
 EXT: External Import - external_import EXT: External Import

EXT: External Import

Extension Key: external_import

Language: en

Keywords: forAdmins, forIntermediates

Copyright 2008-2010, François Suter, <typo3@cobweb.ch>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.org

1

 EXT: External Import - external_import EXT: External Import

Table of Contents
EXT: External Import...................................1

Introduction... 3

Questions and support..3

Keeping the developer happy...................................3

Participating... 3

Installation...4

Compatibility issues...4

Other requirements...6

Configuration... 7

User manual... 8

General considerations.. 8

Synchronizable tables..8

Non-synchronizable tables....................................... 9

Mapping data..10

Debugging..10

Troubleshooting.. 10

Process overview...11

Tutorial...11

Administration...12

User rights..12

General TCA configuration.....................................12

Columns configuration... 13

Mapping configuration... 14

User functions configuration...................................15

MM-relations configuration.....................................15

Developer's Guide.. 17

External Import API...17

User functions...17

Hooks...17

To-Do list..19

Changelog.. 20

2

 EXT: External Import - external_import Introduction

Introduction
This extension is designed to fetch data from external sources and store them into tables of the TYPO3 database. The
mapping between this external data and the TYPO3 tables is done by extending the syntax of the TCA. A backend module
provides a way to synchronise any table manually or to defined a scheduling for all synchronisations. Automatic scheduling
relies on Gabriel (TYPO3 4.2 or less) or the Scheduler (TYPO3 4.3+).

The main idea of getting external data into the TYPO3 database is to be able to use TYPO3 standard functions on that data
(such as enable fields, for example, if available).

Connection to external applications is handled by a class of services called “connectors”, the base of which is available as a
separate extension (svconnector).

Data from several external sources can be stored into the same table allowing data aggregation.

The extension also provides an API for sending it data from some other source. This data is stored into the TYPO3 database
using the same mapping process as when data is fetched directly by the extension.

This extension contains a number of hooks as well as the possibility to call user-defined functions during the import process,
which makes it a quite flexible tool. However it was not designed for extensive data manipulation. It is assumed that the data
received from the external source is in “palatable” format. If the external data requires a lot of processing, it is probably
better to put it through an ETL or ESB tool first, and then import it into TYPO3.

Please also check extension “external_import_tut” which provides a tutorial to this extension.

Questions and support
If you have any questions about this extension, please ask them in the TYPO3 English mailing list (typo3.english), so that
others can benefit from the answers. Please use the bug tracker on forge.typo3.org to report problem or suggest features
(http://forge.typo3.org/projects/extension-external_import/issues).

Keeping the developer happy
If you like this extension, do not hesitate to rate it. Go the Extension Repository, search for this extension, click on its title to
go to the details view, then click on the “Ratings” tab and vote (note: you must be logged in to vote). Every new vote keeps
the developer ticking. So just do it!

You may also take a step back and reflect about the beauty of sharing. Think about how much you are benefiting and how
much yourself is giving back to the community.

Participating
This tool can be used in a variety of situations and all use cases are certainly not covered by the current version. I will
probably not have the time to implement any use case that I don't personally need. However you are welcome to join the
development team if you want to bring in new features. If you are interested go to forge.typo3.org and apply to become a
project member. I'll get in touch with you.

3

http://forge.typo3.org/projects/extension-external_import/issues

 EXT: External Import - external_import Installation

Installation
Installing this extension does nothing in and of itself. You still need to extend the TCA definition of some tables with the
appropriate syntax and create specific connectors for the application you want to connect to.

Installation of Gabriel is not necessary, but is requested if you want to be able to define a schedule for automatic
synchronisation. Note that you will need a recent version of Gabriel and not the one available in the TER. You can get the
latest version of Gabriel from forge: http://forge.typo3.org/projects/show/extension-gabriel.

If you run TYPO3 4.3 or better, you must use the system extension Scheduler instead of Gabriel.

Compatibility issues

Upgrade to TYPO3 4.3 and the Scheduler
If you already have a complete setup using Gabriel on a TYPO3 4.2 or less box, the upgrade process will not be completely
smooth. Indeed TYPO3 4.3 provides a Core integration of Gabriel called “Scheduler”. This comes as a system extension and
represents a serious improvement on Gabriel.

So if you upgrade to TYPO3 4.3, you should really drop Gabriel and use the Scheduler instead. The drawback is that you will
lose the currently scheduled imports as it is not possible to transfer Gabriel information to the Scheduler (too much changed
between the two tools). That should not keep you from switching though, as the Scheduler offers far more control and
reporting on scheduled jobs (and Gabriel support may be dropped from External Import at some point in the future).

Upgrade to 0.8.0
With version 0.8.0 it became possible to define multiple external sources for a given table. This implied changing the
extended TCA syntax. When upgrading to version 0.8.0 you must also change all your “external” TCA properties. All such
properties have become indexed arrays. So if you had the following:

$TCA['tx_myext_mytable'] = array (
'ctrl' => array (

'title' => ...,
...
'external' => array(

'connector' => ...,
'parameters' => array(

...
),
'data' => 'xml',
'nodetype' => 'record',
'reference_uid' => ...,
'priority' => 10,
'deleteNonSynchedRecords' => 1

)
),

);

You must change it to:

$TCA['tx_myext_mytable'] = array (
'ctrl' => array (

'title' => ...,
...
'external' => array(

0 => array (
'connector' => ...,
'parameters' => array(

...
),
'data' => 'xml',
'nodetype' => 'record',
'reference_uid' => ...,
'priority' => 10,
'deleteNonSynchedRecords' => 1

)
)

),
);

The same goes for the columns definitions which should be changed from:

'field_name' => array (
'exclude' => 0,
'label' => '...',

4

http://forge.typo3.org/projects/show/extension-gabriel

 EXT: External Import - external_import Installation

'config' => array (
...

),
'external' => array (

'field' => '...',
)

),

to:

'field_name' => array (
'exclude' => 0,
'label' => '...',
'config' => array (

...
),
'external' => array (

0 => array (
'field' => '...',

)
)

),

Furthermore the MM-mappings syntax has been simplified. So the following configuration:

'external' => array(
0 => array(

'MM' => array(
'mappings' => array(

'uid_foreign' => array(
'table' => name of foreign table,
'reference_field' => foreign MM key,
'value_field' => 'uid'

)
),
'additional_fields' => array(

TYPO3 field name => external data field name
),
'sorting' => 'field',

)
)

)

can be rewritten to:

'external' => array(
0 => array(

'MM' => array(
'mapping' => array(

'table' => name of foreign table,
'reference_field' => foreign MM key,
'value_field' => 'uid'

),
'additional_fields' => array(

TYPO3 field name => external data field name
),
'sorting' => 'field',

)
)

)

although the old syntax is still supported.

Also note that the “deleteNonSynchedRecords” property was deprecated in favour of the more flexible “disabledOperations”
property (see Configuration below). It is still supported though.

These are expected to be the last major syntax changes which why the extension status was raised to beta.

Upgrade from 0.5.0
If you were using version 0.5.0, you may have some surprises as the extended TCA syntax has been modified for MM-
relations:

• in MM mappings, the “uid_local” mapping no longer needs to be defined. Indeed the local uid is considered to be
always “uid”, since the whole point of this extension is to store the data into database tables that respect the TYPO3
standards.

• The “reference_field” for the “uid_foreign” mapping now uses the name of the field in the local database table. This

5

 EXT: External Import - external_import Installation

is matched to the field name in the external data by reading to what external field that column is matched.

• The “update” property has been removed, since TCEmain deletes existing MM-relations anyway.

• The “sorting_data” field has been removed. The “sorting” property now stores what was in “sorting_data” and there
are no other options for sorting.

Other requirements
As was mentioned in the introduction, this extension makes heavy use of an extended syntax for the TCA. If you are not
familiar with the TCA, you are strongly advised to read up on it in the Core APIs documentation.

6

 EXT: External Import - external_import Configuration

Configuration
The extension has the following configuration options:

● Storage PID: define a general page where all the imported records are stored. This can be overridden specifically
for each table (see Administration below).

● Force PHP time limit: set a maximum execution time different of the default one. Setting this value to -1
preserves the default time limit. Setting to a number of seconds will change the maximum execution time to that
value. This can be useful for large imports.

● Email for reporting: if an email address is entered here, a detailed report will be sent to this address after every
automated synchronisation. Mails are not sent after synchronisations started manually from the BE module.

● Subject of email report: a label that will be prepended to the subject of the reporting mail. It may be convenient
– for example – to use the server's name, in case you have several servers running the same imports.

● Preview/Debug limit: this is the maximum number of rows that will be dumped to the devlog when debugging is
turned off. It will also be used as the number of rows displayed during a preview, when that feature is implemented.

● Debug: check to enable the extension to store some log data (requires an extension such as devlog).

● Clean AJAX output: this option is enabled by default. When a synchronisation is launched using the BE module,
the import script is called using AJAX. This script may throw PHP errors or some other kind of debug output (e.g.
failed SQL queries, if SQLDebug is enabled). This output will break the AJAX response and thus the display of the BE
module. When this option is enabled, it will flush all output produced by external import, making it possible to
receive a clean AJAX response, at the price of losing sight of possible errors. See “Debugging” for more details.
Note: this option is ignored as of TYPO3 4.3 as the output is cleaned up anyway. The downside is that you will never
see error output with TYPO3 4.3 or above.

7

 EXT: External Import - external_import User manual

User manual

General considerations
The purpose of this extension is to take data from somewhere else (called the external source) than the local TYPO3
database and store it into that local database. Data from the external source is matched to local tables and fields using
information stored in the TCA, using the extended syntax provided by this extension.

The extension can either fetch the data from some external source and receive data, passed to it by whatever script you can
imagine. Fetching data from an external source goes through a standardised process. Connecting to an external source is
achieved using connector services (see extension “svconnector”), that will return the fetched data to the external import.
Once such a connector exists, it can be related to one or more TYPO3 tables (with additional parameters if needed) using the
extended TCA syntax. From then on the table can be synchronised with the external source. Every time a synchronisation is
started (either manually or according to a schedule), the connector service is called upon to fetch the data. Such tables are
referred to as “synchronizable tables”. This type of action is called “pulling data”.

On the other hand this extension also provides an API that can be called up to pass data directly to the external import. No
connector services are used in this case. The extension is called on a need-to basis by any script that uses it. As such it is not
possible to synchronise those tables from the BE module, nor to schedule their synchronisation. Such tables are referred to as
“non-synchronizable tables”. This type of action is called “pushing data”.

Note that it is perfectly possible to push data towards synchronizable tables. The reverse is not true (non-synchronizable
tables cannot pull data).

Synchronizable tables
The first function of the BE module – called “Synchronize external data” – displays a list of all synchronizable tables. The
various features are summarized in the picture below. Most importantly clicking on the looping arrows icon will immediately
start the synchronisation of the corresponding table. It is also possible to automate the synchronisation of each table. This
process is described in more details below.

When a manual execution is finished, a report is printed out in the column next to the icon:

8

 EXT: External Import - external_import User manual

Clicking on the “info” icon displays all the TCA information related to the external import process:

Setting up the automatic schedule
The automatic scheduling facility relies on Gabriel (TYPO3 4.2 or less) or the Scheduler (TYPO3 4.3+) to run. On top of the
normal Gabriel or Scheduler setup, there are some points you must pay particular attention to in the case of external import.

As can be seen in the above screenshot, the information whether the automatic synchronisation is enabled or not is displayed
for each table. It is possible to add or change that schedule, by clicking on the “new” or “pencil” icon respectively). This
triggers the display of an input form where you can choose a start date (date of first execution; leave empty for immediate
activation) and a frequency. The frequency can be entered as a number of seconds or using the same syntax as for cron jobs.

Clicking on the trash can icon cancels the automatic synchronisation.

At the bottom of the screen, a schedule can be defined for all tables. This means that all imports will be executed one after
the other, in the order of priority.

Defining a schedule is not enough. Proper user rights must also be considered. During the installation of Gabriel, you will
have created a “_cli_gabriel” user (or “_cli_scheduler” for the Scheduler). This is the profile that will be used during the
scheduled synchronisations, so you must make sure that this user has enough rights to perform such operations. Basically,
this is what you should do:

• authorise this user to list and modify the tables that are going to be synchronised

• give this user access to the page(s) where the records are stored, i.e. pages must be in the DB Mounts of the user
and user must enough rights on these pages, i.e. “Show page”, “Edit content”, “Edit page” and “Delete page” (Web
> Access). Of course this can also be achieved via a group the user belongs to.

Non-synchronizable tables
The second function of the BE module – called “Tables without synchronization” – displays a list of non-synchronizable tables.
This view is purely informative as no action can be taken for these tables.

9

 EXT: External Import - external_import User manual

Mapping data
In the Administration chapter below, you will find explanations about how to map the data from the external source to
existing or newly created tables in the TYPO3 database. There are two mandatory conditions for this operation to succeed:

• the external data must have the equivalent of a primary key

• this primary key must be stored into some column of the TYPO3 database, but not the uid column which is internal
to TYPO3.

The primary key in the external data is the key that will used to decide whether a given entry in the external data
corresponds to a record already stored in the TYPO3 database or if a new record should be created for that entry. Records in
the TYPO3 database that do not match primary keys in the external data can be deleted if desired.

Debugging
There are many potential sources of error during synchronisation from wrong mapping configurations to missing user rights to
PHP errors in user functions. When a synchronisation is launched from the BE module an AJAX call is made to the import
script. The response is read and displayed in the BE module.

When PHP errors or other debug output are produced they corrupt the AJAX response (which is expected to be in JSON
format). To avoid this corruption, the import script will flush all output before sending back its response. The downside of this
method is that the error or debug output is then lost. Note that this information is hard to read anyway. You need to be able
to read the raw response to view what error or debug output may be in it (for example by using the combination of Firefox
and its Firebug add-on). This is true only for TYPO3 4.1 or 4.2. As of TYPO3 4.3 the output is always flushed so there's no
way errors can be seen that way.

One particular type of debug output is the $TYPO3_CONF_VARS[SYS][sqlDebug] setting. If you activate this, TYPO3 will
produce a full debug stack trace whenever a SQL query fails. This information will be removed if you have chosen to clean the
output. One way around this is to also use an extension that writes to the devLog (e.g. “devlog”) and activate
$TYPO3_CONF_VARS[SYS][enable_DLOG]. With this failed queries output will be written to the devLog so the information
is not lost.

As described in “Configuration” above, it is also possible to receive a detailed report by email. It will contain a general
summary of what happened during synchronisation, but also all error messages logged by TCEmain, if any.

Troubleshooting

The automatic synchronisation is not being executed
You may observe that the scheduled synchronisation is not taking place at all. Even if the debug mode is activated and you
look at the devLog, you will see no call to external_import. This may happen when you set a too high frequency for
synchronisations (like 1 minute for example). If the previous synchronisation has not finished, Gabriel will prevent the new
one from taking place. The symptom is a message like “[gabriel]: Event is already running and multiple executions are not
allowed, skipping! CRID: xyz, UID: nn” in the system log (Admin Tools > Log). In this case you should delete the existing
schedule and set up a new one.

The manual synchronisation never ends
It may be that no results are reported during a manual synchronisation and that the looping arrows continue spinning
endlessly. This happens when something failed completely during the synchronisation and the BE module received no
response. See the advice in “Debugging” above.

All the existing data was deleted
The most likely cause is that the external data could not be fetched, resulting in zero items to import. If the delete operation
is not disabled, External import will take that as a sign that all existing data should be deleted, since the external source
didn't provide anything.

There are various ways to protect yourself against that. Obviously you can disable the delete operation, so that no record
ever gets deleted. If this is not desirable, you can use the “minimumRecords” option (see “General TCA configuration”) below.
For example, if you always expect at least 100 items to be imported, set this option to 100. If fewer items than this are
present in the external data, the import process will be aborted and nothing will get deleted.

10

 EXT: External Import - external_import User manual

Process overview
The schema below provides an overview of the external import process:

When the external import is started from a synchronisation operation (pull), data is first gathered from the external source.
This does not happen when the API is used, since the data is pushed into the import process. The next step is called “handle
data”. This is where the data that will be stored into the internal tables is filtered from all the data available from the external
source. After this step, the external data is available inside the process as an associative PHP array with the keys matching
the names of the database fields where the data will be stored.

The preprocess raw data step is just a container to call a hook. The next step validates the data. The base test is to check
whether the minimum number of records is present in the external data or not. A hook is available for introducing more
specific checks. The first check to fail (including the base check) triggers the abortion of the import process.

The transformation step is comprised of two important operations:

1. all simple (i.e. not MM) mappings are handled (or fixed values are applied).

2. declared user functions are called.

The preprocess step does nothing by itself, but provides a hook for manipulating the complete recordset of imported data.

Finally the data is actually stored to the database. Before this happens the MM-relationships are handled and hooks are
available before each type of operation happens (insert, update and delete).

As a last step the connector is called again in case one wishes to perform some clean up operations on the source from which
the data was imported (for example, mark the source data as having been imported). The postProcessOperations() method of
the connector API is called. This will most probably just be a place for hooks as such post-processing operations are likely to
be rather custom steps. Note that this step is not executed when the external import is started via an API call, as there is no
connector involved in such a case.

Tutorial
Extension “externalimport_tut” provides an extensive tutorial about external import. It makes use of all possible configuration
options. All examples are discussed in the extension's manual.

11

 EXT: External Import - external_import Administration

Administration
To start inserting data from an external source into your TYPO3 tables, you must first extend their TCA with a specific syntax,
with general information in the “ctrl” section and specific information for each column. Obviously you can also create new
tables and put your data in there.

User rights
Before digging into the TCA specifics let's have a look at the topic of user rights. Since External Import relies on TCEmain for
storing data, the user rights on the synchronised tables will always be enforced. However additional checks are performed in
both the BE module and the automated tasks to avoid displaying sensitive data or throwing needless error messages.

When accessing the BE module, user rights are taken into account in that:

• a user must have at least listing rights on a table to see it in the BE module.

• a user must have modify rights on a table to be allowed to synchronise it manually or define an automated
synchronisation for it.

DB mount points are not checked for at this point, so the user may be able to start a synchronisation and still get error
messages if not allowed to write to the page where the imported data should be stored.

When a synchronisation runs automatically a check on user rights is also performed at the beginning, so that the
synchronisation can be skipped entirely if the CLI user does not have modify rights on the given table. This is reported in the
mail report. For more on setting up proper rights for automatic synchronisation, please refer to “Setting up the automatic
schedule”.

General TCA configuration
Here is an example of a typical “ctrl” section syntax:

$TCA['tx_myext_mytable'] = array (
'ctrl' => array (

'title' => ...,
...
'external' => array(

0 => array(
'connector' => ...,
'parameters' => array(

...
),
'data' => 'xml',
'nodetype' => 'record',
'reference_uid' => ...,
'priority' => 10,
'pid' => 46,
'enforcePid' => true

)
)

),
);

The “external” property is an indexed array. The following properties are available:

Key Datatype Description Scope

connector string Connector service subtype

Must be defined only for pulling data. Leave blank for pushing
data.

External import

parameters array Array of parameters that must be passed to the connector
service.

Not used when pushing data.

External import

data string The format in which the data is returned by the connector
service. Can be either “xml” or “array”.

External import

nodetype string Name of the reference nodes inside the XML structure, i.e. the
children of these nodes correspond to the data that goes into the
database fields.

External import

reference_uid string Name of the column where the equivalent of a primary key for
the external data is stored.

External import

12

 EXT: External Import - external_import Administration

Key Datatype Description Scope

priority integer A level of priority for execution of the synchronisation. Some
tables may need to be synchronised before others if foreign
relations are to be established. This gives a clue to the user and a
strict order for scheduled synchronisations.

Not used when pushing data.

External import

pid integer ID of the page where the imported records should be stored. Can
be ignored and the general storage pid is used instead (see
configuration)

External import

enforcePid boolean If this is set to true, all operations regarding existing records will
be limited to records stored in the defined pid (i.e. either the
above property or the general extension configuration). This has
two consequences:

a) when checking for existing records, those records will
be selected only from the defined pid.

b) when checking for records to delete, only records from
the defined pid will be affected

This is a convenient way of protecting records from operations
started from within the external import process, so that it won't
affect e.g. records created manually.

External import

additional_fields string Comma-separated list of fields from the external source that
should be made available during the import process, but that will
not be stored in the internal table.
This is usually the case for fields which you want to use in the
transformation step, but that will not be stored eventually.

External import

description string A purely descriptive piece of text, which should help you
remember what this particular synchronisation is all about.
Particularly useful when a table is synchronised with multiple
sources.

External import

disabledOperations string Comma-separated list of operations that should not be
performed. Possible operations are insert, update and delete. This
way you can block any of these operations.

• insert is the operation performed when new records
are found in the external source.

• update is performed when a record already exists and
only its data needs to be updated.

• delete is performed when a record is in the database,
but is not found in the external source anymore.

External import

minimumRecords integer Minimum number of items expected in the external data. If fewer
items are present, the import is aborted. This can be used – for
example – to protect the existing data against deletion when the
fetching of the external data failed (in which case there are no
items to import).

External import

deleteNotSynchedR
ecords

boolean This setting is deprecated. Please use disabledOperations
instead.

Set to true if records that were not found during the
synchronisation (i.e. that do not exist in the distant source
anymore) should be deleted. Set to false if they should be
ignored.

External import

Columns configuration
Then for each column, you also need an “external” syntax to define which external data goes into that column and any
handling that might apply. This is also an indexed array. Obviously indices used for each column must relate to the indices
used in the “ctrl” section. In its simplest form this is just a reference to the external data's name:

'field_name' => array (
'exclude' => 0,
'label' => '...',
'config' => array(

...
),
'external' => array(

0 => array(

13

 EXT: External Import - external_import Administration

'field' => '...'
)

)
),

These are the parameters used in the column description:

Key Datatype Description Scope

field string Name or index of the field that contains the data in the external
source.

External import

MM → MM-
configuration

Definition of MM-relations, see below for more details. External import

mapping → Mapping
configuration

This property can be used to map values from the external data
to values coming from some internal table. A typical example
might be to match 2-letter country ISO codes to the uid of the
static_countries table.

External import

value simple type With this property, it is possible to set a fixed value for a given
field. For example, this might be used to set a flag for all
imported records.

External import

excludedOperations string Comma-separated list of database operations from which the
column should be excluded. Possible values are “insert” and
“update”.

External import

userFunc array This property can be used to define a function that will be called
on each record to transform the data from the given field. See
example below.
Note that the userFunc is called after the mapping.

External import

Mapping configuration
The external values can also be matched to values from an existing TYPO3 table, using the “mapping” property.

Key Datatype Description Scope

table string Name of the table to read the mapping data from. External import

reference_field string Name of the field against which external values must be matched External import

value_field string Name of the field to take the mapped value from. If not defined,
this will default to “uid”.

External import

where_clause string SQL condition (without the “WHERE” keyword) to apply to the
referenced table. This is typically meant to be a mirror of the
“foreign_table_where” property of the select-type fields.
However it is not possible to use markers in this case. So if you
have something like:

'foreign_table_where' => 'AND pid =
###PAGE_TSCONFIG_ID###'

in the TCA for your column, you should replace the marker by a
hard-coded value instead, e.g.

'where_clause' => 'pid = 42'

Note that the clause must not start with a “AND” keyword either.

External import

valueMap array Fixed hash table for mapping. Instead of using a database table
to match external values to internal values, this property makes it
possible to use a simple list of key-value pairs. The keys
correspond to the external values.

External import

Here's an example TCA configuration. A “value_field” property is defined, although it would be optional in this case, since its
value is “uid”, which is the default.

'field_name' => array (
'exclude' => 0,
'label' => '...',
'config' => array(

...
),
'external' => array(

0 => array(

14

 EXT: External Import - external_import Administration

'field' => '...',
'mapping' => array(

'table' => name of foreign table,
'reference_field' => foreign MM key,
'value_field' => 'uid'

)
)

)
),

User functions configuration
Here's an example setup for calling a user function.

'field_name' => array (
'exclude' => 0,
'label' => '...',
'config' => array(

...
),
'external' => array(

0 => array(
'field' => '...',
'userFunc' => array(

'class' =>
'EXT:external_import/samples/class.tx_externalimport_transformations
.php:&tx_externalimport_transformations',

'method' => 'parseDate',
'params' => array(

'function' => 'date',
'format' => 'd.m.Y'

)
)

)
)

),

A user function requires three parameters. The first one (“class”) is the name of the class to be instantiated. It can be
prefixed by a path, in which case the file will be included automatically for you. Note the “&” before the class name. This will
make the instance a singleton, avoiding too many instances. The next parameter (“method”) defines which method of the
class should be called. The third parameter (“params”) is optional. It is an array and can contain any number of data. It will
be passed to the method.

In the example above we are using a sample class provided with external import that can be used to parse a date and either
return it as a timestamp or format it using either of the PHP functions date() or strftime().

For more details about creating a user function, please refer to the Developer's Guide, below.

MM-relations configuration
It gets more complicated if there are MM-relations to rebuild after import:

'external' => array(
0 => array(

'MM' => array(
'mapping' => array(

'table' => name of foreign table,
'reference_field' => foreign MM key,

),
'additional_fields' => array(

TYPO3 field name => external data field name
),
'sorting' => 'field',

)
)

)

These are the parameters used in the MM configuration:

Key Datatype Description Scope

mappings array This property has been deprecated. See “mapping” below. External import

mapping → Mapping
configuration

This is similar to the “mapping” property described above. It is
used to define which table to link to and which column in that
table contains the external primary key.

External import

15

 EXT: External Import - external_import Administration

Key Datatype Description Scope

additional_fields array List of fields that must be stored along the local and foreign keys
in the MM table. For each such field, define which TYPO3 MM-
table field corresponds to which external data field.

External import

multiple boolean If some mm-relations exist several times in your external data
(because they have various additional fields), you must set this
property to 1, so that they are preserved (otherwise TCEmain will
take only unique uid_local, uid_foreign pairs into account).

External import

sorting string Indicates that the data is to be sorted according to that particular
field from the external data.
Note that since the external import relies on TCEmain to store the
data, TCEmain sets its own numbering for sorting, thus the value
in sorting is never used as is, but just for ordering the records. So
if the records in the external source are already sorted, there's no
need to define the “sorting” property.

External import

Note: when the “additional_fields” and/or “multiple” properties are used, additional database operations are performed to
honour these settings, as it is not traditional behaviour for TYPO3 MM-relations. It should be possible with IRRE, but this isn't
supported yet.

16

 EXT: External Import - external_import Developer's Guide

Developer's Guide

External Import API
It is very simple to use the external import features. You just need to assemble data in a format it can understand (XML
structure or recordset) and call the appropriate method. You will need to include calls class.tx_externalimport_importer.php
and do the following call:

$importer = t3lib_div::makeInstance('tx_externalimport_importer');
$importer->importData($table, $index, $rawData);

The call parameters are as follows:

Name Type Description

$table string Name of the table to store the data into

$index integer Index of the relevant external configuration

$rawData mixed The data to store, either as XML or recordset

This is particularly useful in conjunction with the Remote Server extension (key: remote_server). With this in place you can
call the TYPO3 BE and send data to it, then handle and store this data into local tables using the external import API.

User functions
The external import extension can call user functions for any field where external data is imported. A sample function is
provided in samples/class.tx_externalimport_transformations.php. Basically, the function will receive three
parameters:

Name Type Description

$record array The complete record being handled. This makes it possible to refer to other fields of
the same record during the transformation, if needed.

$index string The key of the field to transform. Modifying other fields in the record is not possible
since the record is passed by value and not by reference. Only the field corresponding
to this key should be transformed and returned.

$params array Additional parameters passed to the function. This will be very specific to each function
and can even be complete omitted. External import will pass an empty array to the
user function if the “params” property is not defined.

The function is expected to return only the value of the transformed field.

Hooks
The external import process contains the following hooks:

• preprocessRawRecordset: this hook makes it possible to manipulate the data just after it was fetched from the
remote source, but already transformed into a PHP array, no matter what the original format. The hook receives the
full recordset and a back-reference to the calling object (an instance of class tx_externalimport_importer) as
parameters. It is expected to return a full recordset too.

• validateRawRecordset: this hook is called during the data validation step. It is used to perform checks on the
nearly raw data (it has only been through “preprocessRawRecordset”) and decide whether to continue the import or
not. The hook receives the full recordset and a back-reference to the calling object (an instance of class
tx_externalimport_importer) as parameters. It is expected to return a boolean, true if the import may continue, false
if it must be aborted.
Note the following: if the minimum number of records condition was not matched, the hooks will not be called at all.
Import is aborted before that. If several methods are registered with the hook, the first method that returns false
aborts the import. Further methods are not called.

• preprocessRecordset: similar to “preprocessRawRecordset”, but after the transformation step, so just before it is
stored to the database. The hook receives the full recordset and a back-reference to the calling object (an instance
of class tx_externalimport_importer) as parameters. It is expected to return a full recordset too.

• updatePreProcess: this hook can used to modify a record just before it is updated in the database. The hook is
called for each record that has to be updated. The hook receives the complete record and a back-reference to the
calling object (an instance of class tx_externalimport_importer) as parameters. It is expected to return the complete

17

 EXT: External Import - external_import Developer's Guide

record.

• insertPreProcess: similar to the “updatePreProcess” hook, but for the insert operation.

• deletePreProcess: this hook can be used to modify the list of records that will be deleted. As a first parameter it
receives a list of primary key, corresponding to the records set for deletion. The second parameter is a reference to
the calling object (again, an instance of class tx_externalimport_importer). The method invoked is expected to return
a list of primary keys too.

• datamapPostProcess: this hook is called after all records have been updated or inserted using TCEmain. It can be
used fo any follow-up operation. It receives as parameters the name of the affected table, the list of records keyed
to their uid (including the new uid's for the new records) and a back-reference to the calling object (an instance of
class tx_externalimport_importer). Each record contains an additional field called “tx_exteralimport:status” which
contains either “insert” or “update” depending on what operation was performed on the record.

• cmdmapPostProcess: this hook is called after all records have been deleted using TCEmain. It receives as
parameters the name of the affected table, the list of uid's of the deleted records and a back-reference to the calling
object (an instance of class tx_externalimport_importer).

18

 EXT: External Import - external_import To-Do list

To-Do list
There is a roadmap on Forge for the continuing development of this extension:

http://forge.typo3.org/projects/roadmap/extension-external_import

Below are some other ideas that have no priority for now:

• Handle localised records

• Handle self-referencing tables, when inserting new records

• Look at IRRE for handling MM-relations that use additional fields or are repeated several times.

19

 EXT: External Import - external_import Changelog

Changelog
Version Changes:

1.1.0 Added support for additional where clause in foreign mappings

Added connector call-back as a post-processing step

1.0.0 Added early check of user rights in automated synchronisation

Added check of user rights in BE module display

Added option for limiting preview/debug output size

Added TCA property to exclude some fields from insert or update operations

Added display of TCA external configuration in BE module

0.11.2 Fixed abusive display of validation error message

0.11.0 – 0.11.1 Added reporting by email

Added automatic synchronisation per import configuration

Made it possible to delete a defined automatic synchronisation

Added support for the Scheduler (TYPO3 4.3+)

Added a process to abort the import

0.10.0 Added fixed values and fixed value maps

0.9.0 Added “clear output” option

0.8.1 Added preprocessing hook on raw recordset

0.8.0 Introduced possibility to synchronise a table with multiple external sources

Added support for user functions for transforming external data before storage

Introduced API for pushing data into the external import

Added hooks for preprocessing records before insert, update and delete

Added property for limiting records manipulation to a given pid

Added property for limiting allowed operations

Cleaned up MM-mapping syntax

Corrected bugs in mapping feature

Updated manual with instructions for new features and some troubleshooting help

Raised status to beta

0.7.0 – 0.7.x Internal releases

0.6.2 Updated manual with missing notes about array data format

0.6.1 Added array data format handling

Added user rights setup instructions in the manual

0.6.0 Introduced use of TCEmain for proper data manipulation

Cleaned up extended TCA syntax

Added hook for pre-processing data before storage

0.5.0 First public release

20

	EXT: External Import
	Introduction
	Questions and support
	Keeping the developer happy
	Participating

	Installation
	Compatibility issues
	Upgrade to TYPO3 4.3 and the Scheduler
	Upgrade to 0.8.0
	Upgrade from 0.5.0

	Other requirements

	Configuration
	User manual
	General considerations
	Synchronizable tables
	Setting up the automatic schedule

	Non-synchronizable tables
	Mapping data
	Debugging
	Troubleshooting
	The automatic synchronisation is not being executed
	The manual synchronisation never ends
	All the existing data was deleted

	Process overview
	Tutorial

	Administration
	User rights
	General TCA configuration
	Columns configuration
	Mapping configuration
	User functions configuration
	MM-relations configuration

	Developer's Guide
	External Import API
	User functions
	Hooks

	To-Do list
	Changelog

