
Charles University in Prague

Faculty of Mathematics and Physics

ODCleanStore
Linked Data management tool

Programmer’s Guide

Release 1.0
March 16, 2013

Authors: Jan Michelfeit
Dušan Rychnovský
Jakub Daniel
Petr Jerman
Tomáš Soukup

Supervisor: RNDr. Tomáš Knap

Contents

1 Introduction 5
1.1 What is ODCleanStore . 5
1.2 Related documents . 5

2 ODCleanStore overview 6
2.1 Important concepts . 7

2.1.1 Data Processing . 7
2.1.2 Storing Data . 7
2.1.3 Querying over Stored Data . 8

2.2 Data Lifecycle . 8

3 Implementation 9
3.1 Architecture . 9

3.1.1 Architecture Evolution . 9
3.1.2 Usage Assumptions . 9
3.1.3 Architectural Features . 10

3.2 Other Requirements . 11
3.3 Used Technologies . 11

3.3.1 Implementation Language . 11
3.3.2 Database . 12
3.3.3 Administration Frontend . 12
3.3.4 Libraries . 12
3.3.5 Development Tools . 13

4 Setting up Development Environment 14
4.1 Quick Start . 14

4.1.1 Tools . 14
4.1.2 Obtaining sources . 14
4.1.3 Building binaries . 14

4.2 Repository structure . 15
4.2.1 Branches . 15
4.2.2 Directory structure . 15

4.3 Maven Build . 16

5 Shared Code 17
5.1 Configuration . 17
5.2 Database Access . 18
5.3 Data Import . 19

1

CONTENTS 2

6 Engine 20
6.1 Purpose . 20
6.2 Implementation . 20

6.2.1 Services . 20
6.2.2 Transactional Processing . 20
6.2.3 Database Access . 21

6.3 Input Webservice . 21
6.3.1 Purpose and Features . 21
6.3.2 Implementation . 22

6.4 Pipeline Service . 22
6.4.1 Purpose . 22
6.4.2 Graph States . 23
6.4.3 Implementation . 24

6.5 Output Webservice . 25
6.5.1 Purpose . 25
6.5.2 Implementation . 25
6.5.3 Output Formatters . 25
6.5.4 Extending . 26

7 Query Execution 27
7.1 Purpose . 27
7.2 Interface . 27
7.3 Implementation . 27
7.4 Extending . 28
7.5 Database . 28

8 Conflict Resolution 29
8.1 Purpose . 29
8.2 Interface . 29
8.3 Implementation . 29

8.3.1 Aggregation Methods . 30
8.3.2 Quality and Provenance Calculation . 32

8.4 Time Complexity . 34
8.5 Extending . 35

9 Transformers – Introduction 36
9.1 Transformer Instance Configuration . 37
9.2 Contract between Engine and Transformers . 37
9.3 Custom Transformers . 38

10 Transformers Included in ODCleanStore 39
10.1 Quality Assessor & Quality Aggregator . 39

10.1.1 Purpose . 39
10.1.2 Interface . 39
10.1.3 Implementation . 40

CONTENTS 3

10.2 Data Normalization . 41
10.2.1 Purpose . 41
10.2.2 Interface . 41
10.2.3 Implementation . 43

10.3 Linker . 44
10.3.1 Purpose . 44
10.3.2 Interface . 44
10.3.3 Implementation . 45

10.4 Other Transformers . 47
10.4.1 Blank Node Remover . 47
10.4.2 Latest Update Marker . 48
10.4.3 Property Filter . 48

11 Administration Frontend 49
11.1 Codebase structure . 49

11.1.1 behaviours . 49
11.1.2 bo . 49
11.1.3 dao . 50
11.1.4 core . 50
11.1.5 core.models . 50
11.1.6 core.components . 51
11.1.7 pages . 51
11.1.8 util . 52
11.1.9 validators . 52

11.2 Database Access Layer . 52
11.2.1 Important DAO Classes . 53

11.3 Authorization . 54
11.3.1 Roles . 54
11.3.2 Authorship . 55

11.4 Extending . 55
11.4.1 How to Add a New Page . 55
11.4.2 How to Add a New Data Normalization Template 56

12 Future Work 57
12.1 Data Processing . 57
12.2 Quality Assessment . 57
12.3 Data Normalization . 57
12.4 Output Webservice & Conflict Resolution . 58
12.5 Administration Frontend . 58
12.6 Miscellaneous . 58
12.7 Known Issues . 59

CONTENTS 4

13 Related Work 60
13.1 Data Extraction . 60
13.2 Data Processing . 60
13.3 Data aggregation and quality . 61

14 Conclusion 62

A Glossary 63

B Relational Database Schema 66

C List of Used XML Namespaces 72

D Publications 73

1. Introduction
ODCleanStore is a server application for management of Linked Data written in Java. It stores
data in RDF, processes them and provides integrated views on the data.

This document serves as the main documentation for developers. It describes basic
architecture, implementation, development process, used technologies and other important
information relevant for people who want to participate in the development of ODCleanStore.

1.1 What is ODCleanStore

ODCleanStore accepts arbitrary RDF data and metadata through a SOAP webservice (Input
Webservice). The data is processed by transformers in one of a set of customizable pipelines
and stored to a persistent store (OpenLink Virtuoso database instance). The stored data can
be accessed again either directly through a SPARQL endpoint or through Output Webservice.
Linked Data consumers can send queries and custom query policies to Output Webservice and
receive (aggregated/integrated) RDF data relevant for their query, together with information
about provenance and data quality.

1.2 Related documents

More detailed information about ODCleanStore from the perspective of a user or an
administrator can be found in related documents “User Manual” and “Administrator’s &
Installation Manual”. User Manual also contains definition of user roles, glossary of terms
etc.

Other working documents related to development are located at the project’s page at
SourceForge1. The Wiki tool at SourceForge is used for working documents, discussion of
new features, description of testing scenarios etc. Not all pages are up-to-date, however, and
this document is authoritative in case of conflicts.

1https://sourceforge.net/p/odcleanstore/wiki/For%20developers/

5

https://sourceforge.net/p/odcleanstore/wiki/For%20developers/

2. ODCleanStore overview
An overview of how ODCleanStore works is depicted on Figure 2.1.

Figure 2.1: Overview of ODCleanStore architecture

The diagram lists all main functional units in ODCleanStore:

• Engine. Engine runs the whole server part. It realizes all data processing and starts
Input and Output Webservices.

– Input Webservice. SOAP webservice that accepts new data and queues them for
processing in the dirty database.

– Pipeline processing. Processes queued data by running a series of transformers
in a pipeline on it and moves the data to the clean database.

– Ouptut Webservice. REST webservice for querying over data in the clean
database.

• Query Execution & Conflict Resolution. Query Execution retrieves all data and
metadata relevant for a query asked via Output Webservice. Conflict Resolution then
resolves conflicts in the retrieved data, including resolution of owl:sameAs links.
• Predefined transformers. Transformers used for data processing that are included by

default in ODCleanStore.

– Quality Assessment. Estimates quality of data based on user-defined or
generated rules.

– Data Normalization. Transformations of data based on user-defined or generated
rules.

– Linker. Generates links (e.g. owl:sameAs) between resources in the processed data
and contents of the clean database.

– Other transformers – Other transformers such as Quality Aggregator, Blank Node
Remover etc.

6

CHAPTER 2. ODCLEANSTORE OVERVIEW 7

• Administration Frontend. Web application written in Java from which ODCleanStore
can be managed. In Administration Frontend, the user can define pipelines for data
processing, rules for transformers, manage ontologies, Output Webservice settings etc.

Each of these parts will be described later in this document. In the source code, the
components are divided into several maven projects described in Section 4.3.

2.1 Important concepts

ODCleanStore is about data. More specifically, it works with data represented in RDF1.
ODCleanStore implements three tasks regarding data:

1. Data processing
2. Storing data
3. Querying over stored data

2.1.1 Data Processing

Data processing is realized by transformers that are applied to data being processed by
Engine in a pipeline. A transformer can be any class implementing the Transformer
interface but typically it only manipulates (change, add, delete) processed data in database.
Several transformers ship with ODCleanStore, such as Quality Assessment, Linker or Data
Normalization.

It is important to distinct between a transformer and transformer instance. By transformer,
we mean the Java class which implements the Transformer interface and is registered in
ODCleanStore administration (managed by users in role Administrator). Transformer instance
is assignment of such transformer to a pipeline. For example, the Quality Assessment
transformer is registered in ODCleanStore by default. The user can create two pipelines and
assign the Quality Assessment transformer to each of them, thus creating two transformer
instances.

Some transformers can be configured in Administration Frontend by rules. In general, these
rules are grouped to rule groups. Rule groups can be then assigned to transformer instances.

See also Section 2.2 Data Lifecycle.

2.1.2 Storing Data

Data are stored using Open Link Virtuoso RDF database. Two instances of this database are
used for every deployment of ODCleanStore:

• Dirty (staging) database – contains data that are currently being processed. Contents of
this instance is not directly visible for data consumers (users in role USR).
• Clean database – contains already processed data that are accessible through the Output

Webservice to data consumers (users in role USR).

1http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

CHAPTER 2. ODCLEANSTORE OVERVIEW 8

2.1.3 Querying over Stored Data

Querying over stored data is realized by Output Webservice which supports several types of
queries (see User Manual). For retrieval of results and resolving conflicts, Output Webservice
uses components Query Execution (Section 7) and Conflict Resolution (Section 8).

See also Glossary in Appendix A for explanation of important concepts.

2.2 Data Lifecycle

The lifecycle of data inside ODCleanStore is as follows:

1. RDF data (and additional metadata) are accepted by Input Webservice and stored as
a named graph to the dirty database. Data can be uploaded by any third-party application
registered in ODCleanStore.

2. Engine successively processes named graphs in the dirty database by applying a pipeline
of transformers to it; the applied pipeline is selected according to the input metadata.

3. Each transformer in the pipeline may modify the named graph or attach new related
named graphs (such as a named graph with mappings to other resources or results of
quality assessment).

4. When the pipeline finishes, the augmented RDF data are populated to the clean database
together with any auxiliary data and metadata created during the pipeline execution.

5. Data consumers can use Output Webservice to query data in the clean database. Output
Webservice provides several basic types of queries – URI query, keyword and named graph
query; in addition, metadata about a given named graph can be requested. The response
to a query consists of relevant RDF triples together with their provenance information and
quality estimate. The query can be further customized by user-defined conflict resolution
policies.
Data in the clean database can be also queried using the SPARQL query language. While
SPARQL queries are more expressive, there is no direct support for provenance tracking
and quality estimation.

6. When transformer rules change, the administrator may choose to re-run a pipeline on data
already stored in the clean database. Copy of this data is created in the dirty database
where it is processed by the pipeline. After that, the processed version of data replaces
the original in the clean database.

3. Implementation

3.1 Architecture

3.1.1 Architecture Evolution

The architecture that is depicted on Figure 2.1 was chosen for several reasons.
First, the division into components is natural with regard to the original specification of the

software project. All important components are included and we have also kept other concepts,
such as two dataspaces for clean and dirty data, or the flexibility of data-processing pipeline.

Second, the selected architecture allowed a clear division of work and enabled a relative
independence of each component.

Third, it is a result of a long process of analysis. From the initial vision and requirements
specification, which suggested an abstract concept of tranformers run in arbitrary order on
data, we extracted several most important cases of transformers that were tightly bound to the
system and could run only in a fixed order, only to generalize them back to transformers with
a very simple interface and flexible pipelines.

3.1.2 Usage Assumptions

The architecture, and in particular the way editing of pipelines and rules in Administration
Frontend is solved, is based on several assumptions about how ODCleanStore will be used. In
this section we try to give an overview of these assumptions.

• Data sent to Input Webservice are expected to be reasonably small. ODCleanStore
is designed to technically handle even very large data, however, for example results of
Quality Assessment may not be relevant for a large graph because a small mistake in
several values would decrease the Quality Assessment score for the whole large dataset.
Motivation for this assumption is based on planned integration with project Strigil (see
related work in Chapter 13).
• Pipeline creators understand the data for which their pipelines are created but not

necessarily understand data for pipelines created by other users. For this reason, editing
is limited to an author of a pipeline so that a pipeline creator’s pipelines cannot be broken
by other users without his knowledge.
• The team of people working with a deployed ODCleanStore may be decentralized and

open, for example students using a shared instance for their own projects. For that
reason, the system should be robust, permissions should be reasonably limited, a single
user shouldn’t be able to block the whole system and there should be a possibility to
correct wrong configuration for administrators.
• We expect that pipeline creators will usually be data producers using the Input

Webservice at the same time. These users need some technical knowledge – at least
they should understand RDF and SPARQL. On the other hand, data consumers need
not be technically skilled or understand RDF, even though it is benefitial. Data for
these users may be presented in the HTML output of Output Webservice or through a

9

CHAPTER 3. IMPLEMENTATION 10

third-party interface.

3.1.3 Architectural Features

3.1.3.1 Components

ODCleanStore consists of several components that are (mostly) loosely-coupled only through
a simple interface specified in advance. This made it easy divide tasks among developers and
enabled them to work independently.

3.1.3.2 Internal Interfaces

In order to minimize interfaces between parts of ODCleanStore, to minimize system
requirements and to make the system more robust, we decided to prefer communication through
data shared in database.

There is no direct interface between Engine and Administration Frontend, but the
Administration Frontend saves all configuration to a relational database from which the Engine
can retrieve it. This enbles updates of settings in transactions, prevents synchronization issues
and enables the two parts to run completely independendently (even on separate machines).

Transformers run in a pipeline are isolated and don’t know about each other. Instead
of passing data to be transformed through an interface in memory, only the names of named
graphs where data are stored are passed to each transformer. This enables to write transformers
that are oblivious to ODCleanStore as much as possible and only need to work with data by
manipulating the database. Also, it gives transformers the full power of the SPARQL/SPARUL
language. Although we should note that in practice, the transformer implementation may be
tied with the use of Virtuoso as the underlying database, this is not such a downside because
Virtuoso is one of the most popular RDF databases.

3.1.3.3 Extensibility

The main point of extensibility are custom transformers (see Section 9.3). Because one only
needs to implement a simple interface and is not bound to any specific technology (except of
the limitations of the underlying Virtuoso database), transformers provide a very powerful way
how to extend data processing capabilities.

3.1.3.4 Interoperability

The external interfaces are implemented using standard technologies (SOAP for Input Web-
service, REST for Output Webservice) and standard formats (RDF/XML, Turtle/Notation3).
This should minimize the effort for integration with third-party applications communicating
with ODCleanStore. We also provide a Java library for accessing the Input Webservice to
futher minimize the effort.

3.1.3.5 Used Technologies

The choice of Java for implementation and Virtuoso as the underlying database ensure platform
independence.

CHAPTER 3. IMPLEMENTATION 11

Since Java is a very wide-spread language, ODCleanStore can be extended with minimum
effort for learning new technologies (e.g. when adding new transformers).

3.1.3.6 Scalability

Although currently the Engine is processing data sequentially, it is designed for parallel
processing in the future. It could even be extended to work in a distributed manner on several
machines.

Most of the work the Input Webservice has is with data processing in pipelines. Since
pipelines can run independently, each Engine instance could even use a dedicated database
instance for dirty data.

On the other hand, the Output Webservices uses the clean database in a read-only manner
and thus could be also deployed on several database instances if database replication is put in
place.

3.2 Other Requirements

The assignment of the project impose several additional requirements. This section lists how
they were satisfied.

It should be easy to incorporate other components, such as a component computing popularity
of the data sources. This requirement is satisfied with the introduction of custom transformers.

The application will involve graphical user interface enabling management of all kinds of policies
etc. Administration Frontend enables management of all relevant settings. In addition, several
user roles are supported and user accounts can be managed from Administration Frontend.

The application will run at least on Windows 7, Windows Server 2008, Linux. ODCleanStore
requires Java Runtime Environment and Virtuoso installation, both supported on all of the
listed platforms. ODCleanStore has been tested on Windows XP, Windows 7, Windows Server
2008 and Debian and Gentoo distributions of Linux.

Application will be freely available under Apache Software License. ODCleanStore is published
under the required license (see Administrator’s & Installation Manual) and source codes
available at a public repository at SourceForge.net

3.3 Used Technologies

3.3.1 Implementation Language

The chosen language for implementation is Java. The reason is that there are many libraries
and tools required for implemenation accessible in Java, it enables platform independence (one
of the requirements on ODCleanStore) and also it is very wide-spread so that developers don’t
need to learn a new syntax.

CHAPTER 3. IMPLEMENTATION 12

3.3.2 Database

Openlink Virtuoso1 is used as the underlying data store. It is the most popular RDF storage
with a solid support. Both a commercial version and Open Source edition2 exists.

RDF data store provided by Virtuoso supports reasoning, most notably owl:sameAs
link resolution, which proved essential for Query Execution/Conflict Resolution components.
Virtuoso also provides a relational database which relieves us from the need of another database
for that purpose.

The downside is somewhat buggy behavior (especially SPARQL query parsing) and lack of
working support for transactions with RDF data.

3.3.3 Administration Frontend

Apache Wicket3 is used for implemenation of the Administration Frontend. It is a component
system for writing web applications in Java. Advantages are proper mark-up and logic
separation, POJO data model and rapid development of this particular type of web application.
Wicket was also chosen by our sister project Strigil4 so a more tight integration of the two tools
may be possible in the future.

Spring5 is used for simplified access to the relational database and transaction management.
Use of Hibernate6 for the DAO layer was rejected because of integration problems with Wicket.

3.3.4 Libraries

Jena

Apache Jena7 is a library for manipulation with RDF data. It supports represenation of
RDF data in memory, parsing, loading and updating of RDF models. In ODCleanStore, it
is used mainly for representation of RDF triples (quads) and serialization of RDF, because
other features proved problematic when used with large data.

We chose Jena over its alternative Sesame8 because it supports working with named graphs
through NG4J and we had previous experience with it.

NG4J

NG4J9 extends Jena with named graphs API.

1http://virtuoso.openlinksw.com/
2http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
3http://wicket.apache.org/
4http://strigil.sourceforge.net/
5http://www.springsource.org/
6http://www.hibernate.org/
7http://jena.sourceforge.net/
8http://www.openrdf.org/
9http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/

http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://wicket.apache.org/
http://strigil.sourceforge.net/
http://www.springsource.org/
http://www.hibernate.org/
http://jena.sourceforge.net/
http://www.openrdf.org/
http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/

CHAPTER 3. IMPLEMENTATION 13

Restlet

Restlet10 is an open source lightweight RESTful web framework for Java. Output Webservice
is built on Restlet.

SLF4J

SLF4J11 is a flexible and efficient library used for logging.

3.3.5 Development Tools

Maven

Apache Maven12 is used as the build tool. It was chosen over Apache Ant because Maven
saves work with its many available plugins (such as Maven Jetty Plugin) and offers simple
management of dependencies.

Git

Git is used as the version control system. We used it because it enables simple manipulation
with branches and merging but most importantly it is less dependent on a central server whose
potential unavailability was identified as a potential risk.

10http://www.restlet.org
11http://www.slf4j.org/
12http://maven.apache.org/

http://www.restlet.org
http://www.slf4j.org/
http://maven.apache.org/

4. Setting up Development
Environment

4.1 Quick Start

4.1.1 Tools

In order to to prepare environment for building ODCleanStore, first make sure to have installed
all necessary tools:

• Java Development Kit1 version 6 or newer
• Git version control system2

• Apache Maven3

Also, make sure you have all the binaries used in the following steps on your classpath.

4.1.2 Obtaining sources

ODCleanStore sources are hosted at SourceForge.4 Use git to check out the sources:

git clone git://git.code.sf.net/p/odcleanstore/code odcleanstore-code

The above command will create a local clone of the repository in odcleanstore-code
directory.

4.1.3 Building binaries

Move to directory odcleanstore within your local clone of the repository which contains the
root maven project (pom.xml). Then build the project using maven:

cd odcleanstore-code/odcleanstore

mvn clean package install

After that, Engine binaries can be found in directory odcleanstore/engine/target and
the WAR file of Administration Frontend at odcleanstore/webfrontend/target. Now you
can deploy the application as described in Administrator’s & Installation Manual.

1www.oracle.com/technetwork/java/javase/downloads/
2http://git-scm.com/
3http://maven.apache.org/
4http://sourceforge.net/p/odcleanstore/code/

14

www.oracle.com/technetwork/java/javase/downloads/
http://git-scm.com/
http://maven.apache.org/
http://sourceforge.net/p/odcleanstore/code/

CHAPTER 4. SETTING UP DEVELOPMENT ENVIRONMENT 15

4.2 Repository structure

4.2.1 Branches

There are several branches in the git repository. The latest development version of is on
branch master. Then there are release branches for each release named release-0.1.x,
release-0.2.x etc. which contain stable versions for releases packages. Each commit that
was used to prepeare a release package is labeled with a tag release-<version>. Finally, there
are feature branches prefixed with feature-.

Common development takes place on branch master. New feature branches are created for
features that may or may not be accepted or that need time to be finished before they are
applied to master. When whey are finished, they are merged to master and the branch may
be removed in time. Release branches stem from master for every new major release. Fixes
and modifications for minor releases take place on release branches and may be merged from/to
master.

4.2.2 Directory structure

This is an outline of directory structure in the git repository:

data/

initial db import/ – database import files

clean db/ – SQL files to be imported to the clean database

dirty db/ – SQL files to be imported to the dirty database

odcs configuration/ – the default ODCleanStore configuration file

virtuoso configuration/ – configuration files for Virtuoso database instances

doc/ – documentation sources (in LATEX)

odcleanstore/ – Java sources

backend/ – sources of odcs-backend artifact (transformers, Query Execution, Conflict
Resolution)

comlib/ – sources of odcs-comlib artifact (code related to sending data to Input
Webservice)

conf/ – configuration files for development in Eclipse

core/ – sources of odcs-core artifact (common code shared by other artifacts)

engine/ – sources of odcs-engine artifact (Engine component)

installer/ – sources of odcs-installer artifact (ODCleanStore installer)

inputclient/ – sources of odcs-inputclient artifact (Java client for Input Webservice)

simplescraper/ – simple Input Webservice import tool

simpletransformer/ – example of a custom transformer

webfrontend/ – sources of Administration Frontend

pom.xml – the root maven POM file

CHAPTER 4. SETTING UP DEVELOPMENT ENVIRONMENT 16

4.3 Maven Build

The project is divided into several artifacts. The root POM (pom.xml) in odcleanstore
directory defines the parent project while each component of ODCleanStore is in a separate
artifact in subdirectories of odcleanstore. These artifacts are:

• odcs-core – common code shared by other artifacts; also defines interfaces for custom
transformers
• odcs-backend – predefined transformers, Query Execution and Conflict Resolution
• odcs-engine – Engine component (running Input and Output Webservice and the data

processing queue)
• odcs-comlib – components shared by odcs-inputclient and Input Webservice
• odcs-webfrontend – Administration Frontend web application
• odcs-installer – ODCleanStore installer
• odcs-inputclient – client library for Input Webservice (provides a Java API for

accessing the webservice)
• odcs-simplescraper – a simple command-line tool for importing data through Input

Webservices
• odcs-simpletransformer – example of a custom transformer

It is recommended to always build using the root POM. Building from subprojects may
require issuing mvn install on the root POM first. The entire project can be build with the
following command:

cd odcleanstore-code/odcleanstore

mvn clean package

There are two profiles in addition to the default one in the root POM.

• javadoc profile – enables generation of javadoc (which is disabled in the default profile).
• systest profile – enables unit tests in systest/ subdirectories, which test functionality

related to the database. In order to run these tests, a new Virtuoso instance with settings
as in /data/virtuoso configuration/virtuoso.ini-test must be set up first.

Maven build for the selected profile can be executed with command line option -P:

mvn clean package -P javadoc

mvn clean package -P systest

5. Shared Code
Code shared by multiple components in ODCleanStore is extracted to Maven artifact
odcs-core. It contains:

• Classes for accessing configuration from the global configuration class.
Java package: cz.cuni.mff.odcleanstore.configuration
• Helper classes for accessing the Virtuoso database.

Java package: cz.cuni.mff.odcleanstore.connection
• Helper classes for imports of data to Virtuoso database from files.

Java package: cz.cuni.mff.odcleanstore.data
• Classes related to transformer interface.

Java package: cz.cuni.mff.odcleanstore.transformer
• Definitions of vocabularies used in ODCleanStore.

Java package: cz.cuni.mff.odcleanstore.vocabulary
• And other utility and helper classes, such as unique URI generators, filesystem utilities

etc.

5.1 Configuration

The global configuration can be accessed using static methods of ConfigLoader. First, the
configuration must be loaded using loadConfig() methods. Both Engine and Administration
Frontend ensure that this is done as soon as they start so that other components may access
the configuration already when they are loaded. See Administrator’s & Installation Manual for
description of the configuration file.

Figure 5.1: Diagram of (selected) configuration classes

17

CHAPTER 5. SHARED CODE 18

Configuration for each component is in classes called XXXConfig inheriting from
ConfigGroup. Each instance of ConfigGroup loads configuration relevant only for that
component so as to minimize dependencies. Configurations for all components are grouped
in Config class accessible from ConfigLoader.

5.2 Database Access

Classes JDBCConnectionCredentials and SparqlEndpointConnectionCredentials are
containers for information necessary for connecting to the database.

Administration Frontend uses its own database access layer using Spring templates. The
rest of ODCleanStore should use classes VirtuosoConnectionWrapper and WrappedResultSet.
These two classes provide methods for both querying and updating the relational database and
working with SPARQL. They also provide methods for conversion of Virtuoso SQL types to
Java types, working with transactions etc. Note that SPARQL update operations should be
executed with log level set to AUTOCOMMIT (default).

Use of VirtuosoConnectionWrapper is also recommended for implementation of custom
transformers. An example of how it can be used is in Listing 5.1.

@Override

public void transformGraph(TransformedGraph inputGraph, TransformationContext context)

throws TransformerException {

VirtuosoConnectionWrapper connection = null;

WrappedResultSet resultSet = null;

try {

connection = VirtuosoConnectionWrapper.createConnection(

context.getDirtyDatabaseCredentials());

String query1 = "SPARQL SELECT ?s WHERE {?s ?p ?o}";

resultSet = connection.executeSelect(query1)

while (resultSet.next()) {

String s = resultSet.getString("s");

}

String query2 = "SPARQL INSERT INTO <a> { <c> <d> }";

connection.execute(query2);

} catch (DatabaseException e) {

throw new TransformerException(e);

} catch (SQLException e) {

throw new TransformerException(e);

} finally {

if (resultSet != null) { resultSet.closeQuietly(); }

if (connection != null) { connection.closeQuietly(); }

}

}

Listing 5.1: Example of programmatic access to Virtuoso database from a transformer

CHAPTER 5. SHARED CODE 19

5.3 Data Import

When importing data to Virtuoso, one should use the GraphLoader class or methods in
VirtuosoConnectionWrapper. These make Virtuoso import the data itself. Other methods,
such as using the Jena library may fail when used with too large data. Note that when
importing from a file, it must be in directory listed in DirsAllowed directive of Virtuoso. See
also engine.clean import export dir configuration option.

6. Engine

6.1 Purpose

Engine runs the whole server part. This is the component that actually processes the RDF
data. It also starts Input and Output Webservices and thus provides the outer interface for
accepting data and querying over data.

6.2 Implementation

Class Engine contains the main() method which represents the entry point of the application.
It checks the environment, loads and validates configuration and starts the services that Engine
consists of. Thereafter, Engine periodically updates its state in the database (for monitoring
from Administration Frontend) and waits for shutdown (using the standard JVM shutdown
hook).

There are timeouts for service initialization and shut down. When the timeout is exceeded,
the service is finished forcibly and Engine stops.

6.2.1 Services

Engine consists of three independent services: InputWSService, OutputWSService, and
PipelineService for Input Webservice, Output Webservice and pipeline processing,
respectively. Services inherit from a common base class Service. Services are initialized
and started as soon as Engine is started and can be asynchronously shut down when Engine is
being shut down. Services have their own state and inform Engine about its changes.

Engine is implemented as a multithreaded server. Multiple requests for both Input and
Output Webservice can be handled at the same time. The data processing part processes
named graphs sequentially, one at a time. Engine is implemented so that extending to parallel
data procesing should be simple, however.

6.2.2 Transactional Processing

Data processing in ODCleanStore is done by running a pipeline of transformers on the processed
set of named graphs. Running a pipeline is a long-lasting operation on potentionally large
data. Databases, including Virtuoso, usually process such operations in a non-transactional
way. Engine, however, ensures a transactional character of running a pipeline.

As long as used transformers adhere to the contract specified in Section 9.2, pipelines have
all ACID properties. In addition, an increased attention was given to robustness of Engine
to errors. The foundation of this robustness is in implementation that ensures that Engine
can be shut down at any time without permanent loss of data integrity. These features were
accomplished in the following way:

1. RDF data processing is divided into a sequence of operations that move from one
consistent state to another consistent state.

20

CHAPTER 6. ENGINE 21

2. All changes of state data at the beginning and end of each operation are executed strictly
in a context of single transaction in the relational database.

3. In case of an error during an operation, the operation can be always either rolled back or
finished.

4. Data processing is executed in the isolated dirty database instance so that inconsistent
states of data being processed are invisible to the outside.

5. Since moving data from the dirty database instance to the clean database instance cannot
be executed in a transaction, the named graphs inserted to the clean database are made
invisible to Query Execution by adding a special prefix to their names. Query Execution
ignores all graphs with this prefix. After the import is complete, the named graphs are
renamed and made visible for queries. If the new data in the clean database replace older
data after re-running a pipeline on them, the old data would be made invisible at the
same time by adding the special prefix to them and deleted afterwards.

Several other mechanisms for transactional processing provided by Virtuoso were examined
during development. They proved very limiting and often even caused the database instance
to crash, however. Transactions for RDF data in Virtuoso were rejected for this reason and
transactional properties are ensured by the mechanism presented above.

All services are also resilient to a loss of database connection. Engine doesn’t need to restart
when the connection is regained again. Input Webservice and pipeline processing require
connection to both database instances, Output Webservice needs only the clean database
instance.

6.2.3 Database Access

Engine uses class DbOdcsContext extending DbContext which wraps VirtuosoConnectionWrapper
and provides transactional processing of relational data. Class SQL contains all SQL queries
used by DbOdcsContext.

Note that relational database (in the clean database instance) is also the only means of
communication with Administration Frontend. Settings for Engine managed in Administration
Frontend are written to relational database from where Engine loads it and vice versa –
Engine updates its status and state of graphs processing in the relational database from where
Administration Frontend can load it.

6.3 Input Webservice

6.3.1 Purpose and Features

Input Webservice is a multithreaded SOAP webservice that accepts new data and queues them
for data processing by a pipeline. It is implemented with a streaming SOAP message processing
so that memory usage is minimized and even large data can be accepted. Input Webservice
also supports secure communication over HTTPS.

The counterpart of Input Webservice on the client side is odcs-inputclient library
which is provided to data producers for convenience. Shared parts of Input Webservice
and odcs-inputclient are in library odcs-comlib. odcs-comlib is implemented with

CHAPTER 6. ENGINE 22

minimum memory requirements compared to the standard jax-ws implementation. Received
data are evaluated as soon as they are received and errors are reported to the client
immediately (unlike jax-ws). Streaming processing of the SOAP message is implemented using
javax.xml.parsers.SAXParser supplemented by SOAP 1.1 envelope schema validation in
odcs-comlib.

WSDL and XSD schema of the SOAP service are parts of Input Webservice as embedded
resources and dynamically served according to the HTTP request.

When Input Webservice is started, it starts a HTTP server listening on a given port and
then tries to run recovery. If there are any unfinished requests from the previous run, then their
records in the database and data files are deleted. HTTP 503 – Service unavailable response is
given until recovery is finished.

Shutdown of the service stops all pending requests and the HTTP server.

6.3.2 Implementation

The implementation is in classes SoapMethodInsertExecutor extending SoapMethodExecutor
in a way similar to the standard DefaultHandler for SAXParser. SoapMethodExecutor is part
of odcs-comlib and filters out parts of the message that belong to the SOAP protocol. The
main execution part of message processing is in the InsertExecutor class which subsequently
takes input parameters and saves received data to the filesystem as files with suffix -d.ttl or
-d.rdf for the payload data, suffix -m.ttl or -m.rdf for metadata and -pvm.ttl or -pvm.rdf
for provenance metadata, depending on the serialization format (Turtle or RDF/XML). In case
of success, it signalizes that a new named graph was accepted to pipeline service which will
eventually run a transformer pipeline on the new data.

If updating the state of processing in the relational database fails, Input Webservice
retries with in an interval defined in global configuration. If the process of receiving data
fails in other cases, InsertExecutor throws an InsertExecutorException exception which
can assemble a InsertException SOAP message for the client. These messages are sent in
InputWSHttpServer together with other errors in the SOAP protocol. Created files are deleted
on error and so are records of the import in the relational database.

6.4 Pipeline Service

6.4.1 Purpose

Pipeline Service is responsible for processing of data which are marked to be processed or
deleted. Data processing is realized by transformers that are applied to a set of related named
graphs in a pipeline. Pipelines work exclusively on data in the dirty database instance and
pipeline service is responsible to move the data to the clean database when a pipeline finishes
successfully.

Data to be processed are either new named graphs stored through Input Webservice, or
data that were marked for deletion or for processing in Administration Frontend. The last case
occurs when a user chooses to re-run a pipeline on data already stored in the clean database.

CHAPTER 6. ENGINE 23

Copy of this data is created in the dirty database where it is processed by the pipeline. After
that, the processed version of data replaces the original in the clean database.

6.4.2 Graph States

Every named graph inserted through Input Webservice has a record in relational table
DB.ODCLEANSTORE.EN INPUT GRAPHS with an associated state, among other things. The states
can be:

IMPORTING

The named graph is being imported through Input Webservice.

QUEUED FOR DELETE

The named graph is queued for deletion. When a graph is deleted, all related graphs in
both database instances are deleted. Related temporary files are deleted as well.

QUEUED URGENT

Reserved for future use.

QUEUED

Named graph is queued to be processed by its respective pipeline.

PROCESSING

Named graph is being processed in a pipeline. That means the graph is loaded from
temporary Input Webservice files or the clean database, and pipeline transformers are
applied to it. All settings for the pipeline including the plan of transformers to execute
and their assigned rule groups are loaded only when the graph transitions to this state so
that their consistency during the pipeline processing is ensured.

PROCESSED

Transformers were successfully applied to the named graph and the data are being moved
to the clean database into named graphs whose name starts with a special prefix hiding
them from Query Execution (see point 5 in Section 6.2.2). Let us call this prefix the
temporary prefix.

PROPAGATED

The processed named graphs were all moved to the clean database. If there was an old
version of the data, the old named graphs are prefixed with the temporary prefix.

OLDGRAPHSPREFIXED

The temporary prefix is removed from the processed graphs and the possible old versions
of named graphs, now prefixed with the temporary prefix, are removed.

NEWGRAPHSPREPARED

Related graphs in the dirty database are deleted.

FINISHED

The processing of the named graphs was successfully finished and the data are stored in
the clean database.

CHAPTER 6. ENGINE 24

DELETING

The named graphs are being deleted in the clean and/or dirty database instance. Possible
temporary files stored by Input Webservice will be also deleted.

DELETED

The named graph was successfully deleted.

WRONG

An error occurred during the named graph processing.

DIRTY

If an error occurs while the named graph is in state PROCESSING or PROCESSED, the graph
is first marked as DIRTY and Engine cleans up unfinished work and only after that the
graph is moved to state WRONG.

6.4.3 Implementation

Data processing in Engine is driven by settings in the relational database which are managed
from Administration Frontend.

Engine logs its activity to a log file called odcs.engine.log in the working directory of Engine.
In addition, there is a log file for each transformer instance where the respective transformer
logs its activity. These transformer instance logs are in the working directory of the respective
transformer.

When shutdown is called on the pipeline processing service then if there is a running
transformer, its shutdown() method is called. Engine waits until the current operation is
finished or the given timeout is exceeded and the finishes the pipeline processing service.

Running a pipeline is transactionally safe, as explained in Section 6.2.2. If an error
is caused by Engine (e.g. when it is shut down forcibly), the pending operations will be
finished eventually. When an error occurs and a graph is in PROPAGATED, OLDGRAPHSPREFIXED
or NEWGRAPHSPREPARED, the pipeline service continues in a forward way on recovery; other
temporary states are rolled back. If an error is caused by a transformer, then the named graph
is moved to state WRONG and it is up to the user to decide what to do next with the graph. An
overview of failed graphs is in Administration Frontend. The reason why the transformer failed
can be fixed and the pipeline re-run on the graph, or the graph may be queud for deletion.

If an error is caused by unavailability of a Virtuoso database, Engine detects it and pending
processing is retried when Engine is started again.

Classes that cover implementation of pipeline service are PipelineService, which
handles processing of named graphs in different states, PipelineGraphManipulator
for manipulation with named graphs (e.g. moving between database instances) and
PipelineGraphStatus for working with state data (e.g. loaded transformer instances for the
processing pipelines). PipelineGraphTransformerExecutor called from PipelineService is
responsible for executing transformers on named graphs and TransformationContext and
TransformationGraph are implementations of context objects passed to transformers.

CHAPTER 6. ENGINE 25

6.5 Output Webservice

6.5.1 Purpose

Output Webservice is a RESTful webservices for queries over data in the clean database. More
details about types of queries and request format are described in User Manual.

6.5.2 Implementation

Output Webservice is built on top of the Restlet library. OutputWSService started by Engine
registers a Restlet application implemented by class Root which sets up URI routes and handlers
for each type of query.

Each type of query is handled by a class inheriting from QueryExecutorResourceBase which
in turn implements Restlet ServerResource. This base class loads necessary configuration and
handles requests (methods annotated with Restlet @Get and @Post annotations) – parses request
parameters (as described in User Manual), delegates the execution to the abstract execute()
method implemented in child classes and handles returning of a proper response in case of an
error.

Figure 6.1: Diagram of selected Output Webservice classes

Classes implementing the actual execution of the query are UriQueryExecutorResource,
KeywordQueryExecutorResource, NamedGraphQueryExecutorResource and
MetadataQueryExecutorResource. They redefine the abstract execute()method where query-
specific parameters are parsed and the execution is delegated to the Query Execution compo-
nent. Instance of the QueryExecution class is shared between requests in order to utilize
caching implemented in Query Execution. Finally, the result of the query is formatted and sent
to the user.

6.5.3 Output Formatters

Query results returned from Query Execution are formatted using the format requested by the
user. Formatting is done by classes implementing QueryResultFormatter.

CHAPTER 6. ENGINE 26

The default formatter is HTMLFormatter which outputs results in HTML. RDFXMLFormatter
and TriGFormatter inherit from RDFFormatter and output results in RDF/XML and TriG,
respectively. DebugFormatter formats result for output to console and is not accessible for
users.

Figure 6.2: Diagram of output formatters hierarchy

6.5.4 Extending

In order to add a new type of query to Output Webservice, the following steps should be taken:

1. Implement a new ServerResource executing the query, preferably inheriting from
QueryExecutorResourceBase. Typically, the actual query will be delegated to the Query
Execution component – see Section 7.4.

2. Register the new ServerResource in method Root#createInboundRoot().

7. Query Execution

7.1 Purpose

The purpose of Query Execution is to retrieve result for a query (asked through Input
Webservice), resolve conflicts using the Conflict Resolution and return result.

Triples that Query Execution retrieves are:

1. Triples relevant for the query (e.g. containing the given URI).
2. Triples with metadata about named graphs containing triples from (1).
3. Triples containing human-readable labels for URI resources occuring in triples from (1).

A special case is the metadata query which retrieves only named graph metadata.
Because the result of conflict resolution depends on the data it is given, Query Execution

and Conflict Resolution are not independent but rather Query Execution extracts exactly the
data that Conflict Resolution needs and calls it directly.

7.2 Interface

The public interface of the Query Execution component is represented by class
QueryExecution.

This class exposes methods for executing all kinds of supported queries and returns
result as an instance of MetadataQueryResult (wraps collection of provenance metadata
triples and other metadata) or BasicQueryResult (wraps collection of CRQuads returned
from Conflict Resolution plus metadata). The query can be further parametrized by passing
QueryConstraintSpec and AggregationSpec affecting the retrieved data and the conflict
resolution process, respectively.
QueryExecution is thread-safe and its instance should be kept between requests in order

to effectively utilize caching.

7.3 Implementation

The actual implementation is in classes inheriting from QueryExecutorBase, each implementing
one type of query: URIQueryExecutor, KeywordQueryExecutor, NamedGraphQueryExecutor
and MetadataQueryExecutor. These classes are called internally from the QueryExecution
class. Implementing classes are in Java package cz.cuni.mff.odcleanstore.queryexecution.

For each query, the following steps are executed: input is validated, result quads retrieved
from the database, metadata and labels are retrieved from the database and conflict resolution
is applied to the result.

To improve performance, values that are used for each query but rarely changed are cached.
Cached values are: default aggregation settings, prefix mappings and label properties.

27

CHAPTER 7. QUERY EXECUTION 28

Figure 7.1: Diagram of main Query Execution classes

7.4 Extending

In order to implement a new type of query, the following steps should be taken:

1. Create a class implementating the new query, preferably inheriting from QueryExecutorBase.
2. Extend QueryExecution class with method for executing the query.
3. Extend Input Webservice to provide access to the new query for users.

7.5 Database

Query Execution retrieves RDF data from the clean database instance. Because Virtuoso
doesn’t fully support transactions with RDF data, the clean database may contain incomplete
data partially inserted by Engine. In order to filter such data from the result, Query Execution
ignores all named graphs whose URI starts with an agreed prefix1 given by Engine to such
named graphs.

In addition, Query Execution loads settings from the following tables in relational database
(see Appendix B):

• DB.ODCLEANSTORE.QE LABEL PROPERTIES
• DB.ODCLEANSTORE.CR PROPERTIES
• DB.ODCLEANSTORE.CR SETTINGS
• and tables referenced from tables above

1http://opendata.cz/infrastructure/odcleanstore/internal/hiddenGraph/

8. Conflict Resolution

8.1 Purpose

Data stored in ODCleanStore may come from multiple sources and conflicting statements may
emerge. For example, data about a city stored in ODCleanStore may state multiple different
values for its population. The purpose of Conflict Resolution is to resolve such conflicts
according to default or user-defined policies (e.g. show the latest, average or all values for
the population). In addition, it computes an estimate of aggregate quality of each RDF triple
in the resulting data and provides provenance tracking, i.e. provides URIs and metadata of
named graphs from which the resulting value was selected or calculated from. Finally, Conflict
Resolution can filter out old versions of data for which a newer version was inserted.

8.2 Interface

Interface of the Conflict Resolution component is represented by Java interface ConflictResolver.
It contains a single operation:

Collection<CRQuad> resolveConflicts(Collection<Quad> quads)

throws ConflictResolutionException;

Conflict Resolution accepts a collection of quads (RDF triple + named graph) and returns a
collection of CRQuads (quad + aggregate quality + source named graphs).

An instance of ConflictResolver can be obtained from factory class ConflictResolverFactory.
Constructor of this class takes query-independent settings and its createResolver() methods
takes query-dependent settings (named graph metadata, sameAs links, aggregation settings,
preferred URIs) and returns a new instance of ConflictResolver for these settings. The sig-
natures of the constructor and the createResolver() method are in Listing 8.1.

public ConflictResolverFactory(

String resultGraphPrefix,

ConflictResolutionConfig globalConfig,

AggregationSpec defaultAggregationSpec)

public ConflictResolver createResolver(

AggregationSpec aggregationSpec,

NamedGraphMetadataMap metadata,

Iterator<Triple> sameAsLinks,

Set<String> preferredURIs)

Listing 8.1: ConflictResolverFactory interface

8.3 Implementation

The actual implementation of the ConflictResolver interface is in class ConflictResolverImpl.
Its constructor requires two parameters – one of type ConflictResolverSpec contains all set-

29

CHAPTER 8. CONFLICT RESOLUTION 30

tings for conflict resolution and one of type ConflictResolutionConfig is a container for
global settings (configurable in the ODCleanStore configuration file). ConflictResolverSpec
contains default and per-property aggregation methods to be used, metadata of relevant named
graphs including Quality Assessment scores, additional owl:sameAs links to consider and other
technical settings.

Implementation of the resolveConflicts() methods does the following:

1. owl:sameAs links are used to find resources representing the same entity. The
implementation is in class URIMappingImpl which uses the DFU (Disjoint Find and
Union) data structure with path compression to find weakly connected components of
the owl:sameAs links graph.

2. URI resources in input quads are translated so that a single URI is used for every resource
representing the same entity using mapping created in the previous step.

3. The resulting quads are sorted and grouped to clusters of (potentially) conflicting
quads, i.e. those sharing the same subject and predicate. Implemented in
ResolveQuadCollection.

4. Conflict Resolution iterates over groups of conflicting quads and applies the actual conflict
resolution procedure.

(a) The next group of conflicting quads is retrieved. All such quads have the same
value in place of the subject and predicate.

(b) If there are Identical triples which come from named graphs where one named graph
is an update of the other named graphs, the old versions are removed (see Section
10.4.2 for definition of an update).

(c) An aggregation method is chosen based on the predicate of quads in the current
group and conflict resolution settings.

(d) The aggregation method is applied to the current group of conflicting quads. The
output is a collection of CRQuads and it is added to the result.

5. The resulting CRQuads are returned.

We call steps 1-3 implicit conflict resolution and it doesn’t depend on the given aggregation
settings. It prepares input data for step 4 so that result quads and aggregate quality can be
computed independently on chosen resource URIs. Its time complexity is O(S logS+N logN)

where S is the number of owl:sameAs links and N number of input quads. Step 4 is applied to
sets of conflicting quads having the same subject and predicate so the context of aggregation
is given mainly by quad objects.

8.3.1 Aggregation Methods

Conflict Resolution accepts an argument of type ConflictResolverSpec which specifies which
agregation method should be used for which predicate, among other things. This is set either
by the user as a parameter of Output Webservice or a default setting in ODCleanStore is used.
The selected aggregation method determines how conflicts are resolved and aggregate quality
of the result is computed in step 4d of the conflict resolution algorithm.

An aggregation method is represented by Java interface AggregationMethod with the
following method:

CHAPTER 8. CONFLICT RESOLUTION 31

Collection<CRQuad> aggregate(

Collection<Quad> conflictingQuads,

NamedGraphMetadataMap metadata);

Objects implementing AggregationMethod are created by AggregationMethodFactory.
Classes implementing an aggregation method inherit from AggregationMethodBase and their
hierarchy is depicted on Figure 8.1.

Figure 8.1: Implementation classes of aggregation methods

There are two basic types of aggregations. First type called selected aggregations selects
one or more quads from input quads while the result of the second type called calculated
aggregation returns values computed from all the input quads (e.g. average). The common
functionality of these two types is in abstract classes CalculatedValueAggregation and
SelectedValueAggregation.

A special type of selected aggregation is BestSelectedAggregation which selects a single
best quad based on a metric given as an instance of AggregationComparator (Figure 8.2).

As an optimization, if there is only a single quad in a group of conflicting quads, a special
optimized SingleValueAggregation aggregation can be used because all aggregation methods
should return the same result in this case.

If the selected aggregation method cannot be applied to a value (e.g. average of a string
literal), the behavior depends on the given aggregaiton error strategy - the value may be either
discarded, or included in the result without aggregation applied.

CHAPTER 8. CONFLICT RESOLUTION 32

More details about each aggregation method and their time complexity can be found in
javadoc of the respective classes.

Figure 8.2: Comparators for BestSelectedAggregation

8.3.2 Quality and Provenance Calculation

The aggregation methods described in the previous section solve conflicts by calculating or
selecting values in place of the object of a quad (e.g. choose the quad with the highest Quality
Assessment score, the latest insertion date, maximum value in place of the object, or calculate
the average of all values in place of the object). In addition, they add provenance and quality
information.

The provenance information consists of a list of named graphs, let us denote them
source named graphs, from which the result was selected or calculated from. For calculated
aggregations, these are named graphs of all aggregated quads, for selected aggregations these
are named graphs containing the quad(s) selected to the result.

The aggregate quality estimate is done for each result quad and is based on several factors
based on real-world scenarios: quality scores of the source named graphs, number of graphs
that agree on a value and the difference between a value and other (conflicting) values.

8.3.2.1 Notation

An aggregation method works on quads having the same subject and predicate and they may
only differ in the object and the named graph. Let n be the number of aggregated quads (in
a single group of conflicting quads). Let oi be the value in place of object and gi the named
graph of i-th quad.

Let sng(g) denote the Quality Assessment score of a named graph g and sp(g) the average
score of publishers of the named graphs. Both these values are given in named graph metadata
as input of conflict resolution (they are computed in advance by Quality Assessment and Quality
Aggregator transformers, respectively). s(g) denotes the total score of a named graph based
on sng(g) and sp(g) (see Section 8.3.2.3).

CHAPTER 8. CONFLICT RESOLUTION 33

Let agree(v) denote the set of named graphs that agree on the value v, i.e.

agree(v) = {gi | vi = v} .

Finally let q(v) denote the aggregate quality of a result quad that has value v as its object.

8.3.2.2 Constraints on Quality Calculation

The algorithm calculating aggregate quality was designed so that several constraints hold:

• If n = 1, then q(v1) = s(g1).
• If there is a named graph g asserting a non-conflicting value v, the quality (based just on

the value v) should be at least s(g).
• q(v) is increasing with Quality Assessment scores of source named graphs of quads having
v as object.
• q(v) is decreasing with increasing difference from other object values in input quads,

taking their Quality Assessment scores into consideration (higher Quality Assessment
score means higher weight of the value).
• If multiple source named graphs agree on the same value v, then q(v) is increased.
• If k sources with Quality Assessment scores equal to 1 (highest score) claim a value

completely different from value v, then quality of v should be decreased approximately k
times. If the sources have lower Quality Assessment scores, the decrease should be lower.

8.3.2.3 Quality Calculation

Aggregate quality q(v) is calculated in the following steps:

1. A total Quality Assessment score s(g) for each source named graph is determined. It is
calculated as

s(g) = αsng(g) + (1− α)sp(g),

where α ∈ [0, 1] is a configurable parameter.
2. Quality based on source named graphs is calculated. For each quad object value v, we

compute quality based on source named graphs, let us denote it q1(v).

q1(v) =

{
avg {s(g) | g ∈ {g1, . . . , gn}} calculated aggregations

max {s(g) | g ∈ agree(v)} selected aggregations

3. Next, the differences between conflicting values are taken into consideration. We use a
metric d : U × U → [0, 1] satisfying d(v, v) = 0 for this purpose.
We use d(x, y) = |(x − y)/avg(x, y)| in case of numeric literals, normalized Levenshtein
distance in case of string literals, difference divided by a configurable maximum value in
case of dates and d(x, y) = 1, where x 6= y, for URI resources, blank nodes and nodes of
incompatible types.
Whether decreasing the aggregate quality based on conflicting values is the right solution
depends on context, however. Predicate rdf:type often has multiple valid values which
are not in fact conflicting. Therefore, whether to decrease score based on conflicts is set
by the multivalue setting for the current predicate.

CHAPTER 8. CONFLICT RESOLUTION 34

If multivalue is false and there are conflicting values different from v, the quality of v
is reduced increasingly with the value of metric d and the score of the source of the
conflicting value:

q2(v) =

q1(v) ·
(
1−

∑n
i=1 s(gi)d(v,vi)∑n

i=1 s(gi)

)
multivalue is false for the current property

q1(v) multivalue is true for the current property

4. Aggregate quality should be increased if multiple values agree on the same value.

q3(v) = q2(v) + (1− q2(v)) ·min

(
−q1(v) +

∑
g∈agree(v) s(g)

C
, 1

)
,

where C ∈ N is a configurable constant.
5. Each aggregation method may adjust the general algorithm. In case of the CONCAT

aggregation, computing q2 and q3 doesn’t make sense and q(v) = q1(v) is returned. AVG
and MEDIAN aggregations return q(v) = q2(v), and finally q(v) = q3(v) is returned for
other aggregations.

8.3.2.4 Time Complexity

The time complexity of the aggregate quality computation for a fixed value v is O(n ·D), where
D is the complexity of the distance metric evaluation. This gives us the overall complexity of
O(n2 · D) for ALL and BEST aggregations, O(n log n + n · D for MEDIAN and O(n · D) for
others.

8.4 Time Complexity

Let N be the total number of input quads of the conflict resolution process, S number
of owl:sameAs links, G number of named graphs for which we have metadata given. Let
CQ = {cq1, cq2, . . . , cqK} be the set of groups of conflicting quads and ni = |cqi| be the size of
i-th group of conflicting quads. D is the complexity of distance metric evaluation.

The complexity of implicit conflict resolution algorithm is O(N logN + S logS). Grouping
the quads into clusters of conflicting quads requires sorting in O(N logN), assuming
comparison of two RDF nodes is in constant time. Filtering of old versions is implemented
in O(ni log ni logG) (NamedGraphMetadataMap is implemented using a TreeMap, could be
improved to O(ni log ni) with a HashMap). Finally an aggregation method is applied with
complexity given in Section 8.3.2.4.

To sum up, the total time complexity is:

• In case of ALL and BEST aggregation:

O

(
N logN + S logS +

K∑
i=1

(
ni log ni logG+ n2

iD
))

CHAPTER 8. CONFLICT RESOLUTION 35

• For aggregations other than ALL, BEST and MEDIAN:

O

(
N logN + S logS +

K∑
i=1

(ni log ni logG+ niD)

)

In the worst case when K = 1 and G = N (G ≤ N because at most N named graphs
can be among input quads and Conflict Resolution gets in fact metadata only for these named
graphs), this gives us

• In case of ALL and BEST aggregation:

O
(
N2D + S logS

)
• For aggregations other than ALL, BEST and MEDIAN:

O
(
N log2N +ND + S logS

)
Distance metric is evaluated in linear time for strings (modified Levenshtein distance) and

in constant time for other cases.

8.5 Extending

In order to add a new aggregation method, the following steps should be taken:

1. Implement the aggregation in a class implementing the AggregationMethod interface.
2. Create a constant representing this aggregation method in enum EnumAggregationType.
3. Extend AggregationMethodFactory to create an instance of the new aggregation.

If a new distance metric for a specific type of literal is to be added, this should be done in
the DistanceMetricImpl class.

9. Transformers – Introduction
In this section, by a transformer we mean a Java class implementing the Transformer interface
shown in Listing 9.1 (and other related classes used for implementation).

package cz.cuni.mff.odcleanstore.transformer;

public interface Transformer {

void transformGraph(TransformedGraph inputGraph, TransformationContext context)

throws TransformerException;

void shutdown() throws TransformerException;

}

Listing 9.1: Transformer interface

The purpose of a transformer is to somehow process data. The data are not passed in
memory, but rather stored in the (dirty) database instance and only the URI of the named
graph to be processed and connection credentials for accessing the database are given to the
transformer. This should minimize the need of complicated interfaces for data passing, make
it easier to work with large data, let the transformer choose its own method of accessing the
database and give it the full power of SPARQL/SPARUL (as implemented in Virtuoso).

The actual data processing should be implemented in the transformGraph() method. All
required information is passed in its arguments, one with information about the processed graph
and one about the environment – see Listings 9.2 and 9.3.

The shutdown method is called when Engine shuts down and can be used e.g. to release
acquired resources.

package cz.cuni.mff.odcleanstore.transformer;

import java.util.Collection;

public interface TransformedGraph {

String getGraphName();

String getGraphId();

String getMetadataGraphName();

String getProvenanceMetadataGraphName();

Collection<String> getAttachedGraphNames();

void addAttachedGraph(String attachedGraphName) throws TransformedGraphException;

void deleteGraph() throws TransformedGraphException;

boolean isDeleted();

}

Listing 9.2: TransformedGraph interface

package cz.cuni.mff.odcleanstore.transformer;

import java.io.File;

import cz.cuni.mff.odcleanstore.connection.JDBCConnectionCredentials;

public interface TransformationContext {

JDBCConnectionCredentials getDirtyDatabaseCredentials();

36

CHAPTER 9. TRANSFORMERS – INTRODUCTION 37

JDBCConnectionCredentials getCleanDatabaseCredentials();

String getTransformerConfiguration();

File getTransformerDirectory();

EnumTransformationType getTransformationType(); /* NEW or EXISTING */

}

Listing 9.3: TransformationContext interface

9.1 Transformer Instance Configuration

Each instance of a transformer in a pipeline may have its own configuration (for explanation of
the difference between transformer and transformer instance, see Section 2.1.1). From the
point of view of a transformer, it is a plain string which can be obtained by calling the
getTransformerConfiguration() method.

This configuration string can be edited in Administration Frontend. The transformer may
use the value in any way it needs, e.g. it may contain XML configuration, the recommended
practice is to use the Java Properties file format, however. This format is used by transformers
included by default in ODCleanStore unless stated otherwise.

Instances of important transformers (Quality Assessment, Data Normalization, Linker) can
be also configured by assigning rule groups to them in Administration Frontend.

9.2 Contract between Engine and Transformers

Although Virtuoso doesn’t fully support transactions over RDF data, data processing in
ODCleanStore is implemented so as to keep data consistent. In order to make it work, however,
a contract between Engine and transformers must be satisfied.

The Engine ensures that:

• When a transformer is applied to a transformed graph, no other transformer (in the same
nor different pipeline) is applied to it. In other words, the transformed graph is not
changed externally while a transformer is working on it.
• If the transformer throws an exception, all changes made in the pipeline on the graph in

the dirty database are safely reverted (and the state of the graph is changed to WRONG).
The graph may be processed again later. If the transformer was run on a graph already
in the clean database, the version in the clean database in intact.
• Transformers may use the directory given by the getTransformerDirectory() method

for they own purposes, e.g. storing temporary files, log files etc. It is a subdirectory
named as the ID of the executed transformer instance inside the “working directory” of
the transformer (configurable in Administration Frontend).
Data specific for one transformer instance may be stored in this directory. Data shared
by all instances of the same transformer may be stored in the parent directory of that
returned by getTransformerDirectory(). Engine ensures that this parent directory will
be the same for all instances of the same transformer (unless working directory is changed
in Administration Frontend, of course).

CHAPTER 9. TRANSFORMERS – INTRODUCTION 38

In return, transformers should satisfy:

• Transformers may add/update/delete data in the payload graph, metadata graph,
provenance graph or attached graphs. It may also add data to new graphs, but the
transformer must

1. register the graph by calling addAttachedGraph() before it writes any data to it,
2. make sure that the name of the new graph is unique in the database (transformer

may use the getGraphId() method to create names unique for each named graph).

Transformers shouldn’t modify contents of the dirty database in any other way.
• Transformers may access the clean database, but should use it only for reading.

Because other transformer in the pipeline may fail, the changes executed by the current
transformer in the dirty database may be discarded but changes in the clean database
would be kept which may cause inconsistencies. The same applies should the transformer
execute any other persistent actions.
• Transformer should only use the directory given by getTransformerDirectory() or its

parent directory for accessing the filesystem.

9.3 Custom Transformers

The administrator may extend data-processing capabilities of ODCleanStore by adding new
custom transformers. How to do so is described in Administrator’s & Installation Manual.

From the technical point of view, a transformer implementation must implement the
Transformer interface. This interface and other necessary classes are included in maven artifact
odcs-core, so that only this artifact need to be referenced.

Note that custom transformers should satisfy conditions listed in Section 9.2.

10. Transformers Included in
ODCleanStore

10.1 Quality Assessor & Quality Aggregator

10.1.1 Purpose

Quality Assessor: Data processed by ODCleanStore come in a raw form that may be
inconsistent with the expected format. The purpose of the Quality Assessor is to provide a way
to identify patterns in data that are responsible for those inconsistencies. This is achieved by
user-provided or generated rules that specify RDF data patterns and a degree of inconsistency
by use of SPARQL Select Where Clause and a coefficient that reduces the overall quality of
the processed data chunk (named graph) and a single floating point coefficient.

Quality Aggregator: For Conflict Resolution purposes it is important to be able to associate
a data source with quality of data it provides. Quality Assessor computes quality of individual
data chunks, these have to be aggregated into a quality indicator for their sources.

10.1.2 Interface

While the QualityAggregator is a trivial extension of Transformer the QualityAssessor
provides additional functionality – debugging:

package cz.cuni.mff.odcleanstore.qualityassessment;

public interface QualityAssessor extends Transformer {

public static interface GraphScoreWithTrace extends Serializable {

public String getGraphName();

public void setGraphName(String graphName);

public Double getScore();

public List<QualityAssessmentRule> getTrace();

}

public List<GraphScoreWithTrace> debugRules(HashMap<String, String> graphs,

TransformationContext context,

TableVersion tableVersion) throws TransformerException;

}

Listing 10.1: Quality Assessor interface

The method debugRules takes into account that any input graph may need to be loaded
to the database under a different name so that no collisions occur during debugging. Therefore
input graphs correspond to pairs 〈originalName, actualName〉 and are passed in HashMap. The
graph is expected to already exist in the database when this method is invoked. The context
parameter provides environment similar to the one during ordinary transformation of a graph.
tableVersion specifies whether committed or uncommitted versions of rule groups are to be

39

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 40

used. This approach allows the author of the debugged rule groups can test her latest revisions
of rules while she is not forced to save the changes and overwrite their previous form. The
output is a list of structures containing quality and all rules that affected it for each graph on
the input.

Generating Rules from Ontology

Another publicly accessible part of the interface to the quality assessment is the generation of
rules from ontologies.

package cz.cuni.mff.odcleanstore.qualityassessment.rules;

public class QualityAssessmentRulesModel {

public Collection<QualityAssessmentRule> compileOntologyToRules(String ontologyGraphURI)

throws QualityAssessmentException

}

Listing 10.2: Quality Assessment Rule Generation

The method compileOntologyToRules() expects a named graph ontologyGraphURI to be
in the database. The statements of the graph are considered a definition of an ontology and
are processed resource by resource and the following types of resources are handled:

• Functional property implemented as FunctionalProperty
• Inverse functional property implemented as InverseFunctionalProperty
• Enumerated property implemented as ConceptScheme

10.1.3 Implementation

Quality Assessment Rules

public QualityAssessmentRule (Integer id, Integer groupId, String filter, Double coefficient,

String label, String description)

Listing 10.3: Quality Assessment rule constructor

The data filters are described with SPARQL Where Clause1 followed by optional Group by
Clause2 and Having Clause3. The coefficient of quality is a number c ∈ [0, 1].

Assessment & Aggregation

The implicit Quality Assessor Implementation is bound to concrete rule groups at instantiation.
As any other transformer the Quality Assessor and Aggregator are provided with an input
named graph, a metadata graph and a list of groups of rules to be applied to the input. The
transformGraph method then does the following:

1http://www.w3.org/TR/rdf-sparql-query/#rWhereClause
2http://www.w3.org/TR/sparql11-query/#rGroupClause
3http://www.w3.org/TR/sparql11-query/#rHavingClause

http://www.w3.org/TR/rdf-sparql-query/#rWhereClause
http://www.w3.org/TR/sparql11-query/#rGroupClause
http://www.w3.org/TR/sparql11-query/#rHavingClause

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 41

Quality Assessor implemented by class QualityAssessorImpl

1. Assume the graph quality has the maximal value
2. Load committed versions of appropriate rules from database
3. For each rule determine whether the pattern is present in the input graph by means of
SPARQL SELECT COUNT(*) WHERE ... and decrease the graph quality accordingly and
log successful application of the rule

4. Store overall quality and all logged applications of rules to the metadata graph

The reason why SELECT is used in step 3 instead of ASK is that underlaying Virtuoso
supported GroupClause and HavingClause only in SELECT despite it being added to SPARQL
1.1 to a production rule expanding a shared nonterminal.

Debugging invokes the same implementation but does not store the resulting score and log
of rule applications into the database. This information is returned in a structured form of
GraphScoreWithTrace object (declared in listing 10.1) instead.

Quality Aggregator implemented by class QualityAggregatorImpl
The transformGraph method collects quality of all the graphs stored in the clean database

and the currently processed graph and calculates the average value which is then assigned to
the source. This operation is idempotent and thus robust to manual transformation of the
database content because it is always corrected after update of a graph published by the given
publisher.

Rule Generation implemented in QualityAssessmentRulesModel.compileOntologyToRules()
After the ontology is stored in the database in a separate named graph, its graph name can

be passed to the compileOntologyToRules() method. All resources specified in the ontology
are processed based on their rdf:type property.

Type of property p constraint checked by generated rule

owl:FunctionalProperty [x, y1], [x, y2] ∈ p→ y1 = y2
owl:InverseFunctionalProperty [x1, y], [x2, y] ∈ p→ x1 = x2
skos:ConceptScheme [x, y] ∈ p→ y ∈ p.hasTopConcept

10.2 Data Normalization

10.2.1 Purpose

The input data may come in different formats and flavours and it may show easier to normalize
it before further transformations instead of adapting the rest of the process for all the forms
the data may come in.

10.2.2 Interface

package cz.cuni.mff.odcleanstore.datanormalization;

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 42

public interface DataNormalizer extends Transformer {

public interface TripleModification extends Serializable {

public String getSubject();

public String getPredicate();

public String getObject();

}

public interface RuleModification extends Serializable {

public void addInsertion(String s, String p, String o);

public void addDeletion(String s, String p, String o);

public Collection<TripleModification> getInsertions();

public Collection<TripleModification> getDeletions();

}

public interface GraphModification extends Serializable {

public void addInsertion (DataNormalizationRule rule, String s, String p, String o);

public void addDeletion(DataNormalizationRule rule, String s, String p, String o);

public Iterator<DataNormalizationRule> getRuleIterator();

public RuleModification getModificationsByRule(DataNormalizationRule rule);

public String getGraphName();

public void setGraphName(String graphName);

}

List<GraphModification> debugRules (HashMap<String, String> graphs,

TransformationContext context,

TableVersion tableVersion) throws TransformerException;

}

Listing 10.4: Data Normalizer interface

The method debugRules takes into account that any input graph may need to be loaded
to the database under a different name so that no collisions occur during debugging. Therefore
input graphs correspond to pairs 〈originalName, actualName〉 and are passed in HashMap. The
context parameter provides environment similar to the one during ordinary transformation of
a graph. tableVersion specifies whether committed or uncommitted versions of rule groups
are to be used. The output is list of GraphModification structures describing how each of the
input graphs changed.

package cz.cuni.mff.odcleanstore.datanormalization.rules;

public class DataNormalizationRulesModel {

public Collection<DataNormalizationRule> compileOntologyToRules(String ontologyGraphURI)

throws DataNormalizationException;

}

Listing 10.5: Data Normalization Rule Generation

compileOntologyToRules() expects a named graph of a name ontologyGraphURI to be
present in the database. Its contents are interpreted as definition of an ontology and examined
as such.

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 43

10.2.3 Implementation

Data Normalization Rules

There exist three types of data normalization rules:

• INSERT,
• DELETE,
• MODIFY.

They all closely follow semantics of SPARQL update queries4. Due to incomplete support
for SPARQL 1.1, specificly missing BIND(expression AS var), it was necessary to allow use of
subqueries for data manipulation and transformation by introduction of $$graph$$ macro used
intead of iri in GraphRef which is replaced with actual graph name during the transformation.

Data Normalizer

1. Load committed versions of appropriate rules
2. Invoke SPARQL INSERT/DELETE/MODIFY on the input graph for all components of all

selected rules.

This process is further extended with modification detection for debugging purposes.
The underlaying software does not provide an easy way to determine triples affected by
application of a rule, thus it is necessery to compare original state of the graph with the
outcome of the operation (INSERT/DELETE/MODIFY) after each step. This considerably slows
down the whole process but provides precise information about what happend during the
graph transformation. The modification can be represented in a sense of standard diff
between two plain text resources. The method debugRules of DataNormalizer returns a
GraphModification structure containing differences grouped by rules that introduced them.
This extension does not affect the ordinary transformation procedure.

Rule generation

The method DataNormalizationRulesModel.compileOntologyToRules() searches for resources
with rdfs:range statements in the ontology graph in database and creates adequate rules. The
following rules can be generated:

• DataNormalizationBooleanRule
converts 0, 1, y, n, yes, no, true, false (case insensitively) to 0, 1
• DataNormalizationDateRule

attempts to interpret the converted value as date string (2012, 2012-01 . . .)
• DataNormalizationStringRule

converts to string so any subsequent calls to substring or regexp functions do not fail
• DataNormalizationNonNegativeIntegerRule

converts to number ≥ 0 dropping fractional part if any (1.9 7→ 1, −1 7→ 0, ”yes” 7→ 0)
• DataNormalizationNonPositiveIntegerRule

converts to number ≤ 0 dropping fractional part if any (1 7→ 0, −1.9 7→ −1, ”yes” 7→ 0)

4http://www.w3.org/Submission/SPARQL-Update/#rUpdate

http://www.w3.org/Submission/SPARQL-Update/#rUpdate

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 44

• DataNormalizationIntegerRule
drops fractional part of a number interpretation (1.9 7→ 1, −1.9 7→ −1, ”yes” 7→ 0)
• DataNormalizationNumberRule

converts to number (”yes” 7→ 0)

Number conversion uses Virtuoso built-in functions (min notnull, max notnull, sign,
abs, floor . . .) and thus heavily relies on their presence and implementation.

These rules cover the basic and often used XSD datatypes with a reasonable conversion
for general purposes. More specific transformations could be defined but are not suited for
implicit rule generation as they may not effectively cover usual cases or could even produce bad
results in different circumstances. For example, date conversions would often need additional
information about the source of unnormalized date substrings to recongnize the format. The
pre-transformation value is often ambiguous which could lead to incorrect interpretation
(confusion of month for day of the month).

10.3 Linker

10.3.1 Purpose

The main purpose of this transformer is to interlink URIs which represent the same real-world
entity by generating owl:sameAs links. It can be also used for creating other types of links
between differently related URIs. Silk framework5 is used as the linking engine.

10.3.2 Interface

While the Linker is a trivial extension of Transformer the Linker provides additional
functionality – debugging:

package cz.cuni.mff.odcleanstore.linker;

public interface Linker extends Transformer {

public List<DebugResult> debugRules(String input, TransformationContext context,

TableVersion tableVersion) throws TransformerException;

public List<DebugResult> debugRules(File inputFile, TransformationContext context,

TableVersion tableVersion, SerializationLanguage language) throws TransformerException;

}

Listing 10.6: Linker interface

The debugRules method has two variants. First one gets the input RDF data in a string
and tries to guess the format of the data by itself. Supported formats are RDF/XML and N3
(including its subsets - N-Triples and Turtle). The second one gets the data in a file, its format
is specified by the language parameter. It does not open the file, just passes it to Silk. The
context parameter provides environment similar to the one during ordinary transformation of
a graph. tableVersion specifies whether committed or uncommitted versions of rule groups

5http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 45

are to be used. The list of IDs of the linkage rules groups to be debugged is passed to the
Linker in its constructor. Output is a list of structures, one for each rule, containing rule label
and a list of links generated by it. Link is represented by a LinkedPair class, which contains
both interlinked URIs, corresponding labels (if found) and confidence of the link (real number).

Another publicly accessible methods can be found in the ConfigBuilder class. It contains
static methods for working with XML (namely Silk-LSL6) configuration file for Silk. The
following two methods are used for importing/exporting linkage rules from/to Silk-LSL:

package cz.cuni.mff.odcleanstore.linker.impl;

public class ConfigBuilder {

public static SilkRule parseRule(InputStream input)

throws javax.xml.transform.TransformerException, ParserConfigurationException,

SAXException, IOException { ... }

public static String createRuleXML(SilkRule rule, List<RDFprefix> prefixes)

throws ParserConfigurationException, DOMException, InvalidLinkageRuleException,

SAXException, IOException, javax.xml.transform.TransformerException { ... }

}

Listing 10.7: ConfigBuilder interface

10.3.3 Implementation

The actual implementation is in three classes. LinkerImpl implements the Linker interface,
ConfigBuilder creates XML configuration file in Silk-LSL and LinkerDao accesses the
database.

10.3.3.1 LinkerImpl

Usage of the linker starts by calling the LinkerImpl constructor, which takes a list of linkage
rule groups IDs and a boolean flag isFirstInPipeline as its arguments. Only when the flag
is set to true, linker deletes existing links before transforming existing graph (allready present
in clean database). This prevents multiple linkers in one pipeline from deleting their own links.
Next the transformGraph method is called, which does following steps:

1. Load linkage rules from the database.
2. Load all registered RDF prefixes from the database.
3. For each loaded rule:

(a) Create configuration file in Silk-LSL.
(b) Call Silk with this configuration (Silk.executeFile method).

At first the implementation was different. One configuration file was created for the whole
set of rules and passed to Silk only once. Then we discovered, Silk was processing the rules
one-by-one anyway, therefore we changed the implementation to improve logging possibilities
without really affecting the performance.

6http://www.assembla.com/wiki/show/silk/Link_Specification_Language

http://www.assembla.com/wiki/show/silk/Link_Specification_Language

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 46

By default, links are created between transformed graph and graphs in the clean database.
If you want to interlink transformed graph with itself, you can do it by setting
object identification.link within graph to true in the global configuration or adding
linkWithinGraph=true to the particular transformer configuration (see Section 9.1). When
activated, linker creates two linkage rules in Silk-LSL for each rule loaded from database. One
rule is for linking transformed graph with clean database, another for linking with itself.

It can be useful to use attached graphs (RDF data generated by preceeding transformers
in the pipeline) in linkage rules, e.g. links generated by another linker. This feature can
be activated by setting object identification.link attached graphs to true in the global
configuration or adding linkAttachedGraphs=true to the particular transformer configuration.
When activated, linker creates a graph group7 from tranformed graph and its attached graphs
and passes it to Silk for linking.

When transforming existing graph in the clean database, it is first copied to the dirty
database, transformed, then it replaces the original graph. This allows links between old and
new version of the same graph to emerge. It is not possible to exclude a graph from linking in
Silk-LSL. To avoid this inconsistency, graph group containing all graphs in the clean database
excluding transformed graph and its attached graph is created and passed to Silk for linking.

10.3.3.2 ConfigBuilder

This class is responsible for creating a XML configuration file in Silk-LSL. Standard Java API
for XML is used in this class (mostly DOM). An example of created configuration file follows.
Description of individual elements can be found in Silk-LSL specification8.

<Silk>

<Prefixes>

<Prefix id="adms" namespace="http://www.w3.org/ns/adms#"/>

<Prefix id="dcterms" namespace="http://purl.org/dc/terms/"/>

<Prefix id="gr" namespace="http://purl.org/goodrelations/v1#"/>

<Prefix id="rdf" namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

<Prefix id="rdfs" namespace="http://www.w3.org/2000/01/rdf-schema#"/>

<Prefix id="skos" namespace="http://www.w3.org/2004/02/skos/core#"/>

</Prefixes>

<DataSources>

<DataSource id="sourceA" type="sparqlEndpoint">

<Param name="endpointURI" value="http://example.com"/>

</DataSource>

<DataSource id="sourceB" type="sparqlEndpoint">

<Param name="endpointURI" value="http://example.com"/>

</DataSource>

</DataSources>

<Interlinks>

<Interlink id="ic-based">

<LinkType>owl:sameAs</LinkType>

<SourceDataset dataSource="sourceA" var="a">

<RestrictTo>?a rdf:type gr:BusinessEntity</RestrictTo>

7http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
8http://www.assembla.com/wiki/show/silk/Link_Specification_Language

http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
http://www.assembla.com/wiki/show/silk/Link_Specification_Language

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 47

</SourceDataset>

<TargetDataset dataSource="sourceB" var="b">

<RestrictTo>?b rdf:type gr:BusinessEntity</RestrictTo>

</TargetDataset>

<LinkageRule>

<Aggregate type="min">

<Compare metric="equality" required="true">

<Input path="?a/adms:identifier/skos:notation"/>

<Input path="?b/adms:identifier/skos:notation"/>

</Compare>

<Compare metric="equality" required="true">

<Input path="?a/adms:identifier/dcterms:creator"/>

<Input path="?b/adms:identifier/dcterms:creator"/>

</Compare>

</Aggregate>

</LinkageRule>

<Filter threshold="0.9"/>

<Outputs>

<Output maxConfidence="0.8" type="file" >

<Param name="file" value="test_be_sameAs_verify_links.ttl"/>

<Param name="format" value="ntriples"/>

</Output>

</Outputs>

</Interlink>

</Interlinks>

</Silk>

Listing 10.8: Configuration file in Silk-LSL

10.3.3.3 LinkerDao

Linker accesses database using this class. It utilizes the VirtuosoConnectionWrapper to work
with the database. SPARQL queries are used to work with RDF data, SQL queries for relation
data, namely linkage rules, stored in following tables (see Appendix B):

• DB.ODCLEANSTORE.OI RULES
• DB.ODCLEANSTORE.OI RULES UNCOMMITED
• DB.ODCLEANSTORE.OI OUTPUTS
• DB.ODCLEANSTORE.OI OUTPUT TYPES
• DB.ODCLEANSTORE.OI FILE FORMATS

10.4 Other Transformers

10.4.1 Blank Node Remover

Blank Node Remover is a simple transformer for replacing of blank nodes in the payload graph
with unique URI resources. It is implemened in class ODCSBNodeToResourceTransformer.

The generated URIs have format <prefix><random UUID>-<Virtuoso nodeID>. The
transformer guarantees that occurrences of the same blank node within the transformed graph

CHAPTER 10. TRANSFORMERS INCLUDED IN ODCLEANSTORE 48

will be assigned the same URI, however, occurrences of the blank node in other graphs will be
assigned a different URI when they are processed by the transformer.

Value of input ws.named graphs prefix configuration option concatenated with “genRe-
source/” is used as the default value of the <prefix> part. It can be overriden by uriPrefix
option in transformer instance configuration.

10.4.1.1 Configuration

Possible configuration options for an instance of this transformer:

uriPrefix

Sets the prefix of URIs generated in place of blank nodes.

10.4.2 Latest Update Marker

Latest Update Marker is an internal transformer for marking the latest version of a named
graph with odcs:isLatestUpdate property. The marker may be used when accessing the
clean database directly through the SPARQL endpoint. Latest Update Marker is implemented
in class ODCSLatestUpdateMarkerTransformer.

A named graph A is considered an update of named graph B if:

1. Named graphs A and B have the same update tag, or both have an unspecified (null)
update tag.

2. Named graphs A and B were inserted by the same (SCR) user.
3. Named graphs A and B have the same set of sources in metadata.

The transformed graph will be labeled as the latest version by adding the triple
<payload-graph>-odcs:isLatestUpdate-“1”. If it updates another graph in the clean
database, the other graph will be unmarked as being the latest version.

This transformer is automatically added by Engine to the end of every pipeline. This is
neccessary because the transformer may modify the clean database and therefore should ensure
that the pipeline won’t fail afterwards.

10.4.3 Property Filter

Property Filter is an internal transformer for filtering of properties used internally by
ODCleanStore from input data. It is implemented in class ODCSPropertyFilterTransformer.

Property Filter simply removes all triples that have any of the filtered URIs in place of the
predicate (see Input Processing in User Manual) from the payload and provenance named
graphs.

This transformer is automatically added by Engine as the first transformer of every pipeline.

11. Administration Frontend

11.1 Codebase structure

The code of Administration Frontend is divided into multiple packages which all share a
common name prefix - cz.cuni.mff.odcleanstore.webfrontend. In this section you’ll find
a brief description of each of them and of classes they contain. For more in-dept information
please refer to the javadoc documentation.

11.1.1 behaviours

This package is intended to contain custom Wicket behaviours. Currently there’s only a single
class, the ConfirmationBoxRenderer, which serves to add javascript-based confirmation dialog
boxes to delete buttons.

11.1.2 bo

The bo package contains all business objects used in the web frontend application, divided
into subpackages. Every business entity represents a single relational table and is formed by a
single Java class. The classes are simple Java beans where bean properties match columns of
the represented table and can aditionaly contain other methods to simplify using them.

The hierarchy of the most important BO classes is depicted on on Figure 11.1.

Figure 11.1: Selected BO classes used in Administration Frontend

Description of the most important BO classes follows:

BusinessEntity

The base class for all BO classes. It provides no functionality and serves just as a common
abstract parent.

49

CHAPTER 11. ADMINISTRATION FRONTEND 50

EntityWithSurrogateKey

The base class for BO classes for all entities with surrogate primary keys. It only contains
the id property.

AuthoredEntity

This interface serves as an abstract parent of all entities that track their authors.

Prefix

This BO represents an URI prefix. It maps to an internal Virtuoso relational table and
it’s structure is therefore fixed.

DNRule and DNRuleComponent

These entities represent DN rules and rule components and are useful when working with
rules in the raw form.

CompiledDNRule and CompiledDNRuleComponent

These entities represent DN rules and rule components and are easier to use when working
with rules compiled from template instances.

11.1.3 dao

This package (and it’s subpackages) contains classes which form the DAO layer. See the related
section for more information on that.

11.1.4 core

The core package contains ODCSWebFrontendApplication and ODCSWebFrontentSession
classes extending the standard Wicket classes representing a web application and session,
respectively, and the ODCSWebFrontendApplication.properties file. The properties file
contains custom validation messages and declarations of other string literals. In addition,
the package contains the following items:

URLRouter

Handles URL routing - e.g. conversion from raw Wicket-like URL addresses to human
readable ones (and vice versa).

DaoLookupFactory

Encapsulates DB connections and serves DAO objects to page components (see Section
11.2).

11.1.5 core.models

This package contains custom implementations of the IDataProvider and SortableDataProvider
interfaces, which adhere to our DAO layer implementation.

CHAPTER 11. ADMINISTRATION FRONTEND 51

11.1.6 core.components

In the core.components package you’ll find several custom components, such as labels, buttons,
etc. The following list describes some of them. For a more comperhensive description, please
see the javadoc documentation.

UnobtrusivePagingNavigator

An implementation of the PagingNavigator component which is not visible if the list
contains only a single page.

TruncatedLabel

A label which only displays a few first characters of the given string.

TimestampLabel

A label to display a properly formated timestamp.

RedirectButton

A button to redirect to a different page, adjusted to suit the structure of the
Administration Frontend application.

LogInPanel

A panel which contains the log-in form.

LimitedEditingForm

A form that can only be confirmed by authorized users.

HelpWindow

A generic modal window to display help information.

11.1.7 pages

In this package there are Wicket components for individual pages. The structure of subpackages
mirrors the Administration Frontend menu. These are mostly standard Wicket components
(but for a few conventions we have applied - read more in Section 11.4.1). In this section, a
brief description of some of the non-standard components will be given.

FrontendPage

The parent component for almost all (see below) page components. Provides page layout
and content common to all pages, as well as factory methods to create some basic child
components.

LogoutPage

This component does not extend FrontendPage, for it does not represent a proper page.
It’s purpose is to log out the current user and then redirect to home-page.

UserPanel

This component forms the user-information panel - it shows the username and list of roles
of the currently logged in user and provides means to log-in and log-out. It is included
as a child component in the FrontendPage.

For more information on how to create a new page, see Section 11.4.1.

CHAPTER 11. ADMINISTRATION FRONTEND 52

11.1.8 util

This package is intended for Administration Frontend specific utility classes, such as classes
to ease working with arrays (ArrayUtils), sending email messages (Mail, NewAccountMail,
NewPasswordMail) and generating and hashing passwords (PasswordHandling) - to name some
of them.

Some methods in other parts of the Administration Frontend codebase accept code snippets
(e.g. closures) as arguments. Because the current version of Java (1.6) does not directly
support closures, we have created two classes - CodeSnippet and EmptyCodeSnippet - to be
used instead. They too belong in the util package.

11.1.9 validators

This package contains custom Wicket form validators, such as IRIValidator - ensures that
the given value is a valid IRI, EnumValidator - ensures that the given value is an element of
the represented enumeration or OldPasswordValidator - ensures that the given new password
matches the original one.

All our custom validators extend the CustomValidator class, which handles error message
propagation so that validators can focus just on the validation process.

11.2 Database Access Layer

Administration Frontend has a layer for accessing the database based on Spring and its JDBC
templates. We chose not to use Hibernate due to integration problems with Wicket and use
custom implemenation of business and DAO objects.

Entities retrieved from database are represented by POJOs (Plain Old Java Objects).
The code that actually retrieves them is in a DAO class, by convention having suffix Dao
and inheriting from the base class Dao. DAO objects internally call methods of the Spring’s
JdbcTemplate and passes to it a class extending CustomRowMapper which implements creation
of the POJO business object(s) from query results.

The DAO objects can be obtained from an instance of DaoLookupFactory (available e.g. as
a protected member of FrontendPage). A DAO object can be obtained by calling a getDao()
method which returns an existing DAO object or creates a new one if necessary. Signatures of
getDao() methods are:

public <T extends Dao> T getDao(Class<T> daoClass)

public <T extends Dao> T getDao(Class<T> daoClass, boolean commitable)

We utilize generics in Java to obtain a specific type of a DAO class. In addition, there may
be two versions of a DAO class – one for a read-only view of commited version of an entity
and one for the working version visible only to the author (see Section 11.3.2). One can use
the second version of the getDao() method and request either the read-only or commitable
version.

Commitable and read-only DAOs are implemented using a custom @CommitableDao

annotation. The read-only version should be annotated with @CommitableDao having the

CHAPTER 11. ADMINISTRATION FRONTEND 53

commitable DAO class as its argument. The commitable version must inherit from the read-
only DAO.

Hierarchy of DAO objects is depicted on Figure 11.2.

Figure 11.2: Selected DAO classes used in Administration Frontend

11.2.1 Important DAO Classes

Description of the most important DAO classes follows:

Dao This is the base class of all DAO classes. It keeps an instance of JdbcTemplate
and provides access to it either directly or through utility methods jdbcQuery(),
jdbcQueryForInt(), jdbcQueryForList(), etc. It can also execute code in a Spring
transaction with executeInTransaction() and handles proper recognition of some
exceptions thrown by Virtuoso JDBC driver.

DaoTemplate

This method provides convenience methods for loading of one or more entities from
the database. Its getTableName(), getRowMapper(), getSelectAndFromClause(),
postLoadAllBy() and postLoadBy() methods can be used to customize the loading.
Other methods are declared as final.

DaoForEntityWithSurrogateKey

This DAO is used for working with entities with a primary key. The corresponding
business objects must inherit from EntityWithSurrogateKey. It extends DaoTemplate
with additional methods for loading, deleting and saving an entity by its primary key.

DaoForAuthorableEntity

This class is intended for entities that can be edited only by their author. It adds an
abstract method getAuthorId().

CHAPTER 11. ADMINISTRATION FRONTEND 54

AbstractRuleDao

Base class for (QA, DN, Linker) transformer rules. It provides methods for commiting of
changes and disables any delete and update operations.

XXXRuleDao

Concrete classes inheriting from AbstractRuleDao. It can be used for read-only access
to rules (their commited version, respectively). save() and update() methods throw an
exception. It is annotated with @CommittableDao(XXXRuleUncommittedDao.class) so
that the commitable/editable version can be obtained.

An instance of this DAO may be obtained by calling e.g.
daoLookupFactory.getDao(XXXRuleDao, false).

XXXRuleUncommittedDao

These classes inherit from XXXRuleDao and provide the editable and commitable view on
transformer rules. Changes may be commited in transaction by calling commitChanges().

An instance of this DAO may be obtained by calling e.g.
daoLookupFactory.getDao(XXXRuleDao, true).

OntologyDao

This class extends DaoForEntityWithSurrogateKey and is used for working with
ontologies. When storing an ontology, firstly its definition is stored to a RDF graph,
which’s name is derive from ontology label. After that the ontology is stored to the
relational database. This order is chosen to avoid using transaction across RDF and
relation data, which does not work. Ontology definition is stored to the relational database
as well to keep its formatting and possible comments. Finally quality assessment and data
normalization rules are generated from stored ontology (see Sections 10.1 and 10.2).

11.3 Authorization

There are two main scopes of authorization in ODCleanStore– authorization based on roles and
authorization based on the authorship of an entity.

11.3.1 Roles

Authorization based on roles recognizes 5 roles: Administrator (ADM), Pipeline Creator (PIC),
Ontology Creator (ONC), Data Producer (SCR) and Data Consumer (USR). Their detailed
description is given in User Manual. Roles can be assigned to users in Administration Frontend
and a user can have any number of roles.

We use means provided by Wicket to apply authorization by role. Pages and components
can be marked with @AuthorizeInstantiation annotation with enumeration of roles that
are required to access the page or component (at least one of the roles from the given list is
required). The roles assigned to the currently logged-in user are kept in the session object
ODCSWebFrontendSession which extends Wicket AuthenticatedWebSession for this purpose.

CHAPTER 11. ADMINISTRATION FRONTEND 55

11.3.2 Authorship

Authorization based on authorship is necessary for entities that can be only edited by their
author. Rule groups and rules, for example, can be only edited by the user who created
them or by user having the role Administrator. To facilitate checking of whether the current
user is authorized for entity editing, class LimitedEditingPage extending FrontendPage was
introduced.
LimitedEditingPage requires two additinal arguments in its constructor: edited entity ID

and a DAO class for the authorable entity (DaoForAuthorableEntity), which can retrieve
author based on entity ID. It then checks whether the current user is authorized using a helper
class AuthorizationHelper and makes this information accessible with protected methods.

Every page that needs information about whether the user is authorized for editation of
can call protected methods checkUnauthorizedInstantiation() to prevent the user from
displaying the page or isEditable() to detect whether the user is authorized for editation.

Because transformer rules and related settings must be commited before the changes are
visible to users not authorized for editation (who have a read-only access to rules), there are two
versions of rules in the database – one version is visible for the author and Administrators (these
tables have suffix UNCOMMITED) and one version visible for Engine and other users. The proper
table version for the current user can be obtained by method getVisibleTableVersion().

11.4 Extending

11.4.1 How to Add a New Page

First of all make sure that you are familiar with the Wicket framework, for the whole web
application is based on it.

A standard Wicket WebPage component is used to create new pages. That means that you
can use all the standard stuff that Wicket provides, such as adding standard child components
(forms, tables, links, . . .). Aditionaly, you should adhere to some specific conventions, which
have been established to ease and fasten the development process and to make the web well
structured and consistent. This section provides you with details on these conventions.

The POJO part of the page component should extend the FrontendPage class. The
FrontendPage component provides page layout and content for parts of the page which are
common throughout the whole application (such as logo and menu bar). That’s why, when
creating a new page, you only need to take care of the custom content. There are two
components handled by the FrontendPage which need per-page parameters - the page title
and the bread crumbs. The newly created page should supply these values via a call to
the constructor of the parent’s class. The FrontendPage also contains several helper factory
methods which can be used to construct simple child components. Last but not least, the
FrontendPage provides two shortcut methods - getApp() to obtain the application object and
getODCSSession() to get the session object. All of these are protected scoped and can be used
arbitrarily in new page components.

The POJO must provide a constructor. The constructor should be either parameter-less or

CHAPTER 11. ADMINISTRATION FRONTEND 56

accept a single parameter – the id of entity to be described on the page. Inside the constructor
you generaly need to call the parent’s constructor (and suply the page title and crumbs values),
obtain all needed DAO objects via the daoLookupFactory class attribute (see Section 11.2)
and add all child components, ideally through calls to private methods, one for each component.

You will also want to update the HTML file of the FrontendPage component in order to
add a link to the new page to the menu bar. Simply add a new standard Wicket link to the
HTML list.

All parts of the web frontend application adhere to the following structure rules. Every
section describes registered entities of a single type (such as transformers, pipelines, ontologies,
user accounts). For every entity type (say XXX) there are four page components - XXXListPage
(shows a list of all registered entities), NewXXXPage (provides a form to register a new entity),
XXXDetailPage (shows an existing entity in details and provides a form to edit it; if there are
subentities bound to the entity then shows a list of all of them).

As a rule, every page should contain a single help pop-up window for every entity the user
can work with via that page. To create a help pop-up window for a new entity type (say
XXX again), you only need to create an XXXHelpPanel component (you can copy an existing
help panel component and update the contents in the related HTML page). Then use the
addHelpWindow method of the FrontendPage class to add the pop-up window to the page.

11.4.2 How to Add a New Data Normalization Template

To add a new Data Normalization Template (named say XXX, such as Filter, Rename, Replace),
follow these steps.

Create a new relational table in the Virtuoso database. The table should be named
DB.ODCLEANSTORE.DN XXX TEMPLATE INSTANCES and contain id as a surrogate primary key,
groupId as a foreign key which points to the group of rules to which the template instance
belongs, rawRuleId as a foreign key which points to the raw version of the represented rule
and columns for attributes of the template.

Add a new Business Object to the cz.cuni.mff.odcleanstore.webfrontend.bo.dn
package named DNXXXTemplateInstance. The class should adhere to standard BO conventions
(see the relevant section) and relate to the table created in the previous step.

Add a compiler class to the same package called DNXXXTemplateInstanceCompiler. It must
extend the DNTemplateInstanceCompiler<DNXXXTemplateInstance> class and override the
compile method. This methods accepts an DNXXXTemplateInstance instance as a parameter
and compiles it into a standard CompiledDNRule instance (e.g. into a raw rule form), which it
then returns.

Add a new section to the DNGroupDetailPage component and implement the
NewDNXXXTemplateInstancePage and EditDNXXXTemplateInstancePage components. You
will also need to add the DNXXXTemplateInstanceHelpPanel and use it as a pop-up help
window. Fore a more detailed explanation of this step, see Section 11.4.1.

Note that when implementing a new DN template type it is a good idea to copy and rename
the classes which belong to an existing one and just overwrite the template specific parts.

12. Future Work
ODCleanStore could be extended in many ways. Suggestions for future work and improvements
are maintained at a dedicated page1 at project website. This chapter lists the most important
ideas for future work. Items in bold should be implemented in future and were omitted for
time reasons.

12.1 Data Processing

• Improved logging. As of now, There is one log file for Engine and a dedicated log file for
each transformer instance. In addition, some information about Engine is updated in the
relational database. However, structured logs in the database for transformers (e.g. with
information about transformer instance, pipeline, its author etc.) may improve usage for
both pipeline creators and transformer creators.
• Quarantine. Data that are considered suspicious (e.g. having too low Quality Assessment

score) would be moved to an isolated dataspace where it would wait to be checked by an
administrator and then accepted, corrected or deleted.
• Possibility to review data and modify it from a user interface. An advanced extension

would be possibility to modify multiple named graphs in a batch operation. The
provenance information for affected graphs should contain information about editing.
• Transformer that would detect identical update of a named graph already stored in the

database and would only update metadata of the stored graph instead of storing both
copies.
• Store the original unprocessed version of data so that the original version can be used

again when a pipeline damages the data.
• Automatically download missing ontologies used in processed data.
• Introduce concept of “post-transformers” that would be run on data after they are

processed by a pipeline and moved to the clean database. They could be used e.g. for
updating data in the clean database depending on stored graphs, such as what Quality
Aggregator does.

12.2 Quality Assessment

• Track more quality dimensions (e.g. completnes, timeliness).
• Machine learning. Rules could be derived from a given set of named graphs and their

scores.

12.3 Data Normalization

• More rule templates, improved administration in case there would be too many templates.

1https://sourceforge.net/p/odcleanstore/wiki/Future%20extensions/

57

https://sourceforge.net/p/odcleanstore/wiki/Future%20extensions/

CHAPTER 12. FUTURE WORK 58

12.4 Output Webservice & Conflict Resolution

• Support queries for any SPARQL (CONSTRUCT) (not only the current URI, keyword
and named graph query). This is a more complex extension as Conflict Resolution would
need to be able to load metadata and owl:sameAs links by itself and moreover efficiently.
• Paging of results.
• Sorting of results of a keyword query by relevance for the given keyword.
• Add query which would return all resources of the given rdf:type.
• Generalize the interface for passing metadata to Conflict Resolution. As of now, there is

an exactly defined set of metadata that are accepted by Conflict Resolution which limits
extending.
• More customizable aggregate quality computation. For example, the user could have the

possibility to specify how much she trusts each publisher and the aggregate quality would
take that into consideration.
• More aggregation methods, such as TOP-K – K best values. This would require the

possibility to parametrize aggregation methods.

12.5 Administration Frontend

• The possibility to create a custom (deep) copy of an arbitrary group of rules.
• The possibility to create a custom copy of a rule.
• The possibility to create a custom copy of a pipeline.
• Labels and descriptions for transformer instances.
• Filtering of entities displayed in Administration Frontend by values for each column.

Possibility to show only entities created by the current user.
• Notification about changes in a rule group. If the author of a rule group modifies it, a

notification would be sent to all users whose pipelines use the rule group and they would
be provided with the option to accept of refuse the changes (would require versioning of
rule groups or cloning of rule groups.).
• Transformer instance templates. It would be possible to assign a pre-prepared transformer

instance to a pipeline which could contain transformer configuration, assigned rule groups
etc.
• Possibility to upload a .jar archive containing a transformer directly through

Administration Frontend.
• Possibility to run affected pipelines when a rule group is deleted.
• Show list of affected pipelines for a rule group or transformer.
• Check syntactical validity of rules when they are entered. Could be implemented by

running the rule on an empty testing graph and checking for an error.

12.6 Miscellaneous

• Installer will be able to install Engine as a system service on Windows or a
daemon on Linux, respectively.

CHAPTER 12. FUTURE WORK 59

• Provide a tool (command line or with GUI) for import of large graphs. ODCleanStore
is designed mainly for processing of smaller graphs (e.g. results of Quality Assessment
might not be relevant for too large graphs). A large graph could be divided into multiple
small graphs and sent to Input Webservice in parts.

12.7 Known Issues

• Non-ASCII characters may get broken when entered into certain fields (descriptions,
ontology definitions) in Administration Frontend. This is caused by incompatibility of
Spring’s JdbcTemplate and Virtuoso.

13. Related Work
ODCleanStore provides means for cleaning, linking, and scoring incoming RDF data, storing
it, and provides aggregated and integrated views on the data to Linked Data consumers.
In addition, we support trustworthiness of the data with aggregate quality and provenance
tracking.

ODCleanStore focuses on the data processing and queries over stored data. Nevertheless, the
extraction process that feeds data to ODCleanStore is also important – our sister project Strigil
implements a web scraper and document extractor that produces RDF data and integrates with
ODCleanStore for storing the produced data.

13.1 Data Extraction

Strigil

Strigil1 implements a web scraper and document extractor that produces RDF data and
integrates with ODCleanStore as the producer of data.

Linked Data Manager

Linked Data Manager2 (LDM) is a Java based Linked (Open) Data Management Suite to
schedule and monitor required Extract - Transform - Load jobs for web-based Linked Open
Data portals as well as for sustainable Data Management and Data Integration usage.

LDM data processing pipeline is similar to the data processing pipeline in ODCleanStore.
LDM is a counterpart of ODCleanStore in that it provides facilities for managing the extraction
process but doesn’t provide any permanent storage or direct access to the data. Thus an LDM
Loader could be used to send data to ODCleanStore and access it from here.

13.2 Data Processing

Linked Data Integration Framework

Linked Data Integration Framework3 (LDIF) is an open-source Linked Data Integration
Framework that can be used by Linked Data applications to translate Web data and normalize
URI while keeping track of data provenance. The framework consists of a Scheduler, Data
Import and an Integration component with a set of pluggable modules.

LDIF components encompass the whole process from data import and processing to
integration and quality assessment. We use some of LDIF componets internally in
ODCleanStore (Silk). The main difference is that LDIF is a framework other applications
can built on, while ODCleanStore is a ready-to-use solution that can be easily deployed and

1http://sourceforge.net/p/strigil/home/Home/
2http://www.semantic-web.at/linked-data-manager
3http://www4.wiwiss.fu-berlin.de/bizer/ldif/

60

http://sourceforge.net/p/strigil/home/Home/
http://www.semantic-web.at/linked-data-manager
http://www4.wiwiss.fu-berlin.de/bizer/ldif/

CHAPTER 13. RELATED WORK 61

managed via a web interface. Differences in quality assessment and data aggregation with Sieve,
a part of the LDIF framework, are described below. LDIF also supports provenance tracking.4

13.3 Data aggregation and quality

Sieve

Sieve5 adds quality assessment and data fusion capabilities to the LDIF architecture. It
uses metadata about named graphs in order to assess data quality, agnostic to provenance
vocabulary and quality models. Sieve uses customizable scoring functions to output data quality
descriptors. Based on these quality descriptors (and/or optionally other descriptors), Sieve
can use configurable FusionFunctions to clean the data according to task-specific requirements.

Sieve offers functionality similar to our Conflict Resolution component; however the purpose
of Sieve in LDIF is different - it aggregates data while being stored to the clean database (unlike
Conflict Resolution used at query time). This may be suitable when the desired data are known
in advance but is not sufficient for open Web environments, where every consumer has different
requirements on the aggregated data. Furthermore, ODCleanStore provides quality for each
result statement where Sieve computes quality only for whole named graph.

Integration systems in relational databases

The problem of integration of heterogeneous data (solved in ODCleanStore for RDF data) is
solved by several systems for relational databases, e.g. Aurora6 or Fusionplex7.

Aurora is an integration system of heterogenous data residing in relational and object-
oriented databases, i.e. deals with non-RDF data; its query model enriches the SQL SELECT
by enabling to define attribute conflict resolution functions (e.g. age[ANY] means that any
attribute value for the attribute age is used in the query) and record conflict resolution function,
which deal with key attributes of the records. ODCS offers more built-in aggregation methods,
on the other hand, Aurora allows user defined attribute aggregation functions; in ODCS, record
conflicts are either discovered by linkers, or there is no record conflict.

4See Figure 2 of LOD2 Deliverable 4.3.2
5http://sieve.wbsg.de/
6http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.7261
7http://dl.acm.org/citation.cfm?id=1221048

http://static.lod2.eu/Deliverables/deliverable-4.3.2.pdf
http://sieve.wbsg.de/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.7261
http://dl.acm.org/citation.cfm?id=1221048

14. Conclusion
The goal of the project was to build a server application that would automate processing
– especially cleaning, linking and scoring – of data in RDF format and provide aggregated
and integrated views on the processed data to Linked Data consumers. We have successfully
implemented all these features in ODCleanStore and hope that the project will continue to be
used and developed.

ODCleanStore brings several contributions. There are other tools for RDF data processing
(see related work in Chapter 13) but they are mostly frameworks that other developers can
build on. ODCleanStore was developed as a whole solution that can be readily deployed and
used. It ships with an web administration interface so that all neccessary configuration can
be done in a web browser. It should be noted, however, that administrators of ODCleanStore
should have some technical knowledge – at least understand RDF and SPARQL query language.

Another novel aspect is provenance tracking and data fusion/conflict resolution. This feature
should support addoption of Linked Data by justifying why users should (or shouldn’t) believe
the data they are presented and where they can verify it and thus increase trust in Linked
Data. Unlike other solutions, ODCleanStore solves conflicts at query time which is suitable for
the open Web environment where every consumer may have different requirements.

We hope that ODCleanStore will provide basis for further work with Linked Data and other
developers will extend it and customize it for their own purposes. We introduced the concept
of pluggable transformers so that whatever functionality is needed can be added.

Several papers, listed in Appendix D, about ODCleanStore were accepted at scientific
conferences. The reception was positive and we used the feedback to improve our project.
In addition, ODCleanStore was evaluated on real data, e.g. data extracted from information
system for public contracts1 run by the Ministry of Regional Development in the Czech
Republic. We also used the feedback to improve our project and adapt it to a real-world
use case.

We hope that ODCleanStore will prove to be a useful tool for RDF data processing and
will contribute to adoption of Linked Data. It was designed as a general tool for Linked
Data management with basic data processing capabilities. We hope that the development
will continue, new uses for ODCleanStore will emerge and the project will be extended and
customized for the particular use cases.

1http://www.isvzus.cz/

62

http://www.isvzus.cz/

A. Glossary

RDF-related

RDF
Resource Description Framework, a language for representing information about resources
in the World Wide Web1

RDF triple
Statement about a resource expressed in the form of subject-predicate-object expression

URI
Uniform Resource Identifier, identifies RDF resources

Named graph
A set of related RDF triples (RDF graph) named with a URI2

RDF quad
An RDF triple plus named graph URI (subject, predicate, object, named graph)

Ontology
Representation of the meaning of terms in a vocabulary and of their interrelationships

OWL
The Web Ontology Language3

SPARQL
RDF query language4

RDF/XML
An XML-based serialization format for RDF graphs5

TTL
Turtle – Terse RDF Triple Language6; a human-friendly alternative to RDF/XML

Data & Data Quality

Dirty (staging) database
Database where incoming data are stored until they are processed by a processing pipeline
(e.g. clean, linked to other data, etc.)

1http://www.w3.org/RDF/
2http://www.w3.org/2004/03/trix/
3http://www.w3.org/TR/owl-features/
4http://www.w3.org/TR/rdf-sparql-query/
5http://www.w3.org/TR/rdf-syntax-grammar/
6http://www.w3.org/TeamSubmission/turtle/

63

http://www.w3.org/RDF/
http://www.w3.org/2004/03/trix/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/

APPENDIX A. GLOSSARY 64

Clean database
Database where incoming data are stored after they are successfully processed by the
respective processing pipeline; this database can be accessed using the Output Webservice

Payload graph
Named graph where the actual inserted data, given in the payload parameter of Input
Webservice, are stored

Provenance graph
Named graph where additional provenance metadata, given in the provenance field of
Input Web Service, are stored

Metadata graph
Named graph where other metadata about a payload graph (such as source, timestamp,
license, etc.) are stored

Attached graph
Named graph attached to a payload graph by a transformer

Named graph score
Quality of a single (payload) named graph estimated by the Quality Assesment
component and stored in the database, expressed as a number from interval [0,1]

Publisher score
Average score of named graphs from a publisher

Aggregate quality
Quality of a triple in the results calculated by the Conflict Resolution component during
query time, expressed as a number from interval [0,1]

Data Processing

Pipeline
A configurable sequence of transformers that is used to process a named graph. The
pipeline to process data sent to Input Webservice can be selected explicitly, or the default
pipeline is used.

Transformer
A Java class which implements the Transformer interface that and is registered in
ODCleanStore Administration Frontend by an administrator.

Transformer instance (or transformer assignment)
Assignment of a transformer to a pipeline. A single transformer can be assigned to
multiple pipelines (or even to a single pipeline multiple times), thus creating multiple
transformer instances.

APPENDIX A. GLOSSARY 65

Rule
Some transformers included in ODCleanStore can be configured in Administration
Frontend by rules. Rules are grouped together to rule groups.

Rule group
A group of transformer rules. Rule groups can be assigned to transformer instances.

User Roles

ADM
Administrator

ONC
Ontology creator

PIC
Pipeline creator

SCR
Data producer (scraper)

USR
Data consumer

B. Relational Database Schema

Figure B.1: Diagrams of database tables related to Engine

66

APPENDIX B. RELATIONAL DATABASE SCHEMA 67

Figure B.2: Diagrams of database tables related to pipelines

Figure B.3: Diagrams of database tables related to Administration Frontend

APPENDIX B. RELATIONAL DATABASE SCHEMA 68

Figure B.4: Diagrams of database tables related to Quality Assessment

APPENDIX B. RELATIONAL DATABASE SCHEMA 69

Figure B.5: Diagrams of database tables related to Data Normalization

APPENDIX B. RELATIONAL DATABASE SCHEMA 70

Figure B.6: Diagrams of database tables related to Linker

APPENDIX B. RELATIONAL DATABASE SCHEMA 71

Figure B.7: Diagrams of database tables related to Conflict Resolution

Figure B.8: Diagrams of miscellaneous database tables

C. List of Used XML Namespaces

Prefix URI
odcs http://opendata.cz/infrastructure/odcleanstore/
w3p http://purl.org/provenance#
dc http://purl.org/dc/terms/
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/07/owl#
xsd http://www.w3.org/2001/XMLSchema#
dbpedia http://dbpedia.org/resource/
dbprop http://dbpedia.org/property/
skos http://www.w3.org/2004/02/skos/core#

Table C.1: List of used XML namespaces

72

D. Publications

73

	Introduction
	What is ODCleanStore
	Related documents

	ODCleanStore overview
	Important concepts
	Data Processing
	Storing Data
	Querying over Stored Data

	Data Lifecycle

	Implementation
	Architecture
	Architecture Evolution
	Usage Assumptions
	Architectural Features

	Other Requirements
	Used Technologies
	Implementation Language
	Database
	Administration Frontend
	Libraries
	Development Tools

	Setting up Development Environment
	Quick Start
	Tools
	Obtaining sources
	Building binaries

	Repository structure
	Branches
	Directory structure

	Maven Build

	Shared Code
	Configuration
	Database Access
	Data Import

	Engine
	Purpose
	Implementation
	Services
	Transactional Processing
	Database Access

	Input Webservice
	Purpose and Features
	Implementation

	Pipeline Service
	Purpose
	Graph States
	Implementation

	Output Webservice
	Purpose
	Implementation
	Output Formatters
	Extending

	Query Execution
	Purpose
	Interface
	Implementation
	Extending
	Database

	Conflict Resolution
	Purpose
	Interface
	Implementation
	Aggregation Methods
	Quality and Provenance Calculation

	Time Complexity
	Extending

	Transformers – Introduction
	Transformer Instance Configuration
	Contract between Engine and Transformers
	Custom Transformers

	Transformers Included in ODCleanStore
	Quality Assessor & Quality Aggregator
	Purpose
	Interface
	Implementation

	Data Normalization
	Purpose
	Interface
	Implementation

	Linker
	Purpose
	Interface
	Implementation

	Other Transformers
	Blank Node Remover
	Latest Update Marker
	Property Filter

	Administration Frontend
	Codebase structure
	behaviours
	bo
	dao
	core
	core.models
	core.components
	pages
	util
	validators

	Database Access Layer
	Important DAO Classes

	Authorization
	Roles
	Authorship

	Extending
	How to Add a New Page
	How to Add a New Data Normalization Template

	Future Work
	Data Processing
	Quality Assessment
	Data Normalization
	Output Webservice & Conflict Resolution
	Administration Frontend
	Miscellaneous
	Known Issues

	Related Work
	Data Extraction
	Data Processing
	Data aggregation and quality

	Conclusion
	Glossary
	Relational Database Schema
	List of Used XML Namespaces
	Publications

