
February 2007 Rev 1 1/105

UM0324
User manual

STR750
AC induction motor IFOC software library V1.0

Introduction
This user manual describes the AC induction motor IFOC software library, an Indirect Field
Oriented Control (IFOC) Firmware Library for 3-phase induction motors developed for the
STR750 microcontroller.

This 32 bit, ARM cored ST microcontroller, comes with a set of peripherals which make it
suitable for performing both permanent magnet and AC induction motors FOC. In particular,
this manual describes the STR750 software library developed to control AC induction
motors equipped with an encoder or tacho-generator, in both open and closed loop. The
control of a permanent magnet (PM) motor in sinewave mode with encoder is described in
the UM0312 User Manual.

The AC IM IFOC software library is made of several C modules, compatible with the IAR
EWARM toolchain. It will allow you to quickly evaluate both the MCU and the available tools.
In addition, when used together with the STR750 motor control starter kit (STR750-MCKIT)
and an AC induction motor, you will be able to get a motor running in a very short time. It
also eliminates the need for time-consuming development of IFOC and speed regulation
algorithms by providing ready-to-use functions that let you concentrate on the application
layer.

A prerequisite for using this library is basic knowledge of C programming, AC motor drives
and power inverter hardware. In-depth know-how of STR750 functions is only required for
customizing existing modules and for adding new ones for a complete application
development.

The figure below shows the architecture of the firmware. It uses the STR750 Standard
Library extensively but it also acts directly on hardware peripherals when optimizations in
terms of execution speed or code size are required.

www.st.com

http://www.st.com

UM0324

2/105

AC IM IFOC software library V1.0 features (CPU running at
60MHz)
● Speed feedback:

– Tacho generator

– Quadrature incremental encoder

● Current sampling method:

– 2 isolated current sensors (ICS)

– 3-shunt resistors placed on the bottom of the three inverter legs

● Current regulation for torque and flux control:

– PIDs sampling frequency adjustable up to the PWM frequency.

● Speed control:

– Open loop operation

– Closed loop operation, PID regulation with 0.5ms to 127ms sampling time

● 16-bit space vector PWM generation frequencies:

– PWM frequency can be easily adjusted

– Centered PWM pattern type

– 11 bits resolution at 14.6Khz

● Free C source code and spreadsheet for look-up tables

● CPU load below 30% (IFOC algorithm refresh frequency 8KHz)

● Motor control modules developed in accordance with MISRA C rules

● Code size 22.8KB (three shunt resistors for current reading, tacho generator for speed
feedback) + 8.2KB for LCD/joystick management

Note: These figures are for information only; this software library may be subject to changes
depending on the final application and peripheral resources. Note that it was built using
robustness-oriented structures, thus preventing the speed or code size from being fully
optimized.

Related documents:
Available on www.st.com:

● STR750 User Manual,

● STR750 Datasheet,

● STR750 Standard Library User Manual,

● STR7 Flash Programming Manual

Available on www.arm.com:
ARM7TDMI-S Rev.4 Technical Reference Manual ARM DDI 0234A

UM0324 Contents

 3/105

Contents

1 Getting started with tools . 11

1.1 Working environment . 11

1.2 Software tools . 11

1.3 Library source code . 12

1.3.1 Download . 12

1.3.2 File structure . 12

1.3.3 Starting the IAR toolchain . 13

1.4 Customizing the workspace for your STR750X derivative 13

1.4.1 Inkarm_xxx.xcl file (internal/external flash or RAM based project) 13

1.4.2 Extended linker file setting . 14

2 Getting started with the library . 16

2.1 Introduction to AC induction motor FOC drive . 16

2.2 How to customize hardware and software parameters 17

2.2.1 Library configuration file: 75x_MCconf.h . 18

2.2.2 Drive control parameters: MC_Control_Param.h 19

Power device control parameters .19

Flux and torque PID regulators sampling rate .19

Speed regulation loop frequency .19

Speed controller setpoint and PID constants (initial values) 20

Torque and flux controller setpoints and PID constants .20

Start-up torque ramp parameters .21

Linear variation of PID constants according to mechanical speed. 21

2.2.3 Incremental encoder parameters: MC_encoder_param.h 21

2.2.4 Tachogenerator parameters: MC_tacho_prm.h 21

2.2.5 AC induction motor parameters: MC_ACmotor_param.h 23

2.3 How to define and add a c module . 24

3 Running the demo program . 26

3.1 Open loop . 27

3.2 Closed loop . 29

3.3 Setting up the system when using ICS sensors . 30

3.3.1 Connecting the two ICS sensors to the motor and to STR750 31

3.3.2 Selecting PHASE_A_CHANNEL and PHASE_B_CHANNEL 31

Contents UM0324

4/105

3.4 How to build the system when using an incremental encoder 32

3.5 Fault messages . 33

3.6 Note on debugging tools . 34

4 Library functions . 35

4.1 Function description conventions . 35

4.2 Current reading in three shunt resistor topology and space vector PWM
generation: 75x_svpwm_3shunt module . 35

4.2.1 Overview . 35

4.2.2 List of available functions . 36

SVPWM_3ShuntInit .36

SVPWM_3ShuntCurrentReadingCalibration .37

SVPWM_3ShuntGetPhaseCurrentValues .37

SVPWM_3ShuntCalcDutyCycles .38

SVPWM_3ShuntGPADCConfig .38

4.2.3 Space vector PWM implementation . 39

4.2.4 Current sampling in three shunt topology and general purpose A/D
conversions 41

4.2.5 Tuning delay parameters and sampling stator currents in three shunt
resistor topology . 43

Case 1: Duty cycle applied to Phase A low side switch is larger than
DT+TN+ 2TS + TH + TDMA .44

Case 2: DT+TN+TS < Phase A duty cycle < DT+TN+ 2TS + TH + TDMA.46

Case 3: Phase A pulse width < DT+TN+TS .48

4.3 Isolated current sensor reading and space vector PWM generation:
75x_svpwm_ICS module . 52

4.3.1 Overview . 52

4.3.2 List of available functions and interrupt service routines 52

SVPWM_IcsInit .53

SVPWM_IcsCurrentReadingCalibration .53

 SVPWM_IcsGetPhaseCurrentValues .54

SVPWM_IcsCalcDutyCycles .54

4.3.3 Current sampling in isolated current sensor topology and integrating
general purpose A/D conversions . 54

4.4 Induction motor IFOC vector control: MC_IFOC_Drive.c module 55

4.4.1 Overview . 55

4.4.2 List of available C functions . 56

IFOC_Init . 56

IFOC_Model .57

IFOC_CalcFluxTorqueRef .59

UM0324 Contents

 5/105

CalcIm. .60

CalcRotFlxSlipFreq .61

4.4.3 Detailed explanation about indirect field oriented control (IFOC) 61

4.4.4 Detailed explanation about field weakening operation 63

4.5 Reference frame transformations: MC_Clarke_Park.h module 65

4.5.1 Overview . 65

4.5.2 List of available C functions . 66

Clarke. .66

Park .67

Rev_Park .67

Rev_Park_Circle_Limitation .68

4.5.3 Detailed explanation about reference frame transformations 68

4.5.4 Circle limitation . 70

4.6 Encoder feedback processing: 75x_encoder.c module 72

4.6.1 List of available functions and interrupt service routines 72

ENC_Init . 72

ENC_GetPosition . 73

ENC_Get_Electrical_Angle 73

ENC_Get_Mechanical_Angle 73

ENC_ResetEncoder . 74

ENC_Clear_Speed_Buffer 74

ENC_Get_Speed . 74

ENC_Get_Average_Speed 75

TIMx_UP_IRQHandler - interrupt routine .75

4.7 Tachogenerator feedback processing: 75x_tacho.c module 76

4.7.1 List of available functions and interrupt service routines 76

TAC_TachoTimerInit . 76

TAC_InitTachoMeasure 77

TAC_GetRotorFreqInHz 77

TAC_GetRotorFreq . 78

GetLastTachoPeriod . 78

GetAvrgTachoPeriod . 78

TAC_IsTimedOut . 79

TAC_ClrTimeOut . 79

TAC_GetCaptCounter . 79

TAC_ClrCaptCounter . 80

TAC_StartTachoFiltering 80

TAC_ValidSpeedInfo . 80

TIMx_IC12_IRQHandler 81

TIMx_UP_IRQHandler . 81

Contents UM0324

6/105

4.7.2 Integration tips . 81

4.7.3 Operating principle . 81

4.7.4 Converting Hertz into pseudo frequency . 83

4.8 Flux, torque and speed regulators: MC_PID_regulators module 83

4.8.1 Overview . 83

4.8.2 List of available functions and interrupt service routines 83

PID_Init . 83

PID_Flux_Regulator . 84

PID_Torque_Regulator 84

PID_Speed_Regulator 85

PID_Reset_Integral_terms 85

PID_Speed_Coefficients_update 85

PID_Integral_Speed_update 85

4.8.3 PID regulator theoretical background . 86

4.8.4 Regulator sampling time setting . 86

4.8.5 Adjusting speed regulation loop Ki, Kp and Kd vs motor frequency . . . 87

Disabling the linear curve computation routine, 75x_it.c module.88

4.9 Main interrupt service routines: 75x_it module 89

4.9.1 Overview . 89

4.9.2 List of non-empty interrupt service routines . 89

PWM_EM_IRQHandler .89

ADC_IRQHandler .90

4.10 General purpose time base: 75x_TBtimer module 90

4.10.1 Overview . 90

4.10.2 List of available functions and interrupt service routines 90

TB_StartUpInit . 91

TB_Timebase_Timer_Init .91

TB_Wait. .92

TB_Set_Delay_500us, TB_Set_DisplayDelay_500us,
TB_Set_StartUp_Timeout .92

TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed,
TB_DisplayDelay_IsElapsed .92

TB_IRQHandler .93

4.11 Application layer . 93

5 MISRA compliance . 94

5.1 Analysis method . 94

5.2 Limitations . 94

5.2.1 MISRA compliance for AC IM library files . 94

UM0324 Contents

 7/105

5.2.2 MISRA rule deviations . 96

Appendix A Additional information. 97

A.1 Adjusting CPU load related to IFOC algorithm execution 97

A.2 Selecting PWM frequency for 3 shunt resistor configuration. 98

A.3 Fixed-point numerical representation . 99

A.4 Tacho-based speed measurement flow charts . 100

A.5 PID block diagrams . 102

A.6 Additional or up-to-date technical literature. 103

A.7 References . 103

6 Revision history . 104

List of tables UM0324

8/105

List of tables

Table 1. Sector identification . 40
Table 2. PWM frequency vs maximum duty cycle relationship. 51
Table 3. MISRA compliance of AC IM library files . 94
Table 4. System performance when using STR750-MCKIT. 99

UM0324 List of figures

 9/105

List of figures

Figure 1. JTAG interface for debugging and programming . 11
Figure 2. File structure . 12
Figure 3. Device summary . 13
Figure 4. Extended linker file Inkarm_flash.xcl, flash memory length definition 14
Figure 5. Extended linker file setting . 15
Figure 6. FOC drive placed in a speed loop . 16
Figure 7. FOC structure . 17
Figure 8. Torque vs. speed characteristic curve . 24
Figure 9. Adding a new module . 25
Figure 10. Key function assignments. 26
Figure 11. Main.c state machine . 27
Figure 12. LCD menus in open loop . 27
Figure 13. Open loop start-up strategy . 28
Figure 14. LCD menus in closed loop. 29
Figure 15. Closed loop start-up strategy . 30
Figure 16. ICS hardware connections . 31
Figure 17. Encoder output signals: counter operation . 32
Figure 18. DBGC bit in PWM control register (extract from STR750 reference manual). 34
Figure 19. Valfa and Vbeta stator voltage components . 39
Figure 20. SVPWM phase voltages waveforms. 39
Figure 21. PWM and TIM0 synchronization (REP_RATE=1) . 42
Figure 22. Three shunt topology current sampling and GP A/D conversions integration

(REP_RATE=1) . 43
Figure 23. Inverter leg and shunt resistor position. 43
Figure 24. Low side switches gate signals (low modulation indexes) . 45
Figure 25. Low side Phase A duty cycle > DT+TN+ 2TS + TH + TDMA . 45
Figure 26. DT+TN+TS< Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and

ΔDutyA-B<DT+TN+TS . 46
Figure 27. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and

ΔDutyA-B<DT+TN+TS . 47
Figure 28. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and

ΔDutyA-B>DT+TN+TS . 47
Figure 29. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and

ΔDutyA-B>DT+TN+TS . 48
Figure 30. Low side duty cycle Phase A < DT+TN+TS and

ΔDutyA-B > DT+TN+2TS+TH+TDMA. 48
Figure 31. Low side duty cycle Phase A < DT+TN+TS and ΔDutyA-B > DT+TN+2TS+TH+TDMA . . 49
Figure 32. Low side duty cycle Phase A < DT+TN+TS and

DT+TRise+TS < ΔDutyA-B < DT+TN+2TS+TH+TDMA . 49
Figure 33. Low side duty cycle Phase A < DT+TN+TS and

DT+TRise+TS < ΔDutyA-B < DT+TN+2TS+TH+TDMA . 50
Figure 34. Low side duty cycle Phase A < DT+TN+TS and ΔDutyA-B< DT+TRise+TS 51
Figure 35. Stator currents sampling and GP conversions in ICS configuration (REP_RATE=1) 55
Figure 36. Rotor flux angle calculation (quadrature encoder) . 58
Figure 37. Rotor flux angle calculation (tachogenerator) . 59
Figure 38. Torque and flux optimization block . 60
Figure 39. Torque vs. speed characteristic curve . 64
Figure 40. Clarke, Park, and reverse Park transformations. 66

List of figures UM0324

10/105

Figure 41. Transformation from an abc stationary frame to a qd rotating frame 69
Figure 42. Circle limitation working principle . 71
Figure 43. Automatic tacho timer prescaler decrease . 82
Figure 44. Automatic tacho timer prescaler increase. 82
Figure 45. PID general equation . 86
Figure 46. Time domain to discrete PID equations . 87
Figure 47. Linear curve for coefficient computation . 88
Figure 48. AD conversions for three shunt topology stator currents reading and IFOC algorithm

execution when REP_RATE=3 . 97
Figure 49. AD conversions for three shunt topology stator currents reading and IFOC algorithm

execution when REP_RATE=1 . 98
Figure 50. Tacho capture overview . 100
Figure 51. Processing captured value when timer did not overflow. 101
Figure 52. Processing captured value when timer did overflow. 101
Figure 53. Torque/flux control loop block diagram. 102
Figure 54. Speed control loop block diagram . 103

UM0324 Getting started with tools

 11/105

1 Getting started with tools

To develop an application for an AC induction motor using the AC IM IFOC software library,
you must set up a complete development environment, as described in the following
sections. A PC running Windows XP is necessary.

1.1 Working environment
The AC IM IFOC software library was fully validated using the main hardware boards
included in STR750-MCKIT starter kit (a complete inverter and control board). The STR750-
MCKIT starter kit provides an ideal toolset for starting a project and using the library.
Therefore, for rapid implementation and evaluation of the software described in this user
manual, it is recommended to acquire this starter kit.

It is also recommended to install the IAR EWARM C toolchain which was used to compile
the AC IM IFOC software library. With this toolchain, you do not need to configure your
workspace. You can set up your workspace manually for any other toolchain. A free
‘kickstart edition’ of the IAR EWARM C toolchain with a 32Kb limitation can be downloaded
from www.iar.com; it is sufficient to compile and evaluate the software library presented
here.

1.2 Software tools
A complete software package consists of:

● A third-party integrated development environment (IDE)

● A third-party C-compiler

This library was compiled using the third-pary IAR C toolchain.

● JTAG interface for debugging and programming

Using the JTAG interface of the MCU you can enter in-circuit debugging session with
most of toolchains. Each toolchain can be provided with an interface connected
between the PC and the target application.

Figure 1. JTAG interface for debugging and programming

The JTAG interface can also be used for in-circuit programming of the MCU. Other
production programmers can be obtained from third-parties.

Getting started with tools UM0324

12/105

1.3 Library source code

1.3.1 Download

The complete source files are available for free download on the ST website
(www.stmcu.com), in the Technical Literature and Support Files section, as a zip file.

Note: It is highly recommended to check for the latest releases of the library before starting any
new development, and thento verify from time to time all release notes to be aware of any
new features that might be of interest for your project. Registration mechanisms are
available on ST web sites to automatically obtain updates.

1.3.2 File structure

The AC IM IFOC software library contains the workspace for the IAR toolchain. Once the
files are unzipped, the following library structure appears, as shown in Figure 2.

Figure 2. File structure

The STR750 FOC Firmware Libraries v1.0 folder contains the firmware libraries for
running both PMSM and AC induction three-phase sensored motors.

The StdLib folder contains the standard library for the STR750.

The Include and Source folder contain respectively the header and source files of the
motor control library.

Finally, IAR folder contains the configuration files for the EWARM toolchain.

UM0324 Getting started with tools

 13/105

1.3.3 Starting the IAR toolchain

When you have installed the toolchain, you can open the workspace directly from the
dedicated folder, by double-clicking on the IFOC.eww file:

The file location is:

\ FOC_AC_SR_v1.0 \ IAR \ IFOC.eww

1.4 Customizing the workspace for your STR750X derivative
The AC IM IFOC software library was written for the STR750FVT2. However, it works
equally successfully with all the products in the STR75x family.

Using a different STR750 sales type may require some modifications to the library,
according to the available features (some of the I/O ports are not present on low-pin count
packages). Refer to the datasheet for further details.

Also, depending on the memory size, the workspace may have to be configured to fit your
STR75x MCU derivative.

Figure 3. Device summary

1.4.1 Inkarm_xxx.xcl file (internal/external flash or RAM based project)

The IAR\config folder contains 3 files:

● Inkarm_flash.xcl

● Inkarm_smi.xcl

● Inkarm_ram.xcl

These files are used as an extended command linker file and contain linker options. Memory
areas, start address, size, and other parameters are declared here. It also contains the
value assigned to the stack size for each ARM operating mode (for example, USER or FIQ.
Refer to the ARM7TDMI-S Technical Reference Manual for more information).

Getting started with tools UM0324

14/105

The default extended linker file used in the standard library to configure the device for
internal flash based resident firmware is Inkarm_flash.xcl. an extract of this file
showing the definitions of heap and stack size is provided below. Depending on the project
requirements, it may be necessary to manually edit the segment sizes.
//**
*
// Stack and heap segments.
//**

// Add size >0 for ABT_Stack, UND_Stack if you need them.
// size must be 8 byte aligned.

-D_CSTACK_SIZE=0x200
-D_SVC_STACK_SIZE=0x20
-D_IRQ_STACK_SIZE=0x100
-D_FIQ_STACK_SIZE=0x40
-D_ABT_STACK_SIZE=0x0
-D_UND_STACK_SIZE=0x0
-D_HEAP_SIZE=0x400

Memory size modifications might also be necessary according to the MCU specifications.
Default settings are done for a 256KB embedded flash memory. If you use a different device,
you must edit the Inkarm_flash.xcl file as explained in Section 1.4.2.

Figure 4. Extended linker file Inkarm_flash.xcl, flash memory length definition

1.4.2 Extended linker file setting

As mentioned in the previous section, in the provided IAR workspace, the internal flash
extended linker file is set by default (Inkarm_flash.xcl).

To modify the linker file to be used (for example, Inkarm_ram.xcl or Inkarm_smi.xcl):

1. Open the IAR workspace by double-clicking on the \ FOC_AC_SR_v1.0 \ IAR \
IFOC.eww file.

2. Go to the Project menu, select Options... then Linker, and select the Config sub-
menu.

The dialog box shown in Figure 5 is displayed.

3. In the Override default field, type the name of the linker file you want to use, and then
click OK.

Selecting the Inkarm_ram.xcl file makes the IAR XLINK linker place the memory
segments on RAM memory, whereas selecting the Inkarm_smi.xcl file makes the
linker place the memory segments on an external memory.

UM0324 Getting started with tools

 15/105

Figure 5. Extended linker file setting

Getting started with the library UM0324

16/105

2 Getting started with the library

2.1 Introduction to AC induction motor FOC drive
The AC IM IFOC software library is designed to achieve the high dynamic performance in
AC motor control offered by the field oriented control (FOC) strategy.

Through complex machine electrical quantity transformations, this well-established drive
system optimizes the control of the motor, to the extent that it is able to offer decoupled
torque (Te) and magnetic flux (λ) regulation. That is, it offers the same optimum and
favorable conditions as DC motors but, in this case, carried out with rugged and powerful AC
induction motors.

With this approach, it can be stated that the two currents iqs
λr and ids

λr, derived from stator
currents, have in AC Induction Motor (IM) the same role that armature and field currents
have in DC motors: the first is proportional to mechanical torque the second to the rotor flux.

In more detail, in the context of FOC, rotor flux position is indirectly calculated, starting from
transformed equations of the machine, by means of known motor parameters and stator
current measurements: this is why the controller is an indirect controller and, hence the
phrase IFOC drive.

In other words, it can be stated that IFOC drive is halfway between dynamic controllers
(speed, position …) and machine core. So, the system may well be depicted as in Figure 6,
if introduced in a loop for speed control.

Figure 6. FOC drive placed in a speed loop

Basic information on field oriented structure and library functions is represented in Figure 7.

● The θλr calculation block estimates rotor flux angle, which is essential to transformation
blocks (Park, Reverse Park) for performing field orientation, so that the currents
supplied to the machine can be oriented in phase and in quadrature to the rotor flux
vector. More in depth information about reference frame theory and FOC structure is
available in [1][2] and Section 4.4.3 on page 61.

● The space vector PWM block (SVPWM) implements an advanced modulation method
that reduces current harmonics, thus optimizing DC bus exploitation.

● The current reading block allows the system to measure stator currents correctly, using
either cheap shunt resistors or market-available isolated current Hall sensors (ICS).

● The speed-reading block handles tachogenerator or incremental encoder signals in
order to acquire properly rotor angular velocity or position.

UM0324 Getting started with the library

 17/105

● The PID-controller block implements a proportional, integral and derivative feedback
controller, to achieve speed, torque and flux regulation.

Figure 7. FOC structure

2.2 How to customize hardware and software parameters
It is quite easy to set up an operational evaluation platform with a drive system that includes
the STR750-MCKIT (featuring the STR750 microcontroller, where this software runs) and
an AC induction motor.

This section explains how to quickly configure your system and, if necessary, customize the
library accordingly.

Follow these steps to accomplish this task:

1. Gather all the information that is needed regarding the hardware in use (motor
parameters, power devices features, speed/position sensor parameters, current
sensors transconductance);

2. Edit, using an IDE, the configuration header file 75x_MCconf.h (as explained in more
detail in Section 2.2.1), and the following parameter header files,

– MC_Control_Param.h (see Section 2.2.2),

– MC_encoder_param.h (see Section 2.2.3) or MC_tacho_prm.h (see
Section 2.2.4),

– MC_ACmotor_prm.h (see Section 2.2.5);

3. Re-build the project and download it on the STR750 microcontroller.

Getting started with the library UM0324

18/105

2.2.1 Library configuration file: 75x_MCconf.h

The purpose of this file is to declare the compiler conditional compilation keys that are used
throughout the entire library compilation process to:

● Select which current measurement technique is actually in use (the choice is between
three shunt or ICS sensors, according to availability).

● Select which speed/position sensor is actually performed (here the choice is between
tachometer and quadrature incremental encoder, according to availability).

● Enable or disable the derivative action in the speed controller or in the current
controllers in accordance with expected performance and code size.

If this header file is not edited appropriately (no choice or undefined choice), you will receive
an error message when building the project. Note that you will not receive an error message
if the configuration described in this header file does not match the hardware that is actually
in use, or in case of wrong wiring.

More specifically:

● #define ICS_SENSORS

To be uncommented when current sampling is done using isolated current sensors.

● #define THREE_SHUNT

To be uncommented when current sampling is performed via three shunt resistors
(default).

● #define ENCODER

To be uncommented when an incremental encoder is connected to the starter kit for
position sensing; in parallel, fill out MC_encoder_param.h (as explained in
Section 2.2.3);.

● #define TACHO

To be uncommented when a tachogenerator is in use to detect rotor speed (default); in
parallel, fill out MC_tacho_prm.h (as explained in Section 2.2.4);.

● #define Id_Iq_DIFFERENTIAL_TERM_ENABLED

To be uncommented when differential terms for torque and flux control loop regulation
(PID) are enabled;

● #define SPEED_DIFFERENTIAL_TERM_ENABLED

To be uncommented when differential term for speed control loop regulation (PID) is
enabled.

Once these settings have been done, only the required blocks will be linked in the project;
this means that you do not need to exclude .c files from the build.

Caution: When using shunt resistors for current measurement, ensure that the REP_RATE parameter
(in MC_Control_Param.h) is set properly (see Section 2.2.2 and Section A.2: Selecting
PWM frequency for 3 shunt resistor configuration on page 98 for details).

UM0324 Getting started with the library

 19/105

2.2.2 Drive control parameters: MC_Control_Param.h

The MC_Control_Param.h header file gathers parameters related to:

● Power device control parameters on page 19

● Flux and torque PID regulators sampling rate on page 19

● Speed regulation loop frequency on page 19

● Speed controller setpoint and PID constants (initial values) on page 20

● Torque and flux controller setpoints and PID constants on page 20

● Start-up torque ramp parameters on page 21

● Linear variation of PID constants according to mechanical speed. on page 21

Power device control parameters

● #define PWM_FREQ

Define here, in Hz, the switching frequency; in parallel, uncomment the maximum
allowed modulation index definition (MAX_MODULATION_XX_PER_CENT)
corresponding to the PWM frequency selection.

● #define DEADTIME_NS

Define here, in ns, the dead time, in order to avoid shoot-through conditions.

Flux and torque PID regulators sampling rate

● #define REP_RATE

Stator currents sampling frequency and consequently flux and torque PID regulators
sampling rate, are defined according to the following equation:

In fact, because there is no reason for either executing the IFOC algorithm without updating
the stator currents values or for performing stator current conversions without running the
IFOC algorithm, in the proposed implementation the stator current sampling frequency and
the IFOC algorithm execution rate coincide.

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see
Section A.2: Selecting PWM frequency for 3 shunt resistor configuration on page 98 for
details); its value is 8-bit long;

Speed regulation loop frequency

#define PID_SPEED_SAMPLING_TIME

The speed regulation loop frequency is selected by assigning one of the defines below:

#define PID_SPEED_SAMPLING_500us 0 //min 500us
#define PID_SPEED_SAMPLING_1ms 1
#define PID_SPEED_SAMPLING_2ms 3 //(4-1)*500uS=2ms
#define PID_SPEED_SAMPLING_4.5ms 6
#define PID_SPEED_SAMPLING_10ms 15
#define PID_SPEED_SAMPLING_127ms 255 //max(255-1)*500us=127ms

1_
_2

+
⋅=

RATEREP
FREQPWMrate sampling PIDs torque andFlux

Getting started with the library UM0324

20/105

Speed controller setpoint and PID constants (initial values)

● #define PID_SPEED_REFERENCE

Define here, in 0.1Hz, the mechanical rotor speed setpoint at startup in closed loop
mode;

● #define PID_SPEED_KP_DEFAULT

The proportional constant of the speed loop regulation (signed 16-bit value, adjustable
from 0 to 32767);

● #define PID_SPEED_KI_DEFAULT

The integral constant of the speed loop regulation (signed 16-bit value, adjustable from
0 to 32767);

● #define PID_SPEED_KD_DEFAULT

The derivative constant of the speed loop regulation (signed 16-bit value, adjustable
from 0 to 32767);

Torque and flux controller setpoints and PID constants

● #define PID_TORQUE_REFERENCE

The torque reference value, in open loop, at start-up (signed 16-bit value);

● #define PID_TORQUE_KP_DEFAULT

The proportional constant of the torque loop regulation (signed 16-bit value, adjustable
from 0 to 32767);

● #define PID_TORQUE_KI_DEFAULT

The integral constant of the torque loop regulation (signed 16-bit value, adjustable from
0 to 32767);

● #define PID_TORQUE_KD_DEFAULT

The derivative constant of the torque loop regulation (signed 16-bit value, adjustable
from 0 to 32767);

● #define PID_FLUX_REFERENCE

The flux reference; its default value is NOMINAL_FLUX, which is adjustable by
modifying the parameter hNominal_Flux (see Section 2.2.5);

● #define PID_FLUX_KP_DEFAULT

The proportional constant of the flux loop regulation (signed 16-bit value, adjustable
from 0 to 32767);

● #define PID_FLUX_KI_DEFAULT

The integral constant of the flux loop regulation (signed 16-bit value, adjustable from 0
to 32767);

● #define PID_FLUX_KD_DEFAULT

The derivative constant of the flux loop regulation (signed 16-bit value, adjustable from
0 to 32767);

UM0324 Getting started with the library

 21/105

Start-up torque ramp parameters

See Section 3.1: Open loop and Section 3.2: Closed loop on page 29 for details.

● #define STARTUP_TIMEOUT

Define here, in ms, the overall time allowed for start-up;

● #define STARTUP_RAMP_DURATION

Define here, in ms, the duration of the torque ramp up;

● #define STARTUP_FINAL_TORQUE

Define here, in q1.15 format, the final reference value for torque ramp up (closed loop
only);

● #define TACHO_SPEED_VAL

Define here, in 0.1Hz, the lowest speed for tachogenerator reading validation.

Linear variation of PID constants according to mechanical speed.

Refer to Section 4.8.5: Adjusting speed regulation loop Ki, Kp and Kd vs motor frequency on
page 87.

2.2.3 Incremental encoder parameters: MC_encoder_param.h

The MC_encoder_parameter.h header file is to be filled out if position/speed sensing is
performed by means of a quadrature, square wave, relative rotary encoder.

● #define ENCODER_PPR

Define here the number of pulses, generated by a single channel, for one shaft
revolution (actual resolution will be 4x);

● #define TIMER0_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER0 input pins;

● #define TIMER1_HANDLES_ENCODER

to be uncommented if the two sensor output signals are wired to TIMER1 input pins;

● #define TIMER2_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER2 input pins
(default; required if using STR750-MCKIT).

2.2.4 Tachogenerator parameters: MC_tacho_prm.h

The MC_tacho_prm.h header file is to be filled out if speed sensing is performed using an
AC tachogenerator. Extra details and more explanations on tacho-based speed
measurement can be found in Section 4.7 on page 76 and Section A.4 on page 100.

● #define TACHO_PULSE_PER_REV

Define here the number of pulses per revolution given by the tachogenerator; in order
to verify the correct operation of the tacho module, this parameter can be set to 1, so
that the frequency measurement can be directly compared with the one of a signal
generator.

Getting started with the library UM0324

22/105

● #define TIMER0_HANDLES_TACHO

To be uncommented if tachogenerator-based speed measurement is performed by
TIMER0.

● #define TIMER1_HANDLES_TACHO

To be uncommented if tachogenerator-based speed measurement is performed by
TIMER1.

● #define TIMER2_HANDLES_TACHO

To be uncommented if tachogenerator-based speed measurement is performed by
TIMER2. (Default; required if using STR750-MCKIT, in conjunction with Input Capture 1
choice - see below).

● #define TACHO_INPUT_TI1

To be uncommented if sensor output signal is wired to TimerX Input Capture 1. (Default
- in conjunction with TIMER2 choice; required if using STR750-MCKIT).

● #define TACHO_INPUT_TI2

To be uncommented if sensor output signal is wired to TimerX Input Capture 2.

● #define MAX_SPEED_FDBK

This parameter defines the frequency above which speed feedback is not realistic in
the application: this allows to discriminate glitches for example. The unit is 0.1Hz. By
default, it is set to 6400 (640.0Hz), which corresponds to approximately 20000 RPM for
a two pole pair motor.

● #define MAX_SPEED

This parameter is the value returned by the function TAC_GetRotorFreqInHz if
measured speed is greater than MAX_SPEED_FDBK. The default value is 640Hz, but
it can be 0 or FFFF depending on how this value is managed by the upper layer
software.

● #define MAX_PSEUDO_SPEED

This parameter is the value returned by the function TAC_GetRotorFreq if measured
speed is greater than MAX_SPEED_FDBK. The unit is rad/pwm period
(2π rad = 0xFFFF). See Section 4.7.4: Converting Hertz into pseudo frequency on
page 83 for more details.

● #define MIN_SPEED_FDBK

This parameter is the frequency below which speed feedback is not realistic in the
application: this allows to discriminate too low frequency. This value is set to 1 Hz by
default, and depends on sensor and signal conditioning stage characteristics. Typically,
the tacho signal is too weak at very low speed to trigger input capture on the MCU.

Note: The MC_tacho_prm.h file includes two formulas that allow to compute the minimum sensed
speed when speed is increasing (during start-up) or decreasing (during motor stop).

● #define MAX_RATIO

Maximum possible TIMER clock prescaler ratio:

– This defines the lowest speed that can be measured (when counter = 0xFFFF).

– It also prevents the clock prescaler from decreasing excessively when the motor is
stopped. (This prescaler is automatically adjusted during each and every capture
interrupt to optimize the timing resolution).

● #define MAX_OVERFLOWS

This is the maximum number of consecutive timer overflows taken into account. It is set
by default to 10: if the timer overflows more than 10 times (meaning that the tacho

UM0324 Getting started with the library

 23/105

period has been increased by a factor of 10 at least), the number of overflows is not
counted anymore. This usually indicates that information is lost (tacho time-out) or that
the speed is decreasing very sharply. The corresponding duration depends on the
tacho timer prescaler, which is variable; the higher the prescaler (at low speed), the
longer the time-out period.

● #define SPEED_FIFO_SIZE

This is the length of the sofware FIFO in which the latest speed measurements are
stored. This stack is necessary to compute rolling averages on several consecutive
data.

2.2.5 AC induction motor parameters: MC_ACmotor_param.h

The MC_ACmotor_param.h header file holds motor parameters which are essential to
properly operate the IFOC vector drive.

The following parameters must be defined in all cases:

● #define ROTOR_TIME_CONSTANT

Define here (in µs), the rotor open circuit time constant of the motor τ r :

where Lm is the magnetizing inductance, Llr is the rotor leakage inductance, Lr is the
rotor inductance, rr is the rotor resistance.

● #define POLEPAIR_NUMBER

Define here the stator winding pole pair number;

● #define RATED_FREQ

Define here (in 0.1Hz) the right-hand boundary of the constant torque region (see
Figure 8): in that region we have rated current, rated flux, rated torque, rated power;

● hNominal_Flux

Define here the required magnetizing current im (positive, peak value), expressed in
q1.15 format (see Section A.3 on page 99).

r

lrm

r

r
r r

LL
r
L +==τ

Getting started with the library UM0324

24/105

Figure 8. Torque vs. speed characteristic curve

The following parameters are required only to enter the field weakening operation (constant
power region begins beyond the RATED_FREQ boundary mentioned above):

● hFlux_Reference: this look-up table (256 signed 16-bit values) provides reference
values of current ids (expressed in q1.15 format), according to increasing stator
frequencies (see Section 4.4.4 on page 63);

Note: The first element of the table should have the same value as the hNominal_Flux
parameter.

● hTorque_Reference : this look-up table (256 signed 16-bit values) provides
saturation values of current iqs (expressed in q1.15 format), according to increasing
stator frequencies (see Section 4.4.4 on page 63).

2.3 How to define and add a c module
This section describes with an example how to define and include a new module in a project
based on the library. The example is based on the addition of two files: my_file.c and the
corresponding header file my_file.h.

1. Create a new file.

You can either copy and paste an existing file and rename it, or in the File menu,
choose New, then click the File icon and save it in the right format (*.c, *.h
extension), as shown in Figure 9.

2. Declare the new file containing your code in the toolchain workspace.

To do this, simply right-click in the workspace folder, then choose the Add Files sub-
menu. The new file is automatically added to the workspace and taken into account for
the compilation of the whole project.

UM0324 Getting started with the library

 25/105

The procedure of adding the module to the project is very easy with the IAR Embedded
Workbench, as the makefile and linking command files are automatically generated. When
rebuilding the library, the configuration files are updated accordingly.

Figure 9. Adding a new module

Running the demo program UM0324

26/105

3 Running the demo program

This section assumes that you are using the STR750-MCKIT motor control kit.

The demo program is intended to provide examples on how to use the software library
functions; it includes both open speed loop and closed speed loop operations (hereafter
simply referred to as Open Loop and Closed Loop), with the possibility of varying different
parameters on the fly.

The default configuration allows the use of three shunt resistor for stator current reading and
tacho generator for speed feedback. Refer to Section 3.3 on page 30 for setting up the
system when using ICS, and to Section 3.4 on page 32 if using quadrature incremental
encoder.

After the MCU initialization phase, a welcome message appears, and shortly after the main
window is displayed. Use the joystick and the button labelled KEY to navigate between the
menus.

Key assignments are shown in Figure 10.

Figure 10. Key function assignments

A simple state machine handles the motor control tasks in the main loop, as well as basic
monitoring of the power stage. This state machine does not differentiate open from closed
loop control. It is described in Figure 11.

The power stage is monitored using the ADC peripheral and the PWM peripheral
Emergency Stop (ES) input to watch the following conditions:

● Heatsink over-temperature (ADC channel AIN6 and ES input),

● DC bus over-voltage (on ADC channel AIN7),

● Over-current protection (ES input).

Any of these three conditions will cause the PWM to be stopped and the state machine to go
into FAULT state for 2 seconds before coming back to IDLE state. Depending on the source
of the fault, an error message is also displayed on the LCD during FAULT state.

UM0324 Running the demo program

 27/105

Figure 11. Main.c state machine

3.1 Open loop
Figure 12 shows a summary of the LCD menus and settings (blinking items are shown
underlined).

Figure 12. LCD menus in open loop

Switching from open to closed loop operation and vice versa is done by moving the joystick
up or down while the first menu shown in Figure 12 is displayed and the motor is stopped.

Running the demo program UM0324

28/105

Moving the joystick left or right in these circumstances allows changing the context into the
second menu where it is possible to modify both the torque and flux reference.

Finally press either the KEY button or the joystick to start the motor (main state machine will
move from IDLE to START state).

The ramp up strategy is illustrated in Figure 13. Basically, the applied torque reference
reaches the final Iq value set with the joystick in the time that you configure in the
STARTUP_RAMP_DURATION parameter (defined in MC_Control_Param.h) following a
linear ramp.

After STARTUP_RAMP_DURATION, if valid information from the speed sensor (tachometer or
encoder) is detected, the torque reference becomes adjustable on the fly from the joystick.

On the contrary, if no valid information from the speed sensor is detected, for example
because a problem occurred with speed sensor connections or because the load torque is
higher then the value that you set, then the final torque reference is kept constant until
STARTUP_TIMEOUT.

Finally, when no valid speed information comes from the motor and STARTUP_TIMEOUT is
elapsed, the main state machine goes into FAULT state for two seconds and the error
message ‘Start-up failed’ is displayed on the LCD. In this case, it is strongly advised to
check speed sensor feedback connections first and then, if necessary, to increase the final
ramp torque reference in case the load torque is too high.

Caution: In open loop operation, a constant torque reference is produced. Depending on the load
torque applied, this could lead to constant acceleration of the motor, making the speed rise
up to the motor’s physical limits.

Figure 13. Open loop start-up strategy

UM0324 Running the demo program

 29/105

3.2 Closed loop
Figure 14 shows a summary of the LCD menus and settings (blinking items are shown
underlined).

Figure 14. LCD menus in closed loop

Switching from open to closed loop operation and vice versa is done by moving the joystick
up or down while the first menu shown in the above figure is displayed and motor is stopped.

In closed loop operation, you can vary the target speed by moving the joystick up or down
while the PID motor speed target selection menu is displayed. The demo program also
allows real-time tuning of the speed PID regulator coefficients.

Finally, although you cannot act directly on torque and flux references, you can also observe
both the target and measured flux and torque stator current component. In fact, in closed
loop, both flux and torque references are the outputs of speed PID regulator and field
weakening blocks.

As in open loop, pressing the joystick or the KEY button will start the motor.

The closed loop ramp-up strategy is shown in Figure 15. Basically, a linear torque ramp is
applied to the motor until it reaches speed TACHO_SPEED_VAL (if a tacho speed sensor is
used) or ENCODER_CL_ENABLE (if an encoder is used). Then, the speed PID regulator is
enabled and takes control of the torque reference.

Running the demo program UM0324

30/105

However, if the motor does not reach the above mentioned speeds before
STARTUP_RAMP_DURATION, the final torque reference value (STARTUP_FINAL_TORQUE)
is further applied until STARTUP_TIMEOUT. Finally, in the case where the speeds that
enable the closed loop are not reached before STARTUP_TIMEOUT, the state machine goes
into FAULT state for two seconds and the error message Start-up failed is displayed on the
LCD. In this case, it is strongly advised to check speed sensor feedback connections first
and then, if necessary, to increase STARTUP_FINAL_TORQUE if the load torque is too high.

With reference to Figure 15, note that parameters TACHO_SPEED_VAL,
ENCODER_CL_ENABLE, STARTUP_FINAL_TORQUE, STARTUP_RAMP_DURATION, and
STARTUP_TIMEOUT are fully configurable so that you can customize the start-up depending
on the motor and load conditions. Parameters definitions are done in the
MC_Control_Param.h header file.

Figure 15. Closed loop start-up strategy

3.3 Setting up the system when using ICS sensors
The default configuration provides for the use of three shunt resistors and tacho-generator.
Section 3.3.1 describes how to change the firmware configuration from three shunt resistors
to two ICS stator current reading. This section gives you information about how to provide
the STR750 with ICS feedback signals and to properly customize the firmware.

Caution: When using two ICS for stator current reading, you must ensure that the conditioned
sensors output signal range is compatible with the STR750 supply voltage.

UM0324 Running the demo program

 31/105

3.3.1 Connecting the two ICS sensors to the motor and to STR750

In order for the implemented IFOC algorithm to work properly, it is necessary to ensure that
the software implementation of the 75x_svpwm_ICS module and the hardware connections
of the two ICS are consistent.

As illustrated in Figure 16, the two ICS must act as transducers on motor phase currents
coming out of the inverter legs driven by STR750 PWM signals PWM1 (Phase A) and
PWM2 (Phase B). In particular, the current coming out of inverter Phase A must be read by
an ICS whose output has to be sent to the analog channel specified by the
PHASE_A_CHANNEL parameter in MC_pwm_ics_prm.h. Likewise, the current coming out
of inverter Phase B must be read by the other ICS and its output has to be sent to the
analog channel specified by the PHASE_B_CHANNEL parameter in MC_pwm_ics_prm.h.

About the positive current direction convention, a positive half-wave on
PHASE_X_CHANNEL is expected, corresponding to a positive half-wave on the current
coming out of the related inverter leg (see direction of I in Figure 16).

Figure 16. ICS hardware connections

3.3.2 Selecting PHASE_A_CHANNEL and PHASE_B_CHANNEL

Default settings for PHASE_A_CHANNEL and PHASE_B_CHANNEL are respectively
ADC_CHANNEL11 and ADC_CHANNEL10. You can change the default settings if the
hardware requires it by editing the MC_pwm_ics_prm.h file. However, there are a few rules
to follow when selecting the new ADC channels:

● You must initialize the proper GPIOs as analog inputs; an example for channel 8 is
given below:

/* ADC Channel 8 pin configuration */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_29;
GPIO_Init(GPIO0, &GPIO_InitStructure);

Running the demo program UM0324

32/105

● You must select two contiguous channels (for example, ADC_CHANNEL8 and
ADC_CHANNEL9) and the one with the highest number must be associated with
PHASE_A_CHANNEL (for example, PHASE_A_CHANNEL -> ADC_CHANNEL9,
PHASE_B_CHANNEL->ADC_CHANNEL8) .

3.4 How to build the system when using an incremental encoder
Quadrature incremental encoders are widely used to read the rotor position of electric
machines.

As the name implies, incremental encoders actually read angular displacements with
respect to an initial position: if that position is known, then rotor absolute angle is known too.

Quadrature encoders have two output signals (represented in Figure 17 as TI1 and TI2).
With these, and with the STR750 standard timer in encoder interface mode, it is possible to
get information about rolling direction.

Figure 17. Encoder output signals: counter operation

In addition, rotor angular velocity can be easily calculated as a time derivative of angular
position.

To set up the AC IM IFOC software library for use with an incremental encoder, simply
modify the 75x_MCconf.h and MC_encoder_param.h header files according to the
indications given in Section 2.2.1 on page 18 and Section 2.2.3 on page 21 respectively.

However, some extra care should be taken, concerning what is considered to be the positive
rolling direction: this software library assumes that the positive rolling direction is the rolling
direction of a machine that is fed with a three-phase system of positive sequence.

Because of this, and because of how the encoder output signals are wired to the
microcontroller input pins, it is possible to have a sign discrepancy between the real rolling
direction and the direction that is read. To avoid this kind of reading error, you can apply the
following procedure:

UM0324 Running the demo program

 33/105

1. Set the DC source at low voltage (50V).

2. Run the system in closed loop operation, and on the LCD, observe the target and
measured speeds.

The error occurs if the sign of the measured speed is opposite to the sign of the target
speed. (For help with the LCD menus see Section 3.2 on page 29):.

3. If the error occurs, you can correct it by simply swapping and rewiring the encoder
output signals.

If this isn’t practical, you can modify a software setting instead: in the 75x_encoder.c
file, replace the code line:

TIM_InitStructure.TIM_IC1Polarity = TIM_IC1Polarity_Rising;

with:

TIM_InitStructure.TIM_IC1Polarity = TIM_IC1Polarity_Falling;

3.5 Fault messages
This section provides a list of possible fault message that can be displayed on the LCD
when using the software library together with the STR750MC-KIT:

● “Over Current”

An Emergency Stop was detected on the PWM peripheral dedicated pin. If using
STR750-MCKIT it could mean that either the hardware over temperature protection or
the hardware over current protection were triggered. Refer to the STR750-MCKIT User
Manual for details,

● “Over Heating”

An over temperature was detected on the dedicated analog channel; the digital
threshold NTC_THRESHOLD and the relative hysteresis (NTC_HYSTERESIS) are
specified in the MC_Misc.c source file. Refer to the STR750-MCKIT User Manual for
details.

● “Tacho timed out”

The speed feedback timed out. Verify speed sensor connections.

● “Start up failed”

The motor ramp-up failed. Refer to Section 3.1 and Section 3.2 for in-depth information,

● “Bus Over Voltage”

An over voltage was detected on the dedicated analog channel. The digital threshold
(OVERVOLTAGE_THRESHOLD) is specified in the MC_Misc.c source file. Refer to the
STR750-MCKIT User Manual for details.

● "Bus Under Voltage"

The bus voltage is below 20V DC. This threshold is specified in the
UNDERVOLTAGE_THRESHOLD parameter in the MC_Misc.c source file.

Note: The corresponding FAULT flag is not cleared by firmware, therefore the STR750 must be
reset after the bus voltage has been switched on.

Running the demo program UM0324

34/105

3.6 Note on debugging tools
The third party JTAG interface should always be isolated from the application using the
MB535 JTAG opto-isolation board; it provides protection for both the JTAG interface and the
PC connected to it.

Caution: During a breakpoint, when using the JTAG interface for the firmware development, the motor
control cell clock circuitry should always be enabled; if disabled, a permanent DC current
may flow in the motor because the PWM outputs are enabled, which could cause
permanent damage to the power stage and/or motor. A dedicated bit in the PWM_CR, the
DBGC bit must be set to 1 (see Figure 18).

Figure 18. DBGC bit in PWM control register (extract from STR750 reference
manual)

Control Register (PWM_CR)
Address Offset: 00h
Reset value: 0000h

UM0324 Library functions

 35/105

4 Library functions

4.1 Function description conventions
Functions are described in the format given below:

Some of these sections may not be included if not applicable (for example, no parameters or
obvious use).

4.2 Current reading in three shunt resistor topology and space
vector PWM generation: 75x_svpwm_3shunt module

4.2.1 Overview

Two important tasks are performed in the 75x_svpwm_3shunt module:

● Space vector pulse width modulation (SVPWM)

● Current reading in three shunt resistor topology

In order to reconstruct the currents flowing through a three-phase load with the required
accuracy using three shunt resistors, it is necessary to properly synchronize A/D
conversions with the generated PWM signals. This is why the two tasks are included in a
single software module.

Synopsis Lists the prototype declarations.

Description Describes the functions specifically with a brief explanation of how they
are executed.

Input Gives the format and units.

Returns Gives the value returned by the function, including when an input value
is out of range or an error code is returned.

Note Indicates the limits of the function or specific requirements that must be
taken into account before implementation.

Caution Indicates important points that must be taken into account to prevent
hardware failures.

Functions called Lists called functions. Useful to prevent conflicts due to the
simultaneous use of resources.

Code example Indicates the proper way to use the function, and if there are certain
prerequisites (interrupt enabled, etc.).

Library functions UM0324

36/105

4.2.2 List of available functions

The following is a list of available functions as listed in the 75x_svpwm_3shunt.h header
file:

● SVPWM_3ShuntInit on page 36

● SVPWM_3ShuntCurrentReadingCalibration on page 37

● SVPWM_3ShuntGetPhaseCurrentValues on page 37

● SVPWM_3ShuntCalcDutyCycles on page 38

● SVPWM_3ShuntGPADCConfig on page 38

SVPWM_3ShuntInit

Synopsis void SVPWM_3ShuntInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for
performing 3 shunt resistor topology current reading and center aligned
PWM generation.

The function initializes DMA, EIC, ADC, GPIO, PWM, TIM0 peripherals.

In particular, the DMA, ADC, PWM and TIM0 peripherals are configured
to perform two synchronized A/D conversions per PWM switching
period.

Refer to Section 4.2.3 for further information.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library:

MRCC_PeripheralClockConfig, GPIO_Init, EIC_IRQInit, EIC_IRQCmd,
DMA_Init, DMA_Cmd, TIM_DMAConfig, DMA_DeInit, ADC_DMACmd,
PWM_DeInit, PWM_StructInit, PWM_Init, PWM_TRGOSelection,
PWM_ClearFlag, PWM_ITConfig, PWM_ResetCounter,
ADC_StructInit, ADC_Init, ADC_Cmd, ADC_StartCalibration,
ADC_ConversionCmd, TIM_Init, TIM_SynchroConfig,
TIM_ResetCounter, PWM_Cmd.

Motor control library:

SVPWM_3ShuntCurrentReadingCalibration

UM0324 Library functions

 37/105

SVPWM_3ShuntCurrentReadingCalibration

SVPWM_3ShuntGetPhaseCurrentValues

Synopsis void SVPWM_3ShuntCurrentReadingCalibration(void);

Description The purpose of this function is to store the three analog voltages
corresponding to zero current values for compensating the offset
introduced by the amplification network.

Input None.

Returns None.

Note This function must be called before PWM outputs are enabled so that
the current flowing through inverter legs is zero. When using STR750
MC Kit, the power board (MB459B) must be supplied before the
control board (MB469B). This way, the current sensing conditioning
network will reach steady state before performing calibration.

Functions called Standard library:

ADC_GetFlagStatus, ADC_ConversionCmd, ADC_Init,
ADC_ClearFlag, ADC_ITConfig

Motor control library:

SVPWM_3ShuntCalcDutyCycles

Synopsis Curr_Components SVPWM_3ShuntGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in
q1.15 format starting from values acquired from the A/D Converter
peripheral.

Input None.

Returns Curr_Components type variable.

Note In order to have a q1.15 format for the current values, the digital value
corresponding to the offset must be subtracted when reading phase
current A/D converted values. Therefore, the function must be called
after SVPWM_3ShuntCurrentReadingCalibration.

Functions called None.

Library functions UM0324

38/105

SVPWM_3ShuntCalcDutyCycles

SVPWM_3ShuntGPADCConfig

Synopsis void SVPWM_3ShuntCalcDutyCycles (Volt_Components
Stat_Volt_Input);

Description After execution of the IFOC algorithm, new stator voltage components
Vα and Vβ are computed. The purpose of this function is to calculate
exactly the three duty cycles to be applied to motor phases from the
values of these voltage components.

Moreover, once the three duty cycles to be applied in next PWM period
are known, this function sets the DMA, ADC and TIM0 peripherals for
the next current reading. In particular, depending on the duty cycle
values, the delay for the two current samplings are computed (see
Section 4.2.5 on page 43).

Refer to Section 4.2.3 for information on the theoretical approach of
SVPWM.

Input Vα and Vβ

Returns None.

Note None.

Functions called None.

Synopsis void SVPWM_3ShuntGPADCConfig(void);

Description The purpose of this function is to configure the A/D converter for
general purpose conversions after conversions for current reading
have been performed. In particular, this function starts a chain of
regular conversions whose first channel is
GP_CONVERSIONS_FIRST_CHANNEL (defined in
‘MC_pwm_3shunt_prm.h’). In addition, the number of channels to be
converted is set equal to GP_CONVERSIONS_NUMBER (defined in
‘MC_pwm_3shunt_prm.h’).

Input None

Returns None

Note As mentioned in Section 4.2.3, the overall duration of the regular chain
conversion must be lower than the duration of the IFOC_Model
routine. This limits to 6 (at 7.5MHz ADC peripheral clock) the number
of channels that can be converted in one PWM period.

Functions called None

UM0324 Library functions

 39/105

4.2.3 Space vector PWM implementation

Figure 19 shows the Stator Voltage components Vα and Vβ while Figure 20 illustrates the
corresponding PWM for each of the six space vector sectors:

Figure 19. Vα and Vβ stator voltage components

Figure 20. SVPWM phase voltages waveforms

Library functions UM0324

40/105

With the following definitions for:

and

literature demonstrates that the space vector sector is identified by the conditions shown in
Table 1.

The duration of the positive pulse widths for the PWM applied on Phase A, B and C are
respectively computed by the following relationships:

Sector I, IV:

Sector II, V:

Table 1. Sector identification

Y<0 Y>=0

Z<0 Z>=0 Z<0 Z>=0

X<=0 X<0 X<=0 X>0

Sector V IV III VI I II

alfaVTU ∗∗= 3α

betaVTU ∗=β

βUX =

2
βα UU

Y
+

=

2
αβ UU

Z
−

=

2
ZXTt A

−+=

Ztt AB +=
Xtt BC −=

2
ZYTt A

−+=

Ztt AB +=
Ytt AC −=

UM0324 Library functions

 41/105

Sector III, VI:

Where T is the PWM period.

Now, considering that the PWM pattern is center aligned and that the phase voltages must
be centered at 50% of duty cycle, it follows that the values to be loaded into the PWM output
compare registers are given respectively by:

Sector I, IV:

Sector II, V:

Sector III, VI:

4.2.4 Current sampling in three shunt topology and general purpose A/D
conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the
mathematical relation:

I1+I2+I3=0

For this reason, to reconstruct the currents flowing through a generic three-phase load, it is
sufficient to sample only two out of the three currents while the third one can be computed
by using the above relation.

The flexibility of the STR750 A/D converter trigger, makes it possible to synchronize the two
A/D conversions needed for reconstructing the current flowing through the three-phase AC
induction motor at any given time along the PWM period. To do this, the control algorithm
must have a full control of the A/D converter peripheral.

2
YXTtA

+−=

Xtt CB +=
Ytt AC −=

2
2/

4
ZXTTTimePhA −++=

ZTimePhATimePhB +=
XTimePhBTimePhC −=

2
2/

4
ZYTTTimePhA −++=

ZTimePhATimePhB +=
YTimePhATimePhC −=

2
2/

4
YXTTTimePhA +−+=

XTimePhChTimePhB +=
YTimePhATimePhC −=

Library functions UM0324

42/105

Furthermore, you have the possibility to add any A/D conversions required for your
application (hereafter referred to as general purpose conversions). This section describes
how this is achieved.

First of all, the SVPWM_3ShuntInit function performs the synchronization between PWM
and TIM0 peripherals (Figure 21 shows the two peripheral counters when REP_RATE = 1),
then, the A/D converter peripheral is configured so that it is triggered by the TIM0 OC2
signal.

Figure 21. PWM and TIM0 synchronization (REP_RATE=1)

This way, when the value of the TIM0 counter matches the value contained in the OCR2
register, the first A/D conversion for current sampling is started.

Meanwhile, a DMA transaction reloads the TIM0 OCR2 register with the value
corresponding to the delay required for the second current sampling conversion. Moreover,
the end of this first A/D conversion triggers another DMA transaction which sets the next
channel to be converted in the ADC register CLR2.

At the end of the second conversion, the three-phase load current has been updated and
the IFOC algorithm can then be executed in the A/D End of Conversion Interrupt Service
Routine (EOC ISR). In this routine, the A/D converter is also reconfigured so that it can
perform the general purpose chain of conversions while the CPU executes the IFOC
algorithm.

The entire process is illustrated in Figure 22.

After execution of the IFOC algorithm, the A/D converter is configured to perform the next
PWM period three-phase current sensing (delays and channels). This allows to reduce the
CPU load (lower number of ADC ISR) and limits to 6 (@ 7.5 MHz ADC peripheral clock) the
number of general purpose A/D conversions that can be performed in each PWM period.

To specify the general purpose conversions to be performed, you can select the first channel
and the number of channels to be converted by editing the
GP_CONVERSIONS_FIRST_CHANNEL and GP_CONVERSIONS_NUMBER parameters
respectively in the MC_pwm_3shunt_prm.h header file.

UM0324 Library functions

 43/105

Figure 22. Three shunt topology current sampling and GP A/D conversions
integration (REP_RATE=1)

4.2.5 Tuning delay parameters and sampling stator currents in three shunt
resistor topology

Figure 23 shows one of the three inverter legs with the related shunt resistor:

Figure 23. Inverter leg and shunt resistor position

To indirectly measure the phase current I, it is possible to read the voltage V providing that
the current flows through the shunt resistor R.

It is possible to demonstrate that, whatever the direction of current I, it always flows through
the resistor R if transistor T2 is switched on and T1 is switched off. This implies that in order
to properly reconstruct the current flowing through one of the inverter legs, it is necessary to
properly synchronize the conversion start with the generated PWM signals. This also means
that current reading cannot be performed on a phase where the duty cycle applied to the low
side transistor is either null or very short.

Library functions UM0324

44/105

Fortunately, as discussed in Section 4.2.4,to reconstruct the currents flowing through a
generic three-phase load, it is sufficient to simultaneously sample only two out of three
currents, the third one being computed from the relation given in Section 4.2.4. Thus,
depending on the space vector sector, the A/D conversion of voltage V will be performed
only on the two phases where the duty cycles applied to the low side switches are the
highest. In particular, by looking at Figure 20, you can deduct that in sectors 1 and 6, the
voltage on the Phase A shunt resistor can be discarded; likewise, in sectors 2 and 3 for
Phase B, and finally in sectors 4 and 5 for Phase C.

Moreover, in order to properly synchronize the two stator current reading A/D conversions, it
is necessary to distinguish between the different situations that can occur depending on
PWM frequency and applied duty cycles.

Note: The explanations below refer to space vector sector 1. They can be applied in the same
manner to the other sectors.

Case 1: Duty cycle applied to Phase A low side switch is larger than
DT+TN+ 2TS + TH + TDMA

Where:

● DT is dead time.

● TN is the duration of the noise induced on the shunt resistor voltage of a phase by the
commutation of a switch belonging to another phase.

● TS is the sampling time of the STR750 A/D converter. Refer to the STR750 reference
manual for more detailed information.

● TH is the holding time of the STR750 A/D converter. Refer to the STR750 reference
manual for more detailed information.

● TDMA is the time required for the DMA to load the value related to the next conversion
delay in TIM0 OCR2 (refer to Section 4.2.4: Current sampling in three shunt topology
and general purpose A/D conversions on page 41 for further details).

This case typically occurs when SVPWM with low (<60%) modulation index is generated
(see Figure 24). The modulation index is the applied phase voltage magnitude expressed as
a percentage of the maximum applicable phase voltage (the duty cycle ranges from 0% to
100%).

Figure 25 offers a reconstruction of the PWM signals applied to low side switches of Phase
A and B in these conditions plus a view of the analog voltages measured on the STR750
A/D converter pins for both Phase B and C (the time base is lower than the PWM period).

UM0324 Library functions

 45/105

Figure 24. Low side switches gate signals (low modulation indexes)

Note that these current feedbacks are constant in the view in Figure 25 because it is
assumed that commutations on Phase B and C have occurred out of the visualized time
window.

Moreover, it can be observed that in this case the two stator current sampling conversions
can be performed between the two commutations of the Phase A low side switch, as shown
in Figure 25.

Figure 25. Low side Phase A duty cycle > DT+TN+ 2TS + TH + TDMA

After the commutation of the Phase A low side switch, a blanking window equal to TN is
applied before starting conversion of phase C, then at the end of the first conversion, it is
necessary to wait a TDMA period before starting the phase B conversion.

Library functions UM0324

46/105

Case 2: DT+TN+TS < Phase A duty cycle < DT+TN+ 2TS + TH + TDMA

In this case, only one of the two conversions can be performed between the two Phase A
low side commutations. The other conversion is then synchronized depending on the
difference of duty cycles between Phase B and A (ΔDutyA-B). In particular if
ΔDutyA-B < DT+TN+TS (as shown in the red circle in Figure 26), the sampling of Phase C
cannot be performed between Phase B low side switching on and Phase A high side
switching off (see Figure 27). Therefore, Phase C current sampling is performed before
Phase B high side commutation.

Figure 26. DT+TN+TS< Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and
ΔDutyA-B<DT+TN+TS

UM0324 Library functions

 47/105

Figure 27. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and
ΔDutyA-B<DT+TN+TS

On the contrary, if ΔDutyA-B > DT+TN+TS (as shown in the red circle in Figure 28), Phase C
conversion is performed between Phase B low side switch on and Phase A high side switch
off (see Figure 29).

Figure 28. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and
ΔDutyA-B>DT+TN+TS

Library functions UM0324

48/105

Figure 29. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and
ΔDutyA-B>DT+TN+TS

Case 3: Phase A pulse width < DT+TN+TS

In this case, the duty cycle applied to Phase A is so short that no current sampling can be
performed in between the two low side commutations.

Then if the difference of duty cycles between Phase B and A is long enough to allow two A/D
conversions to be performed between Phase B low side switch on and Phase A high side
switch off, the strategy shown in Figure 31 is used.

Figure 30. Low side duty cycle Phase A < DT+TN+TS and
ΔDutyA-B > DT+TN+2TS+TH+TDMA

UM0324 Library functions

 49/105

Otherwise, if the difference of duty cycles between Phase B and A is long enough to allow
only one A/D conversion to be performed between Phase B low side switch on and Phase A
high side switch off, the strategy shown in Figure 33 is used.

In Figure 33, TRise represents the time required by the analog voltage on the shunt resistor
of a phase (signal ‘Current feedback of Phase B’) to settle after a commutation of the low
side switch belonging to the same phase.

Figure 31. Low side duty cycle Phase A < DT+TN+TS and ΔDutyA-B >
DT+TN+2TS+TH+TDMA

Figure 32. Low side duty cycle Phase A < DT+TN+TS and DT+TRise+TS < ΔDutyA-B <
DT+TN+2TS+TH+TDMA

Library functions UM0324

50/105

Figure 33. Low side duty cycle Phase A < DT+TN+TS and DT+TRise+TS < ΔDutyA-B <
DT+TN+2TS+TH+TDMA

Finally, when a high modulation index (> 92%) and high frequency (>11kHz) PWM signal is
generated, it could happen that both Phase A pulse width is lower than DT+TN+TS and that
ΔDutyA-B < DT+TRise+TS. In this case, it is not possible to perform the current reading on
Phase B, (see Figure 34), so the PWM patterns are slightly modified to relapse in the case
shown in Figure 33. Because this PWM pattern modification produces a distortion on the
phase currents, it is better to limit the scope of the modification by limiting the modulation
index depending on the selected PWM frequency.

Specifically, this can be done with the following default values:

● DT = 0.7µs

● TN = 2.55µs

● TS = 1.6µs

● TH = 2.67µs

● TDMA = 0.7µs

● TRise =2.6µs

UM0324 Library functions

 51/105

Figure 34. Low side duty cycle Phase A < DT+TN+TS and ΔDutyA-B< DT+TRise+TS

The maximum applicable duty cycles are listed in Table 2 as a function of the PWM
frequency.

Note: The figures above were measured using the MB459 board. This evaluation platform is
designed to support several motor driving topologies (PMSM and AC induction) and current
reading strategies (single and three shunt resistors). Therefore, the figures provided in
Table 2 should be understood as a starting point and not as a best case.

You can further increase the maximum applicable duty when using your own hardware
system by editing the following definitions in the MC_pwm_3shunt_prm.h header file:

#define HOLD_TIME 0xA0 //2.67usec 1/60MHz units
#define DMA_TIME 0x2A //0.7usec
#define SAMPLING_TIME 0x60//1.6usec
#define TNOISE 0x9c//2.6usec
#define TRISE 0x9c //2.6usec

Table 2. PWM frequency vs maximum duty cycle relationship

PWM frequency Max duty cycle Max modulation index (MMI)

Up to 11.4kHz 100% 100%

12.2kHz 99.5% 99%

12.9kHz 99% 98%

13.7kHz 98.5% 97%

14.4kHz 98% 96%

15.2kHz 97.5% 95%

16kHz 97% 94%

16.7kHz 96.5% 93%

17.5kHz 96% 92%

Library functions UM0324

52/105

4.3 Isolated current sensor reading and space vector PWM
generation: 75x_svpwm_ICS module

4.3.1 Overview

Two important tasks are performed in the 75x_svpwm_ICS module.

● Space vector pulse width modulation (SVPWM),

● Three-phase current reading when two isolated current sensors (ICS) are used.

In order to reconstruct the currents flowing through a three phase load with the required
accuracy using two ICS’, it is necessary to properly synchronize A/D conversions with the
generated PWM signals. This is why the two tasks are included in a single software module.

4.3.2 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_svpwm_ICS.h header file:

● SVPWM_IcsInit on page 53

● SVPWM_IcsCurrentReadingCalibration on page 53

● SVPWM_IcsGetPhaseCurrentValues on page 54

● SVPWM_IcsCalcDutyCycles on page 54

UM0324 Library functions

 53/105

SVPWM_IcsInit

SVPWM_IcsCurrentReadingCalibration

Synopsis void SVPWM_IcsInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for
performing ICS reading and center aligned PWM generation.

The function initializes EIC, ADC, GPIO, and PWM peripherals.

In particular ADC and PWM peripherals are configured to perform one
injected chain of two A/D conversions every time PWM registers are
updated (event called U event).

Refer to Section 4.3.3 for further information on A/D conversion
triggering in ICS configuration.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library:

MRCC_PeripheralClockConfig, GPIO_Init, EIC_IRQInit,
EIC_IRQCmd, PWM_DeInit, PWM_StructInit, PWM_Init,
PWM_TRGOSelection, PWM_ClearFlag, PWM_ITConfig,
PWM_ResetCounter, ADC_StructInit, ADC_Init, ADC_Cmd,
ADC_StartCalibration, ADC_ConversionCmd, PWM_Cmd.

Motor control library:

SVPWM_IcsCurrentReadingCalibration

Synopsis void SVPWM_IcsCurrentReadingCalibration(void);

Description The purpose of this function is to store the two analog voltages
corresponding to zero current values for compensating the offset
introduced by both ICS and amplification network.

Input None.

Returns None.

Note The function must be called before PWM outputs are enabled so that
current flowing through inverter legs is zero. When using the STR750
MC Kit, ICS sensors must be supplied before the control board
(MB469B). This way, the current sensing conditioning network can
reach steady state before performing calibration.

Functions called Standard Library:

ADC_GetFlagStatus, ADC_ConversionCmd,
ADC_GetConversionValue

Library functions UM0324

54/105

 SVPWM_IcsGetPhaseCurrentValues

SVPWM_IcsCalcDutyCycles

4.3.3 Current sampling in isolated current sensor topology and integrating
general purpose A/D conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the
mathematical relationship:

I1+I2+I3=0

Therefore, to reconstruct the currents flowing through a generic three-phase load, it is
sufficient to sample only two out of the three currents while the third one can be computed
by using the above relationship.

The flexibility of the STR750 A/D converter trigger makes it possible to synchronize the two
A/D conversions necessary for reconstructing the stator currents flowing through the three-
phase AC induction motor with the PWM reload register updates. Tthe update rate can be
adjusted using the repetition counter. This is important because, as shown in Figure 35, it is
precisely during counter overflow and underflow that the average level of current is equal to

Synopsis Curr_Components SVPWM_IcsGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in
q1.15 format from the values acquired from the A/D converter.

Input None.

Returns Curr_Components type variable

Note In order to have a q1.15 format for the current values, the digital value
corresponding to the offset must be subtracted when reading phase
current A/D converted values. Thus, the function must be called after
SVPWM_IcsCurrentReadingCalibration.

Functions called None.

Synopsis void SVPWM_IcsCalcDutyCycles (Volt_Components
Stat_Volt_Input);

Description After execution of the IFOC algorithm, new stator voltages component
Vα and Vβ are computed. The purpose of this function is to calculate
exactly the three duty cycles to be applied to motor phases from the
values of these voltage components.

Refer to Section 4.2.3 for details about the theoretical approach of
SVPWM and its implementation.

Input Vα and Vβ

Returns None.

Note None.

Functions called None.

UM0324 Library functions

 55/105

the sampled current. Refer to the STR750 Reference Manual to learn more about A/D
conversion triggering and the repetition counter.

Finally, at the end of the injected chain conversion for current reading, the general purpose
A/D conversions are performed while the CPU executes the IFOC algorithm.

Figure 35. Stator currents sampling and GP conversions in ICS configuration
(REP_RATE=1)

4.4 Induction motor IFOC vector control: MC_IFOC_Drive.c
module

4.4.1 Overview

The MC_IFOC_Drive.c module, designed for AC induction machines, provides, at the
core, decoupled torque and flux regulation, relying on indirect field oriented control
algorithm.

In addition, it makes available other important features:

● speed regulation by PID feedback control,

● flux weakening for extended speed range.

It works, requiring no adjustment, with all of the selectable current or speed sensing
configurations (in accordance with the settings in the 75x_MCconf.h file):

● isolated current sensing (ICS),

● three shunt resistors current sensing,

● encoder position and speed sensing,

● tachometer speed sensing.

It handles several functions of other modules, and has no direct access on the
microcontroller peripheral registers.

Library functions UM0324

56/105

4.4.2 List of available C functions

● IFOC_Init on page 56

● IFOC_Model on page 57

● IFOC_CalcFluxTorqueRef on page 59

● CalcIm on page 60

● CalcRotFlxSlipFreq on page 61

IFOC_Init

Synopsis void IFOC_Init(void)

Description This function is normally called at every motor start-up. It performs
the initialization of some of the variables used for IFOC
implementation by the MC_IFOC_Drive.c module.

Input None.

Returns None.

Note None.

Functions called None.

UM0324 Library functions

 57/105

IFOC_Model

Synopsis void IFOC_Model (void)

Description The purpose of this function is to perform AC-IM torque and flux
regulation, implementing the IFOC vector algorithm.

Current commands iqs
λr * and ids

λr * (which, under field oriented
conditions, can control machine torque and flux respectively) are defined
outside this function (in closed loop they are provided, by means of speed
and flux regulators, by the IFOC_CalcFluxTorqueRef function, while in
open-loop mode they are settled by the user).

Therefore, as a current source is required, the function has to run the
power converter as a CR-PWM. For this purpose, it implements an high
performance synchronous d,q frame current regulator, whose operating
frequency is defined, as explained in Section 2.2.2, by the parameter
REP_RATE (in conjunction with PWM_FREQ).

Triggered by ADC ECH / JECH ISR, the function loads stator currents
(read by ICS or shunt resistors) and carries out Clark and Park
transformations, converting them to iqs

λr and ids
λr (see Figure 7).

Then, these currents are fed to PID regulators together with reference
values iqs

λr * and ids
λr *. The regulator output voltages vqs

λr * and vds
λr *

then must be transformed back to a stator frame (through Reverse Park
conversion), and finally drive the power stage.

In order to correctly perform Park and Reverse Park transformation, it is
essential to accurately estimate the rotor flux position (θλr) (because
currents have to be oriented in phase and in quadrature with rotor flux). To
manage this task:
– function CalcIm is called to provide lm, that is the estimated value of the rotor

flux as a response to the variation of input current ids
λr (see CalcIm function

description);
– function CalcRotFlxSlipFreq (see CalcRotFlxSlipFreq function description)

evaluates rotor flux slip frequency ωsλr (relying on known rotor time constant); if
using a tachogenerator, the rotor flux position θλr is calculated by integrating the
sum of ωsλr and rotor electrical speed ω r (Figure 37) while, with an incremental
encoder, θλr is determined by summing the rotor electrical angle and the
integral of ωsλr (Figure 36).

Input None.

Returns None.

Library functions UM0324

58/105

Figure 36. Rotor flux angle calculation (quadrature encoder)

Functions
called

CalcIm, CalcRotFlxSlipFreq;
Clarke, Park, RevPark_Circle_Limitation;
PID_Torque_Regulator, PID_Flux_Regulator;

If working with encoder:

ENC_Get_Electrical_Angle;

if Working with tachogenerator:

TAC_GetRotorFreq;

if working with ‘ICS’:

SVPWM_IcsGetPhaseCurrentValues, SVPWM_IcsCalcDutyCycles;

if working with ‘three shunt’:

SVPWM_3ShuntGetPhaseCurrentValues,
SVPWM_3ShuntCalcDutyCycles.

UM0324 Library functions

 59/105

Figure 37. Rotor flux angle calculation (tachogenerator)

IFOC_CalcFluxTorqueRef

Synopsis void IFOC_CalcFluxTorqueRef (void)

Description This function provides current components iqs* and ids* to be used
as reference values (by the IFOC_Model function) in closed-loop
speed mode (see “Torque & Flux opt” block in Figure 38).

Speed setpoint and actual rotor speed ωr are compared in a PID
control loop, whose output is iqs**. This component, together with
the previous flux reference and the rotor speed ωr, is used to work
out the stator frequency that has to be generated. With this
information, two lookup-tables (described in MC_ACmotor_prm,
Section 2.2.5 , defined by taking into account the field weakening
strategy explained in Section 4.4.4) are run through, in order to get
the optimal flux reference (ids*) and the saturation value of the
torque current component (iqs max) that allow to reach the desired
speed (under the obvious limitations of rated torque and rated
power).

Input None.

Returns None.

Functions called PID_Speed_Regulator;

mul_q15_q15_q31, div_q31_q15_q15.

Library functions UM0324

60/105

Figure 38. Torque and flux optimization block

CalcIm

Synopsis s16 CalcIm (s16 hId_input);

Description The purpose of this routine is to supply (to the calling function) the
estimated value of the rotor flux, as a response to variations of the
input current value ids

λr (see “uncompensated flux response
controller” block in Figure 36 and Figure 37).

See Section 4.4.3 for in-depth information about the computations
implemented.

Input Stator current ids
λr in q1.15 format.

Returns Magnetizing current im (defined as rotor flux λr divided by
magnetizing inductance Lm) in q1.15 format.

Functions called mul_q15_q15_q31 (MC_qmath.h)

UM0324 Library functions

 61/105

CalcRotFlxSlipFreq

4.4.3 Detailed explanation about indirect field oriented control (IFOC)

Consider the voltage equations of an induction machine, being transformed on a q,d
reference frame that is synchronous with the rotor flux λr (about reference frame theory see
[1]):

where:

By choosing the phase of the reference system in such a way to arrange the rotor flux
exactly on the d-axis, we will have λqr

λr = 0, λdr
λr = λr..

Synopsis s32 CalcRotFlxSlipFreq (s16 hIq_input, s16 hIm_input)

Description This function estimates the rotor flux slip frequency ωsλr (central
block in Figure 36 and Figure 37), as result of currents iqs

λr and im
(λdr

λr/Lm).

See Section 4.4.3 for an in-depth comprehension of the
implemented computations.

Input Stator current iqs
λr and magnetizing current im, both in q1.15 format.

Returns Rotor flux slip frequency, expressed in pulses per PWM period *
65536 (65536 pulses = 2π radiants).

Functions called mul_q15_q15_q31

div_q31_q15_q15 (MC_qmath.h)

()

() r
qrr

dr
drr

drr
qr

qrr

qs
ds

dssds

ds
qs

qssqs

r

r
r

r

r

r

r

r

r

r
rr

r

r

r

rr

dt
dir

dt
d

ir

dt
dirv

dt
d

irv

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λλ

λ
λ

λ
λλ

λωωλ

λωω
λ

λωλ

λω
λ

−−+=

−++=

−+=

++=

0

0

()
()
()
()rrrr

rrrr

rrrr

rrrr

drdsmdrlrdr

qrqsmqrlrqr

drdsmdslsds

qrqsmqslsqs

iiLiL

iiLiL

iiLiL

iiLiL

λλλλ

λλλλ

λλλλ

λλλλ

λ

λ

λ

λ

++=

++=

++=

++=

Library functions UM0324

62/105

With this choice, the electromagnetic torque can be written as:

i.e. as a product of a flux and a current component (P= number of stator poles).

Let’s investigate further on the rotor flux λdr
λr.

Considering the d-axis rotor flux equation:

then, the equation for idr
λr is:

Combining the latter with the d-axis rotor voltage equation, leads to:

where τ r is the rotor time constant, τ r = Lr / rr.

Therefore, a lag in flux response is caused to this first order transfer function between ids
λr

and λdr
λr.

The CalcIm routine performs a numerical integration using Euler’s method which, for a first
order ODE written as

may be summarized in this way:

where t is the sampling time.

Putting the equation above in the explicit form, we have:

()rr
qsdr

r

m
e i

L
LpT λλλ

22
3=

)(r
dr

r
dsm

r
drlr

r
dr iiLiL λλλλλ ++=

r

r
dsm

r
drr

dr L
iLi

λλ
λ λ −=

0)(=−+ r
dsm

r
dr

r

r
r

dr iL
L
r

dt
d λλ

λ

λλ

r
rr

ds
rm

dr

rm

dr i
LLdt

d λ

τ
λ

τ
λ λλ 11 =⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟⎟⎠

⎞
⎜⎜⎝

⎛

),(ytfy =′

),(1 nnnn ytftyy ⋅Δ+=+

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

′

⎟⎟⎠

⎞
⎜⎜⎝

⎛

m

dr
ds

rm

dr

L
i

L

r
r

r λλ λ
τ

λ λ1

UM0324 Library functions

 63/105

On the other hand, under the same conditions, the q-axis rotor flux equation becomes:

So, the equation for iqr
λr is:

Combining the last with the q-axis rotor voltage equation, leads to:

This equation (implemented in the CalcRotFlxSlipFreq function, see CalcRotFlxSlipFreq on
page 61) is at the foundation of indirect field oriented control: it tells us that the rotor flux slip
frequency ωsλr may be simply calculated from stator current components (relying on
knowledge of the rotor time constant of the machine).

If rotor angle or rotor speed is known (see Figure 36 and Figure 37 respectively), then we
have managed to determine the rotor flux position θλr. This information is essential to
achieve optimum control.

4.4.4 Detailed explanation about field weakening operation

Many applications need to operate induction machines above their rated speed: this is
achieved by means of field weakening.

The conventional method for the field weakening operation is to vary the rotor flux reference
in proportion to the inverse of the rotor speed ωr.

In this approach, if maximum inverter modulation index is required when attaining rated
speed and rated power, then the voltage margin, enough to regulate current beyond that
point, is not available: this is caused by increased voltage drop across the stator leakage
inductance.

That’s why, when 1/ωr method is implemented, the inverter voltage is generally limited at
95% of its means.

The AC IM IFOC software library, however, makes use of a maximum torque capability
scheme [2], which aims to exploit the system resources completely.

In both cases, DC bus voltage limitation (VDCmax), inverter current rating and motor thermal
rating (usually, in order to provide better dynamic response, the inverter current rating is
higher than that of the machine) must be considered, and a precise knowledge of motor
parameters, such as magnetizing inductance Lm, rotor leakage inductance Llr, rotor
resistance rr, is required.

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−Δ+⎟⎟⎠

⎞
⎜⎜⎝

⎛
=⎟⎟⎠

⎞
⎜⎜⎝

⎛

+ nm

dr
nds

rnm

dr

nm

dr

L
it

LL

r
r

rr λλλ λ
τ

λλ λ

1

0)(=++= r
qr

r
qsm

r
qrlr

r
qr iiLiL λλλλλ

r
qs

r

mr
qr i

L
Li λλ −=

r
qsr

dr

m

r

r
r

dr

r
qrr

rrs iL
L
rir

r

λ
λλ

λ

λλ λλ
ωωω =

⋅
−=−=

Library functions UM0324

64/105

There are two different field weakening operation regions (see Figure 39):

● the constant power region, where rotor flux is decreased inversely with the speed
(considering the influence of the voltage drop across Lls) while slip frequency increases
until breakdown value;

● the constant power·speed region, where rotor flux is decreased, but keeping the slip
frequency fixed at breakdown value.

Figure 39. Torque vs. speed characteristic curve

In order to help you select the most suitable values of flux reference and torque saturation
(as needed by the CalcRotFlxSlipFreq function), a spreadsheet is available, to be filled out
with the following system parameters:

● Mains AC voltage, rms, Volt (cell B1, Volt);

● motor rated current, peak amplitude, (cell B2, Ampere); as said before, this data is to
be matched with inverter current rating;

● motor rated magnetizing current, peak amplitude, (cell B3, Ampere);

● magnetizing inductance Lm, (cell B4, Henry);

● leakage inductance Lls (Llr), (cell B5, Henry);

● stator resistance rs, (cell B6, Ohm)

● rotor resistance rr , (cell B7, Ohm);

● maximum measurable current Imax, peak amplitude, (cell B8, Ampere).

UM0324 Library functions

 65/105

As a result of data processing, the following information can be obtained:

● highest frequency of constant torque region, i.e. the maximum allowable frequency
before entering field weakening; content of cell B13 should be inserted (as parameter
RATED_FREQ) in MC_ACMotor_Prm.h (see Section 2.2.5);.

● reference values of ids, in q1.15 format, according to increasing stator frequency;
column P should be copied (as hFlux_Reference) in MC_ACMotor_Prm.h.

● saturation values of current component iqs, in q1.15 format, according to increasing
stator frequency; column Q should be copied (as hTorque_Reference) in
MC_ACMotor_Prm.h.

4.5 Reference frame transformations: MC_Clarke_Park.h
module

4.5.1 Overview

This module, intended for AC machines (induction, synchronous and PMSM), is designed to
perform transformations of electric quantities between frames of reference that rotate at
different speeds.

Based on the arbitrary reference frame theory, the module provides three functions, named
after two pioneers of electric machine analysis, E. Clarke and R.H. Park.

These functions implement three variable changes that are required to carry out field-
oriented control (FOC):

● Clarke transforms stator currents to a stationary orthogonal reference frame (named qd
frame, see Figure 40);

● then, from that arrangement, Park transforms currents to a frame that rotates at an
arbitrary speed (which, in IFOC drive, is synchronous with the rotor flux);

● Reverse Park transformation brings back stator voltages from a rotating qd frame to a
stationary one.

Library functions UM0324

66/105

Figure 40. Clarke, Park, and reverse Park transformations

4.5.2 List of available C functions

● Clarke on page 66

● Park on page 67

● Rev_Park on page 67

● Rev_Park_Circle_Limitation on page 68

Clarke

Synopsis Curr_Components Clarke (Curr_Components Curr_Input)

Description This function transforms stator currents ias and ibs (which are
directed along axes each displaced by 120 degrees) into currents iα
and iβ in a stationary qd reference frame; q,d axes are directed
along paths orthogonal to each other.

See Section 4.5.3 for the details.

Input Stator currents ias and ibs (in q1.15 format) as members of the
variable Curr_Input, which is a structure of type Curr_Components.

Returns Stator currents iα and iβ (in q1.15 format) as members of a structure
of type Curr_Components.

Functions called mul_q15_q15_q31

UM0324 Library functions

 67/105

Park

Rev_Park

Synopsis Curr_Components Park (Curr_Components Curr_Input, s16 Theta)

Description The purpose of this function is to transform stator currents iα and iβ,
which belong to a stationary qd reference frame, to a rotor flux
synchronous reference frame (properly oriented), so as to obtain iqs
and ids.

See Section 4.5.3 for details.

Input Stator currents iα and iβ (in q1.15 format) as members of the variable
Curr_Input, which is a structure of type Curr_Components; rotor flux
angle θλr (65536 pulses per revolution).

Returns Stator currents iqs and ids (in q1.15 format) as members of a
structure of type Curr_Components.

Functions called mul_q15_q15_q31

Synopsis Volt_Components Rev_Park (Volt_Components Volt_Input)

Description This function transforms stator voltage vq and vd, belonging to a
rotor flux synchronous rotating frame, to a stationary reference
frame, so as to obtain vα and vβ.

See Section 4.5.3 for details.

Input Stator voltages vqs and vds (in q1.15 format) as members of the
variable Volt_Input, which is a structure of type Volt_Components.

Returns Stator voltages vα and vβ (in q1.15 format) as members of a
structure of type Volt_Components.

Functions called mul_q15_q15_q31

Library functions UM0324

68/105

Rev_Park_Circle_Limitation

4.5.3 Detailed explanation about reference frame transformations

Induction machines show very complex voltage equations, because of the time-varying
mutual inductances between stator and rotor circuits.

By making a change of variables, that refers stator and rotor quantities to a frame of
reference rotating at any angular velocity, it is possible to reduce the complexity of these
equations.

This strategy is often referred to as the Reference-Frame theory [1].

Supposing fax, fbx, fcx are three-phase instantaneous quantities directed along axis each
displaced by 120 degrees, where x can be replaced with s or r to treat stator or rotor
quantities (see Figure 41); supposing fqx, fdx, f0x are their transformations, directed along
paths orthogonal to each other; the equations of transformation to a reference frame
(rotating at an arbitrary angular velocity ω) can be expressed as:

where θ is the angular displacement of the q-d reference frame at the time of observation,
and θ0 that displacement at t=0 (see Figure 41).

Synopsis void RevPark_Circle_Limitation(void)

Description After the two new values (Vd and Vq) of the stator voltage producing
flux and torque components of the stator current, have been
independently computed by flux and torque PIDs, it is necessary to
saturate the magnitude of the resulting vector, equal to

passing before them to the SVPWM block. The purpose of this
routine is to perform the saturation. Refer to Section 4.5.4: Circle
limitation on page 70 for more detailed information

Input None.

Returns None.

Note The limitation of the stator voltage vector must be done in
accordance with the PWM frequency as shown in Table 2: PWM
frequency vs maximum duty cycle relationship on page 51.

Functions called None.

22
qd VV +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ −

⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ −

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

cx

bx

ax

x

dx

qx

qdox

f
f
f

f
f
f

f

2
1

2
1

2
1

3
2sin

3
2sinsin

3
2cos

3
2coscos

3
2

0

πθπθθ

πθπθθ

UM0324 Library functions

 69/105

Figure 41. Transformation from an abc stationary frame to a qd rotating frame

With Clark’s transformation, stator currents ias and ibs (which are directed along axes each
displaced by 120 degrees) are resolved into currents ia and ib on a stationary qd reference
frame.

Appropriate substitution into the general equations (given above) yields:

In Park’s change of variables, stator currents iα and iβ, which belong to a stationary qd
reference frame, are resolved to a rotor flux synchronous reference frame (properly
oriented), so as to obtain iqs and ids.

Consequently, with this choice of reference, ω=ωλr; thus:

On the other hand, reverse Park transformation takes back stator voltage vq and vd,
belonging to a rotor flux synchronous rotating frame, to a stationary reference frame, so as
to obtain vα and vβ:

3
2 bsas

as

iii

ii
+=

=

β

α

θθ
θθ

β

βα

sincos

cossin

iii

iii

ads

qs

+=

+−=

θθ
θθ

β

α

sincos

cossin

dsqs

dsqs

vvv

vvv

+=

+−=

Library functions UM0324

70/105

4.5.4 Circle limitation

As discussed above, FOC allows to separately control the torque and the flux of a 3-phase
permanent magnet motor. After the two new values(and) of the stator voltage
producing flux and torque components of the stator current, have been independently
computed by flux and torque PIDs, it is necessary to saturate the magnitude of the resulting
vector () before passing them to the SVPWM block.

The saturation boundary is normally given by the value (S16_MAX=32767) which produces
the maximum output voltage magnitude (corresponding to a duty cycle going from 0% to
100%).

Nevertheless, when using three shunt resistor configuration and depending on PWM
frequency, it might be necessary to limit the maximum PWM duty cycle to guarantee the
proper functioning of the stator currents reading block.

For this reason, the saturation boundary could be a value slightly lower than S16_MAX
depending on PWM switching frequency when using three shunt resistor configuration.

Table 2 on page 51, repeated below for convenience, shows the maximum applicable
modulation index as a function of PWM switching frequency when using the STR750-
MCKIT.

Note: The figures above were measured using the MB459 board. This evaluation platform is
designed to support several motor driving topologies (PMSM and AC induction) and current
reading strategies (single and three shunt resistors). Therefore, the figures provided in
should be understood as a starting point and not as a best case.

The RevPark_Circle_Limitation function performs the discussed stator voltage
components saturation, as illustrated in Figure 42.

PWM frequency Max duty cycle Max modulation index (MMI)

Up to 11.4kHz 100% 100%

12.2kHz 99.5% 99%

12.9kHz 99% 98%

13.7kHz 98.5% 97%

14.4kHz 98% 96%

15.2kHz 97.5% 95%

16kHz 97% 94%

16.7kHz 96.5% 93%

17.5kHz 96% 92%

*
dV *

qV

|V| *
r

UM0324 Library functions

 71/105

Figure 42. Circle limitation working principle

Vd and Vq represent the saturated stator voltage component to be passed to the SVPWM
block. From geometrical considerations, it is possible to draw the following relationship:

In order to speed up the computation of the above equations while keeping an adequate
resolution, the value

is computed and stored in a look-up table for different values of . Furthermore,
considering that MMI depends on the selected PWM frequency, a look-up table is stored in
‘MC_Clarke_Park.h’ (with MMI ranging from 92 to 100).

Once you have selected the required PWM switching frequency, you should uncomment the
Max Modulation Index definition corresponding to the selected PWM frequency in the
MC_Control_Param.h definitions list shown below.

//#define MAX_MODULATION_100_PER_CENT // 100% max modulation index
//#define MAX_MODULATION_99_PER_CENT // 99% max modulation index
//#define MAX_MODULATION_98_PER_CENT // 98% max modulation index
//#define MAX_MODULATION_97_PER_CENT // 97% max modulation index
//#define MAX_MODULATION_96_PER_CENT // 96% max modulation index
//#define MAX_MODULATION_95_PER_CENT // 95% max modulation index
//#define MAX_MODULATION_94_PER_CENT // 94% max modulation index
//#define MAX_MODULATION_93_PER_CENT // 93% max modulation index
//#define MAX_MODULATION_92_PER_CENT // 92% max modulation index

|V|
S16_MAXMMIVV

*

*
d

d r
⋅⋅

=

|V|
S16_MAXMMIV

V
*

*
q

q r
⋅⋅

=

|V|
S16_MAXMMI

*

2

r
⋅

|V| *
r

Library functions UM0324

72/105

For information on selecting the PWM switching frequency, you will find advice in
Section A.2 on page 98. To determine the max modulation index corresponding to the PWM
switching frequency, refer to Table 2 on page 51.

4.6 Encoder feedback processing: 75x_encoder.c module

4.6.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_ encoder .h header file:

● ENC_Init on page 72

● ENC_GetPosition on page 73

● ENC_Get_Electrical_Angle on page 73

● ENC_Get_Mechanical_Angle on page 73

● ENC_ResetEncoder on page 74

● ENC_Clear_Speed_Buffer on page 74

● ENC_Get_Speed on page 74

● ENC_Get_Average_Speed on page 75

● TIMx_UP_IRQHandler - interrupt routine on page 75

ENC_Init

Synopsis void ENC_Init(void)

Description The purpose of this function is to initialize the encoder timer. The
peripheral clock, input pins and update interrupt are enabled. The
peripheral is configured in 4X mode, which means that the counter is
incremented/decremented on the rising/falling edges of both timer
input 1 and 2 (TIMx_TI0 and TIMx_TI1 pins).

Functions called MRCC_PeripheralClockConfig
GPIO_Init
EIC_IRQInit
TIM_StructInit, TIM_Init, TIM_ClearFlag, TIM_ITConfig,
TIM_ResetCounter, Tim_Cmd

See also STR750 datasheet: synchronizable standard timer.

UM0324 Library functions

 73/105

ENC_GetPosition

ENC_Get_Electrical_Angle

ENC_Get_Mechanical_Angle

Synopsis u32 ENC_GetPosition(void)

Description This function returns the encoder timer value, giving a direct reading
of the rotor position from 0 to 4*(number of encoder pulses per
revolution). For the SHINANO motor included with the STR750-
MCKIT, the encoder delivers 400 pulses per revolution. This routine
returns: 0 for 0 degrees, 4*400/2=800 for 180 degrees.

Input None

Output Unsigned 32 bits

Functions called None

See also STR750 datasheet: synchronizable standard timer.

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the electrical angle in signed 16-bit format. This
routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 degrees,
+32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the mechanical angle in signed 16-bit format. This
routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 degrees,
+32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None

Note Link between Electrical/Mechanical frequency/RPM:

Electrical frequency = number of pair poles x mechanical frequency
RPM speed = 60 x Mechanical frequency (RPM: revolutions per minute)

Example: electrical frequency = 100 Hz, motor with 8 pair poles:
100Hz electrical <-> 100/8 =12.5Hz mechanical <-> 12.5 x 60=750
RPM

Library functions UM0324

74/105

ENC_ResetEncoder

ENC_Clear_Speed_Buffer

ENC_Get_Speed

Synopsis void ENC_resetEncoder(void)

Description This function resets the encoder timer (hardware register) value to
zero.

Functions called TIM_ResetCounter

See also STR750 datasheet: synchronizable standard timer.

Synopsis void ENC_Clear_Speed_Buffer(void)

Description This function resets the buffer used for speed averaging.

Functions called None

Synopsis s16 ENC_Get_Speed(void)

Description This function returns the rotor speed in Hz. The value returned is
given with 0.1Hz resolution, which means that 1234 is equal to 123.4
Hz.

Input None

Output Signed 16 bits

Functions called None

Note This routine returns the mechanical frequency of the rotor. To find the
electrical speed, use the following conversion:

electrical frequency = number of pole pairs * mechanical frequency

UM0324 Library functions

 75/105

ENC_Get_Average_Speed

TIMx_UP_IRQHandler - interrupt routine

Synopsis s16 ENC_Get_Average_Speed(void)

Description This function returns the average rotor speed in Hz.The value
returned is given with 0.1Hz resolution, which means that 1234 is
equal to 123.4 Hz.

Input None

Output Signed 16 bits

Functions called ENC_Get_Speed()

Note The averaging is done with the values stored in ‘Speed_Buffer[]’. The
size of this buffer is set through the ‘SPEED_BUFFER_SIZE’
statement, which must be equal to a power of 2 to allow the use of
the shift operation for divisions.

This routine returns the mechanical frequency of the rotor. To find the
electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs

Synopsis void TIMx_UP_IRQHandler(void)

Description This is the encoder timer (TIMER 0, 1 or 2) update routine. An
interruption is generated whenever an overflow/underflow of the
counter value occurs (TIM_CNT). The ‘Encoder_Timer_Overflow’
variable is then incremented.

Functions called None

Note This is an interrupt routine.

See also STR750 Datasheet: Synchronizable Standard Timer.

Library functions UM0324

76/105

4.7 Tachogenerator feedback processing: 75x_tacho.c module

4.7.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_ encoder .h header file:

● TAC_TachoTimerInit on page 76

● TAC_InitTachoMeasure on page 77

● TAC_GetRotorFreqInHz on page 77

● TAC_GetRotorFreq on page 78

● GetLastTachoPeriod on page 78

● GetAvrgTachoPeriod on page 78

● TAC_IsTimedOut on page 79

● TAC_ClrTimeOut on page 79

● TAC_GetCaptCounter on page 79

● TAC_ClrCaptCounter on page 80

● TAC_StartTachoFiltering on page 80

● TAC_ValidSpeedInfo on page 80

● TIMx_IC12_IRQHandler on page 81

● TIMx_UP_IRQHandler on page 81

TAC_TachoTimerInit

Synopsis void TAC_TachoTimerInit(void)

Description The purpose of this function is to initialize the timer that will perform the
tacho signal period measurement (the timer can be chosen in the
75x_tacho_prm.h file). The peripheral clock and the capture interrupt
are enabled, and the timer is initialized in “clear on capture” mode.

Functions called MRCC_PeripheralClockConfig
EIC_IRQInit
TIM_DeInit, TIM_StructInit, TIM_Init, TIM_ClearFlag, TIM_ITConfig,
TIM_ResetCounter, Tim_Cmd

Note The timer starts counting at the end of the routine.

See also STR750 datasheet: synchronizable standard timer.

UM0324 Library functions

 77/105

TAC_InitTachoMeasure

TAC_GetRotorFreqInHz

Synopsis void TAC_InitTachoMeasure(void)

Description This function clears the software FIFO where the latest speed data
are stored. This function must be called every time the motor is started
to initialize the speed measurement process.

Input None.

Output None.

Functions called TIM_ITConfig, TIM_ResetCounter, TIM_Cmd, TIM_ITConfig

Note The first measurements following this function call are done without
filtering (the rolling average mechanism is disabled).

See also STR750 datasheet: synchronizable standard timer.

Synopsis u16 TAC_GetRotorFreqInHz (void)

Description This routine returns the rotor frequency with [0.1Hz] definition. The
result is given by the following formula:

Frotor = K x (Fosc / (Capture + number of overflow x FFFF))

where K depends on the number of motor and tacho pole pairs.

Input None.

Output Rotor mechanical frequency, with 0.1Hz resolution, unsigned 16 bits
(direction cannot be determined using a tacho).

Functions called GetAvrgTachoPeriod, GetLastTachoPeriod (both private functions)

Note Result is zero if speed is too low (glitches at start for instance).
Excessive speed (or glitches) will result in a pre-defined value
returned (see Section 2.2.4 on page 21).

Maximum expectable accuracy depends on CKTIM: 60MHz will give
the best results.

Caution This routine returns the mechanical frequency of the rotor. To find the
electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs

Library functions UM0324

78/105

TAC_GetRotorFreq

GetLastTachoPeriod

GetAvrgTachoPeriod

Synopsis u16 TAC_GetRotorFreq (void)

Description This routine returns rotor frequency with a unit that can be directly
integrated (accumulated) to get the rotor angular position in the main
control loop.

Input None.

Output Rotor mechanical frequency with rad/PWM period unit
(2π rad = 0xFFFF), assuming the control loop is executed in each
and every PWM interrupt service routine.

Functions called GetAvrgTachoPeriod, GetLastTachoPeriod (both private functions)

Note Result is zero if speed is too low (glitches at start for instance).
Excessive speed (or glitches) will result in a pre-defined value
returned (see Section 2.2.4 on page 21).

Maximum expectable accuracy depends on CKTIM: 60MHz will give
the best results.

Caution This routine returns the mechanical frequency of the rotor. To find the
electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs

Synopsis u32 GetLastTachoPeriod(void)

Description This routine returns the rotor period based on the last tacho capture.

Input None.

Output Tacho signal period, unit is 1 CKTIM period, unsigned 32-bit format.

Functions called None.

Note This function is private to the 75x_tacho.c module.

Synopsis u32 GetAvrgTachoPeriod(void)

Description This routine returns returns the rotor period based on the average of
the four last tacho captures.

Input None.

Output Tacho signal period, unit is 1 CKTIM period, unsigned 32-bit format.

Functions called None.

Note This function is private to the 75x_tacho.c module.

UM0324 Library functions

 79/105

TAC_IsTimedOut

TAC_ClrTimeOut

TAC_GetCaptCounter

Synopsis bool TAC_IsTimedOut(void)

Description This routine indicates to the upper layer software that tacho
information has disappeared (or that the period of the signal has
drastically increased).

Input None.

Output Boolean, TRUE in case of time-out

Functions called None.

Note The time-out duration depends on tacho timer pre-scaler, which is
variable: the time-out is higher at low speed.

The boolean will remain set to TRUE until the TAC_ClrTimeOut is
called.

Synopsis void TAC_ClrTimeOut (void)

Description This routine clears the flag indicating that information is lost, or that
speed is decreasing sharply.

Input None.

Output None.

Note This function must be called to re-arm the time-out detection
mechanism and re-start rotor frequency measurements: the returned
frequency is 0 as long as the time-out flag is set.

Synopsis u16 TAC_GetCaptCounter(void)

Description This routine gives the number of tacho capture interrupts since the
last call to the TAC_ClrCaptCounter function.

Input None.

Output Unsigned 16-bit integer. This variable cannot roll-over (this is
prevented in the tacho capture routine itself): it will be limited to max
u16 value.

Note This function is typically used to monitor the interrupts activity (while
the motor is running, tacho-related interrupts must not be stopped or
too frequent).

See also TAC_ClrCaptCounter

Library functions UM0324

80/105

TAC_ClrCaptCounter

TAC_StartTachoFiltering

TAC_ValidSpeedInfo

Synopsis void TAC_ClrCaptCounter(void)

Description This routine clears the number of capture events variable.

Input None.

Output None.

Synopsis void TAC_StartTachoFiltering(void)

Description This routine initiates the tacho value smoothing mechanism. The
result of the next capture will be copied in all storage array locations
to have the first average equal to the last value.

Input None.

Output None.

Note The initialization of the FIFO used to do the averaging will be done
when the next tacho capture interrupt occurs. Consequently, the
TAC_GetRotorFreq will continue to return a raw period value until the
next interrupt event.

Synopsis bool TAC_ValidSpeedInfo(u16 hMinRotorFreq)

Description This routine indicates if the information provided by the
tachogenerator is reliable: this is particularly important at start-up,
when the signal of the tacho is very weak and cannot be properly
conditioned by the external circuitry (glitches). It is also used in start-
up functions to find out if the rotor shaft is turning at the right speed.

Input Rotor frequency (0.1Hz resolution) above which speed information is
not considered reliable (rolling averages cannot be computed).

Output Boolean, TRUE if the tacho provides clean signals.

Caution Because there is no way to differentiate rotation direction with a
tachogenerator, you must be aware that this routine may return
TRUE in certain conditions (re-start with very short or no stop time
and high inertia load). You should, therefore, manage a minimal
amount of time before re-starting.

This function is not effective if the start-up duration (time for the
voltage to settle) is much shorter than the time needed to obtain at
least two consecutive speed data.

UM0324 Library functions

 81/105

TIMx_IC12_IRQHandler

TIMx_UP_IRQHandler

4.7.2 Integration tips

In the MC_tacho_prm.h file of your project, select the Timer you have chosen and the input
channel on which the tacho signal arrives, using the right #define (see Section 2.2.4 on
page 21).

In the main.c module (or the c module just above 75x_tacho), include the 75x_tacho.h
file, call TAC_TachoTimerInit() after MCU reset and TAC_InitTachoMeasure()
before motor start-up. TAC_GetRotorFreqInHz returns a frequency directly with 0.1Hz,
while TAC_GetRotorFreq returns a value that can be directly accumulated in the FOC
algorithm to get the rotor angular position (the unit is 2π rad (that is 0xFFFF) per sampling
period).

4.7.3 Operating principle

Although the principle of measuring a period with a timer is quite simple,you must pay
attention to keeping the best resolution, in particular for signals such as the one provided by
a tachogenerator, which can vary with a ratio of up to 1:100.

Synopsis void TIMx_IC12_IRQHandler(void)

Description This function handles the capture event interrupt in charge of tacho
signal period measurement. It updates an array where the 4 latest
period measurements are stored, resets the overflow counter and
updates the clock prescaler to optimize the accuracy of the
measurement. If the average is enabled, the last captured
measurement is copied into the whole array. Period captures are
managed as follows:

● If too low (capture value below 0x5500), the clock prescaler is
decreased for the next measurement

● If too high (for example, the timer overflowed), the result is re-
computed as if there was no overflow and the prescaler is
increased to avoid overflows during the next capture.

Input None.

Output None.

Note This is an interrupt routine.

Synopsis void TIMx_UP_IRQHandler(void)

Description This function handles the overflow of the timer in charge of the tacho
signal period measurement. It updates a Counter of overflows, which
is reset when next capture occurs.

Input None.

Output None.

Note This is an interrupt routine.

Library functions UM0324

82/105

In order to have always the best resolution, the timer clock prescaler is constantly adjusted
in the current implementation.

The basic principle is to speed-up the timer if captured values are too low (for an example of
low periods, see Figure 43), and slow it down when the timer overflows between two
consecutive captures (see example of large periods in Figure 44).

The prescaler modification is done in the capture interrupt, taking advantage of the buffered
registers: the new prescaler value is taken into account only on the next capture event, by
the hardware, without disturbing the measurement.

Further details are provided in the flowcharts in Section A.4 on page 100.

Figure 43. Automatic tacho timer prescaler decrease

Figure 44. Automatic tacho timer prescaler increase

Figure 44 shows that the prescaler is not decreased although the captured value is below
0x5500, due to an overflow interrupt.

30 29 29 29

30 30 29 29

0x0000

0x5500

0xFFFF

Prescaler (preload)

Prescaler (active)

Transfer from preload to active on
next capture (= update) event

Capture Capture Capture Capture

Capture value is too low,
the prescaler is decreased

30 29 29 2930 29 29 29

30 30 29 2930 30 29 29

0x0000

0x5500

0xFFFF

Prescaler (preload)

Prescaler (active)

Transfer from preload to active on
next capture (= update) event

Capture Capture Capture Capture

Capture value is too low,
the prescaler is decreased

30 31 31 31

30 30 31 31

0x0000

0x5500

0xFFFF

Prescaler (preload)

Prescaler (active)

Transfer from preload to active on
next capture (= update) event

Capture Capture Capture Capture

Timer overflowed, the
prescaler is increased

ovf ovf

30 31 31 3130 31 31 31

30 30 31 3130 30 31 31

0x0000

0x5500

0xFFFF

Prescaler (preload)

Prescaler (active)

Transfer from preload to active on
next capture (= update) event

Capture Capture Capture Capture

Timer overflowed, the
prescaler is increased

ovf ovf

UM0324 Library functions

 83/105

4.7.4 Converting Hertz into pseudo frequency

From the definition of frequency (1Hz is equal to 2π rad.s-1), it is easy to define a pseudo
frequency format, so that the rotor angular position can be easily determined by
accumulating the rotor speed information every time the control loop is executed (for
example, during PWM update interrupt service routine). Providing that 2π = 0xFFFF (so that
angle roll-overs do not need to be managed), the frequency with 0.1Hz unit can easily be
converted into pseudo frequency using the following fomula:

4.8 Flux, torque and speed regulators: MC_PID_regulators
module

4.8.1 Overview

The MC_PID_regulators module contains all the functions required for implementing the
necessary PID regulators for controlling flux, torque and, in case of closed loop, motor
speed.

4.8.2 List of available functions and interrupt service routines

The following is a list of available functions in the MC_PID_regulators module:

● PID_Init on page 83

● PID_Flux_Regulator on page 84

● PID_Torque_Regulator on page 84

● PID_Speed_Regulator on page 85

● PID_Reset_Integral_terms on page 85

● PID_Speed_Coefficients_update on page 85

● PID_Integral_Speed_update on page 85

PID_Init

Fpseudo F 0.1Hz[]
0xFFFF

10 Fpwm Hz()×
-------------------------------------×=

Synopsis void PID_Init(void)

Description The purpose of this function is to initialize the PIDs for torque, flux
and speed regulation. For each one, a set of default values are
loaded: target (speed, torque or flux), proportional, integral and
derivative gains, lower and upper limiting values for the output.

Functions called None

Note Default values for PID regulators are declared and can be modified
in the MC_Control_Param.h file (see Section 2.2.2 on page 19).

Library functions UM0324

84/105

PID_Flux_Regulator

PID_Torque_Regulator

Synopsis s16 PID_Flux_regulator(PID_FluxTYPEDEF *PID_Flux, s16
qId_input)

Description The purpose of this function is to compute the proportional, integral
and derivative terms (if enabled, see
Id_Iq_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page
18) for the flux regulation.

Input PID_FluxTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output Signed 16 bits

Functions called None

Note Default values for the PID flux regulation are declared and can be
modified in the MC_Control_Param.h file (see Section 2.2.2 on page
19).

See also Figure 53 on page 102 shows the PID block diagram.

Synopsis s16 PID_Torque_regulator(PID_TorqueTYPEDEF *PID_Torque, s16
qIq_input)

Description The purpose of this function is to compute the proportional, integral
and derivative terms (if enabled, see
Id_Iq_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page
18) for the torque regulation.

Input PID_TorqueTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output signed 16 bits

Functions called None

Note Default values for the PID torque regulation are declared and can be
modified in the MC_Control_Param.h file (see Section 2.2.2 on page
19).

See also Figure 53 on page 102 shows the PID block diagram.

UM0324 Library functions

 85/105

PID_Speed_Regulator

PID_Reset_Integral_terms

PID_Speed_Coefficients_update

PID_Integral_Speed_update

Synopsis s16 PID_Speed_regulator(PID_SpeedTYPEDEF *PID_Speed, s16
speed)

Description The purpose of this function is to compute the proportional, integral and
derivative terms (if enabled, see
SPEED_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page
18) for the speed regulation.

Input PID_SpeedTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output signed 16 bits

Functions called None

Caution Default values for the PID speed regulation are declared and can be
modified in the MC_Control_Param.h file (see Section 2.2.2 on page
19).

See also Figure 54 on page 103 shows the PID block diagram.

Synopsis void PID_Reset_Integral_terms(void)

Description The purpose of this function is to reset all the integral terms of the
torque, flux and speed PID regulators.

Synopsis void PID_Speed_coefficients_update(s16 motor_speed)

Description This function automatically computes the proportional, integral and
derivative gain for the speed PID regulator according to the actual
motor speed. The computation is done following a linear curve
based on 4 set points. See Section 4.8.5 on page 87 for more
information.

Functions called None

Caution Default values for the four set points are declared and can be
modified in the MC_Control_Param.h file (see Section 2.2.2 on page
19).

Synopsis void PID_Integral_Speed_update(s32 value)

Description The purpose of this function is to load the speed integral term with a default
value.

Library functions UM0324

86/105

4.8.3 PID regulator theoretical background

The regulators implemented for Torque, Flux and Speed are actually Proportional Integral
Derivative (PID) regulators (see note below regarding the derivative term). PID regulator
theory and tuning methods are subjects which have been extensively discussed in technical
literature. This section provides a basic reminder of the theory.

PID regulators are useful to maintain a level of torque, flux or speed according to a desired
target.

Figure 45. PID general equation

Equation 1 corresponds to a classical PID implementation, where:

● Kp is the proportional coefficient,

● Ki is the integral coefficient.

● Kd is the differential coefficient.

Note: As mentioned in Figure 45, the derivative term of the PID can be disabled independently
(through a compiler option, see 75x_MCconf.h file) for the torque/flux or the speed
regulation; a PI can then be quickly implemented whenever the system doesn’t require a
PID control algorithm.

4.8.4 Regulator sampling time setting

The sampling time needs to be modified to adjust the regulation bandwidth. As an
accumulative term (the integral term) is used in the algorithm, increasing the loop time
decreases its effects (accumulation is slower and the integral action on the output is
delayed). Inversely, decreasing the loop time increases its effects (accumulation is faster
and the integral action on the output is increased). This is why this parameter has to be
adjusted prior to setting up any coefficient of the PID regulator.

In order to keep the CPU load as low as possible and as shown in equation (1) in Figure 45,
the sampling time is directly part of the integral coefficient, thus avoiding an extra
multiplication. Figure 46 describes the link between the time domain and the discrete
system.

torque = f(rotor position)
flux = f(rotor position)

torque = f(rotor speed)

torque and flux regulation for maximum

torque regulation for speed regulation
of the system

system efficiency

Where: Error of the system observed at time t = TErrorsysT

ErrorsysT 1– Error of the system observed at time t = T - Tsampling

f XT() Kp ErrorsysT
× Ki Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–()×+

0

T

∑×+= (1)

Derivative term can be disabled

UM0324 Library functions

 87/105

Figure 46. Time domain to discrete PID equations

In theory, the higher the sampling rate, the better the regulation. In practice, you must keep
in mind that:

● The related CPU load will grow accordingly.

● For speed regulation, there is absolutely no need to have a sampling time lower than
the refresh rate of the speed information fed back by the external sensors; this
becomes especially true when a tacho-generator sensor is used while driving the motor
at low to medium speed.

As discussed in Section 2.2.2 on page 19, the speed regulation loop sampling time can be
customized by editing the PID_SPEED_SAMPLING_TIME parameter in the
MC_Control_Param.h header file. The flux and torque PID regulator sampling rates are
given by the relationship

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see also
Section A.2 on page 98); its value is 8-bit long.

4.8.5 Adjusting speed regulation loop Ki, Kp and Kd vs motor frequency

Depending on the motor frequency, it might be necessary to use different values of Kp, Ki
and Kd.

These values have to be input in the code to feed the regulation loop algorithm. A function
performing linear interpolation between four set-points
(PID_Speed_Coefficient_update) is provided as an example in the software library
(see MC_PID_regulators.c) and can be used in most cases, as long as the coefficient
values can be linearized. If that is not possible, a function with a larger number of set-points
or a look-up table may be necessary.

To enter the four set-points, once the data are collected, edit the MC_Control_param.h
file and fill in the field dedicated to the Ki, Kp and Kd coefficient calculation as shown below.

f XT() Kp ErrorsysT
× ki Ts Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–()×+

0

T

∑×+=

f t() Kp Errorsys t()× Ki Errorsys0

t∫× t()dt Kd td
d Errorsys t()()×+ +=Time domain

Discrete
 domain

ki Ts× Ki=
(sampling done at Fs = 1/Ts frequency)

1_
_2

+
⋅=

RATEREP
FREQPWMrate sampling PIDs torque andFlux

Library functions UM0324

88/105

//Settings for min frequency
#define Freq_Min 10 // 1 Hz mechanical
#define Ki_Fmin 1000 // Frequency min coefficient settings
#define Kp_Fmin 2000
#define Kd_Fmin 3000

//Settings for intermediate frequency 1
#define F_1 50 // 5 Hz mechanical
#define Ki_F_1 2000 // Intermediate frequency 1 coefficient settings
#define Kp_F_1 1000
#define Kd_F_1 2500

//Settings for intermediate frequency 2
#define F_2 200 // 20 Hz mechanical
#define Ki_F_2 1000 // Intermediate frequency 2 coefficient settings
#define Kp_F_2 750
#define Kd_F_2 1200

//Settings for max frequency
#define Freq_Max 500 // 50 Hz mechanical
#define Ki_Fmax 500 // Frequency max coefficient settings
#define Kp_Fmax 500
#define Kd_Fmax 500

Once the motor is running, integer, proportional and derivative coefficients are computed
following a linear curve between F_min and F_1, F_1 and F_2, F_2 and F_max (see
Figure 47). Note that F_min, F_1, F_2, F_max are mechanical frequencies, with 0.1 Hz
resolution (for example F_1 = 1234 means F_1 = 123.4Hz).

Figure 47. Linear curve for coefficient computation

Disabling the linear curve computation routine, 75x_it.c module

If you want to disable the linear curve computation, you must comment out the
PID_Speed_Coefficients_update(..) routine. In this case, the default values for Ki,
Kp, Kd for torque, flux and speed regulation are used. See PID_TORQUE_Kx_DEFAULT,
PID_FLUX_Kx_DEFAULT, PID_SPEED_Kx_DEFAULT, in the MC_control_Param.h file.

 Rotor mechanical
frequencyF_maxF_2F_1F_min

Ki_Fmin, Kp_Fmin, Kd_Fmin

Ki_Fmax, Kp_Fmax

Ki_F_1, Kp_F_1, Kd_F_1

Ki_F_2, Kp_F_2, Kd_F_2

Ki, Kp, Kd

Kd_Fmax

UM0324 Library functions

 89/105

To disable the linear curve computation routine in 75x_TBtimer:

void TB_IRQHandler(void)
{
[…]
 if(State == RUN)
 {
 if ((wGlobal_Flags & CLOSED_LOOP) == CLOSED_LOOP)
 {
 […]
 //PID_Speed_Coefficients_update(hRot_Freq_Hz); //to be commented out
 […]
}

4.9 Main interrupt service routines: 75x_it module

4.9.1 Overview

The 75x_it module can be used to describe all the exception subroutines that might occur
within your application. When an interrupt happens, the software will automatically branch to
the corresponding routine accordingly with the interrupt vector table.

With the exception of the ADC and PWM emergency stop interrupt requests, all the routines
are empty, so that you can write your own code for exceptios handlers and peripheral
interrupt requests.

4.9.2 List of non-empty interrupt service routines

As mentioned above only two interrupts are managed by motor control tasks:

● PWM_EM_IRQHandler on page 89

● ADC_IRQHandler on page 90

PWM_EM_IRQHandler

Synopsis void PWM_EM_IRQHandler(void)

Description The purpose of this function is to manage an Emergency Stop
signal on the dedicated emergency pin. In particular, PWM outputs
are disabled, the main state machine is put into FAULT state.

Input None.

Returns None.

Functions called PWM_ClearFlag, PWM_ITConfig

See also Synchronizable PWM Timer section in STR750 Reference manual

Library functions UM0324

90/105

ADC_IRQHandler

4.10 General purpose time base: 75x_TBtimer module

4.10.1 Overview

The purpose of the 75x_TBtimer module is to generate a time base that can be used by
the other modules of the applications.

4.10.2 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_ TBtimer.c source file:

● TB_StartUpInit on page 91

● TB_Timebase_Timer_Init on page 91

● TB_Wait on page 92

● TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed, TB_DisplayDelay_IsElapsed
on page 92

● TB_Set_Delay_500us, TB_Set_DisplayDelay_500us, TB_Set_StartUp_Timeout on
page 92

● TB_IRQHandler on page 93

Synopsis void ADC_IRQHandler(void)

Description The purpose of this function is to handle the ADC interrupt
request.

The end of the stator current conversions interrupt routine (JECH
in case of ICS, EOC in case of three shunt resistors) is used to
trigger execution of the IFOC algorithm. Moreover, the general
purpose conversions are also started in this ISR.

Input None.

Returns None.

Functions called IFOC_Model

In THREE_SHUNT configuration: SVPWM_3ShuntGPADCConfig

In ICS configuration: IFOC_Model

See also Section 4.2.4 and Section 4.3.3 on page 54 for more details.

UM0324 Library functions

 91/105

TB_StartUpInit

TB_Timebase_Timer_Init

Synopsis void TB_StartUpInit(void)

Description This function performs all the operations necessary for initializing
both hardware and software every time the motor is restarted.

In particular, speed feedback buffer and PID references are
initialized and a 50% duty cycle is generated for about 2msec for
loading the boot capacitance of high side drivers.

Input None.

Returns None.

Note This routine exits after the 2msec required for loading boot
capacitance of high side drivers.

Caution None.

Functions called PID_Reset_Integral_terms, IFOC_Init, TB_Set_StartUp_Timeout,
PWM_CtrlPWMOutputs, TB_StartUp_Timeout_IsElapsed,
TB_Set_StartUp_Timeout

If working with encoder:

ENC_Clear_Speed_Buffer

If working with tachogenerator:

TAC_InitTachoMeasure

Synopsis void TB_Timebase_Timer_Init(void)

Description The purpose of this function is to initialize the Timebase Timer.
The peripheral clock, interrupt, autoreload value and counter
mode are setup. The peripheral is configured to generate an
interrupt every 500 µs, thus providing a general purpose
timebase.

Input None

Returns None

Functions called EIC_IRQInit, TB_StructInit, TB_Init, TB_ITConfig, TB_Cmd,
TB_ResetCounter, TB_ResetCounter

Library functions UM0324

92/105

TB_Wait

TB_Set_Delay_500us, TB_Set_DisplayDelay_500us, TB_Set_StartUp_Timeout

TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed,
TB_DisplayDelay_IsElapsed

Synopsis void TB_Wait(u16 time)

Description This function produces a programmable delay equal to variable
‘time’ multiplied by 500µs.

Input Unsigned 16 bit

Returns None

Functions called None

Caution This routine exits only after the programmed delay has elapsed.
Meanwhile, the code execution remains frozen in a waiting loop.
Care should be taken when this routine is called at
main/interrupt level: a call from an interrupt routine with a higher
priority than the timebase interrupt will freeze code execution.

Synopsis void TB_Set_Delay_500us(u16)

void TB_Set_DisplayDelay_500us(u16)

void TB_Set_StartUp_Timeout(u16)

Description These functions are used to respectively update the values of the
hTimebase_500us, hTimebase_display_500us and
hStart_Up_TimeBase_500us variables. They are used to maintain
the main state machine in FAULT state, to set the refresh rate of the
LCD and the Start up timeout.

Input Unsigned 16 bits

Returns None

Functions called None

Synopsis bool TB_StartUp_Timeout_IsElapsed(void)

bool TB_Delay_IsElapsed(void)

bool TB_DisplayDelay_IsElapsed(void)

Description These functions return TRUE if the related delay is elapsed,
FALSE otherwise.

Input None

Returns Boolean

Functions called None

UM0324 Library functions

 93/105

TB_IRQHandler

4.11 Application layer
The application layer is split into several modules, mainly for the control of the keys, LCD
display, temperature and bus voltage monitoring, and main loop. The following is a brief
description of these modules.

● main.c module

Contains the initialization and the main control loop of the overall firmware.

● MC_Keys.c module

Centralizes all information regarding the keyboard reading. Any action on the keyboard
is processed in the Keys_process routine.

● MC_Display.c module

Centralize all information regarding the LCD display management.

● 75x_LCD.c module

Contains some dedicated routines for the control of the LCD embedded with the starter
kit.

● MC_misc.c module

Contains some dedicated routines for monitoring the temperature of the power stage
and the bus voltage.

Synopsis void TB_IRQHandler(void)

Description This is the Timebase timer interrupt routine. It is executed every
500µs, as determined by TB_Timebase_Timer_Init and is used to
refresh various variables used mainly as counters (for example,
PID sampling time). Moreover, this routine implements the startup
torque ramp described in Section 3: Running the demo program
on page 26.

Input None

Returns None

Functions called IFOC_CalcFluxTorqueRef, TB_ClearFlag,

If Encoder is used:

ENC_Get_Average_Speed

If Tacho is used:

TAC_GetRotorFreqInHz

Note This is an interrupt routine

MISRA compliance UM0324

94/105

5 MISRA compliance

Based on the The Motor Industry Software Reliability Association’s Guidelines for the Use of
the C Language in Vehicle Based Software, the purpose of this section is to provide a report
of any MISRA deviation in the version 1.0 of the library modules.

5.1 Analysis method
The software library was checked for MISRA compliance using the IAR Embedded
Workbench® toolchain. The IAR Systems’ implementation is based on version 1 of the
MISRA C rules, dated April 1998.

5.2 Limitations
Compliance tests were performed on required MISRA rules only, and not on advisory rules.

Due to the extensive use of the STR750 standard library which itself is not fully MISRA
compliant (as of September 2006), the interaction (through function calls for example)
between the standard library and AC IM library modules necessarily induces non-
compliances.

5.2.1 MISRA compliance for AC IM library files

Table 3 shows the compliance with the MISRA required rules of each AC IM IFOC software
library module (excluding STR750 Standard Library modules).

Table 3. MISRA compliance of AC IM library files

Module name
MISRA

compliant
Deviation

MC_Clarke_Park.h Yes

MC_qmath.h Yes

MC_const.c Yes

MC_const.h Yes

MC_type.h Yes

75x_TBTimer.c Yes

75x_TBTimer.h Yes

MC_Globals.c Yes

MC_Globals.h Yes

MC_Display.c Yes

MC_Display.h Yes

MC_AC_motor_param.h Yes

75x_MClib.h Yes

MC_Control_Param.h Yes

UM0324 MISRA compliance

 95/105

75x_conf.h Yes

75x_MCconf.h Yes

MC_encoder_param.h Yes

75x_svpwm_3shunt.c
MISRA rule 45 non-compliance due to
STR750 standard library function call (see
Section 5.2.2).

75x_svpwm_3shunt.h Yes

75x_svpwm_ics.c Yes

75x_svpwm_ics.h Yes

Main.c Yes

75x_encoder.c Yes

75x_encoder.h Yes

75x_it.c Yes

75x_lcd.c Yes

75x_lcd.h Yes

MC_Keys.c Yes

MC_Keys.h Yes

MC_Misc.c Yes

MC_Misc.h Yes

75x_DAC.c Yes

75x_DAC.h Yes

75x_svpwm_ics_prm.h Yes

75x_svpwm_3shunt_prm.h Yes

MC_PID_Regulators.c Yes

MC_PID_Regulators.h Yes

MC_PID_Param.h Yes

75x_tacho.c Yes

75x_tacho.h Yes

MC_tacho_prm.h Yes

MC_IFOC_Drive.c Yes

MC_IFOC_Drive.h Yes

Table 3. MISRA compliance of AC IM library files

Module name
MISRA

compliant
Deviation

MISRA compliance UM0324

96/105

5.2.2 MISRA rule deviations

The only rule not respected in the AC IM IFOC software library is:

Rule number 45: “Type casting from any type to or from pointers shall not be used.”

This deviation occurs in the 75x_svpwm_3shunt.c module, and it is due to the definition
of the DMA_InitTypeDef type in the 75x_dma.h header file:

typedef struct
{
 u32 DMA_SRCBaseAddr;
 u32 DMA_DSTBaseAddr;
 u16 DMA_BufferSize;
 u16 DMA_SRC;
 u16 DMA_DST;
 u16 DMA_SRCSize;
 u16 DMA_SRCBurst;
 u16 DMA_DSTSize;
 u16 DMA_Mode;
 u16 DMA_M2M;
 u16 DMA_DIR;
}DMA_InitTypeDef;

Basically, the DMA_SRCBaseAddr and DMA_DSTBaseAddr fields which must contain
memory addresses should have been declared as pointers instead of unsigned 32bit.

UM0324 Additional information

 97/105

Appendix A Additional information

A.1 Adjusting CPU load related to IFOC algorithm execution
The Synchronizable-PWM Timer peripheral has the built-in capability of updating PWM
registers only after a given number of PWM semi-periods. This feature is handled by a
programmable repetition counter. It is particularly useful to adjust the CPU load related to
IFOC algorithm execution for a given PWM frequency (refer to STR750 Reference Manual
for more information on programmable repetition counter).

When using ICS, the injected chain of conversions for current reading is directly triggered by
a PWM register update event. Moreover, since the IFOC algorithm is executed at the end of
the injected chain of conversions in the related ISR, changing repetition counter has a direct
impact on IFOC refresh rate and thus on CPU load.

However, in the case of three shunt topology current reading, to ensure that the IFOC
algorithm is executed once for each PWM register update, it is necessary to keep the
synchronization between current conversions triggering and PWM signal. In the proposed
software library, this is automatically performed, so that you can reduce the frequency of
execution of the IFOC algorithm by simply changing the default value of the repetition
counter (the REP_RATE parameter in the MC_Control_Param.h header file). Figure 48
shows current sampling triggering, and IFOC algorithm execution with respect to PWM
period when REP_RATE is set to 3.

Figure 48. AD conversions for three shunt topology stator currents reading and
IFOC algorithm execution when REP_RATE=3

Note: Because three shunt resistor topology requires low side switches to be on when performing
current reading A/D conversions, the REP_RATE parameter must be an odd number in this
case.

Considering that the raw IFOC algorithm execution time is about 27.5µs when in three shunt
resistor stator current reading configuration, the related contribution to CPU load can be
computed as follows:

() 1001027.5
/21REP_RATE

F1001027.5
teRefresh_Ra

FLoad CPU 6PWM6PWM
% ⋅⋅⋅

+
=⋅⋅⋅= −−

Additional information UM0324

98/105

A.2 Selecting PWM frequency for 3 shunt resistor configuration
Beyond the well known trade-off between acoustical noise and power dissipation,
consideration should be given to selecting the PWM switching frequency using the AC IM
IFOC software library.

As discussed in Section 4.2.5 on page 43, depending on the PWM switching frequency, a
limitation on the maximum applicable duty cycle could occur if using three shunt resistor
configuration for current reading. Table 2: PWM frequency vs maximum duty cycle
relationship on page 51, summarizes the performance of the system when the software
library is used in conjunction with STR750-MCKIT hardware.

Note: The MB459 board is an evaluation platform; it is designed to support different motor driving
topologies (PMSM and AC induction) and current reading strategies (single and three shunt
resistors). Therefore, the figures given in Table 2 on page 51 should be understood as a
starting point and not as a best case.

Moreover, to keep the synchronization between TIM0 and PWM peripherals, it is always
necessary to finish executing the IFOC algorithm before the next PWM period begins as
shown in Figure 49.

Figure 49. AD conversions for three shunt topology stator currents reading and
IFOC algorithm execution when REP_RATE=1

Given that the raw execution time of the IFOC algorithm is around 27.5µs and that other
delays (such as the time necessary to enter ADC ISR) have to be considered, this limits to
about 12.5 kHz the maximum IFOC algorithm execution rate when using REP_RATE =1.
However, no limitations occur in the typical range of PWM frequencies when using
REP_RATE=3.

The following table summarizes the performance of the system for different PWM
frequencies.

UM0324 Additional information

 99/105

A.3 Fixed-point numerical representation
The AC IM IFOC software library uses fixed-point representation of fractional signed values.
Thus, a number n is expressed as

where m is the integer part (magnitude) and f the fractional part, and both m and f have fixed
numbers of digits.

In terms of two’s complement binary representation, if a variable n requires QI bits to
express - as powers of two - its magnitude (of which 1 bit is needed for the sign), QF bits –
as inverse powers of two - for its fractional part, then we have to allocate QI + QF bits for that
variable.

Therefore, given a choice of QI and QF, the variable representation has the following
features:

● Range: -2(QI-1) < n < 2(QI-1) – 2(-QF) ;

● Resolution: = 1 / 2QF.

The equation below converts a fractional quantity q to fixed-point representation n:

A common way to express the choice that has been made is the “q QI.QF” notation.

So, if a variable is stored in q3.5 format, it means that 3 bits are reserved for the magnitude,
5 bits for the resolution; the expressible range is from -4 to 3.96875, the resolution is
0.03125, the bit weighting is:

This software library uses the PU (“Per Unit”) system to express current values. They are
always referred to a base quantity that is the maximum measurable current Imax (which, for

Table 4. System performance when using STR750-MCKIT

PWM frequency Max applicable duty cycle Max IFOC algorithm execution rate

Up to 11.4kHz 100%

Equal to PWM frequency12.2kHz 99.5%

12.9kHz 99%

13.7kHz 98.5%

Equal to PWM frequency/2
(REP_RATE=3)

14.4kHz 98%

15.2kHz 97.5%

16kHz 97%

16.7kHz 96.5%

17.5kHz 96%

bit n. 7 6 5 4 3 2 1 0

value -4 2 1 1/2 1/4 1/8 1/16 1/32

fmn .=

()QFqfloorn 2⋅=

Additional information UM0324

100/105

the proposed hardware, can be estimated approximately at Imax = 0.6 / Rshunt); so, the “per
unit” current value is obtained by dividing the physical value by that base:

In this way, ipu is always in the range from -1 to +1. Therefore, the q1.15 format, which
ranges from -1 to 0.999969482421875, with a resolution of 0.000030517578125, is perfectly
suitable (taking care of the overflow value (-1)·(-1)=1) and thus extensively used.

Thus, the complete transformation equation from SI units is:

A.4 Tacho-based speed measurement flow charts
This section summarizes the main tasks achieved in the tacho capture interrupt in the form
of flow charts. The purpose of these flow charts is to help understand how the automatic
prescaler adjustment is done.

Figure 50. Tacho capture overview

max

..

I
i

i IS
PU =

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅= QF

MAX

IS
q I

ifloori 2..
15.1

Cnt<0xFFFF? Cnt++

End of array? Index = 0Index++

Did the timer
overflow?

Init rolling average?

Clear interrupt flag

See “no overflow”
diagram

Increase resolution if
possible

See “overflow”
diagram

Decrease resolution
if possible

Copy last value into
the whole array

Yes

No

No

Yes

Yes

YesNo

No

Cnt<0xFFFF? Cnt++

End of array? Index = 0Index++

Did the timer
overflow?

Init rolling average?

Clear interrupt flag

See “no overflow”
diagram

Increase resolution if
possible

See “overflow”
diagram

Decrease resolution
if possible

Copy last value into
the whole array

Yes

No

No

Yes

Yes

YesNo

No

UM0324 Additional information

 101/105

Figure 51. Processing captured value when timer did not overflow

Figure 52. Processing captured value when timer did overflow

Prescaler decreased
in prev. int?

Capture < 0x5500?

Is the prescaler
already 0?

Store current prescaler value + 1

Reset flag indicating decrement

Store current prescaler value

Store current prescaler value

Store current prescaler value

Decrease prescaler register

Set flag indicating decrement for next
capture interrupt

Yes

No
No

No

Yes

Store capture value

Prescaler decreased
in prev. int?

Capture < 0x5500?

Is the prescaler
already 0?

Store current prescaler value + 1

Reset flag indicating decrement

Store current prescaler value

Store current prescaler value

Store current prescaler value

Decrease prescaler register

Set flag indicating decrement for next
capture interrupt

Yes

No
No

No

Yes

Store capture value

Is overflow Cnt=0?

Does Capture
exceeds 16-bit

format?

Prescaler will
overflow?

Compute total number of clock
cycle (+0x10000 per overflow

Make it fit 16-bit by increasing PrscBuf

Set max value to CaptBuf and PrscBuf

Store capture value in CaptBuf

Store prescaler value in PrscBuf

Store CaptBuf and PrscBuf in array

Did previous capture
cause overflow?

Is prescaler at
max value
already?

Increase Timer clock presale

Set flag indicating increment for next
capture interrupt

Reset flag indicating increment

Is overflow Cnt=0?

Does Capture
exceeds 16-bit

format?

Prescaler will
overflow?

Compute total number of clock
cycle (+0x10000 per overflow

Make it fit 16-bit by increasing PrscBuf

Set max value to CaptBuf and PrscBuf

Store capture value in CaptBuf

Store prescaler value in PrscBuf

Store CaptBuf and PrscBuf in array

Did previous capture
cause overflow?

Is prescaler at
max value
already?

Increase Timer clock presale

Set flag indicating increment for next
capture interrupt

Reset flag indicating increment

Additional information UM0324

102/105

A.5 PID block diagrams
The following flow diagrams (Figure 53 and Figure 54) show the decision tree for the
computation of the torque/flux and speed regulation routines.

Figure 53. Torque/flux control loop block diagram

Integral term frozen

Clamp Output value to unsigned [PI(D) lower limit..PI(D) upper limit]

Target Torque/Flux

Torque/Flux error (signed 16 bit)

Proportional = Kp x Torque/Flux Error

Is PI output
saturated?

Is Output < PI(D) lower limit

return Output value

Reset Saturated Output Flag

Set Saturated Output Flag

No

Yes

No

Integral = Integral + Ki x Torque/Flux Error

Measured Torque/Flux

Clamp Output value to

 signed int domain
Differential = Kd x (Error Torque/Flux -
Previous Error Torque/Flux)

Output = Proportional/2^13 + Integral/2^16
+ Differential terms/2^13

or > PI(D) upper limit

(signed 16 bit)

If enabled
See
important
note in
section 2.2.1

UM0324 Additional information

 103/105

Figure 54. Speed control loop block diagram

A.6 Additional or up-to-date technical literature
More information can be found on the ST website (www.stmcu.com).

More specifically, the latest documents and software can be found directly at:
http://www.stmcu.com/inchtml-pages-str750.html.

In addition, FAQ and Forums can be found directly at :
http://www.stmcu.com/forumsid-17.html for STR7 general enquiries.

http://www.stmcu.com/forumsid-13.html for motor control related enquiries.

A.7 References
[1] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery and Drive
Systems, Wiley-IEEE Press, 2002.

[2] T. A. Lipo and D. W. Novotny, Vector Control and Dynamics of AC Drives, Oxford
University Press, 1996.

Integral term frozen

Clamp Output value to unsigned [PI(D) lower limit..PI(D) upper limit]

Target speed

Speed error (signed 16 bit)

Proportional = Kp x Speed Error

Is PI output
saturated?

Is Output < PI(D) lower limit

return Output value

Reset Saturated Output Flag

Set Saturated Output Flag

No

Yes

No

Integral = Integral + Ki x Slip Error

Current speed

Clamp Output value to
 signed int domainDifferential = Kd x (Error Speed -

Previous Error Speed)

Output = Proportional/2^8 + Integral/2^14
+ Differential terms/2^8

or > PI(D) upper limit

(signed 16 bit)

If enabled
See
important
note in
section 2.2.1

http://mcu.st.com/devicedocs-ST7MC2N6-15.html

Revision history UM0324

104/105

6 Revision history

Date Revision Changes

9-Feb-2006 1 Initial release.

UM0324

 105/105

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Getting started with tools
	1.1 Working environment
	1.2 Software tools
	Figure 1. JTAG interface for debugging and programming

	1.3 Library source code
	1.3.1 Download
	1.3.2 File structure
	Figure 2. File structure

	1.3.3 Starting the IAR toolchain

	1.4 Customizing the workspace for your STR750X derivative
	Figure 3. Device summary
	1.4.1 Inkarm_xxx.xcl file (internal/external flash or RAM based project)
	Figure 4. Extended linker file Inkarm_flash.xcl, flash memory length definition

	1.4.2 Extended linker file setting
	Figure 5. Extended linker file setting

	2 Getting started with the library
	2.1 Introduction to AC induction motor FOC drive
	Figure 6. FOC drive placed in a speed loop
	Figure 7. FOC structure

	2.2 How to customize hardware and software parameters
	2.2.1 Library configuration file: 75x_MCconf.h
	2.2.2 Drive control parameters: MC_Control_Param.h
	2.2.3 Incremental encoder parameters: MC_encoder_param.h
	2.2.4 Tachogenerator parameters: MC_tacho_prm.h
	2.2.5 AC induction motor parameters: MC_ACmotor_param.h
	Figure 8. Torque vs. speed characteristic curve

	2.3 How to define and add a c module
	Figure 9. Adding a new module

	3 Running the demo program
	Figure 10. Key function assignments
	Figure 11. Main.c state machine
	3.1 Open loop
	Figure 12. LCD menus in open loop
	Figure 13. Open loop start-up strategy

	3.2 Closed loop
	Figure 14. LCD menus in closed loop
	Figure 15. Closed loop start-up strategy

	3.3 Setting up the system when using ICS sensors
	3.3.1 Connecting the two ICS sensors to the motor and to STR750
	Figure 16. ICS hardware connections

	3.3.2 Selecting PHASE_A_CHANNEL and PHASE_B_CHANNEL

	3.4 How to build the system when using an incremental encoder
	Figure 17. Encoder output signals: counter operation

	3.5 Fault messages
	3.6 Note on debugging tools
	Figure 18. DBGC bit in PWM control register (extract from STR750 reference manual)

	4 Library functions
	4.1 Function description conventions
	4.2 Current reading in three shunt resistor topology and space vector PWM generation: 75x_svpwm_3shunt module
	4.2.1 Overview
	4.2.2 List of available functions
	4.2.3 Space vector PWM implementation
	Figure 19. Va and Vb stator voltage components
	Figure 20. SVPWM phase voltages waveforms
	Table 1. Sector identification

	4.2.4 Current sampling in three shunt topology and general purpose A/D conversions
	Figure 21. PWM and TIM0 synchronization (REP_RATE=1)
	Figure 22. Three shunt topology current sampling and GP A/D conversions integration (REP_RATE=1)

	4.2.5 Tuning delay parameters and sampling stator currents in three shunt resistor topology
	Figure 23. Inverter leg and shunt resistor position
	Figure 24. Low side switches gate signals (low modulation indexes)
	Figure 25. Low side Phase A duty cycle > DT+TN+ 2TS + TH + TDMA
	Figure 26. DT+TN+TS< Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and DDutyA-B<DT+TN+TS
	Figure 27. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and DDutyA-B<DT+TN+TS
	Figure 28. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and DDutyA-B>DT+TN+TS
	Figure 29. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and DDutyA-B>DT+TN+TS
	Figure 30. Low side duty cycle Phase A < DT+TN+TS and DDutyA-B > DT+TN+2TS+TH+TDMA
	Figure 31. Low side duty cycle Phase A < DT+TN+TS and DDutyA-B > DT+TN+2TS+TH+TDMA
	Figure 32. Low side duty cycle Phase A < DT+TN+TS and DT+TRise+TS < DDutyA-B < DT+TN+2TS+TH+TDMA
	Figure 33. Low side duty cycle Phase A < DT+TN+TS and DT+TRise+TS < DDutyA-B < DT+TN+2TS+TH+TDMA
	Figure 34. Low side duty cycle Phase A < DT+TN+TS and DDutyA-B< DT+TRise+TS
	Table 2. PWM frequency vs maximum duty cycle relationship

	4.3 Isolated current sensor reading and space vector PWM generation: 75x_svpwm_ICS module
	4.3.1 Overview
	4.3.2 List of available functions and interrupt service routines
	4.3.3 Current sampling in isolated current sensor topology and integrating general purpose A/D conversions
	Figure 35. Stator currents sampling and GP conversions in ICS configuration (REP_RATE=1)

	4.4 Induction motor IFOC vector control: MC_IFOC_Drive.c module
	4.4.1 Overview
	4.4.2 List of available C functions
	Figure 36. Rotor flux angle calculation (quadrature encoder)
	Figure 37. Rotor flux angle calculation (tachogenerator)
	Figure 38. Torque and flux optimization block

	4.4.3 Detailed explanation about indirect field oriented control (IFOC)
	4.4.4 Detailed explanation about field weakening operation
	Figure 39. Torque vs. speed characteristic curve

	4.5 Reference frame transformations: MC_Clarke_Park.h module
	4.5.1 Overview
	Figure 40. Clarke, Park, and reverse Park transformations

	4.5.2 List of available C functions
	4.5.3 Detailed explanation about reference frame transformations
	Figure 41. Transformation from an abc stationary frame to a qd rotating frame

	4.5.4 Circle limitation
	Figure 42. Circle limitation working principle

	4.6 Encoder feedback processing: 75x_encoder.c module
	4.6.1 List of available functions and interrupt service routines

	4.7 Tachogenerator feedback processing: 75x_tacho.c module
	4.7.1 List of available functions and interrupt service routines
	4.7.2 Integration tips
	4.7.3 Operating principle
	Figure 43. Automatic tacho timer prescaler decrease
	Figure 44. Automatic tacho timer prescaler increase

	4.7.4 Converting Hertz into pseudo frequency

	4.8 Flux, torque and speed regulators: MC_PID_regulators module
	4.8.1 Overview
	4.8.2 List of available functions and interrupt service routines
	4.8.3 PID regulator theoretical background
	Figure 45. PID general equation

	4.8.4 Regulator sampling time setting
	Figure 46. Time domain to discrete PID equations

	4.8.5 Adjusting speed regulation loop Ki, Kp and Kd vs motor frequency
	Figure 47. Linear curve for coefficient computation

	4.9 Main interrupt service routines: 75x_it module
	4.9.1 Overview
	4.9.2 List of non-empty interrupt service routines

	4.10 General purpose time base: 75x_TBtimer module
	4.10.1 Overview
	4.10.2 List of available functions and interrupt service routines

	4.11 Application layer

	5 MISRA compliance
	5.1 Analysis method
	5.2 Limitations
	5.2.1 MISRA compliance for AC IM library files
	Table 3. MISRA compliance of AC IM library files

	5.2.2 MISRA rule deviations

	Appendix A Additional information
	A.1 Adjusting CPU load related to IFOC algorithm execution
	Figure 48. AD conversions for three shunt topology stator currents reading and IFOC algorithm execution when REP_RATE=3

	A.2 Selecting PWM frequency for 3 shunt resistor configuration
	Figure 49. AD conversions for three shunt topology stator currents reading and IFOC algorithm execution when REP_RATE=1
	Table 4. System performance when using STR750-MCKIT

	A.3 Fixed-point numerical representation
	A.4 Tacho-based speed measurement flow charts
	Figure 50. Tacho capture overview
	Figure 51. Processing captured value when timer did not overflow
	Figure 52. Processing captured value when timer did overflow

	A.5 PID block diagrams
	Figure 53. Torque/flux control loop block diagram
	Figure 54. Speed control loop block diagram

	A.6 Additional or up-to-date technical literature
	A.7 References

	6 Revision history

