

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 1 of 77

© 2013 Weiss Robotics, all rights reserved

WSG Series of Intelligent Servo-Electric Grippers

Scripting Reference Manual

Firmware Version 2.4.3

January 2013

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 2 of 77

© 2013 Weiss Robotics, all rights reserved

Contents

1 Introduction .. 5

1.1 The LUA Scripting Language .. 5

1.2 The Scripting Environment .. 5

1.2.1 Using the Interactive Script Editor... 5

1.2.2 Uploading and downloading scripts .. 7

1.2.3 Automatically run a script on startup .. 7

1.2.4 Accessing files from within a script ... 9

1.2.5 Restrictions .. 9

2 WSG-specific script extensions ... 10

2.1 Generic Extensions ... 10

2.1.1 Error codes .. 10

2.1.2 Print a formatted string - printf() .. 10

2.1.3 Wait some time - sleep() ... 11

2.1.4 Convert bytes into a LUA number - bton() .. 11

2.1.5 Convert LUA number into bytes - ntob() ... 12

2.1.6 Convert an error code into a string – etos() .. 12

2.1.7 Convert an error code into bytes – etob() ... 13

2.1.8 Replace characters inside a string – replace() ... 13

2.2 System ... 14

2.2.1 Get system information - system.info() .. 14

2.2.2 Device tag - system.tag() ... 15

2.2.3 Get the service tag - system.servicetag() .. 15

2.2.4 Get temperature - system.temperature() ... 16

2.3 Gripper state and device information .. 16

2.3.1 Read system state flags - gripper.state() ... 16

2.3.2 Get the system state as table - gripper.flags() .. 17

2.3.3 Get gripper limits - gripper.limits() .. 18

2.4 General purpose I/O (GPIO) .. 18

2.4.1 Access a single pin - gpio.pin() ... 19

2.4.2 Set an output pin to high - gpio.set() .. 19

2.4.3 Set output Pin to low - gpio.clear().. 20

2.4.4 Access I/O pins directly - gpio.pins() ... 20

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 3 of 77

© 2013 Weiss Robotics, all rights reserved

2.5 Motion Control ... 21

2.5.1 Speed controller gain - mc.pid() .. 21

2.5.2 Position controller gain - mc.kv() .. 22

2.5.3 Finger speed - mc.speed() ... 22

2.5.4 Finger opening width - mc.position() .. 23

2.5.5 Get block - mc.blocked() .. 24

2.5.6 Current grasping force and force limit - mc.force() ... 24

2.5.7 Get approximated grasping force - mc.aforce() .. 25

2.5.8 Tare force sensors - mc.tare() ... 25

2.5.9 Finger acceleration limit - mc.acceleration() ... 26

2.5.10 Set soft limits - mc.softlimits() ... 27

2.5.11 Enable soft limits - mc.softlimits_en() ... 28

2.5.12 Soft limits reached - mc.softlimits_reached() ... 29

2.5.13 Stop current movement - mc.stop() .. 29

2.5.14 Are the fingers moving? - mc.busy().. 30

2.5.15 Move fingers - mc.move() ... 30

2.5.16 Move fingers using a ramp profile – mc.move_ramp() ... 32

2.5.17 Move fingers using a rectangular profile – mc.move_rect() ... 33

2.5.18 Stop in case of an error - mc.faststop() ... 33

2.5.19 Execute custom trajectory - mc.trajectory() ... 34

2.5.20 Execute homing sequence - mc.homing() ... 35

2.6 Grasping ... 36

2.6.1 Grasp a part - grasping.grasp() .. 36

2.6.2 Release a part - grasping.release() .. 37

2.6.3 Manually clamp a part - grasping.clamp() ... 38

2.6.4 Manually stop clamping a part - grasping.stop_clamping() .. 40

2.6.5 Get grasping state - grasping.state() ... 40

2.6.6 Get grasping state as string – grasping.statestring() ... 41

2.6.7 Get grasping statistics - grasping.stats() .. 42

2.6.8 Reset grasping statistics - grasping.resetstats() .. 43

2.7 Command Interface .. 44

2.7.1 Interface – cmd.interface() .. 44

2.7.2 Get command statistics – cmd.stats() ... 44

2.7.3 Host connected? – cmd.online() ... 45

2.7.4 Register a packet ID – cmd.register() .. 46

2.7.5 Unregister a packet ID – cmd.unregister() .. 47

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 4 of 77

© 2013 Weiss Robotics, all rights reserved

2.7.6 Send a data packet – cmd.send() .. 47

2.7.7 Get number of available packets – cmd.available() .. 48

2.7.8 Read a received data packet – cmd.read() .. 49

2.8 Finger control ... 50

2.8.1 Get number of fingers – finger.count() ... 50

2.8.2 Get finger type – finger.type() ... 51

2.8.3 Get or set a finger parameter – finger.param()... 51

2.8.4 Get the current finger data – finger.data().. 53

2.8.5 Digital sensor interface – finger.interface()... 54

2.8.6 Get finger state – finger.state() ... 57

2.8.7 Get the finger state as table - finger.flags()... 58

2.8.8 Control finger power – finger.power() .. 59

2.8.9 Get analog voltage – finger.analog() ... 60

2.8.10 Write data to finger – finger.write() .. 60

2.8.11 Bytes available – finger.bytes_available() ... 61

2.8.12 Read data from finger – finger.read() ... 62

2.8.13 Synchronous data transfer via SPI – finger.spi() .. 63

2.8.14 Finger configuration memory – finger.config() ... 64

2.9 Profibus ... 66

2.9.1 Get connection state – profibus.online() .. 66

2.9.2 Get bitrate – profibus.bitrate() .. 67

2.9.3 Access an I/O flag – profibus.flag() .. 67

2.9.4 Write/read user flags – profibus.flags() .. 69

2.9.5 Set one or more output flags – profibus.fset() .. 69

2.9.6 Clear one or more output Flags – profibus.fclear() ... 70

2.9.7 Wait for activity – profibus.waitact() .. 71

3 Appendix A: Error Codes .. 72

4 Appendix B: System State Flags .. 73

5 Appendix C: Finger State Flags.. 75

6 Appendix D: Syntax Notation ... 76

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 5 of 77

© 2013 Weiss Robotics, all rights reserved

1 Introduction

The WSG family of grippers includes a powerful scripting engine based on the LUA language that enables

you to implement application specific behavior of your gripper. The WSG Grippers include the LUA

interpreter version 5.1.4.

1.1 The LUA Scripting Language

LUA is a lightweight and extensible configuration language and was developed by a research group around

Roberto Ierusalimschy at Pontifical Catholic University of Rio de Janeiro, Brazil in 1993. This manual will not

give you a complete introduction in how to program LUA, but will focus on the gripper-specific extensions

of the programming language. A good source for learning LUA and for programming examples is the official

LUA Website at http://LUA.org and the LUA User’s website at http://LUA-users.org.

In addition, the following books will give you an introduction in the LUA programming language:

For beginners in programming, we recommend this book:

 K. Jung, A. Brown: Beginning LUA Programming, 2007, ISBN 0-470-06917-1

If you are already familiar with programming, you may read instead:

 R. Ierusalimschy: LUA 5.1 Reference Manual, August 2006, ISBN 85-903798-3-3

 R. Ierusalimschy: Programming in LUA, March 2006, ISBN 85-903798-2-5

There is also a German edition of the latter one:

 R. Ierusalimschy: Programmieren mit LUA, September 2006, ISBN 3-937514-22-8

1.2 The Scripting Environment

1.2.1 Using the Interactive Script Editor

For developing and testing scripts, the WSG Grippers contain an interactive script editor (see Figure 1) that

is accessible over its web interface. It consists of an editor with syntax highlighting and a console window to

display log messages from your script. To open the interactive script editor, go to the gripper’s website by

entering its IP address in your browser’s address line. Alternatively, you can use the symbolic name

http://wsg50-00000000.local of your gripper, replacing the “00000000” by the serial number of your

Gripper (this requires mDNS to be enabled on the gripper and an mDNS service like “Bonjour” running on

your PC). This 8 digit number can be found on the type label located above the connectors. When accessing

the WSG’s web interface, you may have to log in first, depending on the security settings of the gripper.

http://lua.org/
http://lua-users.org/

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 6 of 77

© 2013 Weiss Robotics, all rights reserved

 You need administrator rights to use the interactive script editor

Go to the interactive scripting page by choosing “Scripting -> Interactive Scripting” from the main menu.

You can now either write a new script or load one from the WSG’s SD-Card by pressing the “Open” button.

To run a script, it has to be saved first. Select a name that allows an easy identification of the script by its

function. The file extension has to be “.lua”. To abort a currently running script, press the “Stop” button.

The editor supports common hotkeys, e.g. CTRL-C for copy, CTRL-P for paste and CRTL-S for save.

Figure 1: The Interactive Scripting Editor

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 7 of 77

© 2013 Weiss Robotics, all rights reserved

1.2.2 Uploading and downloading scripts

You can either copy your scripts to the SD card manually by placing the SD card into a compatible reader or

you can use the upload feature of the WSG’s web interface, see Figure 2.

 Scripts must be located in the /user directory or any subdirectory and must end with “.lua” to be started.

 You need administrator rights to upload or download scripts

1.2.3 Automatically run a script on startup

Via the web interface of the WSG Gripper (go to the system settings page via “Settings -> System”), you

may specify any script from the /user directory to be automatically executed when the gripper starts up

(see Figure 3). Care should be taken that the script runs error-free. It is easy to imagine that you can

Figure 2: Up-/Download Page

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 8 of 77

© 2013 Weiss Robotics, all rights reserved

seriously disturb the normal operation of the gripper with an erroneous script. We recommend testing the

script extensively using the interactive scripting editor before using it as an autorun script.

In autorun mode, all console outputs are discarded, unless you open the web interface and go to the

interactive scripting editor page. There, you can see the currently running script.

In case of a script error, a FAST STOP is raised and the error is written to the system log.

 Scripts must be located in the /user directory to be selectable as autostart script.

 You need administrator rights to configure the autostart feature

Figure 3: Configuring an autostart script

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 9 of 77

© 2013 Weiss Robotics, all rights reserved

1.2.4 Accessing files from within a script

You can create and access files on the WSG Gripper’s integrated SD card. This may be useful e.g. to store

grasping information on different parts that have to be grasped in the same process. The default directory

when starting a script is /user. To read the content of a file, you can use the example code below. It

accesses the file test.txt which is assumed to be located in the user directory on the SD card. For a complete

“How To” on accessing files from within LUA, please see the LUA Manual at http://lua.org.

Example

f = assert(io.open("test.txt", "r"));

text = f:read("*all");

f:close();

print(text);

 Care should be taken if accessing a file using an absolute path, as manipulation of system-related files

(outside the /user directory) may endanger the correct operation of the gripper!

1.2.5 Restrictions

Even if the WSG Grippers support the complete functional range and syntax of the LUA programming

language, the following restrictions apply when running a script on the gripper hardware:

 Arithmetic calculations are done using single precision floating point functions.

 Environment variables are not available.

 Console buffer does not block if full. Prints to the console (either via “print” or “printf”) are

internally buffered with a buffer of a constant length. If the script constantly prints messages but

they are not polled by a client (i.e. the web interface’s console window is not active), the message

buffer may discard new messages if it is already full.

 The script cannot read characters from the standard input (e.g. keyboard input).

 If the script was started automatically on startup, a script error will raise a FAST STOP condition and

an entry describing the error is created in the system log.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 10 of 77

© 2013 Weiss Robotics, all rights reserved

2 WSG-specific script extensions

2.1 Generic Extensions

2.1.1 Error codes

The WSG firmware provides the available error codes as global variables that can be used from within your

script. They can be used as a standard variable inside your code, e.g. to print the error number for success

to the console, you can simply write printf("E_SUCCESS = %d\n", E_SUCCESS).

Since LUA does not support constants by default, the provided variables can be changed (however this is

not a good idea!).

 For a list of the available error codes see Appendix A (chapter 2.9).

2.1.2 Print a formatted string - printf()

Print a formatted string to the console. The format string follows the same rules as the ANSI C printf()

command. The following options/modifiers are not supported: *, l, L, n, p, h. For further details on

formatting strings, see the description of string.format in the LUA Reference Manual.

 The console uses line buffering for printf() outputs. To force a line to be printed immediately, terminate it

using a carriage return ('\n') character.

 The internal buffer of the console output will hold a limited number of characters. If no console window is

open or your script prints too much text, this buffer may become full and additional text may be lost!

Syntax

printf(fmt, […])

Parameters

fmt

Format string

… (optional)

Optional list of parameters that are output using the format described in fmt.

Return Value

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 11 of 77

© 2013 Weiss Robotics, all rights reserved

none

Example

printf(“Hello World!\n”); -- outputs “Hello World” at the console

printf(“This is a %s: %d\n”, “ten”, 10); -- outputs “This is a ten: 10” at the console

2.1.3 Wait some time - sleep()

Pauses the script execution for a given time.

Syntax

sleep(ms)

Parameters

ms (integer)

Time to wait in milliseconds. Negative values are treated as 0.

Return Value

none

Example

sleep(1000); -- waits for 1 second

2.1.4 Convert bytes into a LUA number - bton()

Converts a table with 4 bytes representing an IEEE 754 single precision floating point number into a LUA

number.

Syntax

<number> = bton(bytes)

Parameters

bytes <table>

Table containing four integers in the range of [0..255]. Byte addressing is little endian.

Return Value

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 12 of 77

© 2013 Weiss Robotics, all rights reserved

floating point number

Example

number = bton({164, 112, 157, 63});

printf(“Number is %g\n”, number); -- outputs “Number is 1.23” at the console

2.1.5 Convert LUA number into bytes - ntob()

Interprets a LUA number as an IEEE 754 single precision floating point number and converts it into its byte

representation.

Syntax

<number> = ntob(number)

Parameters

number <number>

LUA Floating point number.

Return Value

Returns a table with four integers in the range of [0..255] that holds the binary representation of the

passed LUA number.

Example

bytes = {};

bytes = ntob(1.23);

print(bytes); -- outputs “164 112 157 63” at the console

2.1.6 Convert an error code into a string – etos()

Some functions may return a gripper-specific error code as a return value. This function converts the error

code into given as parameter into a human readable string. For a list of error codes, see the Appendix A.

Syntax

<string> = etos(errorcode)

Parameters

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 13 of 77

© 2013 Weiss Robotics, all rights reserved

errorcode (integer)

Error code.

Return Value

returns a human readable string describing the error.

Example

s = etos(E_CMD_FAILED);

printf("Error text: %s\n", s); -- Will output: "Error text: Command failed"

2.1.7 Convert an error code into bytes – etob()

Convert the given error code into its two-byte representation as it is used e.g. as a return code for custom

commands. The function does not check for the validity of the given error code. For a list of error codes,

see the Appendix A.

Syntax

<table> = etob(errorcode)

Parameters

errorcode (integer)

Error code. See Appendix A for a list of error codes.

Return Value

Returns a table containing the two byte values as integer values (range 0..255).

Example

-- This will output "Error code bytes: 18, 0" at the console:

printf("Error code bytes: %d, %d\n", etob(E_CMD_FAILED));

2.1.8 Replace characters inside a string – replace()

Replace all occurrences of the old character inside a string by a new character.

Syntax

<string> = replace(str, oldch, newch)

Availability

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 14 of 77

© 2013 Weiss Robotics, all rights reserved

This command is available from firmware version 2.4.0 onwards

Parameters

str (string)

String where the characters should be replaced.

oldch (string)

Character to be replaced. This string must only contain one character.

newch (string)

Replacement character. This string must only contain one character.

Return Value

Returns a copy of the given string where the characters have been replaced.

Example

-- Replace all points by commas:

s = "These are numbers: 1.234 and 3.45";

print(replace(s, ".", ",")); -- -> produces "These are numbers: 1,234 and 3,45"

2.2 System

2.2.1 Get system information - system.info()

Returns a table containing the system information and the gripper-specific physical limits.

Syntax

<table> = system.info()

Parameters

none

Return Value

Table containing the system information:

 <table>.serial_number = <int> Serial Number

 <table>.hw_revision = <int> Hardware revision

 <table>.sw_revision = <string> Software revision

 <table>.bl_version = <string> Bootloader version

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 15 of 77

© 2013 Weiss Robotics, all rights reserved

 <table>.type = <string> System type, e.g. "WSG 50"

 <table>.macaddr = <string> The sensor’s MAC address

Example

info = {};

info = system.info();

printf("type: %s mm\n", info.type); -- outputs: “type: WSG 50”

2.2.2 Device tag - system.tag()

Sets and/or returns the system tag. The system tag is a string that can be set to any value. You can write

e.g. application specific data or the gripper location to it. The system tag can be accessed via the command

interface, too.

Syntax

<string> = system.tag([value])

Parameters

value (string), optional

If this parameter is passed, it defines the new value for the tag.

Return Value

Current tag value.

Example

system.tag("Example"); -- Set the system tag to "Example"

printf("System tag is %s\n", system.tag()); -- outputs: "System tag is Example"

2.2.3 Get the service tag - system.servicetag()

Return the service tag of the device. The service tag is an alphanumeric string that is used to identify the

device for service purposes.

Syntax

<string> = system.servicetag()

Availability

This command is available from firmware version 2.4.0 onwards

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 16 of 77

© 2013 Weiss Robotics, all rights reserved

Parameters

none

Return Value

String containing the service tag of the device

Example

tag = system.servicetag();

printf("The system service tag is %s\n", tag);

2.2.4 Get temperature - system.temperature()

Return the temperature of the device.

Syntax

<number> = system.temperature()

Availability

This command is available from firmware version 2.4.0 onwards

Parameters

none

Return Value

Temperature in degrees celsius

Example

t = system.temperature();

printf("The current system temperature is %f degC\n", t);

2.3 Gripper state and device information

2.3.1 Read system state flags - gripper.state()

Get the currently set system state flags. A mask can be applied to filter out specific flags. See chapter 4 for

the system flags definition.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 17 of 77

© 2013 Weiss Robotics, all rights reserved

 If you want to read the system state flags as a table, use gripper.flags() instead (see chapter 2.3.2)

Syntax

<int> = gripper.state([mask])

Parameters

mask (integer), optional

If passed, only the system flags that are masked (i.e. set to HIGH) will be returned.

Return Value

Returns the currently set system state flags.

Example 1

flags = gripper.state(); -- returns the current system state flags.

Example 2

if gripper.state(0x0018) then -- Test for the AXIS BLOCKED flags

 printf(" Axis blocked!\n");

end;

2.3.2 Get the system state as table - gripper.flags()

Get the currently set system state flags as an associative table. The flags can be easily accessed by using

their symbolic name, see the example below. Chapter 4 lists the symbolic names of the system flags.

 If you want to read the system state flags as an integer value, use gripper.state() instead (see Chapter 2.3.1)

Syntax

<table> = gripper.flags()

Availability

This command is available from firmware version 2.4.0 onwards

Parameters

none

Return Value

Current system state flags as an associative table.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 18 of 77

© 2013 Weiss Robotics, all rights reserved

Example

flags = gripper.flags(); -- returns the current system state flags.

if flags.SF_AXIS_BLOCKED == true then

 print(" Axis is blocked!");

else

 print(" Axis is not blocked!");

end;

2.3.3 Get gripper limits - gripper.limits()

Returns a table containing the gripper-specific physical limits.

Syntax

<table> = gripper.limits()

Parameters

none

Return Value

Table containing the system information:

 <table>.stroke = <number> Stroke in mm

 <table>.min_speed = <number> Minimum speed of the gripper in mm/s

 <table>.max_speed = <number> Maximum speed of the grippe in mm/s

 <table>.min_acc = <number> Minimum acceleration in mm/s²

 <table>.max_acc = <number> Maximum acceleration in mm/s²

 <table>.min_force = <number> Minimum grasping force in N

 <table>.nominal_force = <number> Nominal grasping force in N (duty cycle 100%)

Example

info = {};

info = gripper.limits();

printf("stroke: %d mm\n", info.stroke); -- outputs: “stroke: 110 mm”

2.4 General purpose I/O (GPIO)

Control the GPIO interface of the gripper. The WSG 50 has two channels with one IN and one OUT pin each.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 19 of 77

© 2013 Weiss Robotics, all rights reserved

2.4.1 Access a single pin - gpio.pin()

Access a discrete GPIO channel. Used to change the value of a discrete GPIO pin and/or to read the value of

the corresponding input pin.

Syntax

gpio.pin(index, [state])

Parameters

index (integer)

Index of the channel to be accessed (0..1)

state (boolean), optional

Logic level to be set for the selected OUT pin. If this parameter is not given, the logic level of the OUT pin is

not changed. Can be either an integer (0..1) or a boolean value.

Return Value

The function returns the logic level of the channel’s IN pin (0 or 1).

Example

level = gpio.pin(1); -- Get the logic level of IN1

gpio.pin(0, 1); -- Set the logic level of OUT0 to logic HIGH

2.4.2 Set an output pin to high - gpio.set()

Produce a HIGH level on the OUT pins. Passing a ‘1’ results in a HIGH level of the resp. OUT pin. Passing ‘0’

has no effect.

Syntax

gpio.set(bitvector)

Parameters

bitvector (integer)

Integer value, where every bit selects one GPIO channel. state.0 -> OUT0, state.1 -> OUT1, …

Return Value

none

Example

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 20 of 77

© 2013 Weiss Robotics, all rights reserved

gpio.set(2); -- Sets OUT1 to logic HIGH. The logic level of OUT0 remains unchanged.

gpio.set(3); -- Sets both OUT0 and OUT1 to logic HIGH

2.4.3 Set output Pin to low - gpio.clear()

Produce a LOW level on the OUT pins. Passing a ‘1’ results in a LOW level of the resp. OUT pin while passing

‘0’ has no effect.

Syntax

gpio.clear(bitvector)

Parameters

bitvector (integer)

Integer value where every bit selects one GPIO channel. state.0 -> OUT0, state.1 -> OUT1, …

Return Value

none

Example

gpio.clear(1); -- Clear OUT0 and leave OUT1 untouched

gpio.clear(3); -- Clears both OUT0 and OUT1

2.4.4 Access I/O pins directly - gpio.pins()

Accesses the GPIO pins directly. This function can be used to write to all OUT pins simultaneously and/or to

read from all IN pins.

Syntax

<int> = gpio.pins([bitvector])

Parameters

bitvector (integer), optional

If passed, the OUT pins will be set according to this bit vector. Output is treated as bit vector, where bit 0

corresponds to OUT0 pin, bit 1 to OUT1, etc.

Return Value

Returns the current logic level of the IN pins as a bit vector, where bit 0 represents the logic level of IN0, bit

1 that of IN1, etc.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 21 of 77

© 2013 Weiss Robotics, all rights reserved

Example

levels = gpio.pins(); -- returns 2, if IN1 is HIGH and IN0 is LOW.

gpio.pins(2); -- sets OUT0 to LOW and OUT1 to HIGH

2.5 Motion Control

2.5.1 Speed controller gain - mc.pid()

Set and get the PID parameters for the speed controller.

 Incorrect settings of the controller gains may result in swinging of the fingers which can damage the

mechanics. Please use this command with care!

Syntax

<number>, <number>, <number> = mc.pid([new_p, new_i, new_d])

Parameters

new_p (number), optional

New proportional gain for the speed controller. Must be a positive value.

new_i (number), optional

New integral gain for the speed controller. Must be >= 0.

new_d (number), optional

New differential gain for the speed controller. Must be >= 0.

Return Value

The function returns three parameters:

1. currently set proportional gain

2. currently set integral gain

3. currently set differential gain

If new gain values are passed, the function returns these values.

Example

p, i, d = mc.pid(); -- stores the current gain values in the variables p, i and d.

mc.pid(3.2, 60, 0); -- sets the proportional gain to 3.2, integral to 60 and differential to 0

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 22 of 77

© 2013 Weiss Robotics, all rights reserved

2.5.2 Position controller gain - mc.kv()

Set and get the position controller’s proportional gain.

 Incorrect settings of the controller gains may result in swinging of the fingers which can damage the

mechanics. Please use this command with care!

Syntax

<number> = mc.kv([kv])

Parameters

kv (number), optional

New proportional gain for the position controller. Must be a positive value.

Return Value

The function returns the currently set kv value.

Example

printf("Kv is %.2f\n", mc.kv());

-- Set kv:

mc.kv(13.2); -- sets the proportional gain of the position controller to 13.2

2.5.3 Finger speed - mc.speed()

Set and/or read back the current speed of the fingers. The speed is measured between the fingers, i.e. a

value of 100 mm/s means that every finger moves with 50 mm/s. If a speed value outside the gripper’s

limits is set, the value is clamped to the limiting value.

The function raises a runtime error, if at least one of the following conditions is met:

 Gripper is in FAST STOP state.

 Gripper is not referenced.

Syntax

<number> = mc.speed([new_speed])

Parameters

new_speed (number), optional

New speed value in mm/s.

Return Value

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 23 of 77

© 2013 Weiss Robotics, all rights reserved

Returns the current speed of the fingers in mm/s.

Example

speed = mc.speed(); -- stores the current finger speed in variable "speed".

mc.speed(50); -- set the finger speed to 50 mm/s

2.5.4 Finger opening width - mc.position()

Set and/or read back the current opening width of the fingers. The position value is treated as the opening

width of the fingers, i.e. it is measured as the distance between the fingers. If a position outside the

gripper’s limits is set, the Fingers will move against the resp. mechanical end stop. When setting a new

position, the function will block, until movement was finished. The function accepts an optional speed

parameter. If not set, the speed value from the last move/position command is used.

The function raises a runtime error, if at least one of the following conditions is met:

 Movement timed out, i.e. the target position was not reached in the calculated time.

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 The force limit for prepositioning mode can be set by the mc.force() command (see page 24 for details)

Syntax

<number> = mc.position([targetpos], [speed])

Parameters

targetpos (number), optional

New finger opening width in mm.

speed (number), optional

Finger opening speed in mm/s.

Return Value

Returns the current opening width of the fingers in mm.

Example

width = mc.position(); -- stores the current opening width of the fingers in variable "width".

mc.position(50); -- set the finger opening width to 50 mm.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 24 of 77

© 2013 Weiss Robotics, all rights reserved

2.5.5 Get block - mc.blocked()

Get the current blocking state of the fingers.

 The block direction can be obtained from the System Flags.

Syntax

<boolean> = mc.blocked()

Parameters

none

Return Value

The function returns true, if the fingers are blocked.

Example

print(mc.blocked()); -- print the current blocking state

2.5.6 Current grasping force and force limit - mc.force()

The function returns the current grasping force as well as the currently set force limit. If an additional

parameter is given, it will set a new force limit for future pre-positioning movements and grasping

commands.

 The value set as force limit is lost power-down.

 In prepositioning mode (using mc.position() and mc.move() commands), force always estimated by

measuring the motor current. If you want to have true force control using an installed WSG-FMF

measurement finger, please use the grasping.grasp() command instead.

Syntax

<number>, <number> = mc.force([forcelimit])

Parameters

forcelimit (number), optional

New force limit in Newton. If you set a value that is outside the gripper’s capabilities, it is clamped to the

nearest possible value.

Return Value

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 25 of 77

© 2013 Weiss Robotics, all rights reserved

The function returns two parameters:

1. Current grasping force

2. Force limit value

Example

mc.force(50); -- Set the force limit to 50 N

print(mc.force()); -- print the current grasping force and the force limit

2.5.7 Get approximated grasping force - mc.aforce()

The function returns the approximated grasping force computed from the motor current. Especially with

force measurement fingers installed, this command is useful to determine any loads that are applied

outside the force-sensitive area of the finger.

 Without force measurement fingers installed, this is same as the grasping force returned by mc.force() (see

chapter 2.5.6).

Syntax

<number> = mc.aforce()

Availability

This command is available from firmware version 2.0.0 onwards

Parameters

none

Return Value

The function returns the actual approximated force in Newton.

Example

f = mc.aforce();

print("Approximated Force is %.1f N\n", f); -- print the approximated force

2.5.8 Tare force sensors - mc.tare()

Adjusts the force sensor output to zero, hiding any static offset error or initial load condition.

 Depending on the system settings, the force sensors are automatically zeroed with every homing sequence,

too.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 26 of 77

© 2013 Weiss Robotics, all rights reserved

 This command is only allowed, if the gripper is not in force control mode (i.e. the grasping state must not be

HOLDING when issuing this command).

Syntax

<integer> = mc.tare()

Availability

This command is available from firmware version 1.1.0 onwards

Parameters

none

Return Value

The function returns a standard error code as listed in Appendix A:

Example

err = mc.tare(); -- Tares the connected force sensing fingers

printf("Taring done: %s\n", etos(err));

2.5.9 Finger acceleration limit - mc.acceleration()

The function returns the finger acceleration limit. If a parameter is given, it will set a new acceleration limit

for future movements, too. The acceleration limit is the maximum allowed acceleration for the finger

movement and is used for all movement-related commands, except STOP and FAST STOP, which stop the

axis immediately.

 The value set as acceleration limit is lost power-down.

Syntax

<number> = mc.acceleration([acceleration])

Parameters

acceleration (number), optional

New finger acceleration limit in mm/s². If this value is outside the gripper’s capabilities, it is clamped to the

nearest possible value.

Return Value

The function returns the currently set acceleration limit.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 27 of 77

© 2013 Weiss Robotics, all rights reserved

Example

mc.acceleration(1000); -- Set the acceleration to 1000 mm/s²

printf("Current acceleration limit is %g mm/s²", mc.acceleration());

2.5.10 Set soft limits - mc.softlimits()

The function returns the currently set soft limits. If two parameters are passed, they will be set as new soft

limit values and soft limits checking will be enabled automatically. You can only set soft limits in both

movement directions. To effectively disable checking in one direction, set its limit to a value that is outside

the gripper movement range.

To see if soft limit checking is currently enabled or to enable/disable checking, you may use the Enable Soft

Limits command, see chapter 2.5.11.

 Any value set by this command is lost at power-down.

Syntax

<number>, <number> = mc.softlimits([minus, plus])

Parameters

minus (number), optional

New soft limit in mm, negative movement direction.

Operating AreaRestricted AreaOperating Area

PLUS SOFT LIMIT

MINUS SOFT LIMIT

Figure 4: Soft Limits definition

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 28 of 77

© 2013 Weiss Robotics, all rights reserved

plus (number), optional

New soft limit in mm, positive movement direction.

Return Value

The function returns two parameters (even if soft limit checking is disabled):

1. Currently set limit in mm, negative direction.

2. Currently set limit in mm, positive direction.

Example

-- Set new limits:

printf("Setting negative limit: %.1f mm, positive limit: %.1f mm\n", mc.softlimits(10, 90));

-- Soft limit checking is enabled, now!

end;

2.5.11 Enable soft limits - mc.softlimits_en()

The function returns true, if the soft limits are enabled. It can also be used to enable or disable soft limits

checking by passing true or false as a parameter to this function. The soft limits have to be set separately

using the Set Soft Limits command, see chapter 2.5.10.

 Any value set by this command is lost at power-down.

Syntax

<number> = mc.softlimits_en([enable])

Parameters

enable (boolean), optional

If set to true, soft limits checking is enabled. On false, it is disabled.

Return Value

The function returns the currently set acceleration limit.

Example

if not mc.softlimits_en() then

 -- Currently no soft limits set, so we do it, now:

 printf("Setting negative limit: %.1f mm, positive limit: %.1f mm\n", mc.softlimits(10, 90));

end;

-- Disable soft limits checking again:

mc.softlimits_en(false);

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 29 of 77

© 2013 Weiss Robotics, all rights reserved

2.5.12 Soft limits reached - mc.softlimits_reached()

The function returns true, if one of the soft limits is violated. If soft limit checking is disabled, the function

always returns false.

Syntax

<boolean> = mc.softlimits_reached()

Parameters

none

Return Value

True, if soft limits are violated.

Example

if not mc.softlimits_reached() then

 -- Soft limits not reached:

 printf("Soft limits are not reached\n");

end;

2.5.13 Stop current movement - mc.stop()

Abort the current movement immediately and disable the position controller. The command sets the

E_AXIS_STOPPED system flag. After issuing a stop command, the position controller is disabled, i.e. the

fingers can be moved by an externally applied force that is larger than the currently set grasping force limit.

The position controller will be enabled again by the next positioning command.

Syntax

mc.stop()

Parameters

none

Return Value

none

Example

mc.move(10, 100); -- Move to 10mm, speed=100mm/s, wait, until target position was reached.

mc.move(100, 10, 0); -- Move to 100mm, speed=10mm/s, 0=return immediately

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 30 of 77

© 2013 Weiss Robotics, all rights reserved

sleep(2000);

mc.stop(); -- Stop axis

mc.force(0); -- Set force limit to minimum value, thus enabling a manual movement of the fingers

2.5.14 Are the fingers moving? - mc.busy()

mc.busy() returns true, if the fingers are currently moving. This function is helpful when waiting for the

completion of a movement.

Syntax

<boolean> = mc.busy()

Parameters

none

Return Value

true, if fingers are currently moving or false, if the previously given movement command is already

completed.

Example

mc.move(10, 100);

mc.move(100, 10, 0); -- Move to 100mm, speed=10mm/s, 0=return immediately

while mc.busy() do

 printf("Current opening width: %.2f mm\n", mc. position());

 sleep(300);

end;

printf("Done, opening width: %.2f mm\n", mc.position());

2.5.15 Move fingers - mc.move()

Initiate a pre-positioning movement of the fingers. The function is similar to mc.position(), but accepts

special flags to control the movement. In addition, the function returns an error code as a result of the

movement. The force limit set by mc.force() is used for the movement.

mc.move() uses an acceleration- and jerk-limited speed profile for motion (sin²x profile) as shown below.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 31 of 77

© 2013 Weiss Robotics, all rights reserved

time

speed

time

position

mc.move() raises a runtime error, if at least one of the following conditions is met:

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 mc.move() is intended to preposition the fingers, not to grasp a part. To grasp a part, please use the

grasping.grasp() command instead, since it offers additional features as part detection and monitoring.

 Even with installed force measurement finger (WSG-FMF), prepositioning is always done by approximating

the force from the measured motor current, which is not as accurate as the measurement by the force

measurement finger.

Syntax

<integer> = mc.move(openingwidth, [speed], [flags])

Parameters

openingwidth (number)

Target opening width of the fingers in mm

speed (number), optional

Positioning speed in mm/s. If not set, the speed from the last move command is taken.

flags (integer), optional

Additional flags to control the movement. If this parameter is not given, flags are treated as PC_WAIT.

Bit No. Symbol Description

D31..D3 unused
It is a good practice to set unused flags to 0, since they may
be used in future versions.

D2 PC_STOP_ON_BLOCK
If set, a STOP command is issued, if a mechanical block of
the fingers was detected.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 32 of 77

© 2013 Weiss Robotics, all rights reserved

D1 PC_IGNORE_BLOCK
If set, any mechanical block condition is ignored. In this case,
the function returns with a timeout error, if the target
position was not reached in a pre-calculated time.

D0 PC_WAIT
If set, the function waits, until the target position was
reached or a mechanical block was detected.

Return Value

The function returns an error code describing the movement result. It can be of one of the following values:

E_AXIS_BLOCKED: A block condition occurred while moving (i.e. a part was grasped)

E_TIMEOUT: The target position was not reached in the pre-calculated time.

For further error codes and its meanings, see Appendix A.

Example

mc.move(10, 50); -- Move to 10mm, speed=50mm/s, wait until finished

mc.move(50); -- Move to 50mm, speed is still 50mm/s, wait until finished

mc.move(100, 10, 0); -- Move to 100mm, speed=10mm/s, Flags: not set

while mc.busy() do

 printf("Current opening width: %.2f mm\n", mc.position());

 sleep(300);

end;

printf("Done, opening width: %.2f mm\n", mc.position());

2.5.16 Move fingers using a ramp profile – mc.move_ramp()

Same as mc.move(), but uses a ramp instead of the sin²x profile. This is an acceleration limited speed

profile, where a constant acceleration is used to increase and decrease the finger speed. This profile is

similar to the sin²x-profile, but is not jerk-limited.

time

speed

time

position

Availability

This command is available from firmware version 2.2.0 onwards

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 33 of 77

© 2013 Weiss Robotics, all rights reserved

2.5.17 Move fingers using a rectangular profile – mc.move_rect()

Same as mc.move(), but uses a rectangular motion profile. This function is intended e.g. for clamping

actions, where the fingers don’t have to move but have to apply a preload.

 This speed profile is not acceleration-and not jerk-limited and should be used with care, since it may degrade

the mechanical properties of the gripper when used with high speeds and finger loads.

time

speed

time

position

Availability

This command is available from firmware version 2.2.0 onwards

2.5.18 Stop in case of an error - mc.faststop()

Abort the current movement immediately and disable the position controller. A FAST STOP command

inhibits any further movement, until the user did acknowledge it. You should only use it to react on a

(severe) error condition. Every FAST STOP produces an entry in the system log file. The function can accept

a string parameter that is written into the log file, too, to identify the reason of the FAST STOP.

Syntax

mc.faststop([reason])

Parameters

reason (string)

Text string, describing the reason of the FAST STOP.

Return Value

none

Example

mc.faststop("This is a test");

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 34 of 77

© 2013 Weiss Robotics, all rights reserved

2.5.19 Execute custom trajectory - mc.trajectory()

Execute a trajectory. The trajectory is a sequence of position points that are directly sent to the gripper’s

interpolation engine. Every interpolation cycle (i.e. every 10 ms), a point is taken from the sequence and

used as new target opening width for the fingers. Therefore, the distance between the points determines

the moving speed of the fingers. You have to ensure, that the resulting speed becomes not higher than the

gripper’s maximum speed. The force limit set by mc.force() is applied.

The function will return immediately. Use mc.busy() to wait, until the trajectory execution is finished.

 The gripper does not test for maximum acceleration when executing a custom trajectory. Your application

has to ensure, that speed and acceleration limits of the hardware are not violated.

The function raises a runtime error, if at least one of the following conditions is met:

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 The moving speed exceeds the system limits.

Syntax

<integer>, <integer> = mc.trajectory(trajectory)

Parameters

trajectory (table)

Table containing the position points in mm. The table must only contain numeric values.

Return Value

The function returns two parameters:

1. Error Code. For a list of error codes and their meaning, see Appendix A.

2. Number of processed points

Example

t = {};

len = 200; -- Length of the trajectory is 200 points

-- Move to start position:

mc.move(10, 50);

-- Calculate trajectory points:

pos = mc.position();

for i=1,len do

 t[i] = pos + (math.sin((i - 1) * math.pi / len)^2 * 80);

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 35 of 77

© 2013 Weiss Robotics, all rights reserved

end;

-- Execute trajectory:

error_code, cnt = mc.trajectory(t);

if error_code ~= 0 then

 -- An error occurred:

 printf("Error while executing: %s. %d points processed.\n", error2str(error_code), cnt);

else

 -- No error, wait until movement finished:

 while mc.busy() do

 sleep(50);

 end;

 printf("Trajectory executed successfully\n");

end;

2.5.20 Execute homing sequence - mc.homing()

Execute a homing sequence to reference the gripper. During homing, the fingers are moved to one of the

mechanical end stops. An optional parameter determines, which end stop is used. The function raises a

runtime error, if the gripper is currently in FAST STOP state.

 The best positioning performance will be achieved if homing is done into the direction you require the better

positioning accuracy.

 Depending on the system settings, the force sensors are automatically zeroed during the homing sequence,

too.

 During homing, soft limits are disabled!

 Obstacles in the movement range of the fingers and collision with these during homing may result in a wrong

reference point for the finger position!

Syntax

mc.homing([direction])

Parameters

direction (boolean), optional

If true, the end stop in positive direction will be used. If set to false, the end stop in negative moving

direction will be used. If the parameter is not given, the default end stop is used. You can use the web

interface to setup the default value.

Return Value

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 36 of 77

© 2013 Weiss Robotics, all rights reserved

none

Example

mc.homing(); -- homes in the default direction

sleep(500);

mc.homing(true); -- homes towards the positive end stop

sleep(500);

mc.homing(false); -- homes towards the negative end stop

2.6 Grasping

2.6.1 Grasp a part - grasping.grasp()

Grasp a part with a given nominal width. As optional parameters, you can pass the finger opening width,

traveling speed and the maximum clamping travel.

The function raises a runtime error, if at least one of the following conditions is met:

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 Another movement is currently in progress.

 If a force measurement finger (WSG-FMF) is installed on the gripper, the part is grasped using true force

control. If no force measurement finger is found, the grasping force is approximated by measuring the motor

current. Please note, that this is not as accurate as a direct force measurement.

Syntax

<boolean> = grasping.grasp([width], [speed], [clampingtravel])

Parameters

width (number), optional

Nominal width of the part to be grasped in mm. If not given, the width set by the last call to grasp() is used.

Default value on startup is 10 mm.

speed (number), optional

Grasping speed in mm/s. If not given, the speed set by the last call to grasp() is used.

Default value on startup is 50 mm/s.

clampingtravel (number), optional

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 37 of 77

© 2013 Weiss Robotics, all rights reserved

Clamping travel in mm. After touching a part, the gripper tries to establish the grasping force by moving the

finger further to the part. This value defines a travel limit for this. If the parameter is not given, the

clamping travel set by the last call to grasp() is used.

The default value can be set up using the Web Interface (Settings|Motion Configuration -> Default

Clamping Travel).

Return Value

Returns true, if a part was grasped (i.e. the grasping state is "holding"). If no part was found or an error

occurred, the function returns false.

Example

-- Set a grasping force of 10N:

mc.force(10);

-- Grasp a part with a nominal width of 10mm, a speed of 50mm and with a

-- max. clamping travel is 5mm:

if grasping.grasp(10, 50, 5) then

 printf("Part successfully grasped\n");

else

 printf("No part grasped\n");

end;

2.6.2 Release a part - grasping.release()

Release a part by opening the fingers. By an optional parameter, you can specify the opening speed.

The function raises a runtime error, if at least one of the following conditions is met:

 Gripper is in FAST STOP state.

 Gripper is not referenced.

Syntax

grasping.release([width], [speed])

Parameters

width (number), optional

Opening width in mm to release the part. If not given, the width set by the last call to release() is used.

Default value on startup is the gripper’s stroke – 5mm.

speed (number), optional

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 38 of 77

© 2013 Weiss Robotics, all rights reserved

Opening speed in mm/s. If not given, the speed set by the last call to release() is used.

Default value on startup is 50 mm/s.

Return Value

none

Example

mc.force(10); -- Set Grasping Force to 10N

-- Grasp a part with a nominal width of 10mm and a speed of 50mm. Max. Clamping travel is 5mm:

while not grasping.grasp(10, 50, 5) do

 printf("No part grasped – trying again...\n");

 sleep(500);

 grasping.release(30, 100);

 sleep(2000);

end;

printf("Part successfully grasped\n");

2.6.3 Manually clamp a part - grasping.clamp()

This command can be used to manually clamp a part with a defined grasping force and a defined clamping

travel. Since the speed cannot be set with this command, the gripper’s fingers should already touch the

part. Finger prepositioning can be realized e.g. using a mc.move() command (see chapter 2.5.15). The

clamping travel is the way, the fingers will move towards the part to establish the specified clamping force.

If the fingers can move further than given the clamping travel, the gripper stops and the grasping state is

set to “PART LOST”.

Note that the axis must already be blocked by the part to be grasped. Else, the command will fail.

 Once initiated the clamping of a part manually, you need to stop clamping using the grasping.release() or

grasping.stop_clamping() command (see chapters 2.6.2 and 2.6.4) prior the issueing of another movement

command.

Syntax

grasping.clamp(travel, force)

Availability

This command is available from firmware version 1.2.0 onwards

Parameters

travel (number)

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 39 of 77

© 2013 Weiss Robotics, all rights reserved

Clamping travel width in mm. Measured between the two fingers (i.e. every finger will move at most half

this value). Must be a positive value. The clamping direction will be detected automatically from the block

direction.

force (number)

Clamping force in N.

Return Value

none

Example

force_threshold = 2.0; -- Force threshold in N to detect a part

-- Make sure a WSG-FMF force measurement finger is installed

if finger.type(0) ~= FT_FMF then

 printf("Finger 0 is not a force measurement finger\n");

 return;

end;

mc.homing(); -- Home the gripper

mc.force(30); -- Set force limit (high enough to allow a smooth movement)

mc.move(10, 50, 0); -- Move towards the center to grasp a part

-- Wait, until we touched something:

while (mc.busy() and (finger.data(0) < force_threshold)) do

 sleep(1);

end;

-- Clamp the touched part:

grasping.clamp(-5, 5); -- for the WSG 50, the minimum grasping force is 5N!

printf("Holding\n");

while (mc.busy()) do

 sleep(100);

end;

printf("bye!\n");

-- Stop clamping:

grasping.stop_clamping();

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 40 of 77

© 2013 Weiss Robotics, all rights reserved

2.6.4 Manually stop clamping a part - grasping.stop_clamping()

Stop clamping a part after issuing a grasping.grasp() or grasping.clamp() command. This command simply

stops the force control without opening the fingers. This function will set the grasping state to IDLE.

Syntax

grasping.stop_clamping()

Availability

This command is available from firmware version 1.2.0 onwards

Parameters

none

Return Value

none

Example

mc.force(10); -- Set Grasping Force to 10N

if grasping.grasp(10, 50, 15) then -- Grasp a part with 10 mm width and a force of 15 N

 printf("Part successfully grasped\n");

 sleep(3000);

-- Stop clamping:

grasping.stop_clamping();

end;

2.6.5 Get grasping state - grasping.state()

Returns the current grasping state.

Syntax

<integer> = grasping.state()

Parameters

none

Return Value

Integer value holding the current grasping state. The grasping state can have one of the following values:

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 41 of 77

© 2013 Weiss Robotics, all rights reserved

Value Symbol Description

0 GS_IDLE Gripper is in idle state, i.e. it is not holding a part.

1 GS_GRASPING
The fingers are currently closing to grasp a part. The part has
not been grasped, yet

2 GS_NO_PART
The fingers have been closed, but no part was found at the
specified nominal width. This state will be active until the
next grasp or release command is issued.

3 GS_PART_LOST
A part was grasped but then lost before the fingers have
been opened again. This state will be active until the next
grasp or release command is issued.

4 GS_HOLDING
A part was grasped successfully and is now being hold with
the grasping force.

5 GS_RELEASING
The fingers are currently opening towards the opening
width to release a part.

6 GS_POSITIONING
The fingers are currently pre-positioned using a “move”
command.

7 GS_ERROR An error occurred.

Example

state = grasping.state();

if state == 4 then

 printf(“Holding a part\n”);

else

 printf(“No part!\n”);

end;

2.6.6 Get grasping state as string – grasping.statestring()

Returns the current grasping state as a human-readable string.

Syntax

<string> = grasping.statestring()

Parameters

none

Return Value

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 42 of 77

© 2013 Weiss Robotics, all rights reserved

String describing the current grasping state:

State Return value Description

GS_IDLE “idle” Gripper is in idle state, i.e. it is not holding a part.

GS_GRASPING “grasping”
The fingers are currently closing to grasp a part. The part
has not been grasped, yet

GS_NO_PART “no part”
The fingers have been closed, but no part was found at the
specified nominal width. This state will be active until the
next grasp or release command is issued.

GS_PART_LOST “part lost”
A part was grasped but then lost before the fingers have
been opened again. This state will be active until the next
grasp or release command is issued.

GS_HOLDING “holding”
A part was grasped successfully and is now being hold with
the grasping force.

GS_RELEASING “releasing”
The fingers are currently opening towards the opening
width to release a part.

GS_POSITIONING “positioning”
The fingers are currently pre-positioned using a “move”
command.

GS_ERROR “error” An error occurred.

Example

grasping.grasp(10);

printf("Current grasping state is '%s'\n", grasping.statestring());

2.6.7 Get grasping statistics - grasping.stats()

Get the current grasping statistics.

Syntax

<integer>, <integer>, <integer> = grasping.stats()

Parameters

none

Return Value

The function returns three parameters:

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 43 of 77

© 2013 Weiss Robotics, all rights reserved

1. Number of total grasps.

This counter is incremented whenever a grasp command is executed and returned with an error

code of E_SUCCESS or E_CMD_FAILED

2. Number of grasps where no part was found.

This counter is incremented whenever a grasp commands doesn’t find a part at the given nominal

width, i.e. returns with E_CMD_FAILED.

3. Number of lost parts.

This counter is incremented, if a part was successfully grasped, but removed from in between of

the fingers before a release command was given.

Example

-- do some grasping...

for i=1,10 do

 grasping.grasp();

 sleep(500);

 grasping.release(20);

end;

-- get grasping statistics:

tg, np, lp = grasping.stats();

printf("Current grasping statistics:\n");

printf("\tTotal grasps: %d\n", tg);

printf("\tNo part found: %d\n", np);

printf("\tLost parts: %d\n", lp);

2.6.8 Reset grasping statistics - grasping.resetstats()

Reset the grasping statistics. All counters are set to 0.

Syntax

grasping.resetstats()

Parameters

none

Return Value

none

Example

grasping.resetstats();

tg, np, lp = grasping.stats();

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 44 of 77

© 2013 Weiss Robotics, all rights reserved

printf("Freshly resetted grasping statistics:\n");

printf("\tTotal grasps: %d\n", tg);

printf("\tNo part found: %d\n", np);

printf("\tLost parts: %d\n", lp);

2.7 Command Interface

2.7.1 Interface – cmd.interface()

Get the currently used command interface or to change it. When changing to a connection-based interface,

you may want to ensure that the connection is established by using the cmd.connected() command.

Syntax

<string> = cmd.interface([name])

Availability

This command is available from firmware version 1.3.0 onwards

Parameters

name (string), optional

Name of the interface to be used for commands. Possible string values are: “none”, “RS232”, “CAN”, “TCP”,

“Profibus”. The name evaluation is not case sensitive.

 Depending on the hardware platform you are using, not all of these interfaces might be available.

Return Value

String descriptor for the currently used interface (e.g. “CAN”)

Example

printf("Current Interface is %s\n", cmd.interface());

iface = cmd.interface("can"); -- changing interface to CAN-Bus

printf("Interface changed to %s\n", iface);

2.7.2 Get command statistics – cmd.stats()

Read the command interface statistics. They give you detailed information on the health of your high level

communication with the gripper.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 45 of 77

© 2013 Weiss Robotics, all rights reserved

Syntax

<table> = cmd.stats()

Parameters

none

Return Value

The function returns a table with the following predefined fields:

 rx_count

Number of successfully received data packets.

 checksum_errs

Counts the checksum errors in received data packets

 length_errs

Counts the number of data packets that are too long to be accepted (the gripper accepts payloads

with a length of up to 1024 bytes)

 timeout_errs

Number of timeout errors. A timeout error occurs, if the time between two received bytes of a

packet is larger than 300ms.

 unknown_id_errs

Number of received command packets with an unknown ID.

 tx_count

Number of successfully transmitted packets.

Example

stats = cmd.stats();

printf("Command statistics:\n");

printf("\tReceived Packets: %d\n", stats.rx_count);

printf("\tRx checksum errors: %d\n", stats.checksum_errs);

printf("\tRx length errors: %d\n", stats.length_errs);

printf("\tRx timeout errors: %d\n", stats.timeout_errs);

printf("\tRx unknown IDs: %d\n", stats.unknown_id_errs);

printf("\tSent packets: %d\n", stats.tx_count);

2.7.3 Host connected? – cmd.online()

Returns true, if a host is connected via the specified command interface. This command will only be useful

on TCP and Profibus connections. On communication via CAN-Bus and RS232, the host is assumed to be

always connected.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 46 of 77

© 2013 Weiss Robotics, all rights reserved

Syntax

<Boolean> = cmd.online()

Parameters

none

Return Value

The function returns true, if a host is connected or false, if not. For RS232 and CAN-Bus, the function

returns always true.

Example

if cmd.online() then

 printf("Currently online!\n");

 -- Send a message:

 cmd.register(0xBB);

 cmd.send(0xBB, "This is a test!");

else

 printf("offline\n");

end;

2.7.4 Register a packet ID – cmd.register()

Register a custom packet ID to send and receive data packets via the command interface. The function

raises a runtime error, if you try to register an ID that is already used, e.g. by the built-in command set.

Syntax

cmd.register(id)

Parameters

id (integer)

Packet ID to be registered. Valid ID values are from 0 to 255.

Return Value

none

Example

id = 0xBB;

cmd.register(id); -- Register ID BBh

cmd.send(id, "This is a test!"); -- Send a message to the connected host via this Id

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 47 of 77

© 2013 Weiss Robotics, all rights reserved

2.7.5 Unregister a packet ID – cmd.unregister()

Unregister a previously registered custom packet ID.

 You cannot unregister an ID of a built-in command.

Syntax

cmd.unregister(id)

Parameters

id (integer)

Packet ID to be unregistered. Valid ID values are from 0 to 255.

Return Value

none

Example

id = 0xBB;

cmd.register(id); -- Register ID BBh

cmd.send(id, "This is a test!"); -- Send a message to the connected host via this Id

cmd.unregister(id); -- Un-register ID BBh

cmd.send(id, "I will produce an error!"); -- This line will raise a runtime error!

2.7.6 Send a data packet – cmd.send()

Send a data packet using a custom ID. The ID that is used for sending the packet has to be registered before

using cmd.register() (see chapter 2.7.4). The payload of the data packet is passed as a variable argument list

that can contain integer types, Boolean types and string types and well as tables containing these types.

The following conversion rules will be applied:

 Integer and Number types are treated as single bytes, i.e. have a valid range of 0 to 255. If this

range is exceeded, the function raises a runtime error. To send a number value, use the ntob()

conversion function (see chapter 2.1.5).

 Boolean values are converted into a single byte set to 0 and 1, respectively.

 String values are converted into a sequence of bytes (without a trailing zero).

 Tables can contain the above types and can be nested at a total of up to 5 levels.

 The maximum length for a custom command is 65536 bytes.

 Trying to send a packet while the connection is offline will produce a runtime error.

Syntax

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 48 of 77

© 2013 Weiss Robotics, all rights reserved

cmd.send(id, [...])

Parameters

id (integer)

Packet ID. Valid ID values are from 0 to 255.

..., optional

Variable argument list with one or more integer parameters (range: 0 to 255) forming the payload of the

data packet. See the description above.

Return Value

none

Example

id = 0xBB;

cmd.register(id); -- Register ID BBh

if cmd.online() then

-- String payload:

cmd.send(id, "This is a test!");

-- Number as payload:

cmd.send(id, ntob(1.234));

-- Payload combining various types:

cmd.send(id, 0x54, 0x68, "is is a test!", {1, 2, 3}, {4, 5, ntob(6.7), { "Nested Table" }});

-- Payload with nested tables:

cmd.send(id, {1, 2, { 3, 4, { 5, 6, { 7, 8, { 9, 10 }}}}});

else

 printf("Sorry, currently offline!\n");

end;

2.7.7 Get number of available packets – cmd.available()

Returns the number of received data packets waiting in the input buffer for being read.

 If the connection is currently offline, cmd.available() returns always 0.

Syntax

<integer> = cmd.available()

Parameters

none

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 49 of 77

© 2013 Weiss Robotics, all rights reserved

Return Value

The function returns the number of data packets waiting in the reception buffer.

Example

cmd.register(0xBB); -- Register ID BBh

cmd.register(0xBC); -- Register ID BCh

cmd.register(0xBD); -- Register ID BDh

while cmd.online() do

 if cmd.available() > 0 then

 id, payload = cmd.read();

 printf("Data packet received: ID=%d, payload length=%d\n", id, #payload);

 end;

end;

2.7.8 Read a received data packet – cmd.read()

To receive data packets with a certain ID, you have first to register this ID by calling cmd.register(), see

chapter 2.7.4. You can only receive data packets which IDs are not used by the integrated command set.

cmd.read() blocks, until a data packet was received. You can poll the state of the receive buffer by using

cmd.available(), see chapter 2.7.7.

 The payload length for received messages is limited to 1024.

Syntax

<integer>, <table> = cmd.read()

Parameters

none

Return Value

The function returns two parameters:

1. ID of the received data packet (range: 0 to 255)

2. Table containing the payload as consecutive bytes. If the received packet has no payload, the

function returns an empty table.

Example

-- This example implements a custom command (ID=0xBB) to set the GPIO’s output pins

cmd.register(0xBB); -- Register ID BBh

while true do

 if cmd.online() then

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 50 of 77

© 2013 Weiss Robotics, all rights reserved

 id, payload = cmd.read();

 if #payload == 1 then

 -- Payload length is okay:

 printf("Setting outputs to %d\n", payload[1]);

 gpio.pins(payload[1]);

 cmd.send(id, etob(E_SUCCESS)); -- Send E_SUCCESS as return value

 else

 -- Error: Payload length mismatch:

 printf("Payload length mismatch (%d)\n", #payload);

 cmd.send(id, 15, etob(E_CMD_FORMAT_ERROR)); -- Send E_CMD_FORMAT_ERROR as return value

 end;

 else

 -- Interface is offline...

 sleep(50);

 end;

end;

2.8 Finger control

The Finger Module is used to control and communicate with active fingers connected to the sensor port of

the WSG Gripper’s base jaws. In contrast to the Lua standard, finger numbering starts at 0, i.e. WSG

Grippers with two fingers uses the indices 0 and 1.

2.8.1 Get number of fingers – finger.count()

Get the number of available fingers. For the WSG, this is always 2.

Syntax

<integer> = finger.count()

Parameters

none

Return Value

Number of fingers.

Example

printf("This gripper has %d fingers\n", finger.count());

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 51 of 77

© 2013 Weiss Robotics, all rights reserved

2.8.2 Get finger type – finger.type()

Get the type of the finger with the given index. There are three finger types supported:

 “generic”

This finger type has no predefined function and can be fully controlled by the script.

 “fmf”

Force Measurement Finger. Used by the gripper to control the grasping force. Accessing the finger

via finger.param() and finger.data().

 “dsa”

Tactile Sensing Finger. Accessing the finger via finger.param() and finger.data().

 The finger types are registered as global variables on startup and can be directly used from inside your script,

please see the example below.

Syntax

<string> = finger.type(index)

Availability

Syntax changed in firmware version 2.3.0 onwards

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Returns the finger type as string.

Example

for i=0,finger.count()-1 do

 t = finger.type(i);

 printf("Finger %d is a %s finger\n", i, t);

end;

2.8.3 Get or set a finger parameter – finger.param()

Predefined finger types may have one or more finger-specific parameters that can be set or read using this

command.

 For the finger-specific parameters please refer to the finger’s User Manual.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 52 of 77

© 2013 Weiss Robotics, all rights reserved

Syntax

<var> = finger.param(index, descr, [value])

Availability

This command is available from firmware version 2.3.0 onwards

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

descr (string)

Descriptor for the parameter. See the list of available parameters in the finger’s User Manual.

value (type depending on the parameter), optional

If given, the parameter is changed to this value. The variable type depends on the parameter and is listed in

the finger’s User Manual.

Return Value

Returns the current value of the parameter. The type depends on the parameter and is listed in the finger’s

User Manual.

Example

-- This example prints some information about the connected

-- Tactile Sensing finger(s)

for i=0,finger.count()-1 do

 if finger.type(i) == "dsa" then

 -- This is a tactile sensing finger

 controllerType = finger.param(i, "dsatype");

 version = finger.param(i, "version");

 cellsX = finger.param(i, "cells_x");

 cellsY = finger.param(i, "cells_y");

 width = finger.param(i, "width");

 height = finger.param(i, "height");

 printf("Transducer type: %s (software V%s)\n", controllerType, version);

 printf("Matrix has %d x %d sensor cells ", cellsX, cellsY);

 printf("and has an active area of %.1f x %.1f mm\n", width, height);

 end;

end;

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 53 of 77

© 2013 Weiss Robotics, all rights reserved

2.8.4 Get the current finger data – finger.data()

Read the current data from a predefined finger. It returns a single value whose format depends on the

finger type. This command is only available for fingers of predefined type.

The command will raise a runtime error, if

 you try to access a generic finger

 you try to access an unpowered finger or a finger with a communication error indicated in the

finger flags.

 For the finger-specific parameters please refer to the finger’s User Manual.

Syntax

<var> = finger.data(index)

Availability

This command is available from firmware version 2.3.0 onwards

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Returns the current data from the selected finger. Only one value is returned, but its type depends on the

finger type. The returned data is described in the finger’s User Manual.

Example

-- This example tries to read the finger data

-- and print it to the console output

-- Determines the data type and print it:

function printData(m)

 local x, y;

 if type(m) == "table" then

 -- This is a WSG-DSA frame:

 printf("Timestamp: %d\n", m.timestamp);

 -- data is a matrix:

 for y=1,#m.frame[1] do

 for x=1,#m.frame do

 printf("%4d ", m.frame[x][y]);

 end;

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 54 of 77

© 2013 Weiss Robotics, all rights reserved

 printf("\n");

 end;

 else

 -- data is a scalar value (e.g. WSG-FMF):

 printf("%.1f\n", m);

 end;

end;

-- Read data from all fingers that support it:

for i=0,1 do

 printf("Finger %d (%s)\n", i, finger.type(i));

 res, data = pcall(finger.data, i);

 if res == true then

 printData(data);

 printf("\n");

 else

 printf("Finger doesn't provide any data\n");

 end;

end;

2.8.5 Digital sensor interface – finger.interface()

Get or configure the digital sensor interface inside the gripper’s base jaw that is used to communicate with

a custom finger electronics. This command allows to set up the communication type (SPI or UART), as well

as other interface settings like bit rate, frame size, clocking polarity and phasing (SPI).

The current interface settings can be obtained by using this function without any of the optional

parameters (e.g. finger.interface(0) for finger 0).

 Setting the interface configuration is only possible for generic fingers.

Syntax

<string> = finger.interface(index, [ifacetype], [bitrate], [framesize], [CPOL], [CPHA])

Availability

Configuring the interface is available from firmware version 2.0.0 onwards

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 55 of 77

© 2013 Weiss Robotics, all rights reserved

ifacetype (string), optional*

String describing the new interface to be used. Valid descriptors are

• “spi” for SPI interface

• “uart” for UART interface

• “none” to disable the interface.

bitrate (integer), optional*

Bit rate of the interface in Bits per second.

For SPI connections: available bitrates can be determined using the following formula (n=0..255):

 If a bit rate is set that does not satisfy the formula above, the device uses the nearest possible bit

rate. To determine the actual bit rate, you may evaluate the return value of the function.

For UART connections: only the following bitrates are allowed:

• 1.200 bit/s

• 2.400 bit/s

• 4.800 bit/s

• 9.600 bit/s

• 19.200 bit/s

• 38.400 bit/s

• 57.600 bit/s

• 115.200 bit/s

• 230.400 bit/s

• 460.800 bit/s

 Setting other bit rates as those listed above will produce a runtime error.

framesize (integer), optional*

Only for SPI communication: Size of the data frame, can be 4 to 16 bits long, see

Figure 5.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 56 of 77

© 2013 Weiss Robotics, all rights reserved

cpol (boolean), optional*

Only for SPI communication: Clock polarity, see Figure 6 for explanation.

cpha (boolean), optional*

Only for SPI communication: Clock phase, see Figure 6 for explanation.

*) To configure the sensor interface properly, the following parameters are required, depending on the

selected interface type:

Interface Type: SPI UART none

index required required required

ifacetype required required required

bitrate required required -

framesize required - -

Figure 5: SPI Frame length

 cpol = 0, cpha = 0 cpol = 1, cpha = 0

 cpol = 0, cpha = 1 cpol = 1, cpha = 1

Figure 6: SPI Frame with available clock and phase settings

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 57 of 77

© 2013 Weiss Robotics, all rights reserved

cpol required - -

cpha required - -

Return Value

The function returns two parameters:

1. Interface used for communication. Can be of either

• “none” - No interface is used.

• “uart” - The UART interface is used.

• “spi” - The SPI interface is used.

2. Effective bitrate in bits per second (for interface “none”, 0 is returned).

Example

for i=0,finger.count()-1 do

 iface, speed = finger.interface(i);

 printf("Finger %d interface: %s, speed: %d bps\n", i, iface, speed);

end;

-- Setting the interface of Finger 0 to UART mode with 115200 baud:

if (finger.type(0) == "generic") then

 finger.interface(0, "uart", 115200);

end;

-- Setting the interface of Finger 1 to SPI mode with 8 MBit/s, 8 bits per frame and CPOL=CPHA=0:

if (finger.type(1) == "generic") then

 finger.interface(1, "spi", 8000000, 8, 0, 0);

end;

2.8.6 Get finger state – finger.state()

Get the state of the finger with the given index. For a description of the Finger State Flags, see Appendix C

(chapter 5).

 If you want to read the finger state flags as a table, use finger.flags() instead (see Chapter 2.8.7)

Syntax

<integer> = finger.state(index [, mask])

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 58 of 77

© 2013 Weiss Robotics, all rights reserved

mask (integer), optional

If passed, only the finger state flags that are masked (i.e. set to HIGH) will be returned.

Return Value

Returns the currently set finger state flags.

Example

for i=0,finger.count()-1 do

 if finger.state(i, 0x0001) then -- Test for the FINGER ENABLED flag

 printf("Finger %d is enabled! (state: %.4xh)\n", i, finger.state(i));

 else

 printf("Finger %d is disabled!\n", i);

 end;

end;

2.8.7 Get the finger state as table - finger.flags()

Get the currently set Finger State Flags as an associative table. The flags can be easily accessed by using

their symbolic name, see the example below. Chapter 5 lists the symbolic names of the system flags.

 If you want to read the system state flags as an integer value, use finger.state() instead (see Chapter Get

finger state – finger.state()2.8.6)

Syntax

<table> = finger.flags(index)

Availability

This command is available from firmware version 2.4.0 onwards

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Current finger state flags as an associative table.

Example

flags = finger.flags(0); -- returns the state flags of finger 0.

if flags.FF_POWER_ON == true then

 print(" Finger 0 is switched on!");

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 59 of 77

© 2013 Weiss Robotics, all rights reserved

else

 print(" Finger 0 is switched off!");

end;

2.8.8 Control finger power – finger.power()

Enable or disable the power supply of the given finger. You can only control the power of generic fingers

(see chapter 2.8.2), power control for predefined finger types is not possible.

This command will raise a runtime error, if

 you try to change the power of a finger whose type is different from “generic”

 you try to enable power of a short-circuited finger

 You may check the current power state of the finger by evaluating its state flags via finger.state(), see

chapter 2.8.2.

Syntax

finger.power(index, enabled)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

enabled (integer)

Set to true to enable power for the resp. finger or to false to disable power.

Return Value

none

Example

if finger.type(0) == "generic" then

 printf("Toggle power of finger 0...\n");

 for i=1,5 do

 printf("Step %d of 5\n", i);

 finger.power(0, true); -- enable power of finger 0

 sleep(2000);

 finger.power(0, false); -- disable power of finger 0

 sleep(2000);

 end;

 printf("done!\n");

else

 printf("Not a generic finger, cannot change its power state.\n");

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 60 of 77

© 2013 Weiss Robotics, all rights reserved

end;

2.8.9 Get analog voltage – finger.analog()

Get the analog voltage from the finger interface with the given index. The voltage signal is between 0 and

2.5 V. This command is only available for generic fingers.

Syntax

<number> = finger.analog(index)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Returns the voltage at the analog input pin of the selected finger interface in Volts.

Example

while true do

 printf("Analog input: %.2fV\n", finger.analog(0)); -- Get the analog input voltage of finger 0

 sleep(500);

end;

2.8.10 Write data to finger – finger.write()

Write the given data to the indexed finger. Direct communication with the finger is only possible for generic

fingers.

The data to be written is passed as a variable argument list that can contain integer types, Boolean types

and string types as well as tables containing these types.

The following conversion rules will be applied:

 Integer and Number types are treated as single bytes, i.e. have a valid range of 0 to 255. If this

range is exceeded, the function raises a runtime error. To send a number value, use the ntob()

conversion function (see chapter 2.1.5).

 Boolean values are converted into a single byte set to 0 and 1, respectively.

 String values are converted into a sequence of bytes (without a trailing zero).

 Tables can contain the above types and can be nested at a total of up to 5 levels.

This command will raise a runtime error, if

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 61 of 77

© 2013 Weiss Robotics, all rights reserved

 you try to write to a finger with predefined finger type

 you try to write to an unpowered finger

 the finger is not properly configured or configuration cannot be read

 If SPI is used for communication with the finger, finger.write() uses 16-bit frames for data exchange, even if

the frame size is configured to 8 or less bits. This means that two consecutive bytes are used for each frame,

e.g. to write 4 frames (0x0001, 0x0002, 0x0003, 0xF004) from finger 0 via SPI, use

finger.write(0,{1,0,2,0,3,0,4,0xF0}).

 If SPI is used for communication, the received data that was clocked in while transmitting is discarded. Use

the finger.spi() command, if you require to receive and transmit simultaneously.

Syntax

finger.write(index, ...)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

...

Variable arguments list containing the data to be sent. See description above.

Return Value

none

Example

if finger.type(0) == "generic" then

 for i=1,10 do

 finger.write(0, "Hello Finger, this is a test: "..tostring(i).."\n");

 end;

else

 printf("Cannot send data to a non-generic finger.\n");

end;

2.8.11 Bytes available – finger.bytes_available()

Returns the number of bytes waiting in the input buffer of the given finger. For SPI communication, the

function always returns 2, since SPI transfers aren’t internally buffered.

The function returns 0 for non-generic fingers or if the finger is unpowered or not properly configured.

Syntax

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 62 of 77

© 2013 Weiss Robotics, all rights reserved

<integer> = finger.bytes_available(index)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Number of bytes waiting in the input buffer.

Example

if finger.type(0) == "generic" then

 printf("%d bytes available\n", finger.bytes_available(0));

end;

2.8.12 Read data from finger – finger.read()

Read data from the finger with the given index. Direct communication is only possible for generic fingers.

finger.read() returns the data in form of a table containing the received bytes. You can optionally specify

the number of bytes to be read. The function blocks in case there is not enough data inside the receive

buffer. If you don’t specify the number of bytes to be read, the function returns all available data or an

empty table, if there is currently no data available.

This command will raise a runtime error, if

 you try to read from a finger whose type is different from “generic”

 you try to read from an unpowered finger

 the finger is not properly configured or configuration cannot be read

 If SPI is used for communication with the finger, finger.read() uses 16-bit frames for data exchange, even if

the frame size is configured to 8 or less bits. This means that each frame is returned as two consecutive

bytes, e.g. to read 4 frames from finger 0 via SPI, use rxdata = finger.read(0, 8). The result will be a table

containing 8 bytes that represent the 4 frames.

 If SPI is used for communication, the gripper clocks out zeros to read the data. Use the finger.spi() command,

if you require to receive and transmit simultaneously.

Syntax

<table> = finger.read(index, [count])

Parameters

index (integer)

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 63 of 77

© 2013 Weiss Robotics, all rights reserved

Finger index. Range is 0..finger.count()-1.

count (integer), optional

Number of bytes to be read. If you try to read more bytes than currently available, the function will not

return, until the given number of bytes is available.

Return Value

Table containing the received data.

Example

if finger.type(0) == "generic" then

 while true do

 data = finger.read(0); -- read data from finger 0

 if #data > 0 then

 for i=1,#data do -- print out all data, assuming it is ASCII coded.

 printf("%c", data[i]);

 end;

 end;

 end;

else

 printf("Cannot read data from a non-generic finger.\n");

end;

2.8.13 Synchronous data transfer via SPI – finger.spi()

Exchange data with the finger with the given index. Direct communication is only possible with generic

fingers.

 This command can only be used, if the finger is configured to use the SPI interface and is intended as an

alternative to finger.read() and finger.write() supporting true bidirectional data transfers.

The data to be written is passed as a variable argument list that can contain integer types, Boolean types

and string types as well as tables containing these types. The length of the given table defines the number

of frame transfers to be made.

The following conversion rules will be applied:

 Integer and Number types are treated as single frame, i.e. have a valid range of 0 to 65535 for a

frame width of 16 bits. If this range is exceeded, the function raises a runtime error.

 Boolean values are converted into a single frame whose content is set to 0 or 1, respectively.

 String values are converted into a sequence of frames (without a trailing zero), one frame each

character.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 64 of 77

© 2013 Weiss Robotics, all rights reserved

 Tables can contain the above types and can be nested at a total of up to 5 levels.

The simultaneously read data is returned as a table containing the single frames. Received data is assumed

to be unsigned, so each value is in the range of 0 to 65535.

This command will raise a runtime error, if

 you try to communicate with a non-generic finger

 you try to communicate with an unpowered finger

 the finger is not properly configured or configuration cannot be read

Syntax

<table> = finger.spi(index, data)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

data (table)

Frame data to be sent. See conversion rules above.

Return Value

Table containing the received frame data. It will be of the same length as the given transmit data table.

Example

if finger.type(1) == "generic" then

 while true do

 sleep(1000);

 rxdata = finger.spi(1, 0x1234); -- SPI transfer with finger 0

 for i=1,#rxdata do -- print out the received data

 printf("%.4Xh ", rxdata[i]);

 end;

 printf("\n");

 end;

else

 printf("Cannot read data from a non-generic finger.\n");

end;

2.8.14 Finger configuration memory – finger.config()

If the finger has a built-in configuration memory, this function allows you to read or write its content.

 Accessing the finger configuration is only possible for generic fingers.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 65 of 77

© 2013 Weiss Robotics, all rights reserved

The finger configuration can be stored as value pairs in the form of “descriptor” = “value”.

finger.config(index) will always return an associative table containing the configuration value pairs. If you

want to store an updated configuration set to the finger’s memory persistently, you may pass an optional

table to the function containing the value pairs.

 Neither values nor descriptors must contain Line Feeds (0Ah) or “=” characters, as these are used as internal

storage formatters.

 You should never set the descriptor key “type” manually to something different than FT_GERERIC, since this

may render the Finger unusable !!!

Syntax

<table> = finger.config(index, data)

Availability

This command is available from firmware version 2.0.0 onwards

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

data (table)

New configuration data to be stored. You should pass an associative table using string descriptor keys (see

the example below).

Return Value

Table containing the current finger configuration.

Example

if finger.type(1) == "generic" then

 -- read the configuration of Finger 1:

 cfg = finger.config(1);

 -- Print the current finger configuration:

 for key in pairs(cfg) do

 print(key, cfg[key]);

 end;

 -- Add a custom value pair to the configuration:

 cfg["key"] = 1.05;

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 66 of 77

© 2013 Weiss Robotics, all rights reserved

 -- Store the updated configuration to the finger’s nonvolatile memory:

 finger.config(1, cfg);

else

 printf("Cannot read the configuration data from a non-generic finger.\n");

end;

2.9 Profibus

This module extends the scripting environment with Profibus functionality and virtual I/O terminals that

can be used to interact with the connected PLC.

 The Profibus Scripting Extension is only supported by devices that have a built-in Profibus interface

Virtual I/O over Profibus

In addition to the gripping command interface, the WSG Grippers have 8 user input flags (IF1 to IF8) and

eight user output flags (OF1 to OF8) that can be independently controlled. From the PLC side, they can be

accessed as a normal input or output respectively, thus enabling an effective data exchange between a PLC

program on the one side and the user script running on the WSG Gripper on the other.

 for further details about the WSG’s Profibus Interface, please see the “WSG Profibus Interface Manual”

2.9.1 Get connection state – profibus.online()

Return the state of the Profibus connection.

Syntax

<online> = profibus.online()

Availability

This command is available from firmware version 2.2.0 onwards

Parameters

no parameters expected

Return Value

true, if the device is online.

Example

while profibus.online() do

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 67 of 77

© 2013 Weiss Robotics, all rights reserved

 -- Do something here...

end;

2.9.2 Get bitrate – profibus.bitrate()

Return the currently used bit rate on the Profibus network.

Syntax

<bitrate> = profibus.bitrate()

Availability

This command is available from firmware version 2.2.0 onwards

Parameters

no parameters expected

Return Value

Bitrate in bits/s.

Example

if profibus.online() then

 br = profibus.bitrate();

 printf("Bitrate: %d bit/s\n", br);

else

 printf("Profibus is offline\n");

end;

2.9.3 Access an I/O flag – profibus.flag()

Read the state of the user input flag (IF) with the given index and optionally change the value of the

corresponding user output flag (OF). This command can be used in conjunction with the PLC program to

implement custom behavior on the device using scripts.

Syntax

<value> = profibus.flag(index, [setvalue])

Availability

This command is available from firmware version 2.2.0 onwards

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 68 of 77

© 2013 Weiss Robotics, all rights reserved

Parameters

index (integer)

User Flag index. Range is 1..8.

setvalue (bool), optional

New value for the indexed output user flag (OF).

Return Value

Current value of the input user flag (IF) as integer (i.e. ‘0’ or ‘1’).

Example

-- Movement speed is determined by the state of Input Flag 1

-- State of Output Flags 1 and 2 are toggled according to the position reached

POS_A = 10;

POS_B = 60;

position = POS_A;

profibus.fclear(0xFF); -- reset Output User Flags

while profibus.online() do

 -- Determine speed from the state of Input User Flag 1:

 if profibus.flag(1) == 0 then

 speed = 50.0;

 else

 speed = 10.0;

 end;

 -- move and wait while busy:

 mc.move(position, speed, 1);

 -- Toggle target position:

 if position == POS_A then

 profibus.flag(1, 0);

 profibus.flag(2, 1); -- set Output User Flag 2 as ack to the PLC

 position = POS_B;

 else

 profibus.flag(1, 1); -- set Output User Flag 1 as ack to the PLC

 profibus.flag(2, 0);

 position = POS_A;

 end;

end;

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 69 of 77

© 2013 Weiss Robotics, all rights reserved

2.9.4 Write/read user flags – profibus.flags()

Read the state of all user input flags (IF) and optionally change the value of all user output flag (OF). This

command can be used in conjunction with the PLC program to implement custom behavior on the device

using scripts.

 if you want to read the state of a single flag or manipulate it, you can use the profibus.flag() command

instead.

Syntax

<value> = profibus.flags([setvalue])

Availability

This command is available from firmware version 2.2.0 onwards

Parameters

setvalue (integer), optional

New value for the output user flags (OF) as a bit field value, i.e. bit 0 of setvalue corresponds to OF1, bit 1

to OF2, …

Return Value

Current value of the input user flags (IF) as a bit field value (i.e. bit 0 has state of IF1, bit 1 of IF2, …).

Example

-- Simple counter example. The counting value is written to the Profibus Output Flags (OF)

count = 0;

while profibus.online() do

 count = count + 1;

 if count == 256 then

 count = 1;

 end;

 profibus.flags(count); -- write counting value to the Profibus Output Flags

 sleep(500);

end;

2.9.5 Set one or more output flags – profibus.fset()

Set the state of one or more user output flags (OF) to ‘1’.

Syntax

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 70 of 77

© 2013 Weiss Robotics, all rights reserved

profibus.fset(mask)

Availability

This command is available from firmware version 2.2.0 onwards

Parameters

mask (integer)

A bit field value for the output user flags (OF) where bit 0 corresponds to OF1, bit 1 to OF2, and so on.

A ‘1’ in the bit field will set the corresponding OF while a ‘0’ has no effect.

Return Value

no return value.

Example

-- Set OF1, OF5 and OF7 (mask is 01010001b or 0x51)

if profibus.online() then

 profibus.fset(0x51);

end;

2.9.6 Clear one or more output Flags – profibus.fclear()

Set the state of one or more user output flags (OF) to ‘0’.

Syntax

profibus.fclear(mask)

Availability

This command is available from firmware version 2.2.0 onwards

Parameters

mask (integer)

A bit field value for the output user flags (OF) where bit 0 corresponds to OF1, bit 1 to OF2, and so on.

A ‘1’ in the bit field will clear the corresponding OF while a ‘0’ has no effect.

Return Value

no return value.

Example

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 71 of 77

© 2013 Weiss Robotics, all rights reserved

-- Clear OF1, OF5 and OF7 (mask is 01010001b or 0x51)

if profibus.online() then

 profibus.fclear(0x51);

end;

2.9.7 Wait for activity – profibus.waitact()

Wait for a state transition on one or more user input flags (IF). An optional timeout can be used. Use this

function, if you have to wait on a change of certain input flags.

Syntax

<integer>, <integer> = profibus.waitact(mask, [timeout])

Availability

This command is available from firmware version 2.2.0 onwards

Parameters

mask (integer)

A bit field value for the input user flags (IF) that shall be monitored, where bit 0 corresponds to OF1, bit 1 to

OF2, and so on. Write a ‘0’ in the bit field at the flag position that has not to be monitored.

timeout (integer), optional

An optional timeout in milliseconds. If no activity on the selected user flags occurs after this time, the

function returns with activity = 0.

Return Value

Two parameters are returned:

1. Parameter: “activity” (integer) is a bit field with ‘1’s at the position of the changed input flags.

2. Parameter: “state” (integer) is the input flag state after the change. This can be used e.g. to detect

the transition direction, i.e. raising or falling edge.

Example

-- Wait for Activity on IF1:

activity, state = profibus.waitact(0x01);

if activity ~= 0 then

 printf("Activity detected!\n");

 if state > 0 then

 printf("Raising edge\n");

 else printf("Falling edge\n");

end;

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 72 of 77

© 2013 Weiss Robotics, all rights reserved

3 Appendix A: Error Codes

Error code Symbol name Description

0 E_SUCCESS No error occurred, operation was successful

1 E_NOT_AVAILABLE Function or data is not available

2 E_NO_SENSOR No measurement converter is connected

3 E_NOT_INITIALIZED Device was not initialized

4 E_ALREADY_RUNNING The data acquisition is already running

5 E_FEATURE_NOT_SUPPORTED The requested feature is currently not available

6 E_INCONSISTENT_DATA One or more parameters are inconsistent

7 E_TIMEOUT Timeout error

8 E_READ_ERROR Error while reading data

9 E_WRITE_ERROR Error while writing data

10 E_INSUFFICIENT_RESOURCES No more memory available

11 E_CHECKSUM_ERROR Checksum error

12 E_NO_PARAM_EXPECTED A Parameter was given, but none expected

13 E_NOT_ENOUGH_PARAMS
Not enough parameters for executing the
command

14 E_CMD_UNKNOWN Unknown command

15 E_CMD_FORMAT_ERROR Command format error

16 E_ACCESS_DENIED Access denied

17 E_ALREADY_OPEN Interface is already open

18 E_CMD_FAILED Error while executing a command

19 E_CMD_ABORTED Command execution was aborted by the user

20 E_INVALID_HANDLE Invalid handle

21 E_ NOT_FOUND Device or file not found

22 E_ NOT_OPEN Device or file not open

23 E_IO_ERROR Input/Output Error

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 73 of 77

© 2013 Weiss Robotics, all rights reserved

24 E_INVALID_PARAMETER Wrong parameter

25 E_INDEX_OUT_OF_BOUNDS Index out of bounds

26 E_CMD_PENDING
No error, but the command was not completed,
yet. Another return message will follow including
an error code, if the function was completed.

27 E_OVERRUN Data overrun

28 RANGE_ERROR Range error

29 E_AXIS_BLOCKED Axis blocked

30 E_FILE_EXISTS File already exists

4 Appendix B: System State Flags

The System State Flags are arranged as a 32-bit wide integer value that can be read using the function

system.state() (see chapter 2.3.1). Each bit has a special meaning listed below.

Bit No. Flag Name Description

D31..21 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D20 SF_SCRIPT_FAILURE

Script Error.

An error occurred while executing a script and the script
has been aborted. This flag is reset whenever a script is
started.

D19 SF_SCRIPT_RUNNING

A script is currently running.

The flag is reset if the script either terminated normally, a
script error occurred or the script has been terminated
manually by the user.

D18 SF_CMD_FAILURE
Command Error.

The last command returned an error.

D17 SF_FINGER_FAULT

Finger Fault.

The status of at least one finger is different from
“operating” and “not connected”. Please check the finger
flags for a more detailed error description.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 74 of 77

© 2013 Weiss Robotics, all rights reserved

D16 SF_CURR_FAULT

Engine Current Error.

The engine has reached its maximum thermal power
consumption. The flag will be reset automatically as
soon as the engine has recovered. Then the
corresponding Fast Stop can be committed.

D15 SF_POWER_FAULT
Power Error.

The power supply is outside the valid range.

D14 SF_TEMP_FAULT

Temperature Error.

The gripper hardware has reached a critical temperature
level. All motion related commands are disabled until the
temperature falls below the critical level.

D13 SF_TEMP_WARNING

Temperature Warning.

The gripper hardware will soon reach a critical
temperature level.

D12 SF_FAST_STOP

Fast Stop.

The gripper has been stopped due to an error condition.
You have to acknowledge the error in order to reset this
flag and to re-enable motion related commands.

D11..10 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D9 SF_FORCECNTL_MODE

Force Control Mode.

True Force Control is currently enabled by using the
installed Force Measurement Finger (WSG-FMF). If this
flag is not set, the grasping force is controlled by
approximation based on the motor current.

D8 reserved
This bit is currently unused but may be used in a future
release of the WSG firmware.

D7 SF_TARGET_POS_REACHED

Target position reached.

Set if the target position was reached. This flag is not
synchronized with SF_MOVING, so it is possible that
there is a delay between SF_MOVING being reset and
SF_TARGET_POS becoming active.

D6 SF_AXIS_STOPPED

Axis stopped.

A previous motion command was aborted using the stop
command. This flag is reset on the next motion
command.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 75 of 77

© 2013 Weiss Robotics, all rights reserved

D5 SF_SOFT_LIMIT_PLUS

Positive direction soft limit reached.

The fingers reached the defined soft limit in positive
moving direction. A further movement into this direction
is not allowed anymore. This flag is cleared, if the fingers
have been moved away from the soft limit position.

D4 SF_SOFT_LIMIT_MINUS

Negative direction soft limit reached.

The fingers reached the defined soft limit in negative
moving direction. A further movement into this direction
is not allowed anymore. This flag is cleared, if the fingers
have been moved away from the soft limit position.

D3 SF_BLOCKED_PLUS

Axis is blocked in positive moving direction.

Set if the axis is blocked in positive moving direction. The
flag is reset if either the blocking condition has been
resolved or a stop command has been issued.

D2 SF_BLOCKED_MINUS

Axis is blocked in negative moving direction.

Set if the axis is blocked in negative moving direction. The
flag is reset if either the blocking condition has been
resolved or a stop command has been issued.

D1 SF_MOVING

The Fingers are currently moving.

This flag is set whenever a movement is started (e.g.
MOVE command) and reset automatically if the
movement stops.

D0 SF_REFERENCED

Fingers Referenced.

If set, the gripper is referenced and accepts movement
commands.

5 Appendix C: Finger State Flags

The finger state flags are arranged as a 16-bit wide integer value that can be read using the function

finger.state() (see chapter 2.8.1). Each bit has a special meaning listed below.

Bit No. Flag Name Description

D15..10 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 76 of 77

© 2013 Weiss Robotics, all rights reserved

D9 FF_COMM_FAULT
Communication Fault.

A communication error occurred during runtime.

D8 FF_POWER_FAULT

Power Fault.

An over-current condition was detected at the resp.
finger.

D7..2 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D1 FF_CONFIG_AVAIL

Configuration available.

If the connected finger provides a configuration memory
and its content is valid, this bit is set.

D0 FF_POWER_ON
Power enabled.

If true, the finger is powered up.

6 Appendix D: Syntax Notation

The following command syntax notation is used throughout this document:

Parameters

a Denotes a mandatory parameter

[a] Denotes an optional parameter

{a, b, c} Denotes a selection of mandatory parameters (exactly one must be present)

[{a, b, c}] Selection of optional parameters (either exactly one or none must be present)

Values

<integer> An integer value

<number> A floating point value

<string> A string literal

<table> A table

<var> variable type

WSG Scripting Reference Manual

Weiss Robotics GmbH & Co. KG
In der Gerste 2
71636 Ludwigsburg, Germany

For updates and further information, please visit
http://www.weiss-robotics.com

Page 77 of 77

© 2013 Weiss Robotics, all rights reserved

Weiss Robotics GmbH & Co. KG
In der Gerste 2

D-71636 Ludwigsburg, Germany

e-mail: office@weiss-robotics.com

For further information and other products from Weiss Robotics, please visit our homepage at

http://www.weiss-robotics.com.

© 2010-2012 Weiss Robotics, all rights reserved.
All technical data mentioned in this data sheet can be changed to improve our products without prior notice.
Used trademarks are the property of their respective trademark owners. Our products are not intended for
use in life support systems or systems whose failure can lead to personal injury.

http://www.weiss-robotics.com/

