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Introduction
This user manual describes the AC induction motor IFOC software library, an Indirect Field 
Oriented Control (IFOC) Firmware Library for 3-phase induction motors developed for the 
STR750 microcontroller. 

This 32 bit, ARM cored ST microcontroller, comes with a set of peripherals which make it 
suitable for performing both permanent magnet and AC induction motors FOC. In particular, 
this manual describes the STR750 software library developed to control AC induction 
motors equipped with an encoder or tacho-generator, in both open and closed loop. The 
control of a permanent magnet (PM) motor in sinewave mode with encoder is described in 
the UM0312 User Manual.

The AC IM IFOC software library is made of several C modules, compatible with the IAR 
EWARM toolchain. It will allow you to quickly evaluate both the MCU and the available tools. 
In addition, when used together with the STR750 motor control starter kit (STR750-MCKIT) 
and an AC induction motor, you will be able to get a motor running in a very short time. It 
also eliminates the need for time-consuming development of IFOC and speed regulation 
algorithms by providing ready-to-use functions that let you concentrate on the application 
layer.

A prerequisite for using this library is basic knowledge of C programming, AC motor drives 
and power inverter hardware. In-depth know-how of STR750 functions is only required for 
customizing existing modules and for adding new ones for a complete application 
development.

The figure below shows the architecture of the firmware. It uses the STR750 Standard 
Library extensively but it also acts directly on hardware peripherals when optimizations in 
terms of execution speed or code size are required.
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AC IM IFOC software library V1.0 features (CPU running at 
60MHz)
● Speed feedback:

– Tacho generator

– Quadrature incremental encoder 

● Current sampling method:

– 2 isolated current sensors (ICS) 

– 3-shunt resistors placed on the bottom of the three inverter legs

● Current regulation for torque and flux control:

– PIDs sampling frequency adjustable up to the PWM frequency.

● Speed control:

– Open loop operation

– Closed loop operation, PID regulation with 0.5ms to 127ms sampling time

● 16-bit space vector PWM generation frequencies:

– PWM frequency can be easily adjusted

– Centered PWM pattern type

– 11 bits resolution at 14.6Khz

● Free C source code and spreadsheet for look-up tables

● CPU load below 30% (IFOC algorithm refresh frequency 8KHz)

● Motor control modules developed in accordance with MISRA C rules

● Code size 22.8KB (three shunt resistors for current reading, tacho generator for speed 
feedback) + 8.2KB for LCD/joystick management

Note: These figures are for information only; this software library may be subject to changes 
depending on the final application and peripheral resources. Note that it was built using 
robustness-oriented structures, thus preventing the speed or code size from being fully 
optimized.

Related documents:
Available on www.st.com:

● STR750 User Manual,

● STR750 Datasheet,

● STR750 Standard Library User Manual,

● STR7 Flash Programming Manual

Available on www.arm.com:
ARM7TDMI-S Rev.4 Technical Reference Manual ARM DDI 0234A
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1 Getting started with tools

To develop an application for an AC induction motor using the AC IM IFOC software library, 
you must set up a complete development environment, as described in the following 
sections. A PC running Windows XP is necessary.

1.1 Working environment
The AC IM IFOC software library was fully validated using the main hardware boards 
included in STR750-MCKIT starter kit (a complete inverter and control board). The STR750-
MCKIT starter kit provides an ideal toolset for starting a project and using the library. 
Therefore, for rapid implementation and evaluation of the software described in this user 
manual, it is recommended to acquire this starter kit.

It is also recommended to install the IAR EWARM C toolchain which was used to compile 
the AC IM IFOC software library. With this toolchain, you do not need to configure your 
workspace. You can set up your workspace manually for any other toolchain. A free 
‘kickstart edition’ of the IAR EWARM C toolchain with a 32Kb limitation can be downloaded 
from www.iar.com; it is sufficient to compile and evaluate the software library presented 
here. 

1.2 Software tools
A complete software package consists of:

● A third-party integrated development environment (IDE)

● A third-party C-compiler

This library was compiled using the third-pary IAR C toolchain.

● JTAG interface for debugging and programming

Using the JTAG interface of the MCU you can enter in-circuit debugging session with 
most of toolchains. Each toolchain can be provided with an interface connected 
between the PC and the target application.

Figure 1. JTAG interface for debugging and programming

The JTAG interface can also be used for in-circuit programming of the MCU. Other 
production programmers can be obtained from third-parties.
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1.3 Library source code

1.3.1 Download

The complete source files are available for free download on the ST website 
(www.stmcu.com), in the Technical Literature and Support Files section, as a zip file.

Note: It is highly recommended to check for the latest releases of the library before starting any 
new development, and thento verify from time to time all release notes to be aware of any 
new features that might be of interest for your project. Registration mechanisms are 
available on ST web sites to automatically obtain updates.

1.3.2 File structure

The AC IM IFOC software library contains the workspace for the IAR toolchain. Once the 
files are unzipped, the following library structure appears, as shown in Figure 2.

Figure 2. File structure

The STR750 FOC Firmware Libraries v1.0 folder contains the firmware libraries for 
running both PMSM and AC induction three-phase sensored motors.

The StdLib folder contains the standard library for the STR750.

The Include and Source folder contain respectively the header and source files of the 
motor control library. 

Finally, IAR folder contains the configuration files for the EWARM toolchain.
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1.3.3 Starting the IAR toolchain

When you have installed the toolchain, you can open the workspace directly from the 
dedicated folder, by double-clicking on the IFOC.eww file:

The file location is:

\ FOC_AC_SR_v1.0 \ IAR \ IFOC.eww

1.4 Customizing the workspace for your STR750X derivative
The AC IM IFOC software library was written for the STR750FVT2. However, it works 
equally successfully with all the products in the STR75x family.

Using a different STR750 sales type may require some modifications to the library, 
according to the available features (some of the I/O ports are not present on low-pin count 
packages). Refer to the datasheet for further details.

Also, depending on the memory size, the workspace may have to be configured to fit your 
STR75x MCU derivative.

Figure 3. Device summary

1.4.1 Inkarm_xxx.xcl file (internal/external flash or RAM based project)

The IAR\config folder contains 3 files: 

● Inkarm_flash.xcl

● Inkarm_smi.xcl 

● Inkarm_ram.xcl

These files are used as an extended command linker file and contain linker options. Memory 
areas, start address, size, and other parameters are declared here. It also contains the 
value assigned to the stack size for each ARM operating mode (for example, USER or FIQ. 
Refer to the ARM7TDMI-S Technical Reference Manual for more information).
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The default extended linker file used in the standard library to configure the device for 
internal flash based resident firmware is Inkarm_flash.xcl. an extract of this file 
showing the definitions of heap and stack size is provided below. Depending on the project 
requirements, it may be necessary to manually edit the segment sizes.
//************************************************************************
*
// Stack and heap segments.
//************************************************************************

// Add size >0 for  ABT_Stack, UND_Stack if you need them.
// size must be 8 byte aligned.

-D_CSTACK_SIZE=0x200
-D_SVC_STACK_SIZE=0x20
-D_IRQ_STACK_SIZE=0x100
-D_FIQ_STACK_SIZE=0x40
-D_ABT_STACK_SIZE=0x0
-D_UND_STACK_SIZE=0x0
-D_HEAP_SIZE=0x400

Memory size modifications might also be necessary according to the MCU specifications. 
Default settings are done for a 256KB embedded flash memory. If you use a different device, 
you must edit the Inkarm_flash.xcl file as explained in Section 1.4.2. 

Figure 4. Extended linker file Inkarm_flash.xcl, flash memory length definition

1.4.2 Extended linker file setting

As mentioned in the previous section, in the provided IAR workspace, the internal flash 
extended linker file is set by default (Inkarm_flash.xcl).

To modify the linker file to be used (for example, Inkarm_ram.xcl or Inkarm_smi.xcl):

1. Open the IAR workspace by double-clicking on the \ FOC_AC_SR_v1.0 \ IAR \ 
IFOC.eww file.

2. Go to the Project menu, select Options... then Linker, and select the Config sub-
menu.

The dialog box shown in Figure 5 is displayed.

3. In the Override default field, type the name of the linker file you want to use, and then 
click OK. 

Selecting the Inkarm_ram.xcl file makes the IAR XLINK linker place the memory 
segments on RAM memory, whereas selecting the Inkarm_smi.xcl file makes the 
linker place the memory segments on an external memory.
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Figure 5. Extended linker file setting
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2 Getting started with the library

2.1 Introduction to AC induction motor FOC drive 
The AC IM IFOC software library is designed to achieve the high dynamic performance in 
AC motor control offered by the field oriented control (FOC) strategy.

Through complex machine electrical quantity transformations, this well-established drive 
system optimizes the control of the motor, to the extent that it is able to offer decoupled 
torque (Te) and magnetic flux (λ) regulation. That is, it offers the same optimum and 
favorable conditions as DC motors but, in this case, carried out with rugged and powerful AC 
induction motors.

With this approach, it can be stated that the two currents iqs
λr and ids

λr, derived from stator 
currents, have in AC Induction Motor (IM) the same role that armature and field currents 
have in DC motors: the first is proportional to mechanical torque the second to the rotor flux.

In more detail, in the context of FOC, rotor flux position is indirectly calculated, starting from 
transformed equations of the machine, by means of known motor parameters and stator 
current measurements: this is why the controller is an indirect controller and, hence the 
phrase IFOC drive.

In other words, it can be stated that IFOC drive is halfway between dynamic controllers 
(speed, position …) and machine core. So, the system may well be depicted as in Figure 6, 
if introduced in a loop for speed control.

Figure 6. FOC drive placed in a speed loop

Basic information on field oriented structure and library functions is represented in Figure 7.

● The θλr calculation block estimates rotor flux angle, which is essential to transformation 
blocks (Park, Reverse Park) for performing field orientation, so that the currents 
supplied to the machine can be oriented in phase and in quadrature to the rotor flux 
vector. More in depth information about reference frame theory and FOC structure is 
available in [1][2] and Section 4.4.3 on page 61.

● The space vector PWM block (SVPWM) implements an advanced modulation method 
that reduces current harmonics, thus optimizing DC bus exploitation.

● The current reading block allows the system to measure stator currents correctly, using 
either cheap shunt resistors or market-available isolated current Hall sensors (ICS).

● The speed-reading block handles tachogenerator or incremental encoder signals in 
order to acquire properly rotor angular velocity or position.
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● The PID-controller block implements a proportional, integral and derivative feedback 
controller, to achieve speed, torque and flux regulation.

Figure 7. FOC structure

2.2 How to customize hardware and software parameters
It is quite easy to set up an operational evaluation platform with a drive system that includes 
the STR750-MCKIT (featuring the STR750 microcontroller, where this software runs) and 
an AC induction motor.

This section explains how to quickly configure your system and, if necessary, customize the 
library accordingly.

Follow these steps to accomplish this task:

1. Gather all the information that is needed regarding the hardware in use (motor 
parameters, power devices features, speed/position sensor parameters, current 
sensors transconductance);

2. Edit, using an IDE, the configuration header file 75x_MCconf.h (as explained in more 
detail in Section 2.2.1), and the following parameter header files,

– MC_Control_Param.h (see Section 2.2.2),

– MC_encoder_param.h (see Section 2.2.3) or MC_tacho_prm.h (see 
Section 2.2.4),

– MC_ACmotor_prm.h (see Section 2.2.5);

3. Re-build the project and download it on the STR750 microcontroller.
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2.2.1 Library configuration file: 75x_MCconf.h

The purpose of this file is to declare the compiler conditional compilation keys that are used 
throughout the entire library compilation process to:

● Select which current measurement technique is actually in use (the choice is between 
three shunt or ICS sensors, according to availability).

● Select which speed/position sensor is actually performed (here the choice is between 
tachometer and quadrature incremental encoder, according to availability).

● Enable or disable the derivative action in the speed controller or in the current 
controllers in accordance with expected performance and code size.

If this header file is not edited appropriately (no choice or undefined choice), you will receive 
an error message when building the project. Note that you will not receive an error message 
if the configuration described in this header file does not match the hardware that is actually 
in use, or in case of wrong wiring.

More specifically:

● #define ICS_SENSORS

To be uncommented when current sampling is done using isolated current sensors.

● #define THREE_SHUNT

To be uncommented when current sampling is performed via three shunt resistors 
(default).

● #define ENCODER

To be uncommented when an incremental encoder is connected to the starter kit for 
position sensing; in parallel, fill out MC_encoder_param.h (as explained in 
Section 2.2.3);.

● #define TACHO

To be uncommented when a tachogenerator is in use to detect rotor speed (default); in 
parallel, fill out MC_tacho_prm.h (as explained in Section 2.2.4);.

● #define Id_Iq_DIFFERENTIAL_TERM_ENABLED

To be uncommented when differential terms for torque and flux control loop regulation 
(PID) are enabled;

● #define SPEED_DIFFERENTIAL_TERM_ENABLED

To be uncommented when differential term for speed control loop regulation (PID) is 
enabled.

Once these settings have been done, only the required blocks will be linked in the project; 
this means that you do not need to exclude .c files from the build.

Caution: When using shunt resistors for current measurement, ensure that the REP_RATE parameter 
(in MC_Control_Param.h) is set properly (see Section 2.2.2 and Section A.2: Selecting 
PWM frequency for 3 shunt resistor configuration on page 98 for details).
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2.2.2 Drive control parameters: MC_Control_Param.h

The MC_Control_Param.h header file gathers parameters related to:

● Power device control parameters on page 19

● Flux and torque PID regulators sampling rate on page 19

● Speed regulation loop frequency on page 19

● Speed controller setpoint and PID constants (initial values) on page 20

● Torque and flux controller setpoints and PID constants on page 20

● Start-up torque ramp parameters on page 21

● Linear variation of PID constants according to mechanical speed. on page 21

Power device control parameters

● #define PWM_FREQ

Define here, in Hz, the switching frequency; in parallel, uncomment the maximum 
allowed modulation index definition (MAX_MODULATION_XX_PER_CENT) 
corresponding to the PWM frequency selection.

● #define DEADTIME_NS

Define here, in ns, the dead time, in order to avoid shoot-through conditions.

Flux and torque PID regulators sampling rate

● #define REP_RATE

Stator currents sampling frequency and consequently flux and torque PID regulators 
sampling rate, are defined according to the following equation:

In fact, because there is no reason for either executing the IFOC algorithm without updating 
the stator currents values or for performing stator current conversions without running the 
IFOC algorithm, in the proposed implementation the stator current sampling frequency and 
the IFOC algorithm execution rate coincide.

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see 
Section A.2: Selecting PWM frequency for 3 shunt resistor configuration on page 98 for 
details); its value is 8-bit long;

Speed regulation loop frequency

#define PID_SPEED_SAMPLING_TIME

The speed regulation loop frequency is selected by assigning one of the defines below:

#define PID_SPEED_SAMPLING_500us  0   //min 500us
#define PID_SPEED_SAMPLING_1ms    1
#define PID_SPEED_SAMPLING_2ms    3   //(4-1)*500uS=2ms
#define PID_SPEED_SAMPLING_4.5ms  6
#define PID_SPEED_SAMPLING_10ms   15
#define PID_SPEED_SAMPLING_127ms  255 //max(255-1)*500us=127ms

1_
_2

+
⋅=

RATEREP
FREQPWMrate sampling PIDs torque andFlux 
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Speed controller setpoint and PID constants (initial values)

● #define PID_SPEED_REFERENCE

Define here, in 0.1Hz, the mechanical rotor speed setpoint at startup in closed loop 
mode;

● #define PID_SPEED_KP_DEFAULT

The proportional constant of the speed loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_SPEED_KI_DEFAULT

The integral constant of the speed loop regulation (signed 16-bit value, adjustable from 
0 to 32767);

● #define PID_SPEED_KD_DEFAULT

The derivative constant of the speed loop regulation (signed 16-bit value, adjustable 
from 0 to 32767); 

Torque and flux controller setpoints and PID constants

● #define PID_TORQUE_REFERENCE

The torque reference value, in open loop, at start-up (signed 16-bit value);

● #define PID_TORQUE_KP_DEFAULT

The proportional constant of the torque loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_TORQUE_KI_DEFAULT

The integral constant of the torque loop regulation (signed 16-bit value, adjustable from 
0 to 32767);

● #define PID_TORQUE_KD_DEFAULT

The derivative constant of the torque loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_FLUX_REFERENCE

The flux reference; its default value is NOMINAL_FLUX, which is adjustable by 
modifying the parameter hNominal_Flux (see Section 2.2.5);

● #define PID_FLUX_KP_DEFAULT

The proportional constant of the flux loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_FLUX_KI_DEFAULT

The integral constant of the flux loop regulation (signed 16-bit value, adjustable from 0 
to 32767);

● #define PID_FLUX_KD_DEFAULT

The derivative constant of the flux loop regulation (signed 16-bit value, adjustable from 
0 to 32767);
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Start-up torque ramp parameters

See Section 3.1: Open loop and Section 3.2: Closed loop on page 29 for details.

● #define STARTUP_TIMEOUT

Define here, in ms, the overall time allowed for start-up;

● #define STARTUP_RAMP_DURATION

Define here, in ms, the duration of the torque ramp up;

● #define STARTUP_FINAL_TORQUE

Define here, in q1.15 format, the final reference value for torque ramp up (closed loop 
only);

● #define TACHO_SPEED_VAL

Define here, in 0.1Hz, the lowest speed for tachogenerator reading validation.

Linear variation of PID constants according to mechanical speed.

Refer to Section 4.8.5: Adjusting speed regulation loop Ki, Kp and Kd vs motor frequency on 
page 87.

2.2.3 Incremental encoder parameters: MC_encoder_param.h

The MC_encoder_parameter.h header file is to be filled out if position/speed sensing is 
performed by means of a quadrature, square wave, relative rotary encoder.

● #define ENCODER_PPR

Define here the number of pulses, generated by a single channel, for one shaft 
revolution (actual resolution will be 4x);

● #define TIMER0_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER0 input pins;

● #define TIMER1_HANDLES_ENCODER

to be uncommented if the two sensor output signals are wired to TIMER1 input pins;

● #define TIMER2_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER2 input pins 
(default; required if using STR750-MCKIT).

2.2.4 Tachogenerator parameters: MC_tacho_prm.h

The MC_tacho_prm.h header file is to be filled out if speed sensing is performed using an 
AC tachogenerator. Extra details and more explanations on tacho-based speed 
measurement can be found in Section 4.7 on page 76 and Section A.4 on page 100.

● #define TACHO_PULSE_PER_REV 

Define here the number of pulses per revolution given by the tachogenerator; in order 
to verify the correct operation of the tacho module, this parameter can be set to 1, so 
that the frequency measurement can be directly compared with the one of a signal 
generator.
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● #define TIMER0_HANDLES_TACHO

To be uncommented if tachogenerator-based speed measurement is performed by 
TIMER0.

● #define TIMER1_HANDLES_TACHO

To be uncommented if tachogenerator-based speed measurement is performed by 
TIMER1.

● #define TIMER2_HANDLES_TACHO

To be uncommented if tachogenerator-based speed measurement is performed by 
TIMER2. (Default; required if using STR750-MCKIT, in conjunction with Input Capture 1 
choice - see below).

● #define TACHO_INPUT_TI1

To be uncommented if sensor output signal is wired to TimerX Input Capture 1. (Default 
- in conjunction with TIMER2 choice; required if using STR750-MCKIT).

● #define TACHO_INPUT_TI2

To be uncommented if sensor output signal is wired to TimerX Input Capture 2.

● #define MAX_SPEED_FDBK

This parameter defines the frequency above which speed feedback is not realistic in 
the application: this allows to discriminate glitches for example. The unit is 0.1Hz. By 
default, it is set to 6400 (640.0Hz), which corresponds to approximately 20000 RPM for 
a two pole pair motor.

● #define MAX_SPEED

This parameter is the value returned by the function TAC_GetRotorFreqInHz if 
measured speed is greater than MAX_SPEED_FDBK. The default value is 640Hz, but 
it can be 0 or FFFF depending on how this value is managed by the upper layer 
software.

● #define MAX_PSEUDO_SPEED

This parameter is the value returned by the function TAC_GetRotorFreq if measured 
speed is greater than MAX_SPEED_FDBK. The unit is rad/pwm period 
(2π rad = 0xFFFF). See Section 4.7.4: Converting Hertz into pseudo frequency on 
page 83 for more details.

● #define MIN_SPEED_FDBK

This parameter is the frequency below which speed feedback is not realistic in the 
application: this allows to discriminate too low frequency. This value is set to 1 Hz by 
default, and depends on sensor and signal conditioning stage characteristics. Typically, 
the tacho signal is too weak at very low speed to trigger input capture on the MCU. 

Note: The MC_tacho_prm.h file includes two formulas that allow to compute the minimum sensed 
speed when speed is increasing (during start-up) or decreasing (during motor stop).

● #define MAX_RATIO

Maximum possible TIMER clock prescaler ratio:

– This defines the lowest speed that can be measured (when counter = 0xFFFF).

– It also prevents the clock prescaler from decreasing excessively when the motor is 
stopped. (This prescaler is automatically adjusted during each and every capture 
interrupt to optimize the timing resolution).

● #define MAX_OVERFLOWS

This is the maximum number of consecutive timer overflows taken into account. It is set 
by default to 10: if the timer overflows more than 10 times (meaning that the tacho 
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period has been increased by a factor of 10 at least), the number of overflows is not 
counted anymore. This usually indicates that information is lost (tacho time-out) or that 
the speed is decreasing very sharply. The corresponding duration depends on the 
tacho timer prescaler, which is variable; the higher the prescaler (at low speed), the 
longer the time-out period.

● #define SPEED_FIFO_SIZE

This is the length of the sofware FIFO in which the latest speed measurements are 
stored. This stack is necessary to compute rolling averages on several consecutive 
data.

2.2.5 AC induction motor parameters: MC_ACmotor_param.h

The MC_ACmotor_param.h header file holds motor parameters which are essential to 
properly operate the IFOC vector drive.

The following parameters must be defined in all cases:

● #define ROTOR_TIME_CONSTANT 

Define here (in µs), the rotor open circuit time constant of the motor τ r :

where Lm is the magnetizing inductance,  Llr is the rotor leakage inductance, Lr is the 
rotor inductance, rr is the rotor resistance.

● #define POLEPAIR_NUMBER

Define here the stator winding pole pair number;

● #define RATED_FREQ

Define here (in 0.1Hz) the right-hand boundary of the constant torque region (see 
Figure 8): in that region we have rated current, rated flux, rated torque, rated power;

● hNominal_Flux

Define here the required magnetizing current im (positive, peak value), expressed in 
q1.15 format (see Section A.3 on page 99).

r

lrm

r

r
r r

LL
r
L +==τ



Getting started with the library UM0324

24/105   

Figure 8. Torque vs. speed characteristic curve

The following parameters are required only to enter the field weakening operation (constant 
power region begins beyond the RATED_FREQ boundary mentioned above):

● hFlux_Reference: this look-up table (256 signed 16-bit values) provides reference 
values of current ids (expressed in q1.15 format), according to increasing stator 
frequencies (see Section 4.4.4 on page 63);

Note: The first element of the table should have the same value as the hNominal_Flux 
parameter.

● hTorque_Reference : this look-up table (256 signed 16-bit values) provides 
saturation values of current iqs (expressed in q1.15 format), according to increasing 
stator frequencies (see Section 4.4.4 on page 63).

2.3 How to define and add a c module
This section describes with an example how to define and include a new module in a project 
based on the library. The example is based on the addition of two files: my_file.c and the 
corresponding header file my_file.h.

1. Create a new file.

You can either copy and paste an existing file and rename it, or in the File menu, 
choose New, then click the File icon and save it in the right format (*.c, *.h 
extension), as shown in Figure 9.

2. Declare the new file containing your code in the toolchain workspace.

To do this, simply right-click in the workspace folder, then choose the Add Files sub-
menu. The new file is automatically added to the workspace and taken into account for 
the compilation of the whole project.
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The procedure of adding the module to the project is very easy with the IAR Embedded 
Workbench, as the makefile and linking command files are automatically generated. When 
rebuilding the library, the configuration files are updated accordingly.

Figure 9. Adding a new module
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3 Running the demo program

This section assumes that you are using the STR750-MCKIT motor control kit.

The demo program is intended to provide examples on how to use the software library 
functions; it includes both open speed loop and closed speed loop operations (hereafter 
simply referred to as Open Loop and Closed Loop), with the possibility of varying different 
parameters on the fly.

The default configuration allows the use of three shunt resistor for stator current reading and 
tacho generator for speed feedback. Refer to Section 3.3 on page 30 for setting up the 
system when using ICS, and to Section 3.4 on page 32 if using quadrature incremental 
encoder.

After the MCU initialization phase, a welcome message appears, and shortly after the main 
window is displayed. Use the joystick and the button labelled KEY to navigate between the 
menus.

Key assignments are shown in Figure 10.

Figure 10. Key function assignments

A simple state machine handles the motor control tasks in the main loop, as well as basic 
monitoring of the power stage. This state machine does not differentiate open from closed 
loop control. It is described in Figure 11.

The power stage is monitored using the ADC peripheral and the PWM peripheral 
Emergency Stop (ES) input to watch the following conditions:

● Heatsink over-temperature (ADC channel AIN6 and ES input),

● DC bus over-voltage (on ADC channel AIN7),

● Over-current protection (ES input).

Any of these three conditions will cause the PWM to be stopped and the state machine to go 
into FAULT state for 2 seconds before coming back to IDLE state. Depending on the source 
of the fault, an error message is also displayed on the LCD during FAULT state.
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Figure 11. Main.c state machine

3.1 Open loop
Figure 12 shows a summary of the LCD menus and settings (blinking items are shown 
underlined).

Figure 12. LCD menus in open loop

Switching from open to closed loop operation and vice versa is done by moving the joystick 
up or down while the first menu shown in Figure 12 is displayed and the motor is stopped. 
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Moving the joystick left or right in these circumstances allows changing the context into the 
second menu where it is possible to modify both the torque and flux reference.

Finally press either the KEY button or the joystick to start the motor (main state machine will 
move from IDLE to START state).

The ramp up strategy is illustrated in Figure 13. Basically, the applied torque reference 
reaches the final Iq value set with the joystick in the time that you configure in the 
STARTUP_RAMP_DURATION parameter (defined in MC_Control_Param.h) following a 
linear ramp. 

After STARTUP_RAMP_DURATION, if valid information from the speed sensor (tachometer or 
encoder) is detected, the torque reference becomes adjustable on the fly from the joystick.

On the contrary, if no valid information from the speed sensor is detected, for example 
because a problem occurred with speed sensor connections or because the load torque is 
higher then the value that you set, then the final torque reference is kept constant until 
STARTUP_TIMEOUT. 

Finally, when no valid speed information comes from the motor and STARTUP_TIMEOUT is 
elapsed, the main state machine goes into FAULT state for two seconds and the error 
message ‘Start-up failed’ is displayed on the LCD. In this case, it is strongly advised to 
check speed sensor feedback connections first and then, if necessary, to increase the final 
ramp torque reference in case the load torque is too high.

Caution: In open loop operation, a constant torque reference is produced. Depending on the load 
torque applied, this could lead to constant acceleration of the motor, making the speed rise 
up to the motor’s physical limits.

Figure 13. Open loop start-up strategy
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3.2 Closed loop
Figure 14 shows a summary of the LCD menus and settings (blinking items are shown 
underlined).

Figure 14.  LCD menus in closed loop

Switching from open to closed loop operation and vice versa is done by moving the joystick 
up or down while the first menu shown in the above figure is displayed and motor is stopped. 

In closed loop operation, you can vary the target speed by moving the joystick up or down 
while the PID motor speed target selection menu is displayed. The demo program also 
allows real-time tuning of the speed PID regulator coefficients.

Finally, although you cannot act directly on torque and flux references, you can also observe 
both the target and measured flux and torque stator current component. In fact, in closed 
loop, both flux and torque references are the outputs of speed PID regulator and field 
weakening blocks.

As in open loop, pressing the joystick or the KEY button will start the motor. 

The closed loop ramp-up strategy is shown in Figure 15. Basically, a linear torque ramp is 
applied to the motor until it reaches speed TACHO_SPEED_VAL (if a tacho speed sensor is 
used) or ENCODER_CL_ENABLE (if an encoder is used). Then, the speed PID regulator is 
enabled and takes control of the torque reference.
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However, if the motor does not reach the above mentioned speeds before 
STARTUP_RAMP_DURATION, the final torque reference value (STARTUP_FINAL_TORQUE) 
is further applied until STARTUP_TIMEOUT. Finally, in the case where the speeds that 
enable the closed loop are not reached before STARTUP_TIMEOUT, the state machine goes 
into FAULT state for two seconds and the error message Start-up failed is displayed on the 
LCD. In this case, it is strongly advised to check speed sensor feedback connections first 
and then, if necessary, to increase STARTUP_FINAL_TORQUE if the load torque is too high.

With reference to Figure 15, note that parameters TACHO_SPEED_VAL, 
ENCODER_CL_ENABLE, STARTUP_FINAL_TORQUE, STARTUP_RAMP_DURATION, and 
STARTUP_TIMEOUT are fully configurable so that you can customize the start-up depending 
on the motor and load conditions. Parameters definitions are done in the 
MC_Control_Param.h header file.

Figure 15. Closed loop start-up strategy

3.3 Setting up the system when using ICS sensors
The default configuration provides for the use of three shunt resistors and tacho-generator. 
Section 3.3.1 describes how to change the firmware configuration from three shunt resistors 
to two ICS stator current reading. This section gives you information about how to provide 
the STR750 with ICS feedback signals and to properly customize the firmware.

Caution: When using two ICS for stator current reading, you must ensure that the conditioned 
sensors output signal range is compatible with the STR750 supply voltage.
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3.3.1 Connecting the two ICS sensors to the motor and to STR750

In order for the implemented IFOC algorithm to work properly, it is necessary to ensure that 
the software implementation of the 75x_svpwm_ICS module and the hardware connections 
of the two ICS are consistent. 

As illustrated in Figure 16, the two ICS must act as transducers on motor phase currents 
coming out of the inverter legs driven by STR750 PWM signals PWM1 (Phase A) and 
PWM2 (Phase B). In particular, the current coming out of inverter Phase A must be read by 
an ICS whose output has to be sent to the analog channel specified by the 
PHASE_A_CHANNEL parameter in MC_pwm_ics_prm.h. Likewise, the current coming out 
of inverter Phase B must be read by the other ICS and its output has to be sent to the 
analog channel specified by the PHASE_B_CHANNEL parameter in MC_pwm_ics_prm.h.

About the positive current direction convention, a positive half-wave on 
PHASE_X_CHANNEL is expected, corresponding to a positive half-wave on the current 
coming out of the related inverter leg (see direction of I in Figure 16). 

Figure 16. ICS hardware connections

3.3.2 Selecting PHASE_A_CHANNEL and PHASE_B_CHANNEL

Default settings for PHASE_A_CHANNEL and PHASE_B_CHANNEL are respectively 
ADC_CHANNEL11 and ADC_CHANNEL10. You can change the default settings if the 
hardware requires it by editing the MC_pwm_ics_prm.h file. However, there are a few rules 
to follow when selecting the new ADC channels:

● You must initialize the proper GPIOs as analog inputs; an example for channel 8 is 
given below:

/* ADC Channel 8 pin configuration */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_29;
GPIO_Init(GPIO0, &GPIO_InitStructure);
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● You must select two contiguous channels (for example, ADC_CHANNEL8 and 
ADC_CHANNEL9) and the one with the highest number must be associated with 
PHASE_A_CHANNEL (for example, PHASE_A_CHANNEL -> ADC_CHANNEL9, 
PHASE_B_CHANNEL->ADC_CHANNEL8) .

3.4 How to build the system when using an incremental encoder
Quadrature incremental encoders are widely used to read the rotor position of electric 
machines.

As the name implies, incremental encoders actually read angular displacements with 
respect to an initial position: if that position is known, then rotor absolute angle is known too.

Quadrature encoders have two output signals (represented in Figure 17 as TI1 and TI2). 
With these, and with the STR750 standard timer in encoder interface mode, it is possible to 
get information about rolling direction.

Figure 17. Encoder output signals: counter operation

In addition, rotor angular velocity can be easily calculated as a time derivative of angular 
position.

To set up the AC IM IFOC software library for use with an incremental encoder, simply 
modify the 75x_MCconf.h and MC_encoder_param.h header files according to the 
indications given in Section 2.2.1 on page 18 and Section 2.2.3 on page 21 respectively.

However, some extra care should be taken, concerning what is considered to be the positive 
rolling direction: this software library assumes that the positive rolling direction is the rolling 
direction of a machine that is fed with a three-phase system of positive sequence.

Because of this, and because of how the encoder output signals are wired to the 
microcontroller input pins, it is possible to have a sign discrepancy between the real rolling 
direction and the direction that is read. To avoid this kind of reading error, you can apply the 
following procedure:
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1. Set the DC source at low voltage (50V).

2. Run the system in closed loop operation, and on the LCD, observe the target and 
measured speeds.

The error occurs if the sign of the measured speed is opposite to the sign of the target 
speed. (For help with the LCD menus see Section 3.2 on page 29):.

3. If the error occurs, you can correct it by simply swapping and rewiring the encoder 
output signals.

If this isn’t practical, you can modify a software setting instead: in the 75x_encoder.c 
file, replace the code line:

TIM_InitStructure.TIM_IC1Polarity = TIM_IC1Polarity_Rising;

with:

TIM_InitStructure.TIM_IC1Polarity = TIM_IC1Polarity_Falling;

3.5 Fault messages
This section provides a list of possible fault message that can be displayed on the LCD 
when using the software library together with the STR750MC-KIT:

● “Over Current”

An Emergency Stop was detected on the PWM peripheral dedicated pin. If using 
STR750-MCKIT it could mean that either the hardware over temperature protection or 
the hardware over current protection were triggered. Refer to the STR750-MCKIT User 
Manual for details,

● “Over Heating”

An over temperature was detected on the dedicated analog channel; the digital 
threshold NTC_THRESHOLD and the relative hysteresis (NTC_HYSTERESIS) are 
specified in the MC_Misc.c source file. Refer to the STR750-MCKIT User Manual for 
details.

● “Tacho timed out”

The speed feedback timed out. Verify speed sensor connections.

● “Start up failed”

The motor ramp-up failed. Refer to Section 3.1 and Section 3.2 for in-depth information,

● “Bus Over Voltage”

An over voltage was detected on the dedicated analog channel. The digital threshold 
(OVERVOLTAGE_THRESHOLD) is specified in the MC_Misc.c source file. Refer to the 
STR750-MCKIT User Manual for details.

● "Bus Under Voltage"

The bus voltage is below 20V DC. This threshold is specified in the 
UNDERVOLTAGE_THRESHOLD parameter in the MC_Misc.c source file.

Note: The corresponding FAULT flag is not cleared by firmware, therefore the STR750 must be 
reset after the bus voltage has been switched on.
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3.6 Note on debugging tools
The third party JTAG interface should always be isolated from the application using the 
MB535 JTAG opto-isolation board; it provides protection for both the JTAG interface and the 
PC connected to it.

Caution: During a breakpoint, when using the JTAG interface for the firmware development, the motor 
control cell clock circuitry should always be enabled; if disabled, a permanent DC current 
may flow in the motor because the PWM outputs are enabled, which could cause 
permanent damage to the power stage and/or motor. A dedicated bit in the PWM_CR, the 
DBGC bit must be set to 1 (see Figure 18).

Figure 18. DBGC bit in PWM control register (extract from STR750 reference 
manual)

Control Register (PWM_CR)
Address Offset: 00h
Reset value: 0000h
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4 Library functions

4.1 Function description conventions
Functions are described in the format given below:

         

Some of these sections may not be included if not applicable (for example, no parameters or 
obvious use).

4.2 Current reading in three shunt resistor topology and space 
vector PWM generation: 75x_svpwm_3shunt module

4.2.1 Overview

Two important tasks are performed in the 75x_svpwm_3shunt module:

● Space vector pulse width modulation (SVPWM)

● Current reading in three shunt resistor topology 

In order to reconstruct the currents flowing through a three-phase load with the required 
accuracy using three shunt resistors, it is necessary to properly synchronize A/D 
conversions with the generated PWM signals. This is why the two tasks are included in a 
single software module.

Synopsis Lists the prototype declarations.

Description Describes the functions specifically with a brief explanation of how they 
are executed.

Input Gives the format and units.

Returns Gives the value returned by the function, including when an input value 
is out of range or an error code is returned.

Note Indicates the limits of the function or specific requirements that must be 
taken into account before implementation.

Caution Indicates important points that must be taken into account to prevent 
hardware failures.

Functions called Lists called functions. Useful to prevent conflicts due to the 
simultaneous use of resources.

Code example Indicates the proper way to use the function, and if there are certain 
prerequisites (interrupt enabled, etc.).
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4.2.2 List of available functions

The following is a list of available functions as listed in the 75x_svpwm_3shunt.h header 
file:

● SVPWM_3ShuntInit on page 36

● SVPWM_3ShuntCurrentReadingCalibration on page 37

● SVPWM_3ShuntGetPhaseCurrentValues on page 37

● SVPWM_3ShuntCalcDutyCycles on page 38

● SVPWM_3ShuntGPADCConfig on page 38

SVPWM_3ShuntInit

         

Synopsis void SVPWM_3ShuntInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for   
performing 3 shunt resistor topology current reading and center aligned 
PWM generation.

The function initializes DMA, EIC, ADC, GPIO, PWM, TIM0 peripherals. 

In particular, the DMA, ADC, PWM and TIM0 peripherals are configured 
to perform two synchronized A/D conversions per PWM switching 
period. 

Refer to Section 4.2.3 for further information.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library:

MRCC_PeripheralClockConfig, GPIO_Init, EIC_IRQInit, EIC_IRQCmd, 
DMA_Init, DMA_Cmd, TIM_DMAConfig,  DMA_DeInit,  ADC_DMACmd,  
PWM_DeInit, PWM_StructInit, PWM_Init,  PWM_TRGOSelection,  
PWM_ClearFlag,  PWM_ITConfig,  PWM_ResetCounter, 
ADC_StructInit,  ADC_Init,  ADC_Cmd, ADC_StartCalibration,  
ADC_ConversionCmd,  TIM_Init,  TIM_SynchroConfig, 
TIM_ResetCounter,  PWM_Cmd.

Motor control library:

SVPWM_3ShuntCurrentReadingCalibration
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SVPWM_3ShuntCurrentReadingCalibration

         

SVPWM_3ShuntGetPhaseCurrentValues

         

Synopsis void SVPWM_3ShuntCurrentReadingCalibration(void);

Description The purpose of this function is to store the three analog voltages 
corresponding to zero current values for compensating the offset 
introduced by the amplification network.

Input None.

Returns None.

Note This function must be called before PWM outputs are enabled so that 
the current flowing through inverter legs is zero. When using STR750 
MC Kit, the power board (MB459B) must be supplied before the 
control board (MB469B). This way, the current sensing conditioning 
network will reach steady state before performing calibration.

Functions called Standard library:

ADC_GetFlagStatus,  ADC_ConversionCmd,  ADC_Init,  
ADC_ClearFlag,  ADC_ITConfig

Motor control library:

SVPWM_3ShuntCalcDutyCycles

Synopsis Curr_Components SVPWM_3ShuntGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in 
q1.15 format starting from values acquired from the A/D Converter 
peripheral.

Input None.

Returns Curr_Components type variable.

Note In order to have a q1.15 format for the current values, the digital value 
corresponding to the offset must be subtracted when reading phase 
current A/D converted values. Therefore, the function must be called 
after SVPWM_3ShuntCurrentReadingCalibration.

Functions called None.
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SVPWM_3ShuntCalcDutyCycles

         

SVPWM_3ShuntGPADCConfig

         

Synopsis void SVPWM_3ShuntCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After execution of the IFOC algorithm, new stator voltage components 
Vα and Vβ are computed. The purpose of this function is to calculate 
exactly the three duty cycles to be applied to motor phases from the 
values of these voltage components.

Moreover, once the three duty cycles to be applied in next PWM period 
are known, this function sets the DMA, ADC and TIM0 peripherals for 
the next current reading. In particular, depending on the duty cycle 
values, the delay for the two current samplings are computed (see 
Section 4.2.5 on page 43). 

Refer to Section 4.2.3 for information on the theoretical approach of 
SVPWM.

Input Vα and Vβ 

Returns None.

Note None.

Functions called None.

Synopsis void SVPWM_3ShuntGPADCConfig(void);

Description The purpose of this function is to configure the A/D converter for 
general purpose conversions after conversions for current reading 
have been performed. In particular, this function starts a chain of 
regular conversions whose first channel is 
GP_CONVERSIONS_FIRST_CHANNEL (defined in 
‘MC_pwm_3shunt_prm.h’). In addition, the number of channels to be 
converted is set equal to GP_CONVERSIONS_NUMBER (defined in 
‘MC_pwm_3shunt_prm.h’).

Input None 

Returns None

Note As mentioned in Section 4.2.3, the overall duration of the regular chain 
conversion must be lower than the duration of the IFOC_Model 
routine. This limits to 6 (at 7.5MHz ADC peripheral clock) the number 
of channels that can be converted in one PWM period.

Functions called None
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4.2.3 Space vector PWM implementation

Figure 19 shows the Stator Voltage components Vα and Vβ while Figure 20 illustrates the 
corresponding PWM for each of the six space vector sectors: 

Figure 19. Vα and Vβ stator voltage components

Figure 20. SVPWM phase voltages waveforms
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With the following definitions for:

and

literature demonstrates that the space vector sector is identified by the conditions shown in 
Table 1.

         

The duration of the positive pulse widths for the PWM applied on Phase A, B and C are 
respectively computed by the following relationships:

Sector I, IV:  

Sector II, V: 

Table 1. Sector identification

Y<0 Y>=0

Z<0 Z>=0 Z<0 Z>=0

X<=0 X<0 X<=0 X>0

Sector V IV III VI I II

alfaVTU ∗∗= 3α

betaVTU ∗=β

βUX =

2
βα UU

Y
+

=

2
αβ UU

Z
−

=

2
ZXTt A

−+=

Ztt AB +=
Xtt BC −=

2
ZYTt A

−+=

Ztt AB +=
Ytt AC −=
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Sector III, VI: 

Where T is the PWM period.

Now, considering that the PWM pattern is center aligned and that the phase voltages must 
be centered at 50% of duty cycle, it follows that the values to be loaded into the PWM output 
compare registers are given respectively by:

Sector I, IV:  

 

Sector II, V: 

Sector III, VI: 

4.2.4 Current sampling in three shunt topology and general purpose A/D 
conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the 
mathematical relation:

I1+I2+I3=0

For this reason, to reconstruct the currents flowing through a generic three-phase load, it is 
sufficient to sample only two out of the three currents while the third one can be computed 
by using the above relation. 

The flexibility of the STR750 A/D converter trigger, makes it possible to synchronize the two 
A/D conversions needed for reconstructing the current flowing through the three-phase AC 
induction motor at any given time along the PWM period. To do this, the control algorithm 
must have a full control of the A/D converter peripheral.

2
YXTtA

+−=

Xtt CB +=
Ytt AC −=

2
2/

4
ZXTTTimePhA −++=

ZTimePhATimePhB +=
XTimePhBTimePhC −=

2
2/

4
ZYTTTimePhA −++=

ZTimePhATimePhB +=
YTimePhATimePhC −=

2
2/

4
YXTTTimePhA +−+=

XTimePhChTimePhB +=
YTimePhATimePhC −=
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Furthermore, you have the possibility to add any A/D conversions required for your 
application (hereafter referred to as general purpose conversions). This section describes 
how this is achieved.

First of all, the SVPWM_3ShuntInit function performs the synchronization between PWM 
and TIM0 peripherals (Figure 21 shows the two peripheral counters when REP_RATE = 1), 
then, the A/D converter peripheral is configured so that it is triggered by the TIM0 OC2 
signal.

Figure 21. PWM and TIM0 synchronization (REP_RATE=1)

This way, when the value of the TIM0 counter matches the value contained in the OCR2 
register, the first A/D conversion for current sampling is started.

Meanwhile, a DMA transaction reloads the TIM0 OCR2 register with the value 
corresponding to the delay required for the second current sampling conversion. Moreover, 
the end of this first A/D conversion triggers another DMA transaction which sets the next 
channel to be converted in the ADC register CLR2.

At the end of the second conversion, the three-phase load current has been updated and 
the IFOC algorithm can then be executed in the A/D End of Conversion Interrupt Service 
Routine (EOC ISR). In this routine, the A/D converter is also reconfigured so that it can 
perform the general purpose chain of conversions while the CPU executes the IFOC 
algorithm.

The entire process is illustrated in Figure 22.

After execution of the IFOC algorithm, the A/D converter is configured to perform the next 
PWM period three-phase current sensing (delays and channels). This allows to reduce the 
CPU load (lower number of ADC ISR) and limits to 6 (@ 7.5 MHz ADC peripheral clock) the 
number of general purpose A/D conversions that can be performed in each PWM period.

To specify the general purpose conversions to be performed, you can select the first channel 
and the number of channels to be converted by editing the 
GP_CONVERSIONS_FIRST_CHANNEL and GP_CONVERSIONS_NUMBER parameters 
respectively in the MC_pwm_3shunt_prm.h header file. 
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Figure 22. Three shunt topology current sampling and GP A/D conversions 
integration (REP_RATE=1) 

4.2.5 Tuning delay parameters and sampling stator currents in three shunt 
resistor topology

Figure 23 shows one of the three inverter legs with the related shunt resistor:

Figure 23. Inverter leg and shunt resistor position

To indirectly measure the phase current I, it is possible to read the voltage V providing that 
the current flows through the shunt resistor R. 

It is possible to demonstrate that, whatever the direction of current I, it always flows through 
the resistor R if transistor T2 is switched on and T1 is switched off. This implies that in order 
to properly reconstruct the current flowing through one of the inverter legs, it is necessary to 
properly synchronize the conversion start with the generated PWM signals. This also means 
that current reading cannot be performed on a phase where the duty cycle applied to the low 
side transistor is either null or very short.
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Fortunately, as discussed in Section 4.2.4,to reconstruct the currents flowing through a 
generic three-phase load, it is sufficient to simultaneously sample only two out of three 
currents, the third one being computed from the relation given in Section 4.2.4. Thus, 
depending on the space vector sector, the A/D conversion of voltage V will be performed 
only on the two phases where the duty cycles applied to the low side switches are the 
highest. In particular, by looking at Figure 20, you can deduct that in sectors 1 and 6, the 
voltage on the Phase A shunt resistor can be discarded; likewise, in sectors 2 and 3 for 
Phase B, and finally in sectors 4 and 5 for Phase C.

Moreover, in order to properly synchronize the two stator current reading A/D conversions, it 
is necessary to distinguish between the different situations that can occur depending on 
PWM frequency and applied duty cycles.

Note: The explanations below refer to space vector sector 1. They can be applied in the same 
manner to the other sectors.

Case 1: Duty cycle applied to Phase A low side switch is larger than
DT+TN+ 2TS + TH + TDMA

Where:

● DT is dead time.

● TN is the duration of the noise induced on the shunt resistor voltage of a phase by the 
commutation of a switch belonging to another phase.

● TS is the sampling time of the STR750 A/D converter. Refer to the STR750 reference 
manual for more detailed information.

● TH is the holding time of the STR750 A/D converter. Refer to the STR750 reference 
manual for more detailed information.

● TDMA is the time required for the DMA to load the value related to the next conversion 
delay in TIM0 OCR2 (refer to Section 4.2.4: Current sampling in three shunt topology 
and general purpose A/D conversions on page 41 for further details).

This case typically occurs when SVPWM with low (<60%) modulation index is generated 
(see Figure 24). The modulation index is the applied phase voltage magnitude expressed as 
a percentage of the maximum applicable phase voltage (the duty cycle ranges from 0% to 
100%).

Figure 25 offers a reconstruction of the PWM signals applied to low side switches of Phase 
A and B in these conditions plus a view of the analog voltages measured on the STR750 
A/D converter pins for both Phase B and C (the time base is lower than the PWM period).
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Figure 24. Low side switches gate signals (low modulation indexes)

Note that these current feedbacks are constant in the view in Figure 25 because it is 
assumed that commutations on Phase B and C have occurred out of the visualized time 
window.

Moreover, it can be observed that in this case the two stator current sampling conversions 
can be performed between the two commutations of the Phase A low side switch, as shown 
in Figure 25.

Figure 25. Low side Phase A duty cycle > DT+TN+ 2TS + TH + TDMA

After the commutation of the Phase A low side switch, a blanking window equal to TN is 
applied before starting conversion of phase C, then at the end of the first conversion, it is 
necessary to wait a TDMA period before starting the phase B conversion.
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Case 2: DT+TN+TS < Phase A duty cycle < DT+TN+ 2TS + TH + TDMA

In this case, only one of the two conversions can be performed between the two Phase A 
low side commutations. The other conversion is then synchronized depending on the 
difference of duty cycles between Phase B and A (ΔDutyA-B). In particular if 
ΔDutyA-B < DT+TN+TS (as shown in the red circle in Figure 26), the sampling of Phase C 
cannot be performed between Phase B low side switching on and Phase A high side 
switching off (see Figure 27). Therefore, Phase C current sampling is performed before 
Phase B high side commutation.

Figure 26. DT+TN+TS< Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA  and  
ΔDutyA-B<DT+TN+TS
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Figure 27. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA  and 
ΔDutyA-B<DT+TN+TS

On the contrary, if ΔDutyA-B > DT+TN+TS (as shown in the red circle in Figure 28), Phase C 
conversion is performed between Phase B low side switch on and Phase A high side switch 
off (see Figure 29).

Figure 28. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA  and 
ΔDutyA-B>DT+TN+TS
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Figure 29. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA  and 
ΔDutyA-B>DT+TN+TS

Case 3: Phase A pulse width < DT+TN+TS

In this case, the duty cycle applied to Phase A is so short that no current sampling can be 
performed in between the two low side commutations.

Then if the difference of duty cycles between Phase B and A is long enough to allow two A/D 
conversions to be performed between Phase B low side switch on and Phase A high side 
switch off, the strategy shown in Figure 31 is used.

Figure 30. Low side duty cycle Phase A < DT+TN+TS and
ΔDutyA-B > DT+TN+2TS+TH+TDMA
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Otherwise, if the difference of duty cycles between Phase B and A is long enough to allow 
only one A/D conversion to be performed between Phase B low side switch on and Phase A 
high side switch off, the strategy shown in Figure 33 is used. 

In Figure 33, TRise represents the time required by the analog voltage on the shunt resistor 
of a phase (signal ‘Current feedback of Phase B’) to settle after a commutation of the low 
side switch belonging to the same phase.

Figure 31. Low side duty cycle Phase A < DT+TN+TS and ΔDutyA-B > 
DT+TN+2TS+TH+TDMA

Figure 32. Low side duty cycle Phase A < DT+TN+TS and DT+TRise+TS < ΔDutyA-B < 
DT+TN+2TS+TH+TDMA
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Figure 33. Low side duty cycle Phase A < DT+TN+TS and DT+TRise+TS < ΔDutyA-B < 
DT+TN+2TS+TH+TDMA

Finally, when a high modulation index (> 92%) and high frequency (>11kHz) PWM signal is 
generated, it could happen that both Phase A pulse width is lower than DT+TN+TS and that 
ΔDutyA-B <  DT+TRise+TS. In this case, it is not possible to perform the current reading on 
Phase B, (see Figure 34), so the PWM patterns are slightly modified to relapse in the case 
shown in Figure 33. Because this PWM pattern modification produces a distortion on the 
phase currents, it is better to limit the scope of the modification by limiting the modulation 
index depending on the selected PWM frequency.

Specifically, this can be done with the following default values:

● DT = 0.7µs

● TN = 2.55µs

● TS = 1.6µs

● TH = 2.67µs

● TDMA = 0.7µs

● TRise =2.6µs
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Figure 34. Low side duty cycle Phase A < DT+TN+TS and  ΔDutyA-B< DT+TRise+TS 

The maximum applicable duty cycles are listed in Table 2 as a function of the PWM 
frequency.

         

Note: The figures above were measured using the MB459 board. This evaluation platform is 
designed to support several motor driving topologies (PMSM and AC induction) and current 
reading strategies (single and three shunt resistors). Therefore, the figures provided in 
Table 2 should be understood as a starting point and not as a best case.

You can further increase the maximum applicable duty when using your own hardware 
system by editing the following definitions in the MC_pwm_3shunt_prm.h header file:

#define HOLD_TIME 0xA0 //2.67usec 1/60MHz units
#define DMA_TIME  0x2A  //0.7usec  
#define SAMPLING_TIME 0x60//1.6usec
#define TNOISE 0x9c//2.6usec 
#define TRISE 0x9c //2.6usec 

Table 2. PWM frequency vs maximum duty cycle relationship

PWM frequency Max duty cycle Max modulation index (MMI)

Up to 11.4kHz 100% 100%

12.2kHz 99.5% 99%

12.9kHz 99% 98%

13.7kHz 98.5% 97%

14.4kHz 98% 96%

15.2kHz 97.5% 95%

16kHz 97% 94%

16.7kHz 96.5% 93%

17.5kHz 96% 92%
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4.3 Isolated current sensor reading and space vector PWM 
generation: 75x_svpwm_ICS module

4.3.1 Overview

Two important tasks are performed in the 75x_svpwm_ICS module.

● Space vector pulse width modulation (SVPWM),

● Three-phase current reading when two isolated current sensors (ICS) are used.

In order to reconstruct the currents flowing through a three phase load with the required 
accuracy using two ICS’, it is necessary to properly synchronize A/D conversions with the 
generated PWM signals. This is why the two tasks are included in a single software module.

4.3.2 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_svpwm_ICS.h header file:

● SVPWM_IcsInit on page 53

● SVPWM_IcsCurrentReadingCalibration on page 53

●  SVPWM_IcsGetPhaseCurrentValues on page 54

● SVPWM_IcsCalcDutyCycles on page 54



UM0324 Library functions

 53/105

SVPWM_IcsInit

         

SVPWM_IcsCurrentReadingCalibration

         

Synopsis void SVPWM_IcsInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for   
performing ICS reading and center aligned PWM generation.

The function initializes EIC, ADC, GPIO, and PWM peripherals. 

In particular ADC and PWM peripherals are configured to perform one 
injected chain of two A/D conversions every time PWM registers are 
updated (event called U event).

Refer to Section 4.3.3 for further information on A/D conversion 
triggering in ICS configuration.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library:

MRCC_PeripheralClockConfig, GPIO_Init, EIC_IRQInit, 
EIC_IRQCmd, PWM_DeInit, PWM_StructInit, PWM_Init,  
PWM_TRGOSelection,  PWM_ClearFlag,  PWM_ITConfig,  
PWM_ResetCounter, ADC_StructInit,  ADC_Init,  ADC_Cmd, 
ADC_StartCalibration,  ADC_ConversionCmd,  PWM_Cmd.

Motor control library:

SVPWM_IcsCurrentReadingCalibration 

Synopsis void SVPWM_IcsCurrentReadingCalibration(void);

Description The purpose of this function is to store the two analog voltages 
corresponding to zero current values for compensating the offset 
introduced by both ICS and amplification network.

Input None.

Returns None.

Note The function must be called before PWM outputs are enabled so that 
current flowing through inverter legs is zero. When using the STR750 
MC Kit, ICS sensors must be supplied before the control board 
(MB469B). This way, the current sensing conditioning network can 
reach steady state before performing calibration.

Functions called Standard Library:

ADC_GetFlagStatus, ADC_ConversionCmd, 
ADC_GetConversionValue
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 SVPWM_IcsGetPhaseCurrentValues

         

SVPWM_IcsCalcDutyCycles

         

4.3.3 Current sampling in isolated current sensor topology and integrating 
general purpose A/D conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the 
mathematical relationship:

I1+I2+I3=0

Therefore, to reconstruct the currents flowing through a generic three-phase load, it is 
sufficient to sample only two out of the three currents while the third one can be computed 
by using the above relationship.

The flexibility of the STR750 A/D converter trigger makes it possible to synchronize the two 
A/D conversions necessary for reconstructing the stator currents flowing through the three-
phase AC induction motor with the PWM reload register updates. Tthe update rate can be 
adjusted using the repetition counter. This is important because, as shown in Figure 35, it is 
precisely during counter overflow and underflow that the average level of current is equal to 

Synopsis Curr_Components SVPWM_IcsGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in 
q1.15 format from the values acquired from the A/D converter.

Input None.

Returns Curr_Components type variable

Note In order to have a q1.15 format for the current values, the digital value 
corresponding to the offset must be subtracted when reading phase 
current A/D converted values. Thus, the function must be called after 
SVPWM_IcsCurrentReadingCalibration.

Functions called None.

Synopsis void SVPWM_IcsCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After execution of the IFOC algorithm, new stator voltages component 
Vα and Vβ are computed. The purpose of this function is to calculate 
exactly the three duty cycles to be applied to motor phases from the 
values of these voltage components.

Refer to Section 4.2.3 for details about the theoretical approach of 
SVPWM and its implementation.

Input Vα and Vβ 

Returns None.

Note None.

Functions called None.
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the sampled current. Refer to the STR750 Reference Manual to learn more about A/D 
conversion triggering and the repetition counter.

Finally, at the end of the injected chain conversion for current reading, the general purpose 
A/D conversions are performed while the CPU executes the IFOC algorithm.

Figure 35. Stator currents sampling and GP conversions in ICS configuration 
(REP_RATE=1)

4.4 Induction motor IFOC vector control: MC_IFOC_Drive.c 
module

4.4.1 Overview

The MC_IFOC_Drive.c module, designed for AC induction machines, provides, at the 
core, decoupled torque and flux regulation, relying on indirect field oriented control 
algorithm.

In addition, it makes available other important features:

● speed regulation by PID feedback control,

● flux weakening for extended speed range.

It works, requiring no adjustment, with all of the selectable current or speed sensing 
configurations (in accordance with the settings in the 75x_MCconf.h file):

● isolated current sensing (ICS),

● three shunt resistors current sensing,

● encoder position and speed sensing,

● tachometer speed sensing.

It handles several functions of other modules, and has no direct access on the 
microcontroller peripheral registers.
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4.4.2 List of available C functions

● IFOC_Init on page 56

● IFOC_Model on page 57

● IFOC_CalcFluxTorqueRef on page 59

● CalcIm on page 60

● CalcRotFlxSlipFreq on page 61

IFOC_Init

         

Synopsis void IFOC_Init(void)

Description This function is normally called at every motor start-up. It performs 
the initialization of some of the variables used for IFOC 
implementation by the MC_IFOC_Drive.c module.

Input None.

Returns None.

Note None.

Functions called None.
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IFOC_Model

         

Synopsis void IFOC_Model (void) 

Description The purpose of this function is to perform AC-IM torque and flux 
regulation, implementing the IFOC vector algorithm.

Current commands iqs
λr * and ids

λr * (which, under field oriented 
conditions, can control machine torque and flux respectively) are defined 
outside this function (in closed loop they are provided, by means of speed 
and flux regulators, by the IFOC_CalcFluxTorqueRef function, while in 
open-loop mode they are settled by the user).

Therefore, as a current source is required, the function has to run the 
power converter as a CR-PWM. For this purpose, it implements an high 
performance synchronous d,q frame current regulator, whose operating 
frequency is defined, as explained in Section 2.2.2, by the parameter 
REP_RATE (in conjunction with PWM_FREQ).

Triggered by ADC ECH / JECH ISR, the function loads stator currents 
(read by ICS or shunt resistors) and carries out Clark and Park 
transformations, converting them to iqs

λr and ids
λr (see Figure 7).

Then, these currents are fed to PID regulators together with reference 
values iqs

λr * and ids
λr *. The regulator output voltages vqs

λr * and vds
λr * 

then must be transformed back to a stator frame (through Reverse Park 
conversion), and finally drive the power stage.

In order to correctly perform Park and Reverse Park transformation, it is 
essential to accurately estimate the rotor flux position (θλr) (because 
currents have to be oriented in phase and in quadrature with rotor flux). To 
manage this task:
– function CalcIm is called to provide lm, that is the estimated value of the rotor 

flux as a response to the variation of input current ids
λr (see CalcIm function 

description);
– function CalcRotFlxSlipFreq (see CalcRotFlxSlipFreq function description) 

evaluates rotor flux slip frequency ωsλr (relying on known rotor time constant); if 
using a tachogenerator, the rotor flux position θλr is calculated by integrating the 
sum of ωsλr and rotor electrical speed ω r (Figure 37) while, with an incremental 
encoder, θλr is determined by summing the rotor electrical angle and the 
integral of ωsλr (Figure 36).

Input None. 

Returns None.
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Figure 36. Rotor flux angle calculation (quadrature encoder)

Functions 
called

CalcIm, CalcRotFlxSlipFreq;
Clarke, Park, RevPark_Circle_Limitation;
PID_Torque_Regulator, PID_Flux_Regulator;

If working with encoder:

ENC_Get_Electrical_Angle;

if Working with tachogenerator:

TAC_GetRotorFreq;

if working with ‘ICS’:

SVPWM_IcsGetPhaseCurrentValues, SVPWM_IcsCalcDutyCycles;

if working with ‘three shunt’:

SVPWM_3ShuntGetPhaseCurrentValues, 
SVPWM_3ShuntCalcDutyCycles.
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Figure 37. Rotor flux angle calculation (tachogenerator)

IFOC_CalcFluxTorqueRef

         

Synopsis void IFOC_CalcFluxTorqueRef (void)

Description This function provides current components iqs* and ids* to be used 
as reference values (by the IFOC_Model function) in closed-loop 
speed mode (see “Torque & Flux opt” block in Figure 38).

Speed setpoint and actual rotor speed ωr are compared in a PID 
control loop, whose output is iqs**. This component, together with 
the previous flux reference and the rotor speed ωr, is used to work 
out the stator frequency that has to be generated. With this 
information, two lookup-tables (described in MC_ACmotor_prm, 
Section 2.2.5 , defined by taking into account the field weakening 
strategy explained in Section 4.4.4) are run through, in order to get 
the optimal flux reference (ids*) and the saturation value of the 
torque current component (iqs max) that allow to reach the desired 
speed (under the obvious limitations of rated torque and rated 
power).

Input None.

Returns None.

Functions called PID_Speed_Regulator;

mul_q15_q15_q31, div_q31_q15_q15.
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Figure 38. Torque and flux optimization block

CalcIm

         

Synopsis s16 CalcIm (s16 hId_input);

Description The purpose of this routine is to supply (to the calling function) the 
estimated value of the rotor flux, as a response to variations of the 
input current value ids

λr (see “uncompensated flux response 
controller” block in Figure 36 and Figure 37).

See Section 4.4.3 for in-depth information about the computations 
implemented.

Input Stator current ids
λr in q1.15 format.

Returns Magnetizing current im (defined as rotor flux λr divided by 
magnetizing inductance Lm) in q1.15 format.

Functions called mul_q15_q15_q31 (MC_qmath.h)
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CalcRotFlxSlipFreq

         

4.4.3 Detailed explanation about indirect field oriented control (IFOC)

Consider the voltage equations of an induction machine, being transformed on a q,d 
reference frame that is synchronous with the rotor flux λr (about reference frame theory see 
[1]):

where:

By choosing the phase of the reference system in such a way to arrange the rotor flux 
exactly on the d-axis, we will have λqr

λr = 0, λdr
λr = λr..

Synopsis s32 CalcRotFlxSlipFreq (s16 hIq_input, s16 hIm_input)

Description This function estimates the rotor flux slip frequency ωsλr (central 
block in Figure 36 and Figure 37), as result of currents iqs

λr and im  
(λdr

λr/Lm).

See Section 4.4.3 for an in-depth comprehension of the 
implemented computations.

Input Stator current iqs
λr and magnetizing current im, both in q1.15 format.

Returns Rotor flux slip frequency, expressed in pulses per PWM period * 
65536 (65536 pulses = 2π radiants).

Functions called mul_q15_q15_q31

div_q31_q15_q15 (MC_qmath.h)

( )

( ) r
qrr

dr
drr

drr
qr

qrr

qs
ds

dssds

ds
qs

qssqs

r

r
r

r

r

r

r

r

r

r
rr

r

r

r

rr

dt
dir

dt
d

ir

dt
dirv

dt
d

irv

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λλ

λ
λ

λ
λλ

λωωλ

λωω
λ

λωλ

λω
λ

−−+=

−++=

−+=

++=

0

0

( )
( )
( )
( )rrrr

rrrr

rrrr

rrrr

drdsmdrlrdr

qrqsmqrlrqr

drdsmdslsds

qrqsmqslsqs

iiLiL

iiLiL

iiLiL

iiLiL

λλλλ

λλλλ

λλλλ

λλλλ

λ

λ

λ

λ

++=

++=

++=

++=



Library functions UM0324

62/105   

With this choice, the electromagnetic torque can be written as:

i.e. as a product of a flux and a current component (P= number of stator poles).

Let’s investigate further on the rotor flux λdr
λr.

Considering the d-axis rotor flux equation:

then, the equation for idr
λr is:

Combining the latter with the d-axis rotor voltage equation, leads to:

where τ r is the rotor time constant, τ r = Lr / rr.

Therefore, a lag in flux response is caused to this first order transfer function between ids
λr 

and λdr
λr.

The CalcIm routine performs a numerical integration using Euler’s method which, for a first 
order ODE written as

may be summarized in this way:

where t is the sampling time.

Putting the equation above in the explicit form, we have:
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On the other hand, under the same conditions, the q-axis rotor flux equation becomes:

So, the equation for iqr
λr is:

Combining the last with the q-axis rotor voltage equation, leads to:

This equation (implemented in the CalcRotFlxSlipFreq function, see CalcRotFlxSlipFreq on 
page 61) is at the foundation of indirect field oriented control: it tells us that the rotor flux slip 
frequency ωsλr may be simply calculated from stator current components (relying on 
knowledge of the rotor time constant of the machine).

If rotor angle or rotor speed is known (see Figure 36 and Figure 37 respectively), then we 
have managed to determine the rotor flux position θλr. This information is essential to 
achieve optimum control.

4.4.4 Detailed explanation about field weakening operation

Many applications need to operate induction machines above their rated speed: this is 
achieved by means of field weakening.

The conventional method for the field weakening operation is to vary the rotor flux reference 
in proportion to the inverse of the rotor speed ωr.

In this approach, if maximum inverter modulation index is required when attaining rated 
speed and rated power, then the voltage margin, enough to regulate current beyond that 
point, is not available: this is caused by increased voltage drop across the stator leakage 
inductance.

That’s why, when 1/ωr method is implemented, the inverter voltage is generally limited at 
95% of its means.

The AC IM IFOC software library, however, makes use of a maximum torque capability 
scheme [2], which aims to exploit the system resources completely.

In both cases, DC bus voltage limitation (VDCmax), inverter current rating and motor thermal 
rating (usually, in order to provide better dynamic response, the inverter current rating is 
higher than that of the machine) must be considered, and a precise knowledge of motor 
parameters, such as magnetizing inductance Lm, rotor leakage inductance Llr, rotor 
resistance rr, is required.
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There are two different field weakening operation regions (see Figure 39): 

● the constant power region, where rotor flux is decreased inversely with the speed 
(considering the influence of the voltage drop across Lls) while slip frequency increases 
until breakdown value; 

● the constant power·speed region, where rotor flux is decreased, but keeping the slip 
frequency fixed at breakdown value.

Figure 39. Torque vs. speed characteristic curve

In order to help you select the most suitable values of flux reference and torque saturation 
(as needed by the CalcRotFlxSlipFreq function), a spreadsheet is available, to be filled out 
with the following system parameters:

● Mains AC voltage, rms, Volt (cell B1, Volt);

● motor rated current, peak amplitude, (cell B2, Ampere); as said before, this data is to 
be matched with inverter current rating;

● motor rated magnetizing current, peak amplitude, (cell B3, Ampere);

● magnetizing inductance Lm, (cell B4, Henry);

● leakage inductance Lls ( Llr), (cell B5, Henry);

● stator resistance rs, (cell B6, Ohm)

● rotor resistance rr , (cell B7, Ohm);

● maximum measurable current Imax, peak amplitude, (cell B8, Ampere).
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As a result of data processing, the following information can be obtained:

● highest frequency of constant torque region, i.e. the maximum allowable frequency 
before entering field weakening; content of cell B13 should be inserted (as parameter 
RATED_FREQ) in MC_ACMotor_Prm.h (see Section 2.2.5);.

● reference values of ids, in q1.15 format, according to increasing stator frequency; 
column P should be copied (as hFlux_Reference) in MC_ACMotor_Prm.h.

● saturation values of current component iqs, in q1.15 format, according to increasing 
stator frequency; column Q should be copied (as hTorque_Reference) in 
MC_ACMotor_Prm.h.

4.5 Reference frame transformations: MC_Clarke_Park.h 
module

4.5.1 Overview

This module, intended for AC machines (induction, synchronous and PMSM), is designed to 
perform transformations of electric quantities between frames of reference that rotate at 
different speeds.

Based on the arbitrary reference frame theory, the module provides three functions, named 
after two pioneers of electric machine analysis, E. Clarke and R.H. Park.

These functions implement three variable changes that are required to carry out field-
oriented control (FOC): 

● Clarke transforms stator currents to a stationary orthogonal reference frame (named qd 
frame, see Figure 40);

● then, from that arrangement, Park transforms currents to a frame that rotates at an 
arbitrary speed  (which, in IFOC drive, is synchronous with the rotor flux);

● Reverse Park transformation brings back stator voltages from a rotating qd frame to a 
stationary one.
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Figure 40. Clarke, Park, and reverse Park transformations

4.5.2 List of available C functions

● Clarke on page 66

● Park on page 67

● Rev_Park on page 67

● Rev_Park_Circle_Limitation on page 68

Clarke

         

Synopsis Curr_Components Clarke (Curr_Components Curr_Input)

Description This function transforms stator currents ias and ibs (which are 
directed along axes each displaced by 120 degrees) into currents iα 
and iβ in a stationary qd reference frame; q,d axes are directed 
along paths orthogonal to each other.

See Section 4.5.3 for the details.

Input Stator currents ias and ibs (in q1.15 format) as members of the 
variable Curr_Input, which is a structure of type Curr_Components.

Returns Stator currents iα and iβ (in q1.15 format) as members of a structure 
of type Curr_Components.

Functions called mul_q15_q15_q31
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Park

         

Rev_Park

         

Synopsis Curr_Components Park (Curr_Components Curr_Input, s16 Theta)

Description The purpose of this function is to transform stator currents iα and iβ, 
which belong to a stationary qd reference frame, to a rotor flux 
synchronous reference frame (properly oriented), so as to obtain iqs 
and ids.

See Section 4.5.3 for details.

Input Stator currents iα and iβ (in q1.15 format) as members of the variable 
Curr_Input, which is a structure of type Curr_Components; rotor flux 
angle θλr (65536 pulses per revolution).

Returns Stator currents iqs and ids (in q1.15 format) as members of a 
structure of type Curr_Components.

Functions called mul_q15_q15_q31

Synopsis Volt_Components Rev_Park (Volt_Components Volt_Input)

Description This function transforms stator voltage vq and vd, belonging to a 
rotor flux synchronous rotating frame, to a stationary reference 
frame, so as to obtain vα and vβ.

See Section 4.5.3 for details.

Input Stator voltages vqs and vds (in q1.15 format) as members of the 
variable Volt_Input, which is a structure of type Volt_Components.

Returns Stator voltages vα and vβ (in q1.15 format) as members of a 
structure of type Volt_Components.

Functions called mul_q15_q15_q31
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Rev_Park_Circle_Limitation

         

4.5.3 Detailed explanation about reference frame transformations

Induction machines show very complex voltage equations, because of the time-varying 
mutual inductances between stator and rotor circuits.

By making a change of variables, that refers stator and rotor quantities to a frame of 
reference rotating at any angular velocity, it is possible to reduce the complexity of these 
equations.

This strategy is often referred to as the Reference-Frame theory [1].

Supposing fax, fbx, fcx are three-phase instantaneous quantities directed along axis each 
displaced by 120 degrees, where x can be replaced with s or r to treat stator or rotor 
quantities (see Figure 41); supposing fqx, fdx, f0x are their transformations, directed along 
paths orthogonal to each other; the equations of transformation to a reference frame 
(rotating at an arbitrary angular velocity ω) can be expressed as:

where θ is the angular displacement of the q-d reference frame at the time of observation, 
and θ0 that displacement at t=0 (see Figure 41).

Synopsis void RevPark_Circle_Limitation(void)

Description After the two new values (Vd and Vq) of the stator voltage producing 
flux and torque components of the stator current, have been 
independently computed by flux and torque PIDs, it is necessary to 
saturate the magnitude of the resulting vector, equal to 

passing before them to the SVPWM block. The purpose of this 
routine is to perform the saturation. Refer to Section 4.5.4: Circle 
limitation on page 70 for more detailed information 

Input None.

Returns None.

Note The limitation of the stator voltage vector must be done in 
accordance with the PWM frequency as shown in Table 2: PWM 
frequency vs maximum duty cycle relationship on page 51. 

Functions called None.
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Figure 41. Transformation from an abc stationary frame to a qd rotating frame

With Clark’s transformation, stator currents ias and ibs (which are directed along axes each 
displaced by 120 degrees) are resolved into currents ia and ib on a stationary qd reference 
frame.

Appropriate substitution into the general equations (given above) yields:

         

In Park’s change of variables, stator currents iα and iβ, which belong to a stationary qd 
reference frame, are resolved to a rotor flux synchronous reference frame (properly 
oriented), so as to obtain iqs and ids.

Consequently, with this choice of reference, ω=ωλr; thus:

         

On the other hand, reverse Park transformation takes back stator voltage vq and vd, 
belonging to a rotor flux synchronous rotating frame, to a stationary reference frame, so as 
to obtain vα and vβ:
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4.5.4 Circle limitation

As discussed above, FOC allows to separately control the torque and the flux of a 3-phase 
permanent magnet motor. After the two new values(  and ) of the stator voltage 
producing flux and torque components of the stator current, have been independently 
computed by flux and torque PIDs, it is necessary to saturate the magnitude of the resulting 
vector ( ) before passing them to the SVPWM block. 

The saturation boundary is normally given by the value (S16_MAX=32767) which produces 
the maximum output voltage magnitude (corresponding to a duty cycle going from 0% to 
100%).

Nevertheless, when using three shunt resistor configuration and depending on PWM 
frequency, it might be necessary to limit the maximum PWM duty cycle to guarantee the 
proper functioning of the stator currents reading block.

For this reason, the saturation boundary could be a value slightly lower than S16_MAX 
depending on PWM switching frequency when using three shunt resistor configuration.

Table 2 on page 51, repeated below for convenience, shows the maximum applicable 
modulation index as a function of PWM switching frequency when using the STR750-
MCKIT.

         

Note: The figures above were measured using the MB459 board. This evaluation platform is 
designed to support several motor driving topologies (PMSM and AC induction) and current 
reading strategies (single and three shunt resistors). Therefore, the figures provided in 
should be understood as a starting point and not as a best case.

The RevPark_Circle_Limitation function performs the discussed stator voltage 
components saturation, as illustrated in Figure 42.

PWM frequency Max duty cycle Max modulation index (MMI)

Up to 11.4kHz 100% 100%

12.2kHz 99.5% 99%

12.9kHz 99% 98%

13.7kHz 98.5% 97%

14.4kHz 98% 96%

15.2kHz 97.5% 95%

16kHz 97% 94%

16.7kHz 96.5% 93%

17.5kHz 96% 92%

*
dV *

qV

|V| *
r
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Figure 42. Circle limitation working principle

Vd and Vq represent the saturated stator voltage component to be passed to the SVPWM 
block. From geometrical considerations, it is possible to draw the following relationship:

   

In order to speed up the computation of the above equations while keeping an adequate 
resolution, the value  

is computed and stored in a look-up table for different values of . Furthermore, 
considering that MMI depends on the selected PWM frequency, a look-up table is stored in 
‘MC_Clarke_Park.h’ (with MMI ranging from 92 to 100).

Once you have selected the required PWM switching frequency, you should uncomment the 
Max Modulation Index definition corresponding to the selected PWM frequency in the 
MC_Control_Param.h definitions list shown below. 

//#define MAX_MODULATION_100_PER_CENT       // 100% max modulation index
//#define MAX_MODULATION_99_PER_CENT        // 99% max modulation index
//#define MAX_MODULATION_98_PER_CENT        // 98% max modulation index
//#define MAX_MODULATION_97_PER_CENT        // 97% max modulation index
//#define MAX_MODULATION_96_PER_CENT        // 96% max modulation index
//#define MAX_MODULATION_95_PER_CENT        // 95% max modulation index
//#define MAX_MODULATION_94_PER_CENT        // 94% max modulation index
//#define MAX_MODULATION_93_PER_CENT        // 93% max modulation index
//#define MAX_MODULATION_92_PER_CENT        // 92% max modulation index
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For information on selecting the PWM switching frequency, you will find advice in 
Section A.2 on page 98. To determine the max modulation index corresponding to the PWM 
switching frequency, refer to Table 2 on page 51.

4.6 Encoder feedback processing: 75x_encoder.c module

4.6.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_ encoder .h header file:

● ENC_Init on page 72

● ENC_GetPosition on page 73

● ENC_Get_Electrical_Angle on page 73

● ENC_Get_Mechanical_Angle on page 73

● ENC_ResetEncoder on page 74

● ENC_Clear_Speed_Buffer on page 74

● ENC_Get_Speed on page 74

● ENC_Get_Average_Speed on page 75

● TIMx_UP_IRQHandler - interrupt routine on page 75

ENC_Init

         

Synopsis void ENC_Init(void)

Description The purpose of this function is to initialize the encoder timer. The 
peripheral clock, input pins and update interrupt are enabled. The 
peripheral is configured in 4X mode, which means that the counter is 
incremented/decremented on the rising/falling edges of both timer 
input 1 and 2 (TIMx_TI0 and TIMx_TI1 pins).

Functions called MRCC_PeripheralClockConfig
GPIO_Init
EIC_IRQInit 
TIM_StructInit, TIM_Init, TIM_ClearFlag, TIM_ITConfig, 
TIM_ResetCounter, Tim_Cmd

See also STR750 datasheet: synchronizable standard timer.
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ENC_GetPosition

         

ENC_Get_Electrical_Angle

         

ENC_Get_Mechanical_Angle

         

Synopsis u32 ENC_GetPosition(void)

Description This function returns the encoder timer value, giving a direct reading 
of the rotor position from 0 to 4*(number of encoder pulses per 
revolution). For the SHINANO motor included with the STR750-
MCKIT, the encoder delivers 400 pulses per revolution. This routine 
returns: 0 for 0 degrees, 4*400/2=800 for 180 degrees.

Input None

Output Unsigned 32 bits

Functions called None

See also STR750 datasheet: synchronizable standard timer.

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the electrical angle in signed 16-bit format. This 
routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 degrees, 
+32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the mechanical angle in signed 16-bit format. This 
routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 degrees, 
+32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None

Note Link between Electrical/Mechanical frequency/RPM:

Electrical frequency = number of pair poles x mechanical frequency
RPM speed = 60 x Mechanical frequency (RPM: revolutions per minute)

Example: electrical frequency = 100 Hz, motor with 8 pair poles:
100Hz electrical <-> 100/8 =12.5Hz mechanical <-> 12.5 x 60=750 
RPM
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ENC_ResetEncoder

         

ENC_Clear_Speed_Buffer

         

ENC_Get_Speed

         

Synopsis void ENC_resetEncoder(void)

Description This function resets the encoder timer (hardware register) value to 
zero.

Functions called TIM_ResetCounter

See also STR750 datasheet: synchronizable standard timer.

Synopsis void ENC_Clear_Speed_Buffer(void)

Description This function resets the buffer used for speed averaging.

Functions called None

Synopsis s16 ENC_Get_Speed(void)

Description This function returns the rotor speed in Hz. The value returned is 
given with 0.1Hz resolution, which means that 1234 is equal to 123.4 
Hz. 

Input None

Output Signed 16 bits

Functions called None

Note This routine returns the mechanical frequency of the rotor. To find the 
electrical speed, use the following conversion:

electrical frequency = number of pole pairs * mechanical frequency
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ENC_Get_Average_Speed

         

TIMx_UP_IRQHandler - interrupt routine

         

Synopsis s16 ENC_Get_Average_Speed(void) 

Description This function returns the average rotor speed in Hz.The value 
returned is given with 0.1Hz resolution, which means that 1234 is 
equal to 123.4 Hz. 

Input None

Output Signed 16 bits

Functions called ENC_Get_Speed()

Note The averaging is done with the values stored in ‘Speed_Buffer[]’. The 
size of this buffer is set through the ‘SPEED_BUFFER_SIZE’ 
statement, which must be equal to a power of 2 to allow the use of 
the shift operation for divisions.

This routine returns the mechanical frequency of the rotor. To find the 
electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs

Synopsis void TIMx_UP_IRQHandler(void)

Description This is the encoder timer (TIMER 0, 1 or 2) update routine. An 
interruption is generated whenever an overflow/underflow of the 
counter value occurs (TIM_CNT). The ‘Encoder_Timer_Overflow’ 
variable is then incremented.

Functions called None

Note This is an interrupt routine.

See also STR750 Datasheet: Synchronizable Standard Timer.
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4.7 Tachogenerator feedback processing: 75x_tacho.c module

4.7.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_ encoder .h header file:

● TAC_TachoTimerInit on page 76

● TAC_InitTachoMeasure on page 77

● TAC_GetRotorFreqInHz on page 77

● TAC_GetRotorFreq on page 78

● GetLastTachoPeriod on page 78

● GetAvrgTachoPeriod on page 78

● TAC_IsTimedOut on page 79

● TAC_ClrTimeOut on page 79

● TAC_GetCaptCounter on page 79

● TAC_ClrCaptCounter on page 80

● TAC_StartTachoFiltering on page 80

● TAC_ValidSpeedInfo on page 80

● TIMx_IC12_IRQHandler on page 81

● TIMx_UP_IRQHandler on page 81

TAC_TachoTimerInit

         

Synopsis void TAC_TachoTimerInit(void)

Description The purpose of this function is to initialize the timer that will perform the 
tacho signal period measurement (the timer can be chosen in the 
75x_tacho_prm.h file). The peripheral clock and the capture interrupt 
are enabled, and the timer is initialized in “clear on capture” mode.

Functions called MRCC_PeripheralClockConfig
EIC_IRQInit 
TIM_DeInit, TIM_StructInit, TIM_Init, TIM_ClearFlag, TIM_ITConfig, 
TIM_ResetCounter, Tim_Cmd

Note The timer starts counting at the end of the routine.

See also STR750 datasheet: synchronizable standard timer.
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TAC_InitTachoMeasure

TAC_GetRotorFreqInHz

         

Synopsis void TAC_InitTachoMeasure(void)

Description This function clears the software FIFO where the latest speed data 
are stored. This function must be called every time the motor is started 
to initialize the speed measurement process.

Input None.

Output None.

Functions called TIM_ITConfig, TIM_ResetCounter, TIM_Cmd, TIM_ITConfig

Note The first measurements following this function call are done without 
filtering (the rolling average mechanism is disabled).

See also STR750 datasheet: synchronizable standard timer.

Synopsis u16 TAC_GetRotorFreqInHz (void)

Description This routine returns the rotor frequency with [0.1Hz] definition. The 
result is given by the following formula:

Frotor = K x (Fosc / (Capture + number of overflow x FFFF))

where K depends on the number of motor and tacho pole pairs.

Input None.

Output Rotor mechanical frequency, with 0.1Hz resolution, unsigned 16 bits 
(direction cannot be determined using a tacho).

Functions called GetAvrgTachoPeriod, GetLastTachoPeriod (both private functions)

Note Result is zero if speed is too low (glitches at start for instance). 
Excessive speed (or glitches) will result in a pre-defined value 
returned (see Section 2.2.4 on page 21).

Maximum expectable accuracy depends on CKTIM: 60MHz will give 
the best results.

Caution This routine returns the mechanical frequency of the rotor. To find the 
electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs
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TAC_GetRotorFreq

         

GetLastTachoPeriod

         

GetAvrgTachoPeriod

         

Synopsis u16 TAC_GetRotorFreq (void)

Description This routine returns rotor frequency with a unit that can be directly 
integrated (accumulated) to get the rotor angular position in the main 
control loop.

Input None.

Output Rotor mechanical frequency with rad/PWM period unit 
(2π rad = 0xFFFF), assuming the control loop is executed in each 
and every PWM interrupt service routine.

Functions called GetAvrgTachoPeriod, GetLastTachoPeriod (both private functions)

Note Result is zero if speed is too low (glitches at start for instance). 
Excessive speed (or glitches) will result in a pre-defined value 
returned (see Section 2.2.4 on page 21).

Maximum expectable accuracy depends on CKTIM: 60MHz will give 
the best results.

Caution This routine returns the mechanical frequency of the rotor. To find the 
electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs

Synopsis u32 GetLastTachoPeriod(void)

Description This routine returns the rotor period based on the last tacho capture.

Input None.

Output Tacho signal period, unit is 1 CKTIM period, unsigned 32-bit format.

Functions called None.

Note This function is private to the 75x_tacho.c module.

Synopsis u32 GetAvrgTachoPeriod(void)

Description This routine returns returns the rotor period based on the average of 
the four last tacho captures.

Input None.

Output Tacho signal period, unit is 1 CKTIM period, unsigned 32-bit format.

Functions called None.

Note This function is private to the 75x_tacho.c module.
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TAC_IsTimedOut

         

TAC_ClrTimeOut

         

TAC_GetCaptCounter

         

Synopsis bool TAC_IsTimedOut(void)

Description This routine indicates to the upper layer software that tacho 
information has disappeared (or that the period of the signal has 
drastically increased).

Input None.

Output Boolean, TRUE in case of time-out

Functions called None.

Note The time-out duration depends on tacho timer pre-scaler, which is 
variable: the time-out is higher at low speed.

The boolean will remain set to TRUE until the TAC_ClrTimeOut is 
called.

Synopsis void TAC_ClrTimeOut (void)

Description This routine clears the flag indicating that information is lost, or that 
speed is decreasing sharply.

Input None.

Output None.

Note This function must be called to re-arm the time-out detection 
mechanism and re-start rotor frequency measurements: the returned 
frequency is 0 as long as the time-out flag is set.

Synopsis u16 TAC_GetCaptCounter(void)

Description This routine gives the number of tacho capture interrupts since the 
last call to the TAC_ClrCaptCounter function. 

Input None.

Output Unsigned 16-bit integer. This variable cannot roll-over (this is 
prevented in the tacho capture routine itself): it will be limited to max 
u16 value.

Note This function is typically used to monitor the interrupts activity (while 
the motor is running, tacho-related interrupts must not be stopped or 
too frequent).

See also TAC_ClrCaptCounter
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TAC_ClrCaptCounter

         

TAC_StartTachoFiltering

         

TAC_ValidSpeedInfo

         

Synopsis void TAC_ClrCaptCounter(void)

Description This routine clears the number of capture events variable.

Input None.

Output None.

Synopsis void TAC_StartTachoFiltering( void )

Description This routine initiates the tacho value smoothing mechanism. The 
result of the next capture will be copied in all storage array locations 
to have the first average equal to the last value.

Input None.

Output None.

Note The initialization of the FIFO used to do the averaging will be done 
when the next tacho capture interrupt occurs. Consequently, the 
TAC_GetRotorFreq will continue to return a raw period value until the 
next interrupt event.

Synopsis bool TAC_ValidSpeedInfo( u16 hMinRotorFreq )

Description This routine indicates if the information provided by the 
tachogenerator is reliable: this is particularly important at start-up, 
when the signal of the tacho is very weak and cannot be properly 
conditioned by the external circuitry (glitches). It is also used in start-
up functions to find out if the rotor shaft is turning at the right speed.

Input Rotor frequency (0.1Hz resolution) above which speed information is 
not considered reliable (rolling averages cannot be computed).

Output Boolean, TRUE if the tacho provides clean signals.

Caution Because there is no way to differentiate rotation direction with a 
tachogenerator, you must be aware that this routine may return 
TRUE in certain conditions (re-start with very short or no stop time 
and high inertia load). You should, therefore, manage a minimal 
amount of time before re-starting.

This function is not effective if the start-up duration (time for the 
voltage to settle) is much shorter than the time needed to obtain at 
least two consecutive speed data.
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TIMx_IC12_IRQHandler

         

TIMx_UP_IRQHandler

         

4.7.2 Integration tips

In the MC_tacho_prm.h file of your project, select the Timer you have chosen and the input 
channel on which the tacho signal arrives, using the right #define (see Section 2.2.4 on 
page 21).

In the main.c module (or the c module just above 75x_tacho), include the 75x_tacho.h 
file, call TAC_TachoTimerInit() after MCU reset and TAC_InitTachoMeasure() 
before motor start-up. TAC_GetRotorFreqInHz returns a frequency directly with 0.1Hz, 
while TAC_GetRotorFreq returns a value that can be directly accumulated in the FOC 
algorithm to get the rotor angular position (the unit is 2π rad (that is 0xFFFF) per sampling 
period).

4.7.3 Operating principle

Although the principle of measuring a period with a timer is quite simple,you must pay 
attention to keeping the best resolution, in particular for signals such as the one provided by 
a tachogenerator, which can vary with a ratio of up to 1:100.

Synopsis void TIMx_IC12_IRQHandler(void)

Description This function handles the capture event interrupt in charge of tacho 
signal period measurement. It updates an array where the 4 latest 
period measurements are stored, resets the overflow counter and 
updates the clock prescaler to optimize the accuracy of the 
measurement. If the average is enabled, the last captured 
measurement is copied into the whole array. Period captures are 
managed as follows:

● If too low (capture value below 0x5500), the clock prescaler is 
decreased for the next measurement

● If too high (for example, the timer overflowed), the result is re-
computed as if there was no overflow and the prescaler is 
increased to avoid overflows during the next capture.

Input None.

Output None.

Note This is an interrupt routine.

Synopsis void TIMx_UP_IRQHandler(void)

Description This function handles the overflow of the timer in charge of the tacho 
signal period measurement. It updates a Counter of overflows, which 
is reset when next capture occurs.

Input None.

Output None.

Note This is an interrupt routine.
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In order to have always the best resolution, the timer clock prescaler is constantly adjusted 
in the current implementation.

The basic principle is to speed-up the timer if captured values are too low (for an example of 
low periods, see Figure 43), and slow it down when the timer overflows between two 
consecutive captures (see example of large periods in Figure 44).

The prescaler modification is done in the capture interrupt, taking advantage of the buffered 
registers: the new prescaler value is taken into account only on the next capture event, by 
the hardware, without disturbing the measurement.

Further details are provided in the flowcharts in Section A.4 on page 100.

Figure 43. Automatic tacho timer prescaler decrease

Figure 44. Automatic tacho timer prescaler increase

Figure 44 shows that the prescaler is not decreased although the captured value is below 
0x5500, due to an overflow interrupt.
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Timer overflowed, the 
prescaler is increased

ovf ovf
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4.7.4 Converting Hertz into pseudo frequency

From the definition of frequency (1Hz is equal to 2π rad.s-1), it is easy to define a pseudo 
frequency format, so that the rotor angular position can be easily determined by 
accumulating the rotor speed information every time the control loop is executed (for 
example, during PWM update interrupt service routine). Providing that 2π = 0xFFFF (so that 
angle roll-overs do not need to be managed), the frequency with 0.1Hz unit can easily be 
converted into pseudo frequency using the following fomula:

         

4.8 Flux, torque and speed regulators: MC_PID_regulators 
module

4.8.1 Overview

The MC_PID_regulators module contains all the functions required for implementing the 
necessary PID regulators for controlling flux, torque and, in case of closed loop, motor 
speed.

4.8.2 List of available functions and interrupt service routines

The following is a list of available functions in the MC_PID_regulators module:

● PID_Init on page 83

● PID_Flux_Regulator on page 84

● PID_Torque_Regulator on page 84

● PID_Speed_Regulator on page 85

● PID_Reset_Integral_terms on page 85

● PID_Speed_Coefficients_update on page 85

● PID_Integral_Speed_update on page 85

PID_Init

         

Fpseudo F 0.1Hz[ ]
0xFFFF

10 Fpwm Hz( )×
-------------------------------------×=

Synopsis void PID_Init(void)

Description The purpose of this function is to initialize the PIDs for torque, flux 
and speed regulation. For each one, a set of default values are 
loaded: target (speed, torque or flux), proportional, integral and 
derivative gains, lower and upper limiting values for the output.

Functions called None

Note Default values for PID regulators are declared and can be modified 
in the MC_Control_Param.h file (see Section 2.2.2 on page 19).
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PID_Flux_Regulator

         

PID_Torque_Regulator

         

Synopsis s16 PID_Flux_regulator(PID_FluxTYPEDEF *PID_Flux, s16 
qId_input)

Description The purpose of this function is to compute the proportional, integral 
and derivative terms (if enabled, see 
Id_Iq_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page 
18) for the flux regulation. 

Input PID_FluxTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output Signed 16 bits

Functions called None

Note Default values for the PID flux regulation are declared and can be 
modified in the MC_Control_Param.h file (see Section 2.2.2 on page 
19).

See also Figure 53 on page 102 shows the PID block diagram.

Synopsis s16 PID_Torque_regulator(PID_TorqueTYPEDEF *PID_Torque, s16 
qIq_input)

Description The purpose of this function is to compute the proportional, integral 
and derivative terms (if enabled, see 
Id_Iq_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page 
18) for the torque regulation.

Input PID_TorqueTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output signed 16 bits

Functions called None

Note Default values for the PID torque regulation are declared and can be 
modified in the MC_Control_Param.h file (see Section 2.2.2 on page 
19).

See also Figure 53 on page 102 shows the PID block diagram.
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PID_Speed_Regulator

         

PID_Reset_Integral_terms

         

PID_Speed_Coefficients_update

         

PID_Integral_Speed_update

         

Synopsis s16 PID_Speed_regulator(PID_SpeedTYPEDEF *PID_Speed, s16 
speed)

Description The purpose of this function is to compute the proportional, integral and 
derivative terms (if enabled, see 
SPEED_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page 
18) for the speed regulation.

Input PID_SpeedTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output signed 16 bits

Functions called None

Caution Default values for the PID speed regulation are declared and can be 
modified in the MC_Control_Param.h file (see Section 2.2.2 on page 
19).

See also Figure 54 on page 103 shows the PID block diagram.

Synopsis void PID_Reset_Integral_terms(void)

Description The purpose of this function is to reset all the integral terms of the 
torque, flux and speed PID regulators.

Synopsis void PID_Speed_coefficients_update(s16 motor_speed)

Description This function automatically computes the proportional, integral and 
derivative gain for the speed PID regulator according to the actual 
motor speed. The computation is done following a linear curve 
based on 4 set points. See Section 4.8.5 on page 87 for more 
information.

Functions called None

Caution Default values for the four set points are declared and can be 
modified in the MC_Control_Param.h file (see Section 2.2.2 on page 
19).

Synopsis void PID_Integral_Speed_update(s32 value)

Description The purpose of this function is to load the speed integral term with a default 
value.
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4.8.3 PID regulator theoretical background

The regulators implemented for Torque, Flux and Speed are actually Proportional Integral 
Derivative (PID) regulators (see note below regarding the derivative term). PID regulator 
theory and tuning methods are subjects which have been extensively discussed in technical 
literature. This section provides a basic reminder of the theory.

PID regulators are useful to maintain a level of torque, flux or speed according to a desired 
target.

Figure 45. PID general equation

Equation 1 corresponds to a classical PID implementation, where:

● Kp is the proportional coefficient,

● Ki is the integral coefficient.

● Kd is the differential coefficient.

Note: As mentioned in Figure 45, the derivative term of the PID can be disabled independently 
(through a compiler option, see 75x_MCconf.h file) for the torque/flux or the speed 
regulation; a PI can then be quickly implemented whenever the system doesn’t require a 
PID control algorithm.

4.8.4 Regulator sampling time setting

The sampling time needs to be modified to adjust the regulation bandwidth. As an 
accumulative term (the integral term) is used in the algorithm, increasing the loop time 
decreases its effects (accumulation is slower and the integral action on the output is 
delayed). Inversely, decreasing the loop time increases its effects (accumulation is faster 
and the integral action on the output is increased). This is why this parameter has to be 
adjusted prior to setting up any coefficient of the PID regulator.

In order to keep the CPU load as low as possible and as shown in equation (1) in Figure 45, 
the sampling time is directly part of the integral coefficient, thus avoiding an extra 
multiplication. Figure 46 describes the link between the time domain and the discrete 
system.

torque = f(rotor position)
flux = f(rotor position)

torque = f(rotor speed)

torque and flux regulation for maximum

torque regulation for speed regulation
of the system

system efficiency

Where: Error of the system observed at time t = TErrorsysT

ErrorsysT 1– Error of the system observed at time t = T - Tsampling

f XT( ) Kp ErrorsysT
× Ki Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–( )×+

0

T

∑×+= (1)

Derivative term can be disabled
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Figure 46. Time domain to discrete PID equations

In theory, the higher the sampling rate, the better the regulation. In practice, you must keep 
in mind that:

● The related CPU load will grow accordingly.

● For speed regulation, there is absolutely no need to have a sampling time lower than 
the refresh rate of the speed information fed back by the external sensors; this 
becomes especially true when a tacho-generator sensor is used while driving the motor 
at low to medium speed.

As discussed in Section 2.2.2 on page 19, the speed regulation loop sampling time can be 
customized by editing the PID_SPEED_SAMPLING_TIME parameter in the 
MC_Control_Param.h header file. The flux and torque PID regulator sampling rates are 
given by the relationship

         

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see also 
Section A.2 on page 98); its value is 8-bit long.

4.8.5 Adjusting speed regulation loop Ki, Kp and Kd vs motor frequency

Depending on the motor frequency, it might be necessary to use different values of Kp, Ki 
and Kd.

These values have to be input in the code to feed the regulation loop algorithm. A function 
performing linear interpolation between four set-points 
(PID_Speed_Coefficient_update) is provided as an example in the software library 
(see MC_PID_regulators.c) and can be used in most cases, as long as the coefficient 
values can be linearized. If that is not possible, a function with a larger number of set-points 
or a look-up table may be necessary.

To enter the four set-points, once the data are collected, edit the MC_Control_param.h 
file and fill in the field dedicated to the Ki, Kp and Kd coefficient calculation as shown below. 

f XT( ) Kp ErrorsysT
× ki Ts Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–( )×+

0

T

∑×+=

f t( ) Kp Errorsys t( )× Ki Errorsys0

t∫× t( )dt Kd td
d Errorsys t( )( )×+ +=Time domain

Discrete
 domain

ki Ts× Ki=
(sampling done at Fs = 1/Ts frequency)

1_
_2

+
⋅=

RATEREP
FREQPWMrate sampling PIDs torque andFlux 
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//Settings for min frequency
#define Freq_Min 10 // 1 Hz mechanical
#define Ki_Fmin 1000 // Frequency min coefficient settings
#define Kp_Fmin 2000
#define Kd_Fmin 3000

//Settings for intermediate frequency 1
#define F_1  50 // 5 Hz mechanical 
#define Ki_F_1 2000 // Intermediate frequency 1 coefficient settings
#define Kp_F_1 1000
#define Kd_F_1 2500

//Settings for intermediate frequency 2
#define F_2  200 // 20 Hz mechanical
#define Ki_F_2 1000     // Intermediate frequency 2 coefficient settings
#define Kp_F_2 750
#define Kd_F_2 1200
  
//Settings for max frequency
#define Freq_Max 500 // 50 Hz mechanical
#define Ki_Fmax 500 // Frequency max coefficient settings
#define Kp_Fmax 500
#define Kd_Fmax 500

Once the motor is running, integer, proportional and derivative coefficients are computed 
following a linear curve between F_min and F_1, F_1 and F_2, F_2 and F_max (see 
Figure 47). Note that F_min, F_1, F_2, F_max are mechanical frequencies, with 0.1 Hz 
resolution (for example F_1 = 1234 means F_1 = 123.4Hz).

Figure 47. Linear curve for coefficient computation

Disabling the linear curve computation routine, 75x_it.c module

If you want to disable the linear curve computation, you must comment out the 
PID_Speed_Coefficients_update(..) routine. In this case, the default values for Ki, 
Kp, Kd for torque, flux and speed regulation are used. See PID_TORQUE_Kx_DEFAULT, 
PID_FLUX_Kx_DEFAULT, PID_SPEED_Kx_DEFAULT, in the MC_control_Param.h file.

 Rotor mechanical
frequencyF_maxF_2F_1F_min

Ki_Fmin, Kp_Fmin, Kd_Fmin

Ki_Fmax, Kp_Fmax

Ki_F_1, Kp_F_1, Kd_F_1

Ki_F_2, Kp_F_2, Kd_F_2

Ki, Kp, Kd

Kd_Fmax
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To disable the linear curve computation routine in 75x_TBtimer:

void TB_IRQHandler(void)
{
[…]
 if(State == RUN)
 {
  if ((wGlobal_Flags & CLOSED_LOOP) == CLOSED_LOOP)
  {   
   […]
   //PID_Speed_Coefficients_update(hRot_Freq_Hz); //to be commented out
    […]         
}

4.9 Main interrupt service routines: 75x_it module

4.9.1 Overview

The 75x_it module can be used to describe all the exception subroutines that might occur 
within your application. When an interrupt happens, the software will automatically branch to 
the corresponding routine accordingly with the interrupt vector table. 

With the exception of the ADC and PWM emergency stop interrupt requests, all the routines 
are empty, so that you can write your own code for exceptios handlers and peripheral 
interrupt requests.

4.9.2 List of non-empty interrupt service routines

As mentioned above only two interrupts are managed by motor control tasks: 

● PWM_EM_IRQHandler on page 89

● ADC_IRQHandler on page 90

PWM_EM_IRQHandler

         

Synopsis void PWM_EM_IRQHandler(void)

Description The purpose of this function is to manage an Emergency Stop 
signal on the dedicated emergency pin. In particular, PWM outputs 
are disabled, the main state machine is put into FAULT state.

Input None.

Returns None.

Functions called PWM_ClearFlag, PWM_ITConfig

See also Synchronizable PWM Timer section in STR750 Reference manual
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ADC_IRQHandler

         

4.10 General purpose time base: 75x_TBtimer module

4.10.1 Overview

The purpose of the 75x_TBtimer module is to generate a time base that can be used by 
the other modules of the applications. 

4.10.2 List of available functions and interrupt service routines

The following is a list of available functions as listed in the 75x_ TBtimer.c source file:

● TB_StartUpInit on page 91

● TB_Timebase_Timer_Init on page 91

● TB_Wait on page 92

● TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed, TB_DisplayDelay_IsElapsed 
on page 92

● TB_Set_Delay_500us, TB_Set_DisplayDelay_500us, TB_Set_StartUp_Timeout on 
page 92

● TB_IRQHandler on page 93

Synopsis void ADC_IRQHandler(void)

Description The purpose of this function is to handle the ADC interrupt 
request. 

The end of the stator current conversions interrupt routine (JECH 
in case of ICS, EOC in case of three shunt resistors) is used to 
trigger execution of the IFOC algorithm. Moreover, the general 
purpose conversions are also started in this ISR.

Input None.

Returns None.

Functions called IFOC_Model

In THREE_SHUNT configuration: SVPWM_3ShuntGPADCConfig

In ICS configuration: IFOC_Model

See also  Section 4.2.4 and Section 4.3.3 on page 54 for more details.
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TB_StartUpInit

         

TB_Timebase_Timer_Init

         

Synopsis void TB_StartUpInit(void)

Description This function performs all the operations necessary for initializing 
both hardware and software every time the motor is restarted. 

In particular, speed feedback buffer and PID references are 
initialized and a 50% duty cycle is generated for about 2msec for 
loading the boot capacitance of high side drivers. 

Input None.

Returns None.

Note This routine exits after the 2msec required for loading boot 
capacitance of high side drivers. 

Caution None.

Functions called PID_Reset_Integral_terms,  IFOC_Init, TB_Set_StartUp_Timeout, 
PWM_CtrlPWMOutputs, TB_StartUp_Timeout_IsElapsed,  
TB_Set_StartUp_Timeout

If working with encoder:

ENC_Clear_Speed_Buffer

If working with tachogenerator:

TAC_InitTachoMeasure

Synopsis void TB_Timebase_Timer_Init(void)

Description The purpose of this function is to initialize the Timebase Timer. 
The peripheral clock, interrupt, autoreload value and counter 
mode are setup. The peripheral is configured to generate an 
interrupt every 500 µs, thus providing a general purpose 
timebase.

Input None

Returns None

Functions called EIC_IRQInit, TB_StructInit, TB_Init, TB_ITConfig, TB_Cmd, 
TB_ResetCounter, TB_ResetCounter
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TB_Wait

         

TB_Set_Delay_500us, TB_Set_DisplayDelay_500us, TB_Set_StartUp_Timeout

         

TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed, 
TB_DisplayDelay_IsElapsed

         

Synopsis void TB_Wait(u16 time)

Description This function produces a programmable delay equal to variable 
‘time’ multiplied by 500µs.

Input Unsigned 16 bit 

Returns None

Functions called None

Caution This routine exits only after the programmed delay has elapsed. 
Meanwhile, the code execution remains frozen in a waiting loop. 
Care should be taken when this routine is called at 
main/interrupt level: a call from an interrupt routine with a higher 
priority than the timebase interrupt will freeze code execution.

Synopsis void TB_Set_Delay_500us(u16)

void TB_Set_DisplayDelay_500us(u16)

void TB_Set_StartUp_Timeout(u16)

Description These functions are used to respectively update the values of the 
hTimebase_500us, hTimebase_display_500us and 
hStart_Up_TimeBase_500us variables. They are used to maintain 
the main state machine in FAULT state, to set the refresh rate of the 
LCD and the Start up timeout.  

Input Unsigned 16 bits

Returns None

Functions called None

Synopsis bool TB_StartUp_Timeout_IsElapsed(void)

bool TB_Delay_IsElapsed(void)

bool TB_DisplayDelay_IsElapsed(void)

Description These functions return TRUE if the related delay is elapsed, 
FALSE otherwise. 

Input None 

Returns Boolean

Functions called None
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TB_IRQHandler

         

4.11  Application layer
The application layer is split into several modules, mainly for the control of the keys, LCD 
display, temperature and bus voltage monitoring, and main loop. The following is a brief 
description of these modules.

● main.c module

Contains the initialization and the main control loop of the overall firmware. 

● MC_Keys.c module

Centralizes all information regarding the keyboard reading. Any action on the keyboard 
is processed in the Keys_process routine.

● MC_Display.c module

Centralize all information regarding the LCD display management.

● 75x_LCD.c module

Contains some dedicated routines for the control of the LCD embedded with the starter 
kit.

● MC_misc.c module

Contains some dedicated routines for monitoring the temperature of the power stage 
and the bus voltage. 

Synopsis void TB_IRQHandler(void)

Description This is the Timebase timer interrupt routine. It is executed every 
500µs, as determined by TB_Timebase_Timer_Init and is used to 
refresh various variables used mainly as counters (for example, 
PID sampling time). Moreover, this routine implements the startup 
torque ramp described in Section 3: Running the demo program 
on page 26.

Input None 

Returns None

Functions called IFOC_CalcFluxTorqueRef, TB_ClearFlag,

If Encoder is used:

ENC_Get_Average_Speed

If Tacho is used:

TAC_GetRotorFreqInHz

Note This is an interrupt routine
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5 MISRA compliance

Based on the The Motor Industry Software Reliability Association’s Guidelines for the Use of 
the C Language in Vehicle Based Software, the purpose of this section is to provide a report 
of any MISRA deviation in the version 1.0 of the library modules.

5.1 Analysis method
The software library was checked for MISRA compliance using the IAR Embedded 
Workbench® toolchain. The IAR Systems’ implementation is based on version 1 of the 
MISRA C rules, dated April 1998.

5.2 Limitations
Compliance tests were performed on required MISRA rules only, and not on advisory rules.

Due to the extensive use of the STR750 standard library which itself is not fully MISRA 
compliant (as of September 2006), the interaction (through function calls for example) 
between the standard library and AC IM library modules necessarily induces non-
compliances. 

5.2.1 MISRA compliance for AC IM library files

Table 3 shows the compliance with the MISRA required rules of each AC IM IFOC software 
library module (excluding STR750 Standard Library modules).

         

Table 3. MISRA compliance of AC IM library files

Module name
MISRA 

compliant
Deviation

MC_Clarke_Park.h Yes

MC_qmath.h Yes

MC_const.c Yes

MC_const.h Yes

MC_type.h Yes

75x_TBTimer.c Yes

75x_TBTimer.h Yes

MC_Globals.c Yes

MC_Globals.h Yes

MC_Display.c Yes

MC_Display.h Yes

MC_AC_motor_param.h Yes

75x_MClib.h Yes

MC_Control_Param.h Yes
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75x_conf.h Yes

75x_MCconf.h Yes

MC_encoder_param.h Yes

75x_svpwm_3shunt.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call (see 
Section 5.2.2).

75x_svpwm_3shunt.h Yes

75x_svpwm_ics.c Yes

75x_svpwm_ics.h Yes

Main.c Yes

75x_encoder.c Yes

75x_encoder.h Yes

75x_it.c Yes

75x_lcd.c Yes

75x_lcd.h Yes

MC_Keys.c Yes

MC_Keys.h Yes

MC_Misc.c Yes

MC_Misc.h Yes

75x_DAC.c Yes

75x_DAC.h Yes

75x_svpwm_ics_prm.h Yes

75x_svpwm_3shunt_prm.h Yes

MC_PID_Regulators.c Yes

MC_PID_Regulators.h Yes

MC_PID_Param.h Yes

75x_tacho.c Yes

75x_tacho.h Yes

MC_tacho_prm.h Yes

MC_IFOC_Drive.c Yes

MC_IFOC_Drive.h Yes

Table 3. MISRA compliance of AC IM library files

Module name
MISRA 

compliant
Deviation
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5.2.2 MISRA rule deviations

The only rule not respected in the AC IM IFOC software library is:

Rule number 45: “Type casting from any type to or from pointers shall not be used.”

This deviation occurs in the 75x_svpwm_3shunt.c module, and it is due to the definition 
of the DMA_InitTypeDef type in the 75x_dma.h header file:

typedef struct
{
  u32 DMA_SRCBaseAddr;
  u32 DMA_DSTBaseAddr;
  u16 DMA_BufferSize;
  u16 DMA_SRC;   
  u16 DMA_DST; 
  u16 DMA_SRCSize;
  u16 DMA_SRCBurst;
  u16 DMA_DSTSize;
  u16 DMA_Mode;  
  u16 DMA_M2M; 
  u16 DMA_DIR; 
}DMA_InitTypeDef;

Basically, the DMA_SRCBaseAddr and DMA_DSTBaseAddr fields which must contain 
memory addresses should have been declared as pointers instead of unsigned 32bit.
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Appendix A Additional information

A.1 Adjusting CPU load related to IFOC algorithm execution
The Synchronizable-PWM Timer peripheral has the built-in capability of updating PWM 
registers only after a given number of PWM semi-periods. This feature is handled by a 
programmable repetition counter. It is particularly useful to adjust the CPU load related to 
IFOC algorithm execution for a given PWM frequency (refer to STR750 Reference Manual 
for more information on programmable repetition counter).

When using ICS, the injected chain of conversions for current reading is directly triggered by 
a PWM register update event. Moreover, since the IFOC algorithm is executed at the end of 
the injected chain of conversions in the related ISR, changing repetition counter has a direct 
impact on IFOC refresh rate and thus on CPU load.

However, in the case of three shunt topology current reading, to ensure that the IFOC 
algorithm is executed once for each PWM register update, it is necessary to keep the 
synchronization between current conversions triggering and PWM signal. In the proposed 
software library, this is automatically performed, so that you can reduce the frequency of 
execution of the IFOC algorithm by simply changing the default value of the repetition 
counter (the REP_RATE parameter in the MC_Control_Param.h header file). Figure 48 
shows current sampling triggering, and IFOC algorithm execution with respect to PWM 
period when REP_RATE is set to 3.

Figure 48. AD conversions for three shunt topology stator currents reading and 
IFOC algorithm execution when REP_RATE=3

Note: Because three shunt resistor topology requires low side switches to be on when performing 
current reading A/D conversions, the REP_RATE parameter must be an odd number in this 
case.

Considering that the raw IFOC algorithm execution time is about 27.5µs when in three shunt 
resistor stator current reading configuration, the related contribution to CPU load can be 
computed as follows:

( ) 1001027.5
/21REP_RATE

F1001027.5
teRefresh_Ra

FLoad CPU 6PWM6PWM
% ⋅⋅⋅

+
=⋅⋅⋅= −−
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A.2 Selecting PWM frequency for 3 shunt resistor configuration
Beyond the well known trade-off between acoustical noise and power dissipation, 
consideration should be given to selecting the PWM switching frequency using the AC IM 
IFOC software library. 

As discussed in Section 4.2.5 on page 43, depending on the PWM switching frequency, a 
limitation on the maximum applicable duty cycle could occur if using three shunt resistor 
configuration for current reading. Table 2: PWM frequency vs maximum duty cycle 
relationship on page 51, summarizes the performance of the system when the software 
library is used in conjunction with STR750-MCKIT hardware. 

Note: The MB459 board is an evaluation platform; it is designed to support different motor driving 
topologies (PMSM and AC induction) and current reading strategies (single and three shunt 
resistors). Therefore, the figures given in Table 2 on page 51 should be understood as a 
starting point and not as a best case.

Moreover, to keep the synchronization between TIM0 and PWM peripherals, it is always 
necessary to finish executing the IFOC algorithm before the next PWM period begins as 
shown in Figure 49. 

Figure 49. AD conversions for three shunt topology stator currents reading and 
IFOC algorithm execution when REP_RATE=1

Given that the raw execution time of the IFOC algorithm is around 27.5µs and that other 
delays (such as the time necessary to enter ADC ISR) have to be considered, this limits to 
about 12.5 kHz the maximum IFOC algorithm execution rate when using REP_RATE =1. 
However, no limitations occur in the typical range of PWM frequencies when using 
REP_RATE=3. 

The following table summarizes the performance of the system for different PWM 
frequencies.
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A.3 Fixed-point numerical representation
The AC IM IFOC software library uses fixed-point representation of fractional signed values. 
Thus, a number n is expressed as

where m is the integer part (magnitude) and f the fractional part, and both m and f have fixed 
numbers of digits.

In terms of two’s complement binary representation, if a variable n requires QI bits to 
express - as powers of two - its magnitude (of which 1 bit is needed for the sign), QF bits – 
as inverse powers of two - for its fractional part, then we have to allocate QI + QF bits for that 
variable.

Therefore, given a choice of QI and QF, the variable representation has the following 
features:

● Range: -2(QI-1) < n < 2(QI-1) – 2(-QF) ;

● Resolution:  = 1 / 2QF.

The equation below converts a fractional quantity q to fixed-point representation n:

A common way to express the choice that has been made is the “q QI.QF” notation.

So, if a variable is stored in q3.5 format, it means that 3 bits are reserved for the magnitude, 
5 bits for the resolution; the expressible range is from -4 to 3.96875, the resolution is 
0.03125, the bit weighting is: 

This software library uses the PU (“Per Unit”) system to express current values. They are 
always referred to a base quantity that is the maximum measurable current Imax (which, for 

Table 4. System performance when using STR750-MCKIT

PWM frequency Max applicable duty cycle Max IFOC algorithm execution rate

Up to 11.4kHz 100%

Equal to PWM frequency12.2kHz 99.5%

12.9kHz 99%

13.7kHz 98.5%

Equal to PWM frequency/2 
(REP_RATE=3)

14.4kHz 98%

15.2kHz 97.5%

16kHz 97%

16.7kHz 96.5%

17.5kHz 96%

bit n. 7 6 5 4 3 2 1 0

value -4 2 1 1/2 1/4 1/8 1/16 1/32

fmn .=

( )QFqfloorn 2⋅=
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the proposed hardware, can be estimated approximately at Imax = 0.6 / Rshunt); so, the “per 
unit” current value is obtained by dividing the physical value by that base:

In this way, ipu is always in the range from -1 to +1. Therefore, the q1.15 format, which 
ranges from -1 to 0.999969482421875, with a resolution of 0.000030517578125, is perfectly 
suitable (taking care of the overflow value (-1)·(-1)=1) and thus extensively used.

Thus, the complete transformation equation from SI units is:

A.4 Tacho-based speed measurement flow charts
This section summarizes the main tasks achieved in the tacho capture interrupt in the form 
of flow charts. The purpose of these flow charts is to help understand how the automatic 
prescaler adjustment is done.

Figure 50. Tacho capture overview
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Figure 51. Processing captured value when timer did not overflow

Figure 52. Processing captured value when timer did overflow
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A.5 PID block diagrams
The following flow diagrams (Figure 53 and Figure 54) show the decision tree for the 
computation of the torque/flux and speed regulation routines. 

Figure 53. Torque/flux control loop block diagram 
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Figure 54. Speed control loop block diagram 

A.6 Additional or up-to-date technical literature
More information can be found on the ST website (www.stmcu.com).

More specifically, the latest documents and software can be found directly at: 
http://www.stmcu.com/inchtml-pages-str750.html.

In addition, FAQ and Forums can be found directly at : 
http://www.stmcu.com/forumsid-17.html for STR7 general enquiries.

http://www.stmcu.com/forumsid-13.html for motor control related enquiries.
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[1] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery and Drive 
Systems, Wiley-IEEE Press, 2002.
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University Press, 1996.
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