with the same utilitiesused to de�ne programs. Therefore, a program may have several di�erent coexisting versionswhich can be de�ned, named, viewed and tested as much as any program. Indeed, programversions are programs which di�er at least in one clause.3.2 De�ning Program VersionsWhenever a program is de�ned and the user changes the current predicate reference of arelation composing it to point to another predicate de�nition, the user is de�ning a (new)program version. This is the simplest way to de�ne a program version. However, to completethe de�nition the user has to insert program reference in the predications at the body of thecurrent predicate de�nition and then name it. This is done with the naming utility. Notethat, although the current predicate reference changed for the relation the user modi�ed, allthe named reference which pointed to the previous current predicate de�nition still de�ne thecorresponding programs. It is only a new version that is being de�ned and named, and allprevious programs depending on other predicate de�nitions for this relation are still properlyde�ned.3.3 Document Exporting FacilitiesHyperPro allows the user to export the whole document in two di�erent formats: ASCII andLatex [5]. The new release of HyperPro, the Basic HyperPro, included HTML in their facilitylist.The ASCII exporting facility simply makes a dump of ASCII codes of the document intoa �le.The Latex exporting facility dumps a Basic HyperPro document into a �le in Latex format.The logical structure of the original document is entirely re
ected in the Latex �le, exceptfor the hypertext links, for obvious reasons. However, the indexes are mirrored in the Latexdocument, so that the hypertext version of the original document is faithfully rendered inpaper, as much as possible.The HTML exporting facility translates the original Basic HyperPro document in suchway to be viewed by any available web browser, where the original hypertext links appearas such in the HTML version of the document. It is available to the user the possibilityto translate their document into two html version, one consisting of a unique �le or a htmlversion with multi�les. However, the logical structure of the document division in di�erent

unities such as chapter, sections and subsections is not maintained, and only the unities titlesappear in the main HTML document in the case of multi�le. Neither is translated in theHTML export of a HyperPro document the table of contents or indexes.3.4 IndexesThot provides an index utility which allows the user to de�ne di�erent indexes. To create anindex, the user inserts manually pairs of marks around the word or words he wants to appearin the index. After this is done, for all words he chooses, the user creates the correspondingindex through a Thot menu.Based on this utility, Basic HyperPro provides the user with two di�erent indexes: Cross-reference index, and Index of versions.The cross-reference index indicates where a relation appears in the document, where isfound its current predicate de�nition and where the relation is used in other parts of theprograms de�ned in the document, independently of program versions. It is an absoluteindex of relation de�nitions.The cross-reference index will be created automatically. This means that pairs of indexesmarks should be put automatically around predicates everywhere they appear in the clausesentered. Once this is done, the user can create in an usual way the cross-reference index.This facility is not yet available, it is being implemented.The index of versions shows where versions are �rstly de�ned, i.e., where in the documentis found the predicate de�nition pointed by the �rst named reference appearing in the docu-ment, as all corresponding predicate de�nitions pointed by named reference for each relationincluded in the program or version as well. Modi�cations in the version, i.e., version deletionor additions to it should be mirrored in the index. But this is not automatically done byBasic HyperPro, since index construction in Thot depends entirely on the user to put thepairs of marks around the parts he wants to appear in the index.3.5 Views of the DocumentThot allows the user to de�ne views of his document, such that, chosen portions of it arepresented separately in a view. Views are synchronized in such a way to facilitate selecting,moving and editing consistently and easily in a particular view as much as in the main view.In addition, any operation in a view are re
ected in all the others. Also, we provide in BasicHyperPro the possibility to project and view separately some parts of the document selectedby the user following some criteria, this is called projections [1], [2].Basic HyperPro provides several di�erent views of the same document: the main viewof the whole document; view of the table of contents; view of the comments; view of theassertions; view of the packets.The main view and the table of contents are displayed automatically, when a documentis opened. The main view shows all the document as it is de�ned by the user, and while hede�nes it. It contains all the subsections, sections and chapters de�ned, with all the relationsde�nitions and versions references. The table of contents displays all the subsections, sectionsand chapters de�ned in the document and their references, such as their ordering number andpage.The views of comments, of assertions, and of packets are shown on demand by the userthrough the appropriate Thot menu bar. Each view displays all and only the comments, orassertions or packets de�ned in the document.

3.6 Projections ViewA projection view displays selected portions of the document in a separate view. The selectionprocess depends on the projection wanted. Projections di�er from pre-de�ned views on theselection process. Also, views are static and are already incorporated in Thot's machinery,the projections are dynamic and are provided by Basic HyperPro.The Basic HyperPro o�ers �ve di�erents projections views: manual projection, recur-sive projection, regular expression projection, version projection and index based projection.There are two di�erent indexes based projection view, one of them is produced from the CrossReference Index (CRI) of predicates and the other one is produced from version index.In the manual projection view the user is free to select any part of the document to beviewed.In the recursive projection view, the user can choose one or more relation de�nitions andthe Basic HyperPro will show in a separated view all the packet of clauses related to thatrelation including the current predicate and all the predicates referenced in the chain whichthe relation is inserted.In the regular expression projection view, the user gives some regular expression andBasic HyperPro shows in a separate view all the portions of the document where the regularexpression appears.The version projection view shows, in a separate view, all the packets of clauses composinga version of the program chosen by the user in the document.The index-based projection view should allow the user to select any index entry and haveall the correlated parts of the document shown in a separate view.4 Basic HyperPro Facilities and Utilities InterfacesIn this section we present the user's schematic interfaces such as menus and sub-menus forthe functionalities and utilities that have been present in Section 3. Some functionalities andutilities appear in speci�c Thot menus, like the export, views and index facilities. However,the manual and regular expression projection view, the version view, the recursive view andthe index-based projection views facilities appear in the Thot's Tools menu, as the othersutilities as well. The reason is that Thot allows anyone to include his own facilities using theThot toolbox, which are accessible through the Tools menu.Views are selected in the Thot menu Views. There the user chooses the entry point to thesub-menu Open a view... and in there, he chooses the view he wants to open. The views theuser can open are, therefore: text view; view of the table of contents; view of the program;view of the comments; view of the assertions; view of the types; manual projection view;manual projection view; recursive projection view; regular expression projection view; indexbased projection view; version projection view and notes view.The exporting facilities are accessed by the Document menu, and the Save as... sub-menu.A window opens where the user can then choose the exporting facility he wants to use, Thot,ASCII, Latex, Html, RTF.We will not present here the index utility interface. The reader can �nd about it and howto use this facility in the Thot User Manual ([9]).4.1 Tools MenuThot's tools menu o�ers the user access to the following utilities:

hOther Thot usual menu entriesi ToolsMake indexes >Versions >Projections >Tests >Sintax veri�cation >HyperPro preferences ManualBy relation (recursively)By regular expressionBy versionBy Index basedAll utilities interface is done through communications windows, where the user controlsthe utility and where the data input is done, and some utilities may open a speci�c windowto work as their output interface.In the following sections we describe for each projection its dialog box if it exists.4.1.1 Manual Projection Dialog BoxTo use the manual projection when the user clicks on it, a dialog box like the one presentedin Figure 1 appears with the buttons: select, delete, cancel and done, where:select) selects part of the document to be shown.delete) deletes an element from the projection view.cancel) cancels the projection view.done) closes the dialogue box and the projection view remains.
select delete cancel done

Create manual projection of the document

Figure 1: Dialog Box of Manual ProjectionTo include an element in the projection, the user should select that element with theselection button and automatically it will appear in the Manual projection view. It isallowed to include several elements in the same view. The user can do that by pressing theselection button again.To include an element in another view, the system will automatically close the currentprojection view and open another one with the newly element.To delete an element, press the delete button and click on the element to be deleted. Theelement will be deleted but the view remains open because the user may want to keep the

others elements in the view, if they exists.4.1.2 Recursive Projection Dialog BoxThe recursive projection that is available to the user attaches the attributes to the entirerelation de�nition so it doesn't need a dialogue box.To execute the recursive projection in this current version, the user has to click on themenu Tools, Projections and then, By relation (recursively). Clicking on that, asmall hand appears in the Basic HyperPro document. After that, the user has to choose onerelation de�nition in the document and click on it. The Recursive projection view willopen automatically with the relation de�nition selected and all the relations which are relatedto it.We are working in the new version of this projection to allow the user choosing betweenthe entire relation de�nition or only in the predicate of the relation.The dialog box for this new version is presented in Figure 2. In this dialogue box, thebutton CPR will be used to attach the attribute on relation title, and the target of CPR. Thebutton All will be used to attach the attribute relation de�nition. Actually All representsthe current implementation of the recursive projection.
CPR ALL

Create recursive projection of the document

Figure 2: New Dialog Box of Recursive Projection4.1.3 Regular Expression Projection Dialog BoxTo use a regular expression projection it is available a dialog box like the one presented inFigure 4, where the functions are:Search for) the word to be searched and displayed in the projection.go) �nds the word which is to be searched.select) include the element which the word is inserted in the projection.cancel) to cancel the projection.In this dialog box we choose a word from the Basic HyperPro document typing it inthe box bellow Search for. It is available four options to direct the user in �nding theoccurrence of the regular expression in the document: after the word selected, before it,inside a de�nition selected or in the entire document. By default it will be always selectedafter the definition selected.4.1.4 Version Projection Dialog BoxThe version projection does not need a dialog box. When the user calls this function, amessage appears on Basic HyperPro's main window, presented in Figure 4, showing the user

Search for

Select CancelGo

word

Create regular expression projection from the document

Before selection

Within selection

After selection

In the whole documentFigure 3: HyperPro Main Viewwhat to do.To use version projection the user needs to select the menu Tools, Projections, and Byversion. After that, the user have to click on a version and it will automatically be open inthe Version projection view.
click on a version name

hyperpro

File Environment Palete Help

Thot

Thot@INRIAFigure 4: Dialog Box of Version Projection4.1.5 Index-based Projection Dialog BoxThe dialog box for this projection looks like the one showed in Figure 5:Select index entriesOK CancelFigure 5: Dialog Box of Index Based ProjectionThe user clicks on index entries until \OK", then the view is opened.

5 Projections View ImplementationTo implement the projections presented in Section 3.6 we had at least two ways to do it. The�rst one, which is a non trivial solution, consists of adapting a copy of a function from theThot's Library to our needs and incorporating the modi�ed version in the library.The second one consists of adding in the Basic HyperPro structure a global variablesattribute, and then add in the presentation �le of Basic HyperPro a view to have a projection.The presentation of Basic HyperPro document may be programmed by means of P lan-guage [10], and for the view projections of HyperPro, the control of visibilities had to beencoded into the presentation schema as it is described in the sequel. The presentation ruleof the visible attribute must have a visibility which must be bigger than the sensibility ofProjection view. To make an element visible in the Projection view, it is necessary to attachit to the visible attribute. This solution is easy to implement but presents two drawbacks:1. it is related with the modi�cation of the structure schema. If the structure and presen-tation schema is changed, some problems in opening old documents will appear. Besidesthat, from the user point of view, this is uncomfortable.2. It is necessary to declare, in the presentation schema, n views for n kinds of projections orany dynamically opened views. Another problem is that we can not have simultaneouslytwo instances of the same kind of view. For instance, we can not have two projectionviews on di�erent versions.We have chosen to implement the �rst option thinking that it would be better becausewe did not have to make any changes in the structure and presentation schema, which shouldbe frozen by this time. But it did not work because it is hard to understand and modify theApplication Program Interface (API's) code [4]. So, we have chosen to implement the secondoption.In order to implement this option, we made some changes in the structure and presen-tation schemas. In the structure schema, we included �ve variables representing the visibleattributes, one for each projection presented in Section 3.6.In the presentation schema we included the declaration of �ve views in the section whereviews were declared corresponding to the �ve projections presented in Section 3.6. Set theBasic HyperPro visibility to zero in those views and, at last, set the attribute with sensibilityeight for each view.After these modi�cations had been included in the Basic HyperPro schemas, we were ableto start implementing the projections.In the following sections we describe for each projection its functionality and implemen-tation.5.1 Manual ProjectionThe manual projection is a dynamic view in which the user can work with selected element.In this projection, the user can select several parts of the document, called elements, andthese elements will be shown in a separated view. The granularity of the selected elementis de�ned to be paragraphs and relation de�nition. Therefore, when the user clicks in anyof these elements or in their descendants, the projection will show the whole paragraph orrelation de�nition.To implement the manual projection we �rst get the clicked element, next we check if theclicked element is a paragraph or a relation de�nition traversing the abstract Basic HyperPro

structure tree. Otherwise we verify if the element has already an attribute, if not, we createa new attribute and attach it to the element.Shortly, to include an element in the projection view is the same as to attach an attributeto this element, and to delete the element from the projection view is the same as to removethe attribute from the element.The manual projection view for the n-queens problem is showed at Figure 8. In this exam-ple, the output of manual projection possesses two paragraphs and one relation de�nition.5.2 Recursive ProjectionIn the recursive projection view, the user can choose one or more relation de�nitions andthe Basic HyperPro will show in a separated view all the packet of clauses related to thatrelation including the current predicate and all the predicates referenced in the chain whichthe relation is inserted.The recursive projection view is useful for helping the user to detect which predicates havenot yet its predicate reference set or to �nd out where it is set to.The recursive projection available to the user attaches the attributes to the entire relationde�nition so it does not need a dialogue box. This projection works as follow: when the userchooses a relation, the projection �nds out all the others relations de�nitions which is relatedto it, traversing the Basic HyperPro structure tree, and then attaches the attribute to them.In the implementation of this projection, it was also used the Thot library to deal withlists. The list contains all the referenced predicates, it starts building the list of relationde�nitions that must be in the projection, �nd the de�nitions references in the packet ofclauses and put them into the list. The library's functions used are those: to add an elementto a list, to delete an element from the list, and to destroy the list.In order to complete the implementation of recursive projection the next step is to imple-ment a function to allow the user choosing between selecting the entire relation de�nition oronly the current predicate of the relation. Figure 9, at the end of this document, shows anexample of recursive projection view for the n-queens problem.5.3 Regular Expression ProjectionThe regular expression projection is a view facility where the user can give a regular expressionand as a result Basic HyperPro will provide in a separate view all portions of the documentwhere the regular expression appears. The smallest granularity for this projection is a word.To implement the dialog box for this projection we use one adaptation of the functionSearch which is in the menu edit of Thot. The function to search the regular expression worksas follow: when it �nds the string, it attaches the attribute to the element.5.4 Version ProjectionThe user can, in the version projection, to select a version to be viewed in a separate view.This view will contain all the packet of clauses composing the version chosen.The version projection algorithm was implemented in the following way: verify if the userhad clicked in a version name or not, if so, from the main root of Basic HyperPro structuretree search for every time the version selected appears, returning the root element of the mainabstract tree. After �nding the places where the versions appears, �nd out the places wherethe reference is pointing to and attach the attribute to that element.

5.5 Index Based ProjectionIn this projection view, the user will be able to select any index entry and have as a resultall the correlated parts of the document shown in a separate view. There will be two kindsof index based projection: the projection produced from Cross Reference Index (CRI) ofpredicates explained in Section 5.5.1 and the projection produced from version index explainedin Section 5.5.2.5.5.1 Index Based Projection Produced from CRI of PredicatesIn this index based projection, the user will choose a predicate de�nition from the PredicateCross Reference Index and the Index Based (CRI) Projection will show, in a separate view, thecurrent predicate of the de�nition and every de�nition that it appears. CRI means CurrentReference Index.The Figure 6 presents the skeleton of this projection. Here, pdu means predicate de�nitionand use. This projection is implemented in the same way as recursive projection. Thedi�erence between than is related to the place the user clicks on the predicate. In this case, itclicks on the predicate cros reference index view instead of the hyperpro document as in therecursive projection.
 HyperPro Document

Index Based (CRI) Projection

p/1 page

r/3: pdu

q/2

p/1: pdu pdu page

r/3: pdu

Click on p/1

p/1

q(x,y)

q(x)

r(x,y,z)

q(x.y)

q/2

r/3

q/1

begin from p/1

recursive projection

q(x,y)

p
def

Predicate cross reference index

as in

Figure 6: Scheme of Index Projection produced from CRI of Predicates

5.5.2 Index Based Projection Produced from Version IndexFor the index based projection the user needs to have the version index. This view containsthe versions for each predicate de�ned in the document, including the page number wherethey have appeared in the Basic HyperPro document. From this index he will click on aversion. After that, Basic HyperPro will provide automatically in a separate view, as showedin Figure 7, the Index based projection VI, all the predicates of the chosen version. VI meansVersion Index. This projection is implemented in the same way as version projection. Thedi�erence between than is related to the place the user clicks on the version. In this case, itclicks on the version index view instead of the hyperpro document as in the version projection.Figure 7 presents the skeleton of this projection.
Version Index

click from

p/1

q/1

p/1 version1 version2

q/1 version1

r/2 version2 version3

(on version1)

Index Based Projection VI

version1: p/1 page ..., q/1 page

version2: p/1 page .., r/2 page

Basic HyperPro Document

Figure 7: Scheme of Index Projection produced from Version Index6 ConclusionHyperPro is a documentation development tool for logic programming systems. It o�ersseveral facilities to view and handle documents at di�erent levels of abstraction and fromdi�erent point of view. Particularly, HyperPro aims to document CLP programs giving itsusers the possibility to edit, in a homogeneous and integrated environment, di�erent versionsof programs, comments about them, information for formal veri�cation and debugging pur-poses, as the possibility to execute, debug and test the programs as well. All the attempts

and development history of CLP programs can therefore be integrated and consistently do-cumented within a unique environment gathering together a hypertext editor, di�erent CLPinterpreters and syntactical veri�ers, as di�erent debugging and veri�cation tools as well.It also possesses several functions for exporting the document in di�erent formats such as:html, latex, ascii, and producing projections, which are especial excerpts of the document,according to di�erent criteria, such as, the program goal, pieces of code directly marked bythe user, program versions, etc.In this paper we have presented the implementation results of the projections views whichare manual projection, recursive projection, regular expression projection and version projec-tion. The index based projection is under development.References[1] Peligrinelli, Flavia, Bigonha, Mariza A. S., et all, \Um Ambiente para Desenvolver Pro-grama�c~ao em L�ogica Baseado no Paradigma do Estilo Literario", Trabalho selecionadopara o Primeiro Lugar na �area de Ciências Exatas e da Terra durante a 7a Semanade Inicia�c~ao Cient���ca. Publicado nos Anais de Resumos da 7a Semana de Inicia�c~aoCient���ca da UFMG, p�agina 204, 1998.[2] Pierre Deransart AbdelAli Ed-Dbali Mariza A. S. Bigonha Roberto S. Bigonha Josede Siqueira, \Basic HyperPro Functionalities and Utilities", Relat�orio T�ecnico 023/97,Departamento de Ciência da Computa�c~ao, UFMG, dezembro de 1997.[3] Deransart, P., Bigonha, R., Parot, P., Bigonha, M., Siqueira, J. de, A Hypertext BasedEnvironment to Write Literate Logic Programs, I Congresso Brasileiro de Linguagens dePrograma�c~ao, Belo Horizonte, 4 a 6 de setembro de 1996.[4] Quint, V. and Vatton, I., The Thot Kit API, INRIA Rocquencourt, technical report,July,10, 1997.[5] Lamport, L., Latex : A Document Preparation System, Addison-Wesley Publishing Com-pany, 1986.[6] M. Berg�ere and G. Ferrand and F. Le Berre and B. Malfon and A. Tessier, La Program-mation Logique avec Contraintes Revisit�ee en Termes d'Arbre de Preuve et de Squelettes,LIFO, Orl�eans, 1995, LIFO 96-06, February.[7] Quint, V. and Vatton, I., Grif : an interactive System for structured Document Mani-pulation, Proceedings of the International Conference on Text Processing and documentManipulation, 1986, November, 200-213, Cambridge University Press.[8] Quint, V. and Vatton, I., Hypertext aspects of the Grif structured editor : design andapplications, Rapports de Recherche #1734, INRIA Rocquencourt, 1992, July.[9] Quint, V., The Thot User Manual, Internal report, INRIA-CNRS, 1995.[10] Quint, V., The Languages of Thotl, Internal report, INRIA-CNRS, translated by EthanMunson, version of June 25, 1996.

Figure 8: Output of Manual Projection View

Figure 9: Output of Recursive Projection View

