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a b s t r a c t

We have seen that several currently deployed e-voting systems share critical failures in their design and
implementation that render their technical and procedural controls insufficient to guarantee trustwor-
thy voting. The application of formal methods would greatly help to better address problems associated
with assurance against requirements and standards. More specifically, it would help to thoroughly spec-
ify and analyze the underlying assumptions and security specific properties, and it would improve the
trustworthiness of the final systems. In this article, we show how such techniques can be used to model
and reason about the security of one of the currently deployed e-voting systems in the U.S.A named ES&S.
We used the ASTRAL language to specify the voting process of ES&S machines and the critical security
requirements for the system. Proof obligations that verify that the specified system meets the critical
requirements were automatically generated by the ASTRAL Software Development Environment (SDE).
The PVS interactive theorem prover was then used to apply the appropriate proof strategies and discharge
the proof obligations. We also believe that besides analyzing the system against its requirements, it is
equally important to perform an analysis under malicious circumstances where the execution model is
augmented with attack behaviors. Thus, we extend the formal specification of the system by specifying
attacks that have been shown to successfully compromise the system, and we then repeat the formal
verification. This is helpful in detecting missing requirements or unwarranted assumptions about the

specification of the system. In addition, this allows one to sketch countermeasure strategies to be used
when the system behaves differently than it should and to build confidence about the system under
development. Finally, we acknowledge the main problem that arises in e-voting system specification
and verification: modeling attacks is very difficult because the different types of attack often cut across

nal b
the structure of the origi
very difficult.

. Introduction

Electronic voting (e-voting) brings to the polling station several
dvantages, such as improved turn out, accessibility for impaired
eople, and improved accuracy and speed (Cranor, 1996). Unfor-
unately, its adoption in various countries has been slow and/or
he cause of debate and controversies. One of the reasons is the
oor design and implementation of (some of) the systems cur-
ently deployed for elections in the USA and other countries, as
ifferent studies have reported and demonstrated (Kohno et al.,
004; Aviv et al., 2008; Balzarotti et al., 2010; Wolchok et al., 2010).
hese studies have also revealed that such systems show serious
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

aws in specification, design, and implementation. Such weak-
esses expose the system, and consequently elections, to various
hreats and attacks, ranging from a denial of service to alteration of
he results.

∗ Corresponding author.
E-mail addresses: sisai@fbk.eu, komminist@gmail.com (K. Weldemariam).
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ehavior models, thus making (incremental or compositional) verification

© 2011 Elsevier Inc. All rights reserved.

In California, these studies resulted in the Secretary of State
allowing the use of e-voting machines only in special situations
and with various changes to the electoral procedures. Several such
changes shift the implementation of security requirements from e-
voting systems to poll workers. For instance, California Secretary of
State (2007) states that “no poll worker or other person may record
the time at which or the order in which voters vote in a polling place.” It
is quite evident that a new generation of more carefully engineered
machines could move various “constraints” currently performed by
poll workers back to hardware and software. However, the success
of the new generation of voting machines depends on our ability
to capitalize on the lessons we learned using and analyzing the
systems currently deployed.

The integrity and assurance of a complex and safety-critical
system’s correct behavior with respect to a specification can be
lysis of an electronic voting system: An experience report. J. Syst.

achieved if good engineering practices are appropriately devised
and used. With respect to this, there are a number of approaches
to tackle (some of) the issues mentioned above. Among these, the
use of formal methods has been shown to improve the security
and quality of complex systems (Kemmerer, 1990; Xu and Nygard,

dx.doi.org/10.1016/j.jss.2011.03.032
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http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:sisai@fbk.eu
mailto:komminist@gmail.com
dx.doi.org/10.1016/j.jss.2011.03.032


 INJ

2 f Syste

2
t
i
s
s
a

e
b
c
J
D
p
V
w
a
a
f
l
m
a
&

p
e
s
m
c
p
a
w
e
A
t
c
w
e
h
i
d
e
i
w
a
B
u

v
t
m
s
i
t
5
n
b
d

2

a
s
c
i
t

ARTICLEG Model
SS-8684; No. of Pages 20

K. Weldemariam et al. / The Journal o

005; Lowry and Dvorak, 1998; Heitmeyer et al., 2008). Formal
echniques allow designers to prove, test, or otherwise examine
nteresting properties of a complex process whose behavior is
pecified abstractly, and then interactively refine the behavioral
pecification to be as close to an implementation as appropriate for
given assurance level.

The use of formal methods in the voting domain is still at an
arly stage. Some of the works describe and demonstrate the feasi-
ility of using formal methods on specific components, such as the
ryptographic protocols used to protect and transmit data (see e.g.,
uels et al., 2005; Kremer and Ryan, 2005; Campanelli et al., 2008;
elaune et al., 2009). Others focus on the verification of general
roperties of e-voting systems (see e.g., Simidchieva et al., 2008;
illafiorita et al., 2009; Sturton et al., 2009). Even though all the
orks mentioned earlier provided a significant contribution to the

rea, they are limited in scope or refer to schemas that do not find
pplication in machines currently in use. In this article, our specific
ocus is on the systematic use of formal methods to study and ana-
yze the strength and weaknesses of currently deployed e-voting

achines in the USA. We did so, by deriving formal specifications
long with critical security requirements for the Election Systems
Software (ES&S) system.
More specifically, we treated the ES&S voting system as a com-

lex, real-time embedded system, consisting of a direct recording
lection machine (DRE), a real-time audit log printer (RTAL), a per-
onalized election ballot (PEB), and a Compact Flash Card (CF). We
apped each of these components to ASTRAL (Kolano, 1999) pro-

ess instances. We then specified critical security requirements to
rove the correctness and integrity of each component individually
nd of the system as a whole. The consistency of the specification
as validated using the ASTRAL validation engine, and PVS (Owre

t al., 1993) proof obligations were automatically generated by the
STRAL Software Development Environment (SDE). When proved,

hese proof obligations verify that the specified system meets the
ritical security requirements. The PVS interactive theorem prover
as used to apply the appropriate proof strategies and discharge

ach of the proof obligations. Additionally, we specified attacks that
ave been shown to successfully compromise the system. With this

nformation, we extend the original specification of the system and
erive what we called the extended model. Using the same machin-
ry, we reason that the same critical requirements do indeed hold
n the extended model. The techniques presented in Kolano (1999)

ere extensively used to discharge the proof commands. We must
lso be clear that we did not complete all the proof obligations.
y analyzing the proved obligations, however, we attempted to
nderstand why some were proved and why the others were not.

This article is organized as follows. Section 2 discusses the moti-
ation for the work. Section 3 presents the various components of
he ES&S system, the voting process using the system, and require-

ents that the system must respect. Moreover, we present four
elected attacks. An overview of the ASTRAL specification language
s given in Section 4. The ASTRAL specification of the ES&S sys-
em along with its critical requirements are presented in Section
. Sections 6 and 7 present the specification of the attack sce-
arios – namely, the model extension and the verification results,
oth before and after the attack specifications. Finally, Section 8
iscusses related work and Section 9 draws some conclusions.

. Motivation and the approach

The fairness and security of electronic elections depend upon
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

careful allocation of requirements to the procedures and to the
ystems used. In fact, the correct behavior of the electronic systems
an be guaranteed when they are used according to their operat-
ng specifications. This has to be guaranteed by the procedures and
he people responsible for executing them. It would be possible to
 PRESS
ms and Software xxx (2011) xxx–xxx

imagine an e-voting machine that uses a specific technique (e.g.,
biometrics for voter authentication) to identify a voter and pro-
hibit the casting of a vote from someone who has already voted.
However, given the procedures and systems that are currently in
use, there is no way for an e-voting machine to prohibit the same
person from casting multiple ballots, if the poll worker enables the
machine for voting to the same person multiple times.

As a matter of fact, in all DRE systems studied the poll worker
uses an administrative device to issue a token of some sort for an
eligible voter to cast a vote (see in Aviv et al., 2008; Inc, 2007). Such
behavior can possibly be prevented (or revealed after the election)
by enforcing and verifying the procedures that the poll workers are
supposed to follow. In contrast, there are other fundamental prop-
erties that the procedures can only partially assure. In this case, the
e-voting systems must guarantee that these properties are satis-
fied. Using the example we just made, the machine must ensure
that a voter can cast at most one vote, given that the poll workers
follow the prescribed procedures.

Formal analysis of voting requirements and their allocation is
therefore important in two aspects. First, it helps to ensure that
the systems meet the necessary reliability and dependability goals.
Second, it helps to better understand how different allocations
of requirements between systems and procedures could improve
the overall security of the election process so that we can build
the next generation of e-voting machines. However, in order to
achieve these goals, we need an approach that allows us to eas-
ily experiment and reason about, for example, different allocations
of requirements. At the same time, it has to be precise and exhaus-
tive, so that security and dependability consequences of any specific
choice are highlighted. Formal techniques clearly fit both needs.
Our goal here is not to show end-to-end verification nor to develop
an e-voting system using formal methods; instead, we wish to
demonstrate how their use can help ensure fair elections.

Fig. 1 depicts the reverse synthesis process that we use. In the
figure, the nominal behavior refers to all the intended operations
of the system under analysis. By contrast, the non-nominal behav-
ior is meant to describe those behaviors of the system that deviate
from intended operations of the system due to attack actions. More
specifically, we derive formal specifications along with critical
security requirements for the ES&S system. The specification of the
system (i.e., Model in Fig. 1) and the security critical requirements
are mainly derived from available information sources: the EVER-
EST report (McDaniel et al., 2007), the ES&S election day checklist
and user’s manual (Inc, 2007), a video (Election and Systems, 2009)
that shows how the ES&S system works on election day, and other
requirements suggested in the literature such as Mercuri (2001),
Federal Election Commission (2005), Council of Europe (2004),
Sastry (2007), Volkamer and McGaley (2007), and McGaley (2008).
Here, we remark that the choice of selecting requirements from the
cited literature is made based on our experiences managing and
structuring requirements while developing the ProVotE e-voting
system (Weldemariam et al., 2009). Using formal analysis tools, we
can assess the strengths and weaknesses of the system. Results or
feedback gained from the formal analysis can be a basis for spec-
ifying and analyzing generic requirements from which the next
generation of voting machines can be built.

Additionally, we believe that besides analyzing the system
against its requirements, it is equally important to perform anal-
ysis under malicious circumstances where the system execution
model is enriched with attack behavior. Notice that the first model
we build for the ES&S system only specifies the intended behav-
lysis of an electronic voting system: An experience report. J. Syst.

iors of the system. Therefore, we should specify and extend the
model (see Fig. 1) with some generic attacks that may defeat some
behaviors of the system. We then need to analyze the resulting
model (i.e., extended model in Fig. 1) against the same security
properties that are used for the verification of the nominal model.

dx.doi.org/10.1016/j.jss.2011.03.032
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Fig. 1. Overview of our approach. Labels nominal and non nomina

successful analysis of the resulting model can reveal important
nformation about the system, which in turn helps detect missing
equirements or unwarranted assumptions about the specifications
hat we developed. In addition, this allows us to sketch counter-

easure strategies to be used when the system behaves differently
han it should and to build confidence about the system under
evelopment.

Finally, we must be clear that the formal specifications of a
eneric DRE (see the part in the dotted box of Fig. 1), where the
ehavior of the next generation voting machine can be specified,

s not in the scope of this paper. However, we believe that start-
ng from our specification and the proof results, one can specify
and analyze) requirements for new e-voting systems, mainly for
RE-based systems.

. The ES&S electronic voting systems

In this section, we first describe the ES&S voting system compo-
ents and then (informally) a set of security critical requirements

or these components individually, as well as for the system as a
hole. The formal specifications are based on this information.

.1. ES&S voting system components

Our discussion of the ES&S voting system components is based
n what each component does, how each component exchanges
nput or output, and the underlying assumptions made about each
omponent. For the purposes of this work, the ES&S voting system
s composed of:

DRE: Direct Recording Electronic voting machine, called the
iVotronic. It is equipped with a touch-screen where the voter
casts his/her votes. The information shown by the touch-screen
changes in real-time to match the voter’s choices. The iVotronic
also stores the audit data.
RTAL: Real-Time Audit Log Printer, which performs the function
of a VVPAT (Voter-Verified Paper Audit Trail) for the ES&S system.
It produces a paper-based record of the choices selected by the
voter. The RTAL is plugged into the DRE and the paper record
is viewable by the voter. The trails (i.e., the voter’s choices) are
under a transparent cover so that they cannot be modified other
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

than through the normal voting process.
PEB: Personalized Electronic Ballot. This is a device used by the
poll worker to load a ballot, initialize the next ballot, and col-
lect tabulated data and audit information. Each time a PEB is
inserted, its authenticity is checked by the DRE using a four-digit
to the actual and undesired behaviors of the system, respectively.

code (election qualification code, EQC), which is assigned prior to
election day.

• CFC: Compact Flash Card. This device holds files too large to fit
in the PEB and also audit data. The card must be present to open
and close the polls. At poll closing, the audit data is automatically
dumped into the card.

The interaction between these components is as follows (see
also Fig. 6). The DRE communicates with the RTAL by sending
the voter’s intentions and information related to the casting of a
ballot, such as the start or summary information. The PEB com-
municates with the DRE through a simple protocol that allows the
DRE to read and write memory blocks stored in the PEB (e.g., to
load ballots before election, or to enable the ballot when an eli-
gible voter arrives). Similarly, the DRE communicates with the CF
Card to access the ballot data when necessary and to periodically
check the presence of the CF Card, since the DRE will not boot with-
out its presence (see McDaniel et al., 2007 for a more detailed and
complete view).

3.2. Voting process for a DRE based system

The full election process involves many activities beyond what
a poll worker and a voter typically experience in the polling station.
Even if the exact processes differ depending on the specific voting
technology in question, we distinguish, in particular, three major
phases in the voting process when using DRE-based machines:
pre-electoral, electoral (during voting), and post-electoral phases.
Before election day, election officials use the election management
system (EMS) to set up the election. In particular, the ballot defini-
tion files are prepared and loaded directly onto the DREs, CF Cards
are installed, and printers are assigned for each DRE machine. More-
over, the EQC is stored in the DRE so that the DRE can authenticate
a qualified PEB when one is inserted.

Prior to opening the polls, a poll worker unpacks and sets up the
DRE and plugs in the RTAL printer and power cables. Poll workers
must also ensure that a properly programmed CF Card is installed
before powering on the DRE. A Master PEB is inserted into the termi-
nal to load the ballot and later to open the DRE terminal for voting.
The same master PEB must be used to close the terminal after the
polls have closed. Removing the PEB turns the terminal’s current
mode to sleep mode.
lysis of an electronic voting system: An experience report. J. Syst.

Once the polls are opened, a poll worker initializes the ballot
for a qualified voter by inserting a supervisor PEB, which can be
the same Master PEB used to open the polls, into the machine. The
terminal mode changes from sleep to poll worker mode, the EQC
code of the PEB is checked, and the ballot is initialized, provided that

dx.doi.org/10.1016/j.jss.2011.03.032
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Fig. 2. The voting process using the ES&S voting system. The figure shows only

he EQC of the PEB matches with the one the terminal is configured
or. The poll worker removes the supervisor PEB and leaves the
erminal for the voter.

After the ballot is activated, the machine takes the voter through
ach contest. The ES&S DRE machines automatically forbid over-
oting, but not undervoting. When a voter selects or cancels a
andidate for a particular contest, an appropriate indication is
rinted on the RTAL record. If the voter selects a candidate, the
TAL record is marked as “Selected” and scrolled out of sight; oth-
rwise, it is marked as “Canceled” and scrolled out of sight. The
oter is eventually given the opportunity to review his ballot, and
f the voter commits to it (confirms it), it is recorded to local stor-
ge. The process continues in this way for all qualified voters (see
ig. 2).

After the official poll closing time is reached and there is no
ualified voter waiting in line, the poll worker inserts the master
EB to collect and store tabulated data, copies of the ballot image
i.e., file) and some other information. Upon closing the terminal,
he DRE firmware automatically uploads the audit data onto the CF
ard. The results tape from the RTAL is also collected. The results
ape, CF Card, and master PEB from each polling place are then
eturned to election central.

We remark that some properties documented in the ES&S elec-
ion day checklist manual – such as, “while downloading the
lection results from the DRE after the election is closed, the PEB
hould not be removed until the download finishes and it is safe to
emove it” – are not intrinsic to the system functionality. They are
ither procedural and/or environmental assumptions.

.3. Informal requirements for the ES&S system

We describe a list of security properties that the system must
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

espect. The security goal is that even in the presence of an adver-
ary, the system should meet these properties. For instance, the
RE should record the voter’s intent exactly as the voter desires.
urthermore, an adversary should not be able to undetectably alter
he votes once they have been successfully stored. We wish to spec-
of the process after the poll worker activated the machine for an eligible voter.

ify these kinds of properties and validate against the system model,
as well as in the presence of threat actions corresponding to each
attack scenario, which will be discussed subsequently.

As noted earlier, a number of requirements that the ES&S system
must satisfy are enumerated in the ES&S system manual (Inc, 2007)
(such as configuration instructions and the user’s manual) and a
corresponding video (Election and Systems, 2009), which describes
how the system works on election day. Instead of describing prop-
erties such as in Sastry (2007) – e.g., “A ballot cannot be cast without
the voter’s consent to cast it; the DRE only stores ballots that have
been confirmed by the voter.”, or in McGaley (2008) – e.g., “The e-
voting system shall be protected against threats to its availability
including: malfunction, breakdown and denial of service attacks.” –
we rearrange and split the properties so that providing their equiv-
alent formal specification is fairly manageable, if not easy. The link
from the concrete requirements listed below to abstract or generic
voting machine requirements (e.g., availability, accuracy, privacy,
fairness, eligibility) are given elsewhere, such as in Kremer and
Ryan (2005) and Delaune et al. (2009). However, and if necessary,
we highlight (within a bracket) such abstract requirements with
properties we list below.

In the following, we present a sample list of the most important
critical security requirements that the ES&S voting system must
meet. The list is by no means exhaustive, but it is chosen to reflect
important properties that are essential building blocks for most
DRE e-voting machines equipped with an RTAL/VVPAT. Notice that
the presentation of the requirements does not follow any order of
importance, nor is it in sequence.

A correctly functioning DRE must satisfy the following proper-
ties.

Property 1. The same CF Card must be present throughout the
lysis of an electronic voting system: An experience report. J. Syst.

voting session (availability).

Property 2. The DRE must authenticate the PEB using the EQC, and
the same master PEB must be used to open and close the terminal
(eligibility).

dx.doi.org/10.1016/j.jss.2011.03.032
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roperty 3. Display screens presented to the voter must accu-
ately reflect the ballot downloaded from the PEB and the selections
ade by the voters.

roperty 4. The DRE terminal only allows two valid actions for the
oter until he/she reaches the final review (vote summary) screen:
1) select or cancel a candidate on the screen or (2) move forward
r backward through the ballot.

roperty 5. For each valid voter action (i.e., starting to vote, mak-
ng a select or cancel, and finishing a vote) the DRE must enable the
TAL to record the action on the RTAL tape accordingly.

roperty 6. The DRE must automatically forbid an overvote.

roperty 7. The DRE must report undervoted races, if they exist,
nd the review screen must display the message “BALLOT NOT
OMPLETED”.

roperty 8. When the voter confirms his/her ballot, the ballot
mages recorded in the local storage must correctly reflect the selec-
ions made by the voter (voter verifiability and cast-as-intended).

In other words, Property 8 states the fact that the DRE must not
hange the ballot after the voter chooses their candidates.

roperty 9. The DRE terminal should start chirping if there is no
nput from the voter for 10 time units since the last input but not
fter he/she confirmed.

The RTAL must satisfy the following properties:

roperty 10. The RTAL should scroll up a minimum distance after
he summary has printed, in order to move the previous vote out
f sight (anonymity).

roperty 11. The RTAL must update the paper tape after the voter
ushes the start button, makes a choice (select or cancel), confirms
vote, or when the poll worker rejects the ballot of a fleeing voter.

Even if Property 3 and Property 11 state different requirements,
hey are meant to express the fact that the voter must have a chance
o preview (both on the DRE screen and on the RTAL window) the
ontents of the ballot and accept or reject it.

The PEB must satisfy the following properties:

roperty 12. The election-specific secret code (EQC), which is a
2-bit (4 digit) code, must be present on a PEB and must always
atch with the one stored inside the DRE; otherwise, the PEB

hould be rejected by the DRE terminal whenever the poll worker
ttempts to insert it.

roperty 13. At the end of the election, the copy of the ballot
mages downloaded from the DRE must be the same as the ballot
mages that were loaded into the DRE prior to starting the election.

The CF Card should satisfy the following property:

roperty 14. The poll closing procedures must copy the audit
nformation (such as the event log) accumulated in the local storage
o the CF Card.

The following global properties must be ensured by the system
omponents all together:

roperty 15. No discrepancy should be observed among the fol-
owing: (1) the individual cast ballot records (or ballot images)
ecorded by the machines; (2) the summary tape generated on
lection Day at the close of polls on individual machines; (3) the
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

otals that were accumulated and reported by the DRE and RTAL
counted-as-cast).

The above requirement can further be refined into the following
equirements.
 PRESS
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Property 16.1. The vote entries printed on the RTAL tape during
and after the election must be equal to the ballot records cast plus
the rejected votes in the DRE.

Property 16.2. The number of fleeing voters recorded in the audit
log file, which is downloaded into the CF Card, must be equal to the
number of rejected ballots printed on the RTAL tape.

Property 16.3. The undervoted races in the audit log file, which
is downloaded into the CF Card, must be equal to the undervoted
races that have been reported on the RTAL tape.

Property 16.4. After the voting is closed, the results downloaded
into the master PEB must be equal to the sum of the results collected
from each DRE; furthermore, it must be equal to the sum of the
printed paper tapes from all RTALs.

The above requirements are converted into ASTRAL specifica-
tions in Section 5.2. It is also worth remarking that we do not specify
nor analyze usability requirements, such as “the voting device must
not display any information about the voter’s selections outside the
vote casting interface; the vote casting interface must clearly indi-
cate to the voter whether the voting device is in an active state
or an inactive state.” However, we consider specifying the possible
states of the machine (e.g., the machine is in poll worker, voter, sleep
or chirping mode), since such information helps us understand the
different operations that a poll worker or a voter experiences when
interacting with the machine.

3.4. Selected attack scenarios

Like any other voting system, the ES&S voting system can be
subjected to attack by a number of different types of attackers with
different capabilities. An attacker can be an outsider (have no spe-
cial access to any of the voting equipment), a voter (have limited
and partially supervised access to voting systems during the pro-
cess of casting their votes), a poll worker (have extensive access to
polling place equipment), an election official (have extensive access
both to the back-end election management systems and voting
equipment), and more.

Next, we give a short overview of selected attack scenarios
that are discussed for the ES&S system in the EVEREST report. We
assume that voters can leave the voting booth without check-
ing the votes shown on the confirmation screen – i.e., leaving
the voting booth without completing the voting – as observed
in practice. These types of voters are called fleeing voters. We
now present four selected attack scenarios for which we give
formal specifications later. For the sake of understanding, we
also sketched sequence diagrams corresponding to each attack
scenario. Here we emphasize that our aim is not to provide a
formal semantics for the attacks using UML sequence diagrams (or
another modeling language) nor to challenge the expressiveness
of UML notations. The attack scenarios are all alterations of the
normal voting process, which is shown in Fig. 2.

(i) Changing the vote for an unattentive voter. In this scenario, the
voter proceeds with the normal voting process (as in Fig. 2)
and the attacker intercepts the process just before the review
ballot is displayed. The attacker steals votes by assigning them
to the candidate who s/he desires to win. The modified vote is
displayed on the DRE review screen and the change is printed
on the RTAL tape. If the voter does check the screen or the
printed output and discovers that an error has been made,
lysis of an electronic voting system: An experience report. J. Syst.

s/he can recast the vote and the attacker will stop stealing
votes for a period of time. However, if the voter is unatten-
tive, the attacker’s modification will be stored locally upon the
voter’s confirmation (see Fig. 3). This attack is more interesting
(and meaningful) if the voter is able to change their vote (using

dx.doi.org/10.1016/j.jss.2011.03.032
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unatt
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p

Fig. 3. Changing an

vote change) and the DRE is unable to tell where vote change
requests are coming from.

(ii) Changing the vote for a careful voter. This scenario assumes the
voters carefully cast, check the screen and printout, and con-
firm. However, they are not familiar with all the details of how
their votes are printed on the RTAL tape. The attacker does not
intercept the normal voting process until after the cast ballot
and confirmation screens have been shown to the voter. At this
point, the attacker changes the voter’s electronic ballot, and the
RTAL prints the modified selection. The RTAL then immediately
prints the summary information along with the barcode.

iii) Canceling or completing the vote for a fleeing voter. In this sce-
nario the attacker takes advantage of a fleeing voter, a voter
who does not complete the voting procedure, by intercepting
the call to the routine that enables a chirping sound. In the
ES&S machine, this chirping sound alerts the poll worker that
a voter has fled. There are two possible scenarios depending on
the voter’s vote:
1. If the fleeing voter voted against the attacker’s candidate,

then the attacker does nothing and lets the chirping routine
perform as it should (see Fig. 4(a)). The poll worker then
discards1 the ballot and there will be one less vote for the
undesired candidate.

2. If the fleeing voter voted for the attacker’s candidate but
s/he did not complete the voting process then the attacker
completes the voting process (see Fig. 4(b)). This results in
another vote being cast for the attacker’s candidate.

iv) Faking a fleeing voter to cancel a vote. This attack scenario is
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

similar to the third attack scenario. However, in this case the
attacker cancels the vote by making it look like the voter fled.
In particular, if the voter did not choose the candidate that the
attacker wants, the attacker intercepts the confirmation pro-

1 In Ohio the votes of fleeing voters are discarded. In contrast, in California the
oll worker casts these votes.
entive voter’s vote.

cess and pretends to cast the ballot: the normal “thank you”
screen is displayed, but nothing is printed on the RTAL tape.
After some amount of time elapses (during which the voter
most likely leaves the voting booth) the attacker directs the
system to display the confirmation screen. Then after another
reasonable amount of time has passed the attacker calls the
chirping sound routine and the machine immediately starts
chirping. A poll worker will think the voter was a fleeing voter
and the ballot will be discarded (see Fig. 5).

In the above attack scenarios, various low level details that
are not the interest of formal specification and verification
are omitted. Moreover, the four attacks given above are by no
means exhaustive and they do not represent all the different
types of attacks discussed in the EVEREST report for the ES&S
system. Instead, they are attacks that we believe demonstrate
the flavor of this work. It is also important to clarify that any
formalization must be at a given level of abstraction. The kinds
of properties that can be expressed and proved depend upon
such level. Our formalization is no exception and can not model
all kinds of attacks that can be performed on the machine or the
low level details of some attacks. The goal, however, is not that
of being all-encompassing, but rather, that of complementing
existing technologies and filling an existing gap in the formal
verification of e-voting systems.

4. Overview of the ASTRAL language

ASTRAL (Kolano et al., 1999) is a high-level formal specification
language designed for reactive systems. The language constructs
allow one to build modularized specifications of complex systems
using state machines. ASTRAL provides a mechanism for speci-
lysis of an electronic voting system: An experience report. J. Syst.

fying critical system requirements as first order formulas, and a
formal proof system for proving that the system actually meets
the stated requirements. The language is intended to be exe-
cutable, which in turn allows developers to treat specifications as
prototypes.

dx.doi.org/10.1016/j.jss.2011.03.032
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Fig. 4. Canceling or completing the vote for a fleeing voter.

An ASTRAL specification of a system consists of a global specifi-
ation and process specifications. The global specification contains
eclarations of the process instances, global constants and non-
rimitive types (which may be shared by process instances), and
ystem level critical requirements. An ASTRAL process specification
resents an abstract model of what constitutes the process (types,
onstants, variables), what the process does (state transitions), and
he critical requirements the process must meet. The process being
pecified is thought of as being in various states, with one state dif-
erentiated from another by the values of the state variables, which
an be changed only by means of state transitions. A transition is
odeled by entry and exit conditions, and a non-zero duration is
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

ssigned to each entry/exit pair. Specification exceptions are han-
led explicitly by adding except/exit pairs in addition to the normal
ntry/exit pairs. Transitions are executed as soon as the entry con-
itions are satisfied assuming no other transition for that process

nstance is executing.

Pollworker DREfleeing: Voter

display_review()

display_thank_you()

make_selection()

[cast_ok]

[review_ok]

show_confirmation()

chirping ()

reject_vote()

update_screen()

[review]
push_button()

[cast]
push_button()

[confirm]
push_button()

show_confirmation()

Fig. 5. Canceling a vote by f
b

celing the vote. (b) Completing the vote for a fleeing voter.

Every ASTRAL process can export both state variables and transi-
tions. As a consequence, the former are readable by other processes
while the latter are executable from the external environment.
Interprocess communication is accomplished by broadcasting the
value of exported variables, as well as the start and end times
of exported transitions. In addition to specifying system state
(through process variables and constants) and system evolution
(through transitions), an ASTRAL specification also defines sys-
tem critical requirements and assumptions on the behavior of the
environment that interacts with the system. The behavior of the
environment is expressed by means of environment clauses, which
describe assumptions about the pattern of invocation of external
lysis of an electronic voting system: An experience report. J. Syst.

transitions. Critical requirements are expressed by means of invari-
ants, constraints and schedules. The invariants express the critical
requirements that are to hold in every reachable state. That is, they
state properties that must initially be true and must be guaran-
teed to hold during system evolution. The constraints express the

RTAL Attacker

update_tempvote
Record

print (c,r,choice)

[against_vote]
fake_confirm()

update_tempvote
Record

make_delay()

call_chirping_routine()

aking a fleeing voter.

dx.doi.org/10.1016/j.jss.2011.03.032
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Fig. 6. A simplified view of an ES&S voting system

ritical requirements that must hold between any two states that
orrespond to the start and end of a transition. Note, however, that
he requirements contained in a constraint could be expressed in an
nvariant, and thus the constraint is just a notational convenience
Kolano et al., 1999). Invariants can be global or local; the global
nvariants represent properties that need to hold for the realtime
ystem as a whole, while local invariants and constraints defined at
he process type level represent properties that must hold for each
rocess instance. Invariant and constraint properties must be true
egardless of the environment or the context in which the process
r system is running.

Our choice of ASTRAL is twofold. First of all, ASTRAL is a more
xpressive language for real-time systems, and (as noted earlier)
e treat the ES&S voting system as a complex, real-time embed-
ed system. Therefore, the language suits our purpose. The second
otivation is related to the nature of the ES&S voting system

generally, true for other voting systems), which consists of sev-
ral variables representing the different behaviors of the voting
rocesses and its requirements. In fact, different modeling lan-
uages are more or less suited to the verification of different critical
equirements. In theory, explicit state model checking is a rig-
rous method. Unfortunately, model checking can only provide
his rigor for reasonably small specification, since the number of
tates rapidly exceeds computational limits for complex specifica-
ions (like in our case) and is unfeasible for the model analysis. An
lternative approach to verification without model checking is the-
rem proving. This allowed us to experiment and compare different
pproaches (theorem proving and model checking) to the verifica-
ion of e-voting systems. See Villafiorita et al. (2009) and Tiella et al.
2006) for a discussion of the verification using model checkers.

. Formal analysis of an e-voting system

We now present the specification and verification of the ES&S
oting machine by showing a sampling of the specification that, we
elieve, provides the flavor of the work. On top of the assumptions
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

e mentioned previously, to make the specification and analysis
imple but without losing generality, one DRE machine per polling
tation is assumed. We assume also that there is one CF Card, one
TAL, and one PEB (master) per DRE machine used in the election;
oreover, we assume that there is one race per screen.
e interactions are typically done through the DRE.

5.1. ASTRAL specification of the ES&S system

We formulate each component of the ES&S voting system as an
ASTRAL process instance (see Fig. 6).

There is a process specification for each process type declared
in the global specification – i.e., four process types are declared in
the global specification of the ASTRAL model of the ES&S system.
Below is an example of a process declaration:

PROCESSES

the DRE: array [1..Number Of DRE] of DRE Process,

the RTAL: array [1..Number Of RTAL] of RTAL Process,

We declared user defined types and constants to represent
useful concerns about the ES&S system inputs and outputs, like in
the following snippet specification:

TYPE

DRE ID: TYPEDEF p: ID (IDTYPE(p) = DRE Process),

PrintValue, /* unspecified type*/
Title IS SUBTYPE OF String,

Candidate Name IS SUBTYPE of String,

DecisionType: (Selected, Canceled),

Button: (RESET, EXIT, CANCEL, CLOSE, START, NEXT,

BACK, REVIEW, CAST, CONFIRM),

[· · · ]
CONSTANT

Installed CFCard(DRE ID): CFCard ID,

Plugged In RTAL(DRE ID): RTAL ID,

Make Print VoteEntry (Name, Title, Decision): PrintValue

The DRE ID line declares DRE IDs to be exactly those ids that
are process instances of type DRE Process. The DecisionType and
Button are enumerations, that represent, respectively, the voter’s
decision on a candidate for a given contest and the buttons that
can be used to interact with the touchscreen. In contrast, the first
two constants associate each DRE with a unique CF Card and RTAL
printer, which take DRE ID as an argument and return CFCard ID
lysis of an electronic voting system: An experience report. J. Syst.

and RTAL ID, respectively. Make Print VoteEntry represents the
print format on the RTAL paper tape when the voter selects or can-
cels a particular candidate. In addition to printing vote selection,
the RTAL also prints start and summary information for each voting
session.

dx.doi.org/10.1016/j.jss.2011.03.032
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.1.1. Modeling the DRE process
The ES&S DRE device is modeled by the process type

RE Process. The initial clause of the DRE model states that
CF Card is inserted in the machine and that a unique RTAL printer

s attached to the DRE.

INITIAL

EXISTS f: CFCard ID

(f = Installed CFCard (Self)

− > Which CFCard Installed = f

& CFCard Installed = TRUE

& CFCardSerialNumber =

Which CFCard Installed.SerialNumber)

& EXISTS rt: RTAL ID

(rt = Plugged In RTAL (Self)

− > Which RTAL Plugged In = rt

& RTAL Plugged In)

sing the import clause in the interface section of DRE Process,
he process can import globally declared types, constants, and
efinitions, as well as variables and transitions exported by other
rocesses in the system. For instance, Installed CFCard and
lugged In RTAL are constants declared in the global specifica-
ion and are imported using the import clause of the DRE Process
rocess. Similarly, the process can also export variables and
ransitions which can be used by other processes. For instance,
hich CFCard Installed below is an exported variable:

VARIABLE

NumberOfSelected (Race Num): Non Negative,

totalTallyCount(Candidate Name,Title):Non Negative,

Which CFCard Installed: CFCard ID

he DRE machine stores vote records locally and automatically
orbids overvotes, but not undervotes. The number of candidates
urrently selected for a particular race and the total number of
otes for a particular candidate in a race are modeled with the first
wo variables above.

The communication between the DRE and the RTAL processes
s modeled by the exported variables:

VARIABLE

Signal Enabled: Boolean,

Which Signal: SignalType

where the first variable signals that the DRE is sending infor-
ation to the RTAL printer and Which Signal carries the kind of

nformation to be printed (e.g., is the print information, a start vote
ession message or a vote selection).

To model permissible operations on the DRE machine, it is also
ecessary to capture the phases of the election and the various
odes of the terminal during election day. We use the following

ariables:

VARIABLE

Which Phase: Voting Phase,

Terminal Mode: Mode,

DRE State: Terminal State,

hese variables indicate, respectively, that the phase of the election
pre-voting, during voting, and post-voting phases), the terminal

ode, and the state of the poll (opening, opened, closing, or
losed). The last two variables are only meaningful during the
ctual election day – i.e., Which Phase = During Voting.

When a voter casts a vote, s/he is actually interacting with the
ystem by navigating from one screen to another using an appro-
riate button (such as NEXT or BACK). We model such interaction
y assigning an integer number to each screen shown to the voter
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

nd by defining a function that takes as input a screen number and
eturns the information to be displayed and the buttons available.
he variable Display of type screen, is used to hold the state of
he screen as it is to be shown to the voter while s/he is voting. For
xample, if the voter is in one of the race screens then the value of
 PRESS
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the Display contains the candidates of that race with appropriate
button(s) displayed on it.

Once we capture the relevant data structures that allow one
to hold information about the DRE, the next step is modeling the
behavior of the DRE itself. This is modeled by ASTRAL transitions.
Twelve transitions are used to model the possible operations of
the DRE machine. For instance, the Insert PEB exported transi-
tion models the insertion of a qualified PEB device in order to allow
various operations to run the election; the Initialize Ballot
transition models the initialization of a ballot when a qualified
voter comes, and, the Push Button exported transition specifies
the behavior of the DRE while the voter and/or poll worker inter-
acts with the system by navigating from one screen to another using
an appropriate button.

An ES&S DRE requires a poll worker to insert a qualified PEB
device in order to allow various operations to run the election.
These operations include loading the appropriate ballot, opening
or closing polls, initializing the ballot, collecting election results,
and performing various administrative tasks. We modeled all these
aspects with appropriate transitions.

The following snippet specification encodes the ballot loading
operation prior to start election.

TRANSITION Insert PEB (p: PEB ID)

ENTRY [TIME: I P Dur1]

MachineTurnedOn & Stored EQC = p.Secret EQC

& p.Kind = Master & ∼PEB Inserted

& Terminal Mode = Deactivated & Which Phase = Pre Voting

& DRE State = Initial State & ∼Ballot Loaded

& FORALL R: Race (Race Candidates (R) = EMPTY)

EXIT

Which PEB Inserted = p

& PEB Inserted

& FORALL R: Race (

Race Candidates(R) = P.Candidates Of Race(R))

& Ballot Loaded

[· · · ]

Once the ballot is loaded while inserting the PEB, the poll
worker must remove the inserted PEB safely. This is done by call-
ing Remove PEB transition. The result of the remove operation, in
the nominal case, is changing the state of the system to allow vot-
ing and putting the machine in sleeping mode (i.e., Which Phase
= during voting, DRE State = Opened, and Terminal Mode =
sleep mode). In other words, this indicates that it is now voting
time, the poll is opened for election, and the terminal mode goes to
sleep.

The initialization of a ballot when a qualified voter comes is
specified in the model by the transition

TRANSITION Initialize Ballot

ENTRY [TIME: I B Dur]

DRE State = Opened

& Terminal Mode = pollworker

& EXISTS p: PEB ID

(Which PEB Inserted = p

& PEB Inserted))

& Proceed Ballot Init & ∼Ballot Initialized

EXIT

FORALL R: Race (

Displayed Candidates (R) = { SETDEF

C: Candidate (C ISIN Race Candidates (R))})

& FORALL R: Race, C: Candidate (

C ISIN Displayed Candidates (R)

& ∼Picked (Candidate Name(C),Race Title(R)))

& FORALL R: Race (Number Of Selected(R) = 0)

& Ballot Initialized & ∼Proceed Ballot Init

& underVotedRaces = EMPTY
lysis of an electronic voting system: An experience report. J. Syst.

The entry conditions specify that the poll has to be opened in the
poll worker terminal mode, the PEB is inserted, and the ballot
has not been initialized for the voter who is ready to cast her/his
vote. It should be noted that the voting procedure usually allows

dx.doi.org/10.1016/j.jss.2011.03.032
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oting after scheduled poll closing time as long as a qualified voter
s still in line. The exit condition specifies that all the variable
alues from the last voter are reset – i.e., the Picked value for each
andidate–race pair, the number of selections for each race, and
he temporary vote list are all reset. Therefore, the ballot is ready
or the next voter, and the local variable Ballot Initialized is
et to true.

There are four nominal situations in which the PEB can be
emoved:

. after the poll worker loaded ballots prior to opening the DRE
terminal for voting;

. after the poll worker initialized the ballot for the next voter
during the voting phase;

. after the poll worker performed administrative operations (such
as after correcting the chirping terminal mode) during the voting
phase;

. after the poll worker downloaded the election results after the
terminal is closed for election.

If the Remove PEB transition has been fired because the poll
orker initialized the ballot, then the terminal mode changes to

oter mode, the current screen becomes the starting screen for the
ligible voter with a START button on it:

[· · · ]
/*Removing the PBE after the ballot has been initialized for the voter.*/
Terminal Mode = voter mode

& scrName = START SCREEN

& scrNumber = 0

& Screen Buttons(scrNumber) BECOMES {START BUTTON}
& Min Display (scrNumber) BECOMES

Display Info (Push Start Button To Start Voting

,Screen Buttons (scrNumber))

[. . . ]

n a touch-screen based voting system, a voter makes a choice or
hanges a previous choice by touching the candidate name on the
isplay. In either case, the DRE must capture and process the touch
orrectly. Make Selection is an exported transition, which must
e called by the voter.

TRANSITION Make Selection (cName: Name)

ENTRY [TIME: M S Dur]

Which Phase = during voting

& Terminal Mode = voter mode

& Race Screen (scrNumber)

& currentRace = Which Race(scrNumber)

& Display(scrNumber) =

Display Contest (Race Title (currentRace)

,Displayed Candidates(currentRace)

,Screen Buttons (scrNumber))

& EXISTS C: Candidate (

C ISIN Displayed Candidates (currentRace)

& Candidate Name (C) = cName)

& ∼Signal Enabled

It specifies the occurrence of a screen touch on a particular can-
idate’s name. On entry, the DRE checks that the voter is voting
uring voting period, the terminal is in voter mode, the current
creen is a race screen displaying both the current race with its can-
idates and the button(s) required to navigate through the screen,
he touched candidate cName belongs to the displayed candidates,
nd that the DRE is not currently sending a signal to the RTAL.
Please cite this article in press as: Weldemariam, K., et al., Formal ana
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e used the Picked variable to determine whether the candi-
ate has been previously selected. This variable will eventually be
sed to update the totalTallyCount for the selected candidate
ame cName when the ballot is confirmed. The exit assertion for
he Make Selection transition is
 PRESS
ms and Software xxx (2011) xxx–xxx

EXIT

/*If the number of selects is greater than the maximum allowed,
the DRE machine should reject the selection locally.*/
/*The parametrized variable Number Of Selected keeps track of the number of

selects.*/
IF ∼Picked’ (cName,Race Title (currentRace’))

THEN

IF Number Of Selected’ (currentRace’) + 1

<= Max Choice Per Race (currentRace)

THEN/*over-vote is not attempted.*/
Number Of Selected (currentRace’) BECOMES

Number Of Selected’ (currentRace’) + 1

& Picked (cName, Race Title(currentRace’))

BECOMES TRUE

& Display (scrNumber’) BECOMES

Update(Display’ (scrNumber’),cName,Marked)

& tempVoteRecord (currentRace’) BECOMES

tempVoteRecord’ (currentRace’) UNION

{SETDEF C: Candidate(Candidate Name(C) =cName)}
/*set variable value for the RTAL to print.*/
& pickedName = cName & pickedValue = Selected

& Signal Enabled & Which Signal = Vote Signal

& currentRace = currentRace’

ELSE /*else over-vote is attempted.*/
Min Display (scrNumber’) BECOMES

Display Info (OverVote Prohibited, NoButton)

FI

ELSE /*else, cancel the previous choice.*/
Number Of Selected (currentRace’) BECOMES

Number Of Selected’ (currentRace’) - 1

& Picked (cName,Race Title(currentRace’))

BECOMES FALSE

& Display (scrNumber’) BECOMES

Update(Display’(scrNumber’),cName,UnMarked)

& tempVoteRecord (currentRace’) BECOMES

tempVoteRecord’ (currentRace’) SET DIFF

SETDEF C: Candidate (

Candidate Name (C) = cName)

[· · · ]

There are two possible cases when a voter marks a candidate on
the screen:

• Making a selection. The following scenario occurs: (i) as long as
there is no overvote attempted the number of selections for this
candidate for the current race is incremented by one, Picked is
set to true, the current screen is updated, and cName is included
in tempVoteRecord, which will be used to display the voter’s
final selection when the voter requests a preview. In addition,
the exported variables pickedName, currentRace, pickedValue
and Which Signal receive new values, and the signaling vari-
able is set to true. This indicates that the RTAL can now print
the selection expressed in these exported variables. (ii) Other-
wise, the voter attempted to overvote and the DRE will display
the appropriate message on the screen.

• Canceling a previous selection. In this case, the exit assertion spec-
ifies that the number of selected candidates for the current race
is decremented by one, Picked is reset to false, and cName is
removed from the tempVoteRecord. The rest of the variables
are updated accordingly and the cancellation expressed in the
exported variables information is sent to the RTAL.

Another important transition to discuss is how we specify
Button Push, which is also an exported transition and, therefore,
is called by the voter and/or poll worker. Notice that each screen
is associated with an integer value and, in some cases, with a
particular name. To make the specification simple but without
losing generality, we assume one race per screen. In reality,
lysis of an electronic voting system: An experience report. J. Syst.

however, a screen can display more than one race. The voter
and the poll worker interact with the screen while casting votes
and administering the election (such as, loading a ballot prior
to starting an election, initializing a voter’s ballot, or dealing
with abnormal situations). A voter navigates from one screen to

dx.doi.org/10.1016/j.jss.2011.03.032
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nother, by calling the transition Push Button. The transition
as a number of entry/exit pairs that correspond to the buttons
efined previously. The entry and exit assertions that correspond
o the START button are as follows:

ENTRY

b = START BUTTON

& b ISIN Screen Buttons (scrNumber)

& scrName = START SCREEN

& scrNumber = 0 & ∼Button Pushed (b)

& Which Phase = During Voting

& Terminal Mode = voter mode & ∼Signal Enabled

he first five conjuncts specify conditions about the button and
he current screen. They specify that the button that the voter
ushed is START BUTTON, the button is in the screen button list
or the current screen, the current screen is START SCREEN, the
orresponding screen number equals zero, and the start button was
ot previously pushed. The next two conjuncts deal with election
eriod and the status of the DRE terminal. The election phase must
e during-voting and the terminal mode is voter-mode. The last
onjunct of the entry assertion is used by the DRE to modulate the
ignaling information in order to alert the RTAL.

EXIT

Button Pushed (b) BECOMES TRUE

& scrNumber = 1

& currentRace = Which Race (scrNumber)

& Screen Buttons(curScreen) = { NEXT }
& Display (scrNumber) BECOMES

Display Contest(Race Title(currentRace)

,Displayed Candidates’ (currentRace)

,Screen Buttons (scrNumber))

& voterNumber =voterNumber’ + 1

/* Make available for RTAL to print. */
& Signal Enabled & Which Signal = Start Signal

& RTALMessage = VOTE SESSION STARTED

/*Once the voter starts voting, Ballot Initialized is set to FALSE.*/
& ∼Ballot Initialized

The exit assertion for the start case indicates that the voter has
ushed the START button, the screen number is incremented by
ne, the current race is updated, the current screen displays the
rst race, and the only button available to push is NEXT, and the
umber of voters who visited the poll is incremented by one. In
ddition, the DRE updates the value of the signaling variables and
TALMessage to be printed out on the paper tape.

The entry assertions for the rest of the entry/exit pairs are more
r less identical to the first five conjuncts of the start case except
he button being pushed is different in each case (with additional
onjuncts if applicable). The exit assertion, however, for each but-
on push can be different depending on which button was pushed.
elow, we discuss the exit assertion for the CONFIRM button push.

After the voter has completed all of his/her votes, the voter has
o cast and confirm the choices. Once the voter touches the CAST
utton and confirms the vote by touching the CONFIRM button, the
RE updates the total tally in the exit assertion of confirm. Note

hat when the voter reaches the end of the ballot, they will be
rompted to press the REVIEW button. When the REVIEW button is
ressed the voter will be notified of any unvoted, or undervoted
ontests or if the ballot has been left blank. The voter has the
ption of reviewing their ballot and making any changes (by using
he BACK button or by touching on the candidate name) before
asting their ballot. In this paper we specified the change only by
sing the BACK button push until the voter reaches the screen that
ontains the candidate. Pressing the CONFIRM button will cast the
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

allot.

/*exit assertion for ‘confirm’ button*/
EXIT

Button Pushed (b) BECOMES TRUE

/*Store the vote locally because the voter has confirmed.*/
 PRESS
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& FORALL C: Candidate, R: Race

(C ISIN Displayed Candidates’ (R)

& IF Picked’ (Candidate Name(C),Race Title(R))

THEN

TotalTallyCount (C,R)=TotalTallyCount’(C,R)+1

ELSE

NOCHANGE (TotalTallyCount (C, R))

FI)

& (IF Min Display’ (scrNumber’) =

Display Info (Ballot Not Completed

,Screen Buttons’(scrNumber’))

THEN

NumberOfLogEntry = NumberOfLogEntry’ + 1

& EventLog (NumberOfLogEntry)

BECOMES underVotedRaces’

& underVotedRaces = underVotedRaces’

& RTALMessage = BALLOT ACCEPTED UNDERVOTE

ELSE

RTALMessage = BALLOT ACCEPTED

& underVotedRaces = NoUnderVotedRace

FI)

& Signal Enabled & Which Signal = Summary Signal

& BallotBarcode = BARCODE (voterNumber’)

& Terminal Mode = sleep mode

& scrNumber = - 1 & scrName = SETUP SCREEN

/*Reset the temporary vote record. */
& FORALL R: Race (tempVoteRecord (R) = EMPTY)

In addition to updating the total tally, the DRE keeps track of log
data (such as undervoted races, if they exist, in underVotedRaces).

In the ES&S voting system, the DRE is also responsible for gener-
ating a chirping sound (when a voter flees, i.e., s/he leaves without
confirming the vote), clearing the previous signal value and the
button push, by performing the transitions Generate Chirping,
Clear Signal and Clear Button Push, respectively. We omit the
discussion of these remaining transitions since they follow a similar
pattern with the transitions discussed so far.

5.1.2. Modeling the RTAL process
The RTAL collects the output sent by the DRE, mostly for auditing

purposes. Namely, it prints vote actions exported by the DRE on a
paper tape. In our specification, the paper tape contains a list of
voter records, where each individual voter record is a continuous
sequence of voter actions.

These are captured by the following variables.

VARIABLE

Tape (Pos Integer): PrintValue,

tapePosition: Tape Number, /*positive integer*/
RTAL State: RTALState,

summaryPrinted: Boolean,

VoteStartPosition (Voter Number): Tape Number,

VoteEndPosition (Voter Number): Tape Number

The Tape variable represents the RTAL paper tape where
the start information, vote selection, and summary information
are continuously printed for each voter. After each print, the
RTAL tapePosition is incremented appropriately. The variables
RTAL State and summaryPrinted, respectively, are used for keep-
ing track of the current state of the RTAL and determining whether
the summary information has been printed. This is to know when
to scroll the tape forward by some amount in order to protect
the secrecy of the previous voted ballot. Moreover, the variables
VoteStartPosition and VoteEndPosition delineate the voter
record on the paper tape. In fact, the model of the RTAL process
is similar to an array of continuous values of votes. Each time a
voter makes a choice the corresponding record is inserted into the
lysis of an electronic voting system: An experience report. J. Syst.

array, and at the end of each vote confirmation empty values are
appended to represent the advancing operation of the RTAL.

There are two main behaviors of RTAL that are of interest
for the specification: printing and advancing the printer trail
after printing the summary information on the tape to keep the

dx.doi.org/10.1016/j.jss.2011.03.032
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ote secret. The former is modeled by the Print Selection tran-
ition, and the latter is modeled by the Scroll Forward transition.

TRANSITION Print Selection

ENTRY [TIME: P S Dur]

My DRE.Plugged In

& My DRE.Signal Enabled

& RTAL State = Wait

& My DRE.Which Signal ∼= NoSignal

he first three conjuncts in the entry assertion specify that the
TAL has been plugged into the DRE, that the DRE has sent a signal,
nd the RTAL is waiting for the DRE signal to print. The fourth
onjunct specifies what type of information the RTAL is signaling
o print.

(IF (My DRE.Which Signal = Start Signal

| My DRE.Which Signal = Vote Signal)

THEN

tapePosition = tapePosition’ + 1

& CutLengthCounter = CutLengthCounter’ + 1

& (IF My DRE.Which Signal = Start Signal

THEN

[. . . ]
ELSE/*voting entry printing*/

Tape (tapePosition) BECOMES

Make Print VoteEntry (My DRE.pickedName,

My DRE.currentRace, My DRE.pickedValue)

FI)

ELSE/*Summary printing*/
tapePosition = tapePosition’ + 3

& CutLengthCounter = CutLengthCounter’ + 3

& Tape (tapePosition - 2) =

Make Print Info (My DRE.RTALMessage)

& Tape (tapePosition - 1) =

Make Print Undervote (My DRE.underVotedRaces)

& Tape (tapePosition) =

Make Print BallotBarcode (My DRE.BallotBarcode)

& (FORALL i: Tape Number

(i ∼= tapePosition & i ∼= tapePosition - 1

& i ∼= tapePosition - 2

− > NOCHANGE (Tape (i))))

& VoteStartPosition (voterNumber) BECOMES

tapePosition - CutLengthCounter + 1

& VoteEndPosition (voterNumber) BECOMES tapePosition

& summaryPrinted

FI)

fter the transition is fired, depending on what signaling mode
as been received by the RTAL, the corresponding entry is printed.
otice that each vote record is uniquely identified by a barcode,
hich encodes the voter’s ballot selections in the RTAL record
ithout revealing the identity of the voter. This barcode is printed

n the tape along with the summary information of the vote
ntry. Upon the completion of printing the summary information,
he printer is also scrolled forward by calling Scroll Forward
ransition.

.1.3. Modeling the PEB and CF Card processes
The PEB device is specified by an instance of type PEB Process.

s mentioned earlier, the PEB device – in addition to being used to
oad the ballot data into the iVotronic terminals prior to starting the
lection and to initialize a ballot when a voter comes during election
is used to transfer election specific data between Election Central

nd poll locations. This data is represented by the variables Candi-
ates Of Race, tabulatedData, and copyOfBallotImages.

We mentioned that, according to the ES&S voting process spec-
fication, the DRE authenticates each PEB by its four digit EQC
ode (represented by the Secret EQC variable). While all PEBs are
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

nternally identical in construction, they are discernible from one
nother by the read-only information burned in the PIC: their serial
umber, and more importantly by their PEB kind, namely either
master” or “supervisor”. In our specification, we only use PEB kinds
o distinguish PEBs (i.e., Kind: PEBKind).
 PRESS
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The most important aspect to specify about the behavior of the
PEB process is that after the terminal is closed, the poll worker uses
the master PEB to collect and store the tabulated data and copies
of the “images” of the ballots. This is specified by the transition
Download Results.

TRANSITION Download Results (D: DRE ID)

[· · · ]
/*Download the election result.*/
FORALL C: Candidate, R: Race

(C ISIN D.Race Candidates (R)− >
tabulatedData(C, R, D) = D.TotalTallyCount(C, R))

/*Dump copy of ballot images into this PEB.*/
&copyOfBallotImages (D) BECOMES

Download BallotImage (

{SETDEF Pair: Race Candidates Pair (

EXISTS R: Race (Pair [Contest] = R

& Pair [Nominees] = D.Race Candidates(R)))}
)[. . . ]

The CF Card is specified by an instance of type CFCard Process.
An audit file is automatically saved to the card by calling the
Download AuditData transition (not shown in this paper) when
the polls are closed. From a formal specification point of view,
however, we are only interested in the audit log file, which contains
the undervoted races and the number of fleeing voters, indicated
by the following variables:

VARIABLE

EventLog (Pos Integer): Races,

numOfFleeingVoters: Non Negative,

visitedNumberOfVoters: Non Negative,

ADDownload Completed: Boolean

We mentioned that there is one CF Card per DRE machine used in
the election. This card is uniquely identified by its serial number –
i.e., SerialNumber: Digit List. When the polls are closed, an
audit file is automatically saved to the CF Card. In other words,
upon closing the terminal while the master PEB is inserted, the
DRE automatically enables the CF Card to save audit data. Down-
loading the audit log file is modeled by the Download AuditData
transition.

In summary, the complete ASTRAL specification of the ES&S vot-
ing process is approximately 1800 LOC (about 33 pages long). We
skipped a number of descriptions about the specification of each
component.

5.2. Critical requirements specification

After we specify the relevant information of the system model
we need to specify what security requirements the system should
meet given the assumptions about the behavior of the system and
the external environment that interacts with the system.

In particular, we specified the following concerns:

1. Environmental/procedural assumptions. We have specified a num-
ber of behaviors about the external environment that the
e-voting system relies on. For instance, the behavior of the people
(voters, poll workers, and election officials) who interact with the
system. These are requirements on the environment to ensure
fair elections. This is outside the ES&S system, but it influences
how the system operates.

2. Security requirements. We have specified 25 critical requirements
(expressed as invariants, constraints, and schedules) that must
be satisfied by the system given all the possible assumptions
lysis of an electronic voting system: An experience report. J. Syst.

about the environment. In the ES&S system, for instance, the
DRE should correctly handle vote selection and the RTAL should
update the paper tape after the voter pushes the start button,
makes a selection, confirms a vote, or when a poll worker rejects
the ballot of a fleeing voter.

dx.doi.org/10.1016/j.jss.2011.03.032
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& FORALL C: Candidate, R: Race (C ISIN
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With respect to the first, the DRE, in fact, cannot control the
ehavior of the voter when s/he interacts with the screen. For
xample, if the voter touches the candidate name faster then
he DRE can process the touches, the normal functioning of the
-voting system may be disrupted. In addition, the procedures that
ontrol the voting process are completely outside of the e-voting
ystem, e.g., the poll worker has to wait some amount of time
o remove the PEB after loading the ballot, or after activating
he ballot for the next active voter. However, they are equally
mportant to carry out a correct and secure election. Therefore, we
eed to express these concerns in order to guarantee the critical
equirements that the system should meet.

ENVIRONMENT

/*min pause is the minimum time between two subsequent selections */
(FORALL t: time (Call [2] (Make Selection, t)

− > Call (Make Selection) - t > min pause))

/*min pause is the minimum time between two subsequent button pushes */
& (FORALL t: time (Call [2] (f, t)

− > Call (Push Button) - t > min pause))
/*Remove PEB will be called after the ballot is loaded into the DRE and

Notify Time1 units have elapsed. */
& (EXISTS t: Time, p: PEB ID

(Now> = t + Notify Time1

& p = past (Which PEB Inserted, t)

& past (PEB Inserted, t)

& past (Ballot Loaded, t)

& past (p.Kind, t) = Master

& past (DRE State, t) = Opening

− > Call(Remove PEB, t + Notify Time1)))

or instance, the above environment clause for the DRE process
tates that there must be a minimum pause between two sub-
equent selections and button pushes. It also specifies the fact
hat the poll worker should only remove the PEB after the load-
ng operation has passed and Notify Time1 has elapsed. All
hese facts are important to prove the critical requirements, in
articular requirements that involve exported transitions. The
ritical requirements listed in Section 3.3 are essential to maintain
he integrity of the election results. In fact, the integrity of the
lection results depends heavily on the integrity of the software
nd firmware that runs the central EMS and the hardware used.
owever, this is largely dependent upon a particular implementa-

ion and is not in the scope of this specification. Moreover, audit
ogs serve a vital purpose, as they can alert an auditor of suspicious
r uncommon events that occurred, which could indicate the
resence of malicious intent against the system. Because of this,

t is critically important that an auditor is completely confident
hat the information retrieved from the audit logs is complete and
ccurate. Therefore, the security properties we are interested in
ainly concentrate on the integrity of election results.
With respect to the second, we formulated each of the criti-

al properties from Section 3.3 as ASTRAL invariants, constraints,
r schedules. We now present examples of critical requirement
pecifications, mostly related to the integrity of election results.

The fact that a DRE is chirping indicates that at least ten units
ave passed since the last ballot activity. This is expressed by
he following local schedule requirement of the DRE Process
Property 8):

(Change (Terminal Mode, Now)

& Terminal Mode = chirping− >
Call(Make Selection) - Call[2](Make Selection)>=10
| (Now - Change (scrNumber)>= 10

& EXISTS t: Time (t < = Now

& t > Change [2] (Terminal Mode)

& past (Terminal Mode, t) = voter mode)))
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

t says the mode of the terminal is set to chirping if there is no user
nput to the DRE within ten time units since the last screen change
r the last call to the exported transition Make Selection by the
oter.
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Below is the specification of Property 6 – i.e., the fact that the
DRE must automatically forbid an overvote.

FORALL R: Race (

Change (Number Of Selected (R), Now)

& Number Of Selected (R) ∼= Number Of Selected’ (R)

− > Number Of Selected (R) <= Max Choice Per Race (R))

The above constraint must be ensured each time a voter makes a
selection by calling the Make Selection transition. More specif-
ically, whenever the Number Of Selected variable for a race R is
changed to a non-zero value, the new value must be less than or
equal to the Max Choice Per Race for that race R.

We mentioned that the RTAL must print the corresponding
voter action on the tape (Property 11). This requirement must be
expressed as a scheduling requirement because the printing activ-
ity depends on the signal information sent by the DRE Process
through the Signal Enabled variable. The schedule clause for the
RTAL Process consists of four conjuncts, each corresponding to a
scheduling requirement. Below, we present one of them.

(My DRE.Signal Enabled

& past (My DRE.Which Signal,

Change (My DRE.Signal Enabled))=Vote Signal

& Now-Change (My DRE.Signal Enabled)

> Max Print Time

− > EXISTS t: Time

(t > Change (My DRE.Signal Enabled)

& t < = Now & Change (tapePosition, t)

& past (tapePosition, t) =

past (tapePosition, Now -

Change (My DRE.Signal Enabled)) + 1

& past (Tape (tapePosition), t) =

Make Print VoteEntry (My DRE.pickedName,

My DRE.currentRace, My DRE.pickedValue)))

This specifies that the vote entry (i.e., a record that consists of a
candidate, race, and value of the selection) will be printed on the
RTAL tape one tape position below the previous print if the DRE
has enabled the signal, made available the information to print,
and enough time has elapsed for the choice to be printed; we omit
the start and summary conjuncts.

We next consider specifying the integrity of the election results
(Property 16.4). This property must guarantee that, after the
election is closed, the results downloaded into the master PEB
must be equal to the sum of the results collected from each DRE.
The property is specified in the global invariant clause as

/*After the election, results downloaded into the master PEB must be equal to the
results produced by all DREs. */
EXISTS p: PEB Number

(the PEB [p].Kind = Master

& FORALL d: DRE Number(

the PEB[p].ResultDownload Completed (the DRE[d])

& the DRE[d].Which Phase=Post Voting

& the DRE[d].DRE State=Closed

& FORALL C: Candidate, R: Race

(the PEB [p].Candidates Of Race(R) =

the DRE [d].Race Candidates (R)

& C ISIN the DRE [d].Race Candidates(R)− >
the PEB[p].tabulatedData (C, R, the DRE [d])

= the DRE [d].TotalTallyCount (C, R))))

/*Downloaded results in the master PEB must be equal to the printed votes on the
RTAL tape.*/
& EXISTS p: PEB Number (

the PEB [p].Kind = Master

& FORALL d: DRE Number, rt: RTAL Number (

the RTAL[rt]=Plugged In RTAL(the DRE[d])

& the PEB [p].ResultDownload Completed (the DRE[d])

& the DRE [d].Which Phase = Post Voting
lysis of an electronic voting system: An experience report. J. Syst.

the DRE [d].Race Candidates (R)− >
the PEB [p].tabulatedData(C, R, the DRE [d])

= CountSelected (C, R, the RTAL [rt])

- CountCancelled (C,R, the RTAL [rt]))))

dx.doi.org/10.1016/j.jss.2011.03.032
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The first conjunct of the invariant specifies that there exists a
EB p, such that for every DRE d in the precinct, if p is the master
EB used in d’ s terminal to download the election results after the
erminal is closed and the election has ended (i.e., Post Voting
hase), then the election results for each candidate C who ran for
ace R stored in p is exactly equal to the total tally counted on d’s
erminal for candidate C. Similarly, the second conjunct specifies
hat for every RTAL printer rt and DRE d in the precinct, if rt is the
rinter used by d during the voting period, then the election result
or each candidate C who ran for race R stored in p is the differ-
nce between the total number of selected and the total number of
anceled votes printed on rt.

In the above specification, the CountSelected and CountCan-
elled are definitions that make the specification more readable.
ore specifically, they respectively introduce predicates which are

sed in our specification of the voting process to specify how many
elections and cancelations have been printed for each candidate C
ho ran for race R on the RTAL printer rt.

This way, the requirements listed in Section 3.3 are converted
nto ASTRAL invariants, schedules, and constraints for each corre-
ponding process instance. We need to be clear that we did not
onvert all the requirements to their ASTRAL equivalent in the way
e describe them informally.

. Extending the system specification by modeling attack
cenarios

Analyzing a system in non-nominal situations – where some of
ts components are not behaving in the way they should be – has
lways provided important insights into the behaviors of a system.
his approach is common in system engineering when performing
afety assessment of critical systems. When performing safety
ssessment, the model is augmented with non-nominal behaviors
e.g., due to malfunctioning or attacks). The augmented model
also called the extended model) is then analyzed to understand
nder what (non-nominal) conditions critical requirements are
ot met anymore.

We want to take a similar approach to the analysis of the
ecurity-critical properties articulated previously. The extended
odel is a combination of the original specification of the ES&S sys-

em that was discussed previously and the attack scenarios given
n Section 3.4. More specifically, we extended the original specifi-
ation with a set of transition specifications that represent known
ttacks that have been shown to successfully compromise the ES&S
ystem. Each transition corresponds to a particular threat action for
he voting system. Thereafter, we process the extended specifica-
ion and automatically generate proof obligations related to the
ecurity requirements for the PVS analysis tool.

In particular, we wish to prove the security properties against
he extended model for the following reasons:

If all of the proof obligations were to be proved, then the system
specification must be missing some critical security require-
ments, since the modeled attacks were already demonstrated
to be successful. Therefore, it would be necessary to see what
additional critical requirements are needed to disallow the threat
actions and keep the extended specification from being proved.
In contrast, not being able to prove the extended specification
would indicate that one, or more, threat action violates at least
one critical security requirement. However, since we know that
attacks composed of these threat actions have been used to suc-
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

cessfully compromise the system, it also indicates that there
could be an implementation or specification error or an unsat-
isfied procedural assumption that results in the actual system or
the environment not satisfying their respective formal specifica-
tion.
 PRESS
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6.1. Attack specifications

We model the attack scenarios presented in Section 3.4 in terms
of threat actions expressed as ASTRAL transition specifications. The
system model is extended by augmenting the specification with
new possible states that are the result of the execution of the threat
actions.

In particular, the attack scenarios are encoded to extend the
original specification of the ES&S voting system using the following
strategies:

1. we define new types, variables, and constants. There are two
kinds of variables that we declare: those that provide additional
information about the state of the system (e.g., the system is now
about to display the review ballot) and those that hold infor-
mation about the successful execution of a threat action (e.g., a
fleeing voter has been faked).

2. a transition is defined for each threat action, which is part of
a given attack scenario. Note that one attack scenario can be
implemented using one or more threat actions.

3. a transition may be split into two or more transitions, or a tran-
sition may be extended with more information to specify the
attack scenario.

As noted previously, we assume that the attacker can inter-
cept the normal voting process at any point. For instance, if s/he
intercepts the process before the review screen is displayed and
the attack is successful, then the tempVoteRecord variable should
include the maliciously modified candidate and the Display vari-
able should update the screen accordingly. It is, in fact, the voter’s
task to correctly verify that what is displayed exactly matches
her/his preferences.

To represent the various kinds of voters (unattentive, careful,
and fleeing), we introduced the following global type:

TYPE

VoterType: (unattentive, careful, fleeing)

In addition, the variables declared, respectively, hold information
about whether the voter’s vote is changed (obviously, by a suc-
cessful attack action), whether the fleeing voter is faked, and the
name of the attacker’s candidate. In addition, information about
where the attacker intercepts the process to start the threat action
is encoded by the (boolean) variables review displayed and
summary sent2RTAL. Namely, they respectively hold information
about the attack actions that happened just before reviewing the
final votes and right after the summary data is sent to the printer.

VARIABLE

vote changed, Fleeing Faked: Boolean,

attPickedName: Name

When an attacker changes or cancels a vote, it is actually per-
forming a sequence of interactions with the DRE process in order to
fulfill the threat action. The successful completion of such an action
eventually assigns new values to some of the exported variables
discussed above.

The following transition specifies the change vote threat action,
which appears in the sequence diagram depicted in Fig. 3.

TRANSITION Attack Change Vote

(vc, ac:Candidate, vType:VoterType)

ENTRY [TIME ACV Dur]

/*This attack assumes an unattentive voter. This results in a change of vote.*/
lysis of an electronic voting system: An experience report. J. Syst.

& Terminal Mode = voter mode

& vType = Unattentive

& EXISTS R: Race (

vc ISIN Displayed Candidates (R)

& ac ISIN Displayed Candidates (R)

dx.doi.org/10.1016/j.jss.2011.03.032
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& vc ISIN tempVoteRecord (R)

& Picked (Candidate Name (vc), Race Title(R)))

& ∼Picked (Candidate Name (ac), Race Title(R)))

& vc ∼= ac

& EXISTS b: Button

(b = REVIEW & Button Pushed(b))

& scrName = REVIEW SCREEN

& ∼Review Displayed & ∼Vote Changed

EXIT

EXISTS R: Race (

vc ISIN Displayed Candidates’ (R)

& ac ISIN Displayed Candidates’ (R)

& vc ISIN tempVoteRecord’ (R)

& tempVoteRecord (R) BECOMES

(tempVoteRecord’ (R) SET DIFF vc) UNION ac

& ∼Picked (Candidate Name (vc), Race Title (R))

& Picked (Candidate Name (ac), Race Title (R))

& FORALL CN:Name, R1:Title (

((CN ∼= Candidate Name (vc)

& CN ∼= Candidate Name (ac))

| R1 ∼= Race Title (R))− >
Picked (CN, R1) = Picked’ (CN,R1))

& currentRace = R)

& Signal Enabled & Which Signal = Vote Signal

& pickedName = Candidate Name (vc)

& attPickedName = Candidate Name (ac)

& Vote Changed

he enabling condition for this threat action (i.e., for the transition)
pecifies that the fleeing voter is voting during election period in
he voter’s terminal mode, that there exists a race R such that the
oter’s candidate vc is in the displayed candidates list for race R
or which the voter already voted, that the attacker’s candidate ac
s also a legitimate candidate contained in the displayed list for
he same race R and it is not selected by the voter, and the voter’s
hoice is different from the attacker’s (i.e., vc ∼ = ac). In addition,
he voter has already requested the review screen, currently there
s nothing shown on the REVIEW SCREEN, and there is no change
f vote at the moment.

After the threat action is successfully executed (i.e., after the
ransition is ended) the following holds: the voter’s selection in
empVoteRecord now contains the attacker’s choice, the Picked
alue is true for ac and is false for voter candidate vc. In addition,
he exported variables currentRace, pickedName, attPicked-
ame, pickedValue and Which Signal have new values, and the
ignaling variable is true. This indicates that the RTAL can now print
he modification expressed in these exported variables. The RTAL
rocess prints this information by executing the Print Selection
ransition (see Section 5.1.2).

The above modification, which is contained in the tempVoteRe-
ord variable, is also displayed on the review screen. It is worth
oting that both the review screen and what is printed on the RTAL
ape report the modified selection, rather than the original one.
rom an attacker’s point of view, it is better to keep the display and
ape consistent. The reason is that if an abnormality is detected,
hen it is more likely to be attributed to a display miscalibration
ather than to an attack. It is possible that the voter will detect such
change. In this case, the voter can recast his/her vote by calling

he Push Button and Make Selection transitions.
The Attack Change Vote also has exceptions that specify the

ther cases of the voter type
EXCEPT

[· · · ]
/*This attack assumes a Careful voter. The voter has confirmed and the Thank You

message has been displayed.*/
Which Phase = During Voting
Please cite this article in press as: Weldemariam, K., et al., Formal ana
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& vType = Careful

& EXISTS b: Button (b = CONFIRM

& Button Pushed (b))

& scrName = THANKYOU SCREEN

& EXISTS R: Race (

vc ISIN Displayed Candidates (R)
 PRESS
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& ac ISIN Displayed Candidates (R)

& Picked (Candidate Name (vc), Race Title(R)))

/*voter candidate is different from attacker candidate */
& vc ∼= ac

& Min Display (scrNumber)= Display Info (Thank You, NoButton)

& ∼Summary Sent2RTAL

& ∼Vote Changed & NormalVotingProcess

EXIT

EXISTS R: Race (vc ISIN Displayed Candidates’(R)

& ac ISIN Displayed Candidates’ (R)

& vc ISIN tempVoteRecord’ (R)− >
(Picked (Candidate Name (vc), Race Title(R))

BECOMES FALSE

& Picked (Candidate Name (ac), Race Title(R))

BECOMES TRUE

& currentRace = R))

/*enabling RTAL to print the attacker’s intention.*/
& Signal Enabled & Which Signal = Vote Signal

/*for this candidate, print Cancelled on the RTAL tape.*/
& pickedName = Candidate Name (vc)

/*for this candidate, print Selected on the RTAL tape.*/
& attPickedName = Candidate Name (ac)

& Vote Changed

The following snippet exception models the complete voting process
attack (as shown in Fig. 4(a)). This attack assumes a fleeing voter
who voted for the attacker’s candidate, and hence completes the
voting process.

EXCEPT

[· · · ]
& vType = Fleeing

& scrName = REVIEW SCREEN

& scrNumber = Number Of Race + 1

& Now - Change (scrNumber)>= 10 [. . .]
& vc = ac

& Review Displayed

& NormalVotingProcess

EXIT

/*the attacker calls the confirmation function and completes the process.*/
scrNumber = scrNumber’ + 2

& scrName = THANKYOU SCREEN

& EXISTS b: Button (b = CONFIRM

− > Button Pushed(b) BECOMES TRUE)

& Min Display(scrNumber)

BECOMES Display Info(Thank You, NoButton)

/*The normal voting process is interrupted by the attacker and the DRE is not
chirping for this voter.*/
& ∼NormalVotingProcess

The Faking a Fleeing Voter attack is an example of a scenario that
requires several threat actions. The canceling of votes by faking a
fleeing voter has three threat actions (as depicted in the sequence
diagram, see Fig. 5). The threat actions are specified as three
transitions in the DRE process:

1. Attack Change Vote. This is an except/exit transition that speci-
fies the fact that an attacker fakes a fleeing voter by pretending to
complete the voting process on her/his behalf. The exit assertion
of this transition will set the variable Fleeing Faked to true.

2. Attack ReDisplay. This transition specifies the fact that after some
delay (during which time the voter leaves the booth) since the
voter is successfully fooled, the attacker directs the DRE to dis-
play the confirmation page again.

3. Attack Call ChirpingR. This specifies that after the voter has been
fooled and DelayTime has passed, the attacker resumes the nor-
mal voting process by calling the chirping routine. This results
in the poll worker taking action according to the prescribed
procedure. (This transition is only enabled after the first two
transitions have been executed.)
lysis of an electronic voting system: An experience report. J. Syst.

We say the canceling of votes is successful only after transition
#3 has been executed. We omit the formal specifications for these
threat actions, which are specified similarly to the others described
earlier.

dx.doi.org/10.1016/j.jss.2011.03.032


ARTICLE ING Model
JSS-8684; No. of Pages 20

16 K. Weldemariam et al. / The Journal of Syste

Table 1
Number of proof obligations and number of proved critical properties before and
after the attack specification.

Proof obligations After splitting

Invar, Constr, Sched Invar, Constr, Sched
DRE 4, 6,1 10, 9, 2
RTAL 1, 1, 3 1, 1, 3
PEB 1, 0, 1 2, 0, 1
CFCard 0, 0, 1 0, 0, 2
Global 6, 0, NA 9, 0, NA
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arose when using the PVS system. Currently, we are investigat-
Total 12, 7, 6 22, 10, 8
Total proved, for the original specification 16,7,5
Total proved, after extending with attacks’ information 6/16,2/7,0/5

. Formal verification and results

We used the ASTRAL and PVS (Owre et al., 1993) tools to ana-
yze whether the specification of the ES&S system meets the critical
ecurity requirements articulated previously. The main goal of our
nalysis is to provide the maximum assurance that the ES&S spec-
fication meets its critical requirements. To do that, it is necessary
o generate proof obligations for critical requirements and prove
hem. ASTRAL supports two kinds of proof obligations: correct-
ess proofs and consistency proofs. In the former case, the critical
equirements of the system are proved to hold based on the exe-
utions of each process. In the latter case, it is proved that any
ssumptions made in the system are never false. Both proof obli-
ations are useful for the e-voting systems in order to run a correct
nd secure election. In our verification, we focused on the correct-
ess proofs of the ES&S voting system. We mainly attempt to prove
he invariants and schedules clauses related to the components (i.e.,
RE, RTAL, PEB, and CF Card) in isolation and the system as whole

o hold at all times.
Before attempting the proofs with the PVS theorem prover, we

hould assure that the specification contains as few errors as pos-
ible, by performing a sequence of less costly steps. In ASTRAL,
hese steps include model checking and proof sketch construction.

e applied the proof sketch construction strategies (such as proof
rdering, transition steps, global and imported variable obligations)
or our purpose. Before invoking the theorem prover, the ASTRAL
plit engine was used to split and classify the ASTRAL specification
nto collections of simpler properties that infer the whole clause
o that the proof of each property could be tackled separately. The
plitter can be invoked on any section of an ASTRAL specification
hat resolves to a boolean expression.

The specification of the ES&S system was first constructed and
ype-checked using the ASTRAL SDE. Thereafter, from the validated
pecification, we generated the corresponding proof obligations for
he critical requirements. It is important to emphasize that the
enerated proof obligations are that of the intra-level proof obli-
ations, which deal with proving that each process level satisfies
ts stated critical requirements and that the system level specifica-
ion is consistent and satisfies the global requirements. Moreover,
he specification was automatically translated into its PVS counter-
art using the ASTRAL SDE, which enabled the specification to be
assed to the PVS theorem prover for verification.

Table 1 shows the number of invariants, schedules, and con-
traints for each of the four processes and the global invariants. It
lso shows the number after they are split by the ASTRAL SDE for
hich we discharged the proof commands.

The assurance of the ES&S specification cannot be achieved
ithout performing system proofs within the theorem prover. So
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

ar we managed to formally verify that the specification satisfies
any of the critical requirements that we discussed previously,
ostly the local invariants and constraints. The proofs were

chieved by following the techniques presented in Kolano (1999).
 PRESS
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For instance, we applied the try-untimed and try-untimed-con proof
strategies to prove some of the local invariants and constraints of
the system.

As shown in Table 1, before extending the specification with
attack information, we successfully proved 16 of the 22 invariants,
5 of the 8 schedules, and 7 of the 10 constraints. We expect that
the other global and local properties can be proved using the same
or similar proof techniques and strategies. After extending the sys-
tem specification with the threat actions, we generated the proof
obligations for the extended specification. However, unlike the
original specification, there are more proofs to be done since there
are additional transitions that correspond to the threat actions. In
addition, because some of the original transitions were split and/or
extended, the corresponding proof obligations must be reproved.
In order to prove the requirements, we followed the same proce-
dure as before. However, the proving process is very complex in
the extended model. We started with the proof obligations that
were unchanged to assure that they are still valid. So far, we have
reproved 6 of the 16 invariants and 2 of the 7 constraints (see last
row of Table 1).

Most of the reproved properties in the extended model are not
complex. For instance, “The copy of the ballot images downloaded
from the DRE must be equal to the ballot that was loaded into the
DRE prior to start election;” (local DRE invariant property), “RTAL
must scroll forward Min ScrollForward Position amount after the
vote summary has printed;” (local RTAL constraint property), and
“Each voter’s choice will be printed after the vote signal is enabled
and enough time has elapsed for the choice to be printed;” (local
RTAL schedule property) easily reproved with additional proof
strategies that are discharged to consider the added specification
corresponding to the attack actions.

By analyzing these obligations in the extended model, we have
attempted to understand why they were proved and why the others
did not prove. We learned that, in most of the cases, to reprove these
obligations we had to discharge a few more proof steps as compared
to proving in the original specification. In the majority of the cases,
however, the current ASTRAL specific proof strategies are not suf-
ficient for completing the proof. We have also faced some resource
limitations – namely, heap storage problem although we assigned
the maximum heap size (we used 4G RAM) – for the PVS Allegro
Lisp. These are some of the reasons that we did not complete the
remaining proof obligations. Hence, there are more complex proof
obligations which need more powerful proof strategies to complete
the proof. Currently, we are working on modularly approaching
the proof strategy and possibly extending the ASTRAL specific PVS
strategies.

The main lessons we learned span from understanding the vot-
ing process followed in the USA, deriving the specification, up to
the usage of PVS. We started the specification by looking at the
video about how to vote using the ES&S system, the various docu-
ments about the system specification and machine usage scenario,
and some known requirements recommendations. This allowed
us to learn the various components, the underlying communica-
tion among them, and the kinds of data they exchange during
the communication (e.g., DRE sends the “selection” information to
the RTAL). Converting these concepts to a formal language is very
complex and demands a clear understanding of the process, each
component’s behavior, their combined behaviors, and the proper-
ties/requirements, as well as the specification language itself. In
fact, formalizing these using ASTRAL was relatively easy as the lan-
guage is closer to higher-level language. However, the difficulty
lysis of an electronic voting system: An experience report. J. Syst.

ing how to modularize the proof strategy and possibly extend
the ASTRAL specific PVS strategies. The ASTRAL language contains
structuring mechanisms that allow one to build modularized spec-
ifications of complex systems. It is interesting to specify the attack

dx.doi.org/10.1016/j.jss.2011.03.032
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cenarios in separate specifications and try to compose them using
he composition mechanism of ASTRAL.

. Related work

Scientific literature on e-voting is wide and multi-disciplinary.
or the purpose of this work, we organize previous work in two
reas: designing better e-voting systems using formal methods
high-level assurance) and assessing existing systems (low-level
ssurance).

Applying formal methods for e-voting. The trends in this area focus
n three closely related directions: verifying cryptographic proto-
ols (e.g., Juels et al., 2005; Backes et al., 2008; Simidchieva et al.,
008; Delaune et al., 2009; Cansell et al., 2007a; Küsters et al.,
010), system behavior (e.g., Cansell et al., 2007b; Sturton et al.,
009; Tiella et al., 2006; Gibson et al., 2010), and procedures (e.g.,
eldemariam and Villafiorita, 2008; Bryl et al., 2009).
With respect to the first (i.e., verifying cryptographic proto-

ols), Delaune et al. (2009) particularly present a framework for
ormal specification and verification of e-voting protocol proper-
ies (an earlier version of this work can be found (Kremer and
yan, 2005)). These properties are vote-privacy, receipt-freeness,
nd coercion-resistance. Their work mainly focused on formally
erifying the correctness of protocols with respect to these proper-
ies. The authors used applied �-calculus (Abadi and Fournet, 2001)
or the formalization of the voting protocol and for the proper-
ies, which are to be analyzed against the protocol model using
he ProVerif tool (Blanchet, 2009).

Juels et al. (2005) define a formal model for e-voting schemes
hat involves a more powerful adversary than previously proposed
n the literature related to receipt-freeness – the inability of a voter
o prove to an attacker that s/he voted in a particular manner, even
f the voter wishes to do so. Their schemes allows an adversary to
emand that coerced voters vote in a particular manner or that
hey disclose their secret keys. The authors also provide formal
ecurity definitions for essential properties of correctness, verifia-
ility, and coercion-resistance. However, the paper did not consider
verification process using automated techniques.

The authors in Campanelli et al. (2008) used a CCS (calculus of
ommunicating systems)-like process algebra with cryptographic
rimitives to specify and analyze some properties of the e-voting
ystem they built. More specifically, they presented a small mobile
mplementation of an e-voting system named M-SEAS (Mobile
ecure E-voting Applet System) and used formal verification tech-
iques to validate the security properties of the system. Their
nalysis goal is checking whether their system is free from Sensus
ulnerability2 by using the Crypto-CCS language (Martinelli, 2002)
nd the PaMoChSA analysis tool.

With respect to the second focus (i.e., verifying system behav-
or), Simidchieva et al. (2008) demonstrate the usage of different
echnologies for specifying and verifying requirements for election
rocesses – namely, by reasoning rigorously about the presence or
bsence of errors during all phases of an election process. In partic-
lar, they used the Little-JIL process definition language (Cass et al.,
000) to formally define election processes and the PROPEL tool
Smith et al., 2002) to support the development of precise lower-
evel properties, which are then fed to the verification system called
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

LAVERS (Cobleigh et al., 2002) to check whether the process model
atisfies these properties. If the process model violates a property,
he FLAVERS system provides counterexamples as traces. Traces are
equence of steps in the process model that may lead to the prop-

2 In Sensus protocol (Cranor and Cytron, 1997), “this vulnerability basically allows
ne of the entities involved in the election process to cast votes of eligible users that,
lthough registered, abstain to vote.”
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ms and Software xxx (2011) xxx–xxx 17

erty violation as generated by the verification system. Such traces
can then be used to guide the improvement of the process model.
Similarly, Villafiorita et al. (2009); Tiella et al. (2006) demonstrate
the integration of formal methods in the development process of a
voting system named ProVotE. In particular, the authors specified
the behaviors of voting control logic using UML finite state machine
and developed a tool named FSMC+ (Tiella et al., 2007) that auto-
matically generates NuSMV (Cimatti et al., 2002) code correspond-
ing to the specified FSM (this helped for the structuring and man-
aging requirements discussed in Weldemariam et al., 2009). Then
they performed the verification using the NuSMV model checker.
The results of the model checker, presented in the form of coun-
terexample, are then analyzed. This enabled the authors to incor-
porate the analysis results of the verification into the actual devel-
opment process of the core ProVotE system (Villafiorita et al., 2009).

Sturton et al. (2009) present an approach for the design and
analysis of an e-voting machine based on a combination of formal
verification and systematic testing. They formally verify the cor-
rectness of each of the individual components of a voting machine,
as well as verifying some crucial correctness properties of their
composition. Their work is targeted to the following verification
goals: ensuring that each individual component of the voting
machine and their composition should meet the specification of
the individual components and their composition respectively; the
voting machine should be structured to enable sound systematic
system testing; ensuring that the voting machine must behave and
store votes according to the voters selection when configured with
a particular election definition file. For each module, they construct
a formal specification that fully characterizes the intended behavior
of that component. A number of properties related to the struc-
tural and functional aspects that the machine should satisfy are
identified and specified. They used Verilog (Thomas and Moorby,
1991) for the implementation of their specification and the SMV
analysis tool and satisfiability solving to verify that their Verilog
implementation meets the specifications.

Moreover, Cansell et al. (2007b) attempted to use the B-method
(Abrial, 1996) – a method for specifying, designing and coding soft-
ware systems – to construct a formal, mathematical model of the
e-voting problem, with the aim of demonstrating the use of formal
methods for supporting the correct design and implementation of
safe e-voting systems. More recently, Gibson et al. (2010) clearly
illustrate the importance of formal software engineering in the
development of e-voting systems. Interesting, the authors demon-
strated the development of an e-voting system using different mod-
eling languages to address different types of critical requirements.

Although there is limited research in this area, we have men-
tioned some existing works that use formal methods such as model
checking and theorem provers to provide higher assurances for
the design and implementation of e-voting systems. However,
none of these works focus on the aspects related to procedures
in their modeling and analysis (the third verification focus). In that
regard, in Weldemariam and Villafiorita (2008) we complement
such works by widening their scope of analysis with procedures
analysis. An approach to reason on security properties of the to-be
models (which are derived from as-is model) in order to evalu-
ate procedural alternatives in e-voting systems is presented in Bryl
et al. (2009). Additionally, the authors in Grimm et al. (2010) pre-
sented a formal model for the correction and abort requirement
of e-voting with some concepts borrowed from Protection Profile
(Volkamer and Krimmer, 2007) of the Common Criteria (Common
and Criteria, 2007). More specifically, they first described a for-
lysis of an electronic voting system: An experience report. J. Syst.

mal IT security model that allows the formalization of (some) basic
security requirements for e-voting. Secondly, they modeled the cor-
responding security properties as secure system states using the
same machinery. Thirdly, they specified state transition rules that
control the voting behaviors. Finally, an attempt to mathematically

dx.doi.org/10.1016/j.jss.2011.03.032
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rove that functions following the rules would transfer a secure
tate into a secure state.

Assessing exiting e-voting systems. Some e-voting systems cur-
ently deployed in elections have undergone a thorough and
ndependent scrutiny to evaluate their security and quality. Secu-
ity vulnerabilities have been reported in each aspect of security
that is, technological, socio-technical, and social aspects. These

ulnerabilities have been practically investigated and proved by
arious academic researchers. This creates an enigma in the trust-
orthiness of the machine and the voting process as well (Bishop

nd Wagner, 2007; Bryans et al., 2006).
In line with this, we mention the following academic research

Kohno et al., 2004; Aviv et al., 2008; Gardner et al., 2007;
alzarotti et al., 2008; Jones, 2003; Ansari et al., 2008). These
orks assess both hardware and software of different forms of

-voting machines (e.g., Diebold/Premier, ES&S, InterCivic), which
re mostly in use in some 37 U.S. states. The studies identified
erious design and implementation flaws, which are notable for
heir level of egregiousness. More specifically, their analysis have
howed that the current e-voting systems are vulnerable to very
erious attacks, and they have produced a catalogue of vulnerabil-
ties and possible attacks. Some analyzes also suggested a drastic
hange in the way in which e-voting systems are designed, devel-
ped, and tested (e.g., by identifying procedures to eliminate or
itigate the discovered issues, by developing a precise methodol-

gy and toolsets for the assessment). The assessment methodology
resented in Balzarotti et al. (2010) is particularly astonishing as it
rovides various insights on each individual and in-depth step of
he analysis, to be reparable also. It can be used for other complex-
ecurity critical systems evaluation and assessment as well as to
he software testing community.

On top of the above technical security evaluations (i.e., the eval-
ation of the source code of the machines), works such as Volkamer
2009) and Schmidt et al. (2010) focus on the definition of common
tandards and methodologies for evaluation and certification for e-
oting systems. Some works on going with respect to development
f common standards along the CC Protection Profile. This provides
basis for standardized evaluations with comparable results. Cur-

ently, there are two Protection Profiles, one for remote electronic
oting and one for the digital election pen(see in Volkamer, 2009).
he latter one has been used for a real system and the first one is
pplied to the Polyas system (Reinhard and Jung, 2007). Schmidt
t al. (2010) also discuss an evaluation and certification approach
or Voting Service Providers (VSP), by combining the evaluation
f remote e-voting system and operational environment. The VSP
s required to provide a security concept in which it demonstrates
atisfaction of the security requirements defined in the legal regula-
ion. The authors suggested the incorporation of existing evaluation

ethodologies to facilitate the evaluation and certification process.

. Conclusions and future work

Electronic voting is about the behavior of all the voting compo-
ents (be they electronic, mechanic or human), and so assurance of
lectronic elections requires one to investigate all these aspects in
n integrated way. A robust design means that a system continues
o function even when one or more components is compromised.
obust designs are usually achieved by redundancy. Electoral sys-
ems are redundant: votes are stored electronically and on paper,
oll workers control the behavior of machines and the machines

imit in some way the operations poll workers can perform (e.g., by
Please cite this article in press as: Weldemariam, K., et al., Formal ana
Software (2011), doi:10.1016/j.jss.2011.03.032

ogging their activities). However, a robust redundant architecture
equires one to clearly allocate responsibilities and priorities. This
an only be achieved by an integrated analysis of the voting scenar-
os and by a clear allocation of the requirements for the different
components” of an election system.
 PRESS
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In this paper, we have shown how formal verification techniques
can be used to model and reason about the security of e-voting
systems. Our approach consists of formulating each individual com-
ponent of the voting system as a process instance in ASTRAL and the
specification and verification of critical security properties about
individual components and about the system as a whole. We also
specified the attack scenarios that are reported by academic studies
on the security testing and analysis of such systems. Namely, along
the line of nominal behavior specification, we model and specify
attacks. We extend the specifications that describe the nominal
behaviors of the system under analysis by augmenting them with
the attack model. Thereafter, we attempted to analyze the extended
model against the same set of critical requirements as the nomi-
nal model should meet. The threat actions that we specified in the
extended system were those needed to model the specific scenarios
presented in McDaniel et al. (2007).

Although our approach provides certain benefits over existing
work in the area, it is in no way a verification “silver bullet”. As
with any formal verification technique, it requires the use of for-
mal languages, various analytic tools including a theorem-proving
system, and considerable skill in understanding the various infor-
mation sources as well as understanding various components of
the system. Our work is not a substitute for existing approaches
to the assessment and verification of specific components of the
voting system. Rather, it complements them by reasoning about
the interaction of “components” (human and technologies). This
is analogous to integration and unit testing, which are different in
scope, but both are necessary to ensure a system’s correctness. We
must also be clear that this research work does not consist of a novel
specification technique nor a novel voting system.

Additionally, this work allowed us to learn the operational
scenario for various e-voting components, the underlying commu-
nication among them, and the kinds of data they exchange during
the communication. Converting these concepts to a formal lan-
guage is very complex and demands a clear understanding of the
process, each component’s behavior, their combined behaviors, and
the properties/requirements, as well as the specification language
itself. In fact formalizing these using ASTRAL was relatively easy as
the language is closer to higher-level language. We acknowledge,
however, that some issues remain open. One is the complexity of
some proofs, for which more powerful strategies or interactive sup-
port could be helpful. The other is modeling other kinds of attacks
with particular reference to those cutting across the structure of
the original requirements model. These make incremental or com-
positional verification challenging. Our paper does not provide a
solution to this problem, but it does provide further evidence that
the problem is significant and worthy of further research. How-
ever, this work demonstrates how formal methods can be used for
the specification and verification of e-voting systems in order to
guarantee the correctness of the system. The success of the next
generation of e-voting machines depends upon being able to capi-
talize on the lessons learned from different disciplines. The work we
have presented in this paper is one way in which we can get a bet-
ter understanding of the strengths and the weaknesses of existing
techniques and thus lay the foundations for engineering, design-
ing, implementing, as well as deploying a new generation of more
secure and robust technologies for polling stations.
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