
Device TC1796
Marking/Step EES-BE, ES-BE, BE
Package P-BGA-416, PG-BGA-416

02104AERRA

Rel. 1.3, 2011-08-29

Errata Sheet
This Errata Sheet describes the deviations from the current user
documentation.

Make sure you always use the corresponding documentation for this device
(User’s Manual, Data Sheet, Documentation Addendum (if applicable), TriCore
Architecture Manual, Errata Sheet) available in category ’Documents’ at
www.infineon.com/TC1796.

Each erratum identifier follows the pattern Module_Arch.TypeNumber:
• Module: subsystem, peripheral, or function affected by the erratum
• Arch: microcontroller architecture where the erratum was firstly detected

– AI: Architecture Independent
– CIC: Companion ICs
– TC: TriCore
– X: XC166 / XE166 / XC2000 Family
– XC8: XC800 Family
– [none]: C166 Family

• Type: category of deviation
– [none]: Functional Deviation

Table 1 Current Documentation
TC1796 User's Manual V2.0 July 2007
TC1796 Data Sheet V1.0 Apr. 2008
TC1796 Documentation Addendum V2.0 Apr. 2008
TriCore 1 Architecture V1.3.8 Jan. 2008
TC1796, EES-BE, ES-BE, BE 1/207 Rel. 1.3, 2011-08-29

http://www.infineon.com/TC1796

Errata Sheet

– P: Parametric Deviation
– H: Application Hint
– D: Documentation Update

• Number: ascending sequential number within the three previous fields. As
this sequence is used over several derivatives, including already solved
deviations, gaps inside this enumeration can occur.

Note: Devices marked with EES or ES are engineering samples which may not
be completely tested in all functional and electrical characteristics,
therefore they should be used for evaluation only.

Note: This device is equipped with a TriCore "TC1.3" Core. Some of the errata
have workarounds which are possibly supported by the tool vendors.
Some corresponding compiler switches need possibly to be set. Please
see the respective documentation of your compiler.
For effects of issues related to the on-chip debug system, see also the
documentation of the debug tool vendor.

The specific test conditions for EES and ES are documented in a separate
Status Sheet.
TC1796, EES-BE, ES-BE, BE 2/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
1 History List / Change Summary

Table 2 History List
Version Date Remark
1.0 08.10.2007
1.1 27.05.2008
1.2 2009-10-09 FLASH_TC.H004 (Guideline for writing Flash

command sequences) removed: documented in
TC1796 User’s Manual (e.g. V2.0 chapter 7.2.4.2
“Command Mode”)

1.3 2011-08-29

Table 3 Errata fixed in this step
Errata Short Description Change
ADC_TC.033 Wrong CHCON register might be used by

inserted conversion
Fixed

EBU_TC.019 Burst Mode signals delayed longer than
specified

Fixed

FIRM_TC.P002 Page Programming Time Fixed
PCP_TC.029 Possible corruption of CPPN value when a

nested channel is restarted
Fixed

PWR_TC.010 Pull down on TRST_N required Fixed
PWR_TC.P009 High cross current at OCDS L2 ports during

power up
Fixed

TOP_TC.P001 Reduction of operational lifetime Fixed
TC1796, EES-BE, ES-BE, BE 3/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
Table 4 Functional Deviations
Functional
Deviation

Short Description Cha
nge

Pa
ge

ADC_TC.018 Resetting CON.SCNM triggers service for
all channels

 17

ADC_TC.019 No Interrupt when Queue-Level-Pointer
becomes ZERO

 17

ADC_TC.020 Backup register not set but QUEUE_0 valid
bit is wrongly reset

 17

ADC_TC.021 ADCx_CON.QEN bit is set but the queue
never starts running

 18

ADC_TC.022 Cancel-Sync-Repeat mode is not working
in Synchronized Mode

 18

ADC_TC.023 Setting the MSS-flag doesn't generate an
interrupt in TESTMODE

 18

ADC_TC.034 Queue-reset does not reset all valid-bits in
the queue-registers

 19

ADC_TC.037 False service-request for cancelled
autoscan

 20

ADC_TC.038 Injected conversion with wrong
parameters

 20

ADC_TC.040 16th queue-entry gets lost 20
ADC_TC.041 Queue-entry might be lost if inject-trigger-

source is cleared
 21

ADC_TC.042 Queue-warning-limit interrupt generated
incorrectly

 21

ADC_TC.043 High Fractional Divider values and
injection mode set false parameters

 23

ADC_TC.044 Master / Slave functionality might cause a
lockup

 24

ADC_TC.045 Queue trigger not reliable 24
TC1796, EES-BE, ES-BE, BE 4/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
ADC_TC.047 RMW problem in conjunction with error
acknowledge

 25

ADC_TC.048 Wrong CHCON register might be used by
inserted conversion

 25

ADC_TC.051 Reset of AP bit does not reliably clear
request- pending bits

 26

ADC_TC.054 Write access to CHIN-register 28
ADC_TC.055 Injection in cancel mode does not start

conversion
 28

ADC_TC.058 CHIN.CINREQ not reset in every case 29
ADC_TC.059 Flags in MSS0 and MSS1 are not set after

interrupt
 29

ADC_TC.060 Conversion start with wrong channel
number due to Arbitration Lock Boundary

 30

BCU_TC.003 OCDS debug problem during bus master
change

 31

BCU_TC.004 RMW problem in conjunction with small
timeout values

 31

CPU_TC.004 CPU can be halted by writing DBGSR with
OCDS Disabled

 32

CPU_TC.008 IOPC Trap taken for all un-acknowledged
Co-processor instructions

 33

CPU_TC.012 Definition of PACK and UNPACK fail in
certain corner cases

 33

CPU_TC.013 Unreliable context load/store operation
following an address register load
instruction

 34

CPU_TC.014 Wrong rounding in 8000*8000<<1 case for
certain MAC instructions

 35

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 5/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
CPU_TC.046 FPI master livelock when accessing
reserved areas of CSFR space

 36

CPU_TC.048 CPU fetches program from unexpected
address

 36

CPU_TC.053 PMI line buffer is not invalidated during
CPU halt

 37

CPU_TC.059 Idle Mode Entry Restrictions 38
CPU_TC.060 LD.[A,DA] followed by a dependent

LD.[DA,D,W] can produce unreliable
results

 39

CPU_TC.061 Error in emulator memory protection
override

 40

CPU_TC.062 Error in circular addressing mode for large
buffer sizes

 41

CPU_TC.063 Error in advanced overflow flag generation
for SHAS instruction

 42

CPU_TC.064 Co-incident FCU and CDO traps can cause
system-lock

 43

CPU_TC.065 Error when unconditional loop targets
unconditional jump

 43

CPU_TC.067 Incorrect operation of STLCX instruction 44
CPU_TC.068 Potential PSW corruption by cancelled

DVINIT instructions
 45

CPU_TC.069 Potential incorrect operation of RSLCX
instruction

 46

CPU_TC.070 Error when conditional jump precedes
loop instruction

 47

CPU_TC.071 Error when Conditional Loop targets
Unconditional Loop

 48

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 6/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
CPU_TC.072 Error when Loop Counter modified prior to
Loop instruction

 49

CPU_TC.073 Debug Events on Data Accesses to
Segment E/F Non-functional

 50

CPU_TC.074 Interleaved LOOP/LOOPU instructions
may cause GRWP Trap

 50

CPU_TC.075 Interaction of CPS SFR and CSFR reads
may cause livelock

 51

CPU_TC.078 Possible incorrect overflow flag for an
MSUB.Q and an MADD.Q instruction

 52

CPU_TC.079 Possible invalid ICR.PIPN when no
interrupt pending

 54

CPU_TC.080 No overflow detected by DVINIT
instruction for MAX_NEG / -1

 54

CPU_TC.081 Error during Load A[10], Call / Exception
Sequence

 55

CPU_TC.082 Data corruption possible when Memory
Load follows Context Store

 56

CPU_TC.083 Interrupt may be taken following DISABLE
instruction

 57

CPU_TC.084 CPS module may error acknowledge valid
read transactions

 58

CPU_TC.086 Incorrect Handling of PSW.CDE for CDU
trap generation

 59

CPU_TC.087 Exception Prioritisation Incorrect 59
CPU_TC.088 Imprecise Return Address for FCU Trap 62
CPU_TC.089 Interrupt Enable status lost when taking

Breakpoint Trap
 63

CPU_TC.094 Potential Performance Loss when CSA
Instruction follows IP Jump

 63

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 7/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
CPU_TC.095 Incorrect Forwarding in SAT, Mixed
Register Instruction Sequence

 65

CPU_TC.096 Error when Conditional Loop targets
Single Issue Group Loop

 66

CPU_TC.097 Overflow wrong for some Rounding
Packed Multiply-Accumulate instructions.

 67

CPU_TC.098 Possible PSW.V Error for an MSUB.Q
instruction variant when both multiplier
inputs are of the form 0x8000xxxx

 68

CPU_TC.099 Saturated Result and PSW.V can error for
some q format multiply-accumulate
instructions when computing
multiplications of the type
0x80000000*0x8000 when n=1

 70

CPU_TC.100 Mac instructions can saturate the wrong
way and have problems computing PSW.V

 78

CPU_TC.101 MSUBS.U can fail to saturate result, and
MSUB(S).U can fail to assert PSW.V

 82

CPU_TC.102 Result and PSW.V can be wrong for some
rounding, packed, saturating, MAC
instructions.

 84

CPU_TC.104 Double-word Load instructions using
Circular Addressing mode can produce
unreliable results

 86

CPU_TC.105 User / Supervisor mode not staged
correctly for Store Instructions

 88

CPU_TC.107 SYSCON.FCDSF may not be set after FCD
Trap

 89

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 8/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
CPU_TC.108 Incorrect Data Size for Circular
Addressing mode instructions with wrap-
around

 89

CPU_TC.109 Circular Addressing Load can overtake
conflicting Store in Store Buffer

 93

CPU_TC.112 Unreliable result for MFCR read of
Program Counter (PC)

 96

CPU_TC.116 Unreliable result when loop counter
register is read at start of loop body

New 97

DMA_TC.004 Reset of registers OCDSR and SUSPMR is
connected to FPI reset

 103

DMA_TC.005 Do not access MExPR, MExAENR,
MExARR with RMW instructions

 103

DMA_TC.007 CHSRmn.LXO bit is not reset by channel
reset

 103

DMA_TC.009 Transaction flagged as lost, but
nevertheless executed

 104

DMA_TC.010 Channel reset disturbed by pattern found
event

 104

DMA_TC.011 Pattern search for unaligned data fails on
certain patterns

 104

DMA_TC.012 No wrap around interrupt generated 105
DMI_TC.005 DSE Trap possible with no corresponding

flag set in DMI_STR
 105

DMI_TC.011 Simultaneous R/W-access to same
DPRAM address leads to time-out

 106

DMU_TC.013 Read-Modify-Write problem on the PLMB
bus

 107

EBU_TC.018 WAIT not usable in demultiplexed
asynchronous access

 107

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 9/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
FADC_TC.005 Equidistant multiple channel-timers 107
FADC_TC.009 FADC Gain Calibration 109
FIRM_TC.001 Access to cache is enabled after power on

reset
 109

FIRM_TC.005 Program While Erase can cause fails in the
sector being erased

 109

FIRM_TC.006 Erase and Program Verify Feature 110
FLASH_TC.029 In-System flash operations fails 112
FLASH_TC.036 DFLASH Margin Control Register MARD 116
MLI_TC.006 Receiver address is not wrapped around in

downward direction
 116

MLI_TC.007 Answer frames do not trigger NFR
interrupt if RIER.NFRIE=10B and Move
Engine enabled

 117

MLI_TC.008 Move engines can not access address
F01E0000H

 118

MSC_TC.004 MSC_USR write access width 118
MSC_TC.006 Upstream frame startbit not recognized 118
MSC_TC.007 No interrupt generated for first bit out 122
MultiCAN_AI.040 Remote frame transmit acceptance

filtering error
 123

MultiCAN_AI.041 Dealloc Last Obj 124
MultiCAN_AI.042 Clear MSGVAL during transmit

acceptance filtering
 124

MultiCAN_AI.043 Dealloc Previous Obj 125
MultiCAN_AI.044 RxFIFO Base SDT 126
MultiCAN_AI.045 OVIE Unexpected Interrupt 126
MultiCAN_AI.046 Transmit FIFO base Object position 126
MultiCAN_TC.023 Disturbed transmit filtering 127

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 10/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
MultiCAN_TC.024 Power-on recovery 128
MultiCAN_TC.025 RXUPD behavior 131
MultiCAN_TC.026 MultiCAN Timestamp Function 132
MultiCAN_TC.027 MultiCAN Tx Filter Data Remote 132
MultiCAN_TC.028 SDT behavior 133
MultiCAN_TC.029 Tx FIFO overflow interrupt not generated 134
MultiCAN_TC.030 Wrong transmit order when CAN error at

start of CRC transmission
 135

MultiCAN_TC.031 List Object Error wrongly triggered 136
MultiCAN_TC.032 MSGVAL wrongly cleared in SDT mode 137
MultiCAN_TC.035 Different bit timing modes 137
MultiCAN_TC.036 Wrong message may be sent during

reference message trigger in a gap
 139

MultiCAN_TC.037 Clear MSGVAL 140
MultiCAN_TC.038 Cancel TXRQ 141
MultiCAN_TC.039 Message status may be wrong in last time

window of basic cycle with gap
 141

OCDS_TC.007 DBGSR writes fail when coincident with a
debug event

 142

OCDS_TC.008 Breakpoint interrupt posting fails for ICR
modifying instructions

 143

OCDS_TC.009 Data access trigger events unreliable 144
OCDS_TC.010 DBGSR.HALT[0] fails for separate resets 144
OCDS_TC.011 Context lost for multiple breakpoint traps 145
OCDS_TC.012 Multiple debug events on one instruction

can be unpredictable
 145

OCDS_TC.013 FDR Suspend Mode not working for some
peripherals

 146

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 11/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
OCDS_TC.025 PC corruption when entering Halt mode
after a MTCR to DBGSR

 146

OCDS_TC.027 BAM breakpoints with associated halt
action can potentially corrupt the PC.

 147

OCDS_TC.028 Accesses to CSFR and GPR registers of
running program can corrupt loop exits.

New 148

PCP_TC.021 Channel program may not be disabled
after an erroneous COPY instruction

 149

PCP_TC.023 JUMP sometimes takes an extra cycle 151
PCP_TC.024 BCOPY address alignment checks cause

no interrupts
 151

PCP_TC.025 PCP might lock due to external FPI access
to PRAM

 152

PCP_TC.026 PRAM content might get corrupted 154
PCP_TC.027 Longer delay when clearing R7.IEN before

atomic PRAM instructions
 155

PCP_TC.028 Pipelined transaction after FPI error may
affect next channel program

 155

PCP_TC.030 Possible context save corruption in Small
Context mode

 157

PMI_TC.001 Deadlock possible during Instruction
Cache Invalidation

 157

PMI_TC.002 Write Accesses to PMI Memories and SFRs
not possible in Idle Mode

 158

PMU_TC.010 ECC wait state feature not functional 159
SSC_AI.020 Writing SSOTC corrupts SSC read

communication
 159

SSC_AI.021 Error detection mechanism difference
among implementation and
documentation.

 160

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 12/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
SSC_AI.022 Phase error detection switched off too
early at the end of a transmission

 163

SSC_AI.023 Clock phase control causes failing data
transmission in slave mode

 163

SSC_AI.024 SLSO output gets stuck if a reconfig from
slave to master mode happens

 164

SSC_AI.025 First shift clock period will be one PLL
clock too short because not syncronized
to baudrate

 164

SSC_AI.026 Master with highest baud rate set
generates erroneous phase error

 165

SSC_TC.009 SSC_SSOTC update of shadow register 165
SSC_TC.010 SSC not suspended in granted mode 166
SSC_TC.011 Unexpected phase error 166
SSC_TC.017 Slaveselect (SLSO) delays may be ignored 167

Table 5 Deviations from Electrical- and Timing Specification
AC/DC/ADC
Deviation

Short Description Cha
nge

Pa
ge

ADC_AI.P001 Die temperature sensor (DTS) accuracy 168
ESD_TC.P001 ESD violation 170
FADC_TC.P001 Offset Error during Overload Condition in

Single-Ended Mode
 171

FADC_TC.P002 FADC Offset Error and Temperature Drift 172
FIRM_TC.P001 Longer Flash erase time 173
MLI_TC.P001 Signal time deviates from specification 174

Table 4 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 13/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
MSC_TC.P001 Incorrect VOS limits for LVDS pads
specified in Data Sheet

New 174

PLL_TC.P003 PLL jitter and supply ripple 175
PORTS_TC.P001 Output Rise/Fall Times 179
PWR_TC.P010 Power sequence 179
SSC_TC.P001 SSC signal times t52 and t53 deviate from

the specification
 181

Table 6 Application Hints
Hint Short Description Cha

nge
Pa
ge

ADC_AI.H002 Minimizing Power Consumption of an
ADC Module

 182

ADC_TC.H002 Maximum latency for back to back
conversion requests

 182

ADC_TC.H004 Single Autoscan can only be performed
on Group_0

 183

ADC_TC.H005 Synchronous conversions start at
different times

 183

ADC_TC.H006 Change of timer reload value 183
ADC_TC.H007 Channel injection requests overwrite

pending requests
 184

CPU_TC.H005 Wake-up from Idle/Sleep Mode New 184
EBU_TC.H003 Incorrect command phase extension by

external WAIT signal
 185

Table 5 Deviations from Electrical- and Timing Specification (cont’d)
AC/DC/ADC
Deviation

Short Description Cha
nge

Pa
ge
TC1796, EES-BE, ES-BE, BE 14/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
EBU_TC.H004 Bitfields EBU_BUSAPx and
EBU_EMUBAP settings take effect for
demultiplexed devices access

 185

EBU_TC.H005 Potential live-lock situation on
concurrent CPU and PCP accesses to
external memories

 186

FIRM_TC.H000 Reading the Flash Microcode Version 186
FIRM_TC.H001 ABM usage in conjunction with virgin

external flash
 187

FLASH_TC.H002 Wait States for PFLASH/DFLASH Read
Access

 187

FLASH_TC.H003 Flash Sleep Mode via SCU not functional 188
FLASH_TC.H005 Reset during FLASH logical sector erase 188
FPI_TC.H001 FPI bus may be monopolized despite

starvation protection
 190

GPTA_TC.H002 Range limitation on PLL reload 190
GPTA_TC.H003 A write access to GTCXR of disabled GTC

may cause an unexpected event
 191

GPTA_TC.H004 Handling of GPTA Service Requests New 192
MLI_TC.H002 Received write frames may be

overwritten when Move Engine disabled
 195

MLI_TC.H005 Consecutive frames sent twice at
reduced baudrate

 196

MLI_TC.H006 Deadlock situation when
MLI_TCR.RTY=1

196

MultiCAN_AI.H005 TxD Pulse upon short disable request 197
MultiCAN_AI.H007 Alert Interrupt Behavior in case of Bus-

Off
New 197

MultiCAN_AI.H008 Effect of CANDIS on SUSACK New 198

Table 6 Application Hints
Hint Short Description Cha

nge
Pa
ge
TC1796, EES-BE, ES-BE, BE 15/207 Rel. 1.3, 2011-08-29

Errata Sheet

History List / Change Summary
MultiCAN_TC.H001 No message from CAN bootloader 198
MultiCAN_TC.H002 Double Synchronization of receive input 199
MultiCAN_TC.H003 Message may be discarded before

transmission in STT mode
 199

MultiCAN_TC.H004 Double remote request 200
PLL_TC.H003 Writing sequentially to PLL_CLC might

cause instruction traps
 200

PLL_TC.H004 VDDOSC and VSSOSC bonding change 201
PLL_TC.H005 Increasing PLL noise robustness 202
PWR_TC.H004 Stand-by mode hints 202
PWR_TC.H006 Handling of Pin TRST 204
SCU_TC.H001 Automatic temperature compensation

not usable
 204

SSC_AI.H001 Transmit Buffer Update in Slave Mode
after Transmission

 204

SSC_AI.H002 Transmit Buffer Update in Master Mode
during Trailing or Inactive Delay Phase

 205

SSC_AI.H003 Transmit Buffer Update in Slave Mode
during Transmission

 206

SSC_TC.H003 Handling of Flag STAT.BSY in Master
Mode

 206

Table 6 Application Hints
Hint Short Description Cha

nge
Pa
ge
TC1796, EES-BE, ES-BE, BE 16/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
2 Functional Deviations

ADC_TC.018 Resetting CON.SCNM triggers service for all channels

When resetting one of the two SCNM bits of register ADCx_CON, a service
request is misleadingly generated for all channels in the sequence.

Workaround
None

ADC_TC.019 No Interrupt when Queue-Level-Pointer becomes ZERO

The mechanism of the queue storage system is designed to handle and store
burst transfers of conversions. In order to have control over the state of data
filled in, a programmable warning-level pointer (CON.QWLP), which can trigger
a service-request, is implemented. Enabling this specific interrupt service
request and programming the warning-level pointer to 00H resulted in no
interrupt generation although the queue-level pointer STAT.QLP reached 0.

Workaround
None

ADC_TC.020 Backup register not set but QUEUE_0 valid bit is wrongly re-
set

If the BACK-UP register of the source QUEUE contains valid data while the
participation-flag of source QUEUE is reset, the VALID bit in the BACK-UP
register is unchanged and will not be reset. Erroneously the VALID bit in
QUEUE_0 is also reset.

Workaround
None
TC1796, EES-BE, ES-BE, BE 17/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
ADC_TC.021 ADCx_CON.QEN bit is set but the queue never starts running

During a running queue, the enable-bit CON.QEN is cleared by SCON.QENC.
After it is stopped, enabling again the queue by writing a "1" to SCON.QENS, sets
the CON.QEN bit, but the queue doesn’t start running.

Workaround
Clear queue and restart queue with new setup.

ADC_TC.022 Cancel-Sync-Repeat mode is not working in Synchronized
Mode

It is possible to synchronize the master- and slave-ADC by sending a request
for synchronization. When the slave-ADC finishes a conversion, his arbitration
is locked until the master-ADC starts the synchronized injection, which can be
either a SYNC-WAIT or a CANCEL-SYNC-REPEAT injection. Due to an
implementation error, the CANCEL-SYNC-REPEAT mode is not working.

Workaround
Do not use the CANCEL-SYNC-REPEAT mode for injections.

ADC_TC.023 Setting the MSS-flag doesn't generate an interrupt in TEST-
MODE

It is possible to generate a software triggered interrupt event in TESTMODE
(ADCx_CON.SRTEST=1) by setting one of the bitflags in register
ADCx_MSS0/1. Due to the fact, that this mechanism is not working, it is not
possible to generate a corresponding interrupt by software.
TC1796, EES-BE, ES-BE, BE 18/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Figure 1

Workaround
Do not use this software-generated interrupt in TESTMODE.

ADC_TC.034 Queue-reset does not reset all valid-bits in the queue-regis-
ters

A queue-reset can be performed by writing a "1" on the write-only register-bit
SCON.QRS. Then all valid-bits have to be tagged to zero and also the STAT.QF
(queue full) and STAT.QLP(level pointer) are set to zero. All this requirements
are fulfilled, but the valid-bit of the queue-stage_4 is set to "1" (active) and after
some module-cycles a conversion-start is done (if queue enabled) for the
channel which is registered in the queue-stage_0.
Some module-cycles later a conversion-start is done (if queue enabled) for the
channel which is registered in the queue-stage_0.

Workaround
After resetting the queue by SCON.QRS = 1 the queue has to be enabled with
setting SCON.QENS = 1. Wait until the next queue conversion is finished.
(STAT. BUSY=1 & STAT.CHTSCC=110 shows the start of the next queue
conversion, STAT.BUSY=0 than indicates that it is finished.)
TC1796, EES-BE, ES-BE, BE 19/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
ADC_TC.037 False service-request for cancelled autoscan

The problem occurs if the last channel of an autoscan conversion is cancelled
by the injection-trigger-source with higher priority and Cancel-Inject-Repeat
mode. Then the service-request, if enabled for autoscan, is activated falsely
after finishing the injected conversion. The result is that the service request is
handled a second time after finishing the last autoscan-conversion.

Workaround
The autoscan-trigger-source-interrupt- enable should be disabled (register-bit
SRNP.ENPAS = 0) and the last autoscan-channel should be detected by the
channel-interrupt enabled in the CHCON-register of the last autoscan-channel.

ADC_TC.038 Injected conversion with wrong parameters

When the following 3 conditions are met in the same arbitration-cycle, then an
injected channel conversion will be started with false channel-number and false
parameters:
1. A conversion triggered by any source is active in ADC_A.
2. The "channel-injection"-source with higher prio and cancel-inject-repeat-

mode wins the arbitration in ADC_A.
3. The ADC_B becomes master for a synchronized injection to the ADC_A in

sync-wait-mode and transfers the channel-nr and the parameters to
ADC_A. Then, the inject-source cancels the running conversion, starts
correctly a new one, but falsely with the channel-number and the
parameters of the synchronized injection (without cancel) from the ADC_B.

Workaround
Do not use the "channel-injection"-trigger-source and the synchronized
injection from the other ADC at the same time.

ADC_TC.040 16th queue-entry gets lost

The bug occurs under following conditions:
TC1796, EES-BE, ES-BE, BE 20/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
• The queue is filled with 16 valid entries.
• 14 conversions are already converted without writing a new queue entry.
• The 15th conversion out of the queue is started and the last queue entry is

transferred to QUEUE0-register. While the conversion is running for the 15th
entry a new queue-entry is filled by writing QR-register.

Then the "old" queue-entry in QUEUE0-register is overwritten by the new queue-
entry and gets lost.

Workaround
The software must ensure, that the number of valid queue elements never
exceeds 15. This can be observed by checking the queue-level-pointer in
register ADSTAT.QLP (value < 0xF).

ADC_TC.041 Queue-entry might be lost if inject-trigger-source is cleared

The bug occurs under the following conditions:
• The queue is filled with more than one valid entry. In a small time window

between a queue element was started by the arbiter and the next pending
queue element will be accepted by the arbiter, the bit AP.QP will be reset
(AP.QP=0).

• A request from the inject-trigger-source was active (AP.CHP=1) and is reset
by software (write AP.CHP=0). If the write AP.CHP=0 occurs in the small
time window described above the pending queue element will be cleared.

Workaround
Do not reset the inject-trigger-source (never write AP.CHP=0).

ADC_TC.042 Queue-warning-limit interrupt generated incorrectly

The bug occurs under following conditions:
• The queue gets filled completely (queue full).
• The queue-warning-level-pointer (QWLP) is enabled.
TC1796, EES-BE, ES-BE, BE 21/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
• The queue is enabled and queue conversions will be started from the
arbiter.

Then the service-request for the warning-level is generated fitting to an queue-
element which is one number above the specified queue_element.
Please refer to the following table:
(first queue entry refers to element_0, last queue entry refers to element_15)

The error does not occur at the following conditions:
• The queue was full, completely emptied in between, and now is in a stage

to be filled again.
• The queue was never filled completely.
The following table is valid in these cases:

Table 7
CON.QWLP queue_element-nr
CON.QWLP = 0 queue_element-nr = 2
CON.QWLP = 1 queue_element-nr = 3
CON.QWLP = 2 queue_element-nr = 4
CON.QWLP = 3 queue_element-nr = 5
CON.QWLP = 4 queue_element-nr = 6
.....
CON.QWLP = 13 queue_element-nr = 15
CON.QWLP = 14 before queue_element = 15
CON.QWLP = 15 no interrupt

Table 8
CON.QWLP queue_element-nr
CON.QWLP = 0 no interrupt generated
CON.QWLP = 1 queue_element-nr = 2
CON.QWLP = 2 queue_element-nr = 3
CON.QWLP = 3 queue_element-nr = 4
CON.QWLP = 4 queue_element-nr = 5
TC1796, EES-BE, ES-BE, BE 22/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
For CON.QWLP = 0 in addition there is the problem that no interrupt will be
generated.

Workaround
Please refer to the tables above.

ADC_TC.043 High Fractional Divider values and injection mode set false
parameters

When following 3 conditions are met, then an injected channel conversion will
be started with false parameters:
• A conversion is active
• A second conversion with cancel-inject-repeat-mode is initiated either by

inject-trigger-source with higher priority or by synchronous-injection.
• The Fractional-Divider is configured in normal-mode with a divider factor

larger than 16 (FDR.STEP < 3F0) or in fractional-divider-mode with a clock
pause larger than 16 cycles.

Then the running conversion is cancelled and the injected conversion will be
started with the right channel-number but with the false parameters: interrupt-
enable, interrupt-node-pointer, LCC, BSELA/B.

Workaround
If the "cancel-inject-repeat"-feature is initiated by inject-trigger-source or
synchronized injection, then the fractional-divider has to be configured only in
the following range:
• in normal mode:

.....
CON.QWLP = 13 queue_element-nr = 14
CON.QWLP = 14 queue_element-nr = 15
CON.QWLP = 15 before queue_element = 15

Table 8
CON.QWLP queue_element-nr
TC1796, EES-BE, ES-BE, BE 23/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
– FDR.STEP >= 3F0
• in fractional-divider mode:

– calculate FDR.STEP that a clock pause of maximum 16 module clock
cycles is guaranteed.

ADC_TC.044 Master / Slave functionality might cause a lockup

The bug occurs under following conditions:
• ADC0 requests to be master for channel_x (defined in CHCONx.SYM-

register)
• At the same time ADC1 requests also to be master on the same channel.
Then the synchronized conversions are started in both ADCs. But in one of the
ADCs no more conversions are started after the synchronized conversion is
finished, even if trigger-sources set new requests to the arbiter. The only way
to unlock this stalled ADC is to deactivate the master mode by setting the bitfield
CHCONx.SYM to zero.
It is not predictable which ADC is locked after synchronized injection or even if
an ADC is affected at all.

Workaround
Do not use the M/S-mode (means that both ADCs are configured as master for
the synchronized injection of the same channel).

ADC_TC.045 Queue trigger not reliable

The bug occurs under following conditions:
• The queue wins the arbitration and the conversion of the queue-element out

of QUEUE0-register will be started.
• A new queue-element is loaded by writing QR-register within one module-

cycle before the arbiter starts the conversion of the queue-element in
QUEUE0-register.
TC1796, EES-BE, ES-BE, BE 24/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Then the conversion of the started queue element in QUEUE0-register runs
correctly, but the following queue elements might be corrupted or the complete
queue might stall.

Workaround
None, do not use HW queue mechanism.

ADC_TC.047 RMW problem in conjunction with error acknowledge

The problem occurs under following conditions:
• The read part of a RMW returns an error acknowledge (ERR- ACK)
• The next access is a write to a bit-protected register
The problem is, that the write access after the RMW will be performed with the
protection mask build for the RMW. Therefore not all bits of the write access will
be written (depending on the protection mask of the RMW).

Workaround
ERR-ACK for RMW accesses to the ADC have to be avoided. Therefore RMW
accesses to non existing or non writeable addresses in the ADC are forbidden.

ADC_TC.048 Wrong CHCON register might be used by inserted conversion

The bug can occur only in debug mode if the ADC is suspended, if a conversion
is active and either
• one or more conversions are pending and a conversion of channel n is

inserted from a source with higher priority than the pending sources
or
• no conversion is pending and a conversion of channel n is inserted (the

priority does not matter)
Even if all these conditions are true, the bug does not necessarily occur. The
occurrence of the bug is related to an internal timing condition. The bug occurs
if a further conversion is inserted at the end of an active conversion (up to 20
TC1796, EES-BE, ES-BE, BE 25/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
cycles before the end of the active conversion) and if a suspend request
becomes active in this moment.

When the bug occurs:
The inserted conversion is performed
• With the correct request source
• On the correct pin for channel n in case of inserted sequential sources

(Channel Injection, Queue)
• Using the wrong CHCON value
If the inserted conversion is from a parallel source (Auto-Scan, Timer, External
Event, Software), the wrong CHCON value from the “old” arbitration-winner-
channel is used. If the inserted conversion is from a sequential source (Channel
Injection, Queue), the CHCON value from the “old” arbitration-winner-channel is
used, except Bit fields EMUX and GRPS are taken from the source-specific
control register (CHIN or QR)
The result of the conversion is stored in the CHSTAT register for channel n.
• CHSTATn will have the correct values for CRS and CHNR
• CHSTATn may have incorrect values for EMUX, GRPS, and RESULT, based

on the use of the wrong CHCON value. from the “old” arbitration-winner-
channel. An incorrect MSS0 bit may be set, and an incorrect interrupt may
be generated, based on the use of the wrong CHCON value from the “old”
arbitration-winner-channel.

Note that all source-request interrupts (defined in SRNP-register) are generated
correctly and set in MSS1.

Workaround
Do not use granted suspend mode for the ADC.

ADC_TC.051 Reset of AP bit does not reliably clear request- pending bits

A valid conversion-request of a trigger-source to the arbiter sets automatically
the dedicated bit in the AP-register. If a bit in the AP-register is reset by software,
then all requests of the respective trigger-source should also be reset by
hardware. This is not working in all cases.
TC1796, EES-BE, ES-BE, BE 26/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
If a hardware-caused conversion-start meets exactly the cycle of the bus-
access to the AP-register, then the request-pending bits are not cleared. As a
consequence of this, the respective AP bit is set to active again one cycle later.
The bug applies to all trigger-sources except the "channel injection source",
because here only one channel can be selected at a time.

In the described corner case following bugs occur:
1. clearing AP.ASP does not clear the bits ASCRP.ASCRPn
2. clearing AP.QP does not clear the actual valid bit in the queue and disturbs

queue-level-pointer
3. clearing AP.SW0P does not clear the bits SW0CRP.SW0CRPn
4. clearing AP.EXP does not clear the bits EXCRP.EXCRPn
5. clearing AP.TP does not clear the bits TCRP.TRPn

Workarounds
For each trigger-source a specific software-sequence is proposed as
workaround:
1. Autoscan

a) write SCN.SRQn = 0x0000 (this causes also that CON.SCNM = 00B)
b) write CON.SCNM = 01B (hardware copies SCN to ASCRP and sets one

cycle later AP.ASP = 0B and CON.SCNM = 00B)
2. Queue

a) please refer to the errata ADC_TC.045 "no workaround, do not use HW
queue mechanism".

3. Software trigger
a) write all REQ0.REQ0n = 0x0000 (by writing REQ0 the request pending

register SW0CRP is updated by hardware; if no pending bit is active, then
AP.SW0P is also cleared by hardware)

4. External event trigger
a) write EXTC.ETCHn = 0x0000
b) issue an external trigger via SCU/ERU/GPTA depending on the selected

event trigger source
5. Timer

a) write SCON.TRC = 1B (clear timer run bit)
b) write TTC.TTCHn = 0x0000 (clear all requests)
TC1796, EES-BE, ES-BE, BE 27/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
c) write TCON.TRLD = 00000000000001B (set reload value to minimum)
d) write SCON.TRS = 1B (set timer run bit)
e) wait until TSTAT.TIMER = 0x0000

ADC_TC.054 Write access to CHIN-register

The register CHIN can be written byte-wise, especially bit 31 (CINREQ) will only
be activated if the according byte is selected. This bit is also responsible for the
setting of the corresponding arbitration participation bit AP.CHP.In case of a
write access to CHIN with data-byte 3 disabled (e.g byte access to byte 0) and
with data-bit 31 = 1 (bit can be 1 due to a previous data-bus transfer) then the
bit CHIN.CINREQ remains unchanged, but bit AP.CHP will be erroneously set
to 1. In this constellation unintended conversion starts can occur.
Additionally a write-access to register CHIN with a disabled data-byte 3
prevents that the hardware can change bit CHIN.CINREQ in case of start or
cancel a conversion initiated by a CHIN request.

Workaround
CHIN must be written with a 4-byte access. A bit-set can be done for
CHIN.CINREQ.

ADC_TC.055 Injection in cancel mode does not start conversion

The inject-trigger source in cancel-inject-repeat mode or a synchronous
injection from a master-ADC in cancel mode requests a conversion of channel
y by cancelling a running conversion of channel x.
If the digital part starts the injected conversion handling and the analog part is
close to the end of the currently running conversion, a parameter mismatch
between channels x and y occurs.
In this case the currently running conversion of channel x is finished but it is
erroneously interpreted by the digital part as the end of the injected conversion
of channel y.
• The conversion result of channel x is stored to register CHSTATy
TC1796, EES-BE, ES-BE, BE 28/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
• The interrupt related to the injected conversion of channel y is generated,
caused by the end of conversion of channel x

Workarounds
Do not use the cancel-inject-repeat mode, neither for the injection trigger source
nor for the synchronized injection.

ADC_TC.058 CHIN.CINREQ not reset in every case

If the fractional divider is configured for fractional divider mode or for normal
divider mode with FDR.STEP < 1023 and the channel injection source requests
an injected conversion then the flag CHIN.CINREQ is not reliably cleared when
the injected conversion is started. An unintended conversion will not be started
because the flag AP.CHP that is used for the arbitration is correctly cleared
when an injected conversion is started.

Workarounds
• If a flag is needed to check the start of a channel injection then the flag

AP.CHP instead of the flag CHIN.CINREQ should be used.
• Don´t use clock dividers > 1.

ADC_TC.059 Flags in MSS0 and MSS1 are not set after interrupt

If a conversion is finished then the configured channel- and source-interrupt will
be generated. Additionally the corresponding flag in the MSS0- and MSS1-
register will be set by hardware.
The flags in the registers MSS0 and MSS1 can only be reset by writing 1B to the
corresponding bit in these registers. If these two actions, the hardware-set and
the software-reset of the same bit position, occur in the same module-cycle then
the hardware-set will not be performed. Software has higher priority than
hardware.
If these two actions, the hardware-set and the software-reset of different bit
positions in the same register occur in the same module-cycle then the
hardware-set will erroneously not be performed. As a result an interrupt is
TC1796, EES-BE, ES-BE, BE 29/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
generated correctly, whereas the corresponding bit in the MSSx registers is not
set.

Workarounds
• Do not reset MSSx-register-bits while a conversion is active.
• Avoid grouping of interrupt requests to the same service request node. (Use

unique assignment of interrupt event to SRC-register)
• An SRC-register can be shared between an event that can be identified by

MSS0 and another event that can be identified by MSS1. An event can be
identified by MSS0 or MSS1 respectively, if only one bit position in each
register is evaluated and cleared by software (only one event per MSSx-
register).
All other SRC-registers must be uniquely assigned to only one interrupt
event and in the corresponding interrupt routine the MSSx registers have to
be ignored and must not be cleared by software.

ADC_TC.060 Conversion start with wrong channel number due to Arbitra-
tion Lock Boundary

When both the timer and another request source are used to start conversions,
a conversion is performed with the wrong channel number under the conditions
described below. This problem only occurs when the following settings and
actions apply to the same arbitration cycle (duration = 20 / fCLC):
1. Static settings:

a) Arbitration Lock Boundary is equal to Timer Reload Value, i.e.
TCON.ALB = TCON.TRLD

b) Request source timer has the highest priority (bit field SAL.SALT) in this
arbitration cycle

2. Actions that must be performed within 30 / fCLC in order to apply to the same
arbitration cycle:
a) The Participation Flag (in register AP) of another request source is set

(e.g. Channel Injection Request by write to register CHIN)
b) The timer is started by setting SCON.TRS = 1
TC1796, EES-BE, ES-BE, BE 30/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
In this corner case, the arbitration lock condition (due to action 2b) becomes
active at some point during the arbitration cycle, while the other source was
already selected by the arbiter as the arbitration winner (due to action 2a).
As a consequence, at the beginning of the next arbitration cycle a conversion
will be started with the parameters (e.g. sample time, reference voltage,
boundary control, external multiplexer control, etc.) specified for the channel w
of the arbitration winner (see 2a). However, this conversion is erroneously
performed with channel number 0 instead of the channel number w which has
won the arbitration. The service request generated for this conversion will be as
specified for channel w, although the result is written to CHSTAT0 for channel 0.

Workaround
Set Arbitration Lock Boundary (TCON.ALB) to a value lower than the Timer
Reload Value (TCON.TRLD).
In this case, the arbitration lock condition becomes effective at the beginning of
the arbitration cycle, and the problem described above can not occur.

BCU_TC.003 OCDS debug problem during bus master change

The problem occurs under following condition:
• The granted master (PCP, DMA, LFI-Bridge or ON-Chip Debug System)

changes while the System Peripheral Bus (SPB) is captured to the registers
SBCU_DBGNTT, SBCU_DBADRT and SBCU_DBBOST. In this case the content
of the registers SBCU_DBGNTT, SBCU_DBADRT and SBCU_DBBOST is not
reliable.

Workaround
None.

BCU_TC.004 RMW problem in conjunction with small timeout values

This problem affects the following peripherals at the RPB bus: DMA, FADC,
SSC and ADC. The peripherals at the SPB bus are not affected since the
TC1796, EES-BE, ES-BE, BE 31/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
minimum specified TOUT for this bus is SBCU_TOmin = RBCU_TO+28 (see
specification of the SBCU_CON register).

The problem occurs under following corner conditions:
• A timeout on the read part of a RMW access to one of the peripherals

appears.
• The read part of this RMW was successfully performed just at this time.
The problem is, that the timeout is not ignored in this corner cases and the write
part of the RMW is performed without protection mask. Therefore all bits will be
written by the RMW and no write protection is effective.

Workaround
To avoid these timing corner cases the timeout limit of the bus has to be larger
than the maximum response time of the peripherals including possible internal
wait cycles. This leads to a timeout value of the BCU of a minimum of 5
(RBCU_CON.TOUT >= 5) to cover all affected peripherals.
Below, the minimum allowed timeout values for each peripheral are specified
separately.
RBCU_CON.TOUT >= 3 for DMA, FADC & SSC
RBCU_CON.TOUT >= 5 for ADC

CPU_TC.004 CPU can be halted by writing DBGSR with OCDS Disabled

Contrary to the specification, the TriCore1 CPU can be halted by writing "11" to
the DBGSR.HALT bits, irrespective of whether On-Chip Debug Support (OCDS)
is enabled or not (DBGSR.DE not checked).

Workaround
None.
TC1796, EES-BE, ES-BE, BE 32/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.008 IOPC Trap taken for all un-acknowledged Co-processor in-
structions

When the TriCore1 CPU encounters a co-processor instruction, the instruction
is routed to the co-processor interface where further decoding of the opcode is
performed in the attached co-processors. If no co-processor acknowledges that
this is a valid instruction, the CPU generates an illegal opcode (IOPC) trap.
Early revisions of the TriCore Architecture Manual are unclear regarding
whether Un-Implemented OPCode (UOPC) or Invalid OPCode (IOPC) traps
should be taken for un-acknowledged co-processor instructions. However, the
required behaviour is that instructions routed to a given co-processor, where the
co-processor is present but does not understand the instruction opcode, should
result in an IOPC trap. Co-processor instructions routed to a co-processor,
where that co-processor is not present in the system, should result in a UOPC
trap.
Consequently the current TriCore1 implementation does not match the required
behaviour in the case of un-implemented co-processors.

Workaround
Where software emulation of un-implemented co-processors is required, the
IOPC trap handler must be written to perform the required functionality.

CPU_TC.012 Definition of PACK and UNPACK fail in certain corner cases

Revisions of the TriCore Architecture Manual, up to and including V1.3.3, do not
consistently describe the behaviour of the PACK and UNPACK instructions.
Specifically, the instruction definitions state that no special provision is made for
handling IEEE-754 denormal numbers, infinities, NaNs or Overflow/Underflow
situations for the PACK instruction. In fact, all these special cases are handled
and will be documented correctly in further revisions of the TriCore Architecture
Manual.
However, there are two situations where the current TriCore1 implementation
is non-compliant with the updated definition, as follows:
TC1796, EES-BE, ES-BE, BE 33/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
1. Definition and detection of Infinity/NaN for PACK and UNPACK
In order to avoid Infinity/NaN encodings overlapping with arithmetic overflow
situations, the special encoding of un-biased integer exponent = 255 and high
order bit of the normalized mantissa (bit 30 for UNPACK, bit 31 for PACK) = 0
is defined.
In the case of Infinity or NaN, the TriCore1 implementation of UNPACK sets the
un-biased integer exponent to +255, but sets the high order bit of the
normalized mantissa (bit 30) to 1. In the case of PACK, input numbers with
biased exponent of 255 and the high order bit of the normalized mantissa (bit
31) set are converted to Infinity/NaN. Unfortunately, small overflows may
therefore be incorrectly detected as NaN by the PACK instruction special case
logic and converted accordingly, when an overflow to Infinity should be
detected.

2. Special Case Detection for PACK
In order to detect special cases, the exponent is checked for certain values. In
the current TriCore1 implementation this is performed on the biased exponent,
i.e. after 128 has been added to the un-biased exponent. In the case of very
large overflows the addition of 128 to the un-biased exponent can cause the
exponent itself to overflow and be interpreted as a negative number, i.e.
underflow, causing the wrong result to be produced.

Workaround
The corner cases where the PACK instruction currently fails may be detected
and the input number re-coded accordingly to produce the desired result.

CPU_TC.013 Unreliable context load/store operation following an ad-
dress register load instruction

When an address register is being loaded by a load/store instruction
LD.A/LD.DA and this address register is being used as address pointer in a
following context load/store instruction LD*CX/ST*CX it may lead to
unpredictable behavior.
TC1796, EES-BE, ES-BE, BE 34/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Example
...
LD.A A3, <any addressing mode>; load value into A3
LDLCX [A3] ; context load
...

Workaround
Insert one NOP instruction between the address register load/store instruction
and the context load/store instruction to allow the "Load Word to Address
Register" operation to be completed first.
...
LD.A A3, <any addressing mode>
NOP
LDLCX [A3]
...

CPU_TC.014 Wrong rounding in 8000*8000<<1 case for certain MAC in-
structions

In the case of "round(acc +/- 8000H * 8000H << 1)" the multiplication and the
following accumulation is carried out correctly. However, rounding is incorrect.
Rounding is done in two steps:
1. Adding of 0000 8000H
2. Truncation
For the before mentioned case the first step during rounding (i.e. the adding
operation) is suppressed - which is wrong - while truncation is carried out
correctly.
This bug affects all variants of MADDR.Q, MADDR.H, MSUBR.Q, MSUBR.H.,
MADDSUR.H and MSUBADR.H instructions.

Workaround
None.
TC1796, EES-BE, ES-BE, BE 35/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.046 FPI master livelock when accessing reserved areas of CSFR
space

The Core Special Function Registers (CSFRs) associated with the TriCore1
CPU are accessible by any FPI bus master, other than the CPU, in the address
range F7E1 0000H - F7E1 FFFFH. Any access to an address within this range
which does not correspond to an existing CSFR within the CPU may result in the
livelock of the initiating FPI master.
Accesses to the CPU CSFR space are performed via the CPU’s slave interface
(CPS) module, by any FPI bus master other than the CPU itself. In the case of
such an access the CPS module initially issues a retry acknowledge to the FPI
master then injects an instruction into the CPU pipeline to perform the CSFR
access. The initial access is retry acknowledged to ensure the FPI bus is not
blocked and instructions in the CPU pipeline are able to progress. The CPS
module will continue to retry acknowledge further attempts by the FPI master to
read the CSFR until the data is returned by the CPU.
In the case of an access to a reserved CSFR location the CPU treats the
instruction injected by the CPS as a NOP and never acknowledges the CSFR
access request. As such the CPS module continues to retry the CSFR access
on the FPI bus, leading to the lockup of the initiating FPI master.

Workaround
Do not access reserved areas of the CPU CSFR space.

CPU_TC.048 CPU fetches program from unexpected address

There is a case which can cause the CPU to fetch program code from an
unexpected address. Although this code will not be executed the program fetch
itself can cause side effects (performance degradation, program fetch bus error
trap).
If a load address register instruction LD.A/LD.DA is being followed immediately
by an indirect jump JI, JLI or indirect call CALLI instruction with the same
address register as parameter, the CPU might fetch program from an
unexpected address.
TC1796, EES-BE, ES-BE, BE 36/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
Insert a NOP instruction or any other load/store instruction between the load
and the indirect jump/call instruction. (See also note `Pipeline Effects`, below)

Example
...
LD.A A14, <any addressing mode>
NOP ; workaround to prevent program

; fetch from undefined address
<one optional IP instruction>
CALLI A14
...

Pipeline Effects
The CPU core architecture allows to decode and execute instructions for the
integer pipeline (IP) and the load/store pipeline (LS) in parallel. Therefore this
bug hits also if there is only one IP instruction sitting in front of the offending LS
instruction (`CALLI A14` in above example). A detailed list of IP instructions can
be found in the document `TriCore DSP Optimization Guide - Part 1: Instruction
Set, Chapter 13.1.3, Table of Dual Issue Instructions”.

CPU_TC.053 PMI line buffer is not invalidated during CPU halt

Some debug tools provide the feature to modify the code during runtime in order
to realize breakpoints. They exchange the instruction at the breakpoint address
by a ’debug’ instruction, so that the CPU goes into halt mode before it passes
the instruction. Thereafter the debugger replaces the debug instruction by the
original code again.
This feature no longer works reliably as the line buffer will not be invalidated
during a CPU halt. Instead of the original instruction, the obsolete debug
instruction will be executed again.

Workaround
Debuggers might use the following macro sequence:
TC1796, EES-BE, ES-BE, BE 37/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
1. set PC to other memory address (> 0x20h, which selects new cacheline-
refill buffer)

2. execute at least one instruction (e.g. NOP) and stop execution again (e.g.
via debug instruction)

3. set PC back to former debug position
4. proceed execution of user code

CPU_TC.059 Idle Mode Entry Restrictions

Two related problems exist which lead to unreliable idle mode entry, and
possible data corruption, if the idle request is received whilst the TriCore CPU
is in certain states. The two problems are as follows:
1. When the TriCore CPU receives an idle request, a DSYNC instruction is

injected to flush any data currently held within the CPU to memory. If there
is any outstanding context information to be saved, the clocks may be
disabled too early, before the end of the context save. The CPU is then
frozen in an erroneous state where it is instructing the DMI to make
continuous write accesses onto the bus. Because of the pipelined
architecture, the DMI may also see the wrong address for the spurious write
accesses, and therefore memory data corruption can emerge. Another
consequence of this is, that the DMI will not go to sleep and therefore the
IDLE-state will not be fully entered.

2. If the idle request is asserted when a DSYNC instruction is already being
executed by the TriCore CPU, the idle request may be masked prematurely
and the idle request never acknowledged.

Workaround
The software workaround consists of ensuring that there is no unsaved context
information within the CPU, and no DSYNC instruction in execution, when
receiving an idle request. This precludes any attempt at sending the TriCore to
sleep by third parties (i.e. Cerberus, PCP). The CPU can only be sent to idle
mode by itself by executing the following code sequence:
...
DISABLE ; Disable Interrupts NOP
DSYNC ; Flush Buffers, background context
TC1796, EES-BE, ES-BE, BE 38/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
ISYNC ; Ensure DSYNC completes
<Store to SCU to assert idle request>
NOP ; Wait on idle request
NOP ; Wait on idle request
...

CPU_TC.060 LD.[A,DA] followed by a dependent LD.[DA,D,W] can pro-
duce unreliable results

An LD.A or LD.DA instruction followed back to back by an unaligned LD.DA,
LD.D or LD.W instruction can lead to unreliable results. This problem is
independent of the instruction formats (16 and 32 bit versions of both
instructions are similarly affected)
The problem shows up if the LD.DA, LD.D or LD.W uses an address register
which is loaded by the preceding LD.A or LD.DA and if the LD.DA, LD.D or
LD.W accesses data which leads to a multicycle execution of this second
instruction.
A multicycle execution of LD.DA, LD.D or LD.W will be triggered only if the
accessed data spans a 128 bit boundary in the local DSPR space or a 128 bit
boundary in the cached space. In the non cached space an access spanning a
64 bit boundary can lead to a multicycle execution.
The malfunction is additionally dependent on the previous content of the used
address register - the bug appears if the content points to the unimplemented
DSPR space.
In the buggy case the upper portion of the multicycle load is derived from a
wrong address (the address is dependent on the previous content of that
address register) and the buggy case leads to a one cycle FASTER execution
of this back to back case. (one stall bubble is lacking in this case)
The 16 and 32 bit variants of both instructions are affected equally. A single IP
instruction as workaround is NOT sufficient, as it gets dual issued with the
LD.[DA,D,W] and therefore no bubble is seen by the LS pipeline in such a case.
Example:
...
LD.A A3,<any addressing mode>; load pointer into A3
TC1796, EES-BE, ES-BE, BE 39/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
LD.W D1,[A3]<any addressing mode>; load data value from
; pointer

...

Workaround
Insert one NOP instruction between the address register load/store instruction
and the data load/store instruction to allow the "Load Word to Address Register"
operation to be completed first. This leads to a slight performance degradation.
...
LD.A A3, <any addressing mode>
NOP
LD.W D1, [A3] <any addressing mode>
...

Alternative Workaround
To avoid the slight performance degradation, an alternative workaround is to
avoid any data structures that are accessed in an unaligned manner as then the
described instruction sequence does NOT exhibit any problems.

CPU_TC.061 Error in emulator memory protection override

TriCore1 based systems define an area of the system address map for use as
an emulator memory region. Whenever a breakpoint trap is taken, the
processor jumps to the base of this emulator region from where a debug
monitor is executed.
In order to allow correct execution of this monitor, in the presence of an enabled
protection system, this emulator region is granted implicit execute permission.
Execution of code from this region is allowed whether the current settings of the
memory protection ranges specifically permit this or not, and no MPX trap will
be generated.
In TriCore1.2 based systems, this emulator memory region existed at
addresses 0xBExxxxxx. In TriCore1.3 based systems, this emulator region
initially was moved to addresses 0xDExxxxxx before being made fully
programmable.
TC1796, EES-BE, ES-BE, BE 40/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The erroneous behaviour occurs because as this emulator region was moved
from addresses 0xBExxxxxx, the implicit execute permission to this address
range was not moved also. As a result:
1. Code execution from addresses in the range 0xBE000000 - 0xBEFFFFFF

is always permitted, irrespective of the settings of the protection system.
2. Execution of a breakpoint trap may result in the generation of an MPX trap

if execution from the new emulator region is dis-allowed by the current
settings of the protection system.

Workaround
None

CPU_TC.062 Error in circular addressing mode for large buffer sizes

A problem exists in the circular addressing mode when large buffer sizes are
used. Specifically, the problem exists when:
1. The length, L, of the circular buffer is >=32768 bytes, i.e. MSB of L is '1'
AND
2. The offset used to access the circular buffer is negative.
In this case the update of the circular buffer index may be calculated incorrectly
and the addressing mode fail.
Each time an instruction using circular addressing mode occurs the next index
for the circular buffer is calculated as current index + offset, where the signed
offset is supplied as part of the instruction. In addition, the situation where the
new index lies outside the bounds of the circular buffer has to be taken care of
and the correct wrapping behaviour performed. In the case of negative offsets,
the buffer underflow condition needs to be checked and, when detected, the
buffer size is added to the index in order to implement the required wrapping.
Due to an error in the way the underflow condition is detected, there are cases
where the buffer size is incorrectly added to the index when there is no buffer
underflow. This false condition is detected when the index is greater than or
equal to 32768 and the offset is negative.
Example:
TC1796, EES-BE, ES-BE, BE 41/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
...
MOVH.A A1, #0xE001 ;
LEA A1, [A1]-0x4000 ; Buffer Length 0xE000,

; Index 0xC000
LEA A0, 0xA0000000 ; Buffer Base Address
LD.W D9, [A0/A1+c]-0x4 ; Circular addressing

; mode access,
; negative offset

...

Workaround
Either limit the maximum buffer size for circular addressing mode to 32768
bytes, or use only positive offsets where larger circular buffers are required.

CPU_TC.063 Error in advanced overflow flag generation for SHAS in-
struction

A minor problem exists with the computation of the advanced overflow (AV) flag
for the SHAS (Arithmetic Shift with Saturation) instruction. The TriCore
architecture defines that for instructions supporting saturation, the advanced
overflow flag shall be computed BEFORE saturation. The implementation of the
SHAS instruction is incorrect with the AV flag computed after saturation.
Example:
...
MOVH D0, #0x4800 ; D0 = 0x48000000
MOV.U D1, #0x2 ; D1 = 0x2
SHAS D2, D0, D1 ; Arithmetic Shift

; with Saturation
...

In the above example, the result of 0x4800_0000 << 2 = 0x1_2000_0000, such
that the expected value for AV = bit31 XOR bit30 = 0. However, after saturation
the result is 0x7FFF_FFFF and the AV flag is incorrectly set.
TC1796, EES-BE, ES-BE, BE 42/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
None

CPU_TC.064 Co-incident FCU and CDO traps can cause system-lock

A problem exists in the interaction between Free Context Underflow (FCU) and
Call Depth Overflow (CDO) traps. An FCU trap occurs when a context save
operation is attempted and the free context list is empty, or when the context
operation encounters an error. A CDO trap occurs when a program attempts to
make a call with call depth counting enabled and the call depth counter was
already at its maximum value.
When an FCU trap occurs with call depth counting enabled (PSW.CDE = ’1’) and
the call depth counter at a value such that the next call will generate a CDO trap,
then the FCU trap causes a co-incident CDO trap. In this case the PC is
correctly set to the FCU trap handler but appears to freeze in this state as a
constant stream of FCU traps is generated.
A related problem occurs when call trace mode is enabled (PSW.CDC = 0x7E).
If in call trace mode a call or return operation encounters an FCU trap, either a
CDO (call) or Call Depth Underflow (CDU, return) trap is generated co-incident
with the FCU trap, either of which situations lead to a constant stream of FCU
traps and system lockup.
Note however that FCU traps are not expected during normal operation since
this trap is indicative of software errors.

Workaround
None

CPU_TC.065 Error when unconditional loop targets unconditional jump

An error in the program flow occurs when an unconditional loop (LOOPU)
instruction has as its target an unconditional jump instruction, i.e. as the first
instruction of the loop. Such unconditional jump instructions are J, JA, JI, JL,
JLA and JLI.
TC1796, EES-BE, ES-BE, BE 43/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
In this erroneous case the first iteration of the loop executes correctly. However,
at the point the second loop instruction is executed the interaction of the
unconditional loop and jump instructions causes the loop instruction to be
resolved as mis-predicted and the program flow exits the loop incorrectly,
despite the loop instruction being unconditional.
Example:
...
loop_start_: ; Loop start label
J jump_label_ ; Unconditional Jump instruction
...
LOOPU loop_start_
...

Workaround
The first instruction of a loop may not be an unconditional jump. If necessary,
precede this jump instruction with a single NOP.
...
loop_start_: ; Loop start label
NOP
J jump_label_ ; Unconditional Jump instruction
...
LOOPU loop_start_
...

CPU_TC.067 Incorrect operation of STLCX instruction

There is an error in the operation of the Store Lower Context (STLCX)
instruction. This instruction stores the current lower context information to a 16-
word memory block specified by the addressing mode associated with the
instruction (not to the free context list). The architectural definition of the STLCX
instruction is as follows:
Mem(EA, 16-word) = {PCXI, A[11], A[2:3], D[0:3], A[4:7], D[4:7]}
However, there is an error in the implementation of the instruction, such that the
following operation is actually performed:
TC1796, EES-BE, ES-BE, BE 44/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Mem(EA, 16-word) = {PCXI, PSW, A[2:3], D[0:3], A[4:7], D[4:7]}
i.e. the PSW is incorrectly stored instead of A11.
During normal operation, the lower context information that has been stored by
an STLCX instruction would be re-loaded using the Load Lower Context
(LDLCX) operation. The architectural definition of the LDLCX instruction is as
follows:
{-, -, A[2:3], D[0:3], A[4:7], D[4:7]} = Mem(EA, 16-word)
i.e. the value which is incorrectly stored by STLCX is not re-loaded by LDLCX,
such that the erroneous behaviour is not seen during normal operation.
However, any attempt to reload a lower context stored with STLCX using load
instructions other than LDLCX will exhibit the incorrect behaviour.

Workaround
Any lower context stored using STLCX should only be re-loaded using LDLCX,
otherwise the erroneous behaviour will be visible.

CPU_TC.068 Potential PSW corruption by cancelled DVINIT instructions

A problem exists in the implementation of the Divide Initialisation instructions,
which, under certain circumstances, may lead to corruption of the advanced
overflow (AV), overflow (V) and sticky overflow (SV) flags. These flags are
stored in the Program Status Word (PSW) register, fields PSW.AV, PSW.V and
PSW.SV. The divide initialisation instructions are DVINIT, DVINIT.U, DVINIT.B,
DVINIT.BU, DVINIT.H and DVINIT.HU.
The problem is that the DVINIT class instructions do not handle the instruction
cancellation signal correctly, such that cancelled DVINIT instructions still
update the PSW fields. The PSW fields are updated according to the operands
supplied to the cancelled DVINIT instruction. Due to the nature of the DVINIT
instructions this can lead to:
• The AV flag may be negated erroneously.
• The V flag may be asserted or negated erroneously.
• The SV flag may be asserted erroneously.
TC1796, EES-BE, ES-BE, BE 45/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
No other fields of the PSW can be affected. A DVINIT class instruction could be
cancelled due to a number of reasons:
• the DVINIT instruction is cancelled due to a mis-predicted branch
• the DVINIT instruction is cancelled due to an unresolved operand

dependency
• the DVINIT instruction is cancelled due to an asynchronous event such as

an interrupt

Workaround
If the executing program is using the PSW fields to detect overflow conditions,
the correct behaviour of the DVINIT instructions may be guaranteed by avoiding
the circumstances which could lead to a DVINIT instruction being cancelled.
This requires that the DVINIT instruction is preceded by 2 NOPs (to avoid
operand dependencies or the possibility of mis-predicted execution). In
addition, the status of the interrupt enable bit ICR.IE must be stored and
interrupts disabled before the 2 NOPs and the DVINIT instruction are executed,
and the status of the ICR.IE bit restored after the DVINIT instruction is
complete.

Alternative Workaround
To avoid the requirement to disable and re-enable interrupts an alternative
workaround is to precede the DVINIT instruction with 2 NOPs and to store the
PSW.SV flag before a DVINIT instruction and check its consistency after the
DVINIT instruction. In this case the values of the PSW flags affected may be
incorrect whilst the asynchronous event is handled, but once the return from
exception is complete and the DVINIT instruction re-executed, only the SV flag
can be in error. In this case if the SV flag was previously negated but after the
DVINIT instruction the SV flag is asserted and the V flag is negated, then the
SV flag has been asserted erroneously and should be corrected by software.

CPU_TC.069 Potential incorrect operation of RSLCX instruction

A problem exists in the implementation of the RSLCX instruction, which, under
certain circumstances, may lead to data corruption in the TriCore internal
registers. The problem is caused by the RSLCX instruction incorrectly detecting
TC1796, EES-BE, ES-BE, BE 46/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
a dependency to the following load-store (LS) or loop (LP) pipeline instruction,
if that instruction uses either address register A0 or A1 as a source operand,
and erroneous forwarding paths being enabled.
Two failure cases are possible:
1. If the instruction following the RSLCX instruction uses A1 as its source 1

operand, the PCX value updated by the RSLCX instruction will be corrupted.
Instead of restoring the PCX value from the lower context information being
restored, it will restore the return address (A11).

2. If the instruction following the RSLCX instruction uses either A1 or A0 as
source 2 operand, the value forwarded (for the second instruction) will not
be the one stored in the register but the one that has just been loaded from
memory for the context restore (A11/PCX).

Note that the problem is triggered whenever the following load-store pipeline
instruction uses A0 or A1 as a source operand. If an integer pipeline instruction
is executed between the RSLCX and the following load-store or loop instruction,
the problem may still exist.
Example:

...
RSLCX
LEA A0, [A0]0x158c
...

Workaround
Any RSLCX instruction should be followed by a NOP to avoid the detection of
these false dependencies.

CPU_TC.070 Error when conditional jump precedes loop instruction

An error in the program flow may occur when a conditional jump instruction is
directly followed by a loop instruction (either conditional or unconditional). Both
integer pipeline and load-store pipeline conditional jumps (i.e. those checking
the values of data and address registers respectively) may cause the erroneous
behaviour.
TC1796, EES-BE, ES-BE, BE 47/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The incorrect behaviour occurs when the two instructions are not dual-issued,
such that the conditional jump is in the execute stage of the pipeline and the
loop instruction is at the decode stage. In this case, both the conditional jump
instruction and the loop instruction will be resolved in the same cycle. The
problem occurs because priority is given to the loop mis-prediction logic,
despite the conditional jump instruction being semantically before the loop
instruction in the program flow. In this error case the program flow continues as
if the loop has exited: the PC is taken from the loop mis-prediction branch. In
order for the erroneous behaviour to occur, the conditional jump must be
incorrectly predicted as not taken. Since all conditional jump instructions, with
the exception of 32-bit format forward jumps, are predicted as taken, only 32-bit
forward jumps can cause the problem behaviour.
Example:

...
JNE.A A1, A0, jump_target_1_ ; 32-bit forward jump
LOOP A6, loop_target_1_
...
jump_target_1_:
...

Workaround
A conditional jump instruction may not be directly followed by a loop instruction
(conditional or not). A NOP must be inserted between any load-store pipeline
conditional jump (where the condition is dependent on an address register) and
a loop instruction. Two NOPs must be inserted between any integer pipeline
conditional jump (where the condition is dependent on a data register) and a
loop instruction

CPU_TC.071 Error when Conditional Loop targets Unconditional Loop

An error in the program flow may occur when a conditional loop instruction
(LOOP) has as its target an unconditional loop instruction (LOOPU). The
incorrect behaviour occurs in certain circumstances when the two instructions
are resolved in the same cycle. If the conditional loop instruction is mis-
predicted, i.e. the conditional loop should be exited, the unconditional loop
TC1796, EES-BE, ES-BE, BE 48/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
instruction is correctly cancelled but instead of program execution continuing at
the first instruction after the conditional loop, the program flow is corrupted.
Example:
...
cond_loop_target_:
LOOPU uncond_loop_target_ ; Unconditional loop
...
LOOP A6, cond_loop_target_;Conditional loop targets

;unconditional loop
...

Workaround
The first instruction of a conditional loop may not be an unconditional loop. If
necessary, precede this unconditional loop instruction with a single NOP.

CPU_TC.072 Error when Loop Counter modified prior to Loop instruction

An error in the program flow may occur when an instruction that updates an
address register is directly followed by a conditional loop instruction which uses
that address register as its loop counter. The problem occurs when the address
register holding the loop counter is initially zero, such that the loop will exit, but
is written to a non-zero value by the instruction preceding the conditional loop.
In this case the loop prediction logic fails and the program flow is corrupted.
Example:

...
LD.A A6, <any addressing mode>
LOOP A6, loop_target_1_
...

Workaround
Insert one NOP instruction between the instruction updating the address
register and the conditional loop instruction dependent on this address register.
TC1796, EES-BE, ES-BE, BE 49/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.073 Debug Events on Data Accesses to Segment E/F Non-func-
tional

The generation of debug events from data accesses to addresses in Segments
0xE and 0xF is non-functional. As such the setting of breakpoints on data
accesses to these addresses does not operate correctly.
In TriCore1 the memory protection system, consisting of the memory protection
register sets and associated address comparators, is used both for memory
protection and debug event generation for program and data accesses to
specific addresses. For memory protection purposes, data accesses to the
internal and external peripheral segments 0xE and 0xF bypass the range
protection system and are protected instead by the I/O privilege level and
protection mechanisms built in to the individual peripherals. Unfortunately this
bypass of the range protection system for segments 0xE and 0xF also affects
debug event generation, masking debug events for data accesses to these
segments.

Workaround
None.

CPU_TC.074 Interleaved LOOP/LOOPU instructions may cause GRWP
Trap

If a conditional loop instruction (LOOP) is executed after an unconditional loop
instruction (LOOPU) a Global Register Write Protection (GRWP) Trap may be
generated, even if the LOOP instruction does not use a global address register
as its loop counter.
In order to support zero-overhead loop execution the TriCore1 implementation
caches certain attributes pertaining to loop instructions within the CPU. The
TriCore1.3 CPU contains two loop cache buffers such that two loop (LOOP or
LOOPU) instructions may be cached. One of the attributes cached is whether
the loop instruction writes to a global address register (as its loop variable). For
LOOP instructions this attribute is updated and read as expected. For LOOPU
instructions this attribute is set but ignored by the LOOPU instruction when next
encountered.
TC1796, EES-BE, ES-BE, BE 50/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The problem occurs because there is only one global address register write flag
shared between the two loop caches. As such if LOOP and LOOPU instructions
are interleaved, with the LOOPU instruction encountered and cached after the
LOOP instruction, then the next execution of the LOOP instruction will find the
global address register write flag set and, if global register writes are disabled
(PSW.GW = 0), a GRWP trap will be incorrectly generated.
Example:

...
loopu_target_
...
loop_target_
...
LOOP A5, loop_target_
...
LOOPU loopu_target_
...

Workaround
Enable global register write permission, PSW.GW = 1.

Tool Vendor Workaround
The LOOPU instruction sets the global address register write flag when its un-
used opcode bits [15:12] are incorrectly decoded as global address register A0.
The problem may be avoided by assembling these un-used bits to correspond
to a non-global register encoding, such as 0xF.

CPU_TC.075 Interaction of CPS SFR and CSFR reads may cause livelock

Under certain specific circumstances system lockup may occur if the TriCore
CPU attempts to access a Special Function Register (SFR) within the CPS
module around the same time as another master attempts to read a Core
Special Function Register (CSFR), also via the CPS module.
In order to read a CSFR the CPS module injects an instruction into the CPU
pipeline to access the required register. In order for this injected instruction to
TC1796, EES-BE, ES-BE, BE 51/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
complete successfully the CPU pipeline must be allowed to progress. To avoid
system lockup the CSFR read access is initially retry acknowledged on the FPI
bus to ensure the FPI bus is not blocked and any CPU read access to an
address mapped to the FPI bus is able to progress. The CPS then continues
the CSFR read in the background, and, once complete, returns the data to the
originating master when the read access is performed again.
The problem occurs if the CPU is attempting to access an SFR accessed via the
CPS module around the time another master is attempting a CSFR read access.
Under normal circumstances this causes no problem since the SFR access is
allowed to complete normally even with an outstanding CSFR access in the
background. However, if the SFR access is pipelined on the FPI bus behind the
CSFR access and the CSFR access is still in progress then the interaction of the
two pipelined transactions may cause the SFR access to be retry acknowledged
in error. Thus the CPU pipeline is still frozen and the CSFR access cannot
complete. As long as the two transactions, when re-initiated by their respective
masters, continue to be pipelined on the FPI bus then this livelock situation will
continue.
Note however that the only FPI master expected to access the CSFR address
range via the CPS would be the Cerberus module under control of an external
debugger. As such this livelock situation should only be possible whilst
debugging, not during normal system operation.

Workaround
None.

CPU_TC.078 Possible incorrect overflow flag for an MSUB.Q and an
MADD.Q instruction

Under certain conditions, a variant of the MSUB.Q instruction and a variant of
the MADD.Q instruction can fail and produce an incorrect overflow flag, PSW.V,
and hence an incorrect PSW.SV. When the problem behaviour occurs, the
overflow flag is always generated incorrectly: if PSW.V should be set it will be
cleared, and if it should be cleared it will be set.
The problem affects the following two instructions:
TC1796, EES-BE, ES-BE, BE 52/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MSUB.Q D[c], D[d], D[a], D[b] L, n; opcode[23:18]=01H, opcode[7:0]=63H

MADD.Q D[c], D[d], D[a], D[b] L, n; opcode[23:18]=01H, opcode[7:0]=43H

The error conditions are as follows:
If (Da[31:16] = 16’h8000) and (DbL = 16’h8000) and (n=1), then PSW.V will be
incorrect.

Workaround #1
If the PSW.V and PSW.SV flags generated by these instructions are not used
by the code, then the instructions can be used without a workaround.

Workaround #2
This workaround utilizes the equivalent MSUB.Q or MADD.Q instruction that
uses the upper half of register D[b]. However there is also an erratum on these
instructions (CPU_TC.099), so this workaround takes this into account.
The workaround provides the same result and PSW flags as the original
instruction, however it may require an unused data register to be available.

MADD.Q D4, D2, D0, D1 L, #1

Using just this workaround becomes
SH D7, D1, #16 ; Shift to upper halfword
MADD.Q D4, D2, D0, D7 U, #1

combining this workaround with the workaround for CPU_TC.099:
SH D7, D1, #16 ; Shift to upper halfword

MUL.Q D4, D0, D7 U, #0
JNZ.T D4, 31, no_bug
JZ.T D4, 30, no_bug

mac_erratum_condition:
MOVH D4, #0x8000 ; 0x8000_0000
SUB D4, D2, D4 ; SUB-1=ADD+1, set V/AV, not C
J mac_complete

no_bug:
MADD.Q D4, D2, D0, D7 U, #1

mac_complete:
TC1796, EES-BE, ES-BE, BE 53/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.079 Possible invalid ICR.PIPN when no interrupt pending

Under certain circumstances the Pending Interrupt Priority Number, ICR.PIPN,
may be invalid when there is no interrupt currently pending. When no interrupt
is pending the ICR.PIPN field is required to be zero.
There are two circumstances where ICR.PIPN may have a non-zero value
when no interrupt is pending:
1. When operating in 2:1 mode between CPU and interrupt bus clocks, the

ICR.PIPN field may not be reset to zero when an interrupt is acknowledged
by the CPU.

2. During the interrupt arbitration process the ICR.PIPN is constructed in 1-4
arbitration rounds where 2 bits of the PIPN are acquired each round. The
intermediate PIPN being used to construct the full PIPN is made available
as ICR.PIPN. This is a potential problem because reading the PIPN can
indicate a pending interrupt that is not actually pending and may not even
be valid. e.g. if interrupt 0x81 is the highest priority pending interrupt, then
ICR.PIPN will be read as 0x80 during interrupt arbitration rounds 2,3 and
4. Only when the arbitration has completed will the valid PIPN be reflected
in ICR.PIPN.

The hardware implementation of the interrupt system for the TriCore1 CPU
actually comprises both the PIPN and a separate, non-architecturally visible,
interrupt request flag. The CPU only considers PIPN when the interrupt request
flag is asserted, at which times the ICR.PIPN will always hold a valid value. As
such the hardware implementation of the interrupt priority scheme functions as
expected. However, reads of the ICR.PIPN field by software may encounter
invalid information and should not be used.

Workaround
None.

CPU_TC.080 No overflow detected by DVINIT instruction for MAX_NEG /
-1

A problem exists in variants of the Divide Initialisation instruction with certain
corner case operands. Only those instruction variants operating on signed
TC1796, EES-BE, ES-BE, BE 54/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
operands, DVINIT, DVINIT.H and DVINIT.B, are affected. The problem occurs
when the maximum representable negative value of a number format is divided
by -1.
The Divide Initialisation instructions are required to initialise an integer division
sequence and detect corner case operands which would lead to an incorrect
final result (e.g. division by 0), setting the overflow flag, PSW.V, accordingly.
In the specific case of division of the maximum negative 32-bit signed integer
(0x80000000) by -1 (0xFFFFFFFF), the result is greater than the maximum
representable positive 32-bit signed integer and should flag overflow. However,
this specific case is not detected by the DVINIT instruction and a subsequent
division sequence returns the maximum negative number as a result with no
corresponding overflow flag.
In the cases of division of the maximum negative 16/8-bit signed integers
(0x8000/0x80) by -1 (0xFFFF/0xFF), the result is greater than the maximum
representable positive 16/8-bit signed integer and should again flag overflow.
These specific cases are not detected by the DVINIT.H/.B instructions with no
corresponding overflow flag set. In this case the result of a subsequent division
sequence returns the value 0x00008000/0x00000080 which is the correct value
when viewed as a 32-bit number but has overflowed the original number format.

Workaround
If the executing program is using the PSW fields to detect overflow conditions,
the specific corner case operands described above must be checked for and
handled as a special case in software before the standard division sequence is
executed.

CPU_TC.081 Error during Load A[10], Call / Exception Sequence

A problem may occur when an address register load instruction, LD.A or LD.DA,
targeting the A[10] register, is immediately followed by an operation causing a
context switch. The problem may occur in one of two situations:
1. The address register load instruction, targeting A[10], is followed

immediately by a call instruction (CALL, CALLA, CALLI).
TC1796, EES-BE, ES-BE, BE 55/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
2. The address register load instruction, targeting A[10], is followed
immediately by a context switch caused by an interrupt or trap being taken,
where the interrupt stack is already in use (PSW.IS = 1).

In both these situations the value of A[10] is required to be maintained across
the context switch. However, where the context switch is preceded by a load to
A[10], the address register dependency is not detected correctly and the called
context inherits the wrong value of A[10]. In this case the value of A[10] before
the load instruction is inherited.
Example:

...
LD.A A10, <any addressing mode>
CALL call_target_
...

Workaround
The problem only occurs when A[10] is loaded directly from memory. The
software workaround therefore consists of loading another address register
from memory and moving the contents to A[10].
Example:

...
LD.A A12, <any addressing mode>
MOV.AA A10, A12
CALL call_target_
...

CPU_TC.082 Data corruption possible when Memory Load follows Con-
text Store

Data corruption may occur when a context store operation, STUCX or STLCX,
is immediately followed by a memory load operation which reads from the last
double-word address written by the context store.
Context store operations store a complete upper or lower context to a 16-word
region of memory, aligned on a 16-word boundary. If the context store is
immediately followed by a memory load operation which reads from the last
TC1796, EES-BE, ES-BE, BE 56/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
double-word of the 16-word context region just written, the dependency is not
detected correctly and the previous value held in this memory location may be
returned by the memory load.
The memory load instructions which may return corrupt data are as follows:
 ld.b, ld.bu, ld.h, ld.hu, ld.q, ld.w, ld.d, ld.a, ld.da
Example:

...
STLCX 0xD0000040
LD.W D15, 0xD0000078
...

Note that the TriCore architecture does not require a context save operation
(CALL, SVLCX, etc.) to update the CSA list semantically before the next
operation (but does require the CSA list to be up to date after the execution of
a DSYNC instruction). As such the same problem may occur for context save
operations, but the result of such a sequence is architecturally undefined in any
case.

Workaround
One NOP instruction must be inserted between the context store operation and
a following memory load instruction if the memory load may read from the last
double-word of the 16-word context region just written.
Example:

...
STLCX 0xD0000040
NOP
LD.W D15, 0xD0000078
...

CPU_TC.083 Interrupt may be taken following DISABLE instruction

The TriCore Architecture requires that the DISABLE instruction gives
deterministic behaviour, i.e. no interrupt may be taken following the execution
of the DISABLE instruction.
TC1796, EES-BE, ES-BE, BE 57/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
However, the current implementation allows an interrupt to be taken
immediately following the execution of the DISABLE instruction, i.e. between
the DISABLE and the following instruction. Once the first instruction after the
DISABLE instruction has been executed its is still guaranteed that no interrupt
will be taken.
Due to this error, when an interrupt is taken immediately following a DISABLE
instruction, PCXI.PIE will contain the anomalous value 0B within the interrupt
context. In this case, no information is lost, and ICR.IE will be correctly
restored upon execution of the corresponding RFE instruction.

Workaround
If an instruction sequence must not be interrupted, then the DISABLE
instruction must be followed by a single NOP instruction, before the critical code
sequence.

CPU_TC.084 CPS module may error acknowledge valid read transactions

A bug exists in the CPS module, which may result in the CPS incorrectly
returning an error acknowledge for a read access to a valid CPS address.
The problem occurs when a read access to a CPS address, in the range
0xF7E00000 - 0xF7E1FFFF, is followed immediately on the FPI bus by a User
mode write access to an address with FPI address[16] = 1. The problem occurs
due to an error in the FPI bus decoding within the CPS which incorrectly
interprets the second transaction, even if to another slave, as an illegal User
mode write to a TriCore CSFR and incorrectly error acknowledges the valid
read. Write accesses to the CPS module are not affected.

Tool Vendor Workaround
For devices in which only the TriCore CPU and Debug Interface (Cerberus) may
operate in User mode, the workaround consists of 2 parts:
1. The Cerberus module must be configured to operate in Supervisor mode,

thus avoiding the TriCore CPU from receiving false error acknowledges.
2. If the Cerberus FPI Master receives an error acknowledge it enters error

state, which is detected by the debugger as a timeout. In this case the
TC1796, EES-BE, ES-BE, BE 58/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
debugger should release the Cerberus from the error state with the
io_supervisor command and read out the cause of the error. Where an error
acknowledge is determined to be the cause for a read in the CPS address
range the read request should be re-issued.

CPU_TC.086 Incorrect Handling of PSW.CDE for CDU trap generation

An error exists in the CDU (Call Depth Underflow) trap generation logic. CDU
traps are architecturally defined to occur when "A program attempted to
execute a RET (Return) instruction while Call Depth Counting was enabled, and
the Call Depth Counter was zero". Call depth counting is enabled when
PSW.CDC /= 1111111 and PSW.CDE = 1. However, the status of PSW.CDE is
currently not considered for CDU trap generation, and CDU traps may be
generated when PSW.CDE = 0.
Call depth counting, and generation of the associated CDO and CDU traps,
may be disabled by one of two methods. Setting PSW.CDC = 1111111 globally
disables call depth counting and operates as specified. Setting PSW.CDE = 0
temporarily disables call depth counting (it is re-enabled by each call
instruction) and is used primarily for call/return tracing.

Workaround
In order to temporarily disable call depth counting for a single return instruction,
PSW.CDC should be set to 1111111 before the return instruction is executed.

CPU_TC.087 Exception Prioritisation Incorrect

The TriCore Architecture defines an exception priority order, consisting of the
relative priorities of asynchronous traps, synchronous traps and interrupts, and
the prioritisation of individual trap types.
The current implementation of the TriCore1 CPU complies with the general
principle that the older the instruction is in the instruction sequence which
caused the trap, the higher the priority of the trap. However, the relative
prioritisation of asynchronous and synchronous events and the prioritisation
TC1796, EES-BE, ES-BE, BE 59/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
between individual trap types does not fully comply with the architectural
definition.
The current TriCore1 CPU implements the following priority order between an
asynchronous trap, a synchronous trap, and an interrupt:
1. Synchronous traps detected in Execute pipeline stage (highest priority).
2. Asynchronous trap.
3. Interrupt.
4. Synchronous trap detected in Decode pipeline stage (lowest priority).
Within these groups the following priorities are implemented:

Table 9 Synchronous Trap Priorities (Detected in Execute Stage)
Priority Type of Trap
1 VAF-D
2 VAP-D
3 MPR
4 MPW
5 MPP
6 MPN
7 ALN
8 MEM
9 DSE
10 OVF
11 SOVF
12 Breakpoint Trap (BAM)

Table 10 Asynchronous Trap Priorities
Priority Type of Trap
1 NMI
2 DAE
TC1796, EES-BE, ES-BE, BE 60/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Although the implemented trap priorities do not match those defined by the
TriCore architecture, this does not cause any problem in the majority of
circumstances. The only circumstance in which the incorrect priority order must
be considered is in the individual trap handlers, which should not be written to
be dependent on the architecturally defined priority order. For instance,
according to the architectural definition, a PSE trap handler could assume that
any PSE trap received was as a result of a program fetch access from a
memory region authorised by the memory protection system. However, as a
result of the implemented priorities of PSE and MPX traps, this assumption
cannot be made.

Table 11 Synchronous Trap Priorities (Detected in Decode Stage)
Priority Type of Trap
1 FCD
2 VAF-P
3 VAP-P
4 PSE
5 Breakpoint Trap (Virtual Address, BBM)
6 Breakpoint Trap (Instruction, BBM)
7 PRIV
8 MPX
9 GRWP
10 IOPC
11 UOPC
12 CDO
13 CDU
14 FCU
15 CSU
16 CTYP
17 NEST
18 SYSCALL
TC1796, EES-BE, ES-BE, BE 61/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
Trap handlers must be written to take account of the implemented priority and
not rely upon the architecturally defined priority order.

CPU_TC.088 Imprecise Return Address for FCU Trap

The FCU trap is taken when a context save operation is attempted but the free
context list is found to be empty, or when an error is encountered during a
context save or restore operation. In failing to complete the context operation,
architectural state is lost, so the occurrence of an FCU trap is a non-recoverable
system error.
Since FCU traps are non-recoverable system errors, having a precise return
address is not important, but can be useful in establishing the cause of the FCU
trap. The current TriCore1 implementation does not generate a precise return
address for FCU traps in all circumstances.
An FCU trap may be generated as a result of 3 situations:
1. An instruction caused a context operation explicitly (CALL, RET etc.), which

failed. The FCU return address should point to the instruction which caused
the context operation.

2. An instruction caused a synchronous trap, which attempted to save context
and encountered an error. The FCU return address should point to the
original instruction which caused the synchronous trap.

3. An asynchronous trap or interrupt occurred, which attempted to save
context and encountered an error. The FCU return address should point to
the next instruction to be executed following a return from the asynchronous
event.

In each of these circumstances the return address generated by the current
TriCore1 implementation may be up to 8 bytes greater than that intended.

Workaround
None
TC1796, EES-BE, ES-BE, BE 62/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.089 Interrupt Enable status lost when taking Breakpoint Trap

The Breakpoint Trap allows entry to a Debug Monitor without using user
resources, irrespective of whether interrupts are enabled or not.
Early revisions of the TriCore Architecture manual, up to and including version
V1.3.5, state that the actions pertaining to the ICR.IE bit upon taking a
breakpoint trap are:
• Write PCXI to DCX + 0H.
• ICR.IE = 0H.
Upon returning from a breakpoint trap, the corresponding action taken is:
• Restore PCXI from DCX + 0H.
Unfortunately, during such a breakpoint trap, return from monitor sequence the
original status of the interrupt enable bit, ICR.IE, is lost. ICR.IE is cleared to
disable interrupts by the breakpoint trap, but the previous value of ICR.IE is
not stored. The desired behaviour is to store ICR.IE to PCXI.PIE on taking a
breakpoint trap, and restore it upon return from the debug monitor. The current
TriCore1 implementation matches the early architecture definition whereby the
interrupt enable status is lost on taking a breakpoint trap.

Workaround
If breakpoint traps are used in conjunction with code where the original status
of the ICR.IE bit is known, then the debug monitor may set ICR.IE to the
desired value before executing the return from monitor.
If the original status of ICR.IE is not known and cannot be predicted, an
alternative debug method must be used, such as an external debugger or
breakpoint interrupts.

CPU_TC.094 Potential Performance Loss when CSA Instruction follows
IP Jump

The TriCore1 CPU contains shadow registers for the upper context registers, to
optimise the latency of certain CSA list operations. As such, the latency of
instructions operating on the CSA list is variable dependent on the state of the
context system. For instance, a return instruction will take fewer cycles when
TC1796, EES-BE, ES-BE, BE 63/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
the previous upper context is held in the shadow registers than when the
shadow registers are empty and the upper context has to be re-loaded from
memory.
In situations where the CSA list is located in single cycle access memory (i.e.
Data Scratchpad RAM), instructions operating on the upper context (such as
call, return) will have a latency of between 2 and 5 cycles, dependent on the
state of the context system. In the case where the CSA list instruction will take
4 or 5 cycles, the instruction will cause the instruction fetch request to be
negated whilst the initial accesses of the context operation complete.
A performance problem exists when certain jump instructions which are
executed by the integer pipeline are followed immediately by certain CSA list
instructions, such that the instructions are dual-issued. In this case, where the
jump instruction is predicted taken, the effect of the CSA list instruction on the
fetch request is not immediately cancelled, which can lead to the jump
instruction taking 2 cycles longer than expected. This effect is especially
noticeable where the jump instruction is used to implement a short loop, since
the loop may take 2 cycles more than expected. In addition, since the state of
the context system may be modified by asynchronous events such as
interrupts, the execution time of the loop before and after an interrupt is taken
may be different.
Integer pipeline jump instructions are those that operate on data register values
as follows:
JEQ, JGE, JGE.U, JGEZ, JGTZ, JLEZ, JLT, JLT.U, JLTZ, JNE, JNED, JNEI,
JNZ, JNZ.T, JZ, JZ.T
CSA list instructions which may cause the performance loss are as follows:
CALL, CALLA, CALLI, SYSCALL, RET, RFE

Workaround
In order to avoid any performance loss, in particular where the IP jump
instruction is used to implement a loop and as such is taken multiple times, a
NOP instruction should be inserted between the IP jump and the CSA list
instruction.
Example:

...
TC1796, EES-BE, ES-BE, BE 64/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
JLT.U D[a], D[b], jump_target_
NOP
RET
...

CPU_TC.095 Incorrect Forwarding in SAT, Mixed Register Instruction Se-
quence

In a small number of very specific instruction sequences, involving Load-Store
(LS) pipeline instructions with data general purpose register (DGPR) operands,
the operand forwarding in the TriCore1 CPU may fail and the data dependency
between two instructions be missed, leading to incorrect operation. The
problem may occur in one of two instruction sequences as follows:
Problem Sequence 1)
1. LS instruction with DGPR destination {mov.d, eq.a, ne.a, lt.a, ge.a, eqz.a,

nez.a, mfcr}
2. SAT.H instruction
3. LS instruction with DGPR source {addsc.a, addsc.at, mov.a, mtcr}
If the DGPR source register of (3) is equal to the DGPR destination register of
(1), then the interaction with the SAT.H instruction may cause the dependency
to be missed and the original DGPR value to be passed to (3).

Problem Sequence 2)
1. Load instruction with 64-bit DGPR destination {ld.d, ldlcx, lducx, rslcx, rfe,

rfm, ret}
2. SAT.B or SAT.H instruction
3. LS instruction with DGPR source {addsc.a, addsc.at, mov.a, mtcr}
In this case if the DGPR source register of (3) is equal to the high 32-bit DGPR
destination register of (1), then the interaction with the SAT.B/SAT.H instruction
may cause the dependency to be missed and the original DGPR value to be
passed to (3).

Example:
TC1796, EES-BE, ES-BE, BE 65/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
...
MOV.D D2, A12
SAT.H D7
MOV.A A4, D2
...

Note that for the second problem sequence the first instruction of the sequence
could be RFE and as such occur asynchronous with respect to the program
flow.

Workaround
A single NOP instruction must be inserted between any SAT.B/SAT.H
instruction and a following Load-Store instruction with a DGPR source operand
{addsc.a, addsc.at, mov.a, mtcr}.

CPU_TC.096 Error when Conditional Loop targets Single Issue Group
Loop

An error in the program flow may occur when a conditional loop instruction
(LOOP) has as its target an instruction which forms part of a single issue group
loop. Single issue group loops consist of an optional Integer Pipeline (IP)
instruction, optional Load-Store Pipeline (LS) instruction and a loop instruction
targeting the first instruction of the group. In order for the problem to occur the
outer loop must first be cancelled (for instance due to a pipeline hazard) before
being executed normally. When the problem occurs the loop counter of the
outer loop instruction is not decremented correctly and the loop executed an
incorrect number of times.
Example:
...
loop_target_:
ADD D2, D1 ; Optional IP instruction
ADD.A A2, A1 : Optional LS instruction
LOOP Ax, loop_target_; Single Issue Group Loop
...
LD.A Am, <addressing mode>
LD.W Dx, [Am] ; Address dependency causes cancel
TC1796, EES-BE, ES-BE, BE 66/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
LOOP Ay, loop_target_; Conditional loop targets
; single issue group loop

...

Workaround
Single issue group loops should not be used. Where a single issue group loop
consists of an IP instruction and a loop instruction targeting the IP instruction,
two NOPs must be inserted between the IP and loop instructions. Where a
single issue group loop consists of an optional IP instruction, a single LS
instruction and a loop instruction targeting the first instruction of this group, a
single NOP must be inserted between the LS instruction and the loop
instruction. Since single issue group loops do not operate optimally on the
current TriCore1 implementation (not zero overhead), no loss of performance is
incurred.

CPU_TC.097 Overflow wrong for some Rounding Packed Multiply-Accu-
mulate instructions.

An error is made in the computation of the overflow flag (PSW.V) for some of
the rounding packed multiply-accumulate (MAC) instructions. The error affects
the following instructions with a 64bit accumulater input:
 MADDR.H D[c], E[d], D[a], D[b] UL, n; opcode[23:18]=1EH, opcode[7:0]=43H

 MSUBR.H D[c], E[d], D[a], D[b] UL, n; opcode[23:18]=1EH, opcode[7:0]=63H

PSW.V is computed by combining ov_halfword1 and ov_halfword0, as
described in the TriCore architecture manual (V1.3.6 and later) for these
instructions. When the error conditions exist ov_halfword1 is incorrectly
computed. ov_halfword0 is always computed correctly.
Note: Under the error conditions, PSW.V may be correct depending on the

value of ov_halfword0.

The specific error conditions are complex and are not described here.

Workaround #1
If the PSW.V and PSW.SV flags generated by these instructions are not used
by the code, then the instructions can be used without a workaround.
TC1796, EES-BE, ES-BE, BE 67/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround #2
If the algorithm allows use of 16 bit addition inputs, the code could be rewritten
to use the following instructions instead:
 MADDR.H D[c], D[d], D[a], D[b] UL, n; opcode[23:18]=0CH, opcode[7:0]=83H

 MSUBR.H D[c], D[d], D[a], D[b] UL, n; opcode[23:18]=0CH, opcode[7:0]=A3H

Workaround #3
If the PSW.V and PSW.SV flags are used, and 32 bit addition inputs are
required, then the routine should be rewritten to use two unpacked mac
instructions. I.e.

MADDR.H D4, E2, D0, D1 UL, #n

Becomes
MADDR.Q D4, D3, D0 U, D1 U, #n
MADDR.Q D5, D2, D0 L, D1 L, #n
SH D5, D5, #-16
INSERT D4, D4, D5, #16, #16; Repack into D4

Note: PSW.V must be tested between the two MADDR.Q instructions if
PSW.SV cannot be utilised.

Note: This algorithm requires an additional register (D5 in the example).

Workaround #3 for erroneous MSUBR.H instruction is similar to the MADDR.H
instruction.

CPU_TC.098 Possible PSW.V Error for an MSUB.Q instruction variant
when both multiplier inputs are of the form 0x8000xxxx

The bug only affects the following instruction
 MSUB.Q D[c], D[d], D[a], D[b] , n; opcode[23:18]=02H, opcode[7:0]=63H

PSW.V is computed by the algorithm in the TriCore Architecture Manual for this
instruction except under the following conditions:
 (D[a][31:16] = 16’h8000) &&
 (D[b][31:16] = 16’h8000) &&
TC1796, EES-BE, ES-BE, BE 68/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 (n = 1)
When these conditions are met the following algorithm is used to produce the
incorrect PSW.V
 if expected (PSW.V) = 1 // expected to overflow
 PSW.V = 0
 else // not expected to overflow
 if (result < 0) and (D[d] >= 0)
 PSW.V = 1
 else
 PSW.V = 0
 endif
 endif

Workaround #1
If the PSW.V and PSW.SV flags generated by this instruction are not used by
the code, then the instruction can be used without a workaround.

Workaround #2
Use the equivalent instruction which produces a 64 bit result.
 MSUB.Q E[c], E[d], D[a], D[b] , n; opcode[23:18]=1BH, opcode[7:0]=63H

To use the 64 bit version, D[d] should occupy the odd word of E[d], the even
word of E[d] should be set to zero. The result will appear in the odd word of E[c].
Note: This version of the MSUB.Q instruction is affected by another erratum

CPU_TC.099. Please ensure that the workaround for that erratum is
implemented.

This workaround provides the same result and PSW flags as the original
instruction, however it requires additional unused data registers to be available.
TC1796, EES-BE, ES-BE, BE 69/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.099 Saturated Result and PSW.V can error for some q format
multiply-accumulate instructions when computing multiplications of the
type 0x80000000*0x8000 when n=1

For some q format multiply-accumulate instructions, the overflow flag (PSW.V)
is computed incorrectly under some circumstances. When the problem
behaviour occurs, the overflow flag is always generated incorrectly: if PSW.V
should be set it will be cleared, and if it should be cleared it will be set.
Where this bug affects a saturating instruction the result is incorrectly saturated.
This bug affects the following instructions:
32bit * 32bit Instructions
 MUL.Q D[c], D[a], D[b], n; opcode[23:18]=02H, opcode[7:0]=93H

 MUL.Q E[c], D[a], D[b], n; opcode[23:18]=1BH, opcode[7:0]=93H

 MADD.Q D[c], D[d], D[a], D[b], n; opcode[23:18]=02H, opcode[7:0]=43H

 MADD.Q E[c], E[d], D[a], D[b], n; opcode[23:18]=1BH, opcode[7:0]=43H

 MSUB.Q E[c], E[d], D[a], D[b], n; opcode[23:18]=1BH, opcode[7:0]=63H

32bit * 16bit (Upper) Instructions
 MUL.Q D[c], D[a], D[b] U, n; opcode[23:18]=00H, opcode[7:0]=93H

 MADD.Q D[c], D[d], D[a], D[b] U, n; opcode[23:18]=00H, opcode[7:0]=43H

 MADDS.Q D[c], D[d], D[a], D[b] U, n; opcode[23:18]=20H, opcode[7:0]=43H

 MSUB.Q D[c], D[d], D[a], D[b] U, n; opcode[23:18]=00H, opcode[7:0]=63H

 MSUBS.Q D[c], D[d], D[a], D[b] U, n; opcode[23:18]=20H, opcode[7:0]=63H

32bit * 16bit (Lower) Instructions
 MUL.Q D[c], D[a], D[b] L, n; opcode[23:18]=01H, opcode[7:0]=93H

 MADDS.Q D[c], D[d], D[a], D[b] L, n; opcode[23:18]=21H, opcode[7:0]=43H

 MSUBS.Q D[c], D[d], D[a], D[b] L, n; opcode[23:18]=21H, opcode[7:0]=63H

The error condition occurs, and hence PSW.V is inverted under the following
conditions:
TC1796, EES-BE, ES-BE, BE 70/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
32bit * 32bit Instructions
 D[a] = 32’h8000_0000 and
 D[b] = 32’h8000_0000 and
 n = 1

32bit * 16bit (Upper) Instructions
 D[a] = 32’h8000_0000 and
 D[b][31:16] = 16’h8000 and
 n = 1

32bit * 16bit (Lower) Instructions
 D[a] = 32’h8000_0000 and
 D[b][15:0] = 16’h8000 and
 n = 1

When the error condition occurs for a saturating instruction, the result is wrong
in addition to PSW.V. The result in these cases is as follows:
MADDS.Q, PSW.V incorrectly asserted
 32 bit result: D[c] = 32’h8000_0000

MADDS.Q, PSW.V incorrectly negated
 32 bit result: D[c] = result[31:0]

MSUBS.Q, PSW.V incorrectly asserted
 32 bit result: D[c] = 32’h7FFF_FFFF

MSUBS.Q, PSW.V incorrectly negated
 32 bit result: D[c] = result[31:0]
TC1796, EES-BE, ES-BE, BE 71/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround #1
For instructions which don’t saturate, if the PSW.V and PSW.SV flags
generated by the instruction are not used by the code, then the instruction can
be used without a workaround.

Workaround #2
Prior to executing the erroneous instruction, test the operands to detect the
error condition. If the error condition exists, execute an alternative routine.
Detecting the error condition is performed by executing a MUL.Q on the
multiplicands with n=0, then testing bit 30 of the result which is only set when
the error condition operands exist.
Each erroneous instruction can be replaced by the relevant code sequence
described below.
Note: If the destination register is the same as one of the source registers, then

an additional data register will be needed to implement the workaround.

MUL.Q D[c], D[a], D[b], #1; opcode[23:18]=02H, opcode[7:0]=93H

 MUL.Q D4, D0, D1, #1

becomes
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x4000 ; 0x4000_0000
 ADD D4, D4, D4 ; 0x8000_0000, set V/AV, leave C
 J mac_complete
no_bug:
 MUL.Q D4, D0, D1, #1
mac_complete:

MUL.Q E[c], D[a], D[b], #1; opcode[23:18]=1BH, opcode[7:0]=93H

 MUL.Q E4, D0, D1, #1

becomes
 MUL.Q E4, D0, D1, #0
TC1796, EES-BE, ES-BE, BE 72/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 JNZ.T D5, 31, no_bug
 JZ.T D5, 30, no_bug
mac_erratum_condition:
 MOV D4, #0
 MOVH D5, #0x4000 ; 0x4000_0000
 ADD D5, D5, D5 ; 0x8000_0000, set V/AV, leave C
 J mac_complete
no_bug:
 MUL.Q E4, D0, D1, #1
mac_complete:

MUL.Q D[c], D[a], D[b] U, #1; opcode[23:18]=00H, opcode[7:0]=93H

 MUL.Q D4, D0, D1 U, #1

becomes
 MUL.Q D4, D0, D1 U, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x4000 ; 0x4000_0000
 ADD D4, D4, D4 ; 0x8000_0000, set V/AV, leave C
 J mac_complete
no_bug:
 MUL.Q D4, D0, D1 U, #1
mac_complete:

MUL.Q D[c], D[a], D[b] L, #1; opcode[23:18]=01H, opcode[7:0]=93H

 MUL.Q D4, D0, D1 L, #1

becomes
 MUL.Q D4, D0, D1 L, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #4000 ; 0x4000_0000
 ADD D4, D4, D4 ; 0x8000_0000 set V/AV, leave C
TC1796, EES-BE, ES-BE, BE 73/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 J mac_complete
no_bug:
 MUL.Q D4, D0, D1 L, #1
mac_complete:

MADD.Q D[c], D[d], D[a], D[b], #1; opcode[23:18]=02H, opcode[7:0]=43H
 MADD.Q D4, D2, D0, D1 #1

becomes
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 SUB D4, D2, D4 ; SUB-1=ADD+1, set V/AV, leave C
 J mac_complete
no_bug:
 MADD.Q D4, D2, D0, D1, #1
mac_complete:

MADD.Q E[c], E[d], D[a], D[b], #1; opcode[23:18]=1BH, opcode[7:0]=43H
 MADD.Q E4, E2, D0, D1 #1

becomes
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOV D4, D2 ; lower word add 0
 MOVH D5, #0x8000 ; 0x8000_0000
 SUB D5, D3, D5 ; SUB-1=ADD+1, set V/AV, leave C
 J mac_complete
no_bug:
 MADD.Q E4, E2, D0, D1, #1
mac_complete:
TC1796, EES-BE, ES-BE, BE 74/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MADD.Q D[c], D[d], D[a], D[b] U, #1; opcode[23:18]=00H, opcode[7:0]=43H

 MADD.Q D4, D2, D0, D1 U, #1

becomes
 MUL.Q D4, D0, D1 U, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 SUB D4, D2, D4 ; SUB-1=ADD+1, set V/AV, leave C
 J mac_complete
no_bug:
 MADD.Q D4, D2, D0, D1 U, #1
mac_complete:

MADDS.Q D[c], D[d], D[a], D[b]U, #1; opcode[23:18]=20H, opcode[7:0]=43H

 MADDS.Q D4, D2, D0, D1 U, #1

becomes
 MUL.Q D4, D0, D1 U, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 SUBS D4, D2, D4 ; SUB-1=ADD+1, set V/AV, leave C
 J mac_complete
no_bug:
 MADDS.Q D4, D2, D0, D1 U, #1
mac_complete:

MADDS.Q D[c], D[d], D[a], D[b] L, #1; opcode[23:18]=21H, opcode[7:0]=43H

 MADDS.Q D4, D2, D0, D1 L, #1

becomes
 MUL.Q D4, D0, D1 L, #0
 JNZ.T D4, #31, no_bug
 JZ.T D4, #30, no_bug
TC1796, EES-BE, ES-BE, BE 75/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 SUBS D4, D2, D4 ; SUB-1=ADD+1, set V/AV, leave C
 J mac_complete
no_bug:
 MADDS.Q D4, D2, D0, D1 L, #1
mac_complete:

MSUB.Q E[c], E[d], D[a], D[b], #1; opcode[23:18]=1BH, opcode[7:0]=63H

 MSUB.Q E4, E2, D0, D1, #1

becomes
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOV D4, D2 ; lower word add 0
 MOVH D5, #0x8000 ; 0x8000_0000
 ADD D5, D3, D5 ; ADD-1=SUB+1, set V/AV, leave C
 J mac_complete
no_bug:
 MSUB.Q E4, E2, D0, D1, #1
mac_complete:

MSUB.Q D[c], D[d], D[a], D[b] U, #1; opcode[23:18]=00H, opcode[7:0]=63H

 MSUB.Q D4, D2, D0, D1 U, #1

becomes
 MUL.Q D4, D0, D1 U, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 ADD D4, D2, D4 ; ADD-1=SUB+1, set V/AV, leave C
 J mac_complete
no_bug:
TC1796, EES-BE, ES-BE, BE 76/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 MSUB.Q D4, D2, D0, D1 U, #1
mac_complete:

MSUBS.Q D[c], D[d], D[a], D[b] U, #1; opcode[23:18]=20H, opcode[7:0]=63H

 MSUBS.Q D4, D2, D0, D1 U, #1

becomes
 MUL.Q D4, D0, D1 U, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 ADDS D4, D2, D4 ; ADD-1=SUB+1, set V/AV, leave C
 J mac_complete
no_bug:
 MSUBS.Q D4, D2, D0, D1 U, #1
mac_complete:

MSUBS.Q D[c], D[d], D[a], D[b] L, #1; opcode[23:18]=21H, opcode[7:0]=63H

 MSUBS.Q D4, D2, D0, D1 L, #1

becomes
 MUL.Q D4, D0, D1 L, #0
 JNZ.T D4, 31, no_bug
 JZ.T D4, 30, no_bug
mac_erratum_condition:
 MOVH D4, #0x8000 ; 0x8000_0000
 ADDS D4, D2, D4 ; ADD-1=SUB+1, set V/AV, leave C
 J mac_complete
no_bug:
 MSUBS.Q D4, D2, D0, D1 L, #1
mac_complete:
TC1796, EES-BE, ES-BE, BE 77/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
CPU_TC.100 Mac instructions can saturate the wrong way and have prob-
lems computing PSW.V

Under certain error conditions, some saturating mac instructions saturate the
wrong way. I.e. if they should saturate to the maximum positive representable
number, they saturate to the maximum negative representable number, and
vice versa.
In addition to this problem, the affected instructions also compute the overflow
flag (PSW.V) incorrectly under certain circumstances. If PSW.V should be set
it will be cleared, and if it should be cleared it will be set. When PSW.V is wrong,
the instructions’ results are wrong due to incorrect saturation.
The following instructions are subject to these errors:
 MADDS.Q D[c], D[d], D[a], D[b], n; opcode[23:18]=22H, opcode[7:0]=43H

 MADDS.Q E[c], E[d], D[a], D[b], n; opcode[23:18]=3BH, opcode[7:0]=43H

 MSUBS.Q D[c], D[d], D[a], D[b], n; opcode[23:18]=22H, opcode[7:0]=63H

 MSUBS.Q E[c], E[d], D[a], D[b], n; opcode[23:18]=3BH, opcode[7:0]=63H

The PSW.V is computed incorrectly under the following circumstances:
D[a] = 32’h8000_0000 and
D[b] = 32’h8000_0000 and
n = 1

Note: When n=0 all affected instructions operate correctly.

Workaround #1
Use the non saturating version of the instruction if the algorithm allows its use.
MADD.Q D[c], D[d], D[a], D[b], n; opcode[23:18]=02H, opcode[7:0]=43H

MADD.Q E[c], E[d], D[a], D[b], n; opcode[23:18]=1BH, opcode[7:0]=43H

MSUB.Q E[c], E[d], D[a], D[b], n; opcode[23:18]=1BH, opcode[7:0]=63H

Note: These alternative instructions are subject to erratum CPU_TC.0.99.
Please ensure that the workaround for that erratum is implemented.

MSUB.Q D[c], D[d], D[a], D[b] , n; opcode[23:18]=02H, opcode[7:0]=63H

Note: This alternative instruction is subject to erratum CPU_TC.098. Please
ensure that the workaround for that erratum is implemented.
TC1796, EES-BE, ES-BE, BE 78/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround #2
Prior to executing the erroneous instruction, test the operands to detect the
PSW.V error condition. If the error condition exists, execute an alternative
routine.
Following this routine PSW.V will be correct, but the result may have saturated
incorrectly. So now determine which way the instruction should have saturated
(if at all) and saturate manually.
Each erroneous instruction can be replaced by the relevant code sequence
described below.
Note: An additional data register is needed to implement this workaround.

Note: The PSW.USB are destroyed by this workaround.

MADDS.Q D[c], D[d], D[a], D[b], #1; opcode[23:18]=22H, opcode[7:0]=43H

 MADDS.Q D4, D2, D0, D1, #1

becomes
 ; First correct the PSW.V problem
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_v_bug
 JZ.T D4, 30, no_v_bug
v_bug:
 MOVH D4, #0x8000 ; 0x8000_0000
 SUBS D4, D2, D4 ; SUB -1 == ADD +1
 J mac_complete ; Saturation correct
no_v_bug:
 MADDS.Q D4, D2, D0, D1, #1
 ; PSW.V correct, but res may have saturated wrong way
 MFCR D7, #0xFE04 ; get PSW
 JZ.T D7, 30, mac_complete ; End if no sat required
saturate:
 MOVH D4, #0x8000 ; 0x80000000
 XOR D7, D0, D1 ; Test sign of mul output
 ; +ve => sat to max
 JNZ.T D7, 31, mac_complete ; if sat to min, finish
saturate_max:
 MOV D7, #-1
TC1796, EES-BE, ES-BE, BE 79/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 ADD D4, D4, D7 ; 0x80000000 -1 = 0x7fffffff
mac_complete:

MADDS.Q E[c], E[d], D[a], D[b], #1; opcode[23:18]=3BH, opcode[7:0]=43H

 MADDS.Q E4, E2, D0, D1, #1

becomes
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_v_bug
 JZ.T D4, 30, no_v_bug
v_bug:
 MOV D4, D2 ; Lower word not modified
 ; Compute Upper Word
 MOVH D5, #0x8000 ; 0x8000_0000
 SUB D5, D3, D5 ; SUB -1 == ADD +1, set V
 J test_v ; perform sat64
no_v_bug:
 MADDS.Q E4, E2, D0, D1, #1
test_v:
 ; PSW.V correct, res may have saturated the wrong way
 MFCR D7, #0xFE04 ; get PSW
 JZ.T D7, 30, mac_complete ; End if no sat required
saturate:
 MOVH D5, #0x8000 ; 0x80000000_00000000
 MOV D4, #0
 XOR D7, D0, D1 ; Test sign of mul output
 ; +ve => sat to max
 JNZ.T D7, 31, mac_complete ; if sat to min, finish
saturate_max:
 MOV D4, #-1
; 0x80000000_00000000 -1 = 0x7fffffff_ffffffff
 ADD D5, D5, D4
mac_complete:

MSUBS.Q D[c], D[d], D[a], D[b], #1; opcode[23:18]=22H, opcode[7:0]=63H

 MSUBS.Q D4, D2, D0, D1, #1

becomes
TC1796, EES-BE, ES-BE, BE 80/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_v_bug
 JZ.T D4, 30, no_v_bug
v_bug:
 MOVH D4, #0x8000 ; 0x8000_0000
 ADDS D4, D2, D4 ; ADD -1 == SUB +1
 J mac_complete ; Saturation correct
no_v_bug:
 MSUBS.Q D4, D2, D0, D1, #1
 ; Now PSW.V is correct, but result may have saturated the
wrong way
 MFCR D7, #0xFE04 ; get PSW
 JZ.T D7, #30, mac_complete ; End no sat required
saturate:
 MOVH D4, #0x8000 ; 0x80000000
 XOR D7, D0, D1 ; Test sign of mul output
 ; -ve => sat to max
 JZ.T D7, #31, mac_complete ; if sat to min, finish
saturate_max:
 MOV D7, #-1
 ADD D4, D4, D7 ; 0x80000000-1=0x7fffffff
mac_complete:

MSUBS.Q E[c], E[d], D[a], D[b], #1; opcode[23:18]=3BH, opcode[7:0]=63H

 MSUBS.Q E4, E2, D0, D1, #1

becomes
 MUL.Q D4, D0, D1, #0
 JNZ.T D4, 31, no_v_bug
 JZ.T D4, 30, no_v_bug
v_bug:
 MOV D4, D2 ; Lower word not modified
 ; Compute Upper Word
 MOVH D5, #0x8000 ; 0x8000_0000
 ADD D5, D3, D5 ; ADD -1 == SUB +1, set V
 J test_v ; perform sat64
no_v_bug:
TC1796, EES-BE, ES-BE, BE 81/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 MSUBS.Q E4, E2, D0, D1, #1
 ; Now PSW.V is correct, but result may have saturated the
wrong way
test_v:
 MFCR D7, #0xFE04 ; get PSW
 JZ.T D7, #30, mac_complete ; Test V, finish if no
saturation required
saturate:
 MOVH D5, #0x8000 ; 0x80000000_00000000
 MOV D4, #0
 XOR D7, D0, D1 ; Test sign of mul output
 ; -ve => sat to max
 JZ.T D7, #31, mac_complete ; if sat to min, finish
saturate_max:
 MOV D4, #-1
; 0x80000000_00000000 -1 = 0x7fffffff_ffffffff
 ADD D5, D5, D4
mac_complete:

Workaround #3
Where the use of one of these instructions is unavoidable, and both the correct
result and PSW.USB are required, the UPDFL instruction can be used to modify
PSW.USB in user mode. Note that the UPDFL instruction is only available in
systems which have an FPU coprocessor present. The correct result can be
obtained by using workaround #2.

CPU_TC.101 MSUBS.U can fail to saturate result, and MSUB(S).U can fail
to assert PSW.V

Under certain circumstances two variants of the MSUB.U instruction can fail to
assert PSW.V when expected to do so. When this occurs for MSUBS.U, the
result fails to saturate.
The error affects the following instructions:
MSUB.U E[c], E[d], D[a], D[b]; opcode[23:18]=68H, opcode[7:0]=23H

MSUBS.U E[c], E[d], D[a], D[b]; opcode[23:18]=E8H, opcode[7:0]=23H
TC1796, EES-BE, ES-BE, BE 82/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The error exists when the conditions below exist. Note that ’result’ is as defined
in the architecture manual. Note that D[a][31:16] and D[b][31:16] are both
treated as unsigned.

(result < 0) and; PSW.V is expected to be asserted
(E[d][63] = 1) and
((D[a][31:16] * D[b][31:16])[31] = 0)

When the error conditions exist, PSW.V should be asserted, but is erroneously
negated.
For the saturating instruction MSUBS.U, when the error condition exists the
returned result (E[c]) is also wrong. Instead of saturating to 0, the return result
is as given below:

E[c] = result[63:0]

Workaround #1
If it can be guaranteed that E[c][63] = 0 under all code execution conditions,
then both of these erroneous instructions will produce the correct result and
PSW and can therefore be used.

Workaround #2
For MSUB.U, if the PSW.V and PSW.SV flags generated are not used by the
code, then the instruction can be used without a workaround.

Workaround #3
For MSUBS.U, if none of the PSW.USB flags are used by the code, then the
following workaround can be used to produce the correct saturated result.
Note: This workaround destroys PSW.C

Note: This workaround requires at least one additional data register to be used
(D7 in the example), and maybe more, if the destination register is the
same as one of the source registers.

 MSUBS.U E4, E2, D0, D1

becomes
 ; Different routines if PSW.SV set at start
 MUL.U E4, D0, D1 ; execute mul
TC1796, EES-BE, ES-BE, BE 83/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 SUBX D4, D2, D4 ; sub lower word
 SUBC D5, D3, D5 ; sub upper word
 MFCR D7, #0xFE04 ; get PSW
 JNZ.T D7, 31, mac_complete ; Test PSW.C, no overflow
if set so finish

 ; MSUBS.U overflows, so saturate to zero
 MOV D4, #0
 MOV D5, #0
mac_complete:

Workaround #4
Where the use of one of these instructions is unavoidable, and both the correct
result and PSW.USB are required, the UPDFL instruction can be used to modify
PSW.USB in user mode. Note that the UPDFL instruction is only available in
systems which have an FPU coprocessor present. The correct result can be
obtained by using workaround #3 for MSUBS.U.

CPU_TC.102 Result and PSW.V can be wrong for some rounding, packed,
saturating, MAC instructions.

An error is made in the computation of the result and overflow flag (PSW.V) for
some of the rounding packed saturating multiply-accumulate (MAC)
instructions. The error affects the following instructions with a 64bit
accumulater input:
 MADDRS.H D[c], E[d], D[a], D[b] UL, n; opcode[23:18]=3EH, opcode[7:0]=43H

 MSUBRS.H D[c], E[d], D[a], D[b] UL, n; opcode[23:18]=3EH, opcode[7:0]=63H

When these instructions erroneously detect overflow, the results are saturated
and PSW.V and PSW.SV are asserted.
PSW.V is computed by combining ov_halfword1 and ov_halfword0, as
described in the TriCore Architecture Manual (V1.3.6 and later) for these
instructions. When the error conditions exist ov_halfword1 is incorrectly
computed. ov_halfword0 is always computed correctly.
TC1796, EES-BE, ES-BE, BE 84/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Note: Under the error conditions, PSW.V may be correct depending on the
value of ov_halfword0.

The specific error conditions are complex and are not described here.

Workaround #1
If the saturating version of the instruction does not need to be used, then
consider using the unsaturating versions:
MADDR.H D[c], E[d], D[a], D[b] UL, n; opcode[23:18]=1EH, opcode[7:0]=43H

MSUBR.H D[c], E[d], D[a], D[b] UL, n; opcode[23:18]=1EH, opcode[7:0]=63H

Note: Whilst these instructions compute the result correctly, PSW.V and
PSW.SV are still affected by the problem as described in erratum
CPU_TC_0.97.

Workaround #2
If the algorithm allows use of 16 bit addition inputs, the code could be rewritten
to use the following instructions instead:
MADDRS.H D[c], D[d], D[a], D[b] UL, n; opcode[23:18]=2CH, opcode[7:0]=83H

MSUBRS.H D[c], D[d], D[a], D[b] UL, n; opcode[23:18]=2CH, opcode[7:0]=A3H

Workaround #3
If the PSW.V and PSW.SV flags are used, and 32 bit addition inputs are
required, then the routine should be rewritten to use two unpacked mac
instructions. I.e.
 MADDRS.H D4, E2, D0, D1 UL, #n

Becomes
 MADDRS.Q D4, D3, D0 U, D1 U, #n
 MADDRS.Q D5, D2, D0 L, D1 L, #n
 SH D5, D5, #-16
 INSERT D4, D4, D5, #16, #16; Repack results into D4

Note: PSW.V must be tested between the two MADDR.Q instructions if
PSW.SV cannot be utilised.

Note: This algorithm requires an additional register (D5 in the example)
TC1796, EES-BE, ES-BE, BE 85/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The workaround for MSUBRS.H instruction is similar to the MADDRS.H
instruction.

CPU_TC.104 Double-word Load instructions using Circular Addressing
mode can produce unreliable results

Under certain conditions, a double-word load instruction (LD.D) using circular
addressing mode can produce unreliable results. The problem occurs when the
following conditions are met:
• The effective address of the LD.D instruction using circular addressing

mode (Base+Index) is only half-word aligned (not word or double-word
aligned) and targets a circular buffer placed in Data Scratchpad RAM
(DSPR or LDRAM) or cacheable data memory (where an enabled Data
Cache is present).

• The effective address of the LD.D instruction is such that the memory
access runs off the end of the circular buffer, with the first three half-words
of the required data at the end of the buffer and last half-word wrapped
around to the start of the buffer.

• The TriCore CPU store buffer contains a pending store instruction targeting
at least one of the three data half-words from the end of the circular buffer
being read.

Note: The TriCore1 CPU contains a single store buffer. A store operation is
placed in the store buffer when it is followed in the Load-Store pipeline by
a load operation. The store buffer empties when the next store operation
occurs or when the Load-Store pipeline contains no memory access
operation.

When these conditions are met, the first memory access (to the upper three
half-words of the buffer) of the LD.D instruction is made, but the dependency to
the pending store instruction is then detected and the access cancelled. The
store is then performed in the next cycle and the first access of the LD.D
instruction subsequently re-issued. However, in this specific set of
circumstances the first access of the LD.D instruction is re-issued incorrectly
using the data size of the second access (half-word). As such not all the
required data half-words are read from memory.
TC1796, EES-BE, ES-BE, BE 86/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Under most circumstances this problem is not detectable, since the SRAM
memories used hold the previous values read with the data merged from the
store operation. However, if another bus master accesses the Data Scratchpad
RAM within this sequence, but before the LD.D is re-issued, the SRAM memory
outputs no longer default to the required data and the data returned by the LD.D
instruction is incorrect.
Example 1:

a12 = 0xd0001020
a13 = 0x00180012
...
ST.Q [a12/a13+c]0, d14
LD.D e10, [a12/a13+c]2
...

Example 2:
a12 = 0xd0001020
a13 = 0x00180012
...
ST.Q [a12/a13+c]0, d14
LD.W d2, [a4]; Previous ST.Q -> Store Buf
LD.D e10, [a12/a13+c]2 ; ST.Q still in Store Buf
...

Workaround
Wherever possible, double-word load instructions using circular addressing
mode should be constrained such that their effective address (Base+Index) is
word aligned.
Where this is not possible, and where it cannot be guaranteed that the CPU
store buffer will not contain an outstanding store operation which could conflict
with the LD.D instruction as described previously, the LD.D instruction must be
preceded by a NOP.

...
ST.Q [a12/a13+c]0, d14
NOP
LD.D e10, [a12/a13+c]2
TC1796, EES-BE, ES-BE, BE 87/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
...

CPU_TC.105 User / Supervisor mode not staged correctly for Store In-
structions

Bus transactions initiated by TriCore load or store instructions have a number
of associated attributes such as address, data size etc. derived from the load or
store instruction itself. In addition, bus transactions also have an IO privilege
level status flag (User/Supervisor mode) derived from the PSW.IO bit field.
Unlike attributes derived from the instruction, the User/Supervisor mode status
of TriCore initiated bus transactions is not staged correctly in the TriCore
pipeline and is derived directly from the PSW.IO bit field.
This issue can only cause a problem in certain circumstances, specifically when
a store transaction is outstanding (e.g. held in the CPU store buffer) and the
PSW is modified to switch from Supervisor to User-0 or User-1 mode. In this
case, the outstanding store transaction, executed in Supervisor mode, may be
transferred to the bus in User mode (the bus systems do not discriminate
between User-0 and User-1 modes). Due to the blocking nature of load
transactions and the fact that User mode code cannot modify the PSW, neither
of these other situations can cause a problem.

Example
 ...
 st.w [aX], dX ; Store to Supervisor mode protected SFR
 mtcr #PSW, dY ; Modify PSW.IO to switch to User mode
 ...

Workaround
Any MTCR instruction targeting the PSW, which may change the PSW.IO bit
field, must be preceded by a DSYNC instruction, unless it can be guaranteed
that no store transaction is outstanding.
 ...
 st.w [aX], dX ; Store to Supervisor mode protected SFR
 dsync
TC1796, EES-BE, ES-BE, BE 88/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 mtcr #PSW, dY ; Modify PSW.IO to switch to User mode
 ...

CPU_TC.107 SYSCON.FCDSF may not be set after FCD Trap

Under certain conditions the SYSCON.FCDSF flag may not be set after an FCD
trap is entered. This situation may occur when the CSA (Context Save Area) list
is located in cacheable memory, or, dependent upon the state of the upper
context shadow registers, when the CSA list is located in LDRAM.
The SYSCON.FCDSF flag may be used by other trap handlers, typically those
for asynchronous traps, to determine if an FCD trap handler was in progress
when the another trap was taken.

Workaround
In the case where the CSA list is statically located in memory, asynchronous
trap handlers may detect that an FCD trap was in progress by comparing the
current values of FCX and LCX, thus achieving similar functionality to the
SYSCON.FCDSF flag.
In the case where the CSA list is dynamically managed, no reliable workaround
is possible.

CPU_TC.108 Incorrect Data Size for Circular Addressing mode instruc-
tions with wrap-around

In certain situations where a Load or Store instruction using circular addressing
mode encounters the circular buffer wrap-around condition, the first access to
the circular buffer may be performed using an incorrect data size, causing too
many or too few data bytes to be transferred. The circular buffer wrap-around
condition occurs when a load or store instruction using circular addressing
mode addresses a data item which spans the boundary of a circular buffer, such
that part of the data item is located at the top of the buffer, with the remainder
at the base. The problem may occur in one of two cases:
TC1796, EES-BE, ES-BE, BE 89/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Case 1
Where a store instruction using circular addressing mode encounters the
circular buffer wrap-around condition, and is preceded in the LS pipeline by a
multi-access load instruction, the first access of the store instruction using
circular addressing mode may incorrectly use the transfer data size from the
second part of the multi-access load instruction. A multi-access load instruction
occurs in one of the following circumstances:
• Unaligned access to LDRAM or cacheable address which spans a 128-bit

boundary.
• Unaligned access to a non-cacheable, non-LDRAM address.
• Circular addressing mode access which encounters the circular buffer wrap-

around condition.
Since half-word store instructions must be half-word aligned, and st.a
instructions must be word aligned, they cannot trigger the circular buffer wrap-
around condition. As such, this case only affects the following instructions using
circular addressing mode: st.w, st.d, st.da.

Example
 ...
 LDA a8, 0xD000000E ; Address of un-aligned load
 LDA a12, 0xD0000820 ; Circular Buffer Base
 LDA a13, 0x00180014 ; Circular Buffer Limit and Index
 ...
 ld.w d6, [a8] ; Un-aligned load, split 16+16
 add d4, d3, d2 ; Optional IP instruction
 st.d [a12/a13+c], d0/d1 ; Circular Buffer wrap, 32+32
 ...

In this example, the word load from address 0xD000000E is split into 2 half-
word accesses, since it spans a 128-bit boundary in LDRAM. The double-word
store encounters the circular buffer wrap condition and should be split into 2
word accesses, to the top and bottom of the circular buffer. However, due to the
bug, the first access takes the transfer data size from the second part of the un-
aligned load and only 16-bits of data are written. Note that the presence of an
optional IP instruction between the load and store transactions does not prevent
TC1796, EES-BE, ES-BE, BE 90/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
the problem, since the load and store transactions are back-to-back in the LS
pipeline.

Case 2
Case 2 is similar to case 1, and occurs where a load instruction using circular
addressing mode encounters the circular buffer wrap-around condition, and is
preceded in the LS pipeline by a multi-access load instruction. However, for
case 2 to be a problem it is necessary that the first access of the load instruction
encountering the circular buffer wrap-around condition (the access to the top of
the circular buffer) also encounters a conflict condition with the contents of the
CPU store buffer. Again, in this case the first access of the load instruction using
circular addressing mode may incorrectly use the transfer data size from the
second part of the multi-access load instruction. Since half-word load
instructions must be half-word aligned, and ld.a instructions must be word
aligned, they cannot trigger the circular buffer wrap-around condition. As such,
this case only affects the following instructions using circular addressing mode:
ld.w, ld.d, ld.da.
Note: In the current TriCore1 CPU implementation, load accesses are initiated

from the DEC pipeline stage whilst store accesses are initiated from the
following EXE pipeline stage. To avoid memory port contention problems
when a load follows a store instruction, the CPU contains a single store
buffer. In the case where a store instruction (in EXE) is immediately
followed by a load instruction (in DEC), the store is directed to the CPU
store buffer and the load operation overtakes the store. The store is then
committed to memory from the store buffer on the next store instruction or
non-memory access cycle. The store buffer is only used for store
accesses to ‘local’ memories - LDRAM or DCache. Store instructions to
bus-based memories are always executed immediately (in-order). A store
buffer conflict is detected when a load instruction is encountered which
targets an address for which at least part of the requested data is currently
held in the CPU store buffer. In this store buffer conflict scenario, the load
instruction is cancelled, the store committed to memory from the store
buffer and then the load re-started. In systems with an enabled MMU and
where either the store buffer or load instruction targets an address
undergoing PTE-based translation, the conflict detection is just performed
on address bits (9:0), since higher order bits may be modified by
TC1796, EES-BE, ES-BE, BE 91/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
translation and a conflict cannot be ruled out. In other systems (no MMU,
MMU disabled), conflict detection is performed on the complete address.

Example
 ...
 LDA a8, 0xD000000E ; Address of un-aligned load
 LDA a12, 0xD0000820 ; Circular Buffer Base
 LDA a13, 0x00180014 ; Circular Buffer Limit and Index
 ...
 st.h [a12]0x14, d7 ; Store causing conflict
 ld.w d6, [a8] ; Un-aligned load, split 16+16
 add d4, d3, d2 ; Optional IP instruction
 ld.d [a12/a13+c], d0/d1 ; Circular Buffer wrap, 32+32
 ; conflict with st.h
 ...

In this example, the half-word store is to address 0xD0000834 and is
immediately followed by a load instruction, so is directed to the store buffer. The
word load from address 0xD000000E is split into 2 half-word accesses, since it
spans a 128-bit boundary in LDRAM. The double-word load encounters the
circular buffer wrap condition and should be split into 2 word accesses, to the
top and bottom of the circular buffer. In addition, the first circular buffer access
conflicts with the store to address 0xD0000834. Due to the bug, after the store
buffer is flushed, the first access takes the transfer data size from the second
part of the un-aligned load and only 16-bits of data are read. Note that the
presence of an optional IP instruction between the two load transactions does
not prevent the problem, since the load transactions are back-to-back in the LS
pipeline.

Workaround
Where it cannot be guaranteed that a word or double-word load or store
instruction using circular addressing mode will not encounter one of the corner
cases detailed above which may lead to incorrect behaviour, one NOP
instruction should be inserted prior to the load or store instruction using circular
addressing mode.
 ...
TC1796, EES-BE, ES-BE, BE 92/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 LDA a8, 0xD000000E ; Address of un-aligned load
 LDA a12, 0xD0000820 ; Circular Buffer Base
 LDA a13, 0x00180014 ; Circular Buffer Limit and Index
 ...
 ld.w d6, [a8] ; Un-aligned load, split 16+16
 add d4, d3, d2 ; Optional IP instruction
 nop ; Bug workaround
 st.d [a12/a13+c], d0/d1 ; Circular Buffer wrap, 32+32
 ...

CPU_TC.109 Circular Addressing Load can overtake conflicting Store in
Store Buffer

In a specific set of circumstances, a load instruction using circular addressing
mode may overtake a conflicting store held in the TriCore1 CPU store buffer.
The problem occurs in the following situation:
• The CPU store buffer contains a byte store instruction, st.b, targeting the

base address + 0x1 of a circular buffer.
• A word load instruction, ld.w, is executed using circular addressing mode,

targetting the same circular buffer as the buffered byte store.
• This word load is only half-word aligned and encounters the circular buffer

wrap-around condition such that the second, wrapped, access of the load
instruction to the bottom of the circular buffer targets the same address as
the byte store held in the store buffer.

Additionally, one of the following further conditions must also be present for the
problem to occur:
• The circular buffer base address for the word load is double-word but not

quad-word (128-bit) aligned - i.e. the base address has bits (3:0) = 0x8 with
the conflicting byte store having address bits (3:0) = 0x9, OR,

• The circular buffer base address for the word load is quad-word (128-bit)
aligned and the circular buffer size is an odd number of words - i.e. the base
address has bits (3:0) = 0x0 with the conflicting byte store having address
bits (3:0) = 0x1.
TC1796, EES-BE, ES-BE, BE 93/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
In these very specific circumstances the conflict between the load instruction
and store buffer contents is not detected and the load instruction overtakes the
store, returning the data value prior to the store operation.
Note: In the current TriCore1 CPU implementation, load accesses are initiated

from the DEC pipeline stage whilst store accesses are initiated from the
following EXE pipeline stage. To avoid memory port contention problems
when a load follows a store instruction, the CPU contains a single store
buffer. In the case where a store instruction (in EXE) is immediately
followed by a load instruction (in DEC), the store is directed to the CPU
store buffer and the load operation overtakes the store. The store is then
committed to memory from the store buffer on the next store instruction or
non-memory access cycle. The store buffer is only used for store
accesses to ‘local’ memories - LDRAM or DCache. Store instructions to
bus-based memories are always executed immediately (in-order). A store
buffer conflict is detected when a load instruction is encountered which
targets an address for which at least part of the requested data is currently
held in the CPU store buffer. In this store buffer conflict scenario, the load
instruction is cancelled, the store committed to memory from the store
buffer and then the load re-started. In systems with an enabled MMU and
where either the store buffer or load instruction targets an address
undergoing PTE-based translation, the conflict detection is just performed
on address bits (9:0), since higher order bits may be modified by
translation and a conflict cannot be ruled out. In other systems (no MMU,
MMU disabled), conflict detection is performed on the complete address.

Example - Case 1
 ...
 LDA a12, 0xD0001008 ; Circular Buffer Base
 LDA a13, 0x00180016 ; Circular Buffer Limit and Index
 ...
 st.b [a12]0x1, d2 ; Store to byte offset 0x9
 ld.w d6, [a12/a13+c] ; Circular Buffer wrap, 16+16
 ...

In this example the circular buffer base address is double-word but not quad-
word aligned. The byte store to address 0xD0001009 is immediately followed
TC1796, EES-BE, ES-BE, BE 94/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
by a load operation and is placed in the CPU store buffer. The word load
instruction encounters the circular buffer wrap condition and is split into 2 half-
word accesses, to the top (0xD0001016) and bottom (0xD0001008) of the
circular buffer. The first load access completes correctly, but, due to the bug,
the second access overtakes the store operation and returns the previous half-
word from 0xD0001008.

Example - Case 2
 ...
 LDA a12, 0xD0001000 ; Circular Buffer Base
 LDA a13, 0x00140012 ; Circular Buffer Limit and Index
 ...
 st.b [a12]0x1, d2 ; Store to byte offset 0x1
 ld.w d6, [a12/a13+c] ; Circular Buffer wrap, 16+16
 ...

In this example the circular buffer base address is quad-word aligned but the
buffer size is an odd number of words (0x14 = 5 words). The byte store to
address 0xD0001001 is immediately followed by a load operation and is placed
in the CPU store buffer. The word load instruction encounters the circular buffer
wrap condition and is split into 2 half-word accesses, to the top (0xD0001012)
and bottom (0xD0001000) of the circular buffer. The first load access completes
correctly, but, due to the bug, the second access overtakes the store operation
and returns the previous half-word from 0xD0001000.

Workaround
For any circular buffer data structure, if byte store operations (st.b) are not used
targeting the circular buffer, or if the circular buffer has a quad-word aligned
base address and is an even number of words in depth, then this problem
cannot occur. If these restrictions and the other conditions required to trigger
the problem cannot be ruled out, then any load word instruction (ld.w) targeting
the buffer using circular addressing mode, and which may encounter the
circular buffer wrap condition, must be preceded by a single NOP instruction.
 ...
 LDA a12, 0xD0001000 ; Circular Buffer Base
 LDA a13, 0x00140012 ; Circular Buffer Limit and Index
TC1796, EES-BE, ES-BE, BE 95/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 ...
 st.b [a12]0x1, d2 ; Store to byte offset 0x1
 nop ; Workaround
 ld.w d6, [a12/a13+c] ; Circular Buffer wrap, 16+16
 ...

CPU_TC.112 Unreliable result for MFCR read of Program Counter (PC)

The TriCore1 CPU contains a Program Counter (PC) Core Special Function
Register (CSFR), which may be read either by a debugger or by usage of the
MFCR instruction from a running program. According to the TriCore
architecture manual, revision V1.3.8 and earlier, the PC holds the address of the
instruction that is currently running.
For TriCore1 implementations up to and including TriCore1.3, independent of
the method used to read the CSFR, the value returned for the PC is the address
of the next instruction available from the Fetch pipeline stage. In the case of
reading the PC from a debugger, with the TriCore1 CPU halted, then this is the
address of the next instruction that will be executed once the CPU is re-started
(excluding interrupt conditions) and is always correctly supplied. However,
when reading the PC from a running program using the MFCR instruction, the
address of the next instruction available from the Fetch pipeline stage is not
architecturally defined. Instead it is an implementation specific value dependent
on the successive instructions, code alignment, cache hit/miss conditions, code
branches or interrupts; and so while repeatable (excluding interrupt conditions)
is not easily determinable and made use of in general.

Workaround
Where the reliable determination of the current program counter address is
required by a running program, for instance where PC-relative addressing of
data is required, then one of the methods described in the section “PC-relative
Addressing” of the TriCore1 Architecture manual must be used. For instance,
in the case of dynamically loaded code, the appropriate way to load a code
address for use in PC-relative addressing is to use the JL (Jump and Link)
instruction. A jump and link to the next instruction is executed, placing the
address of that instruction into the return address (RA) register A[11]. Before
TC1796, EES-BE, ES-BE, BE 96/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
this is done though, it is necessary to copy the actual return address of the
current function to another register.
Note: From the TriCore1.3.1 implementation onwards, an MFCR read of the PC

CSFR will always return the address of the MFCR instruction itself.

CPU_TC.116 Unreliable result when loop counter register is read at start
of loop body

A problem exists which, under certain conditions, produces an unreliable result
when an address register, being used as a loop counter by a LOOP instruction,
is read at the start of the loop body. The problem is caused by a missing
forwarding path from the loop pipeline back to the Load-Store pipeline, which
exposes a secondary, slower, but functionally correct forwarding path but which
may cause setup timing violations where the loop counter register is read. As
such, the occurrence or not of incorrect behaviour is dependent upon a number
of factors such as the exact code sequence, device operating frequency, PLL
settings etc.
The nature of the “unreliable result” depends upon how the loop counter register
is used at the start of the loop body:
• If it is used as the target address for an indirect branch or call then the

program flow could be incorrect.
• If it is used as input to an ALU or similar operation the result could be

incorrect.
• If it is used as an address to access memory then the incorrect address

could be accessed or spurious parity error generated due to setup timing
violations to the memory.

The problem occurs when the loop counter register is read by one of the first
two Load-Store pipeline instructions executed after the LOOP instruction. For a
complete list of Load-Store pipeline instructions see “TriCore 1 Architecture,
Volume 2: Instruction Set V1.3 & V1.3.1, section 4: Summary Tables of LS and
IP Instructions”. There are 5 scenarios in which the problem could potentially
occur, described below as scenario 1 - 5. Scenarios 1 - 4 concern sequential
code execution and are covered by the same generic code sequence, scenario
5 concerns non-sequential execution and has a different code sequence.
TC1796, EES-BE, ES-BE, BE 97/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Generic code sequence for scenarios 1 - 4:
loop_target_:
 {IPinst1} ; Optional IP instruction
 LSinst1
 {IPinst2} ; Optional IP instruction
 LSinst2
 ...
 ...
 LOOP Ax, loop_target_; Loop instruction

In the following descriptions, Ax is used to denote the address register being
used as the loop counter register.

Scenario 1: LSinst1 reads Ax (loop register) as explicit operand
In this scenario, the first Load-Store pipeline instruction of a loop body reads Ax
as an explicit source operand. This scenario includes the usage of Ax as:
• Input operand to Address ALU operation (e.g. ADD.A, EQ.A, MOV.AA).
• Input operand to Address conditional branch (e.g. JNE.A).
• Input to effective address calculation for a memory load or store operation

(e.g. LD.W XX, [Ax], ST.W [Ax], XX, STLCX [Ax])
• Data operand for address store (e.g. ST.A [??], Ax)
• Address for an Indirect branch/call (e.g. JI Ax)
• Input operand to different loop instruction (e.g. LOOP Ax)
In this scenario, all potential matching code sequences may fail with the
possibility of incorrect data being read, or incorrect program flow (use of Ax as
address for indirect branch / call).

Scenario 2: LSinst2 reads Ax as explicit operand, LSinst1 neither reads
nor writes Ax
In this scenario, the second Load-Store pipeline instruction of a loop body reads
Ax as an explicit source operand. The first LS instruction neither reads nor
writes the loop counter (the case where LSinst1 reads the loop counter is
scenario1, the case where LSinst1 modifies the loop counter is scenario 3).
This scenario includes the same usage of Ax as per scenario 1 with one
exception: where the loop counter is used as the data operand for an address
register store (e.g. ST.{D}A [??], Ax) then no problem is present.
TC1796, EES-BE, ES-BE, BE 98/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Scenario 3: LSinst1 writes Ax (without reading Ax), LSinst2 reads Ax as
explicit operand
In this scenario the first Load-Store instruction of a loop body writes Ax as a
destination operand without reading Ax, and the second Load-Store instruction
reads Ax. In the majority of cases no problem is present since Ax is overwritten
by LSinst1 and the correct value used. However, a problem may still occur in
the following code sequence:
loop_target_:
 {IPinst1} ; Optional IP instruction
 LD.{D}A Ax, [??] ; Load Ax from memory
 {IPinst2} ; Optional IP instruction
 LD?? ??, [Ax] ; Load from memory with Ax as address
 ...
 ...
 LOOP Ax, loop_target_; Loop instruction

In this sequence LSinst1 is LD.A or LD.DA which loads Ax from memory and
LSinst2 uses Ax as part of its effective address generation for a load operation.
In TriCore1.3 such a sequence of load instruction incurs a single cycle stall to
allow the address register to be forwarded from the first load to the second.
However, the second load instruction is executed speculatively using the old
value of Ax before the dependency is detected and the instruction cancelled
and re-executed in the next cycle. As such, although the second load instruction
will ultimately be executed with the correct address value, the first, speculative
execution of this instruction using the loop counter value could lead to a setup
violation at the memory and the generation of a spurious parity error.

Scenario 4: LSinst1 or LSinst2 reads Ax as an implicit operand (Context
Operations)
In this scenario either of the first or second Load-Store pipeline instructions of
a loop body may read the loop counter as an implicit source operand - i.e. as
part of a context / CSA operation. The following failure conditions exist:
• CALL, CALLA, CALLI as LSinst1 or LSinst2 with A10 as loop register
• SVLCX, BISR as LSinst1 with A11 as loop register
• RET, RFE as LSinst1 or LSinst2 with A11 as loop register
TC1796, EES-BE, ES-BE, BE 99/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
However, the same behaviour applies to instructions with implicit operands as
those with explicit operands. For instance CALL with A10 as the loop register
will fail as LSinst1 or LSinst2, except in the case where the CALL is LSinst2 and
LSinst1 writes A10 without reading (Scenario3), in which case no problem is
present.

Scenario 5: Overlapped Loops
In this scenario the problem may be triggered if LSinst1 or LSinst2 (of the
scenario 1-4 generic sequence) is a LOOP instruction which uses a different
loop counter than the first loop (or is a LOOPU instruction) and the first Load-
Store instruction of the second loop reads the loop counter of the first loop. In
this case the first Load-Store instruction of the second loop could read an
incorrect value. For instance in the following code sequence, the LD.BU
instruction which is the target of the second loop could see an incorrect Ax
value:
loop_target2:
 LD.BU D0, [Ax] ; Instruction uses Ax

loop_target1:
 LSinst ; Neither reads nor writes Ax
 LOOP A?, loop_target2
 ...
 LOOP Ax, loop_target1

Note that this case only occurs for overlapped loops. Since 16-bit format loop
instructions may only have a backwards displacement, and 32-bit format loops
with a forwards displacement are never predicted taken (and therefore never
executed by the loop pipeline), only in the case where the second loop has a
backwards displacement (overlapped loop) could the problem be triggered.

Additional Information for all Scenarios
The problem code sequences for the above scenarios allow for the optional
presence of a single Integer Pipeline (IP) instruction before each Load-Store
Pipeline (LS) instruction. Since TriCore1.3 may execute an IP and LS
instruction in parallel, such IP instructions do not in general affect the problem
sequences. However, the presence of multiple IP instructions before one of the
TC1796, EES-BE, ES-BE, BE 100/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
LS instructions will affect the behaviour. For instance, if there are 2 IP
instructions before LSinst1, then LSinst1 will act as per LSinst2 in scenario 2
and LSinst2 will be unaffected by the problem. Similarly if there are 3 IP
instructions before LSinst1 then no problem will occur.
In a similar manner, if any of the instructions in question do not have single-
cycle execution then the problem behaviour may be removed.

Workaround
The cases where the loop counter register must be used within the loop body
are limited. If it is necessary to use the loop register within the loop then NOP
instructions must be inserted to ensure none of the problem code sequences
detailed in scenarios 1 - 5 are generated. For compiled code check the
appropriate compiler documentation for activation of the corresponding errata
workaround. Examples of NOP insertion for the 5 problem scenarios are as
follows. In all cases an optional IP instruction between LS instructions may be
present.

Workaround Scenario 1
For scenario 1, where the first Load-Store pipeline instruction of a loop body
reads Ax as an explicit source operand, two NOP instructions must be inserted
before LSinst1:
loop_target_:
 NOP
 NOP
 LSinst1 ; LSinst1 has Ax as explicit operand
 ...
 LOOP Ax, loop_target_

Workaround Scenario 2
For scenario 2, where the second Load-Store pipeline instruction of a loop body
reads Ax as an explicit source operand and the first LS instruction neither reads
nor writes Ax, a single NOP instruction must be inserted before LSinst2, either
before LSinst1 or between LSinst1 and LSinst2:
loop_target_:
 NOP
TC1796, EES-BE, ES-BE, BE 101/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 LSinst1 ; LSinst1 neither reads nor writes Ax
 LSinst2 ; LSinst2 has Ax as explicit operand
 ...
 LOOP Ax, loop_target_

Workaround Scenario 3
For the specific problem sequence of scenario 3, where the first LS instruction
of a loop body loads Ax from memory and the second LS instruction uses Ax as
part of its address calculation, a single NOP instruction must be inserted before
LSinst2. In this case the NOP should be inserted between LSinst1 and LSinst2
since this avoids any performance impact:
loop_target_:
 LD.{D}A Ax, [??] ; Load Ax from memory
 NOP
 LD?? ??, [Ax] ; Load from memory with Ax as address
 ...
 LOOP Ax, loop_target_

Workaround Scenario 4
For scenario 4, where either of the first or second LS instructions of a loop body
may read the loop counter as an implicit source operand, NOP instructions must
be inserted as per scenario 1 or 2, i.e. if the critical context operation is LSinst1,
two NOPs must be inserted before it, if it is LSinst2 a single NOP must be
inserted before it.

Workaround Scenario 5
For scenario 5, with overlapped loops, a single NOP instruction must be
inserted at the start of the second loop body to be executed:
loop_target2:
 NOP ; CPU_TC.116 workaround
 LD.BU D0, [Ax] ; Instruction uses Ax

loop_target1:
 LSinst ; Neither reads nor writes Ax
 LOOP A?, loop_target2
TC1796, EES-BE, ES-BE, BE 102/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
 ...
 LOOP Ax, loop_target1

DMA_TC.004 Reset of registers OCDSR and SUSPMR is connected to FPI re-
set

The reset of the debug related registers OCDSR and SUSPMR should be
connected to OCDS reset according to the specification. Instead of this, their
reset is connected to the normal FPI reset, i.e. these registers get reset with a
normal FPI reset.

Workaround
Re-initialize the (modified) OCDSR and SUSPMR register contents whenever a
FPI reset has been performed.

DMA_TC.005 Do not access MExPR, MExAENR, MExARR with RMW instruc-
tions

The DMA registers MExPR, MExAENR and MExARR are showing a misbehaviour
when being accessed with LDMST or ST.T instructions.

Workaround
Do not access these registers with RMW-instructions (Read/Modify/Write). Use
normal write instructions instead.

DMA_TC.007 CHSRmn.LXO bit is not reset by channel reset

The software can request a channel reset with register bit CHRSTR.CHmn. In
contrast to the specification the bit CHSRmn.LXO (pattern search result flag) is
not reset.

Workaround
Perform a dummy move with a known non-matching pattern to clear it.
TC1796, EES-BE, ES-BE, BE 103/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
DMA_TC.009 Transaction flagged as lost, but nevertheless executed

Specified behavior:
If a channel is still running and another channel trigger event occurs, the
transaction lost bit ERRSR.TRLx will be set and the channel trigger event is lost.
Problem description:
If the channel trigger event occurs between the last read and the last write of a
transaction the ERRSR.TRLx bit will be set correctly. But the next transaction
will be performed, instead of been discarded. This transaction starts with
TCOUNT=0 which is impossible under normal conditions. If CHCRx.RROAT=1
this could lead to an endless transaction.

Workaround
1. Monitor and avoid lost transactions (for instance bit ETRLmn of register EER

can be used to generate an interrupt if a lost transaction occurs).
2. Reset the channel in case of a lost transaction.

DMA_TC.010 Channel reset disturbed by pattern found event

There is a corner case where a software triggered channel reset request
collides with a concurrently running pattern found event. If both operations
occur at the same time, the channel will be reset as usual, but the pattern found
event will cause the destination address in DADR register to be
incremented/decremented once more.

Workaround
1. When using pattern matching always issue two channel reset operations.
2. The occurrence of this corner case can be detected by software (incorrect

DADR value). In this case a second channel reset request is needed.

DMA_TC.011 Pattern search for unaligned data fails on certain patterns

The DMA can be programmed to search for a pattern while doing a DMA
transfer. It can search also for pattern which are distributed across 2 separate
TC1796, EES-BE, ES-BE, BE 104/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
DMA moves, so called unaligned pattern. In this case the DMA stores the match
result of a move in the bit CHSRmn.LXO.
Example: search unaligned for byte 0x0D followed by byte 0x0A
first move found 0x0D => CHSRmn.LXO is set to '1'
second move found 0x0A => found & LXO='1' => pattern found
Problem description:
Once LXO is set it will be cleared with the next move, no matter if there is
another match or not. This causes pattern not to be found when the first match
occurs twice in the DMA data stream.
Example: search unaligned for byte 0x0D followed by byte 0x0A
first move found 0x0D => CHSRmn.LXO is set to '1'
second move found 0x0D => LXO cleared
third move found 0x0A => pattern NOT found !!

Workaround
Search only for the second half of the pattern. If a match occurs check by
software if it is preceded by the first half of the pattern.

DMA_TC.012 No wrap around interrupt generated

If the buffer size of a DMA channel is set to its maximum value (=32kbytes, bit
field ADRCRmn.CBLx = 0xF), then no address wrap around interrupts will be
generated for this channel.

Workaround
None.

DMI_TC.005 DSE Trap possible with no corresponding flag set in
DMI_STR

Under certain circumstances it is possible for a DSE trap to be correctly taken
by the CPU but no corresponding flag is set in the DMI Synchronous Trap flag
Register (DMI_STR). The problem occurs when an out-of-range access is made
TC1796, EES-BE, ES-BE, BE 105/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
to the Data ScratchPad RAM (DSPR), which would ordinarily set the
DMI_STR.LRESTF flag.
If an out-of-range access is made in cycle N, but cancelled, and followed by a
second out-of-range access in cycle N+1, the edge detection logic associated
with the DMI_STR register fails and no flag is set.

Workaround
If a DSE trap occurs with no associated flag set in the DMI_STR register,
software should treat this situation as if the DMI_STR.LRESTF flag was set.

DMI_TC.011 Simultaneous R/W-access to same DPRAM address leads to
time-out

The problem occurs in case of a simultaneous DMI write-transfer to and RPB
read-transfer from the same DPRAM address, within an address-window of
0x20. In this conjunction, the FPI-acknowledge of a following RPB-access to the
DPRAM is misleadingly suppressed and the RPB-access will run into a FPI-bus
time-out.
A simultaneous DMI read-transfer from and RPB write-transfer to the same
DPRAM address is not affected.

Workaround
1. Do not read data out of an address-window with the size of 0x20 via RPB

interface, while the CPU or any other master is writing data via DMI within
the same memory range

2. For debug purposes (e.g. via connected OCDS1 JTAG-debugger), the
reading of DPRAM contents should only be done via DMI interface

3. Do not poll any semaphores from the RPB interface side; in case of polling
is needed for semaphores within an address-window of a size 0x20, it
should be handled always via DMI interface
TC1796, EES-BE, ES-BE, BE 106/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
DMU_TC.013 Read-Modify-Write problem on the PLMB bus

The problem can occur if the following sequence occurs on the PLMB/DLMB
buses:
Problematic bus sequence: aborted RMW to DMU (DLMB) - RMW via LMI
(DLMB/PLMB)
Problem:
The second RMW will not be atomic (bus no locked anymore), as due to an LMI
misbehaviour the write part will be executed as a normal write.

Workaround
Don't use RMW transaction to DMU SRAM area. If the software is using
semaphores between PCP and Tricore the DMI memory should be used.

EBU_TC.018 WAIT not usable in demultiplexed asynchronous access

In demultiplexed asynchronous access (BUSCONx.AGEN=000B), the WAIT
signal can be configured as asynchronous input with BUSCONx.WAIT=01B.
However, the implementation is not correct and the signal does not get
synchronized properly.

Workaround
Do not use WAIT as asynchronous input. Use it as synchronous input instead
(BUSCONx.WAIT=10B).

FADC_TC.005 Equidistant multiple channel-timers

The description is an example for timer_1 and timer_2, but can also affect all
other combinations of timers.
Timer_1 and Timer_2 are running with different reload-values. Both timers
should start conversions with the requirement of equidistant timing.
Problem description:
TC1796, EES-BE, ES-BE, BE 107/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Timer_1 becomes zero and starts a conversion. Timer_2 becomes zero during
this conversion is running and sets the conversion-request-bit of channel_2. At
the end of the conversion for channel_1 this request initiates a start for
channel_2. But the Timer_2 is reloaded only when setting the request-bit for
channel_2 and is decremented during the conversion of channel_1.
The correct behavior would be a reload when the requested conversion (of
channel_2) is started.
Therefore the start of conversion for channel_2 is delayed by maximum one
conversion-time. After this delay it will be continued with equidistant conversion-
starts. Please refer to the following figure.

Figure 2 Timing concerning equidistant multiple timers

T im er_1 0

R = T im er loaded w ith R eload-va lue

R

0 = T im er becom es zero

R0D EC R 0 R D E C RD E C R

00 RRR 0 D E C RD EC RD EC RD EC R

0 RR 0 D E C RD E C RD EC R

Tim er_2

T im er_2

R

R

R

R00D EC R

D EC R

Start_chan1

S tart_chan2

B usy1

00

1.) In hardw are im plem ented feature

2.) S pec com form feature

S tart sh ifted

S tart sh ifted

progr. tim er rate progr. tim er ra te

prog. tim er ra te prog. tim er ra te

N ote: the program m ed tim er ra te is m uch longer than the convers ion tim e,
th is m eans that the fau lt is m uch sm alle r than in the p ic ture

convers ion tim e
TC1796, EES-BE, ES-BE, BE 108/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
Use one timer base in combination with neighboring trigger and selection by
software which result has to be taken into account.

FADC_TC.009 FADC Gain Calibration

The FADC results obtained using gain calibration might be less accurate than
results obtained without gain calibration. Only the specification for gradient error
without calibration can be achieved (if the gain calibration is not used).

Workaround
Do not use gain calibration.

FIRM_TC.001 Access to cache is enabled after power on reset

If the internal flash is enabled (FNA=1) the code cache is enabled after the
bootsequence is processed (PMI_CON0 = 0x0).
If the internal flash is disabled (FNA=0) the code cache is disabled after the
bootsequence is processed (PMI_CON0 = 0x2).
The code cache as default should be disabled in all reset configurations (spec.
value PMI_CON0 = 0x2, code cache bypassed).

Workaround
In FNA=1 case the user code might disable the cache by writing 0x2 to
PMI_CON0 register if this is required by the application.

FIRM_TC.005 Program While Erase can cause fails in the sector being
erased

Refer to FIRM_TC.H000 for dependency on the microcode version.
Per call of a `Program while Erase` (Erase Suspend Feature) the following
errors may be visible after the suspended erase is terminated in the erased
sector:
TC1796, EES-BE, ES-BE, BE 109/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
1. One page is not properly erased and a read of this page will read 1 on
several bits (ECC might indicate double bit or single bit errors, or this page
even might read fully 1).

2. One page is not properly erased and some weak 0 bits are generated in this
page.

The error condition of a not properly erased page cannot be detected with the
FLASH status bits.
The probability of occurrence of issue 1 or 2 is low.
The program result of the `program while erase` itself is not affected and will be
valid.

Workarounds
1. Re-erase a sector if the program while erase became necessary (until the

erase process was executed without any program while erase call).
2. Do not use Program while Erase.
3. Implement Flash Error Handling for DFlash EEPROM emulation as

suggested by the Application Hint in the Documentation Addendum1):
Generally apply content check to each page after programming it, preferably
even at hard margin 0 (FLASH_MARD.MARGIN0 = 01B). If the content differs
from write data or ECC double bit error occurs, invalidate this page and use
next wordline (see Documentation Addendum, chapter 7.2.8.3 Application
Hints Flash Error Handling, section “In case of EEPROM emulation using
DFlash …”).

FIRM_TC.006 Erase and Program Verify Feature

Any internal errors detectable by the FSI state machine during erase sector or
program page sequences will be indicated by activation of the FSR.VER bit
before busy status is deactivated. FSR.VER errors will appear typically if
operations are carried out violating device specs (exceeding endurance,
operating temperature, supply voltages).

1) Documentation Addendum, V2.0, April 2008, see Table 1/p.1 of this Errata Sheet
TC1796, EES-BE, ES-BE, BE 110/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
FSR.VER can be indicated in seldom cases in absence of functional or reliability
problems. Always consider that even if a VER would indicate a severe problem,
it is usually not reasonable to stop an application in the field, but to stop it only
in the case that functional consequences appear.

Recommendations
These recommendations are intended for optimization of functional safety
applying the current generation of the VER feature (optional to customer
application).
• Recommended action for erase-VER event in field / end of line erase:

a) Immediate clear status, to catch other successive events and distinguish
from prog-VER

b) Re-erase until VER disappears (max up to 3 times in sequence;
afterwards ignore), but take special care to fulfill operating conditions
(total sector endurance, voltage, frequency, temperature not exceeded).

c) Regardless from VER: Infineon recommends to apply, in case of `end of
line` flashing or firmware update, a tight-0 check by SBE counting (or
preferably a tight 0+1 check for the whole sector after sector is
programmed) to determine ECC off fail rate: if single bit error (SBE) count
is below 10 per 2 MB, the risk of an incorrigible double bit error (DBE)
throughout retention / further operating life is considered still negligible.

• Recommended action for prog-VER event in field / end of line programming:
a) Immediate clear status, to catch other successive events and distinguish

from erase-VER
b) Never reprogram the same page (disturb budget violation) without erase
c) If programming in end of line case, count VER occurrences for each

individual sector since last erase (in SRAM in volatile manner after each
power-up). Up to three VER events occurring in a sector are tolerable, but
take special care to fulfill operating conditions (total sector endurance,
voltage, frequency, temperature not exceeded).

d) Regardless from VER: Infineon recommends to apply in case of `end of
line` flashing or firmware update a tight 0+1 check (SBE event counting)
for the written page, or preferably a tight 0+1 check for the whole sector,
after sector is programmed: if single bit error (SBE) count is below 10 per
2 MB, the risk of an incorrigible double bit error (DBE) throughout
retention / further operating life is considered still negligible.
TC1796, EES-BE, ES-BE, BE 111/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
e) If the first program into a freshly erased sector shows prog-VER,
preferably reerase and reprogram the sector (reerase no more than once
in case of such prog-VER). Make sure not to program into sectors where
erase operation was aborted (a prog-VER will be indicated when
programming to an `aborted erase` sector left in overerase) and take
special care to fulfill operating conditions.

FLASH_TC.029 In-System flash operations fails

Parallel write/read accesses to the internal flash modules (Data Flash and
Program Flash) might lead to a not recoverable failure of In-System flash
operations.

In detail the following command sequence is forbidden on the pipelined LMB:
• write to Flash address 1
• read from Flash address 2
See Table 1 for critical command sequence cycles.
The following conditions might lead to the failure.

Case 1:
The programming or erasing of the internal Program- or Data Flash via CPU
might cause a problem if in parallel to the command sequence transfer code is
fetched out of the PFlash by the CPU.

In detail the scenarios below have to be considered:

Parallel code fetch and flash command
The problematic LMB sequence can occur when certain flash command
sequences are written (Dflash or Pflash) and code is fetched from Pflash
simultaneously.
Care has to be taken, that the critical command sequence cycles will not be
interrupted by an interrupt event.
Special trap handling is required as well.
TC1796, EES-BE, ES-BE, BE 112/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
During the programming/erasing of Dflash/PFlash it must be ensured that, no
code fetch from Pflash is generated during the program/erase sequence.
The following code is mandatory to be executed in the Scratch pad sram for the
critical command sequence cycles.

 FLASH_LoadPageDW:
 mfcr d14, ICR
 disable
 nop
 st.d [a4], d4/d5 this is the critical cycle
 movh.a a15,#0xf800
 ld.w d15,[a15]0x508
 nop
 nop
 nop
 jz.t d14, 8, _FLASH_LoadPageDW_exit
 enable
 _FLASH_LoadPageDW_exit:
 ret

FLASH_WriteCommand:
 mfcr d14, ICR
 disable
 nop
 st.b [a4], d4 this is the critical cycle
 movh.a a15,#0xf800
 ld.w d15,[a15]0x508
 nop
 nop
 nop
 jz.t d14, 8, _FLASH_WriteCommand_exit
 enable
 _FLASH_WriteCommand_exit:
 ret
TC1796, EES-BE, ES-BE, BE 113/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Trap handling
The trap vector table has to be located in the Scratch pad sram and the
following lines have to be located directly at the beginning of all Trap table
entries.

_entry: movh.a a15,#0xf800
 ld.w d15,[a15]0x508
 nop
 nop
 nop

Case 2:
The programming or erasing of Dflash/PFlash via FPI Masters [Cerberus, DMA,
PCP or MLI] might cause a problem, if the CPU is fetching code out of the
internal Flash in parallel to the program/erase sequence

Workaround
PCP/Cerberus/DMA/MLI should not perform command sequence to the Flash.
In particular, it means that low level driver which serve the Flash should be run
by the CPU and not the PCP.
TC1796, EES-BE, ES-BE, BE 114/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Command Sequences for Flash Control

Table 12 The critical command sequence cycles are marked in bold
and colored in red

Command
Sequence

No-

tes

1.Cycle 2.Cycle 3.Cycle 4.Cycle 5.Cycle 6.Cycle

1,
2

Addr Da-

ta

Addr Da-

ta

Addr Da-

ta

Addr Da-

ta

Addr Da-

ta

Addr Da-

ta

Reset to
Read

5554 F0

Enter Page
Mode*)

5554 5x

Load Page* 3 55F0 WD

Write
Page*)

4,
5

5554 AA AAA8 55 5554 A0 PA AA

Write UC
Page*)

5 5554 AA AAA8 55 5554 C0 UCPA AA

Erase
Sector*)

5 5554 AA AAA8 55 5554 80 5554 AA AAA8 55 SA 30

Erase Phys
Sector*)

5,
6

5554 AA AAA8 55 5554 80 5554 AA AAA8 55 SA 40

Erase UC
Block*)

5 5554 AA AAA8 55 5554 80 5554 AA AAA8 55 UCBA C0

Disable
Write
Protection

7 5554 AA AAA8 55 553C UL AAA8 PW AAA8 PW 5558 05

Disable
Read
Protection

7 5554 AA AAA8 55 553C 00 AAA8 PW AAA8 PW 5558 08

Resume
Protection

5554 5E

Clear
Status

5554 F5
TC1796, EES-BE, ES-BE, BE 115/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
FLASH_TC.036 DFLASH Margin Control Register MARD

The margin for the two banks of the Data Flash module (DFLASH) can only be
selected for the complete DFLASH, and not separately for each DFLASH bank.
Therefore, the correct description representing the actual behavior of bit
BNKSEL in register MARD is as follows:
• BNKSEL = 0B: The active read margin for both DFLASH banks is determined

by bit fields MARGIN0 and MARGIN1.
• BNKSEL = 1B: Both DFLASH banks are read with standard (default) margin

independently of bit fields MARGIN0 and MARGIN1.

Workaround
According to the above description,
• in order to allow reading from DFLASH bank 1 with high margin, bit BNKSEL

must be set to 0B.
• in order to read different DFLASH banks with different read margins

(standard/high), reconfiguration of register MARD is required in between.

MLI_TC.006 Receiver address is not wrapped around in downward direc-
tion

Overview:
• An MLI receiver performs accesses to an user defined address range, which

is represented as a wrap around buffer.
• "Optimized frames" are frames without address information. The built-in

address prediction defines the target address which is based on the
previous address delta.

• If a buffer boundary is exceeded, the address has to be wrapped around to
the opposite boundary, so that the accessed space is always within the
buffer.

• An MLI transmitter will stop generating optimized frames if a user performs
a wrap around access sequence in a transfer window.

Problem:
TC1796, EES-BE, ES-BE, BE 116/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Only if a non-MLI transmitter (for example, software implemented) sends an
optimized frame to a MLI receiver, but crossing the buffer boundaries, the MLI
receiver will:
• Wrap around if the top limit is exceeded (upward direction).
• Access an address out of the buffer if the bottom limit is exceeded

(downward direction).
The second behaviour is erroneous, as a wrap around should be performed.
Note: The hardware implemented MLI transmitter in the existing Infineon

devices will not use optimized frames if a user performs a wrap around
access sequence in a transfer window.

Workaround
A (software implemented) non-MLI transmitter should use non-optimized
frames when crossing buffer boundaries.

MLI_TC.007 Answer frames do not trigger NFR interrupt if RIER.NF-
RIE=10B and Move Engine enabled

If RIER.NFRIE=10B, a NFR interrupt is generated whenever a frame is
received but, if Move Engine is enabled (RCR.MOD=1B, "automatic mode"), the
NFR interrupt is suppressed for read/write/base frames. However, this interrupt
is actually also supressed for answer frames, which are not serviced by Move
Engine.

Workaround
To trigger NFR interrupts for read answer frames, having Move Engine enabled,
then:
• Set RIER.NFRIE=00B when no read is pending.
• Set RIER.NFRIE=01B when a read is pending. Any read/write/base/answer

frame will trigger the NFR interrupt. Then, by reading RCR.TF in the
interrupt handler, it can be detected whether the received frame was the
expected answer frame or not.
TC1796, EES-BE, ES-BE, BE 117/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MLI_TC.008 Move engines can not access address F01E0000H

DMA/MLI move engines are not able to access the address F01E0000H, which
represents the first byte of the small transfer window of pipe 0 in MLI0
(MLI0_SP0). If a DMA/MLI move engine access to this address is performed,
the move engine will be locked.

Workaround
• Use the large transfer window (MLI0_LP0) when performing DMA/MLI

accesses to pipe 0 in MLI0.
• Use a different bus master (TriCore, PCP) to access the small transfer

window.

MSC_TC.004 MSC_USR write access width

A 32bit store access to the USR register is working w/o problems, but 16/8bit
stores should only address the lower part of the register. All other stores are
leading to unexpected results.
Reason: If the upper halfword is written with a 16bit store, or the 2nd/3rd/4th
byte is written with a 8bit store access, all writable bits of the USR register (bit
4..0) will be reset to zero.

Workaround
For a store-access to register USR use only one of the following 3 access-types:
1. a 32bit access,
2. a 16bit access to the lower address-word,
3. a 8bit-access to the lowest address-byte.
All other store-access-versions will reset the bits MSC_USR(4..0) to zero.

MSC_TC.006 Upstream frame startbit not recognized

The MSC upstream-channel is able to receive multiple frames at the
asynchronous input-pin without any interframe idle-time required.
TC1796, EES-BE, ES-BE, BE 118/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Therefore the state machine of the upstream channel is sensing for an incoming
new startbit (high-low edge) in the last state of a frame. If there is no edge, the
state machine changes to idle state. If an edge is recognized, the state machine
will start receiving the next frame. Under certain timing conditions, the start-bit
of an upstream-frame which is send without any idle-time, directly after the
previous frame, will not be recognized and therefore this frame will not be
received correctly. In that case the startbit might be recognized erroneously
whithin the dataframe. The missbehaviour can occur if the high-low edge of the
start-bit is located close to the rising edge of the internal MSC module-clock and
is jittering around this clock-edge.

Uncritical transmission

Figure 3 Uncritical transmission

As the falling startbit edge is shifted to the left of the rising clock edge (Figure 3
left), there occurs a secure detection of the next start-bit edge in the last cycle
of the previous frame (here cycle n, Figure 3 right) independant from the
applied jitter to this edge.

A) Uncritical transmission:

2. startbit-edge1. startbit-edge

0 1 n

Jitter Jitter

Start of Frame 1 End of Frame 1 / Start of Frame 2

Edge-detection Edge-detection

SDI

fMSC

<IDLE>

0 1

0 1
Edge-detection

Stop-Bit Stop-Bit
TC1796, EES-BE, ES-BE, BE 119/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Critical transmission

Figure 4 Critical transmission

If the high-low edge of the start-bit in the first frame is just not detected by the
near clock-edge (Figure 4 - left) and the start-bit edge of the second frame is
jittering to cycle n-1 (Figure 4 - right, red coloured), then an erroneous
transmission will take place. In this case the state-machine switches to IDLE
after the last state n and wakes up on the next falling edge that may be a data-
bit recognized as a start-bit. If the start-bit of the second frame is jittering to
cycle n (Figure 4 - right, blue colored), then the state-machine will not switch to
IDLE but will start receiving the next frame correctly.

Workaround 1
Insert an additional interframe idle-time for example by inserting a third stop-bit
into the frame send by the transmit-unit. Then the state machine is forced to go
to IDLE-state and will be ready for the next frame. This is the most secure
workaround; no other conditions have to be regarded.

Workaround 2
Delay of the data stream relative to the downstream clock output
FCLPx/FCLNx.

B) Critical transmission:

Successful transmission

Erroneous transmission

1. startbit-edge

0 1

Jitter

Edge-detection

SDI

fMSC

2. startbit-edge

n-1

Jitter

No Edge-
detection

n

0 1
Edge-detection

Start of Frame 1 End of Frame 1 / Start of Frame 2

<IDLE> <IDLE>

Stop-Bit Stop-Bit
TC1796, EES-BE, ES-BE, BE 120/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The delay depends on the maximal skew in the data-stream. For this
workaround the downstream clock FCLPx/FCLNx can be measured as
reference and the data stream at the input of the upstream channel SDIx has to
be adjusted according to the setup- and hold-times of the input-pins SDIx.
Figure 5 shows the principle blockdiagram of the input synchronization stage
of the MSC module.

Figure 5 Delay adjustment relative to the module clock

The values for setup- and hold-times are listed in the following table. They were
taken out of the timing analysis tool of the microcontroller device and apply to
both, the rising and the falling edge.

FCLPx/FCLNx

SDIx

ts

th

Setup/Hold-Times for SDI relative to FCLPx/FCLNx (valid for both edges):

ts

th

Synchronization
-stage

Divider by 2

D

D

FCLPx/FCLNx

fMSCx

SDIx

MSC module

Data have to be stable here

MSC-compliant ASIC

Prescaler
TC1796, EES-BE, ES-BE, BE 121/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
This solution is only practicable, if the transmitter of the frame can be
synchronized to the downstream-clock pin FCLPx/FCLNx and if the frequency
of the frame transmitter is well lower than the downstream clock FCLPx/FCLNx.

Preconditions:
• An MSC-compliant ASIC is connected to the MSC module.
• FCLPx/FCLNx is activated permanently
• SDIx upstream baudrate is derived from the downstream clock output pins

FCLPx/FCLNx

MSC_TC.007 No interrupt generated for first bit out

When the downstream-channel starts the transfer of a data frame and the data
frame interrupt is configured by ICR.EDIE = 10B, then an interrupt will be
generated when the first data bit is shifted out.
This interrupt can be used to update the data register by software.
But the interrupt generation with the first shifted data bit only takes place if this
bit is part of the shift register low SRL (downstream channel configured by
DSC.NDBL not equal 0). If shift register low SRL is disabled for data transfer
(DSC.NDBL = 0) then no interrupt will be generated for the first transfered data
bit (being part of shift register high SRH).
If the downstream channel is configured for interrupt generation with the last
transfered data bit (ICR.EDIE = 01B) the interrupt is correctly generated.

Table 13 Setup and hold times
Input pin Output pin Setup-time ts Hold-time th
SDI0 FCLP0A 14 ns -4 ns
SDI0 FCLN0 14 ns -4ns
SDI0 FCLP0B 16 ns -5 ns
SDI1 FCLP1A 13 ns -3 ns
SDI1 FCLN1 13 ns -3 ns
SDI1 FCLP1B 15 ns -4 ns
TC1796, EES-BE, ES-BE, BE 122/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workarounds
• If the SRL part is not used for data transfer and an unused chip enable

output line ENx is available, then a dummy frame with at least one data bit
should be generated by SRL (DSC.NDBL = 00001B). For this workaround it
is sufficient to keep the ENx line selected for SRL data as internal signal (not
visible on output pins). Please note that this configuration introduces at least
one more data bit in the output stream before the chip enable signal
selected for SRH is activated.
As a result, the repetition rate in data repetition mode is slightly reduced. It
is recommended to disable the select bit insertion for the SRL dummy
frame.

• The interrupt generation with the last shifted data bit can be used instead, if
the data register is updated before a new data frame is started. In data
repetition mode the passive phase of the data frame can be extended to
ensure that the required timing is met.
In triggered mode the software can trigger the transfer after the update of
the data register has taken place.

• Always use at least the SRL part for data transmission.

MultiCAN_AI.040 Remote frame transmit acceptance filtering error

Correct behaviour:
Assume the MultiCAN message object receives a remote frame that leads to a
valid transmit request in the same message object (request of remote answer),
then the MultiCAN module prepares for an immediate answer of the remote
request. The answer message is arbitrated against the winner of transmit
acceptance filtering (without the remote answer) with a respect to the priority
class (MOARn.PRI).

Wrong behaviour:
Assume the MultiCAN message object receives a remote frame that leads to a
valid transmit request in the same message object (request of remote answer),
then the MultiCAN module prepares for an immediate answer of the remote
request. The answer message is arbitrated against the winner of transmit
TC1796, EES-BE, ES-BE, BE 123/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
acceptance filtering (without the remote answer) with a respect to the CAN
arbitration rules and not taking the PRI values into account.
If the remote answer is not sent out immediately, then it is subject to further
transmit acceptance filtering runs, which are performed correctly.

Workaround
Set MOFCRn.FRREN=1B and MOFGPRn.CUR to this message object to disable
the immediate remote answering.

MultiCAN_AI.041 Dealloc Last Obj

When the last message object is deallocated from a list, then a false list object
error can be indicated.

Workaround
• Ignore the list object error indication that occurs after the deallocation of the

last message object.
or
• Avoid deallocating the last message object of a list.

MultiCAN_AI.042 Clear MSGVAL during transmit acceptance filtering

Assume all CAN nodes are idle and no writes to MOCTRn of any other message
object are performed. When bit MOCTRn.MSGVAL of a message object with
valid transmit request is cleared by software, then MultiCAN may not start
transmitting even if there are other message objects with valid request pending
in the same list.

Workaround
• Do not clear MOCTRn.MSGVAL of any message object during CAN

operation. Use bits MOCTRn.RXEN, MOCTRn.TXEN0 instead to
disable/reenable reception and transmission of message objects.

or
TC1796, EES-BE, ES-BE, BE 124/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
• Take a dummy message object, that is not allocated to any CAN node.
Whenever a transmit request is cleared, set MOCTRm.TXRQ of the dummy
message object thereafter. This retriggers the transmit acceptance filtering
process.

MultiCAN_AI.043 Dealloc Previous Obj

Assume two message objects m and n (message object n = MOCTRm.PNEXT,
i.e. n is the successor of object m in the list) are allocated. If message m is
reallocated to another list or to another position while the transmit or receive
acceptance filtering run is performed on the list, then message object n may not
be taken into account during this acceptance filtering run. For the frame
reception message object n may not receive the message because n is not
taken into account for receive acceptance filtering. The message is then
received by the second priority message object (in case of any other
acceptance filtering match) or is lost when there is no other message object
configured for this identifier.For the frame transmission message object n may
not be selected for transmission, whereas the second highest priority message
object is selected instead (if any). If there is no other message object in the list
with valid transmit request, then no transmission is scheduled in this filtering
round. If in addition the CAN bus is idle, then no further transmit acceptance
filtering is issued unless another CAN node starts a transfer or one of the bits
MSGVAL, TXRQ, TXEN0, TXEN1 is set in the message object control register of
any message object.

Workaround
• After reallocating message object m, write the value one to one of the bits

MSGVAL, TXRQ, TXEN0, TXEN1 of the message object control register of any
message object in order to retrigger transmit acceptance filtering.

• For frame reception, make sure that there is another message object in the
list that can receive the message targeted to n in order to avoid data loss
(e.g. a message object with an acceptance mask=0D and PRI=3D as last
object of the list).
TC1796, EES-BE, ES-BE, BE 125/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MultiCAN_AI.044 RxFIFO Base SDT

If a receive FIFO base object is located in that part of the list, that is used for the
FIFO storage container (defined by the top and bottom pointer of this base
object) and bit SDT is set in the base object (CUR pointer points to the base
object), then MSGVAL of the base object is cleared after storage of a received
frame in the base object without taking the setting of MOFGPRn.SEL into
account.

Workaround
Take the FIFO base object out of the list segment of the FIFO slave objects,
when using Single Data Transfer.

MultiCAN_AI.045 OVIE Unexpected Interrupt

When a gateway source object or a receive FIFO base object with
MOFCRn.OVIE set transmits a CAN frame, then after the transmission an
unexpected interrupt is generated on the interrupt line as given by
MOIPRm.RXINP of the message object referenced by m=MOFGPRn.CUR.

Workaround
Do not transmit any CAN message by receive FIFO base objects or gateway
source objects with bit MOFCRn.OVIE set.

MultiCAN_AI.046 Transmit FIFO base Object position

If a message object n is configured as transmit FIFO base object and is located
in the list segment that is used for the FIFO storage container (defined by
MOFGPRn.BOT and MOFGPRn.TOP) but not at the list position given by
MOFGPRn.BOT, then the MultiCAN uses incorrect pointer values for this
transmit FIFO.
TC1796, EES-BE, ES-BE, BE 126/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
The transmit FIFO works properly when the transmit FIFO base object is either
at the bottom position within the list segment of the FIFO (MOFGPRn.BOT=n) or
outside of the list segment as described above.

MultiCAN_TC.023 Disturbed transmit filtering

Under certain circumstances, the MultiCAN module does not transmit
messages in the correct order as given by the transmit acceptance filtering
rules. The problem does not occur if only one transmit priority is used
throughout the whole CAN module.

Specified behaviour
If two messages with different PRI value are pending for transmission, the one
with the lower PRI value has higher transmit priority and thus is transmitted first.

Real behaviour
If there are message objects with valid transmit requests (TXRQ, TXEN0,
TXEN1 and MSGVAL set in MOCTR register) but with different values for bitfield
MOAR.PRI, then the transmit order within each priority class, as given by the
transmit acceptance filtering rules, is not taken into account.
Messages within a priotity class are transmitted in a disturbed order, although
they should be transmitted by list order (priority class PRI = 1 and 3) or by CAN
identifier (priority class PRI = 2).
It can also happen that messages with higher MOAR.PRI value are transmitted
before messages with lower MOAR.PRI value, although the latter have higher
transmit priority and should be transmitted first.
The problem occurs even if the messages with different PRI values belong to
different CAN nodes.

Workaround
Use only one PRI value. Throughout the module only one PRI value should be
used for all message objects which are used for transmission. Then the problem
does not occur.
TC1796, EES-BE, ES-BE, BE 127/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
The PRI value of message objects which are only used for frame reception is
not relevant. It is still possible to use a lower PRI value for dedicated urgent
messages. If the application can tolerate that, there will be the chance to
transmit one message with out of order priority after the transmission of the
urgent message.
TTCAN operation: Throughout the module only one PRI value should be used
for all message objects which are used for transmission, except for the TTCAN
node, where PRI = 0 must be used. Set bit MOFCR.STT = 0 in all message
objects. Avoid invalidation of transmit requests of message objects during their
transmission. The PRI value of message objects which are only used for frame
reception is not relevant. Anyway, a violation of transmit acceptance filtering
can only occur for the first message to be transmitted on any CAN node after a
TTCAN message (PRI = 0) has been designated for transmission on the
TTCAN node (indicated by MOCTR.RTSEL in the message object).

MultiCAN_TC.024 Power-on recovery

When Bit NCR.INIT is cleared by software (cannot be cleared by hardware in
MultiCAN), MultiCAN is requested to take part in CAN traffic. Before a CAN
node is allowed to take part in CAN traffic, the CAN protocol requires the CAN
node to monitor 11 consecutive recessive bits. In the MultiCAN implementation
a dedicated state called “POWERON” is used to cover this waiting time.
After this waiting time has completely elapsed, the MultiCAN node leaves the
POWERON state and is capable of normal CAN operations (including listen
mode).
The POWERON state can be reentered only by a module reset or by setting bit
NCR.INIT.
In the POWERON state the MultiCAN node uses a counter to count the number
of consecutive samples of the receive input line. The counter is reset each time
a 0 (dominant level) is found at the sample point of a bit time, and it is
incremented by one each time a 1 (recessive level) is found at the sample time.
While bit NCR.INIT is set, the counter is forced to 0 and the MultiCAN node
cannot leave POWERON state.
TC1796, EES-BE, ES-BE, BE 128/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
In the POWERON state, hard synchronization of bit timing is enabled. This
means that the internal bit timing is restarted with a received dominant edge. As
a result, the bit timings of the CAN bus participants are synchronized.

Correct behaviour
When the MultiCAN node is in the POWERON state, it permanently sends a
recessive level at its transmit output.

Erroneous behaviour
An error occurs if the following conditions are all met:
1. MultiCAN is in the POWERON state.
2. MultiCAN is requested to transmit a message (i.e. the transfer conditions in

the MultiCAN specifications are fulfilled).
3. MultiCAN has monitored 10 consecutive recessive bits.
4. MultiCAN monitors a dominant value at the sample point of the eleventh bit.
(if one of these conditions is not met, then the problem does not occur).
Then MultiCAN sends a single dominant bit after it has reached the end of the
eleventh bit. Condition 4 can appear if another CAN bus participant starts to
send a message before MultiCAN has reached the sample point of its eleventh
bit of POWERON. In this case the single dominant bit erroneously transmitted
by the MultiCAN node appears during the first identifier bit of the current
transmitter. If the MSB of the identifier of the current transmitter is also
dominant, then no error occurs. If, however, the MSB of the identifier is
recessive, then the current transmitter loses bus arbitration and becomes
receiver (transmit line becomes recessive).
As the MultiCAN node stays in the POWERON state (because it has not seen
11 consecutive recessive bits), the MultiCAN node does not act as a transmitter
to complete a started frame, but drives recessive levels at its transmit line. With
the 6th recessive bit following the MSB of the identifier, other CAN bus
participants detect a stuff error and transmit an error frame as a consequence.
The falling edge of the error frame leads to a resynchronization of the bit timing,
assuming that at least one CAN bus participant is error active.
Due to the fact that all CAN nodes detect the stuff bit error at the same bit
position, the error frame has an effective length of 6 dominant bit times, followed
TC1796, EES-BE, ES-BE, BE 129/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
by 8 recessive bit times of the error delimiter and another 3 recessive bit times
of interframe space.
Under normal operation conditions, a transmitter can send the SOF bit of a new
frame earliest after the 3rd recessive bit of interframe space. This means that
the MultiCAN nodes receives the eleven consecutive bits needed to leave
POWERON state. In this scenario, the POWERON state is left correctly and
normal CAN bus operation can start.
If, however, the baud rates of the MultiCAN node and the transmitter node are
not perfectly matched and the MultiCAN node runs slower than the transmitter
node, then the MultiCAN node could again detect the SOF bit of the transmitter
at the eleventh bit of its POWERON state. Error behaviour see above.

Workaround

Workaround A
The purpose of this workaround is to prevent the MultiCAN node from receiving
a dominant level while it is in the POWERON state.
Assume that bit NCR.INIT is set in the MultiCAN node, i.e. the MultiCAN node
is either in the POWERON state or in the BUSOFF state.
To enable CAN operation of the MultiCAN node, the following steps need to be
performed:
1. If Bit NSR.BOFF = 1, then wait until NSR.BOFF = 0 (i.e. a running bus off

recovery sequence is finished correctly).
2. Disconnect the MultiCAN node from the CAN bus and connect it to the

internal loop back bus by means of setting bit NPCR.LBM = 1. Please note
that register NPCR is write protected by bit NCR.CCE. Make sure that no
other active MultiCAN node is connected to the loop back bus, i.e. bit
NPCR.LBM = 0 in all other MultiCAN nodes with NCR.INIT = 0.

3. Clear bit NCR.INIT.
4. Configure a dummy message object to transmit a dummy (remote) message

on the loop back bus. As no other MultiCAN node is connected to the loop
back bus, a message sent on this bus will never be acknowledged and will
thus lead to an acknowledge error. This acknowledge error is indicated by
NSR.LEC = 011 and an alert interrupt, if enabled. The occurrence of an
acknowledge error implies that the MultiCAN node is no longer in the
TC1796, EES-BE, ES-BE, BE 130/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
POWERON state and the dummy message can be disabled. This method
does not need a counter and is purely event based.

5. Reconnect the MultiCAN node to the CAN bus pins by means of clearing bit
NPCR.LBM.

Please note that with step 5 an ongoing message on the CAN bus by another
transmitting node or of the MultiCAN node (due to a valid message object for
transmission) might be corrupted. This behaviour occurs only once and is self
reparing because the error condition is detected on the CAN bus and the
corrupted message will be sent again automatically.

Workaround B
The purpose of this workaround is to prevent clearing the INIT bit while
transmit requests are pending for the node.
1. Before clearing the INIT bit, the software has to check if there are any

transmit requests pending (bits TXRQ), store pending bits (in user RAM) and
clear the related pending bits TXRQs in the MultiCAN module.

2. Clear INIT bit.
3. EITHER:

a) Clear RXOK bit and wait for RXOK to be set after a correct frame on the
bus. Clear RXOK again and wait for the second correct frame on the bus,
OR

b) Wait until 350 bit times (more than twice the maximum length of a CAN
frame) have ellapsed.

4. Restore the previously saved transmit request bits.

MultiCAN_TC.025 RXUPD behavior

When a CAN frame is stored in a message object, either directly from the CAN
node or indirectly via receive FIFO or from a gateway source object, then bit
MOCTR.RXUPD is set in the message object before the storage process and is
automatically cleared after the storage process.
TC1796, EES-BE, ES-BE, BE 131/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Problem description
When a standard message object (MOFCR.MMC) receives a CAN frame from a
CAN node, then it processes its own RXUPD as described above (correct).
In addition to that, it also sets and clears bit RXUPD in the message object
referenced by pointer MOFGPR.CUR (wrong behavior).

Workaround
The “foreign” RXUPD pulse can be avoided by initializing MOFGPR.CUR with the
message number of the object itself instead of another object (which would be
message object 0 by default, because MOFGPR.CUR points to message object
0 after reset initialization of MultiCAN).

MultiCAN_TC.026 MultiCAN Timestamp Function

The timestamp functionality does not work correctly.

Workaround
Do not use timestamp.

MultiCAN_TC.027 MultiCAN Tx Filter Data Remote

Message objects of priority class 2 (MOAR.PRI = 2) are transmitted in the order
as given by the CAN arbitration rules. This implies that for 2 message objects
which have the same CAN identifier, but different DIR bit, the one with DIR = 1
(send data frame) shall be transmitted before the message object with DIR = 0,
which sends a remote frame. The transmit filtering logic of the MultiCAN leads
to a reverse order, i.e the remote frame is transmitted first. Message objects
with different identifiers are handled correctly.

Workaround
None.
TC1796, EES-BE, ES-BE, BE 132/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MultiCAN_TC.028 SDT behavior

Correct behavior
Standard message objects:
MultiCAN clears bit MOCTR.MSGVAL after the successful
reception/transmission of a CAN frame if bit MOFCR.SDT is set.
Transmit Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the successful
reception/transmission of a CAN frame if bit MOFCR.SDT is set. After a
transmission, MultiCAN also looks at the respective transmit FIFO base object
and clears bit MSGVAL in the base object if bit SDT is set in the base object and
pointer MOFGPR.CUR points to MOFGPR.SEL (after the pointer update).
Gateway Destination/Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the storage of a CAN frame into the
object (gateway/FIFO action) or after the successful transmission of a CAN
frame if bit MOFCR.SDT is set. After a reception, MultiCAN also looks at the
respective FIFO base/Gateway source object and clears bit MSGVAL in the base
object if bit SDT is set in the base object and pointer MOFGPR.CUR points to
MOFGPR.SEL (after the pointer update).

Problem description
Standard message objects:
After the successful transmission/reception of a CAN frame, MultiCAN also
looks at message object given by MOFGPR.CUR. If bit SDT is set in the
referenced message object, then bit MSGVAL is cleared in the message object
CUR is pointing to.
Transmit FIFO slave object:
Same wrong behaviour as for standard message object. As for transmit FIFO
slave objects CUR always points to the base object, the whole transmit FIFO is
set invalid after the transmission of the first element instead after the base
object CUR pointer has reached the predefined SEL limit value.
Gateway Destination/Fifo slave object:
Correct operation of the SDT feature.
TC1796, EES-BE, ES-BE, BE 133/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
Standard message object:
Set pointer MOFGPR.CUR to the message number of the object itself.
Transmit FIFO:
Do not set bit MOFCR.SDT in the transmit FIFO base object. Then SDT works
correctly with the slaves, but the FIFO deactivation feature by CUR reaching a
predefined limit SEL is lost.

MultiCAN_TC.029 Tx FIFO overflow interrupt not generated

Specified behaviour
After the successful transmission of a Tx FIFO element, a Tx overflow interrupt
is generated if the FIFO base object fulfils these conditions:
• Bit MOFCR.OVIE=1, AND
• MOFGPR.CUR becomes equal to MOFGPR.SEL

Real behaviour
A Tx FIFO overflow interrupt will not be generated after the transmission of the
Tx FIFO base object.

Workaround
If Tx FIFO overflow interrupt needed, take the FIFO base object out of the
circular list of the Tx message objects. That is to say, just use the FIFO base
object for FIFO control, but not to store a Tx message.
TC1796, EES-BE, ES-BE, BE 134/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Figure 6 FIFO structure

MultiCAN_TC.030 Wrong transmit order when CAN error at start of CRC
transmission

The priority order defined by acceptance filtering, specified in the message
objects, define the sequential order in which these messages are sent on the
CAN bus. If an error occurs on the CAN bus, the transmissions are delayed due
to the destruction of the message on the bus, but the transmission order is kept.
However, if a CAN error occurs when starting to transmit the CRC field, the
arbitration order for the corresponding CAN node is disturbed, because the
faulty message is not retransmitted directly, but after the next transmission of
the CAN node.

base object:
MO s

List X

MO c

MO z

MO a

MO l

MO n

TxFiFo

TO
P

B
O

TTO
M

TC1796, EES-BE, ES-BE, BE 135/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Figure 7

Workaround
None.

MultiCAN_TC.031 List Object Error wrongly triggered

If the first list object in a list belonging to an active CAN node is deallocated from
that list position during transmit/receive acceptance filtering (happening during
message transfer on the bus), then a "list object" error may occur
(NSRx.LOE=1B), which will cause that effectively no acceptance filtering is
performed for this message by the affected CAN node.
As a result:
• for the affected CAN node, the CAN message during which the error occurs

will not be stored in a message object. This means that although the
message is acknowledged on the CAN bus, its content will be ignored.

• the message handling of an ongoing transmission is not disturbed, but the
transmission of the subsequent message will be delayed, because transmit
acceptance filtering has to be started again.

• message objects with pending transmit request might not be transmitted at
all due to failed transmit acceptance filtering.

Workaround
EITHER:
• Avoid deallocation of the first element on active CAN nodes. Dynamic

reallocations on message objects behind the first element are allowed, OR
• Avoid list operations on a running node. Only perform list operations, if CAN

node is not in use (e.g. when NCRx.INIT=1B)

crc
field

error

CAN
bus
TC1796, EES-BE, ES-BE, BE 136/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MultiCAN_TC.032 MSGVAL wrongly cleared in SDT mode

When Single Data Transfer Mode is enabled (MOFCRn.SDT=1B), the bit
MOCTRn.MSGVAL is cleared after the reception of a CAN frame, no matter if it
is a data frame or a remote frame.
In case of a remote frame reception and with MOFCR.FRREN = 0B, the answer
to the remote frame (data frame) is transmitted despite clearing of
MOCTRn.MSGVAL (incorrect behaviour). If, however, the answer (data frame)
does not win transmit acceptance filtering or fails on the CAN bus, then no
further transmission attempt is made due to cleared MSGVAL (correct
behaviour).

Workaround
• To avoid a single trial of a remote answer in this case, set MOFCR.FRREN =

1B and MOFGPR.CUR = this object.

MultiCAN_TC.035 Different bit timing modes

Bit timing modes (NFCRx.CFMOD=10B) do not conform to the specification.
When the modes 001B-100B are set in register NFCRx.CFSEL, the actual
configured mode and behaviour is different than expected.
TC1796, EES-BE, ES-BE, BE 137/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
None.

Table 14
Bit timing mode
(NFCR.CFSEL)
according to
spec

Value to be written
to NFCR.CFSEL
instead

Measurement

001B Mode is missing (not
implemented) in
MultiCAN

Whenever a recessive edge
(transition from 0 to 1) is monitored
on the receive input the time
(measured in clock cycles)
between this edge and the most
recent dominant edge is stored in
CFC.

010B 011B Whenever a dominant edge is
received as a result of a
transmitted dominant edge the
time (clock cycles) between both
edges is stored in CFC.

011B 100B Whenever a recessive edge is
received as a result of a
transmitted recessive edge the
time (clock cycles) between both
edges is stored in CFC.

100B 001B Whenever a dominant edge that
qualifies for synchronization is
monitored on the receive input the
time (measured in clock cycles)
between this edge and the most
recent sample point is stored in
CFC.
TC1796, EES-BE, ES-BE, BE 138/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
MultiCAN_TC.036 Wrong message may be sent during reference mes-
sage trigger in a gap

The TTCAN controller is configured as timer master, gap mode has been
selected and no message is transferred (reception or transmission) after the
transmit enable window in the last time window. With the end of the transmit
enable window, the TTCAN logic starts waiting for a reference message trigger
to send a reference message. At the beginning of each time window, the
TTCAN logic evaluates the scheduler entries for the following time window and
prepares the setup of the corresponding message for the next tranfer window.
If the reference trigger becomes active after the end of the transmit enable
window, but still during the setup phase, the prepared message will be sent out
instead of the reference message. After this erroneously sent message, the
reference message will be sent out correctly. The error does not occur if the
reference trigger becomes active after the end of the setup time.

Figure 8

Workaround
Either:
• wait 100 system clocks (fsys) after transmit enable window, before setting

reference message trigger, OR

Reference
Msg.

TM1

Msg

Tx
wind.

Msg.
setup
TW1

: on Bus

TM2 TMn

Reference
Msg.

ref. trg. (error case)

ref. trg. (without
failure)

BCC n

BCC n+1

0

time window 1 time window n
(TW1)
TC1796, EES-BE, ES-BE, BE 139/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
• avoid configuring the last time window as free window. If due to TTCAN
system error, no message is transfered in a last time window, the described
error can occur again, OR

• avoid configuring an exclusive message transmission or an arbitration
window for the first time window of a basic cycle

MultiCAN_TC.037 Clear MSGVAL

Correct behaviour:
When MSGVAL is cleared for a message object in any list, then this should not
affect the other message objects in any way.
Message reception (wrong behaviour):
Assume that a received CAN message is about to be stored in a message
object A, which can be a standard message object, FIFO base, FIFO slave,
gateway source or gateway destination object.
If during of the storage action the user clears MOCTR.MSGVAL of message
object B in any list, then the MultiCAN module may wrongly interpret this
temporarily also as a clearing of MSGVAL of message object A. The result of this
is that the message is not stored in message object A and is lost. Also no status
update is performed on message object A (setting of NEWDAT, MSGLST, RXPND)
and no message object receive interrupt is generated. Clearing of
MOCTR.MSGVAL of message object B is performed correctly.
Message transmission (wrong behaviour):
Assume that MultiCAN is about to copy the message content of a message
object A into the internal transmit buffer of the CAN node for transmission.
If during of the copy action the user clears MOCTR.MSGVAL of message object
B in any list, then the MultiCAN module may wrongly interpret this also as a
clearing of MSGVAL of message object A. The result of this is that the copy
action for message A is not performed, bit NEWDAT is not cleared and no
transmission takes place (clearing MOCTR.MSGVAL of message object B is
performed correctly). In case of idle CAN bus and the user does not actively set
the transmit request of any message object, this may lead to not transmitting
any further message object, even if they have a valid transmit request set.
Single data transfer feature:
TC1796, EES-BE, ES-BE, BE 140/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
When the MultiCAN module clears MSGVAL as a result of a single data transfer
(MOFCR.SDT = 1 in the message object), then the problem does not occur. The
problem only occurs if MSGVAL of a message object is cleared via CPU.

Workaround
Do not clear MOCTR.MSGVAL of any message object during CAN operation.
Use bits MOCTR.RXEN, MOCTR.TXEN0 instead to disable/reenable reception
and transmission of message objects.

MultiCAN_TC.038 Cancel TXRQ

When the transmit request of a message object that has won transmit
acceptance filtering is cancelled (by clearing MSGVAL, TXRQ, TXEN0 or
TXEN1), the CAN bus is idle and no writes to MOCTR of any message object are
performed, then MultiCAN does not start the transmission even if there are
message objects with valid transmit request pending.

Workaround
To avoid that the CAN node ignores the transmission:
• take a dummy message object, that is not allocated to any CAN node.

Whenever a transmit request is cleared, set TXRQ of the dummy message
object thereafter. This retriggers the transmit acceptance filtering process.

or:
• whenever a transmit request is cleared, set one of the bits TXRQ, TXEN0 or

TXEN1, which is already set, again in the message object for which the
transmit request is cleared or in any other message object. This retriggers
the transmit acceptance filtering process.

MultiCAN_TC.039 Message status may be wrong in last time window of
basic cycle with gap

The TTCAN Controller is in basic cycle with gap and is configured as time
master. A message is transferred in the last time window of the basic cycle with
gap and the reference trigger becomes active during message transfer. For
TC1796, EES-BE, ES-BE, BE 141/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
message reception bit TTSR.RECF is not set erroneously. For message
transmission bit TTSR.TRAF is not set and the MSC of the corresponding
message object is incremented erroneously.

Workaround
• To avoid the occurrence of the reference trigger during the last message

transfer, wait until the end of frame of the message that is transferred in last
time window, before setting the reference message trigger in a basic cycle
with gap (cycle time polling, a counter or the message receive/transmit
interrupts may be used)

or:
• Configure the last time window of a basic cycle with gap as exclusive

receive window or arbitration window and do not use the TTSR.RECF and
TTSR.TRAF status bits for this time window

OCDS_TC.007 DBGSR writes fail when coincident with a debug event

When a CSFR write to the DBGSR occurs in the same cycle as a debug event,
the write data is lost and the DBGSR updates from the debug event
alone.CSFR writes can occur as the result of a MTCR instruction or an FPI write
transaction from an FPI master such as Cerberus.

Workaround
Writes to the DBGSR cannot be guaranteed to occur. Following a DBGSR write
the DBGSR should be read to ensure that the write was successful, and take
an appropriate action if it was not. The action of the simultaneous debug event
will have to be considered when determining whether to repeat the DBGSR
write, do nothing, or perform some other sequence.
Writes to the DBGSR are almost always to put the TriCore either into, or out of,
halt mode. Since the TriCore can not release itself from halt mode, and only
rarely puts itself into halt mode, DBGSR writes are usually made by Cerberus.
Example 1 The processor executes a MFCR instruction when a DBGSR write
from Cerberus occurs that attempts to put the core into halt mode. The core
register debug event occurs and CREVT.EVTA = 001B so the breakout signal
TC1796, EES-BE, ES-BE, BE 142/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
is pulsed. The write from Cerberus is unsuccessful and TriCore continues
executing. Implementing the workaround, Cerberus reads the DBGSR to check
that halt mode has been entered. Since this time it has not, the DBGSR write is
repeated as is the read. If the read now indicates that the second DBGSR write
was successful and TriCore is now in halt mode, the process driving Cerberus
may continue.
Example 2 The processor executes a DEBUG instruction when a DBGSR write
from Cerberus occurs that attempts to put the core into halt mode. The software
debug event occurs and SWEVT.EVTA = 010B so TriCore enters halt mode
and the breakout signal is pulsed. The write from Cerberus did not occur, but
the TriCore does enter halt mode. Cerberus reads DBGSR and continues since
the TriCore is now halted.
Example 3 The processor is halted, an external debug event occurs when a
DBGSR write from Cerberus occurs that attempts to release the core from halt
mode. The external debug event occurs and EXEVT.EVTA = 001B so the
breakout signal is pulsed. The write from Cerberus does not occur and TriCore
remains in halt mode. Cerberus reads DBGSR to determine if its write was
successful, it was not, so it repeats the write. This time the write was successful,
and TriCore is released from halt. Cerberus reads the DBGSR to confirm that
the second write succeeded and moves on.

OCDS_TC.008 Breakpoint interrupt posting fails for ICR modifying in-
structions

BAM debug events with breakpoint interrupt actions which occur on instructions
which modify ICR.CCPN or ICR.IE can fail to correctly post the interrupt. The
breakpoint interrupt is either taken or posted based on the ICR contents before
the instruction before the instruction rather than after the instruction, as required
for a BAM debug event. The breakpoint interrupt may be posted when it should
be taken or vice versa.
BAM breakpoint interrupts occurring on an MTCR, SYSCALL, RET, RFE,
RSLCX, LDLCX and LDUCX instructions may be affected.

Workaround
None.
TC1796, EES-BE, ES-BE, BE 143/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
OCDS_TC.009 Data access trigger events unreliable

Trigger events set on data accesses do not fire reliably. Whilst they may
sometimes successfully generate trigger events, they often will not.

Workaround
None.
Debug triggers should only be used to create trigger events on instruction
execution.

OCDS_TC.010 DBGSR.HALT[0] fails for separate resets

When TriCore’s main reset and debug reset are not asserted together
DBGSR.HALT[0] can fail to indicate whether the CPU is in halt mode or not.
This is because the halt mode can be entered or exited when a main reset
occurs, depending on the boot halt signal. However DBGSR is reset when
debug reset is asserted.
Example 1 TriCore is in halt mode and DBGSR.HALT[0] = ’1’. The main reset
signal is asserted, and boot halt is negated, so TriCore is released from halt
mode. However, because debug reset was not asserted DBGSR.HALT[0] = ’1’
incorrectly.
Example 2 TriCore is executing code (not in halt mode) and DBGSR.HALT[0]
= ’0’. The main reset signal is asserted, and boot halt is asserted, so TriCore
enters halt mode. However, because debug reset was not asserted
DBGSR.HALT[0] = ’0’ incorrectly.
Example 3 TriCore is in halt mode and DBGSR.HALT[0] = ’1’. The debug reset
signal is asserted, whilst the main reset is not. TriCore remains in halt mode,
however, DBGSR.HALT[0] = ’0’ incorrectly.

Workaround
None.
TC1796, EES-BE, ES-BE, BE 144/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
OCDS_TC.011 Context lost for multiple breakpoint traps

Context lost for multiple breakpoint trapsOn taking a debug trap TriCore saves
a fast context (PCX,PSW,A10,A11) at the location defined by the DCX register.
The DCX location is only able to store a single fast context.
When a debug event has occurred which causes a breakpoint trap to occur
TriCore executes the monitor code. If another debug event with a breakpoint
trap action occurs,a new fast context will be written to the location defined in the
DCX and the original fast context will be lost.

Workaround
There are two parts of this workaround. Both parts must be adhered to.
1. External debug events must not be setup to have breakpoint trap actions.
2. Do not allow non-external (trigger, software and core register) debug events
with breakpoint trap actions to occur within monitor code. So trigger events,
software debug events, with breakpoint trap actions should not be set on the
monitor code. So long as the debug events have non breakpoint actions they
may be set to occur in the monitor code.

OCDS_TC.012 Multiple debug events on one instruction can be unpre-
dictable

When more than one debug event is set to occur on a single instruction, the
debug event priorities should determine which debug event is actually
generated. However these priorities have not been implemented consistently.
Note: This only affects events from the trigger event unit and events from

DEBUG, MTCR and MFCR instructions. The behaviour of the external
debug event is not modified by this erratum.

Workaround
Trigger events must not be set to occur on DEBUG, MTCR and MFCR
instructions, or on instructions which already have a trigger event set on them.
TC1796, EES-BE, ES-BE, BE 145/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
OCDS_TC.013 FDR Suspend Mode not working for some peripherals

The FDR (Fractional Divider Register) Suspend Mode is not working for the
peripherals contained in the following table. The corresponding suspend
request bit is always zero and the debug suspend request will never be
received.

Workaround
None.

OCDS_TC.025 PC corruption when entering Halt mode after a MTCR to
DBGSR

In cases where the CPU is forced into HALT mode by a MTCR instruction to the
DBGSR register, there is a possibility of PC corruption just before HALT mode
is entered. This can happen for MTCR instructions injected via the CPS as well
as for user program MTCR instructions being fetched by the CPU. In both cases
the PC is potentially corrupted before entering HALT mode. Any subsequent
read of the PC during HALT will yield an erroneous value. Moreover, on exiting
HALT mode the CPU will resume execution from an erroneous location. .
The corruption occurs when the MTCR instruction is immediately followed by a
mis-predicted LS branch or loop instruction. The forcing of the CPU into HALT
takes priority over the branch resolution and the PC will erroneously be
assigned the mispredicted target address before going into HALT.
• Problem sequence 1:
• 1) CPS-injected MTCR instruction to DBGSR sets HALT Mode
• 2) LS-based branch/loop instruction

Table 15 Peripherals affected
Peripheral Affected bit (always zero)
ADC ADC0_FDR.SUSREQ
FADC FADC_FDR.SUSREQ
SSC SSCx_FDR.SUSREQ
RBCU RBCU_DBBOST.FPIOPS
TC1796, EES-BE, ES-BE, BE 146/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
• 3) LS-based branch/loop is mispredicted but resolution is overridden by
HALT.

• Problem sequence 2:
• 1) User code MTCR instruction to DBGSR sets HALT Mode
• 2) LS-based branch/loop instruction
• 3) LS-based branch/loop is mispredicted but resolution is overridden by

HALT.

Workaround
External agents should halt the CPU using the BRKIN pin instead of using CPS
injected writes to the CSFR register. Alternatively, the CPU can always be
halted by using the debug breakpoints. Any user software write to the DBGSR
CSFR should be followed by a dsync.

OCDS_TC.027 BAM breakpoints with associated halt action can poten-
tially corrupt the PC.

BAM breakpoints can be programmed to trigger a halt action. When such a
breakpoint is taken the CPU will go into HALT mode immediately after the
instruction is executed. This mechanism is broken in the case of conditional
jumps. When a BAM breakpoint with halt action is triggered on a conditional
jump, the PC for the next instruction will potentially be corrupted before the CPU
goes into HALT mode. On exiting HALT mode the CPU will see the corrupted
value of the PC and hence resume code execution from an erroneous location.
Reading the PC CSFR whilst in HALT mode will also yield a faulty value.

Workaround
In order to avoid PC corruption the user should avoid placing BAM breakpoints
with HALT action on random code which could contain conditional jumps.The
simplest thing to do is to avoid BAM breakpoints with HALT action altogether. A
combination of BBM breakpoints and other types of breakpoint actions can be
used to achieve the desired functionality.:
Workaround for single-stepping:
TC1796, EES-BE, ES-BE, BE 147/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
An ’intuitive’ way of implementing single-stepping mode is to place a halt-action
BAM breakpoint on the address range from 0x00000000 to 0xFFFFFFFF.
Every time the CPU is woken up via the CERBERUS it will execute the next
instruction and go back to HALT mode. Unfortunately this will trigger the bug
described by the current ERRATA.
The solution is to implement single-stepping using BBM breakpoints:
• 1) Create two debug trigger ranges:
• First range: 0x00000000 to current_instruction_pc (not included)
• Second range: current_instuction_pc (not included) to 0xFFFFFFFF
• 2) Associate the two debug ranges with BBM breakpoints.
• 3) Associate the BBM breakpoints with a HALT action.
• 4) Wake up the CPU via CERBERUS
• 5) CPU will execute the next instruction, update the PC and go to HALT

mode.
• 6) Start again (go back to 1)

OCDS_TC.028 Accesses to CSFR and GPR registers of running program
can corrupt loop exits.

Overview:
A hardware problem has been identified whereby FPI accesses to the
[0xF7E10000 : 0xF7E1FFFF] region will potentially corrupt the functionality of
the Tricore LOOP instruction. This is particularly relevant because the Tricore
CPU CSFR and GPR registers are mapped to that region. So any access to
those registers by an external agent will potentially cause the LOOP instruction
not to work. Note that this problem will not happen if the CPU was halted at the
time of the FPI access.

Typical bug behaviour:
The loop instruction should exit (fall through) when its loop count operand is
zero. The identified problem will typically cause the loop instruction to
underflow: instead of exiting when its loop count operand is zero, the loop
instruction will erroneously jump back to its target with a -1 (0xFFFFFFFF) loop
counter value, and then continue to iterate possibly ad infinitum. Note that the
TC1796, EES-BE, ES-BE, BE 148/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
offending FPI access will not cause the bug to happen immediately but only
when the loop instruction finally tries to exit.

Influencing factors:
The following factors influence the likelihood of the bug happening:
1) The bug will not happen if the LOOP instruction and its predecessor are both
entirely contained in the same aligned 8-byte word.
2) The bug is much less likely to happen if the CPU is running from program
cache or program scratchpad.
3) The problem will be more visible on later compiler versions which make a
more intensive use of the loop instruction.

Workaround:
The workaround consists in preventing all FPI agents from accessing the
[0xF7E10000 : 0xF7E1FFFF] region when the CPU is not halted.
This means that the CPU CSFR and GPR registers can't be accessed on-the-
fly whilst the CPU is running. This is particularly relevant for debug tool
providers who may be polling those registers as the application is running. Note
that accessing FPI addresses outside of the [0xF7E10000 : 0xF7E1FFFF]
region will not cause the problem to happen.

An Application Note for tool partners, describing an alternative, more complex
workaround for register access within the critical region by an external tool, is
available from Infineon.

PCP_TC.021 Channel program may not be disabled after an erroneous
COPY instruction

The PCP has a mechanism to ensure any FPI Error response to any FPI
instruction causing a channel EXIT, updates the PCP_ES register and also
disables this channel by clearing the bit R7.CEN when the channel’s context is
saved to the PCP PRAM. In addition there is a mechanism to ensure that any
outstanding FPI responses have completed before the next PCP channel is
allowed to start.
TC1796, EES-BE, ES-BE, BE 149/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
However, in the case of an erroneous COPY instruction, the possibility exists
that the channel with this erroneous COPY instruction may not be disabled and
also that a new channel may start and then made to exit due to the returning
FPI error response from the original COPY instruction.
The combination of events to allow this to occur is that the final access (i.e. the
final write) results in an Error response from the target FPI slave. In addition to
this, the FPI has to be heavily loaded and the PCP channel would need to be
about to EXIT. This is possible in two conditions:
1. The Destination field (R5) for the COPY points at either a non-writable or

non-valid FPI address and the total number of iterations is programmed at
exactly one.

2. The Destination field initially points at a valid FPI address, but as the
destination address is incremented through the iterations, it moves into a
non-writable or non-valid FPI address space. This must also correspond
with the COPY iteration count equaling its terminal count in the same cycle.

Effects
The correct functionality would be for the channel to be disabled following the
Error response and that if the channel was restarted, a PCP Disabled Channel
Request (DCR) event should occur. This would update the PCP_ES register and
generate an interrupt to the Tricore. In this case, as the CEN bit has not been
cleared, any request to restart this channel would not generate a DCR event
and would simply continue to execute.
For the situation where a new channel has already started when the FPI error
response is received this will cause this channel to be exited as if the error was
resulting from that channels instruction. This means this channel would not
execute any more instructions, become disabled and the PCP_ES register
would be updated with the new channel details.
This behaviour can affect the software debugging in very rare case.

Workaround
A workaround is to place an FPI read to a known good location (e.g. any PCP
PRAM address) as the final instruction in the channel program. If nested
interrupts are being used, then this read must be located immediately after the
TC1796, EES-BE, ES-BE, BE 150/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
COPY instruction. Besides, interrupts to this program must be disabled for the
duration of these 2 instructions, i.e. R7.IEN = 0B.

PCP_TC.023 JUMP sometimes takes an extra cycle

Following a taken JUMP, the main state machine may misleadingly take an
additional cycle of pause. This occurs if the already prefetched next or second
next instruction after the JUMP is one of the following instructions:
• LD.P
• ST.P
• DEBUG
• Any instruction with extension .PI
This does not cause any different program flow or incorrect result, it just adds
an extra dead cycle.

Workaround
None.

PCP_TC.024 BCOPY address alignment checks cause no interrupts

The PCP has defined alignment rules for the BCOPY instruction. If these are
violated then the program should undergo the “Error Exit” procedure. This
should be:
1. Exit the running program.
2. Disable that program for future use.
3. Update the PCP_ES register with the appropriate information.
4. Generate an interrupt to the TriCore interrupt domain.
However, the BCOPY alignment checks do not cause the interrupt to be
generated.
TC1796, EES-BE, ES-BE, BE 151/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
None. This is a debug issue as the alignment rules can never change, the cause
of this happening can only be software errors. When debugging software, the
PCP_ES should be checked at the end for any unexpected error conditions.

PCP_TC.025 PCP might lock due to external FPI access to PRAM

The problem might occur if the PCP posts a FPI write transaction (independent
of the destination) and then an atomic PRAM instruction (MSET.PI/MCLR.PI) is
executed when the previous FPI write is still waiting in the FPI bus. There is a
single cycle opportunity between both where a higher priority external FPI
master may attempt a read access to PRAM, which will cause a deadlock
situation where neither the read access nor the atomic PRAM instruction will
complete, locking the PCP.
The PCP will be locked until the SBCU time-out occurs, which will cancel the
external FPI read access. This time-out value is set in SBCU_CON.TOUT (FFFFH
fSYS cycles by default).

Workaround
To prevent this condition, it has to be ensured that the PCP FPI write buffer is
empty before a MSET.PI/MCLR.PI instruction. The workaround to be used
depends on the complexity of the code.
Note: The recommended FPI dummy read in the two first workarounds is only

required if there is no read in the code sequence itself.

Workaround 1
Set PCP_FTD.FPWC = 10B (register PCP_FTD1) address is F004 3F30H, field
FPWC is bits [6:5]), which prevents continued execution after FPI write
instructions (ST.F/ST.IF). Moreover, as COPY is not affected by previous

1) Register PCP_FTD was documented in the Target Specification, but is no longer
documented in the User’s Manual. Its symbolic name may therefore not be
supported by all versions of tools (compiler, debugger, etc.).
TC1796, EES-BE, ES-BE, BE 152/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
bitfield, a dummy FPI read should be placed between these instruction and
MSET/MCLR.

Workaround 2
Place a dummy FPI read between every instruction which posts FPI writes
(ST.F/ST.IF/ COPY/XCH.F/SET.F/CLR.F) and MSET.PI/MCLR.PI.
• Replace MSET.PI with:

CLR R7 0x5 (prevent nested interrupt)
NOP
LD.F R4, [R0], size=32

(dummy load, addr setup required)
MSET.PI

• Replace MCLR.PI with:
CLR R7 0x5 (prevent nested interrupt)
NOP
LD.F R4, [R0], size=32

(dummy load, addr setup required)
MCLR.PI

Workaround 3
Do not allow FPI reads to PCP memory space.

Workaround 4
Use the atomic FPI equivalent instructions SET.F/CLR.F instead of the atomic
PRAM instructions. However, these instructions only operate on single bits and
do not use masks.

Workaround 5
If MSET.PI/MCLR.PI are not required because of being atomic, replace them
with a sequence of instructions with the same purpose.
• MSET.PI with

OR.PI R3, 0x2
ST.PI R3, 0x2

• MCLR.PI with
TC1796, EES-BE, ES-BE, BE 153/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
AND.PI R3, 0x2
ST.PI R3, 0x2

PCP_TC.026 PRAM content might get corrupted

Once an atomic PRAM instruction (MSET.PI/MCLR.PI/XCH.PI) has entered the
pipeline, there is a single cycle opportunity where a nested interrupt is serviced
and may cause the problem. During the related context save/restore process, if
an external FPI burst write to PCP memory space is executed, it may happen
that the PRAM content might be corrupted.
The area of corruption is always one of the addresses that was about to be
written to by the FPI burst write. The incorrect data written to this address is
either R6 or R7 of the interrupted channel.

Workaround
The workaround to adopt depends on the complexity of the code.

Workaround 1
Avoid nested interruptions during atomic PRAM instructions by either:
• clearing R7.IEN around the atomic PRAM instructions, or
• clearing R7.IEN for any channels that contain these instructions, or
• setting PCP_FTD.DNI = 1B, in order to disable nested interrupts for all

channels (register PCP_FTD1) address is F004 3F30H, field DNI is bit [1]).

Workaround 2
Use the atomic FPI equivalent instructions instead of the atomic PRAM
instructions.
• Replace MSET.PI/MCLR.PI with SET.F/CLR.F. However, these instructions

only operate on single bits and do not use masks.
• Replace XCH.PI with:

1) Register PCP_FTD was documented in the Target Specification, but is no longer
documented in the User’s Manual. Its symbolic name may therefore not be
supported by all versions of tools (compiler, debugger, etc.).
TC1796, EES-BE, ES-BE, BE 154/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
LDL.IU R4, PRAM_UPPER_HALF_WORD
LDL,IL R4, PRAM_SEMAPHORE_ADDR
XCH.F R0, [R4], size=32

Workaround 3
Do not allow FPI burst write accesses to PCP memory space.

Workaround 4
If MSET.PI/MCLR.PI/XCH.PI are not required because of being atomic, replace
them with a sequence of instructions with the same purpose.
• MSET.PI with

OR.PI R3, 0x2
ST.PI R3, 0x2

• MCLR.PI with
AND.PI R3, 0x2
ST.PI R3, 0x2

• XCH.PI with
MOV R0, R1, cc_UC
LD.PI R1, 0x3
ST.PI R0, 0x3

PCP_TC.027 Longer delay when clearing R7.IEN before atomic PRAM in-
structions

User Manual states that, when clearing R7.IEN, a delay of one instruction
before the mask becomes effective is needed. However, two instructions (for
example, two NOPs) are required between the clearing instruction and an
atomic PRAM instruction (MSET.PI/MCLR.PI/XCH.PI).

PCP_TC.028 Pipelined transaction after FPI error may affect next channel
program

When PCP posts FPI write operations, the channel execution will continue and
the write will complete whenever FPI bus activity and the target slave allows. If
TC1796, EES-BE, ES-BE, BE 155/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
another FPI write or read is executed in the same channel before the first one
completes, the transaction is held in an internal buffer which has to wait for the
first completion.An error response to the first write causes an error exit of the
current channel program, but the subsequent FPI transaction held in the buffer
(read or write) is not cancelled and will go onto the bus.

Effect
If a new channel starts before this second transaction has completed, the new
channel can be affected by how the transaction eventually terminates. For
example, the buffered FPI transaction could generate an error and therefore
disable the wrong channel program or, if the buffered FPI transaction was a
read and the new channel also has attempted a new read transaction, the
wrong data may be used.

Conditions
A posted write that will error, delayed from accessing the FPI bus until a
subsequent FPI transaction is pipelined behind. This second transaction must
also take more before completing than the time required to exit, save context,
and restore new context, in case that the first transaction fails.

Workaround
Insert a dummy FPI read before exiting a channel to ensure a previous FPI write
is completed.
Or either:
• Allow only one posted FPI write (PCP_FTD.FPWC = 01B), or
• Do not allow any pending FPI write (PCP_FTD.FPWC = 10B).
Register PCP_FTD1) address is F004 3F30H, field FPWC is bits [6:5].

1) Register PCP_FTD was documented in the Target Specification, but is no longer
documented in the User’s Manual. Its symbolic name may therefore not be
supported by all versions of tools (compiler, debugger, etc.).
TC1796, EES-BE, ES-BE, BE 156/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
PCP_TC.030 Possible context save corruption in Small Context mode

The PCP can operate in three possible context modes: full, small and minimum.
These modes define which register pairs (R0/R1, R2/R3, R4/R5, R6/R7) are
restored/saved during context operations. The PCP also has a context save
optimization where only modified register pairs are saved (note that R6/R7 are
always saved).
If Small Context is used (PCP_CS.CS = 01B), this optimization can cause R6/R7
values to be written in the PRAM location for the R4/R5 register pair. This
occurs only when:
• both R2/R3 and R4/R5 are modified during normal operation, and
• neither R0 or R1 are modified.

Workaround
If Small Context mode is used, disable the context save optimization by setting
PCP_FTD.DCSO = 1B (register PCP_FTD1) address is F004 3F30H, field DCSO is
bit [2]).

PMI_TC.001 Deadlock possible during Instruction Cache Invalidation

Deadlock of the TriCore1 processor is possible under certain circumstances
when an instruction cache invalidation operation is performed. Instruction
cache invalidation is performed by setting the PMI_CON1.CCINV special
function register bit, then clearing this bit via software. Whilst
PMI_CON1.CCINV is active the instruction Tag memories are cleared and new
instruction fetches from the LMB are inhibited. Dependent upon the state of the
instruction fetch bus master state machine this may lead to system deadlock,
since it may not be possible to fetch the instruction to clear the
PMI_CON1.CCINV bit if this sequence is executed from LMB based memory.

1) Register PCP_FTD was documented in the Target Specification, but is no longer
documented in the User’s Manual. Its symbolic name may therefore not be
supported by all versions of tools (compiler, debugger, etc.).
TC1796, EES-BE, ES-BE, BE 157/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
The set and clear of the PMI_CON1.CCINV bit must be performed by code
executing from program scratchpad memory.

PMI_TC.002 Write Accesses to PMI Memories and SFRs not possible in
Idle Mode

Write accesses to memories and Special Function Registers (SFRs) within the
PMI module are not possible when the processor sub-system is in idle mode.
Both the Program Scratch-Pad RAM (SPRAM) and the PMI configuration
registers are affected by this behaviour. Read accesses are not affected.
When in idle mode, the processor sub-system is stopped and its clocks
removed in order to save power. Bus accesses to addresses within the
processor modules, by other bus masters such as the PCP, are normally still
possible. In this case the relevant modules of the processor sub-system are
brought out of idle mode temporarily to service the bus access.
Write transactions are treated as posted writes by the LMB-FPI (LFI) and LMB-
LMB (LMI) bridges. The write transaction completes on the originating bus
before being initiated on the destination bus. In the case of a write transaction
from one of the FPI masters to an address location mapped to the PMI, the
transaction is first posted through the LFI module to the DLMB before being
posted through the LMI module to the PMI. The problem occurs because the
PMI does not detect the start of an LMB access to one of its address locations,
rather it relies upon either the CPU or LFI module to notify it of a potential
access request in order to start its clocks. In the problem case the write
transaction is posted from the DLMB into the LMI module and the LFI returns to
idle mode before the write transaction is initiated on the PLMB, such that the
PMI is in idle mode when the transaction is present on the PLMB. In this case
the write transaction is ignored by the PMI and the bus transaction is not
acknowledged, leading to a bus error interrupt from the PBCU if such interrupts
are enabled.
TC1796, EES-BE, ES-BE, BE 158/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Workaround
In order to write to an address within the PMI module, any bus master other than
the CPU must ensure that the processor sub-system is removed from idle mode
for the duration of the write transaction.

PMU_TC.010 ECC wait state feature not functional

The ECC wait state feature is not functional.
The problem occurs under following conditions:
• ECC wait state feature enabled
• A double bit error occurs
For the Data Flash in a special internal data transfer mode (Data Flash block
transfers) this could lead to a bus hang.
For the Program Flash block transfers do not lead to a bus hang (no bus trap is
generated) and the wrong data will be delivered.

Workaround
1. Do not use ECC wait state feature for data and program flash (set

FCON.WSECPF and FCON.WSECDF to "0").
2. If this feature is required: use interrupt mechanism for double bit error

detection and do not enable bus error detection for flash accesses (to
prevent bus hangup for data flash).

SSC_AI.020 Writing SSOTC corrupts SSC read communication

Programming a value different from 0 to register SSOTC if SSC module operates
in Slave Mode corrupts the comunication data.

Workaround
Don’t program SSOTC different from 0 in Slave Mode.
TC1796, EES-BE, ES-BE, BE 159/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
SSC_AI.021 Error detection mechanism difference among implementa-
tion and documentation.

The SSC is able to detect four different error conditions. Receive Error and
Phase Error are detected in all modes, while Transmit Error and Baud Rate
Error apply to Slave Mode only. In case of a Transmit Error or Receive Error,
the respective error flags are set and the error interrupt requests will be
generated by activating the EIR line only if the corresponding error enable bits
have been set. In case of a Phase Error or Baud Rate Error, the respective error
flags are always set and the error interrupt requests will be generated by
activating the EIR line only if the corresponding error enable bit has been set.
The error interrupt handler may then check the error flags to determine the
cause of the error interrupt. The error flags are not reset automatically, but must
be cleared via register EFM after servicing. This allows servicing of some error
conditions via interrupt, while others may be polled by software. The error status
flags can be set and reset by software via the error flag modification register
EFM.
Note: The error interrupt handler must clear the associated (enabled) error

flag(s) to prevent repeated interrupt requests. The setting of an error flag
by software does not generate an interrupt request.
TC1796, EES-BE, ES-BE, BE 160/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Figure 9 SSC Error Interrupt Control

A Receive Error (Master or Slave Mode) is detected when a new data frame is
completely received, but the previous data was not read out of the receive
buffer register RB. If enabled via CON.REN, this condition sets the error flag
STAT.RE and activates the error interrupt request line EIR. The old data in the
receive buffer RB will be overwritten with the new value and is unretrievably lost.
A Phase Error (Master or Slave Mode) is detected when the incoming data at
pin MRST (Master Mode) or MTSR (Slave Mode), sampled with the same
frequency as the module clock, changes between one cycle before and two
cycles after the latching edge of the shift clock signal SCLK. This condition sets
the error status flag STAT.PE and, if enabled via CON.PEN, the error interrupt
request line EIR.

MCA05789_mod_ist

Error
Interrupt
EIR

≥1

EFM.SETTE

EFM.CLRTE

EFM.SETRE

EFM.CLRRE

EFM.SETPE

EFM.CLRPE

EFM.SETBE

EFM.CLRBE

CON.TEN &

STAT.TESet

Clear

Transmit Error

Receive Error

Phase Error

Baud Rate Error

Set

CON.REN &

STAT.RESet

Clear

CON.PEN &

STAT.PESet

Clear

Set

CON.BEN &

STAT.BESet

Clear

Set

Set
TC1796, EES-BE, ES-BE, BE 161/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
Note: When CON.PH = 1, the data output signal may be disturbed shortly when
the slave select input signal is changed after a serial transmission,
resulting in a phase error.

A Baud Rate Error (Slave Mode) is detected when the incoming clock signal
deviates from the programmed baud rate (shift clock) by more than 100%,
meaning it is either more than double or less than half the expected baud rate.
This condition sets the error status flag STAT.BE and, if enabled via CON.BEN,
the EIR line. Using this error detection capability requires that the slave’s shift
clock generator is programmed to the same baud rate as the master device.
This feature detects false additional pulses or missing pulses on the clock line
(within a certain frame).
Note: If this error condition occurs and bit CON.REN = 1, an automatic reset of

the SSC will be performed. This is done to re-initialize the SSC, if too few
or too many clock pulses have been detected.

Note: This error can occur after any transfer if the communication is stopped.
This is the case due to the fact that SSC module supports back-to-back
transfers for multiple transfers. In order to handle this the baud rate
detection logic expects after a finished transfer immediately a next clock
cycle for a new transfer.

If baud rate error is enabled and the transmit buffer of the slave SSC is loaded
with a new value for the next data frame while the current data frame is not yet
finished, the slave SSC expects continuation of the clock pulses for the next
data frame transmission immediately after finishing the current data frame.
Therefore, if the master (shift) clock is not continued, the slave SSC will detect
a baud rate error. Note that the master SSC does not necessarily send out a
continuous shift clock in the case that it’s transmit buffer is not yet filled with new
data or transmission delays occur.
A Transmit Error (Slave Mode) is detected when a transfer was initiated by the
master (shift clock becomes active), but the transmit buffer TB of the slave was
not updated since the last transfer. If enabled via CON.TEN, this condition sets
the error status flag STAT.TE and activates the EIR line. If a transfer starts
while the transmit buffer is not updated, the slave will shift out the ‘old’ contents
of the shift register, which is normally the data received during the last transfer.
This may lead to the corruption of the data on the transmit/receive line in half-
TC1796, EES-BE, ES-BE, BE 162/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
duplex mode (open-drain configuration) if this slave is not selected for
transmission. This mode requires that slaves not selected for transmission only
shift out ones; thus, their transmit buffers must be loaded with FFFFH prior to
any transfer.
Note: A slave with push/pull output drivers not selected for transmission will

normally have its output drivers switched off. However, to avoid possible
conflicts or misinterpretations, it is recommended to always load the
slave's transmit buffer prior to any transfer.

The cause of an error interrupt request (receive, phase, baud rate, transmit
error) can be identified by the error status flags in control register CON.
Note: In contrast to the EIR line, the error status flags STAT.TE, STAT.RE,

STAT.PE, and STAT.BE, are not reset automatically upon entry into the
error interrupt service routine, but must be cleared by software.

Workaround
None.

SSC_AI.022 Phase error detection switched off too early at the end of a
transmission

The phase error detection will be switched off too early at the end of a
transmission. If the phase error occurs at the last bit to be transmitted, the
phase error is lost.

Workaround
Don’t use the phase error detection.

SSC_AI.023 Clock phase control causes failing data transmission in
slave mode

If SSC_CON.PH = 1 and no leading delay is issued by the master, the data
output of the slave will be corrupted. The reason is that the chip select of the
TC1796, EES-BE, ES-BE, BE 163/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
master enables the data output of the slave. As long as the chip is inactive the
slave data output is also inactive.

Workaround
A leading delay should be used by the master.
A second possibility would be to initialize the first bit to be sent to the same
value as the content of PISEL.STIP.

SSC_AI.024 SLSO output gets stuck if a reconfig from slave to master
mode happens

The slave select output SLSO gets stuck if the SSC will be re-configured from
slave to master mode. The SLSO will not be deactivated and therefore not
correct for the 1st transmission in master mode. After this 1st transmission the
chip select will be deactivated and working correctly for the following
transmissions.

Workaround
Ignore the 1st data transmission of the SSC when changed from slave to master
mode.

SSC_AI.025 First shift clock period will be one PLL clock too short be-
cause not syncronized to baudrate

The first shift clock signal duration of the master is one PLL clock cycle shorter
than it should be after a new transmit request happens at the end of the
previous transmission. In this case the previous transmission had a trailing
delay and an inactive delay.

Workaround
Use at least one leading delay in order to avoid this problem.
TC1796, EES-BE, ES-BE, BE 164/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
SSC_AI.026 Master with highest baud rate set generates erroneous phase
error

If the SSC is in master mode, the highest baud rate is initialized and CON.PO =
1 and CON.PH = 0 there will be a phase error on the MRST line already on the
shift edge and not on the latching edge of the shift clock.
• Phase error already at shift edge

The master runs with baud rate zero. The internal clock is derived from the
rising and the falling edge. If the baud rate is different from zero there is a
gap between these pulses of these internal generated clocks.
However, if the baud rate is zero there is no gap which causes that the edge
detection is to slow for the "fast" changing input signal. This means that the
input data is already in the first delay stage of the phase detection when the
delayed shift clock reaches the condition for a phase error check. Therefore
the phase error signal appears.

• Phase error pulse at the end of transmission
The reason for this is the combination of point 1 and the fact that the end of
the transmission is reached. Thus the bit counter SSCBC reaches zero and
the phase error detection will be switched off.

Workaround
Don’t use a phase error in master mode if the baud rate register is programmed
to zero (SSCBR = 0) which means that only the fractional divider is used.
Or program the baud rate register to a value different from zero (SSCBR > 0)
when the phase error should be used in master mode.

SSC_TC.009 SSC_SSOTC update of shadow register

The beginning of the transmission (activation of SLS) is defined as a trigger for
a shadow register update. This is true for SSOC and most Bits of SSOTC, but
not necessarily for Bits 1 and 0 (Leading Delay), since the decision, whether
leading cycles have to be performed, has to be made before.
The current implementation does not take the actual SSCOTC values into
account (i.e. if trailing and/or inactive cycles have to be performed and would
allow a later update), but performs the update just before the earliest possible
TC1796, EES-BE, ES-BE, BE 165/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
occurrence of a leading cycle. This means the update of SSOTC(1:0) is done at
the end of the last shift cycle of the preceding transmission.

Workaround
If during a continuous transmission the value for SSOTC.LEAD has to be
changed, the update of SSOTC has to be done before the transmission is
completed (internal trigger for receive interrupt) in order to get valid timely for
the next transmission.

SSC_TC.010 SSC not suspended in granted mode

SSC does not switch off the shift clock in granted mode when suspended,
normal operation continues.

Workaround
Use immediate suspend instead (FDR.SM = 1).

SSC_TC.011 Unexpected phase error

If SSCCON.PH = 1 (Shift data is latched on the first shift clock edge) the data
input of master should change on the second shift clock edge only. Since the
slave select signals change always on the 1st edge and they can trigger a
change of the data output on the slave side, a data change is possible on the
1st clock edge.
As a result of this configuration the master would activate the slave at the same
time as it latches the expected data. Therefore the first data latched is might be
wrong.
To avoid latching of corrupt data, the usage of leading delay is recommended.
But even so a dummy phase error can be generated during leading, trailing and
inactive delay, since the check for a phase error is done with the internal shift
clock, which is running during leading and trailing delay even if not visible
outside the module.
TC1796, EES-BE, ES-BE, BE 166/207 Rel. 1.3, 2011-08-29

Errata Sheet

Functional Deviations
If external circuitry (pull devices) delay a data change in slave_out/master_in
after deactivation of the slave select line for n*(shift_clock_perid/2) then a
dummy phase error can also be generated during inactive delay, even if
SSCCON.PH = 0.

Workaround
Don't evaluate phase error flag SSCSTAT.PE. This is no restriction for standard
applications (the flag is implemented for test purpose).

SSC_TC.017 Slaveselect (SLSO) delays may be ignored

In master mode, if a transmission is started during the period between the
receive interrupt is detected and the STAT.BSY bit becomes disabled (that is to
say, the period while the former communication has not yet been completed),
all delays (leading, trailing and inactive) may be ignored for the next
transmission.

Workaround
Wait for the STAT.BSY bit to become disabled before starting next
transmission. There are two ways:
1. Implement in CPU or PCP a function to poll STAT.BSY.
2. Implement a timer to wait tSLSOT+tSLSOI and then poll STAT.BSY as in (1).

Overall polling time is significantly reduced, because BSY will not be
disabled before the mentioned time frame.
TC1796, EES-BE, ES-BE, BE 167/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
3 Deviations from Electrical- and Timing
Specification

ADC_AI.P001 Die temperature sensor (DTS) accuracy

The accuracy of the DTS deviates from the values specified in the Data Sheet.
The formulas available on the specification are as follows:
• For 10-bit: T [°C] = (ADC10 - 487) x 0.396 - 40
• For 12-bit: T [°C] = (ADC12 - 1948) x 0.099 - 40
The deviation using these formulas is:
• +/-12°C at TJ = 150°C
• +9/-17°C at TJ = 25°C
• +7/-19°C at TJ = -40°C
TC1796, EES-BE, ES-BE, BE 168/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
Figure 10 Current accuracy range

Workaround
To keep the accuracy within the specified margins of +/-10°C, the following
formula to calculate the die temperature is available if MSB of the byte at D000
0003H is 1B:
• For 10-bit:
T [°C] = (ADC10 x 4 - 3635 + OffsetCorr8 x 4) x (GainCorr8 x 0.0001 + 0.099) +
127
• For 12-bit:
T [°C] = (ADC12 - 3635 + OffsetCorr8 x 4) x (GainCorr8 x 0.0001 + 0.099) + 127
where:
• ADC1x - 10 bit or 12 bit unsigned ADC conversion result

-25

-20

-15

-10

-5

0

5

10

15

20

-50 0 50 100 150

Actual temperature (°C)

D
ev

ia
tio

n
of

in
di

ca
te

d
te

m
pe

ra
tu

re
(°

C)
TC1796, EES-BE, ES-BE, BE 169/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
• OffsetCorr8 - signed 8 bit correction factor, located at D000 000DH
• GainCorr8 - signed 8 bit correction factor, located at D000 000EH

If MSB of the byte at D000 0003H is 0B, the following formula may be used:
• For 10-bit:
T [°C] = (ADC10 x 4 - 3635 + OffsetCorr8 x 1) x (GainCorr8 x 0.0001 + 0.099) +
127
• For 12-bit:
T [°C] = (ADC12 - 3635 + OffsetCorr8 x 1) x (GainCorr8 x 0.0001 + 0.099) + 127
Note: The mentioned values are stored in the given SRAM addresses after

power-up until they are eventually overwritten by user’s code activity.

ESD_TC.P001 ESD violation

In the Data Sheet the ESD susceptibility according to Human Body Model
(HBM) is specified as:
Secure Voltage Range VHBM = 0 - 2000V

The real secure ESD voltage ranges of the part have been characterized to be:
Secure Voltage Range VHBM = 0 - 1000V
Secure Voltage Range VCDM = 0 - 500V (as specified in Data Sheet)
Secure Voltage Range VSDM = 0 - 500V

Care has to be taken that these voltage limits are not exceeded during
handling of the parts.

In detail the ESD hardness for the following critical pins has been investigated:
Critical Pins with weakest ESD hardness:
• VDDOSC3 (E26): most critical for HBM / CDM (outer ball)
• VDDAF (AC9): next critical for HBM / CDM (inner ball)
• VSSAF (AD9): next critical for CDM (inner ball)
• VDDMF (AE9): next critical for HBM / CDM
TC1796, EES-BE, ES-BE, BE 170/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
• VSSMF (AF9): next critical for HBM / CDM (outer ball)
=> None of ESD weakest pins are corner balls.

HBM application relevant I/O ESD tests (stressing all port & analog pins) are
passing 2kV
• all GNDs common
• all 3.3V supplies common
• all 1.5V pins left open
• all I/O Ports 0 - 10 stressed HBM
• all analog inputs AN0 - 43 stressed HBM
• not stressed EBU, OSC, VAREF/GNDs, all 1.5V supply pins

=> After soldering to PCB and encasement, ESD hardness will exceed 2kV

FADC_TC.P001 Offset Error during Overload Condition in Single-Ended
Mode

Problem Description
When using a FADC channel in single-ended mode, an overload condition at
the disabled input of the same channel increases the offset error. In case of a
system fault when the disabled FADC input (ENx = 0) gets an overload
condition, the offset error of the enabled input (ENx = 1) of the used channel
amplifier exceeds the specified value. The offset error of an adjacent channel
amplifier is not affected. When using a FADC channel in differential-mode the
offset error stays within the specified range.

Effects to the System
An overload condition can only occur in case of a system malfunction when the
input voltage of the FADC input pin exceeds the specified range. The effect of
an overload condition to the device life time is described in the Overload
Addendum ("TC1796 Pin Reliability in Overload"). In single-ended mode an
overload condition at the disabled FADC input causes an offset voltage to the
measured input signal at the enabled FADC input, which leads to an increased
TC1796, EES-BE, ES-BE, BE 171/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
offset error. The influence of the overload condition to the conversion result can
be very high. The measured typical additional offset values at nominal
conditions are shown in the table below. The values have to be added to the
specified offset error.

All currents flowing into the device are positive. All currents flowing out of the
device are negative. The values in the table are valid for gain = 1. For other gain
values the offset error has to be multiplied with the gain value.

Workaround
• There is no workaround which can be used in case of an overload condition.
• It is recommended to avoid overload condition at FADC inputs in single-

ended mode to prevent increased offset error factor.

FADC_TC.P002 FADC Offset Error and Temperature Drift

The FADC offset error without offset calibration is specified as +/- 60 mV. In
reality an offset error of up to +/- 90 mV can occur.

Table 16 Relation between Overload Current and additional Offset
Error for N channel

Overload current IOV
@ FAINxP [mA]

0.05 0.1 0.5 1 -0.05 -0.1 -0.5 -1

Additional offset error
EAOFF_N [LSB]

30 40 65 70 -4 -6 -12 -13

Table 17 Relation between Overload Current and additional Offset
Error for P channel

Overload current IOV
@ FAINxN [mA]

0.05 0.1 0.5 1 -0.05 -0.1 -0.5 -1

Additional offset error
EAOFF_P [LSB]

-30 -40 -65 -70 4 6 12 13
TC1796, EES-BE, ES-BE, BE 172/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
The specified offset temperature drift is specified as +/- 3 LSB. In reality an
offset temperature drift of up to +/- 6 LSB can occur.

Workaround
Regular offset calibration is recommended.

FIRM_TC.P001 Longer Flash erase time

Refer to FIRM_TC.H000 for dependency on the microcode version.
The Flash firmware-dependent maximum sector erase times are shown in the
following table. Sector erase time is proportional to Program or Data Flash
sector size, respectively (e.g. sector erase time of a 512 Kbyte Program Flash
sector is twice the time specified for a 256 Kbyte Program Flash sector) and
may increase beyond the given limits at lower CPU operating frequencies.
Erase time may be significantly shorter especially at nominal operating
frequencies at temperatures above room temperature (see typical values). A
minimum erase time budget per erase operation of 0.5 s must however be
tolerated regardless of size-proportional erase times derived from the table.

Maximum erase time at other CPU operating frequencies can be calculated
according to the following table:

Table 18 Minimum erase time for Flash sectors at 150 MHz
Flash & sector size Microcode version tERP / tERD (erase time)
Program Flash,
256 Kbyte

V27 5.25 s max. (4 s typ.)

Data Flash, 64 Kbyte V27 2.61 s max. (2 s typ.)

Table 19 Relative erase time increments
Frequency [MHz] Increment
150 0%
130 5%
TC1796, EES-BE, ES-BE, BE 173/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
Example: Maximum 256 Kbyte Program Flash Erase Time for V27 at 120 MHz
is 5.25 s * 110% = 5.78 s.

MLI_TC.P001 Signal time deviates from specification

The measured timing of the MLI inputs setup to RCLK falling edge is
t36min=4,8ns. This violates the Data Sheet value (t36min=4ns).

Workaround
none

MSC_TC.P001 Incorrect VOS limits for LVDS pads specified in Data Sheet

120 10%
80 15%
66 25%

Table 20 Parameters as per Data Sheet
Parameter Symbol Min.

Value
Max.
Value

Unit Note

Output offset
voltage

VOS 1075 1325 mV

Table 21 Actual Parameters
Parameter Symbol Min.

Value
Max.
Value

Unit Note

Output offset
voltage

VOS 1060 1340 mV

Table 19 Relative erase time increments (cont’d)
Frequency [MHz] Increment
TC1796, EES-BE, ES-BE, BE 174/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
New limits (starting with date codes of week 10/2011) are valid for whole
temperature and VDD range.
Change in VOS limits will not cause any impact to the LVDS communication,
because the remaining 3 specified parameters (VOH, VOL and VOD) for the LVDS
communication are not affected.

PLL_TC.P003 PLL jitter and supply ripple

Problem description
In case of increased supply noise/ripple at the Core Power Supply VDD the PLL
jitter increases and can exceed the actual specified range. The supply
noise/ripple causes noise on the PLL supply voltage which disturbs the PLL
VCO supply voltage. The PLL VCO supply voltage has a direct influence to the
VCO frequency. This noise causes a disturbance of the VCO frequency and
leads to an increased jitter.
The Core Power Supply blocking and the PCB power supply concept has a
significant influence to the PLL jitter because the on-chip PLL supply voltage is
connected to the core VDD. A high influence to the PLL jitter have also the
parasitic elements between microcontroller and PCB as they are typical given
by a socket. Using a socket with a high value of parasitic elements can increase
the jitter. Therefore it is strongly recommended NOT to use a socket in the
application.

Effects to the system
• Period jitter and short term jitter:
A supply noise in the higher frequency range caused by extensive EBU access
or by an external noise source results to an increased period jitter and an
increased short term jitter (accumulated jitter only for a low number of cycles).
But this noise has nearly no influence to the long term jitter (accumulated jitter
for a high number of cycles).
In a typical application the period jitter and short term jitter has to be considered
for EBU bus timing calculations like it is done for external memory access.
• Long term jitter:
TC1796, EES-BE, ES-BE, BE 175/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
A supply ripple in the lower frequency range caused by on-chip current
spikes/drops or by an external ripple source results to an increased long term
jitter (accumulated jitter with a high number of cycles). But this supply ripple has
nearly no influence to the period jitter and to the short term jitter.
The long term jitter has to be considered for communication interfaces like the
CAN. The allowed tolerance of CAN bus timing for one bit time is usually in the
one-digit percentage range up to about 20%. The allowed tolerance for the
maximum time between two CAN bus synchronization events (10 bit time) or
the longest time frame without synchronization (13 bit time) is typical in the
range of about 0,3%.
Example for 1 Mbit/s baudrate:
Assumed that the maximum allowed long time jitter demand is 0,2% then a
maximum long time jitter of 20ns for 10 bit time and 26ns for 13 bit time is
allowed (including oscillator tolerance, typ. ~ 150ppm)

PLL Jitter values and system preconditions
• System preconditions:
All preconditions have the goal to reduce the supply noise/ripple in the area of
the PLL to a minimum and all preconditions have to be regarded.
• The capacitive load at the External Bus Unit (EBU) is limited to CL = 20pF.
• The maximum peak-peak noise on the Core Supply Voltage (as near as

possible measured between VDD at pin E23 and VSS at pin D23 or adjacent
supply pairs) is limited to:
Vpp_noise = 45mV for a maximum long term jitter of tjLT_45= 15ns
This condition can be achieved by appropriate blocking of the Core Supply
Voltage as near as possible to the supply pins and using PCB supply and
ground planes.
– Ceramic blocking caps in the 100nF range suppress the high frequency

noise causing an increased period and short term jitter.
– Ceramic blocking caps in the range >10?F suppress low frequency

voltage spikes/drops causing an increased long time jitter.
• No device socket should be used to prevent parasitic elements between

blocking capacitors and device Core Supply Pins.
• PLL jitter values:
TC1796, EES-BE, ES-BE, BE 176/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
When all listed system preconditions are fulfilled the PLL jitter at 150MHz and
K = 4 with K = KDIV +1 is below the marked range as shown in the figures.

Figure 11 Short term PLL Jitter in fCPU clock periods at fCPU = 150 MHz
and K = 4

PLL Jitter

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1
1,2
1,3
1,4
1,5

0 1 2 3 4 5 6 7 8 9 10
P [periods]

Jitter [ns]

150 MHz K=4
TC1796, EES-BE, ES-BE, BE 177/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
Figure 12 Long term PLL Jitter in fCPU clock periods at fCPU = 150 MHz
and K = 4

BFCLK timing and PLL jitter
The BFCLK timing is important for calculating the timing of an external flash
memory. In principle BFCLK timing can be derived from first figure. In case of
only EBU synchronous read access to the flash device the worst case jitter is
partial below the values shown in first figure.
For one BFCLK with a cycle time of 13,33ns the maximum jitter is
tjpp = |+/-620ps|
For two BFCLKs with an accumulated cycle time of 26,66ns the maximum jitter
is
tjpacc= |+/- 660ps|

PLL Jitter

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

P [periods]

Jitter [ns]

150 MHz K=4
TC1796, EES-BE, ES-BE, BE 178/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
PORTS_TC.P001 Output Rise/Fall Times

Based on characterization results, the following rise/fall times apply:

PWR_TC.P010 Power sequence

There is a reliability risk for the ADC module and the DTS (Die Temperature
Sensor) due to cross-current at power-up and power-down.
As per Data Sheet, VDD - VDDP < 0.5 V has to be valid at any time in order to
avoid increased latch-up risk. The figure below shows the possible VDDP values
as shaded region for an exemplary VDD ramp. Moreover, the following rules
apply:
• VDDEBU and all analog voltages (VDDOSC3, VDDM, VDDMF, VDDFL3) must also

follow VDDP power-up/down sequence.

Table 22 Output Rise/Fall Times
Parameter MaxLimit (ns) Test Conditions
Class A2 Pads
Rise/fall times
Class A2 pads

3.7 strong driver, sharp edge, 50 pF
 7.5 strong driver, sharp edge, 100 pF
 7.0 strong driver, medium edge, 50 pF
 18.0 strong driver, soft edge, 50 pF

Class A3 Pads
Rise/fall times
Class A3 pads

3.2 50 pF

Class A4 Pads
Rise/fall times
Class A4 pads

2.2 25 pF

Class B Pads
Rise/fall times
Class B pads

3.4 35 pF
 4.4 50 pF
 7.7 100 pF
TC1796, EES-BE, ES-BE, BE 179/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
• VDDAF, VDDOSC must follow VDD power-up/down sequence.
• The absolute value of the maximum allowed deviation between any two

supplies is 0.5 V while the 1.5V supplies are below their specified operating
conditions.

Figure 13 Exemplary power-up/down sequence

Note: VCC and VCCP in Figure 13 refer to devices with PWR_TC.P009 erratum.

Reliability risk
To support use of filter circuits with capacitive elements, for specific pins the
violation of the parallel power sequencing is allowed for a maximum of 4% of
the operational lifetime (accumulated), before encountering a reliability risk:
The specific pins VAREFx, VFAREF, VDDAF, VDDM, VDDMF, VDDOSC3 may be supplied
while the 1.5V supplies are below their specified operating range.

Application Hint
3.3V power supplies are connected with antiparallel ESD protection diodes.
Therefore during power sequencing care must be taken to avoid cross currents
(e.g. by tristating deactivated supply outputs), either by:
• Actively driving those pins with a voltage difference smaller than 0.5V.

1.5V

3.3V

VDD

Time

Power Supply Voltage

Valid
area

for V
DDP

Time

VDDP
(3.3V)

PORST

VCC(0.5V)

VCCP(*)

Va
lid

ar
ea

fo
r V

DD
P

VDDPVDD < 0.5 V-
TC1796, EES-BE, ES-BE, BE 180/207 Rel. 1.3, 2011-08-29

Errata Sheet

Deviations from Electrical- and Timing Specification
• Keeping them all inactive, which also avoids that external components are
supplied from the device.

In addition, it is not allowed to have at any point of time the voltage on VAREFx
(resp. VFAREF) actively driven with more than 0.5V higher than VDDM (resp.
VDDMF).

SSC_TC.P001 SSC signal times t52 and t53 deviate from the specification

The measured timing of the SSC input MRST setup time is t52=13ns and the
MRST hold time is t53min=0ns. This violates the Data Sheet values (t52min=10ns
and t53min=5ns).

Workaround
None.
TC1796, EES-BE, ES-BE, BE 181/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
4 Application Hints

ADC_AI.H002 Minimizing Power Consumption of an ADC Module

For a given number of A/D conversions during a defined period of time, the total
energy (power over time) required by the ADC analog part during these
conversions via supply VDDM is approximately proportional to the converter
active time.

Recommendation for Minimum Power Consumption:
In order to minimize the contribution of A/D conversions to the total power
consumption, it is recommended
1. to select the internal operating frequency of the analog part (fADCI or fANA,

respectively)1) near the maximum value specified in the Data Sheet, and
2. to switch the ADC to a power saving state (via ANON) while no conversions

are performed. Note that a certain wake-up time is required before the next
set of conversions when the power saving state is left.

Note: The selected internal operating frequency of the analog part that
determines the conversion time will also influence the sample time tS. The
sample time tS can individually be adapted for the analog input channels
via bit field STC.

ADC_TC.H002 Maximum latency for back to back conversion requests

A maximum latency of more than one complete arbitration-round (which
corresponds to 20 ADC-module clock-cycles) can occur between two
requested back to back conversions.

1) Symbol used depends on product family: e.g. fANA is used in the documentation of
devices of the AUDO-NextGeneration family.
TC1796, EES-BE, ES-BE, BE 182/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
Delays from 10 and 26 ADC-module clock-cycles between two conversions
have been seen when autoscan or queue are running simultaneously. The seen
latency depends on the ratio of conversion-time and arbitration-cycle.

ADC_TC.H004 Single Autoscan can only be performed on Group_0

When bit field SCN.GRPC=11 bit ASCRP.GRPS should toggle at the end of each
auto-scan sequence.
In reality the behaviour is as described below:
• Single Auto-Scan (CON.SCNM=01): selected group will always be Group_0

at the beginning of each sequence.
• Continuous Auto-Scan (CON.SCNM=10): selected group will be Group_0 at

the beginning of the first sequence, but toggles at the end of each sequence.

ADC_TC.H005 Synchronous conversions start at different times

If a synchronized conversion is configured for two ADC modules, then the
conversions are started synchronously, but not at the same clock cycle. The
sample phase of the slave-ADC is started one clock cycle (tADC) before the
sample phase of the master-ADC is started. The clock-cycle tADC depends on
the fractional divider settings (tADC = 1 / fADC).

ADC_TC.H006 Change of timer reload value

When the timer run bit is active (TCON.TR = 1) and the reload value
TCON.TRLD is loaded with zero, the timer will never start again with any other
reload value.

Workaround
The reload value for the timer must only be changed if the timer run bit is set to
inactive (TCON.TR = 0).
TC1796, EES-BE, ES-BE, BE 183/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
ADC_TC.H007 Channel injection requests overwrite pending requests

Due to the arbitration mechanism an already pending channel injection request
is only taken into account at the end of an arbitration round. If a software write
action for a new channel injection request occurs before this point in time, it
overwrites the already pending request. As a result the requested conversion is
started according to the latest request.
In order to avoid overwriting an already pending request a wait-time of at least
two arbitration rounds (40 module clock-cycles of fCLC) should be respected
between two consecutive channel injection conversion requests.

CPU_TC.H005 Wake-up from Idle/Sleep Mode

A typical use case for idle or sleep mode is that software puts the CPU into one
of these modes each time it has to wait for an interrupt.
Idle or Sleep Mode is requested by writing to the Power Management Control
and Status Register (PMCSR). However, when the write access to PMCSR is
delayed e.g. by a higher priority bus access, TriCore may enter idle or sleep
mode while the interrupt which should wake up the CPU is already executed.
As long as no additional interrupts are triggered, the CPU will endlessly stay in
idle/sleep mode.
Therefore, e.g. the following software sequence is recommended (for user
mode 1, supervisor mode):
_disable(); // disable interrupts
do {
SCU_PMCSR = 0x1; // request idle mode
if(SCU_PMCSR); // ensure PMCSR is written

_enable(); // after wake-up: enable interrupts
_nop();
_nop(); // ensure interrupts are enabled
_disable(); // after service: disable interrupts
} while(!condition); // return to idle mode depending on

// condition set by interrupt handler
_enable();
TC1796, EES-BE, ES-BE, BE 184/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
EBU_TC.H003 Incorrect command phase extension by external WAIT sig-
nal

For asynchronous devices, the command phase will not be extended correctly
by the external WAIT input if the command phase (BUSAP.WAITWRC &
BUSAP.WAITRDC) is programmed with one wait-state for synchronous WAIT
sampling and two wait-states for asynchronous WAIT sampling.
In addition, if the WAIT input is lately asserted during the command phase, the
write enable (data out enable) may not be extended correctly, even though the
rest of the control signals are extended correctly.

Workaround
These two conditions must be fulfilled:
1. At least 2 wait-states for synchronous WAIT sampling and three wait-states

for asynchronous WAIT sampling must be programmed for
BUSAP.WAITWRC & BUSAP.WAITRDC

2. At least one data hold cycle (BUSAP.DATAC) must be programmed to
ensure that the write data is extended correctly.

EBU_TC.H004 Bitfields EBU_BUSAPx and EBU_EMUBAP settings take effect
for demultiplexed devices access

Bitfields EBU_BUSAPx[28:29] = 11B and EBU_EMUBAP[28:29] = 10B after reset.
However, they are both related to a feature for multiplexed devices (AH -
Address Hold Phase) which has also an impact on the access timing to
demultiplexed devices (both asynchronous devices and burst Flash device
types).

Workaround
Set EBU_BUSAPx[28:29] = 00B and EBU_EMUBAP[28:29] = 00B after reset,
which corresponds to no delay between the address phase (AD) and the
command delay phase (CD).
TC1796, EES-BE, ES-BE, BE 185/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
EBU_TC.H005 Potential live-lock situation on concurrent CPU and PCP
accesses to external memories

If a master (CPU, PCP, DMA) is already accessing an external memory, every
later access from another master will be retried on hardware level. Under very
improbable timing conditions, it may lead to a live-lock scenario, for example:
• PCP polling continuously for a semaphore on an external memory.
• CPU executing code from external memory in order to release the

semaphore.
• The CPU may never get access to the EBU if the PCP access started

before.

Workaround
In case that several masters have access to the EBU, the application software
has to reserve time windows for each of the masters, whose duration depends
on the latency constraints of the application.

FIRM_TC.H000 Reading the Flash Microcode Version

The 1-byte Flash microcode version number is stored at the bit locations 103-
96 of the LDRAM address D000 000CH after each reset, and subject to be
overwritten by user data at any time.
The version number is defined as “Vsn”, contained in the byte as:
• s = highest 4 bit, hex number
• n = lowest 4 bit, hex number
Example: V21, V23, V3A, V3F, etc.
The devices described in this Errata Sheet are delivered with the following
microcode version:

Table 23 Microcode History
Version Changes
V27 Overerase Algorithm with improved Erratic Tolerance
TC1796, EES-BE, ES-BE, BE 186/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
• Symbol Definition:
– ’x’: issue relevant for this microcode version
– ’-’: issue not relevant for this microcode version

FIRM_TC.H001 ABM usage in conjunction with virgin external flash

The Alternate Boot Mode (ABM) with external start is not usable for the case
that the external Flash is not initialized, thus in virgin state.

Workaround
To support also an external virgin Flash when the internal Flash is not available,
it is recommended to operate the chip in the FNA operating mode (Flash Not
Available, SWOPT4), and to configure the Boot Selection for the internal ABM
(HWCFG=0011) or for the normal start in internal Flash (HWCFG=0010). In
FNA mode, for these two boot selections the internal Flash is bypassed and
instead an external start with specific bus configuration is executed.

FLASH_TC.H002 Wait States for PFLASH/DFLASH Read Access

Refer to FIRM_TC.H000 for dependency on the microcode version.
In User’s Manual, the bits WSDFLASH [10:8] and WSPFLASH [2:0] are described
in the FLASH_FCON register for the setting of the number of wait states (WS).
The recommended number of wait states is depending on the used frequency
and the Flash microcode version.

Table 24 Microcode Dependency
Issue Short Description V27
FIRM_TC.005 Program While Erase can cause fails in the sector

being erased
x

FIRM_TC.006 Erase and Program Verify Feature x
FLASH_TC.H002 Wait States for PFLASH/DFLASH Read Access x
FIRM_TC.P001 Longer Flash erase time x
TC1796, EES-BE, ES-BE, BE 187/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
It is observed that WS-settings smaller than the following values might lead to
increased double-bit errors at hot read operation. The recommended number of
wait states (WS) is depending on the used frequency and the microcode
version.

Formula for microcode V27: Frequency [MHz] / number of WS <= 30 [MHz]

The recommended number of WS with wordline hit (FLASH_FCON.WSWLHIT)
are the same as for the initial read access.

FLASH_TC.H003 Flash Sleep Mode via SCU not functional

The power-management system allows software to configure the various
processing units so that they automatically adjust to draw the minimum
necessary power for the application.
In chip sleep mode the flash module will not enter sleep mode.

Workaround
Flash sleep mode can be initiated by software (separately from the other
modules in the device) by setting bit FCON.SLEEP.

FLASH_TC.H005 Reset during FLASH logical sector erase

If an erase operation of a 16K-sector (PS0-7) is aborted by any reset, this can
affect readability of the whole physical sector (PPS0 or PPS1), which includes
the 16K-sector.

Table 25 Recommended number of wait states (WS)
Microcode version Frequency ranges Minimum number of WS
V27 120...150 MHz 5 WS
V27 <=120 MHz 4 WS
TC1796, EES-BE, ES-BE, BE 188/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
As the full or partial user boot code is located in the affected physical sector
(PPS0), the readability of this code might be affected and the start-up sequence
may not be possible anymore.
Also user configuration blocks (1K-sectors UCB0-2) are implemented as logical
sectors and might be affected by this case if they must be erased due to change
of protection parameters. If the UCB erase operation is aborted, the device may
get unbootable (braindead).
DFLASH sectors are not affected by this corner case.

Workaround
To protect the user boot code, either:
• Do not erase 16K-sector PS0-3 (logical sectors) and place the complete

user boot code within these sectors, or
• Use the Alternate Boot Mode (ABM) as hardware configuration for start-up

of the user system and place the backup user boot code above 128K. In
ABM mode, the firmware (in BootROM) executes a CRC check of a memory
block (user defined in a primary ABM header, base address A001 FFE0H)
which should cover the 16K-sectors range where the core of the user boot
code is located. If CRC check fails within this block due to the described
problem above, it will enter a secondary ABM header (base address A003
FFE0H) within the PS8 sector, allowing the device to start-up properly from
the backup user boot code.

Furthermore, after start-up, the aborted 16K-sector erase operation must be
repeated by the user boot code. Therefore, erase operations should be tracked
in a static memory not affected by this corner case (e.g. DFLASH, EEPROM).
Once the 16K-sector erase operation is successfully completed, the whole
affected physical sector is readable again.

There is no workaround for user configuration blocks. These blocks should only
be erased when stable conditions can be guaranteed, for instance, during
factory end-of-line programming.
TC1796, EES-BE, ES-BE, BE 189/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
FPI_TC.H001 FPI bus may be monopolized despite starvation protection

During a sequence of back to back 64-bit writes performed by the CPU to PCP
memories (PRAM/CMEM) the LFI will lock the FPI bus and no other FPI master
(PCP, DMA, OCDS) will get a grant, regardless of the priority, until the
sequence is completed.
A potential situation would be a routine which writes into the complete PRAM
and CMEM to initialize the parity bits (for devices with parity) or ECC bits (for
devices with ECC), respectively. If the write accesses are tightly concatenated,
the FPI bus may be monopolized during this time. Such situation will not be
detected by the starvation protection.

Workaround
Avoid 64-bit CPU to PCP PRAM/CRAM accesses.

GPTA_TC.H002 Range limitation on PLL reload

The PLL reload value PLLREV should be handled as unsigned integer.
Erroneously, the value is handled as a signed integer value. If values >=
800000H are stored into the PLLREV register, this values will cause an addition
with a negative number for the calculation of the new delta value. The
corresponding delta register result therefore might contain still a negative
number, causing further unexpected micro-tick pulses on the PLL output.
The described behaviour causes a limitation of the usable reload values to 23
bits.
Please note also the corresponding pseudo code below:
if (Bit 24 of Pll.Delta) then //delta is < 0

Pll.Delta = Pll.Delta + Pll.Reload_Value
generate pulse on Pll.Signal_Uncomp

else //delta is >= 0
Pll.Delta = Pll.Delta + (0xFFFF0000 or (Pll.Step))

endif
TC1796, EES-BE, ES-BE, BE 190/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
Workaround
Only reload values <= 7FFFFFH can be used, following that MSB (Bit 23) of
PLLREV must always be programmed to 0.

GPTA_TC.H003 A write access to GTCXR of disabled GTC may cause an
unexpected event

If the next sequence is followed:
1. Read GTCXR to disable write protection
2. Write GTCXR with new value
3. Write GTCCTR to enable the cell and to change the hooked Global Timer

GT
4. Write GTCXR with new value to trigger greater-equal compare
An unexpected event may be caused because:
• greater-equal compare is also performed when cell is disabled (it is

triggered by first write to GTCXR if the GTC is still hooked to the old Global
Timer GT), and

• the result of compare is evaluated with next kernel clock pulse, and
• this result may be positive, and
• the cell may be enabled before this next kernel clock pulse, if kernel running

slower than FPI bus.

Workaround
Use the next sequence instead:
1. Read GTCXR to disable write protection
2. Write GTCCTR to enable the cell and to change the hooked Global Timer

GT
3. Write GTCXR with new value to trigger greater-equal compare
Therefore, the comparison is only triggered when the cell is enabled.
Please use this sequence only if the hooked GT is changed and the Capture
Alternate Timer mode (CAT) is enabled. If the compare is always related to the
same Global Timer GT, the original sequence must be used to prevent an
unintended compare between the captured alternate timer value (assuming
Capture Alternate Timer after compare is enabled) and the hooked GT value.
TC1796, EES-BE, ES-BE, BE 191/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
GPTA_TC.H004 Handling of GPTA Service Requests

Concerning the relations between two events (request_1, request_2) from
different service request sources that belong to the same service request
group y of the GPTA module, two standard cases (1, 2) and one corner case
can be differentiated:

Case 1
When request_2 is generated before the previous request_1 has been
acknowledged, the common Service Request Flag SRR of service request
group y is cleared after request_1 is acknowledged. Since the occurrence of
request_1 and request_2 is also flagged in the Service Request State Registers
SRS*,1) all request sources can be identified by reading SRS* in the interrupt
service routine or PCP channel program, respectively.

Case 2
When request_2 is generated after request_1 has been acknowledged, both
flag SRR and the associated flag for request_2 in register SRS* are set, and the
interrupt service routine/PCP channel program will be invoked again.

Corner Case
When request_2 is generated while request_1 is in the acknowledge phase,
and the service routine/PCP channel program triggered by request_1 is reading
register SRS* to determine the request source, then the following scenario may
occur:
Depending on the relations between module clock fGPTA, FPI-Bus clock, and the
number of cycles required until the instruction reading SRS* is executed, the
value read from SRS* may not yet indicate request_2, but only request_1
(unlike case 1). On the other hand, flag SRR (cleared when request_1 was
acknowledged) is not set to trigger service for request_2 (unlike case 2).
As a consequence, recognition and service of request_2 will be delayed until
the next request of one of the sources connected to this service request group y
is generated.

1) SRS* = abbreviation for Service Request State Registers SRSCn or SRSSn.
TC1796, EES-BE, ES-BE, BE 192/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
Identification of Affected Systems
A system will not be affected by the corner case described above when the
following condition is true:
(1a) READ - ACK ≥ max(icu, (N-1)*FPIDIV) for FDR in Normal Mode, or
(1b) READ - ACK ≥ max(icu, N*FPIDIV) for FDR in Fractional Mode
with:
• READ = number of fCPU

1) or fPCP cycles between interrupt request (at
CPU/PCP site) and register SRS* read operation.
Number of cycles depends on implementation of service routine. “Worst
case” with respect to corner case is minimum time:
– READ = R0 = 10 if instruction reading SRS* is directly located at entry

point in Interrupt Vector Table in CPU Interrupt Service (sub-)routine
– READ = R1 = 14 if instruction reading SRS* is first instruction in CPU

Interrupt Service (sub-)routine
– Read = RP = 16 if instruction reading SRS* is first instruction in PCP

channel program
– RX: number of extra fCPU or fPCP cycles to be added to R0, R1, or RP,

respectively, in case instruction reading SRS* is not the first instruction in
the corresponding service routine.

• ACK = number of fCPU or fPCP cycles between interrupt request (at CPU/PCP
site) and clearing of request flag SRR
– ACK = 7 = constant for TriCore and PCP under all conditions

(independent from ICU/PICU configuration)
• icu = clock ratio between ICU and CPU clock

– icu = 2 with bit ICR.CONECYC=1B, icu = 4 with bit ICR.CONECYC=0B
• N = “maximum integer value” of clock ratio fFPI / fGPTA

– N = 1024 - STEP for Normal Divider mode (DM = 01B)
– N = (1024 DIV STEP) + 1 for Fractional Divider mode (DM = 10B), where

DIV means “integer division”
• FPIDIV = clock ratio fCPU / fFPI for CPU and fPCP / fFPI for PCP

1) fCPU = fLMB or fSRI, depending on bus structure used in specific product.
TC1796, EES-BE, ES-BE, BE 193/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
Example 1
PCP reads register SRS* with first instruction, GPTA is configured with
fractional divider, STEP = E4H, CONECYC = 0B, FPIDIV = 2 (fPCP = 2*fFPI)
This results in:
16 - 7 ≥ max(4, (1024 DIV 228 + 1)*2), or
9 ≥ max(4, (5*2)), or
9 ≥ max(4, 10), where max(4, 10) = 10
i.e. 9 ≥ 10 is false
i.e. this configuration is critical with respect to the corner case described above.

Example 2
PCP reads register SRS* with first instruction, GPTA is configured with
fractional divider, STEP = 38EH, CONECYC = 0B, FPIDIV = 2 (fPCP = 2*fFPI)
This results in:
16 - 7 ≥ max(4, (1024 DIV 910 + 1)*2), or
9 ≥ max(4, (2*2)), or
9 ≥ max(4, 4), where max(4, 4) = 4
i.e. 9 ≥ 4 is true
i.e. this configuration is not affected by the corner case described above.

Recommendation
In case a system is affected by the corner case described above, the service
routine/PCP channel program should read the status flags in SRS* again ≥ 1
GPTA module clock cycle after the first read operation to ensure earliest
possible recognition of all events, e.g.:
Service Routine/PCP Program Entry:
 - Read SRS*
 - if flag is set: handle requesting source, clear
 corresponding flag via register SRSCx
 - Ensure elapsed time to next read of SRS* in Loop is
 ≥ 1 GPTA module clock cycle since routine entry
 Loop:
TC1796, EES-BE, ES-BE, BE 194/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
 - Read SRS*, exit if all flags are 0
 - Handle requesting source(s), clear
 corresponding flag(s) via register SRSCx

or (when the GPTA module clock is relatively high) e.g.:
Service Routine/PCP Program Entry:
 - Ensure time to first read of SRS* in Loop is
 ≥ 1 GPTA module clock cycle since routine entry
 Loop:
 - Read SRS*, exit if all flags are 0
 - Handle requesting source(s), clear
 corresponding flag(s) via register SRSCx

Note: In case the condition in formula (1a) or (1b) is not true, it would be possible
to add n ≥ Rx + FPIDIV - 1 NOPs (+ ISYNC for CPU) at the beginning of
the service routine to extend the time until SRS* is read.
Referring to Example 1 (Rx ≥ 1 cycle is missing, FPIDIV = 2), n ≥ 2 NOPs
may be added before SRS* is read to make this configuration uncritical.
Make sure the NOPs are not eliminated by code optimizations.
However, basically it is still recommended to follow the general hint in
paragraph “Recommendation” to improve code portability and become
independent of cycle counting for individual configurations.

MLI_TC.H002 Received write frames may be overwritten when Move En-
gine disabled

When a write-frame is sent, the remote controller handles it either via:
• an interrupt (CPU, PCP)
• a DMA channel service,
• move engine if automatic mode is enabled (RCR.MOD=1),
which copy the content of the received-data buffer (RDATAR) to a specific
memory location (defined by RADDR).
If the automatic mode is disabled and if the request is not immediately serviced
(CPU or PCP busy, FPI bus heavily loaded, etc.), it may happen that the frame
is overwritten by another incoming frame.
TC1796, EES-BE, ES-BE, BE 195/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
When the automatic mode is enabled, a hardware protection mechanism
prevents the frames from being overwritten.

Workaround
If using the Move Engine in disabled mode, implement frame-acknowledge for
write-frames

MLI_TC.H005 Consecutive frames sent twice at reduced baudrate

If frames are transmitted back to back it may happen that transmitted frames
are not acknowledged at the first transmission and the transmitter will
automatically repeat the transmission. Therefore all frames except the first one
are sent twice. No data will be lost.
The problem takes place if the MLI transmit clock is divided by more than a
factor of two with respect to the system clock, which means the baudrate is not
maximum.

Workaround
1. Set transmit clock to maximum frequency (fSYS/2).
2. Insert a delay between transmission of two consecutive frames.

MLI_TC.H006 Deadlock situation when MLI_TCR.RTY=1

The MLI module offers optionally a `Retry` functionality. It is aimed at ensuring
data consistency in case blocks of data have to be transferred by a `dumb`
move engine which can not react to MLI interrupt events.
If MLI_TCR.RTY = 1B, any requesting FPI bus master will retry the request
(read or write) until it is accepted by the MLI module.
Under certain circumstances (specific access sequence on the FPI bus in
conjunction with a non responding MLI partner, etc.), this may result in a
deadlock situation, where no instruction can be executed anymore.
TC1796, EES-BE, ES-BE, BE 196/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
In this case also traps and interrupts cannot be processed anymore. The
deadlock can only be resolved by a hardware reset, power-on reset or a
watchdog-timer reset.

Workaround
Always disable automatic retry mechanism by writing MLI_TCR.RTY = 0B.
The `Retry` functionality is actually not needed in any application. The MLI
interrupt events (transmit interrupt, etc.) are sufficient to ensure data
consistency, and therefore should be used to trigger the wanted interrupts,
DMA transfers, etc.

MultiCAN_AI.H005 TxD Pulse upon short disable request

If a CAN disable request is set and then canceled in a very short time (one bit
time or less) then a dominant transmit pulse may be generated by MultiCAN
module, even if the CAN bus is in the idle state.
Example for setup of the CAN disable request:
CAN_CLC.DISR = 1 and then CAN_CLC.DISR = 0

Workaround
Set all INIT bits to 1 before requesting module disable.

MultiCAN_AI.H007 Alert Interrupt Behavior in case of Bus-Off

The MultiCAN module shows the following behavior in case of a bus-off status:

Figure 14 Alert Interrupt Behavior in case of Bus-Off

TEC=0x60 or
REC=0x60

EWRN

REC=0x1,
 TEC=0x1

BOFF
INIT

REC=0x60,
 TEC=0x1

EWRN+BOFF
INIT

REC=0x0,
 TEC=0x0

ALERT
INIT
TC1796, EES-BE, ES-BE, BE 197/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
When the threshold for error warning (EWRN) is reached (default value of Error
Warning Level EWRN = 0x60), then the EWRN interrupt is issued. The bus-off
(BOFF) status is reached if TEC > 255 according to CAN specification,
changing the MultiCAN module with REC and TEC to the same value 0x1,
setting the INIT bit to 1B, and issuing the BOFF interrupt. The bus-off recovery
phase starts automatically. Every time an idle time is seen, REC is incremented.
If REC = 0x60, a combined status EWRN+BOFF is reached. The corresponding
interrupt can also be seen as a pre-warning interrupt, that the bus-off recovery
phase will be finished soon. When the bus-off recovery phase has finished (128
times idle time have been seen on the bus), EWRN and BOFF are cleared, the
ALERT interrupt bit is set and the INIT bit is still set.

MultiCAN_AI.H008 Effect of CANDIS on SUSACK

When a CAN node is disabled by setting bit NCR.CANDIS = 1B, the node waits
for the bus idle state and then sets bit NSR.SUSACK = 1B.
According to specification CANDIS shall have no influence on SUSACK.
However, SUSACK has no effect on applications, as its original intention is to
have an indication that the suspend mode of the node is reached during
debugging.

MultiCAN_TC.H001 No message from CAN bootloader

The host starts sending the initializing message, including the IDs for the
answering message and the ID for the data messages. Both IDs in the message
have to be right shifted by 2 to guarantee proper operation. The CAN bootloader
should send a READY-message and an acknowledge to the host PC. The
READY-message is not as specified (data bytes should be ignored), but the
download is functional for below tested cases.
The following baudrates have been measured for the bootloader:
TC1796, EES-BE, ES-BE, BE 198/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
MultiCAN_TC.H002 Double Synchronization of receive input

The MultiCAN module has a double synchronization stage on the CAN receive
inputs. This double synchronization delays the receive data by 2 module clock
cycles. If the MultiCAN is operating at a low module clock frequency and high
CAN baudrate, this delay may become significant and has to be taken into
account when calculating the overall physical delay on the CAN bus
(transceiver delay etc.).

MultiCAN_TC.H003 Message may be discarded before transmission in
STT mode

If MOFCRn.STT=1 (Single Transmit Trial enabled), bit TXRQ is cleared
(TXRQ=0) as soon as the message object has been selected for transmission
and, in case of error, no retransmission takes places.
Therefore, if the error occurs between the selection for transmission and the
real start of frame transmission, the message is actually never sent.

Workaround
In case the transmission shall be guaranteed, it is not suitable to use the STT
mode. In this case, MOFCRn.STT shall be 0.

Table 26 Measured Baudrates for different cristals
Cristal [MHz] Baudrate [kBaud]
8 20, 50, 100, 125, 250, 500, 1000
16 20, 50, 100, 125, 250, 500, 1000
20 20, 50, 100, 125, 250, 500, 1000
24 50, 100, 125, 250, 500
TC1796, EES-BE, ES-BE, BE 199/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
MultiCAN_TC.H004 Double remote request

Assume the following scenario: A first remote frame (dedicated to a message
object) has been received. It performs a transmit setup (TXRQ is set) with
clearing NEWDAT. MultiCAN starts to send the receiver message object (data
frame), but loses arbitration against a second remote request received by the
same message object as the first one (NEWDAT will be set).
When the appropriate message object (data frame) triggered by the first remote
frame wins the arbitration, it will be sent out and NEWDAT is not reset. This leads
to an additional data frame, that will be sent by this message object (clearing
NEWDAT).
There will, however, not be more data frames than there are corresponding
remote requests.

Figure 15 Loss of Arbitration

PLL_TC.H003 Writing sequentially to PLL_CLC might cause instruction
traps

Concerning switching the PLL parameters the following is specified:
• VCOBYP may be changed without precautions
• PDIV and KDIV may be switched at any time. However, it has to be ensured

that the maximum operating frequency of the device (see data sheet) will not
be exceeded.

re m o te
re q u e s t

d a ta
o b je c t

C A N B u s

M u ltiC A N s e tu p

c le a r
N E W D A T

d a ta
o b je c t

lo ss o f
a rb itra tio n

se tu p

s e t
N E W D A T

s e tu p d a ta
o b je c t

c le a r
N E W D A T

re m o te
re q u e s t

b y H W b y H W b y H W

d a ta d a ta

c le a r
TC1796, EES-BE, ES-BE, BE 200/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
For the combination of changing KDIV value and releasing VCOBYP the
following sequence is recommended:
ST.W [PLL_CLC] set KDIV
LD.W [PLL_CLC] check KDIV
ST.W [PLL_CLC] release VCO Bypass

If the setting of the KDIV value and releasing of the VCO Bypass are done back
to back an instruction trap might be caused.

PLL_TC.H004 VDDOSC and VSSOSC bonding change

VDDOSC and VSSOSC silicon pads are not connected to their package balls, but
VDDOSC is connected to VDD (core supply) and VSSOSC is connected to VSS, in
order to reduce short-term jitter. Thus VDDOSC and VSSOSC package balls are
unconnected. For future design improvements it is recommended to prepare
the PCB like it is shown in the figure below. The capacitance and both resistors
need not to be assembled on the PCB but they should be planned for values of
about 10?F...100?F for the blocking capacitance and 0?...10? for the resistors.

Figure 16

VDDOSC

VSSOSC

TC179x

1.5V

GND
TC1796, EES-BE, ES-BE, BE 201/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
PLL_TC.H005 Increasing PLL noise robustness

Releasing VCO bypass mode during PLL initialization causes an increased VDDI
supply current demand because of switching to a higher system frequency.
Depending on the quality of supply voltage blocking this can cause a VDDI
supply ripple for some ?s. The amplitude of the VDDI supply ripple can be
reduced by increasing system frequency step by step. This can be achieved by
reducing KDIV value from 16 down to target value. After releasing VCO bypass
mode and between changing KDIV values it is necessary to wait until VDDI
supply noise is faded away. The waiting period depends mainly on supply and
supply blocking but a typical value is about 5 ?s.

Example sequence with fOSC = 20 MHz and fCPU = 80 MHz
1. set VCO bypass
2. disconnect oscillator from PLL
3. set VCOband = 10B (600-700 MHz), P = 2, N = 64, K = 16
4. connect oscillator to PLL
5. wait for lock
6. release VCO Bypass (fCPU = 40 MHz)
7. wait ~5 ?s (wait until supply ripple caused by increased supply current is

faded away)
8. set K = 10 (fCPU = 64 MHz)
9. wait ~5 ?s (wait until supply ripple caused by increased supply current is

faded away)
10. set K = 8 (fCPU = 80 MHz]
11. wait ~5 ?s (wait until supply ripple caused by increased supply current is

faded away)

PWR_TC.H004 Stand-by mode hints

During transition from/to stand-by mode, while increasing or decreasing core
power supply (VDD), it may happen, due to cross-current, that ISBRAM reaches
high current values.
TC1796, EES-BE, ES-BE, BE 202/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
The worst case takes place when VDD = VDDSBRAM/2, specially if VDDSBRAM = 1.5
V (SBRAM power supply for normal operation). In this situation, ISBRAM may
reach 29.5 mA (hot at 125°C ambient).

Figure 17 Stand-by current at 125°C ambient

Workaround
When entering stand-by mode, the next sequence is recommended before
switching off VDD:
1. Lock SBRAM
2. Reset the device
3. Set VDDSBRAM to minimum VDR (power supply to ensure data retention,

without read/write access to SBRAM)

Application Hint
In case that VDD is not actively pulled down, the VDD shut-off transition from 1.5V
down to 0V must be limited during lifetime within the marked range ?VDD (refer
to the figure) in order to avoid degradation due to electromigration. For the worst
case operating conditions (VDDSBRAM = 1.5V), the maximum accumulated time
spent during transition (?VDD) is:
• 750 hours at TJ = 150°C average weighted temperature, or equivalently

Stand-by Current at 125°C ambient

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

0,00 0,50 1,00 1,50 2,00

VDD [V]

I_
SB

R
A

M
[m

A
]

VDDSBRAM = 1.5V
VDDSBRAM = 1.0V

∆VDD: VDD range when
device is under degradation
for VDDSBRAM = 1.5V

∆VDD
TC1796, EES-BE, ES-BE, BE 203/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
• 3500 hours at TJ = 127°C average weighted temperature.

PWR_TC.H006 Handling of Pin TRST

For normal system operation (i.e. no debugger connected), pin TRST should
not be pulled high. An internal pull-down is active on pin TRST, independent of
the level on pin PORST. This provides a reset to the internal test and debug
logic (JTAG reset domain), as long as the minimum value for IPDL (see Data
Sheet) is not exceeded. Otherwise, an external pull-down should be used.
A high level at this pin activates the internal debug system. In this case, pin
TRST must be driven low once for >/= 1 µs after power-up and before the rising
edge of PORST.

SCU_TC.H001 Automatic temperature compensation not usable

The internal mechanism for automatic temperature compensation is not usable.
It is possible to use temperature compensation under SW control, if following
restrictions apply:
The code has to run from internal memory, no accesses to external memory via
EBU are allowed during temperature switch.

SSC_AI.H001 Transmit Buffer Update in Slave Mode after Transmission

If the Transmit Buffer register TB is written in slave mode in a time window of
one SCLK cycle after the last SCLK edge (i.e. after the last data bit) of a
transmission, the first bit to be transmitted may not appear correctly on line
MRST.
Note: This effect only occurs if a configuration with PH = 1B (shift data on trailing

edge) is selected.

It is therefore recommended to update the Transmit Buffer in slave mode after
the transmit interrupt (TIR) has been generated (after first SCLK phase of first
bit), and before the current transmission is completed (before last SCLK phase
of last bit).
TC1796, EES-BE, ES-BE, BE 204/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
As this may be difficult to achieve in systems with high baud rates and long
interrupt latencies, alternatively the receive interrupt at the end of a
transmission may be used. A delay of 1.5 SCLK cycles (bit times) after the
receive interrupt (last SCLK edge of transmission) should be provided before
updating the Transmit Buffer of the slave. The master must provide a pause that
is sufficient to allow updating of the slave Transmit Buffer before starting the
next transmission.

SSC_AI.H002 Transmit Buffer Update in Master Mode during Trailing or
Inactive Delay Phase

When the Transmit Buffer register TB is written in master mode after a previous
transmission has been completed, the start of the next transmission (generation
of SCLK pulses) may be delayed in the worst case by up to 6 SCLK cycles (bit
times) under the following conditions:
• a trailing delay (SSOTC.TRAIL) > 0 and/or an inactive delay

(SSOTC.INACT) > 0 is configured
• the Transmit Buffer is written in the last module clock cycle (fSSC or fCLC) of

the inactive delay phase (if INACT > 0), or of the trailing delay phase (if
INACT = 0).

No extended leading delay will occur when both TRAIL = 0 and INACT = 0.
This behaviour has no functional impact on data transmission, neither on
master nor slave side, only the data throughput (determined by the master) may
be slightly reduced.
To avoid the extended leading delay, it is recommended to update the Transmit
Buffer after the transmit interrupt has been generated (i.e. after the first SCLK
phase), and before the end of the trailing or inactive delay, respectively.
Alternatively, bit BSY may be polled, and the Transmit Buffer may be written
after a waiting time corresponding to 1 SCLK cycle after BSY has returned to 0B.
After reset, the Transmit Buffer may be written at any time.
TC1796, EES-BE, ES-BE, BE 205/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
SSC_AI.H003 Transmit Buffer Update in Slave Mode during Transmission

After reset, data written to the Transmit Buffer register TB are directly copied
into the shift register. Further data written to TB are stored in the Transmit Buffer
while the shift register is not yet empty, i.e. transmission has not yet started or
is in progress.
If the Transmit Buffer is written in slave mode during the first phase of the shift
clock SCLK supplied by the master, the contents of the shift register are
overwritten with the data written to TB, and the first bit currently transmitted on
line MRST may be corrupted. No Transmit Error is detected in this case.
It is therefore recommended to update the Transmit Buffer in slave mode after
the transmit interrupt (TIR) has been generated (i.e. after the first SCLK phase).
After reset, the Transmit Buffer may be written at any time.

SSC_TC.H003 Handling of Flag STAT.BSY in Master Mode

In register STAT of the High-Speed Synchronous Serial Interface (SSC), some
flags have been made available that reflect module status information (e.g.
error, busy) closely coupled to internal state transitions. In particular, flag
STAT.BSY will change twice during data transmission: from 0B to 1B at the start,
and from 1B to 0B at the end of a transmission. This requires some special
considerations e.g. when polling for the end of a transmission:
In master mode, when register TB has been written while no transfer was in
progress, flag STAT.BSY is set to 1B after a constant delay of 5 FPI bus clock
cycles. When software is polling STAT.BSY after TB was written, and it finds
that STAT.BSY = 0B, this may have two different meanings: either the transfer
has not yet started, or it is already completed.

Recommendations
In order to poll for the end of an SSC transfer, the following alternative methods
may be used:
• either test flag RSRC.SRR (receive interrupt request flag) instead of

STAT.BSY
TC1796, EES-BE, ES-BE, BE 206/207 Rel. 1.3, 2011-08-29

Errata Sheet

Application Hints
• or use a software semaphore that is set when TB is written, and which is
cleared e.g. in the SSC receive interrupt service routine.
TC1796, EES-BE, ES-BE, BE 207/207 Rel. 1.3, 2011-08-29

	Cover
	1 History List / Change Summary
	2 Functional Deviations
	ADC_TC.018
	ADC_TC.019
	ADC_TC.020
	ADC_TC.021
	ADC_TC.022
	ADC_TC.023
	ADC_TC.034
	ADC_TC.037
	ADC_TC.038
	ADC_TC.040
	ADC_TC.041
	ADC_TC.042
	ADC_TC.043
	ADC_TC.044
	ADC_TC.045
	ADC_TC.047
	ADC_TC.048
	ADC_TC.051
	ADC_TC.054
	ADC_TC.055
	ADC_TC.058
	ADC_TC.059
	ADC_TC.060
	BCU_TC.003
	BCU_TC.004
	CPU_TC.004
	CPU_TC.008
	CPU_TC.012
	CPU_TC.013
	CPU_TC.014
	CPU_TC.046
	CPU_TC.048
	CPU_TC.053
	CPU_TC.059
	CPU_TC.060
	CPU_TC.061
	CPU_TC.062
	CPU_TC.063
	CPU_TC.064
	CPU_TC.065
	CPU_TC.067
	CPU_TC.068
	CPU_TC.069
	CPU_TC.070
	CPU_TC.071
	CPU_TC.072
	CPU_TC.073
	CPU_TC.074
	CPU_TC.075
	CPU_TC.078
	CPU_TC.079
	CPU_TC.080
	CPU_TC.081
	CPU_TC.082
	CPU_TC.083
	CPU_TC.084
	CPU_TC.086
	CPU_TC.087
	CPU_TC.088
	CPU_TC.089
	CPU_TC.094
	CPU_TC.095
	CPU_TC.096
	CPU_TC.097
	CPU_TC.098
	CPU_TC.099
	CPU_TC.100
	CPU_TC.101
	CPU_TC.102
	CPU_TC.104
	CPU_TC.105
	CPU_TC.107
	CPU_TC.108
	CPU_TC.109
	CPU_TC.112
	CPU_TC.116
	DMA_TC.004
	DMA_TC.005
	DMA_TC.007
	DMA_TC.009
	DMA_TC.010
	DMA_TC.011
	DMA_TC.012
	DMI_TC.005
	DMI_TC.011
	DMU_TC.013
	EBU_TC.018
	FADC_TC.005
	FADC_TC.009
	FIRM_TC.001
	FIRM_TC.005
	FIRM_TC.006
	FLASH_TC.029
	FLASH_TC.036
	MLI_TC.006
	MLI_TC.007
	MLI_TC.008
	MSC_TC.004
	MSC_TC.006
	MSC_TC.007
	MultiCAN_AI.040
	MultiCAN_AI.041
	MultiCAN_AI.042
	MultiCAN_AI.043
	MultiCAN_AI.044
	MultiCAN_AI.045
	MultiCAN_AI.046
	MultiCAN_TC.023
	MultiCAN_TC.024
	MultiCAN_TC.025
	MultiCAN_TC.026
	MultiCAN_TC.027
	MultiCAN_TC.028
	MultiCAN_TC.029
	MultiCAN_TC.030
	MultiCAN_TC.031
	MultiCAN_TC.032
	MultiCAN_TC.035
	MultiCAN_TC.036
	MultiCAN_TC.037
	MultiCAN_TC.038
	MultiCAN_TC.039
	OCDS_TC.007
	OCDS_TC.008
	OCDS_TC.009
	OCDS_TC.010
	OCDS_TC.011
	OCDS_TC.012
	OCDS_TC.013
	OCDS_TC.025
	OCDS_TC.027
	OCDS_TC.028
	PCP_TC.021
	PCP_TC.023
	PCP_TC.024
	PCP_TC.025
	PCP_TC.026
	PCP_TC.027
	PCP_TC.028
	PCP_TC.030
	PMI_TC.001
	PMI_TC.002
	PMU_TC.010
	SSC_AI.020
	SSC_AI.021
	SSC_AI.022
	SSC_AI.023
	SSC_AI.024
	SSC_AI.025
	SSC_AI.026
	SSC_TC.009
	SSC_TC.010
	SSC_TC.011
	SSC_TC.017

	3 Deviations from Electrical- and Timing Specification
	ADC_AI.P001
	ESD_TC.P001
	FADC_TC.P001
	FADC_TC.P002
	FIRM_TC.P001
	MLI_TC.P001
	MSC_TC.P001
	PLL_TC.P003
	PORTS_TC.P001
	PWR_TC.P010
	SSC_TC.P001

	4 Application Hints
	ADC_AI.H002
	ADC_TC.H002
	ADC_TC.H004
	ADC_TC.H005
	ADC_TC.H006
	ADC_TC.H007
	CPU_TC.H005
	EBU_TC.H003
	EBU_TC.H004
	EBU_TC.H005
	FIRM_TC.H000
	FIRM_TC.H001
	FLASH_TC.H002
	FLASH_TC.H003
	FLASH_TC.H005
	FPI_TC.H001
	GPTA_TC.H002
	GPTA_TC.H003
	GPTA_TC.H004
	MLI_TC.H002
	MLI_TC.H005
	MLI_TC.H006
	MultiCAN_AI.H005
	MultiCAN_AI.H007
	MultiCAN_AI.H008
	MultiCAN_TC.H001
	MultiCAN_TC.H002
	MultiCAN_TC.H003
	MultiCAN_TC.H004
	PLL_TC.H003
	PLL_TC.H004
	PLL_TC.H005
	PWR_TC.H004
	PWR_TC.H006
	SCU_TC.H001
	SSC_AI.H001
	SSC_AI.H002
	SSC_AI.H003
	SSC_TC.H003

