ISSUE 27 JANUARY 1982

INDEX PAGE

PUBLICATION OF THE ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS (ACE) 1981

EXECULTIVE COrNerecescccossccovssosossssssscssssnss cossnsvesasseseseses £
Editors Corner..cececceces 00000000800 0000080008800s000000sN0ssasens sses 3
Members Corner..essccesssnss P eeEBENER IR essessEesssssrtssses sssss 3
Netronics Full Basic and the Infamous EF2 Lin€isecvevsencnnnse sesssssee 5
Finy Basic ProgralSssescsscssscssesesessecssasas sesssssssssssscssssses O
The Megabyte Elficicisnsacisonss Saseneessbesbentenssasehses s ashaenals 11
Hex Keyboard for the Elf.ceiececcss seeses seesssescsns ssressssesssnasens 16
1802 to S5-100 Bus Converter....eeeeees cesessensssscsssssrsssessssatens 18
A-NOTADTE ASSEMDIO P cscsnnsssenssnsvisnnaasennssases svesscsssenssssese 21
A Hardware Clock for the 1802..scisasrsesasnssbaisssnessossones eossese 26
1802 PlOLLersscsnsssvsssasnsenssssessses sesseessseessnseasens seessnsese 34

SPRECH - A Simple Software Voice SynthesSizeriessssssvessssescessssnsss 37
C]Ub Communiquelbtbobitﬂi lllllllllll LR L B B B O B O O B O B B O B BB B N B N BN BB RN 41

IPSO FACTO 1s published by the ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
(A.C.E.), a non-profit, educational organization. Information in IPSO
FACTO is believed to be accurate and reliable. However, no responsibility
is assumed by IPSO FACTO or the ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
for its use; nor for any infrigements of patents or other rights of third
parties which may result from its use.

1981 /82 EXECUTIVE OF THE ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS

President: John Norris 416-239-8567 Vice-President: Ken Bevis 416-277-2495
Treasurer: Mike Franklin 416-878-0740 Secretary: Tony Hill 416-523-7368
Directors: Bernie Murphy 416-845-1630
Fred Pluthero 416-389-4070
Newsletter: Membership: Bob Silcox 416-681-2848
Earle Laycock
Production
Manager: Mike Franklin 416-878-0740 Program Convener: Bernie Murphy
Editors: Fred Feaver Bert Dekat
Steve Carter
Bob Siddall Tutorial /Seminars: Ken Bevis
Tony Hill Fred Feaver
Advertizing: Fred Pluthero 416-389-4070 Draughtsman: John Myszkowski
Publication: Dennis Mildon
John Hanson
Hardware & Ken Bevis 416-277-2495 Software: Wayne Bowdish 416-388-7116
R. and D, Don McKenzie

Fred Pluthero Ed Leslie 416-528-3222

Dave Belgrave

Product Mailing:

CLUB MAILING ADDRESS:

A.C.E.

c/o Bernie Murphy

102 McCraney Street East
Qakville, Ontario

Canada

L6H 1HB

Phone: 416-845-1630

CLUB MEETINGS:

Meetings are held on the second Tuesday of each Month, September through June at 7:30 in Room Bi23,
Sheridan College, 1430 Trafalgar Road, Oakville, Ontarfo. A one hour tutorial proceeds each meeting.
The college is located approximately 1.0 km north of the QEW, on the west side. All members and
interested visitors are welcome.

ARTICLE SUBMISSIONS:

The majority of the content of Ipso Facto is voluntarily submitted by club members. While we assume no
responsibility for errors nor for infringement upon copyright, the Editorial staff verify article content
as much as possible. We can always use articles, both hardware and software, of any level or type
relating directly to the 1802 or to micro computer components, periferals, products, etc. Please specify
the equipment or support software upon which the article content applies, Articles which are typed are
prefered, and usually printed first, while handwritten articles require some work. Please, please send
original, not photocopy material. We will return photocopies of original material iT requested.
Photocopies usually will not reproduce clearly.

ADVERTISING POLICY

ACE will accept advertising for commercial products for publication in Ipso Facto at the rate of $25 per
quarter page per fssue with the advertiser submitting camera-ready copy. All advertisements must be
pre-paid.

PUBLICATION POLICY

The newsletter staff assume no responsibility for article errors nor for infringement upon copyright.

The content of all articles will be verified, as much as possible and limitations listed (ie Netronics
Basic only, Quest Monitor required, requires 16K at 0000-3FFF etc.). The newsletter staff will attempt
to publish Ipso Facto by the first week of: Issue 25 - Oct 81, 26 - Dec 81, 27 - Feb 82, 28 - Apr 82,

29 - Jun 82, and 30 - Aug B2. Delays may be incurred as a result of loss of staff, postal disruptions,
lack of articles, etc. We apologize for such inconvenience, however they are generally caused by factors
beyond the control of the club.

MEMBERSHIP POLICY

A membership is contracted on the basis of a club year - September through the following August. Each
member is entitled to, among other privileges of membership, all 6 issues of Ipso Facto published during
the club year.

EDITORS CORNER

.I am sure you are pleasantly surprised to see a newsletter so soon after receiving
Number 26. There is a reason for our haste. The Canada Post Corporation has
raised postage by over 100% effective January 1, 1982. This cost increase was
beyond the club's budgeted increase, and quite frankly, beyond our ability to
absorb. Since we operate on a annual subscription basis, we have no mechanism to
generate more revenue from our members, so we must cut costs. By mailing this
issue in 1981, we saved considerable postage costs. Unfortunately, it will not be
enough. After much deliberation, the executive decided to restrict the size of
newsletters to 42 pages (the size of issues 26 and 27). Forty-two pages will still
permit the editors to create a broad ranging newsletter, which is just under the
weight ceiling of level 2 first class mail rates. So far now, the 60 page
encyclopedia newsletter is gone. We will still meet our commitment for 6
newsleters for this club year.

Your comments would be appreciated.

Club Products

The club is currently field testing a prototype EPROM board designed to accommodate
2716/32/64 single 5 volt supply EPROM (28 pin JEDEC standard). We expect to be
able to offer the board for sale by 31 March 1982. Current prOJects underway
include a redesigned club 44 pin buss back plane and a new micro processor board
for the club buss.

Forth

.Tony Hi1]l made an excellent presentation on FORTH at the 8 December 1981 club
meeting. His work on FORTH is well advanced and I should be able to report
ordering information in the next newsletter.

Interested FORTH uses should be approaching FIG and Mountainview Press for
appropriate documentation.

Best Article Issue 26: P. Liescheski - The Shroedinger Equation.

MEMBERS CORNER

FOR SALE.
- by Chuck Reid, 423 Huxley Ave., Sarnia, Ontario, N7S 4Z1

Canadian Funds

2 - Netronics 4K Static Ram Boards @ $50.00 each
1 - Netronics 4K Static Ram Board @ $25.00
- memory bug, needs trouble shooting :
1 - Netronics Giant Board @ $20.00
1 - Netronics AP-1 5 Amp Power Supply @ $20.00
1 - SSM VBIC Vvideo Display Board @ $100.00
1 - Netronics VDB Video Display Board @ $150.00
' A1l boards are fully functional (except where noted) and are fully socketed

(except Giant Board).

FOR SALE:

BASIC NETRONICS ELF II, factory assembled and tested, brand new condition,
Netronics metal cabinet and cover 1/4 K Ram, UHF channel 33 modulator, 5V
power supply, Quest interface board with hexdisplays up to 65K and all mode
indicators factory assembled and tested, all original Netrcnics and RCA
documentation, almost all Questdata and IPSO FACTO newsletter. - $200.00
or best offer.

Alain Jacynas, 3093 Allard, Montreal, P.Q., Canada, H4E 2M8 - Phone: DAY -
514-282-6530, EVENING - 514-761-7447

FOR SALE:

1 Netronics ELF II $80.00
2 Netronics 4K Static Memory - each $78.00
1 Case Computer $25.00
1 5 Amp Power Supply $30.00
1 GIANT BOARD I/0 $35.00
1 Netronics Protobard $15.00
1 Netronics Video display board with ASCII K/B $150.00

and RF Modulator only
Most chips socketed professionally assembled. All manuals included. OR

Everything for $500.00 with Tiny Basic on Tape. Will consider trade for 8"
disck drives.

Also available - Olivetti daisy wheel KSR terminal. RS-232 Interface inc. .
- $2,350.00 NEW

S. Carter, 8086 Islington Ave., Woodbridge, Ontario, L4L 1W3, Phone:
851-2921

FOR SALE: o '
- by Joe Matherly, Room 222A, 460 NE 215th St., Miami, Florida, 33179

Tel: 305-653-4900

NETRONICS ELF II 4K Boards, fully socketed, all chips included, DIP Switch
addressing, excellent working condition. All 3 for $130.00 or $50.00 each
if sold separately. 1I'l1 pay postage.

FOR SALE:

Quest Super EIf with Expansion Board. All on-board options. Godbout 8K
S100 video. Quest Super Color 6847-based board (partially assembled).
ASC11 Keyboard. Full manuals and documentation, with some programs on
cassette tapes. Quest Tiny Basic included.

A1l the above for $650.00 US. I will ship. My cost was over $1,000.

Also - ASR33 Teletype W/Modern. Everything works except tape reader
unrealiable. $250 US. Included full documentation including
schematics with diagrams. Also some spare parts.

A. D. Barksdale Garbee II, 1601 Clayton Avenue, Lynchburg, Virginia, 24503,
USA, Phone: (804) 384-2470

NETRONICS FULL BASIC AND THE INFAMOUS EF 2 LINE

- by J. Vaal, 6535 Velmar Dr., Ft. Wayne, Indiana, USA, 46811

After reading the last several 1ssues of Ipso-Facto, I almost regretted
that I ordered Netronlcs Full BASIC last Winter, Well, Full BASIC LEV III Al
arrived a couple weeks ago, complete with a user manual, chock full of
errors (1nclud1ng the ending address of the program). My two biggest complaints
about this system are: 1, The RPN format is not identical to HP calculators
and 2, The modifications to the GIANT BOARD significantly degrade the
performance of the cassette read hardware, Problem 1 can be evidenced
by solving the equation:

X=52462

Quickly you can see the difference in stack operations, Unfortunately
I do not have a solution to this problem,

Problem 2 , which, I believe 1s actually two sub-~problems, can be neatly
solved, The first, as described by Mr, M.E, Franklin in Issue #17, where the
math chip holds the EFZ line low, occurs only when an error is detected

by the math chip and the program is terminated or when the user terminztes
the program during math function execution., The capacitor / diode modification
to the GIANT BOARD is not actually intended to and will not solve this
problem, I believe, however, that the degradation of the cassette read
hardware as a result of this modification is a far more significant problem,
Figure 1 is a block diagram of the affected portions of the system when

Full BASIC 1s installed, Capacitor Ca 1s added to the GIANT BOARD because
the output of A12 (Pin 4) is normally low. Diode Db is a clamp on the output
signal during cassette read and maintains the proper dc operating level,

The problem with this modification, is that it partially defeats the

purpose of the cassette read circuit (A12), This amplifier is intended to
"square-up” the cassette signal, but capacitor Ca reduces the effectiveness
of this circuit., Diodes Da (GIANT BOARD), D1, and D3 (BASIC board)

comprise a "wired OR" so that the EFZ2 line may be shared,

AUTO~-SWITCH CIRCUIT OPERATION

Figure 2 is a block diagram of the system where the Full BASIC GIANT BOARD
modifications are removed and the Auto-Switch modifications added to the
Full BASIC board, This circuit (Figure 3) is essentially an automatic
switch that connects either the cassette read or the Full BASIC EFZ2 signals
to the buss, The basic circuilt consists of four components; Ul CD 4066
(quad bi-lateral switch), R1, R2, and Cl., R3 and the LED are optional,

AUTO-SWITCH CIRCUIT OPERATION continued

SW1 acts as a buffer for the A12 GIANT BOARD EF2 signal, When a cassette
signal is present, Cl1 1s charged to 5 volts which enables SW3 to put the
cassette signal on the buss, SWZ2 1s_simply an inverter of the output

of SW1 and turns off the Full BASIC EF2 signals, (SW4), The optional LED
turns on when the cassette line takes control, When no cassette signal

is present, SW4 is turned on, and the Full BASIC board has control of the
EF2 line,

This modification eliminates the ac coupling of the cassette signal to the buss
and allows a cassette read even when the Full BASIC board would be holding

EFZ low. It should be noted, however, that after the program is loaded,

it still may be necessary to enter "PR CL#" to resume normal operation of

Full BASIC. This is because the "LOAD" routine does not reset the math chip,

This circuit does give priority to cassette operations and therefore the
cassette recorder should not be operated during Full BASIC program execution,

CONSTRUCTION DETAILS

The circuit shown in Figure 3 may be readily added to the Full BASIC
P.,C, board in the area reserved for user hardware in the lower right hand
corner of the board, The following modifications are necessary,

1) Remove the ,luf capacitor and the two diodes that were added to the
GIANT BOARD for Full BASIC,

2) Connect a wire from A12 Pin 4 (where the capacitor was) to Pin 84,

3) Connect a wire on the mother board between pins 84 of the GIANT
and Full BASIC board sockets,

4) On the Full BASIC board, cut the trace to Pin 70 after the junction
of D1 and D3,

5) Wire up the Auto-Switch circuit as shown in Figure 3,
6) The total system should now be wired as shown in Figure 2,

At this point, one note of caution is in order, If the Full BASIC board
is removed from the system, Pin 70 on the GIANT BOARD must be reconnected
for cassette read operation, I have been using Full BASIC with this
modification for several days now and have encountered no problems, As
long as one remembers that the cassette will take priority over the math
chip (as described earlier) there should be no problems, One interesting
side effect of this modification is that the LED acts as a cassette signal
present indicator, which is cute if not functional,

. s 1M SYSTEM
™" LEAVE CUT sl BUSS
CASS PER NETRONIC
" 0 N
IN + 228 a2 S w oo | PINT7O
_E" £ADD JUMPER PIN 84
"= GIANT BOARD MoD
ADD
BUSSWIRE 1502
FULL BASIC BOARD cASS, INPUT o84 = |
SEE SCHEMATIC SUTPUT
FIGURE: 3 FULL BASIC INPUT
AUTO - SWITCH
ui K 200
D1 AN
uito K X T‘_m
03 CUT HERE | EF2 MOTHER BOARD
‘ FIGURE 2. SYSTEM WITH AUTO - SWITEH MOD
+5v
"
CASSETTE INPUT 1 2
swW 1
(FRoM A4, PN 4; +Vo R 1
GIANT BOARD) B] 100K ;E 1.0 mf
(PIN 84 FuLL Basic 10 5w 2 " NON - POLARZED
BOAAD) L L
> f = | 12 =
3 sw 3 e L4 QuTPUT
T 5 (| EF2__ (PIN 70, FULL
FULL BASIC INPUT 7 8 9 [OUT BASIC BOMRD)
(FROM JUNCTION > Sw 4 p”
K
OF DI AND D3 IN T 6 [
FULL BASIC BOARD) “R,_“ O *3v
ut :,___ 2 R3
@ CD406b = +5v
LED 2.2K

FIGURE 3. EFZ LINE AUTO-SWITCH

FUlL BASIC BOMAD
(NOTE: DI IS SHOWN BACKWRDS ON
METRONICS SCHEMATIC)

u i ,':ﬁ
o1

uio ":A l Er2 4 e
03

FISUAE | SYSTEM wAR METRONICS M

TINY BASIC PROGRAMS

-by G. Caughman - 3795 Somerset Dr.,

- d Y e -~ -

DECIMAL TO HEX CONVERSION ROUTINE

10 MR INPUT DECIMAL VALUE AND THIS ROUTINE WILL
30 REM CONVERT IT TO AN EQUIVALENT HEX VALUE

100
110
120
130
1140
150
160
170
180
400
410
420
430
440
450
860

§5

70

INPUT X
LET I=%/16
UsX-16%T
LET JxI/16
T2I-16%J
LET K=J/16
8=J-16%K
LET L=K/16
ReK-16%L
LET V=R
@OSUB 500
LET V=8
GOSUB 500
LET VaT
GOSUB 500
LET V=U
GOBUB 500
GOSUB 1000

Marqetta, Georgia, USA, 30064

%00
10
530
550
552
554
556
560
570
580
1000
1010

IF
IF
IF
IF
IF

V<10
¥=10
V=11
V=12
V=13
IF V=14
IF V=15
RETURN
PRINT "V";
RETURN
PRINT

END

GOTC 570
PRINT "a"
PRINT
TRINT
PRINT
PRINT
PRINT

.

TINY BASIC HEX TO DECIMAL ROUTINE
LET A=10
LET B=IT
LET C=12
LET D=13
LET E=14
LET F=15
PRINT "“INPUT FOUR HEX DIGITS EACH FOLLOWED BY COMMAS";
PRINT "EXCEPT LAST DIGIT.(MAX. 7,F,F,F)"
INPUT U,T,V,W
UsUH16#16#16
T=T#16#16
V=V#16
X= U+T+V+W
PRINT X
END

10
20
30
40
50
55
60
65
70
%5
80
85
90
95
100

5 PRINT "MEMORY DISPLAY PROGRAMY
6 PRINT

7 PRINT "ENTER THE STARTING ADDRESS AS FOLLOWS: N,N,N,N.";
11 PRINT "WHERE N EQUALS EACH HEX DIGIT. (MaAX 7,F,F,F)"
20 GO SUB 1010

25 LET Y=X

30 PRINT "ENTER LAST ADDRESS THE SAME way"

35 @G0 SUB 1010

40 LET Z=X :

50 REM CLEAR SCREEN AND SPACE

51 PLOT (12)

52 PRINT

56 LET X=Y

57 GO SUB 110

58 LET W=PEEK (Y)

59 Yay¥l

65 LET X=W

72 REM SET BYTE FLAG FOR HEX OUTPUT ROUTINE

73 LET P=1

75 GO0 SUB 110

80 IF Y<Z+1l THEN GO TO 56

85 END

100
110
120
130
140
150
160
170
180
400
402
410
420
430
434
435
440
450
460
465
466
470
475
500
510
530
550
552
554
556
560
570
580
1000
1010
1020
1021
1022
1023
1024
1030
1040
1050
1060
1070
1090

REM HEX OUTPUT ROUTINE
1LET I=X/16
U=X-16 * I

LET J = 1/16
T=I-16%J

LET K= J/16
S=J-~16%K

1ET L=K/16

Rz K~ 16%L

LET V=R

IF P21 GOTO 435
GOSUB 500

LET V=8

@OSUB 500

REM RESET BYTE FLAG IF SET
LET P=0

LET VaT

GOSUB 500

LET V=U

GOSUB 500

REM ALLOW TWO SPACES

_PRINT " %,

RETURN

IF V<10 GOTO 570
IF V=10 PR "a";
IF V=11 PR "B";
IF V=12 PR "“C%;
IF V=13 PR "D";
IF V=14 PR "E";
IF V=15 PR "F";
RETURN

PRINT V3

- RETURN

REM HEX TO DECIMAL ROUTINE
LET A=10

LET B=11l

LET C=l2

LET D=13

LET E=14

LET Fa15
INPUT U,T,V,W
UsU#16#16%#16
T=TH#16#16
Vav#16
XzUAT4V4W
RETURN

11

. THE MEGABYTE ELF

- by R. Siddall - 40 Cadillac Ave., Downsview, Ontario, Canada, M3H 1S2

INTRODUCTION

UP TO NOW, FEV HOBBYISTS HAVE FOUND THE 64K ADDRESSIBILITY LIMIT OF THE
1802 TO BE MUCH OF A PROBLEM. THE SITUATION MAY SOON CHANGE, HOWEVER. WITH
THE APPEARENCE ON THE MARKET OF 64K X 1 RAM CHIPS, AND THE CONSTANTLY
DECREASING COST OF OTHER LESS CAPACIOUS MEMORY CHIPS, IT MAY SOON BE
NECESSARY TO FIND A WAY TO EXPAND THE USABLE MEMORY SPACE. TO ADDRESS THE -
PROBLEM (IF YOU WILL PARDON THE PUN) I HAVE DEVISED A MEMORY MANAGEMENT
SCHEME THAT WOULD PERMIT AN 1802-BASED COMPUTER TO USE UP TO 1 MEGABYTE OF
MEMORY, IN 64K SEGMENTS. OTHER BENEFITS OF MY SCHEME WOULD BE A MEMORY
PROTECTION CAPABILITY, AND AN ABILITY TO SEPARATE THE PROGRAM SPACE FROM
THE ADDRESS SPACE.

THIS SYSTEM IS AT PRESENT MERELY ’THEORETICAL’, BUT IT IS RELATIVELY
STRAIGHTFORWARD, AND I HOPE TO MAKE A BREADBOARD IMPLEMENTATION SOMEDAY. 1
ALSO INVITE OTHERS TO TRY IT OUT AND LET ME KNOW WHAT PROBLEMS I HAVE
FAILED TO FORSEE.

ACCESSING 1 MEGABYTE REQUIRES A 20 BIT ADDRESS, 4 BITS MORE THAN IS

PROVIDED BY THE 1802 ARCHITECTURE. IN MY SCHEME, TWO 4-BIT ’NYBBLES’ WOULD

‘ BE LATCHED OFF THE DATA BUS BY AN 1/0 INSTRUCTION IN THE PROGRAM BEING
EXECUTED. ONE OF THESE WOULD BE USED AS THE ’SEGMENT ADDRESS’ (I.E.
ADDRESS BITS 17-20) WHENEVER THE PROGRAM COUNTER REGISTER IS BEING USED TO
ACCESS MEMORY: DURING THE FETCH CYCLE, AND WHENEVER AN ’IMMEDIATE’ OR
BRANCH INSTRUCTION IS BEING EXECUTED. THE OTHER SEGMENT ADDRESS IS USED
FOR ALL OTHER MEMORY ACCESSES INCLUDING DMA REQUESTS. THE PROGRAMMER MAY
CHOOSE TO MAKE THESE TWO SEGMENT ADDRESSES POINT TO THE SAME SEGMENT, OR
HE CAN HAVE A 64K PROGRAM SPACE AND A 64K DATA SPACE SIMULTANEOUSLY
ACCESSIBLE.

HARDWARE

FIGURE I SHOWS THE HARDWARE REQUIRED. IC1 IS A STANDARD 1852 1/0 PORT
CONTROLLED BY AN I/0 LINE FROM THE CPU. IT HOLDS ONTO THE SEGMENT
ADDRESSES SENT TO IT BY THE CPU WHEN THE APPROPRIATE OUTPUT INSTRUCTION IS
EXECUTED. AN RC CIRCUIT ON THE CLEAR PIN COULD BE USED TO SET BOTH SEGMENT
ADDRESSES TO O AT POWER ON.

IC2, IC3, AND IC4 CONSTITUTE A LOGICAL ARRAY WHICH DISTINGUISHES
WHETHER AN INSTRUCTION BEING FETCHED ON THE DATA BUS WILL REQUIRE DATA TO
BE READ FROM THE PROGRAM SPACE (I.E. VIA REGISTER P) OR THE DATA SPACE
(VIA REGISTER X OR ANY REGISTER OTHER THAN P). THE TRUE/FALSE OUTPUT OF
THIS LOGICAL ARRAY IS HELD AFTER A FETCH CYCLE IN ONE HALF OF A 4013 DUAL
D LATCH (IC6). 1 CALL THIS CIRCUIT (FIG. 2) THE ’INSTRUCTION/DATA
‘ DISCRIMINATOR’.

IC5 IS USED TO DISCRIMINATE BETWEEN A FETCH AND AN EXECUTE CYCLE. THE
OTHER HALF OF IC6 PUTS OUT A TRUE/FALSE SIGNAL (AND ITS INVERSE) DEPENDING

12

ON WHICH OF THE SEGMENT ADDRESSES IS TO BE USED IN THE SUBSEQUENT FETCH.
IC7 IS A 4019 4 OF 8 SELECTOR WHICH PUTS OUT EITHER ONE OR THE OTHER
SEGMENT ADDRESS FROM IC 1 DEPENDING ON THE OUTPUT OF IC6. IC8 IS A 4 TO 16
LINE DECODER WHICH WILL SELECT THE SEGMENT OF MEMORY REQUIRED.

1 HAVE SPECIFIED CMOS ICS THROUGHOUT THE CIRCUIT, BUT I FULLY REALIZE
THAT TIMING WILL PROBABLY BE A CRITICAL FACTOR, AND SOME OR ALL OF THE 1CS
MAY HAVE TO BE STTL OR EVEN ECL EQUIVALENTS TO THE CHIPS INDICATED TO MAKE
THE SYSTEM WORK.

SOFTWARE

THE 1852 I/0 PORT WHICH HOLDS THE SEGMENT ADDRESSES CAN BE TIED TO ANY
AVAILABLE I/0 LINE ON THE 1802. IN WHAT FOLLOWS I ASSUME IT IS TIED TO NO.
AN ’OUT1’ (61) INSTRUCTION CAN THEN BE USED TO WRITE THE SEGMENT ADDRESSES
TO THIS PORT. THE HIGIH ORDER 4 BITS OF THE BYTE STORED IN THE PORT WOULD
CONTAIN THE PROGRAM SEGMENT WHILE THE LOW ORDER 4 BITS WOULD CONTAIN THE
DATA SEGMENT. ;

THE DATA SEGMENT CAN EASILY BE CHANGED AT ANY TIME UNDER PROGRAM
CONTROL. LISTING I GIVES A SMALL PROGRAM THAT WOULD COPY DATA FROM SEGMENT
1 TO SEGMENT 2.

CHANGING THE PROGRAM SEGMENT WOULD BE A LITTLE MORE DIFFICULT, SINCE
THE PROGRAM COUNTER WOULD BE UNAFFECTED BY THE CHANGE OF SEGMENT ADDRESS.
FOR EXAMPLE, IF THE ’0OUT1’ INSTRUCTION THAT CHANGED THE SEGMENT ADDRESS
WERE AT LOCATION 001F0, AND THE SEGMENT WERE CHANGED FROM 0 TO 2, THE NEXT
INSTRUCTION EXECUTED WOULD BE THE ONE AT LOCATION 201F1. TO GET AROUND
THIS, A PROGRAM SEGMENT CHANGE CONVENTION OF SOME KIND WOULD HAVE TO BE
SET UP. MY SUGGESTION IS THAT EVERY SEGMENT USED AS A PROGRAM SEGMENT HAVE
A "SEP RO’ INSTRUCTION IN LOCATION 0000 AND AN ’OUT1’ INSTRUCTION IN
LOCATION FFFF (THIS COULD BE IMPLEMENTED IN HARDWARE). THEN, TO CHANGE
PROGRAM SEGMENTS, THE PROCEDURE WOULD BE AS FOLLOWS:

-SWITCI THE PC TO A REGISTER OTHER THAN RO,

-POINT THE X~-REGISTER TO A BYTE CONTAINING THE TWO NEW SEGMENT
ADDRESSES,

-POINT REGISTER RO TO THE ENTRY POINT OF THE PROGRAM TO BE EXECUTED IN
THE NEW SEGMENT,

~BRANCH TO LOCATION FFFF.

CONTROL WOULD THEN JUMP TO THE ’OUT1’ INSTRUCTION AT LOCATION FFFF, THE
SEGMENT WOULD CHANGE. THE NEXT INSTRUCTION EXECUTED WOULD BE THE ’SEP RO’
INSTRUCTION AT LOCATION 0000 OF THE NEW SEGMENT, CAUSING A BRANCH TO THE
DESIRED PROGRAM.

TO TAKE ADVANTAGE OF THE SEPARATE ADDRESS SPACE, SPECIAL ASSEMBLER AND
BASIC SOFTWARE WOULD HAVE TO BE DEVELOPED. FOR EXAMPLE, ADDRESS LABELS
WOULD HAVE TO BE MARKED SOMEHOW AS TO WHETHER THEY WERE ADDRESSES IN THE
PROGRAM OR DATA SPACE. EXISTING SOFTWARE WOULD STILL RUN, BUT IT WOULD RE
CONFINED TO THE USUAL 64K.

MEMORY PROTECTION

INHERENT IN THIS SCHEME IS A USEFUL FORM OF MEMORY PROTECTION. IF THE
PROGRAM AND DATA SEGMENTS ARE DIFFERENT, IT IS IMPOSSIBLE FOR THE PROGRAM
TO BE CLORBERED BY A STRAY DATA POINTER OR FOR THE SYSTEM TO ATTEMPT TO
EXECUTE DATA. FURTHERMORE, DATA IN SEGMENTS OTHER THAN THE TWO ACTIVE ONES
CANNOT BE ACCESSED AT ALL, UNLESS AN ERRONEOUS ’OUT 1’ INSTRUCTION IS
EXECUTED.

FRONT PANEL FUNCTIONS

WITH A BIT OF ADDITIONAL HARDWARE, A FEW USEFUL FRONT PANEL FEATURES
COULD BE ADDED. FOR EXAMPLE

-THE OUTPUT OF IC6 COULD BE USED TO LATCH OUT THE CURRENT TRUE PROGRAM
COUNTER FROM THE ADDRESS LINES.

-THE ACTIVE SEGMENT ADDRESS(ES) COULD BE DISPLAYED ON THE FRONT PANEL.

~THE PROGRAM AND DATA SEGMENTS COULD BE CONTROLLED FROM THE FRONT
PANEL BY OVERRIDING THE OUTPUT OF IC7.

OTHER CONSIDERATIONS

OF COURSE, IT WOULD NOT BE NECESSARY TO ACTUALLY HAVE A MEGABYTE OF
STORAGE, OR EVEN 64K, TO TAKE ADVANTAGE OF THIS SCHEME. IN THE SYSTEM I
ENVISAGE, SEGMENT O WOULD CONSIST ENTIRELY OF ROM, AND WOULD CONTAIN THE
OPERATING SYSTEM (STARTUP PROGRAMS, MONITOR, INTERPRETERS, MATHEMATICAL
SUBROUTINES, ETC.). SEGMENT 1 WOULD BE RAM, BUT PART OF IT WOULD BE
RESERVED FOR USE BY THE OPERATING SYSTEM TO STORE DATA, MAINTAIN STACKS,
PASS PARMETERS, ETC. SEGMENTS 8 TO F WOULD BE AVAILABLE TO THE USER. IF
NOT USED FOR MEMORY, ONE OR MORE OF THE SEGMENTS COULD BE USED FOR
MEMORY~MAPPED 1/0. SOME OF THE SEGMENTS COULD BE MISSING ALTOGETHER OR
COULD CONTAIN LESS THAN 64K. IT WOULD, OF COURSE, BE UP TO THE USER TO
REMEMBER WHERE THE HOLES ARE IN HIS ADDRESS SPACE.

ONE IDEA THAT INTRIGUES ME IS TO HAVE A 64K APL INTERPRETER IN SEGMENT
0, WITH THE OTHER 15 SEGMENTS AVAILABLE AS APL WORKSPACES. (APL IS MY
FAVOURITE LANGUAGE.)

IT WOULD BE NICE IF RCA (OR SOME ENTERPRISING SECOND-SOURCER) CAME OUT
WITH A ONE-CHIP CMOS IC CONTAINING THE ABOVE CIRCUITRY, WITHOUT THE 4515,
BUT INCLUDING A LATCH TO TAKE OFF THE UPPER ADDRESS BYTE. THE WHOLE THING
COULD BE DONE IN A SINGLE 40 PIN IC. WHICH WOULD ADD A LOT OF POWER TO THE
1802 SERIES, AND ALSO MAKE LIFE EASIER FOR US HOMEBREWERS.

14
+8
Q c»—J
- B |
b see
4013
Q
1¢ce | sct
= ¢ Ics
To 33 4915 o
. b= e on e
(0] Ics 1c7 .
4 ‘ ye
1/0
PoRr
1852 Loac (808 me. 2)
1c1 Ic 2,3,4
P4 ,rc
.
< DATA BUS
FIGURE 1 - MEMORY MANAGEMENT CRCUIT
D4
o}e}— ot
03
L] os
o
Ic2 4002
1c3 4028
Ic4 4089
De
INSTAUCTION / DATA DISCRIFMINA TORS

Fione 2 -

CONCLUSION

15

AS I SAID EARLIER, THIS WHOLE SCHEME IS JUST THEORY AT THE MOMENT.
UNFORTUNATELY I AM NOT VERY WELL EQUIPPED FOR THE AMOUNT OF BREADBOARDING
THAT THIS SYSTEM WOULD ENTAIL.

1 WELCOME ANYONE ELSE TO TRY IT OUT AND
SEND ME ANY COMMENTS THEY MAY HAVE.

LISTING I - SAMPLE PROGRAM TO COPY DATA BETWEEN SEGMENTS

AR AR ERE IR AR RN RREL SRR RAEEERRERRRRAEXGRRAAAXAS LR AK LA

R8
R9
RA
RB
RC

SEX
LDI
STR
OUT1
DEC
SEX
LDI
STR
OUT1
DEC

LOOP LDR
SEX
OUT1
DEC

STR
SEX
OUT1
DEC
INC
INC
DEC
GLO
BNZ
GHI
BNZ
*END

R8
=X02
R8

R8.
R9
=X01
R9

R9
RA
R8

R8
RB
R9

R9
RA
RB
RC
RC
LoopP
RC
LOoP

THIS PROGRAM COPIES DATA FROM SEGMENT 1 TO SEGMENT 2.

STACK POINTER FOR DATA SEGMENT 1

STACK POINTER FOR DATA SEGMENT 2

CONTAINS START ADDRESS OF DATA IN SEGMENT 1
CONTAINS DESTINATION ADDRESS IN SEGMENT 2
CONTAINS NUMBER OF BYTES TO BE COPIED

SEGMENT POINTER P=0 D=2
SAVE ON STACK IN SEGMENT 1
SWITCH DATA SEGMENT TO 2

SEGMENT POINTER P=0 D=1

SAVE ON STACK IN SEGMENT 2
SWITCH DATA SEGMENT BACK TO 1
GET BYTE TO BE COPIED

SWITCH DATA SEGMENT TO 2
STORE IN DATA SEGMENT 2

SWITCH DATA SEGMENT TO 1

BRANCH BACK UNTIL RC IS ZERO

HEXKEYBOARD FOR THE ELF

..by

Here 1s another simple keyboard that will replace the data
switeches on the original ELF, The original circult was taken
from ETI Magazine (September 77, pa°60) and modified to hold
the data into two latches, The circuit uses TTL chips because
they were handy and cost me aglmost nothing, The circuit could
be modified to use CMOS or LSTTL. The keypad comes from a sur-
plus calculator keyboard bought from Rdio Shack. It was modi-
fied to make it a 16 spst switches arrangement with one. side
common, Thlis was done by cutting the printed circult and re-

wiring the switches. There are various surplus keyboard on the .

market and it should be easy to do the same with any keyboard
providing you have accessto the switches or the printed circuilt,
Most keyboard are 'matrix! type so they have to be modified

to work in this circuit, 16 spst switches‘could also .be used
(push button type). Use IC socket for your circuit, The control
circuit was bullt on a small phenolic board and screwed under
the keypad with 12 wires coming out. (8 data, 45v, grd, strobe,
enter), The extra switch replaces the IN switch in the original
ELF I call it ENTER, A led (kbd ready) indicates the circuit
1s ready to accept anoﬁher byte. When the second digit 1is pressed
a data ready strobe 1is generated and 1lnverted to drive an EF

line on the 1802, I am including a short program that will

input data in memory sequencely, 1t uses EF2 for input strobe. ‘

CONTROL CIRCUIT
KEYBOARD

HEX

DATA READY INVERSION

T DRANE EF LiNE

1802 TO S-100 BUS CONVERTER

= by David W. Schuler, 3032 Avon Road, Bethlehem, Pa. 18017, U.S.A.

Theory of Operation:

Bus buffer Ul is used to buffer the data lines from the 1802. Since the
S-100 bus has separate data in/out lines, the chip select of the buffer is
always enabled (pins 1 and 19 = 0). U2 is used to strobe the data from the
S-100 bus onto the 1802 bi-directional data bus when a memory read is
requested. The chip select of U2 is generated by U3a and U4a on the Eif II
only. On the E1f II, pin 1 of Uda is connected to pin 69 of the 86 pin bus
on the main board. This line indicates if an on-board memory address has
been selected. If pin 69 = 0, the S-100 buffer is disabled. If pin 69 =
1, the S-100 bus buffer is enabled when a memory read request is received.

The Netronics E1f II also requires a latch for the upper 8 address bits (A8
to A15). The required circuit is in Figure 3. This will latch the 8 high
order addr. bits, and then the lower 8 address bits. This is because the
S-100 board specifications require that the full 16 bit address be present
on the bus at the same time,

For both the Quest Super E1f and the Netronics Super E1f, U3a, U3b, and U3c
are required to invert the 1802 signals to the required S-100 signals.

Construction:

The entire circuit can be built on one S-100 interface card by either wire
wrapping or point-to-point connections. If the Super E1f or the EIf II
with Quest Adapter board is used, only a 50 conductor cable and S-100
prototyping card are needed. If only an E1f II is used, a Kludge Card for
the 86 pin bus, an S-100 prototyping card and appropriate cable will be
required. In either case, a S-100 mother board will be required.

E1f II Note:

In some cases, transistor Q1 on all 4K Static RAM cards will have to be
replaced with a higher speed transistor. Also, sometimes diode D4 on the
Giant Board will have to be replaced with a higher speed germanium diode.

If there are any questions or comments on the interface outlined here,
please send a SASE (Self Addressed Stamped Enveloped) along with your
questions and I will try to help you out.

S-100

(Pirix #)

2
20
25
29
30
31
32
33
H
35
36
37

(Signal name)

+8VDC
+16VDC
GND
PSTVAL
A5

Al

A3

Al5
Al2

pog
AlLg
DO4
D05
D06
DI2
DI3
DI7
sOUT
sINP
sMEMR
GND
+8VDC
-16VDC
MWRT
GND
PWR
Af
Al
A2
A6
A7
A8
Al3
ALl
All
D02
D03
D07
DI4
DI5
DI6
DI1

o

Notess

PFOC
GND

1 -ElfII o

connect to

1802

(Signal name)

TPA

A5

Al

A3

A15 (Note 1)
A12 (Note 1)
A9 (Note 1)
Dol (Note 2)
Dog (Note 2)
Alg (Note 1)
DO4 (Note 2)
DO5 (Note 2)
D06 (Note 2)
DI2 (Note 2)
DI3 (Note 2)
DI7 (Note 2)
GND

GND
(Note 3)
GND

.(.;Iote 3)

MWR

A9

Al

A2

A6

A7

A8 (Note 1)
A13 (Note 1) .
A1l (Note 1)
A1l (Note 1)
D02 (Note z;

DI4 (Note 2)
DI5 (Note 2)
DI6 (Note 2;
DI1 (Note 2
DI¢ (Note 2)
(Note 3)
GND

1 See Figure 3 for latch
circuit for Address lines A8 to AlS5.
2 - Ally See Figure 2 for data latch.
- Alls See Figure 2 for circuit data.
= Other S~100 lines may have to be added
as required by individual boards.

20 3 g
FIﬁU‘KE. bl
9 v
‘gg 2 LY 16

! [3 ‘1 qs
: 5 35
3 ‘ i , 0
"-y’! 89
1 ‘h “l

va P

E \ § l’f’ L 3]
L . @ “ 3
> o @"Jl Y ®
-3
L It ‘ﬂ a4 Ne
))N
® gy 12 39 -
LY 8 i 4&]
2 "
g z a () 14 40
I 1 ‘l‘ . LY g
A —ifp11 10
I : -
Usa M - vy
MRY
2 T3
MWR o o
U3c
(avest Only) . B -Quest -~ Connect to t5 ¥V
Netronics - Pin 67 of 86 pin bus
FIGURE 3
k
8
34 ‘ 4 a -8y
Al 7 10 ™
Ax 13 ; u 31
A3 ™ ' L Y
>]
. -
~ +5v LY
a s
© TP*A T \;s
s o
= L J. ¢ L
AY " 2 33
AS o T w @ . 5
Ab i3 " 86
A B] \ . 32
)

PARTS LisT

vi,uz - ®i1Ls9¢ /7
v3 - THLS$H
Ly - AuLs @

US’UB - HO4RA o HSOB

A NOTABLE ASSEMBLER LOADER

- by D. Stevens, 4 Washington Sq. Village, #13R, N.Y., N.Y., USA, 10012

This routine allows one to assemble long object files without
using tape or disk; it can produce an object file with length =
RAM/3. I wrote it because I am tired of hand assembling my codes
and do not have a terminal or an assembler, just an ELF-II with
8 K RAM, The source (which is machine code + address instruc-
tions) 1s usually less than twice as long as the assembled object
file. The routine fits in 3 pages and runs slowly, needing for
instance 20 seconds to process 1its own source (5 pages) and
needing 200 seconds to process my operating system (source = 15
pages, object length = 08A0). It requires only 3 pages because it
keeps no tables. It will run much faster and can be used as a
loader if just the high address bytes are computed.

The source for the assembler has no mnemonics, only op codes
and address data. The address data is given in strings of bytes
all beginning with 68. For example, the address of a particular
op code is given the name "AB" by preceeding the op code with
"68 61 AB", it 1is given the name '"CD EF" by preceeding it with
"68 62 CD EF", 1In the source file, a short branch to these
locations would be "30 68 11 AB" and "30 68 12 CD EF". When the
assembler encounters a data form such as is in the left column
below it performs the action described in the right column. Now
look at the source listing of the assembler. The first two bytes
tell the assembler to write the object code starting at 1000, the
68 03 01 00 tells the assembler that the 1load address of the
object code 1is 01 00, The next data up to 0417 is op codes,
compare with the object code listing. At 0418 1is 68 22 01 26,
then more op codes. At 0112 in the object listing the byte 03
occurs instead. The name "0l 26" 1is defined at 0823 (the
68 62 01 26) and the address of the following byte is 035D.

DatavString Compiler Action
68 00 A "68" will be inserted in the object code.
68 01 xx yy The address of the next byte in the object

code will be the address of the last byte
in the object code plus xx yy. This is a
SKIP instruction to the compiler.

68 02 xx yy The low byte of the address of the next byte
: in the object code will be yy. The high byte
will be the high byte of the last byte plus xx.

68 03 xx yy The address of the next byte in the object code
will be xx yy This 1s an ORG instruction to
to the compiler.

22

68 13 (j bytes) The low byte of the address associated with the
name will be inserted.

68 23 (j bytes) -~ The high byte of the address associated with
- the name will be inserted.

68 33 (j bytes) The high and low bytes of the address associated
with the name will be inserted.

68 43 (J bytes) A preprocessor changes the source file as
follows: if the current object address is on
the same page as the address of the name
the 4j will be changed to 1j and the byte
preceeding the 68 will be changed from xy
to 3y. Oherwise the 4j will be changed to
33J and the byte preceeding the 68 will be
changed to Cy.

68 6j (J bytes) The name is associated with the address of the’
: next byte of the object code. The name is a
statement label,

68 73(3 bytes)hhll The name refers to address hhll, This
is an EQUATE instruction to the compiler.

The routine is wused as follows. It is assumed that your
system uses SCRT. The assembler object code is put at 0100-03D8.
R8 should point to the low address end of a RAM area, the
assembler will store useful data, described below. R9 should
point to the start of a source file, and RA should point to the
end of the file. The last byte in the file should not be part of
a 68... address specifier; if it is, add a 00 to the end of your
source, Note the 00 at the end of the source 1listing of the
assembler, The source should start with uu vv 68 03 xx yy, where
uu vv is the memory location where the object code will be put by
the assembler and xx yy is the load address where the code will
run. The assembler output should not overwrite the source.
During assembly the high address byte of the source byte being
processed is displayed. On return only registers R8, R9, RA and
RF are changed. R9 now has uu vv and RA points to the end of the
object code just generated. The source 1is modified; 68 4J
patterns are changed to 68 1J or to 68 3J patterns.

If a 68 1) eeeee combination occurs and the referenced add-
ress is on a different page, the assembled program possibly will
not be ok. So a list of all such questionable references is made
with R8 the stack pointer. This stack grows upward. If for
instance on entry R8 was 1400 and on exit R8 was 1404, then [1400]
[1401] is the address in the source of a questionable combination,
and also [1402] [1403]. Entries are also made if a 68 3]
combination refers to an address which is on the same page.

The routine at 0327 - 0337 puts out the object bytes (the 5F
instruction). This may be modified to fill a buffer and write to
tape or disk rather than to memory.)

23

If an error in the source data 1s detected the program
branches to C000. This error branch address can be changed, it is
at 036C in the object code in the 1listing and at 0842 in the
source part of the 1listing. The routine at C000 (or wherever)
should save R3, R9, and RB, The error table below 1lists the
possible error conditions.

Error Table
R3 Diagnosis

019B 1illegal data at RB

OlAE a "43" in the source was not changed, is the source in ROM?
01BO0 1llegal data at RB

0227 1llegal data at RB-1

0281 RB points to the last byte of a name which wasn’t found
02C6 1llegal data at R9

0305 1llegal data at R9-1

Summary of Usage

1. Set up the source file
a. First five bytes are uu vv 68 xx yy
b. No mnemonics 1
c. Final byte not compiler instruction (68......)
2. Put the assembler at 0100
3. Put an error handling routine at CO00 (or an address you pick)
4, Set up R8, R9 and RA
5. Do SCRT call to 0100
6. If the routine exits to the error routine use the table above
7. If the routine makes a normal exit, check R8 and the data in
the R8 stack.

Listing of Assembler Object Code

0100 E2 8E 73 9E 73 87 73 97 73 82 FF 24 A7 92 7F 00
0110 B7 F8 03 BE F8 5D AE DE 04 19 19 D4 03 38 05 40
0120 FO 68 FF 02 D4 03 8C 17 07 32 69 8A 73 9A 73 17
0130 47 BA BB BC 07 AAAB AC 1B 1C D4 02 A2 47 BD 12
0140 42 BA 02 AA D4 02 4AE7 9D F3 17 32 5B OC FB 70
0150 5C 2C 2C 0C FAOF F9 CO 5C 30 1B OC FB 50 5C 2C
0160 2C OC FAOF ¥9 30 5C 30 1B 99 BB 89 AB 2B 19 19
0170 19 E9 OB F7 AC 2B 29 0B 77 BC 1B 29 29 8B 52 E2
0180 8A F3 3A 8A 9B 52 9A F3 32 FE 1B 9B 52 64 22 0B
0190 FB 68 3A BE 1B OB FE 3B 9B DE 00 F6 F6 F6 F6 F6
0lA0 FE FC A4 A3 30 C5 30 C8 30 DC 30 E2 DE 00 DE 00
01BO 30 F9 OB FA OF FC 02 1B FF 01 3A B7 30 7D OB B5
01CO D4 03 27 30 7D CO 02 16 9B 58 18 8B 58 28 D4 02
O0lDO 4A 9D E7 F3 32 D8 18 18 17 07 30 BF D& 02 4A 47
OlEO 30 BF 9B 58 18 8B 58 28 D4 02 4A 9D E7 F3 3A F2
OIFO 18 18 47 B5 D4 03 27 30 D9 OB FA OF 30 B7 9F BA
0200 8F AADE 08 29 09 AF 29 09 B9 8F A9 12 42 B7 42
0210 A7 42 BE 02 AE D5 4B 32 27 FF 01 32 2D FF 01 32
0220 3p FF 01 32 46 DE 00 F8 68 2B CO 01 BF 1B OB 52
0230 8D F4 AD 2B 4B 52 9D 74 BD 2D CO 01 7D 4B 52 9D
0240 F4 BD OB AD 30 3A 4B BD 30 42 DE 01 OB FA OF A8

0250
0260
0270
0280
0290
02A0
0280
02C0
02D0
02E0
02F0
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03A0
0380
03co
03D0

0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
04A0
04B0O
04CO
04D0
04E0
04F0
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
05A0
0580

B8
73
FF
00
02
30
88
09
FO
FA
49
c2
49
co
BF
3B

33
B8
42
17
E7
2B
D5
c8

11
FF
01
68
17
07
02

El

19
00
32
68
00
A3
68
00
12
EA
co
68
00
EF
98
12
30
E8

1B
28
73
47
D5
8F
57
FE
30
OF
c2
03
19
02
95
D5
73
50
42
AB
07
99
8B
E2
2B

00
24
26
32
07
AA

FB
68
30
19
E4
68
00
68
68
12
F2
00
B5
68
32
ED
D4
58
00
68
68

FF 01

88
98
BA
98
DE
27
3B
ED
19
03
23
52
A4

9A
F6
A8
42
BB
BC
3A
99
8B

68
A7
AE
01
32
AB
D4
70
62
68
E9
88
12
3A
62
62
00
0B
E8
D4

32
01

17

68

18
Fl

12
62

3A
FC
07
1A
01
98
cé
30
FF
05
DE
98
49
94
73
73
33
42
BC
AB
89
A9
52
32

03
92
68
20
68
AC
68
5C
00
12
0B
52
00
68
00
00
EF
FA
30
68
00
00
68

88
18
00
00

3A
5A
02
AA
FF
89
57
DE
ED
01
FF
00
74
B8
B5
9D
89
6E
B9
42
97
AC
89
9A
BA

o1
7F
62
05
12
18
32
2C
E2
00
F7
E2
F3
12
E6
E7
30
OF
68
32
F4
9D
62

01

58
18

EE
F3

51
98
73
1A
01
52
DE
00
30
3A
01
18
B8
30
1D
73
73
F6
42
AC
B8
98
73
F3
17

00
00
00
40
00
iC
01

2C
oc
El

AC
8A
68
00
F6
30
68

FC
12
01

68
E7

00

28
68
68
9F

9B
F9

0A
3A
8A
02
Fé6
EC
E2

co
28
1E
9F
8C
99
33
A9
42
87
B7
99
32
17

E2
B7
EO
FO
E3
D4
00
oc

68
2B
F3
62
E9
F6
68
12
02
00
1F
62
F3
EE
47

62
62

24

BF
60
03
FA
93
F3
D5
Fé6
30
30
03
02
30

D5
73
73
42
42
BD
A8
88
73
CB
30

8E
F8
DE
68
8A
68
E7
FA
50
62
29
3A
00
1B
F6
12
00
68

E4

30
00
32

07

68
00
00
8F

88

73

8C
10
1A
3A
49
F6
EC
A4
09
A4
20

52
46
9C
88
F6
BA
02
1A
A7
F8
19
D1

73
68
04
00
73
32
9D
OF
5C
00
0B
68
E5
0B
F6
00
FO
62
68
68
EC
68
30

32
F1
F2

AF
F8
17
3A
1A
B8
FB
Fé
DE
49
FF
19
49
8C
AF
73
73
33
02

2B
4C
55
30

9E
22
19
FF
9A
01
F3
F9
2C
E3
77
12
1B

F6
EB
DE
00
62
12
9B
12
68
12
01
47
0B
DE

OF
EF
47
92
E7
99
68
Fé6
00
30
01
09
52
F4
E7
8B
98
7D

30
2A
17
57
9E

73
01
19
02
73
0A
17
co
2C
99
BC
00
9B
3B
FE
30
00
E8
00
00
58
00
12
00
00
B5
FA
08

2F
73
FB
2A
0A
52
32
FE
30
EO
c2
52
98
AF
46
73
73
co
30
5C
88
F2
27
89

87
26
68
D4
17
47
32
5C
oc
BB
1B
E5
52
68
FC
68
DE
1B
E9
E4
18
ED
00
EA
9D
D4
OF
29

E7
F8
55

73
9A
co
FC
E9
18
03
88
F&4
9D
73
98
D3
co
5C
DE
3A
17
DE
52

73
BE
62
68
47
BD
68
30
FA
89
29
9B
64
12
68
12
00
FF
0B
68
8B
18
EA
68
E7
68
30

73
68
32

02

2A
F3
18
CF
49

18
19
Fh
B8
52
2F
73
43
00
12
01
99
F3
08
8A

97
F8
00
32
BA
12
12
68
OF
AB
29
52
22
00
12
00
30
01
68
62
58
18

68
62

F3

32
68
AF

F8
73
81
A2
0A
3A
30
A3
19
30
FF
A8
49
9C
8F

E2
12
42
DE
98
3A
DE
F3

73
68
El
00
BB
42
00
12
F9
2B
68
9A
0B
E6
00
EC
68
3A
62
00
28
68
62
00
3A
01
12
29

FF
F8
DE
DE
57
B8
A4

19
E9
0l
29
A8
74
3A
5C
F6
42
BB
04

Cl
02
3A

82
12
D4
DO
BC
BA
E2
00
30
19
62
F3
FB
DE
E7
30
12
68
00
EB

62
00
FO
68
1F
00
09

26

A HARDWARE CLOCK FOR THE 1802 o
= by J. Swofford, 2302 N. Fairview Ave. Decater, I11inois, USA, 62526

Lest spring I ordered an OKI real-time clock/calendar to fill a ‘
need for time-keeping in my ELF II. My ocircuit built around this

I.C, is memory-mapped via 8255 PPI and allows access to time in

hours, minutes and seconds and the date as well as the day-of=-

week., Time ocan be kept in either a 12 or 24 hour formet and leap

year compensation is provided., My system has the 8255 located

at FFOOH to FFO3H. Unfortunately, the Netronies monitor inter-

feres with looations beyond FDFFH, so some ELF II owners may wish

to loocate the 8255 elsewhere or, as I did, enable the Netronios

monitor only for FOOOH to FOFFH (as it should have been, anyway).

INTERFACING THE CLOCK

The data sheet from OKI shows a suggested arrangement using the

Intel 8255 PPI. Since I already had a few spares, it seemed the
easiest route to take, The capabilities of the PPI are too ex-

tensive to cover here so I will be concerned with only those aspeots
which affeot this application. Memory locations FFOOH to FFO3H

will be assumed. All three of the 8255 I/0 ports are used. The .
PPI operates here in mode 0 in two configurationas; one to read

from the clock and one to write to the

clock (see figure 1). These states are 1802, 8155 5832

oreated by writing 80H into location RAIA A DATA %
FFO3H for clock WRITE and 90H for oloock 5 | —
READ. These bytes control how the 8255 P B ADORES
itself operates., An 80H will allow port : c ONTI

A to be an output port (ports B and C Tra

remain output ports for both clook READ

and olock WRITE). Similarly, 90H allows |mag-7 (3

port A to input the data nibble from the Al

clock data lines, Port B is used to pro-

vide the clock address nibble and port C FIGURE 1

is for olock control (see table 1), When the 8255 is reset, all

24 bits (three 8 bit ports) normally float, In this circuit, R1-

R16 will pull these lines high., This would normally place the clock

in & HOLD atate, stopping the time inorement. Therefore, PCO ‘
(bit O=-port C) is inverted before going to the chip seleot pin

on the 6look. This removes all control (including HOLD) from the

¢l
clock and allows it to continue keeping time. The upper portions
of ports A and B (PA4-7 and PB4-7) are not used., PA4-7 is tied
to ground through 10K resistors to avoid having to 'strip! them
off in software during clock READ,

ADDRESSING

Since I use other 82558 in my system, the schematic shows a TLLS154

providing CS for the clock's 8255, Using this arrangement, 16

different PPIs can be selected yielding 48 8-bit I/0 ports. Many

good methods of high order address latching and chip selection

have appeared in Ipso Facto. This one works for me, Since you

may not have an interest in this expansion idea, you may wish to

use an alternate method of chip select which eliminates the 74LS30,

741832, T74LS154 and TLLS374 (figure 2). OCut the trace on the

Netronics Giant Board between pin 8 on A13 and pin 16 on A10.

Run a line from A13 pin 8 to point (:) (chip select-see clock

schematic)s A10 pin 16 should be tied high to disable the ROM.

The 8255 will now have addresses FOOOH to FOO3H. The Demo program

will run unmodified with this arrangement. I have tried this-

it works. It should be possible to place a switch on the Giant

"1Board to switch from the monitor to the
clock and vice versa, If you are using
Netronics' Full BASIC, the only way to

Ron ON GIANT BOARD
Ao 14

e Y12

into BASIC is through the monitor. You

74¢C20 XL, TRACE may want to develop the idea in figure 3

Al A2 8 ""“."":{“s using SF1# to enable the closck once BASIC

has been entered (I have not tried this).

- The modular appearance of the address and

FIGURE 2 select circuitry is to emphasize the idea
of using presently available circuitry you mey already have in your
system. If you have the upper address bits already latched from
some other project, try connecting those lines to the 74LS30 at
point (B), eliminating the 74L8374. I should mention that the
Netronics 4K memory board has these address bits alreaedy latched
snd marked on the board itself. I have not tried using them, how-
ever, Note that CMOS was not used. I have had no problems using
TTL but you may wish to use the 74C series, anyway.

28

THE CLOCK
The MSM5832 is basically a digitel watch in a DIP package. Each
of the 13 digits available (HH MM SS W MM DD YY) must be called .

for one at & time., This is done by addressing the digit to be
read/written (don't confuse with the ELF address/data lines),
commanding the clock and reading/writing the clock (see figure l).
The HOLD line should not be high for more than one second in order
that the clock can increment, The demo program does not use HOLD
on READ due partly to this requirement. (see figure 5),

The H10 and D10 digits are special. The H10 digit contains flags
for PM and 24 hour operation. The D10 digit contains a flag for
leap year (table 2)., The #30 second adjust causes 1 minute to be
added to the LSB of the minutes if seconds are 30 or more as the
seconds are set to zero, If less than 30 seconds, only the seconds
- are affected, Battery baékup is provided

« Boary 3
:EE)OL_ Ll by 2 alkaline penlight cells, Backup is
‘o a wr o[|Ae not required; it is recommended., It is
ga&g] ”g* a pain to reload the clock every time the
:‘:’a.) 1ese T computer has been powered down., Just ask
b————::i:si—§f? any TRS=80 model III owner, The very low
[

- e»-f ass drain of the 5832 should give many months
OR/ FB (PN 14 U MATH /ROM BOARD) (years?) of service. Time regulation is
through C1, Decrease C1 to speed the
FIGURE 3 clook; inorease C1 to slow the olock,

SOFTWARE

The clock demo was written for an ELF II using the Netronics video
board and the 8255 at FFOOH. In Cenker's BASIC ver, 5, this program
uses about 1.5K of memory without REMs. The program is easily
altered to run at any location by chenging line 60 ("#" and "@"
indicates hexidecimal in Quest BASIC). The clock READ did not use
HOLD sinoce BASIC tied up the clock too long end caused it to lose
time. Constant interrogation of the clock should be done in machine
code., The time and date is updated on the CRT about every i seconds,
A more frequent update can be achieved by leaving out the unneceasary
statements and not calling for the date everytime,. .

29

COMMENT S :
Information on obtaining parts is in order. The MSM5832 and orystal
(32768 Hz) is available form several sources including Concord
Computer Products, 1971 So. State College, Ansheim, Ca., 92806 and
Digi-Key, Hiway 32 South, P.0. Box 677, Thief River Falls, Mn.
56701, Both suppliers provide the data sheet. The 8255 and other
ICs are available from just about anywhere. The trimmer (C1) is
sold by Jameco, 1355 Shoreway Road, Belmont, Ca. 94002. The
components can be mounted on & Radio Shack perf board P/N 276=1395,
For those of us who aren't made of money, here

are a couple of suggestions. Don't throw away . 5832

that digital watch, You may be able to use the
small crystal in it like I did (32.768Hz). As
for the other parts, try a hamfest. I have
saved millions(?) by doing my parts procurement
at hamfests. Ask any amateur radio operator for
information on where and when,

|

o3

P2

» } oATA Yo
vf

A3

:}gam LINES
A¢

WoLD
READ
wWRITE
shLseT

Tlll L

) FIGURE L
ser uv One aspect of the 5832 which I have

not mentioned is the interrupt signals (figure 6).
CLOCK While I have not made use of them in this ecirouit,
150 ys there are many ways to utilize these pulses which, I

hope, others will find. For example, the 1024 Hz
g%gg” eand 1 Hz could be combined for a software controlled
* beeper (see figure 7) while the clock is not being
ey accessed, The 60 Hz pulse could be used for a time

Hu/seL /A ose in an UPS (Uninterruptable Power Supply) system.

The 1 Hz could be used to flash lights. I suppose
6ys you could even use these signals for interrupts. What

" about the elock? How about this:

#Interrupt driven timer

‘5“3‘(;_’ s##Countdown timer with a HOID capability

® #Event control (BSR control system)

* poneumer #Data timestamping

The design is relatively simple, the applications are

FIGURE 5

many. From control to display, this clock can be &
useful addition to any system,

Ref. OKI data sheet, March 1980
Intel data manual, October 1977, pp 6=223 to 6=240

30

TABLE 1 demo program variables summary
term hex value decimal value used in program for:

A FF00 65280 ELF memory address-port A (e¢lk I/

B FFO1 65281 ELF memory address-port B (clk adr

C FFO2 65282 ELF memory address-port C (clk contl)
D FFO3 65283 ELF memory address=8255 contl port

E 90 14 control for 8255 (A=input)

F 20 32 port C=-enable clk SELECT/READ

G 50 80 port C-enable clk SELECT/HOLD/WRITE

H 80 128 8255 sontrol-ports A,B,C are ZREERE;T‘

TABLE 2 c¢lock functions

clook clock
data address comments
seconds 1lsb ”6008‘ seconds are automatically set to zero
seconds msb 0001 when clk is written into
minutes 1lsb 0010
minutes msb 0011
hours 1sb 0100
hours msb 0101 bit 2 high=PM bit 3 high=2, hour form’
week 0110 range 0~6 (0=Sunday)
day 1sb 0111
day msb 1000 bit 2=leap year
month 1sb 1001
month msb 1010
year 1s8b 1011
year msb 1100
$832 i
Ye600 NE___ 53 $832
1/60 e —-| V2
el
1024 Ha —| DO 740 AN2222
pe— A;
N A LT S LPKR
{-—— :.f ¢ Vo2 ')&—(—)
pmp
“q ‘:'_":Iff cuA\;i(-—J

NOLD MUY BE 1LOW,
REaD, st&a‘ Ag-1 MUST B RiGH
To AvLow iNT, PULSES

FIGURE 6 ' FIGURE

10
20

30

L0

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

RE M3t 336 3030336 36363030 36 30 4630340403030 3130 3030

REMitstst#¢ CLOCK DEMO sitddese

REMi# J. SWOFFORD 11=7=81 s

RE Mt 46436363030 3310 30303030 0033030303030 30 3¢

REMsts++ SET MEMORY POINTERS #

A=@FF00 : B=@FF01 : C=GFF02 :D=@FF03

REMs++++ DATA USED FOR CONTROL

E=#90:H=#80:REM 8255 CONTROL BYTES
F=#20:G=#50:REM CLOCK CONTROL BYTES

DIM T(13)

T$=" ":REM INITIALIZE T$

B$="N"sREM INITIALIZE B$

REM

REMi#t#s INPUT TIME/DATE #i##

CLS

INPUT "CHANGE TIME/DATE--Y OR N" A$

IF A$="N" GOTO 450

IF A$OMY™ GOTO 160

PRINT "INPUT TIME IN THIS FORMAT"

PRINT*" H,H,M,M"

INPUT T(6),T(5),T(L4),T(3)

T(2)=0:T(1)=0sREM SECONDS ARE SET TO ZERO BY CLK, ANWAY
INPUT "2 HOUR FORMAT--Y/N"™ B$

IF B$="Y" T(6)=T(6)+#08:GOT0O 270:REM BIT 3 INDICATES 2l HR FORMAT
INPUT "(A)M OR (P)M" C$

IF C$="P" T(6)=T(6)+#04sREM SET BIT 2 FOR PM
REM

REM

PRINT “INPUT DATE IN THIS FORMAT"

PRINT" W,M,M,D,D,Y,Y"

INPUT T(7),T(11),T(10),T(9),T(8),T(13),T(12)
T(7)=T(7)=1:REM RANGE FOR DAY-OF-WEEK IS O=6 (SUNDAY-SATURDAY)
INPUT "LEAP YEAR~-Y OR N" D$

IF D$="Y" T(9)=T(9)+#04:REM BIT 2 FOR LEAP YEAR
REM

INPUT "PRESS RETURN TO ENTER TIME/DATE" E$:REM ENTER TIME ON QUEUE
REM

32

380 POKE (D,H):REM SET UP 8255-PORTS A, B, C AS OUTPUTS

390 POKE (C,G):REM PORT C (CLK CONTROL) CLOCK WRITE

40O REM

410 FOR I=1 TO 13

420 POKE (B,I-1)$REM SET CLK ADDRESS LINES

430 POKE (A,T(I)):REM SHOVE T(I) INTO CLOCK

44O NEXT I

50 POKE (D,E)sREM MAKE PORT A AN INPUT, PORTS B & C ARE OUTPUTS
460 POKE (C,F):REM CLOCK READ

470 REM .

480 cLs

490 FOR I=1 TO 7

500 READ A$(I):REM USED FOR DAY~OF-WEEK

510 NEXT I

520 REM

530 PRINT CHR$(L)3;:REM CURSOR HOME

sS40 REM

550 FOR I=1 TO 13

560 POKE (B,I-1):REM CLOCK ADDRESS LINES

570 T(I)=PEEK(A):REM LOAD T(I)

580 NEXT I

560 T$=" AM":REM T$ DEFAULT

600 IF INT(T(6)/#02)>0 T$=" PM":REM IF BIT 1 THEN PM

610 IF INT(T(6)/#08)>0 T$=" HRS":REM IF BIT 3 THEN 24 HR FORMAT
620 IF T(6)>2 IF T(6)<7 T(6)=T(6)=-#0l:REM STRIP OF BIT 2
630 IF T(6)>7 T(6)=T(6)=#08sREM STRIP OFF BIT 3

640 IF T(9)>3 T(9)=T(9)-#0L4:REM STRIP OFF BIT 2

650 PRINT "TIME "3T(6)3T(5)3"z"sT(L)sT(3)3":";T(2)3T(1)3
660 PRINT T$

670 PRINT A$(T(7)#1);

680 PRINT TAB(10)3T(11)3T(10)3"/";T(9)3;T(8);3"/"3T(13)3T(12)
690 GOTO 5303REM GO UPDATE TIME AND DATE FOR DISPLAY

700 DATA "SUNDAY","MONDAY","TUESDAY","WEDNESDAY", "THURSDAY"
710 DATA “FRIDAY","SATURDAY"

720 END .

' - b sw
RESET 2 D«L ®peer AT | MSMSE32
AD >— 5| MRD . ﬁ r's
AR, > 36| MR . ‘L. 4 12/ 53 *30 o m—L !C
L] . [}
. > . T
. > 0] | X-r“: Ca | 20ef
> 3] , y '
= -2 P83 13l a3 vest
. - % . - p.q
b > o8)
mAL D 8} ar .
q PCA
mAg > Y] pcs |2
o = PCo
—8 &
rcg e
® %
W
™t —1
7 -
WS wl b ® 741530 7415154
" 151 O T vttt
- = : I — 8 o p ‘ Vee OND
L= . I S ° p— 8155 26 7
- = L IIIIIiD p— nomsgsz | 13
g > ¥ oppE—------ : p— ﬁgggf z;g 10
. -
532 |
‘J\\z 19 de, p— 7415154 24 %
2/ -
741532 p—
D
. b—
S p—
HI6H ORDER ADDRESS LATCH CHI\P ECT

1802 REAL-TIME CLOCK /CALENDAR

0000

0000
1000
1001
1002
1004
1005
1006
1007
1009
100B
100C
100E
1010
1011
1012
1013
1014
1015
1016
1017
1018
101A
101C
101E
101F

34

303536303 43030 3B IEIE GE I S0 S S S S F 3636 36 3636 36 36 36 3 3 30 36 36 3 3 36 3636 6 36 35 36 3630 36 3 3030 3038 36 3 N RN
3k 3 33 3 30 3 33 303 3 030 S0 3 35 9 36 SE 303 ’-**************************************I*

WHERE: X = 0 TO +63, Y = 0 TO 47
SCREEN LOCATION = 32#Y/3 + X/2 + EOOOH (HEX)

#*

POINT PLOTTER - 6847 SEMIGRAPHIC-SIX MODE (&4 X 48) #*
#* +*
CREATED: 9 NOV 1981 REV. 0.02 13 NOV 81 *
+* +*
53538 4633 36 38 36 30 30 3 3030 3036 3 36 303 3 30 30 31 303 030 3 0 36 030 6 SIS I I H I IR
#* +*
ENTRY: PROGRAM LABEL IS -- JUMPLOT (SOURCE) *
#* 0BJCODE " " —-— PLOTOUT #*
ASM. LISTING » —— PLOTLIST *
AUTHOR: JORGEN MUNCK *
3# *
* DESCRIPTION: THESE ROUTINES WERE WRITTEN TO BE USED #
WITH TOM PITTMAN‘S TINY BASIC USR FUNCTION.
#* .C = USR(4195)............ CLEAR SCREEN *
* ..P = USR(4094, X, Y). PLOT POINT *
* *
3 +*
3# +*

Fh 3636 35 96 36 36 30 3 36 30 3 36 36 36 36 3036 36 363 36 36 36 30 36 303030 300 30 30 30 3030 30 3E 30 36 3036 S0 30 33030 30 30 30 330 3 3036 30 30 0 0 S0 3
Fh 3 4 36 36 36 35 30 3630 3 3 35 36 36 3630 36 3 3636 36 35 3636 3636 303 36 36 36 36 30 T3 36 30 360 36 30 303030 3030 3030 30 303036 3036 38 36 36 36 0 I 303 3

o e e EQUATES e e e —#

ZEROS EGU o

ORG 1000H
INITLZ GLO A D <~- ARG3(Y), RA. 1 <{--Y;
PHI A 0 - 47 PERMISSIBLE
LDI ZEROS CLEAR OUT RA.O FOR CT OF Y/3
PLO A
SHL. SHIFT ‘O’ INTO DATA FLAG
YCOOR GHI A GET Y INTO ACCUMULATOR
SUBT SMI #03 SUBTRACT 3; DF = O IF BORROW
BNF GuoTY IF BORROW, THEN GUOTIENT DONE
INC A ELSE, INCR REG A FOR Y/3
BR SUBT GQUOTIENT COUNT
QuaTY ADI #03 FIX FOR LAST SUBTRACT
PHI 8 AND STORE IN R8.1
MUL.T 6L0 A GET Y/3 FROM RA. O
SHL MULTIPLY
SHL BY 32
SHL.
SHL.
SHL.
PLO A STORE (32 X Y/3) IN RA.O
LDI #EO SCREEN HOME AT #E000
BNF HOMEHI IF DF =0, 32 X Y/3 I8 < 9 BITS
ADCI ZERQS ADD OVERFLOW TO LSB OF RA. 1
HOMEHI PHI A SAVE CURSOR HIGH PORTION

XCOOR GLO a8 GET X (ARG 2); 0-63 PERMISSIBLE

1020 F&6 QuUoTX SHR PUSH REMAINDER OF X INTO DF

1 32 : STR 2 SAVE X/2
‘2 F800 LDI ZERQS ' CLEAR ACCUMULATOR
1024 7 SHLC PUSH DF INTO ACCUM
1025 A8 PLO 8 AND SAVE REMAINDER OF X/2
1026 BA GLO A GET 32 X Y/3
1027 F1 OR COMBINE WITH X/2
1028 AA SCREEN PLO A SCREEN ADDRESS COMPLETE
1029 98 CHROW GHI 8 GET Y/3 REMAINDER (ROW)
102A FE SHL MULTIPLY BY 2
1028 B8 PHI 8 SAVE
102C 88 CHCOL GLO a8 ~ GET REMAINDER FROM X/2
102D 76 SHRC DF = 1 IF REMAINDER WAS A ONE
102E 98 GHI 8 - GET ROW INFO INTO ACCUM
102F 7C00 ADCI ZEROS ADD CARRY
1031 3247 BZ SIX TEST FOR POSITION OF PIXEL
1033 FBO1 XRI #01
1035 324A BZ FIVE
1037 FBO3 XRI #03
1039 324D BZ FOUR
103B FBO1 XRI #01
103D 3250 BZ THREE
103F FBO7 XRI #07
1041 3253 BZ TWO
1043 FBO1 XRI #01
1045 3256 BZ ONE
1047 F820 SIX LDI #20 THESE ARE HEXADECIMAL WEIGHTING
c8 LSKP FOR PIXEL POSITIONING
10%A FB10 FIVE LDI #10
104C C8 LSKP
104D F808 FOUR LDI #08
104F C8 LSKP
1050 FB804 THREE LDI #04
1052 €8 LSKP
1053 F802 TWO LDI #02
1055 C8 LSKP
1056 F801 ONE. LDI #01
1058 5S2 STR 2 STORE IN MEMORY FOR ‘OR’
1059 0A LDN A GET 0OLD PIXEL
103A F1 OR ‘OR’ IN NEW PIXEL
105B BA STR A AND RESTORE TO VDG MEMORY
105C D5 SEP S RETURN
105D ORG 1063H
1063 FBE1 SCRNCLR LDI #E1 LOAD SCREEN BOTTOM — HI BYTE
1065 BA PHI A
1066 F8FF LDI #FF AND LO BYTE
1068 AA PLO A
1069 EA SEX A SET X FOR CLEARING
106A FB00 CLEAR LDI ZEROS LOAD ‘ZEROS‘ FOR
106C 73 sSTXD BLACK BACKGROUND
1 A . GHI A GET HI ADDR
1 FBDF XRI #DF TO TEST IF DONE

1070 3A6A BNZ CLEAR

36

2
1072 E2 SEX 2 RESTORE X =
1073 DY SEP 5 AND RETURN
1074 END
BACKGROUND : FOR POINTSET
HOME | [o3
cRgg X POSITION ;|l
.
Y PosiTiioN %)‘,Y-‘ 0,0 ‘ X,¥Y=63,0_

l.mznc_“-” _________ E
R IR

i
i
i
i
}
|
: X,Y263,4T N,
|
|
|
[

1
|
i
]
1
|
i
|
WiV .
[
|
|

NERAR Y
v EIFF
CHARACTER
POSITION
FOR ANY X,Y! (307 PIXELS)
h[:z |
. LINE = -'; QUOTIENT, 4 7ie
A . CHARACTER POSITION® X QUOTIENT. #8| P4| 1 YRow -
3. ROW # OF GRAPHICS CHARACTER = & REMAINDER . #2 | 9 <
H.COLUMN # OF CHARACTER» X "REMAINDER. COLUMN »
S . BIT POSITION = (ROW #) ™ 2 + COLUMN #
X A
P R R SN PiXEL ——y
I—A ~‘\‘ V J
)
%/ 2t ifsa]ie 8 [+ [2] D x % [32fiefa |1] 2]
R _/
E bATA

Ao

——— SCREEN ADDRESS —

37

. SPRECH - A SIMPLE SOFTWARE VOICE SYNTHESIZER
- by P. G. Liescheski III, 4510 Duval St., #203, Austin, Texas, 78751

SPRECH is an output software package which can give the 1802 a voice.

It basically accepts an ASCII numeric character in RF.l or a binary nibble (least
significant) from the accumulator D, and synthesizes the sound of that hexidigit.
It is mainly intended as a software novelty; however, it may be quite useful in
conjunction with a monitor, ‘

SPRECH is basically a digital voice recorder. Its algorithm is basically
similar to that used by Bobby R. Lewis in QUESTDATA (Vol. 2,#2,p. 1). The RECORD
routine is used to generate the raw voice data. After manipulation and rearrange-
ment of this data, the TEST and INTERFACE routine can be used to regenerate the
sounds of the hexidigits: 0,1,2,3...F. The TALK routine is the basic subroutine
which regenerates the sound from the data in memory., TALK performs the inverse
function of RECORD.

The most difficult part of this package to implement is the voice digital-
ization and the voice data manipulation. After this task, SPRECH should be quite
simple to use. First, this software must be entered into the 1802 computer. It
is assumed that this package will be executed from a monitor which sets R2 as
stack pointer, R3 as program counter, and uses R4 and R5 for SCRT Call and Return
registers. Some form of audio device such as a tape recorder or an amplifier
with microphone must have its output properly comnected to the EF3 line. With this

‘ the RECORD routine 1is executed at location 005B. After pushing the I-key, the
numbers between 0 and F are quickly but clearly pronounced into the microphone.
The recording period should last for about twenty (20) seconds. After this, the
memory between addresses 0100 and 4000 is examined. If the amplifier is not too
noisy, the memory should be filled with primarily zeros and occasional non-zero
patches. These non-zero patches or blocks of memory are merely the digitalized
sound of each number. The first block should represent the sound for zero, while
the second block should represent the sound of one and so on., The data block
for the sound of zero is moved to memory locations 0100-02FF, while the data for
one is moved to 0300-04FF, and so on until the number F, The voice data will occupy
8K of memory since the sound for each number can be contained within two pages of
memory. After this task, the memory contents between locations 0000 and 20FF
should be saved on tape for safe keepings.

Now with this, the voice synthesiger can be used. For hardware, an amplifier
with speaker should have its input connected to the Q line (see figure 1), To
test the program and data, one should execute the TEST routine at location 0000.
With this, one can enter a number on the hexpad. After pressing the I-key, the
sound of that number will be regenerated. This routine will allow one to easily
check the sound quality of each number.

In order to use SPRECH in conjunction with a monitor, one should patch the
monitor's output routine so that the INTERFACE routine will be called at location
000A. The routine assumes that the output ASCIT byte is contained in RF.1, Also

it is assumed that R3 1s the program counter; R2 is the stack pointer and SCRT
is used. The routine will ignore ASCII characters which are not considered to be
numeric,

In its initial testing, the package could reproduce the sound with fair
quality. Some problems are encountered with B,C,D and E. These numbers tend
to sound the same. This flaw could be the result of a poor audio system. The
audio system used in the initial test was a tape recorder connected to the tape
1/0 ports of the computer. A filtering system as described by James C. Anderson
in BYTE (Vol. 6,#2,p. 36) may improve the sound quality. It is hoped that this
voice synthesizer package can be put to some practical use.

Register Assignments:

R2 - Stack Pointer

R3 - Program Counter

R4 - SCRT Call register

R5 - SCRT Return register

R8 - 8-bit Counter

R9 - Data Memory pointer

RF.1 - ASCII Output code pass

Basic Hardware Setup:

Amplifier Amplifier
TN 1802
1L Y E1f

:.Microphone

[: Speaker

L4

* 39
* SPRECH * Phillip B. Liescheski III * 10-16-81
*

* TEST - Voice Tester
*

' 0000: 3F 00 I-key wait delay
02: 37 02
6C Get number from Hexpad (Input 4)
D4 00 32 Call TALK
30 00 Do it again

*

* INTERFACE - Monitor Interface
*

000A: 9F Get ASCII character from RF.1

FF 30 Check for Non-numeric ASCII code
3B 25
FF 0A
33 19 Check for Numeric ASCII code: (-9
FC 0A Convert ASCII to binary number

15: D4 00 32 Call TALK
D5 Return to monitor

19: FF 07 Continue to check for Non-numeric ASCII code
3B 25
FF 06
33 25 Check for Numeric ASCII code: A-F
FC 10 Convert ASCII code to a binary number
30 15 Jump to TALK

25: F8 FF Momentary Delay for Non-numeric ASCII code

27: C4 C4 Delay Loop
C4 C4

'l’ C4 C4

FF 01 Bump Delay Counter
3A 27
D5 Return to Monitor

*

* TALK - A Routine that regenerates sound from voice data
*

0032: FA OF Mask off upper nibble of D

_FE Calculate page address of voice data block
FC 01 which represents the number in D

B9 Store Page number in R9

FC 02 Calculate & Store end address on stack
73

8 00 Finish the voice block address in RY
A9

3E: F8 08 Set up R8 as 8-bit counter

A8

49 Get a byte from voice block using R9 as memory pointer
52 Store it on stack

43: 99 Check if finished with voice block

60

F3

C6 Skip return if not finished

D5 Return

c4 F111 in the skip gap

‘ 49: 22 Bump stack pointer (assume X=2)

FO Get voice byte from stack

F6 Shift right

33 4F Toggle Q according to DF bit

7A Q=1 if DF=1

4F: 3B 52

40 .

7B Q=0 if DF=0
52: 52 Push processed voice byte back onto stack
28 Bump 8-bit counter ‘
88 Check if finished with the voice byte
32 3E I1f finished with byte, then fetch the next voice byte from memory
C4 C4 Keep timing smooth
30 43 If not, continue as usual with the voice byte

*

* RECORD - A Routine to produce the voice data
*

005B: F8 00 Start recording of voice on page one of memory
A9 Set up R9 as memory pointer
F8 01 :
B9
61: 3F 61 Walt for I-key depression
63: 37 63
65: F8 08 A® Set up R8 as 8-bit counter
19 Bump memory pointer R9
69: 99 Check if finished with recording
FB 40 Last recording page of memory is 40
c6 Skip halt if not finished
00 00 Halt!
6F: 49 Get byte from memory
F6 Shift right
71: 3E 75 Check the EF3 line
F9 80 If EF3=1, then set most significant bit of D
75: 36 79
F9 00 If EF3=0, then reset most significant bit of D
79: 29 Bump memory pointer
59 Store byte back in memory for safe keepings
28 Bump 8-bit counter
88 Check if finished with this byte
32 65 If so, start working on a new byte
88 A8 Keep timing smooth

30 69 If not, continue as usual

*

