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64-bit Extension to MIPS ISA 
 
1.0 Abstract 
 
MIPS (Microprocessor without Interlocked Pipe Stages) is a general-purpose 
processor architecture, based on the RISC philosophy and is designed to be 
implemented on a single VLSI chip. The 64-bit extension to the MIPS 32-bit ISA, 
was first implemented in the 3rd generation R4000 family of processors. This 
paper describes the key features of this ISA extension. 
 
2.0 Introduction 
 
2.1 Extension to an ISA 
An Extension to an existing ISA simply means adding new instructions or 
features that allow significant advances in performance. Extensions could be 
application specific (e.g. for digital media processing applications), customer 
specific (e.g. 32-bit multiply-accumulate instruction), industry specific etc.  
 
First of all, a clear distinction between architecture and implementation of that 
architecture needs to be made. Application architecture refers to the instruction 
set, the physical components and timing, etc., to which all hardware 
implementations must adhere, and to which applications must limit themselves, 
e.g., MIPS I, MIPS II, MIPS MDMX etc. Implementation refers to specific 
hardware designs using the architecture, e.g., the R-Series (R2000, R3000, 
R4000, R6000, etc). Of these, the MIPS R4000 processor onwards, extends the 
architecture to 64 bits – the integer registers and ALU are 64 bits wide, and 
linear, 64-bit virtual addressing is available, when the 64-bit mode is enabled. (It 
is the first microprocessor to provide this capability as was shipped in 1991.)  
 
The relationship between the MIPS ISA and its extensions can be represented as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.1 Extensions to the ISA 
 
 

MIPS Extended ISA 

 
MIPS 
ISA 
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2.2 64-bit Systems  
 
There are three fundamental requirements a computer system must meet, to be 
called a 64-bit system. Firstly, it must have a processor that efficiently supports 
64-bit data types including pointers. This implies the primary data paths for the 
system is (at least) 64-bits wide. Secondly, there must be a compilation system 
that can produce 64-bit executables.  And the last requirement is an operating 
system that can run 64-bit programs. Thus, it is plain that formulating the 64-bit 
ISA, is a first step towards building 64-bit systems. 
 
The emerging applications in the digital consumer market are handheld and palm 
PCs, set-top boxes, Web TV, and satellite receivers. The common need in these 
applications is finding ways to move data efficiently. According to MIPS 
Technologies co-founder John Hennessy, “That’s where a 64-bit RISC 
architecture gives you an overwhelming advantage because it provides the 
bandwidth you need….. The growth in the level of performance will be much 
faster in embedded systems than in general desktop machines.”  The first high-
volume consumer product to use a 64-bit RISC architecture was the Nintendo-64 
video player, which is based on the MIPS R4000 microprocessor! 
 
 
3.0 A Historical Perspective 
 
The MIPS architecture originated with the MIPS I ISA, the R2000 being the first 
microprocessor designed and shipped in the last week of 1985. Till date, this 
architecture has been extended in a backward compatible fashion four times. 
MIPS II extended MIPS I by providing 32 registers, for double precision math and 
adding instructions to give. As applications required 64-bit addressing and data 
capability, MIPS III added 64-bit data handling instructions. As processors 
became faster due to advances in fabrication and technology, memory latency 
became a bottleneck; also, 3-D visualization demanded more floating-point (FP) 
performance. MIPS IV added new instructions to boost performance in these 
areas. In recent years, however, the huge explosion of 32-bit and 64-bit 
processors in embedded and consumer applications and the requirement of 
supporting 3D, video, audio have led to the development of more super-set 
architectures, like MIPS V for 3D applications and MDMX for digital media. 
Another application specific extension is also defined, for cost-sensitive 
embedded and consumer applications, MIPS16, announced jointly by LSI Logic 
Corporation and MIPS Technologies Inc. are 16-bit instructions geared for having 
compressed code. These 16-bit instructions use a lot less memory while 
providing the functionality required for the embedded market. Table 1 below, [ref-
1] summarizes the history of the different ISAs and their respective year of 
release. 
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Table 1 - Year of implementation of MIPS processors 
ISA Year 

Announced 
Processors that Implemented  ISA 

MIPS I 1984 R2000, R3000 
MIPS II 1990 R6000 
MIPS III 1991 R4000, R4200, R4300i, R4400, R4600, R4700 
MIPS IV 1994 R5000, R8000, R10000 (superscalar processors) 

MIPS V 1996  TBA 
MDMX 1996  TBA 
MIPS16 1996 LSI Logic Tiny RISC 

 
 
 
4.0  Hardware Requirements for the 64-bit ISA 
 
The MIPS64 architecture is a superset of the previous MIPS IV and MIPSV 
Instruction Set Architectures (ISAs) and incorporates powerful new instructions 
specifically for embedded applications as well as proven memory management 
and privileged mode control mechanisms. To provide backward compatibility, 
every implementation  supports two addressing modes. The processor's 
addressing mode determines whether it generates 32-bit or 64-bit memory 
addresses. It incorporates the best features of previous 32- and 64-bit MIPS 
processors, focusing on DSP, data-streaming, embedded applications, and             
floating-point arithmetic. 
 
MIPS64 is based on a fixed-length, regularly encoded instruction set, and it uses 
a load/store data model. It is streamlined to support optimized execution of high-
level languages. Arithmetic and logic operations use a three-operand format, 
similar to the core ISA, allowing compilers to optimize complex expressions 
formulation. 
 
 
4.1 Processor Resources 
 
The CPU provides sixty-four 64-bit wide registers in any MIPS64 implementation. 
Thirty-two of these registers, referred to as General Purpose registers (GPR’s) 
are reserved for integer operations, while the other thirty-two registers, referred 
to as Floating Point General Purpose Registers (FGR’s), are reserved for floating 
point operations. The width of these registers depends on the mode of operation. 
In 32-bit mode, they are treated as 32 bits wide. In 64-bit mode, they are treated 
as 64 bits wide. 
 
In the 32-bit ISA, the FPU has 16 floating-point registers. Each register can hold 
either a single-precision (32-bit) or double-precision (64-bit) value. In case of a 
double-precision value, $f0 holds the least-significant half, and $f1 holds the 
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most-significant half. All references to these registers in a 32-bit architecture, use 
an even register number (for example,$f4, $f8…). But in MIPS64, one can 
reference all 32 registers directly. Table 2 summarizes the usage conventions 
and restrictions for these registers. 
 
Table 2 – Names and Usage conventions of FGR’s in MIPS64 & MIPS 32. 
 

Register Name 
in MIPS64 ISA 

Corresponding  
MIPS32 Name 

Use and Linkage 

$f0, $f2          $f0..$f2 Hold results of floating-point type 
function 

$f1, $f3, $f4..$f11 $f4..$f10 Temporary registers, used for 
expression evaluation; their values are 
not preserved across procedure calls. 

$f12..$f19 $f12..$f14 Pass single or double precision actual 
arguments, whose values are not 
preserved across procedure calls 

$f20..$f23    $f16..$f18 Temporary registers, used for 
expression evaluation; their values are 
not preserved across procedure calls. 
 

$f24..$f31 $f20..$f30 Saved registers, whose values must be 
preserved across procedure calls. 
 

 
In addition there are a minimum of 6 special purpose registers - PC (program 
counter), HI and LO, floating point implementation and control registers FCR0 
and FCR31 and a LOAD/LINK (LL) bit. However, unlike MIPS32, in MIPS64 
architecture, the PC, HI and LO registers are 64-bits wide. Appendix 1 illustrates 
this. 
 
Also, in addition to a 64-bit on-chip FPU, 64-bit integer ALU and 64-bit integer 
registers, a processor implementing the MIPS 64-bit architecture should also 
provide 64-bit virtual address spaces and a minimum of a 64-bit system bus. 
 
 
4.2 Data Formats  
 
MIPS64 defines a 64-bit double-word, a 32-bit word, 16-bit half-word and an 8-bit 
byte. The byte ordering is configurable in either Big-endian or Little-endian 
format, depending on the implementation. e.g. R4300i uses the Little-Endian, and 
most of the mainstream processors use Big-Endian. MIPS64 uses 32-bit 
addressing and 64-bit data.  
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Data formats are to be used to specify addresses. MIPS CPUs use a byte-
addressing scheme. Access to half-words requires alignment on even byte 
boundaries, and access to words requires alignment on byte boundaries that are 
divisible by four. Access to double words (for 64-bit systems) requires alignment 
on byte boundaries that are divisible by eight. In general, any attempt to address 
a data item that does not have the proper alignment ( except for “unaligned” load 
and store instructions) causes an alignment exception, which is then handled by 
the appropriate operating system exception service routine. 
 
4.3 Memory Management Unit 
 
The MMU of an implementation can deploy a Translation Lookup Buffer (TLB) or 
a Block Address Translation (BAT) as a virtual-to-physical address translation 
mechanism, with the TLB being the most popular. Mapped virtual addresses are 
translated into physical addresses using an on-chip TLB1.  Designated System 
Control Coprocessor (CP0) registers provide the software interface to the TLB. 
 
The processor virtual address can be either 32 or 64 bits wide, depending on 
whether the processor is operating in 32-bit or 64-bit mode. 
• In 32-bit mode, addresses are 32 bits wide. The maximum user process size 

is 2GB (231) 
• In 64-bit mode, addresses are 64 bits wide. The maximum user process size 

is 1 terabyte (240). 
 
A 32-bit address space can be restrictive for some of today's large database, 
engineering, and scientific programs. The 2 GB usable main memory provided to 
applications, may not be enough for data intensive applications. A 64-bit address 
space may increase data base performance by permitting a huge data cache. A 
64-bit engineering or scientific simulation permits problems to be solved that 
would otherwise be too large for a 32-bit address space.  

 
The down side of such an advantage is that 64-bit programs have secondary 
costs that may increase their memory and cache requirements compared to a 
32-bit version. Because pointers are represented as 64-bit values, the memory to 
store pointers will double. 64-bit operating systems are very likely to support 64-
bit file systems. Some application areas like geophysics and particle physics may 
require file sizes well in excess of two gigabytes (the general limit for 32-bit file 
systems).  While 64-bit pointers are manipulated as 64-bit quantities, in the 
foreseeable future no machine will use this entire range which could address 16 
billion gigabytes of data.  Thus, MIPS64 uses 32-bit addressing and 64-bit data. 
 

                                                        
1 On-chip TLB’s have been implemented in most of the mainstream implementations, including R4400, 
R10000 and R8000. 
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4.4 Operating Modes 
 
There exist three operating modes, in which a system implementing the ISA 
could operate. These modes, in order of decreasing system privilege are: 
 
• Kernel mode (highest system privilege): can access and change any register. 

The innermost core of the operating system runs in kernel mode 
• Supervisor mode: has fewer privileges and is used for less critical sections of 

the operating system.  
• User mode (lowest system privilege): prevents users from interfering with one 

another. 
 
Selection between the three modes can be made by the operating system (when 
in Kernel mode) by writing into Status register's KSU field. The processor is 
forced into Kernel mode when the processor is handling an error (the ERL bit is 
set) or an exception (the EXL bit is set). 
 
Appendix 2 shows how the selection of operating modes, instruction sets and 
addressing modes are implemented in R10000, by enabling the Status register's 
appropriate fields.  
 
 
4.5 Other Issues  
 
The architecture derives the privileged mode exception handling and memory 
management functions from the R4000 and R5000 class processors, which 
implemented the MIPS II & III. A set of registers reflects the configuration of the 
caches, MMU, TLB, and other privileged features implemented in each core.  
 
The flexibility of high-performance caches and memory management schemes is  
a strong feature of the MIPS architecture. The MIPS64 architecture extends this 
advantage with well-defined cache control options. The size of the instruction and 
data caches can range from 256 bytes to 4Mbytes. The data cache can employ 
either a write-back or write-through policy.  A no-cache option can also be 
specified. With all these features, MIPS 64 is an ISA tailor-made for heavy-duty 
data-crunching applications. 
 
 
5.0 Instruction Classes 
 
In addition to the core instructions of the MIPS32 ISA, each of the instruction 
classes have been enriched with new instructions to improve performance. The 
five instruction classes of MIPS 64 are similar to MIPS 32 and are given below.  
 
1. Data Transfer – Load and store Instructions 
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2. Computational – Arithmetic and logical operations 
3. Jump and Branch Instructions – Change flow of control. 
4. Coprocessor Interface - These instructions provide standard interfaces to the 

co-processors. 
5. Special Instructions - These instructions do miscellaneous tasks. 
 
The most significant instructions of the 64-bit extension in each instruction class 
have been dealt with in each of the sections below. 
 
 
5.1 Extensions to the Data Transfer Instructions 
 
As in MIPS32, load and store are immediate type instructions that move data 
between memory and the general registers. However, in MIPS64 instructions are 
needed to handle 64-bit data. The additional instructions to do this are listed in 
Appendix 3. However, the two very significant integer instructions, which set 
MIPS64 apart are Load Linked and Store Conditional. They provide the 
mechanism for implementing interprocessor or intertask synchronization 
primitives, such as Test-and-Set and Compare-and-Swap.  
 
MIPS 64 architecture also interlocks load instructions, so if an instruction 
attempts to use data loaded by the immediately preceding instruction, the 
pipeline will stall. In MIPS 32, however, such an attempt will produce an incorrect 
result, and a no-op instruction must be added after load unless a useful 
instruction not depending on the load can be placed there. The MIPS 64 allows 
the no-ops to be eliminated. 
 
The Load linked instruction operates as a standard load instruction but has the 
side effect of setting the “link” status bit2. As a part of the cache coherency 
mechanism, the processor monitors accesses to the linked location and clears 
the link status bit if another processor accesses that location.  
 
Store Conditional performs a store operation only if the link bit is set, and it 
provides a register in the destination register indicating if the store was 
successful. The two instructions, combined with the hardware mechanism that 
controls the link status bit, allow indivisible test-and-set and other semaphore 
operations to be implemented without requiring bus locks.  
 
Apart from these two instructions, the Pre-Fetch Instruction also is important. The 
"Prefetch" instruction supplies an address and hint to the implementation about 
the data. Hints include whether the data is likely to be read or written soon, likely 
to be read or written only once, or likely to be read or written many times. 
Prefetch does not cause exceptions. This instruction is also used in conjunction 
with Branch Likely . 
 

                                                        
2 The Link status bit is a single bit special purpose register. Refer to Appendix 2. 
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5.2 Extensions to the Computational Instructions 
 
There are general-purpose and coprocessor-specific( e.g., the floating-point co-
processor) computational instructions. Computational instructions perform 
arithmetic, logical, shift, Multiply and divide operations on register values. 
 
Fixed-point DSP-type (Digital Signal Processing) instructions further enhances 
multimedia processing. These instructions that include Multiply (MUL), Multiply 
and Add (MADD), Multiply and Subtract (MSUB), and "count leading 0s/1s," 
previously available only on some 64-bit MIPS processors, provide greater 
performance in processing data streams such as audio, video, and multimedia 
without adding additional DSP hardware to the system.   
 
All the Arithmetic operations that were supported by the MIPS 32 ISA, have been 
extended to operate on 64-bit registers. A comprehensive list, along with 
description is provided in Appendix 4.  
 
However, two of the most significant instructions, which have enhanced 
efficiency in MIPS64 for handling FP as well as integers are shown in table 3. 
 
Table 3 – MADD and MSUB instructions 

Instruction Operands Description 

 
MADD 

1. destination, 
2.  src1, 
3.  src2, 
4.  src3 

Multiply the contents of src2 and src3, then 
add the result to src1 and store in the 
destination register (MADD). The NMADD 
instruction does the same multiply then add, 
but then negates the sign of the result (This 
instruction is for 64-bit values only)  
 

 
MSUB 

1.destination, 
2. src1, 
3. src2, 
4. src3 

Multiply the contents of src2 and src3, then 
subtract the result from src1 and store in the 
destination register (MSUB). The NMSUB 
instruction does the same multiply then 
subtract, but then negates the sign of the 
result (This instruction is for 64-bit values 
only)  
 

 
 
 
5.3 Jump and Branch Instructions 
 
Jump and branch instructions change the flow of a program. The MIPS 64 ISA 
adds conditional Traps and special branch instructions called “likely” to the core 
instructions. They are tabulated in Appendix 5.  
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The actual execution order depends on the processor's organization; in a typical 
pipelined processor, instructions are executed only in program order. That is, the 
next sequential instruction may begin execution during the next cycle, if all of its 
operands are valid. Otherwise, the pipeline stalls until the operands do become 
valid.  Since instructions execute in order, stalls usually delay all subsequent 
instructions. A clever compiler can improve performance by re-arranging 
instructions to reduce the frequency of these stall cycles. 
 
Although one or more instructions may begin execution during each cycle, each 
instruction takes several (or many) cycles to complete. Thus, when a branch 
instruction is decoded, its branch condition may not yet be known, as it requires 
more information, which will only be available, some time in the future. For faster 
execution however, the processor can predict whether the branch is taken, and 
then continue decoding and executing subsequent instructions along the 
predicted path. When a branch prediction is wrong, the processor must back up 
to the original branch and take the other path. This technique is called 
speculative execution. Whenever the processor discovers a wrongly predicted 
branch, it aborts all speculatively executed instructions and restores the 
processor's state to the state it held before the branch. (Side effects, for e.g., the 
Cache State not being restored, is possible; but because cache coherency is 
maintained, side-effects are harmless in these operations) 
 
Branch prediction can be controlled by the CP0 Diagnostic register. Branch 
Likely instructions are always predicted as taken, which also means the 
instruction in the delay slot of the Branch Likely instruction will always be 
speculatively executed. Since the branch predictor is neither used nor updated 
by branch-likely instructions, these instructions do not affect the prediction of 
"normal", i.e. the usual conditional branches. 
 
Thus, Branch Likely Instructions are the same as an ordinary branch instruction 
(without the "Likely"), except in a branch likely instruction, the instruction 
in the delay slot is nullified if the conditional branch is not taken.  
 
 
5.4 Coprocessor Interface 
 
The Floating-Point Unit is the hardware implementation of Coprocessor 1 in the 
MIPS IV Instruction Set Architecture. However, depending on the application and 
functionality of the processor, the coprocessor unit could be designed as MDMX, 
etc.. The MIPS ISA defines 32 logical floating-point general registers (FGRs), as 
mentioned in section 4.1, above. Each FGR is 64 bits wide and can hold either 
32-bit single-precision or 64-bit double-precision values. In R10000, the 
hardware actually contains 64 physical 64-bit registers in the Floating-Point 
Register File, from which the 32 logical registers are taken. 
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The MIPS64 ISA, supports a floating-point condition code register and also 
optional paired single-precision floating-point instruction execution (SIMD). 
 
 
5.5 Special Instructions 
 
The main processor’s special instructions do miscellaneous tasks. Though most 
of the following instructions are available in MIPS32, they are a part of the 
extension in MIPS64. 
 
1. Break (BREAK) Unconditionally transfers control to the exception handler. 

The breakcode operand is  interpreted by software conventions. The 
breakcode1 operand is used to fill the low-order 10 bits of the 20-bit 
immediate field in the BREAK instruction. The optional second operand, 
breakcode2 fills the high-order 10 bits.  

 
2. Exception Return (ERET) Returns from an interrupt, exception or error trap. 

Similar to a branch or jump instruction, ERET executes the next instruction 
before taking effect. (In place of RFE in MIPS32)  

 
3. Move From HI Register (MFHI) Moves the contents of the HI register to a 

general-purpose register. Move From LO Register (MFLO) Moves the 
contents of the LO register to a general-purpose register.  

 
4. Move To HI Register (MTHI) Moves the contents of a general-purpose 

register to the HI register. Move To LO Register (MTLO) Moves the contents 
of a general-purpose register to the LO register.  

 
5. Syscall (SYSCALL) causes a system call trap. The operating system 

interprets the information set in registers to determine what system call to do. 
 
 
 
6.0  Applications of the MIPS64 ISA 
 
Machines with implementation of the 64-bit ISA can operate on data in 64-bit 
chunks instead of 32-bit. This results in more efficient processing and permit 
programs to utilize huge virtual address spaces. Thus, systems can be designed 
to handle enormous files far in excess of two gigabytes. The move to 64-bit 
makes workstations more like traditional supercomputers.  64-bit systems make 
true supercomputing and hugely data intensive applications feasible on 
computers that are more like conventional workstations than highly specialized 
and expensive supercomputers.  Moreover, 64-bit systems are opening up new 
computing possibilities, for e.g., huge-scale databases with sophisticated query 
engines, real-time video services and faster and lifelike picture quality. 
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MIPS64 compatible 64-bit MIPS processors are well suited for applications 
requiring very high-performance RISC processing and compact,  system-on-a-
chip (SOC) implementations3. Some of the areas in which MIPS64 is currently 
used are:  
 
Portable Computing Systems 
• Handheld and Palm-size PCs including Windows CE Applications 
• Information Appliances 
  
Network Management 
• Routers   
• Switches 
• xDSL systems 
 
Digital Consumer Devices 
• Game Platforms – like the Nintendo 64, Arcade games etc. 
• Set-top Boxes – for web TV applications 
                                                       
Office Automation 
• Printers 
• Copiers 
• Scanners 
• Multifunction Peripherals 
                                                       
Other 
• Industrial Controllers 
• Automotive Systems 
• Navigation (GPS) – military uses 
• Graphics Systems 
• Dedicated Terminals(POS, ATM, e-cash) 
 
 
7.0 Conclusion 
 
The megabillion-dollar computer market is always changing. An explosion of 
communications technology fueled by the availability of inexpensive and 
increasingly powerful RISC microprocessors is leading to increasing use of 
embedded computers. Despite the millions of PCs shipped every year, 
computers account for less than 10 percent of the total market of microprocessor 
and microcontroller chips. 
 
In January, 1999, NEC and Toshiba, two of the world’s leading chip makers, 
acquired 64-bit RISC IP by securing 10-year licenses for MIPS Technologies’ 
Ruby processor4. Ruby, which will be the industry’s first 64-bit RISC to hit 1 

                                                        
3 From reference 12 
4 From reference 5 
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billion instructions per second, will serve as an engine for intelligent consumer 
devices, including set-top boxes, entertainment products, handheld devices, 
Internet appliances, and data communications equipment. The 10-year 
agreements are proof that 64-bit applications are real.  
  
Thus, new classes of computer-based devices appear in the market every day. 
Most will affect our lives in ways ranging from fun (Nintendo video games) to 
significant (like palm top PC’s) to awesome (GPS mapping for computers in new 
cars). Behind all this is the MIPS ISA, providing us with the power to efficiently 
design complex systems. 
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Appendix 1 - Special Purpose Registers – MIPS 64 ISA 
 
 
 
Program Counter (PC) 
 
| 63                     32 | 31                              0 | 

PC 

 
 
Multiply/Divide Registers 
 
| 63                     32 | 31                              0 | 

MultHI 

MultLO 

 
 
Floating Point Registers : Impl/Rev (FCR0) & Control/Status (FCR31) 
 
| 31                      0 |  

FCR0 

FCR31 

 
Load Linked bit 
   0 
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Appendix 2 - Implementation of Operating and addressing modes in 
R10000 

 
 
The R10000 has three operating modes and two addressing modes. The three operating modes, 
in order of decreasing system privilege are: 
• Kernel mode (highest system privilege): can access and change any register. The innermost 

core of the operating system runs in kernel mode 
• Supervisor mode: has fewer privileges and is used for less critical sections of the operating 

system.  
• User mode (lowest system privilege): prevents users from interfering with one another. 
 
Selection between the three modes can be made by the operating system (when in Kernel mode) 
by writing into Status register's KSU field. The processor is forced into Kernel mode when the 
processor is handling an error (the ERL bit is set) or an exception (the EXL bit is set). Table 16-1 
shows the selection of operating modes with respect to the KSU, EXL and ERL bits. It also shows 
how different instruction sets and addressing modes are enabled by the Status register's XX, UX, 
SX and KX bits.  
 
The R10000 processor was designed for use with the MIPS IV ISA; however, for compatibility 
with earlier machines, the useable ISAs can be limited to either MIPS III or MIPSI/II. 
 
 
Table 16-1 Processor Modes 

 
The processor's addressing mode determines whether it generates 32-bit or 64-bit memory 
addresses. 
 
• In Kernel mode the KX bit allows 64-bit addressing; all instructions are always valid.  
• In Supervisor mode, the SX bit allows 64-bit addressing and the MIPSIII instructions. MIPS IV 

ISA is enabled all the time in Supervisor mode. 
• In User mode, the UX bit allows 64-bit addressing and the MIPS III instructions; the XX bit 

allows the new MIPS IV instructions. 
 

------------ 
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Appendix 3 - Load/Store Instructions for MIPS 64 Extended ISA. 
 
1. Load Doubleword (LD) Loads the destination register with the contents of the 

doubleword that is at the memory location. The system replaces all bytes of the 
register with the contents of the loaded doubleword. The system signals an address 
error exception when the effective address is not divisible by eight. 

 
2. Load Linked Doubleword (LLD) Loads the destination register with the contents of 

the doubleword that is currently in the memory location. This instruction performs a 
SYNC operation implicitly. Load Linked Doubleword and Store Conditional 
Doubleword can be used to update memory locations atomically.  

 
3. Load Word Unsigned (LWU) Loads the least-significant bits of the destination 

register with the contents of the word (32 bits) that is at the memory location 
specified by the effective address. Because the system treats the loaded word as an 
unsigned value, it fills the four most-significant bytes of the destination register with 
zeros. If the effective address is not divisible by four, the system signals an address 
error exception. 

 
4. Load Doubleword Left (LDL) Loads the destination register with the most-

significant bytes of the doubleword specified by the effective address. The effective 
address must specify the byte containing the sign. In a big-endian configuration, the 
effective address specifies the lowest numbered byte; in a little-endian machine, the 
effective address specifies the highest numbered byte. Only the bytes which share 
the same aligned doubleword in memory are merged into the destination register.  

 
5. Load Doubleword Right (LDR) Loads the destination register with the least-

significant bytes of the  doubleword specified by the effective address. The effective 
address must specify the byte containing the least-significant bits. In a bid-endian 
machine, the effective address specifies the highest numbered byte. In a little-endian 
machine, the effective address specifies the lowest numbered byte. Only the bytes 
which share the same aligned doubleword in memory are merged into the 
destination register.  

 
6. Unaligned Load Doubleword (ULD) Loads a doubleword into the destination 

register from the specified address. ULD loads a doubleword regardless of the 
doubleword’s alignment in memory. 

 
7. Store Conditional (SC) Stores the contents of a word from the source register into 

the memory location specified by the effective address. This instruction implicitly 
performs a SYNC operation; all loads and stores to shared memory fetched prior to 
the SC must access memory before the SC, and loads and stores to shared memory 
fetched subsequent to the SC must access memory after the sc. If any other 
processor or device has modified the physical address since the time of the previous 
Load Linked instruction, or if an ERET (Exception Return) instruction occurs between 
the Load Linked and this store instruction, the store fails. The success or failure of 
the store operation (as defined above) is indicated by the contents of the source 
register after execution of the instruction. A successful store sets it to 1; and a failed 
store sets it to 0. The machine signals an address exception when the effective 
address is not divisible by eight.  
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8. Store Doubleword (SD) Stores the contents of a doubleword from the source 

register in the memory location specified by the effective address. The effective 
address must be divisible by eight, otherwise the machine signals an address error 
exception.  

 
9. Store Conditional Doubleword (SCD) Stores the contents of a doubleword from 

the source register into the memory locations specified by the effective address. This 
instruction implicitly performs a SYNC operation. If any other processor or device has 
modified the physical address since the time of the previous Load Linked instruction, 
or if an ERET instruction occurs between the Load Linked instruction and this store  
instruction, the store fails and is inhibited from taking place. The success or failure of 
the store operation  (as defined above) is indicated by the contents of the source 
register after execution of this instruction.  A successful store sets it to 1; and a failed 
store sets it to 0. The machine signals an address exception when the effective 
address is not divisible by eight.  

 
10. Store Doubleword Left (SDL) Stores the most-significant bytes of a doubleword in 

the memory location specified by the effective address. It alters only the doubleword 
in memory which contains the byte indicated by the effective address.  

 
11. Store Doubleword Right (SDR) Stores the least-significant bytes of a doubleword in 

the memory location specified by the effective address. It alters only the doubleword 
in memory which contains the byte indicated by the effective address.  

 
12. Unaligned Store Doubleword (USD) Stores the contents of the source register in a 

doubleword specified by the address. The machine does not require alignment for 
the storage address. 
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Appendix 4 - Computational Instructions for MIPS 64 Extended ISA 
 
 
1. Doubleword Absolute Value (DABS) Computes the absolute value of the contents 

of src1, treated as a 64-bit  signed value, and puts the result in the destination 
register. If the value in src1 is –2147483648, the machine signals an overflow 
exception.  

2. Doubleword Add with Overflow (DADD) Computes the twos-complement sum of 
two 64-bit signed values. The instruction adds the contents of src1 to the contents of 
src2, or it can add the contents of src1 to the immediate value. When the result 
cannot be extended as a 64-bit number, the system signals an overflow exception.  

3. Doubleword Add without Overflow (DADDU) Computes the twos- complement 
sum of two 64-bit values. The instruction adds the contents of src1 to the contents of 
src2, or it can add the contents of src1 to the immediate value. Overflow exceptions 
never occur.   

4. Doubleword Divide Signed (DDIV) Computes the quotient of two 64-bit values. 
DDIV treats src1 as the dividend. The divisor can be src2 or the immediate value. It 
puts the quotient in the destination register. If the divisor is zero, the system signals 
an error and may issue a BREAK instruction. The DDIV instruction rounds towards 
zero.  Overflow is signaled when dividing –2147483648 by -1. Note: The special 
case DDIV $0,src1,src2 generates the real doubleword divide instruction and leaves 
the result in the HI/LO register. The HI register contains the quotient. No checking for 
divide-by-zero is performed.   

5. Doubleword Divide Unsigned (DDIVU) Computes the quotient of two unsigned 64-
bit values. DDIVU treats src1 as the dividend. The divisor can be src2 or the 
immediate value. It puts the quotient in the destination register. If the divisor is zero, 
the system signals an exception and may issue a BREAK  instruction. See note for 
DDIV concerning $0 as a destination. Overflow exceptions never occur.   

6. Doubleword Multiply (DMUL) Computes the product of two values. This instruction 
puts the 64-bit  product of src1 and src2, or the 64-bit product of src1 and the 
immediate value, in the destination register.Overflow is not reported. Note: Use 
DMUL when you do not need overflow protection. It is often faster than DMULO and 
DMULOU. For multiplication by a constant, the DMUL instruction produces faster 
machine instruction sequences than DMULT or DMULTU can produce.  

7. Doubleword Multiply (DMULT) Computes the 128-bit product of two 64-bit signed 
values. This instruction multiplies the contents of src1 by the contents of src2 and 
puts the result in the HI and LO registers. No overflow is possible.  

8. Doubleword Multiply Unsigned (DMULTU) Computes the product of two unsigned 
64-bit values. It multiplies the contents of src1 and the contents of src2, putting the 
result in the HI and LO registers. No overflow is possible.   

9. Doubleword Multiply with Overflow (DMULO) Computes the product of two 64-bit 
signed values. It puts the 64-bit product of src1 and src2, or the 64-bit product of src1 
and the immediate value, in the destination register. When an overflow occurs, the 
system signals an overflow exception and may execute a BREAK instruction  

10. Doubleword Multiply with Overflow Unsigned (DMULOU) Computes the product 
of two 64-bit unsigned values. It puts the 64-bit product of src1 and src2, or the 64-bit 
product of src1 and the immediate value, into the destination register. When an 
overflow occurs, the system signals an overflow exception and may issue a BREAK 
instruction.  

11. Doubleword Negate with Overflow (DNEG) Computes the negative of a 64- bit 
value. The instruction negates the contents of src1 and puts the result in the 
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destination register. If the value of src1 is –2147483648, the system signals an 
overflow exception.  

12. Doubleword Negate without Overflow (DNEGU) Negates the 64-bit contents of 
src1 and puts the result in the destination register. Overflow is not reported.  

13. Doubleword Remainder Signed (DREM) Computes the remainder of the division of 
two signed 64-bit values. It treats src1 as the dividend. The divisor can be src2 or the 
immediate value. The DREMU  instruction puts the remainder in the destination 
register. If the divisor is zero, the system signals an error and may issue a BREAK 
instruction.  

14. Doubleword Remainder Unsigned (DREMU) Computes the remainder of the 
division of two unsigned 64-bit values. It treats src1 as the dividend. The divisor can 
be src2 or the immediate value. The DREMU instruction puts the remainder in the 
destination register. If the divisor is zero, the system signals an error and may issue 
a BREAK instruction.  

15. Doubleword Rotate Left (DROL) Rotates the contents of a 64-bit register left 
(towards the sign bit). This instruction inserts in the least-significant bit  any bits that 
were shifted out of the sign bit. The contents of src1 specify the value to shift, and 
contents of src2 (or the immediate value) specify the amount to shift. If src2 (or the 
immediate value) is greater than 63, src1 shifts by src2 MOD 64. 

16. Doubleword Rotate Right (DROR) Rotates the contents of a 63-bit register right 
(towards the least-significant bit). This instruction inserts in the sign bit any bits that 
were shifted out of the least-significant bit.  The contents of src1 specify the value to 
shift, and the contents of src2 (or the immediate value) specify the amount to shift. If 
src2 or the immediate value is greater than 63, src1 shifts by src2 MOD 64.  

17. Doubleword Shift Left Logical (DSLL) Shifts the contents of a 64-bit register left 
(towards the sign bit) and inserts zeros at the least-significant bit. The contents of 
src1 specify the value to shift, and the contents of src2 (or the immediate value) 
specify the amount to shift. If src2 (or the immediate value) is greater than 63, src1 
shifts by src2 MOD 64.  

18. Doubleword Shift Right Arithmetic (DSRA) Shifts the contents of a 64-bit register 
right (towards the least-significant bit) and inserts the sign bit at the most-significant 
bit. The contents of src2 (or the immediate value) specify the amount to shift. If src2 
(or the immediate value) is greater than 63, src1 shifts by src2 MOD 64.  

19. Doubleword Shift Right Logical (DSRL) Shifts the contents of a 64-bit register right 
(towards the least-significant bit) and inserts zeros at the most-significant bit. The 
contents of src1 specify the value to shift, and the contents of src2 (or the immediate 
value) specify the amount to shift. If src2 (or the immediate value) is greater than 63, 
src1 shifts by src2 MOD 64.  

20. Doubleword Subtract with Overflow (DSUB) Computes the twos-complement 
difference for two signed 64-bit values. This instruction subtracts the contents of src2 
from the contents of src1, or it can subtract the immediate value from the contents of 
src1. It puts the result in the destination register. When the true result’s sign differs 
from the destination register’s sign, the system signals an overflow exception.  

21. Doubleword Subtract without Overflow (DSUBU) Computes the twos complement 
difference for two unsigned 64-bit values. This instruction subtracts the contents of 
src2 from the contents of src1, or it can subtract the immediate value from the 
contents of src1. It puts the result in the destination register. Overflow exceptions 
never happen. 
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Appendix 5 - Branch Likely Instructions in MIPS 64 
 
 

Description  OpCode Operand 

Branch on Equal Likely 
 

BEQL src1,src2,label 

Branch on Greater Than 
Likely 

BGTL src1, immediate, label 

Branch on Greater/Equal 
Likely  

BGEL  src1, immediate, label 

Branch on Greater/Equal 
Unsigned Likely 

BGEUL src1, immediate, label 

Branch on Greater Than 
Unsigned Likely 

BGTUL src1, immediate, label 

Branch on Less Than 
Likely 

BLTL src1, immediate, label 

Branch on Less/Equal 
Likely 

BLEL src1, immediate, label 

Branch on Less/Equal 
Unsigned Likely 

BLEUL src1, immediate, label 

Branch on Less Than 
Unsigned Likely 

BLTUL src1, immediate, label 

Branch on Not Equal 
Likely 

BNEL src1, immediate, label 

Branch on Equal to Zero 
Likely 

BEQZL src1,label 
 

Branch on Greater/Equal 
Zero Likely 

BGEZL src1,label 

Branch on Greater Than 
Zero Likely 

BGTZL src1,label 

Branch on Greater or 
Equal to Zero and Link 
Likely 

BGEZALL 
 

src1,label 

Branch on Less Than 
Zero and Link Likely 

BLTZALL src1,label 

Branch on Less/Equal 
Zero Likely 

BLEZL src1,label 

Branch on Less Than 
Zero Likely 

BLTZL src1,label 

Branch on Not Equal to 
Zero Likely 

BNEZL src1,label 

 


