
INDEX PAGE

PU8LICATION OF THE ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS (ACE) 1981

JANUARY 1982ISSUE 27

IPSO FACTO t s published by the ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
(A.C.L), a non-profit, educational organization. Information in IPSO
FACTO is believed to be accurate and reliable. However, no responsibility
is .ssumed by IPSO FACTO or the ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
for its use : nor for any 1nfrigements of patents or other rights of third
parties which may result from its use.

Executive Corner...... •••••••••••• •••• •••• ••• •••••• ••••••••••••••••••• 2

Editors Corner................... •••••.... ..•..• 3
Members Corner •••••••o............................ 3

Netron1cs Full Basic and the Infamous EF2 line........................ 5

Tiny Basic Programs. ••• •••••••••• •••••• ••••••••• •••••••••••••••••••••• 8

The Megabyte Elf •• 11

Hex Keyboard for the E1 f.. 16

1802 to 5-100 Bus Converter... ••• •••••••••• •••••••••• ••••••••••••• •••• 18

A Notable Assembler......... •••••••••• •••••• ••••• •••• ••••••••• •••••••• 21

A Hardware Clock for the 1802.... ••• ••• ••• ••••••• ••••••••• ••• ••••••••• 26

1802 Plotter... •••••••••••••• • •• • • • •••• ••••••••••••• •••••••••• • • • •• • • • 34

SPRECH - A Simple Software Voice Synthesizer•••••••••••••••••••••••••• 37

Cl ub Communi que....................... 41

•

•

•

The neestet ter staff asslllle no responsibility for article errors nor for infringement upon copyright .
The content of all articles will be verified, as . uch as posstble and 11.itations listed (te set.rcntcs
Baste only, Quest Monitor required , requires 16K at 0OOO -3FFF etc.}, The newsletter staff will attl!ftlpt
to publ ish Ipso Facto by the f1l"'"'it week of: Issue 25 - OCt 81, 26 - Dec 81 . 27 ~ Feb 82. 28 - Apr 82 .
29 - Jun 82. and 30 - Aug 82 . Delays may be incu rred as a result of loss of staff, postal dt sr-upt tons , •
lack of ert tctes , etc . We apologtze for such Inconvenience . hOWt'ver they are generally caused by factors
beyond the control of the club .

•

Each
during

416-528-3222

Wayne Bowdish 416-388·7116

John MyStkowski

Product Mdi I1ng:

Software:

Ordught~an:

Vice -sres i dent: Ken Bevis 416 -277 -2 495

Secretary: Tony Hil l 416-523-7368 •
HeIIlbership: Bob Silcox 416-681 -2848

Earle Laycock

Progrdm Convener: Bernie Kurphy
Bert Dekat

Tutor1dl/Seminars: Ken Bevis
Fred reever

416-271-2495

416-239 -8567

416-878-0740

416-845 -1630
416-389 -4070

416-878-0740

A.C.E.
c/o Bernie Murphy
102 McCraney Street East
Dakville, Ontarto
Canada
l6H 1H6
Phone: 416-845 -1630

The miljority of the content of Ipso Facto is voluntarily submitted by club members. Whi le we assume no
responsibility for errors nor for i nf r in gement upon copyrig ht . the Edito rial staff verify arti cle content
as much as possible . We ce n always use art i cl e s, both har dware and software, of any level or type
relating directly to the 1802 or to micro computer components , per-treret s , products , etc . Please specify
the equ1pment or support software upon which the article content epcltes , art.tctes which a re typed are
prefered , and usually printed first, while handwritten ert tc tes requtre some work . Please , please send
original , not photocopy material. we will retu rn photocop1es of ortginal eeter te l ITreqUested .
Photocopies usually will not repr oduce clearry:--

PUBLICATION POLICY

ACE will accept advertising for commercial products for publication in Ipso Facto at the rate of $25 per
quarter page per issue with the ecvert tser subrtitting camera -ready copy. All advertisements must be
pre-patd .

ADVERTISING POLICY

ART ICLE SUBMISSIONS :

Meetings are held on the second Tuesday of each Mont h, september through June at 7 :30 in Room 8123 ,
Sheridan Col lege, 1430 Trafa lgar Road , Oakville , Ontario . A one hour tutorial proceeds each meeting .
The college t s located app roximate ly 1.0 km nor t h of the QEW, on the west side . Al l membe rs and
interested visitors are welcome .

A membership is contracted on the ees ts of a club yedr - Septl!llbe r through the following August .
lumber is entitled to, <llIIOng othe r privileges of lIembershlp. al l 6 Issues of Ipso rectc publtshed
the club year .

CLUB MEETINGS:

1981/82 EXECUTIVE OF THE ASSOC IATION OF COMPUTER-CHIP EXPER IME NTERS

MEMBERSHIP POLICY

--------~-

CLUB MAILING ADDRESS:

President: John ncrrts

Treasurer: Mike Frankltn

Oirectors : Bernie Murphy
Fred PIutherc

Newsletter:

Product ion
Manager: Mike FNnklin
Editors: Fred reever

Steve Carter
Bob Siddall
Tony HiIl

Advertizing : Fred Pluthero

Publication: Dennis M!ldon
John Hanson

Hardware & Ken Bevi s
R. and o. Don McKenzie

Fred PIuthero
Dave Belgrave

EDITORS CORNER

~ I am sure you are pleasantly surprised to see a newsletter so soon after receiving
Number 26. There is a reason for our haste. The Canada Post Corporation has
raised postage by over 100% effective January 1, 1982. This cost increase was
beyond the club's budgeted increase, and quite frankly, beyond our ability to
absorb. Since we operate on a annual subscription basis, we have no mechanism to
generate more revenue from our members, so we must cut costs. By mailing this
issue in 1981, we saved considerable postage costs. Unfortunately, it will not be
enough. After much deliberation, the executive decided to restrict the size of
newsletters to 42 pages (the size of issues 26 and 27). Forty-two pages will still
permit the editors to create a broad ranging newsletter, which is just under the
weight ceiling of level 2 first class mail rates. So far now, the 60 page
encyclopedia newsletter is gone. We will still meet our commitment for 6
newsleters for this club year.

Your comments would be appreciated.

Club Products

The club is currently field testing a prototype EPROM board designed to accommodate
2716/32/64 single 5 volt supply EPROM (28 pin JEDEC standard). We expect to be
able to offer the board for sale by 31 March 1982. Current projects underway
include a redesigned club 44 pin buss back plane and a new micro processor board
for the club buss.

Forth

~TOny Hill made an excellent presentation on FORTH at the 8 December 1981 club
meeting. His work on FORTH is well advanced and I should be able to report
ordering information in the next newsletter.

Interested FORTH uses should be approaching FIG and Mountainview Press for
appropriate documentation.

Best Article Issue 26: P. Liescheski - The Shroedinger Equation.

MEMBERS CORNER

FOIl s:Al~.

- by Chuck Reid, 423 Huxley Ave., Sarnia, Ontario, N7S 4Zl

Canadian Funds

2 - Netronics 4K Static Ram Boards @ $50.00 each
1 - Netronics 4K Static Ram Board @ $25.00

- memory bug, needs trouble shooting
1 - Netronics Giant Board @ $20.00
1 - Netronics AP-l 5 Amp Power Supply @ $20.00
1 - SSM VB1C Video Display Board @ $100.00
1 - Netronics VDB Video Display Board @ $150.00

All boards are fully functional (except where noted) and are fully socketed
(except Giant Board).

$80.00
$78.00
$25.00
$30.00
$35.00
$15.00
$150.00

4
FOR SALE:

BASIC NETRONICS ELF II, factory assembled and tested, brand new condition, ~
Netronics metal cabinet and cover 1/4 K Ram, UHF channel 33 modulator, 5V •
power supply, Quest interface board with hexdisplays up to 65K and all mode
i ndi cators factory assembl ed and tested, all ori gi na1 Netronics and RCA
documentation, almost all Questdata and IPSO FACTO newsletter. - $200.00
or best offer.

Alain Jacynas, 3093 Allard, Montreal, P.Q., Canada, H4E 2M8 - Phone: DAY
514-282-6530, EVENING - 514-761-7447

FOR SALE:

1 Netronics ELF II
2 Netronics 4K Static Memory - each
1 Case Computer
1 5 Amp Power Supply
1 GIANT BOARD I/O
1 Netronics Protobard
1 Netronics Video display board with ASCII K/B

and RF Modulator only

Most chips socketed professionally assembled. All manuals included. OR

Everything for $500.00 with Ti ny Basic on Tape. Will consider trade for 8"
disck drives.

Also available - Olivetti daisy wheel KSR terminal. RS-232 Interface inc. e
- $2,350.00 NEW

S. Carter, 8086 Isl ington Ave., Woodbridge, Ontario, L4L lW3, Phone:
851-2921

FOR SALE:
_ by Joe Matherly, Room 222A, 460 NE 215th St., Miami, Florida, 33179

Tel: 305-653-4900

NETRONICS ELF II 4K Boards, fully socketed, all chips included, DIP Switch
addressing, excellent working condition. All 3 for $130.00 or $50.00 each
if sold separately. I'll pay postage.

FOR SALE:

Quest Super Elf with Expansion Board. All on-board options.
S100 video. Quest Super Color 6847-based board (partially
ASCll Keyboard. Full manual sand documentat ion, with some
cassette tapes. Quest Tiny Basic included.

Godbout 8K
assembled).
programs on

All the above for $650.00 US. I will ship. My cost was over $1,000.

Al so - ASR33 Teletype W/Modern.
unrealiable. $250 US.
schematics with diagrams.

Everything works except tape reader
Included full documentation including
Al so some spare parts.

A. D. Barksdale Garbee II, 1601 Clayton Avenue, Lynchburg, Virginia, 24503,
USA, Phone: (804) 384-2470

5

NETRONICS FULL BASIC AND THE INFAMOUS ~ LINE

- by J. Vaal, 6535 Vel mar Dr., Ft. Wayne, Indiana, USA, 46811

After reading the last several issues of Ipso-Facto, I almost regretted
that I ordered Netronics Full BASIC last Winter. Well, Full BASIC LEV III At
arrived a couple weeks ago, complete with a user manual, chock full of
errors (including the ending address of the program). My two biggest complaints
about this system area 1, The RPN format is not identical to HP calculators
and 2, The modifications to the GIANT .BOARD significantly degrade the
performance of the cassette read hardware. Problem 1 can be evidenced
by solving the equation:

X-52-.62 •
Quickly you c~n see the difference in stack operations. Unfortunately
I do not have a solution to this problem.

Problem 2 , which, I believe is actually two sub-problems, can be neatly
solved. The first, ~described by Mr. M.E. Franklin in Issue #17, where the
math chip holds the EF2 line low, occurs only when an error is detected
by the math chip and the program is terminated or when the user terminates
the program during math function execution. The capacitor / diode modification
to the GIANT BOARD is not actually intended to and will not solve this
problem. I believe, however, that the degradation of the cassette read
hardware as a result of this modification is a far more significant problem.
Figure 1 is a block diagram of the affected portions of the system when
Full BASIC is installed. Capacitor Ca is added to the GIANT BOARD because
the output of At2 (Pin 4) is normally low. Diode Db is a clamp on the output
signal during cassette read and maintains the proper de operating level.
The problem with this modification, is that it partially defeats the
purpose of the cassette read circuit (A12). This amplifier is intended to
"squa.re-up" the cassette signal, but capacitor Ca reduces the effectiveness
of this circuit. Diodes Da (GIANT BOARD), D1, and D3 (BASIC board)
comprise a "wired OR" so that the EF2 line may be shared.

AUTO-SWITCH CIRCUIT OPERATION

Figure 2 is a block diagram of the system where the Full BASIC GIANT BOARD
modifications are removed and the Auto-Switch modifications added to the
Full BASIC board. This circuit (Figure J) is essentially an automatic
switch that connects either the cassette read or the Full BASIC EF2 signals
to the buss. The basic circuit consists of four components; U1 CD 4066
(qua.d bi-lateral switch), R1, R2, and C1. R3 and the LED are optional.

6

AUTO-SWITCH CIRCUIT OPERATION oontinued

SW1 acts as a buffer for the Al2 GIANT BOARD EF2 signal. When a cassette
signal is present, Cl is charged to 5 volts which enables SWJ to put the
cassette signal on the buss. SW2 is...!!mply an inverter of the output
of SW1 and turns off the Full BASIC EF2 signals. (SW4). '!he optional LED
turns on when the cassette line takes control. When no cassette signal
!!...,present, sw4 is turned on, and the Full BASIC board has oontrol of the
EF2 line.

This modification eliminates the ac coupling of the cassette signal to the buss
~ allows a cassette read even when the Full BASIC board would be holding
EF2 low. It should be noted, however, that after the program is loaded,
it still may be necessary to enter "PR CIA" to resume normal operation of
Full BASIC. '!his is because the "WAD" routine does not reset the math chip.

This circuit does give priority to cassette operations and therefore the
cassette recorder should not be operated during Full BASIC program execution.

CONSTRUCTION DETAILS

The circuit shown in Figure J may be readily added to the Full BASIC
P.C. board in the area reserved for user hardware in the lower right hand
oorner of the board. '!he following modifications are necessary.

1) Remove the .1uf capacitor and the two diodes that were added to the
GIANT BOARD for Full BASIC.

2) Connect a wire from A12 Pin 4 (where the capacitor was) to Pin 84.

J) Connect a wire on the mother board between pins 84 of the GIANT
and Full BASIC board sockets.

4) On the Full BASIC board, cut the trace to Pin 70 after the junction
of Dl and DJ.

5) Wire up the Auto-Switch circuit as shown in Figure J.

6) The total system should now be wired as shown in Figure 2.

At this point, one note of caution is in order. If the Full BASIC board
is removed from the system, Pin 70 on the GIANT BOARD must be reoonneoted
for cassette read operation. I have been using Full BASIC with this
modification for several days now and have encountered no problems. As
long as one remembers that the cassette will take priority over the math
chip (as described earlier) there should be no problems. One interesting
side effect of this modification is that the LED acts as a cassette signal
present indicator, which is cute if not functional.

CASS.
IN

7

~ 1M SYSTEM
>+5 AAA_ LEAVE CUT SUSS< 1M rrr v v v

0- ~I ~AA -
PER NfTRONlc~

PIN 70u 2Ir :A12 X MOO
P1N4 1 rADO JUI'?S\ PIN &4

-=- GIANT SOARD MOO
AOO
SUSSIVIRE

1002V PIN7CFULL eA51C ISQflRO
CASSo INPUT PlN84 m

SEE SCHEMATIc OUTPUT
FIGURE: .3 FULL aASlC INPUT

AUTO - SWITt:Iof

I UI lA

~
N

Df

I 1_ PIN 10
U 10

N X -CUT HERE EF2 MoTHER ~DD3

FIGURe 2.: SYSTEM 'M'ITH AUTO - SWITGH 1'100

8

CA

MOO

CASS.
IN

FULl IlUIC ~
(NOlt:OI 15 SMOII'N ~... ON...~.~)

lAl

UIO

TINY BASIC PROGRAMS

-by G. Caughman - 3795 Somerset Dr., Marqetta, Georgia, USA, 30064

DECntAL TO HEX COMVERS ION ROUTINE

10" INPUT DECD-1AL VALUE AND THIS ROUTINE TiVILL
~O REM CONVERT IT TO AN EQUIVALENT HEX VALUE
100 INPUT X
110 LET Is-,/16
120 U-X-16*I
130 LET J&I/16

:1.140 TaI-16*J
150 LET K.:'J/16
160 !:J-16.l-K
170 LET L::K/16
180 RaK-16*L
400 LET V:=R
410 'OaUB 500
420 LET V::.!
430 GOaUB 500
440 LET VaT
450 GOS UB 500
~60 LET V=.U
tee GoaUB $00.."'
470 GOSUB 1000

•
500 IF V<lO ~GTO 570
510 IF J.:z10 PRINT "A";
530 IF V=ll PRINT "E";
550 IF Vz12 FRINT "C";
552 IF V:::13 PRINT "D";
554 IF V~14 PRINT "E";
556 IF V~15 PRINT "F";
560 RETURN
570 PRINT "V";
580 RETLTR~;

1000 PRINT
1010 END

9

TINY BASIC HEX TO DECDvlAL ROUTINE
10 LET k=10
20 LET Bs:rm
30 LET C212

40 LET D=13
50 LET E:.14
55 LET F:.15
60 PRINT "INPUT FOUR HEX DIGITS EACH FOLLOWED BY C0I<1:1AS"; .
65 PRINT "EXCEPT LAST DIGIT. (MAX. 7,F,F,F)"
70 INPUT U,T,V,W
~5 u~U"~16"~16"~16

80 T#T*16*16
85 V=V"~16
90 X= U+-T+V+W

_ 95 lRL'lT X
• 100 END

5
6
7
11
20
25
30
35
40
50
51
52
56
57
58
59
65
72
73
75e 80
85

PRINT "MEr<lOR~ DISPLAYPROGRAM tI

PRINT
PRINT "ENTER THE STARTING ADDRESS AS FOLLOVIS: N,N,N,N.";
I'RINT "VvHERE N EQUALS EACH HEX DIGIT. (MAX 7,F,F,F)"
GO SUB 1010
LET Y= X
PRINT "ENTER LAST ADDRESS THE SAIJIE WP::l"
GO SUB 1010
LET Z::: X
REM CLEAR SCREEN AND SPACE
PLOT (12)
PRINT
LET X::. Y
GO SUB 110
LET W=PEEK (Y)
Y"'Y+1
LET X=W
REM SET BYTE FLAG FOR HEX OUTPUT ROUTINE
LET p:s 1
GO SUB 110
IF Y < Z +1 THEN GO TO 56
END

100 REM HEX OUTPUT ROUTINE
110 LET I 1:1 JV16
120 U=X-16 * I
130 LET J:: I/16
140 To: I- 16*J
150 LET Kz J/16
160 B:2 J'-16*I
170 LET L: K/16
180 R:: K -16*L
400 LET V~R

402 IF P=l GOTO 435
410 GOSUB 500
420 LET V:.S
430 GOSUB 500
434 REM RESET BYTE FLAG IF SET
435 LET P:O
440 LET VaT
450 GOSUB 500
460 LET V=U
465 GOS UB 500
466 REM ALLOW TWO SPACES
470 . PRINT" tt;
475 RETURN
500 IF V<10 GOTO 570
510 IF V:10 PR "Att ;
530 IF V=ll PR "B";
550 IF V:12 PR "C tt ;
552 IF V:13 PR "D";
554 IF V.:14 PR liE";
556 IF V.:15 PR "r",
560 RETURN
570 PRINT V;
580 : RETURN
1000 REM HEX TO DECIMAL ROUTINE
1010 LET A:10
1020 LET B=ll
1021 LET C-12
1022 LET D:.13
1023 LET E:14
1024 LET F~15
1030 INPUT U,T,V,W
1040 U-=U••16*16*16
1050 T.cT*16*16
1060 V~V*16
1070 Xt:U+T~V+W
1090 RETURN

10

11

THE MEGABYTE ELF

_ by R. Siddall - 40 Cadillac Ave., Downsview, Ontario, Canada, M3H 152

INTRODUCTION

UP TO NOW, FEW HOBBYISTS HAVE FOUND THE 64K ADDRESSIBILITY LIMIT OF THE
1802 TO BE MUCH OF A PROBLEM. TilE SITUATION MAY SOON CHANGE, HOWEVER. WITH
TilE APPEARENCE ON TilE MARKET OF 64K X 1 RAM CHIPS, AND THE CONSTANTLY
DECREASING COST OF OTHER LESS CAPACIOUS MEMORY CHIPS, IT MAY SOON BE
NECESSARY TO FIND A WAY TO EXPAND THE USABLE MEMORY SPACE. TO ADDRESS THE,
PROBLEM (IF YOU WILL PARDON THE PUN) I HAVE DEVISED A MEMORY MANAGEMENT
SCHEME THAT WOULD PERMIT AN 1802-BASED COMPUTER TO USE UP TO 1 MEGABYTE OF
MEMORY, IN 64K SEGMENTS. OTIIER BENEFITS OF MY SCHEME WOULD BE A MEMORY
PROTECTION CAPABILITY, AND AN ABILITY TO SEPARATE TilE PROGRAM SPACE FROM
THE ADDRESS SPACE.

THIS SYSTEM IS AT PRESENT MERELY 'THEORETICAL', BUT IT IS RELATIVELY
STRAIGHTFORWAIW, AND I IIOPE TO MAKE A BREADBOARD IMPLEMENTATION SOMEDAY. I
ALSO INVITE OTIIERS TO TRY IT OUT AND LET ME KNOW WHAT PROBLEMS I HAVE
FAILED TO FORSEE.

ACCESSING 1 MEGABYTE REQUIRES A 20 BIT ADDRESS, 4 BITS MORE THAN IS
PROVIDED BY THE 1802 ARCIIITECTURE. IN MY SCHEME, TWO 4-BIT 'NYBBLES' WOULD
BE LATCHED OFF THE DATA BUS BY AN I/O INSTRUCTION IN TilE PROGRAM BEING
EXECUTED. ONE OF THESE WOULD BE USED AS THE 'SEGMENT ADDRESS' (I.E.
ADDRESS BITS 17-20) WHENEVER THE PROGRAM COUNTER REGISTER IS BEING USED TO
ACCESS MEMORY: DURING TIlE FETCH CYCLE, AND WHENEVER AN 'IMMEDIATE' OR
BRANCH INSTRUCTION IS BEING EXECUTED. TIlE OTIIER SEGMENT ADDRESS IS USED
FOR ALL OTHER MEMORY ACCESSES INCLUDING DMA REQUESTS. TilE PROGRAMMER MAY
CHOOSE TO MAKE THESE TWO SEGMENT ADDRESSES POiNT TO TilE SAME SEGMENT, OR
HE CAN IIAVE A 64K PROGRAM SPACE AND A 64K DATA SPACE SIMULTANEOUSLY
ACCESSIBLE.

IIARDWARE

FIGURE I SHOWS THE HARDWARE REQUIRED. ICI IS A STANDARD 1852 I/O PORT
CONTROLLED BY AN 110 LINE FROM TilE CPU. IT IIOLDSONTO TilE SEGMENT
ADDRESSES SENT TO IT BY TIlE CPU WilEN TIlE APPROPRIATE OUTPUT INSTRUCTION IS
EXECUTED. AN RC CIRCUIT ON THE CLEAR PIN COULD BE USED TO SET BOTH SEGMENT
ADDRESSES TO 0 AT POWER ON.

IC2, Ica, AND IC4 CONSTITUTE A LOGICAL ARRAY WIIICII DISTINGUISHES
WHETHER AN INSTRUCTION BEING FETCHED ON THE DATA BUS WILL REQUIRE DATA TO
BE READ FROM TilE PROGRAM SPACE (I.E. VIA REGISTER P) OR THE DATA SPACE
(VIA REGISTER X OR ANY REGISTER OTIIER THAN P>. TilE TRUE/FALSE OUTPUT OF
TillS LOGICAL ARRAY IS IIELD AFTER A FETCII CYCLE IN ONE IIALF OF A 4013 DUAL
D LATcn r rcor. t CALL tHIS CIRCUIT (FIG. 2) TilE 'INSTRUCTION/DATA
DISCRIMINATOR' •

IC5 IS USED TO DISCRIMINATE BETWEEN A FETCII AND AN EXECUTE CYCLE. THE
OTHER HALF OF ICG PUTS OUT A TRUE/FALSE SIGNAL (AND ITS INVERSE) DEPENDING

12

ON WIliCH OF TilE SEGMENT ADDRESSES IS TO BE USED IN TilE SUBSEQUENT FETCH.
IC? IS A 4019 4 OF 8 SELECTOR WHICH PUTS OUT EITHER ONE OR THE OTIIER
SEGMENT ADDRESS FROM IC 1 DEPENDING ON THE OUTPUT OF IC6. IC8 IS A 4 TO 16
LINE DECODER WIIICII WILL SELECT TilE SEGMENT OF MEMORY REQUIRED.

I HAVE SPECIFIED CMOS ICS TIIROUGIIOUT THE CIRCUIT, BUT I FULLY REALIZE
THAT TIMING WILL PROBABLY BE A CRITICAL FACTOR, AND SOME OR ALL OF THE ItS
MAY IIAVE TO BE STTL OR EVEN EeL EQUIVALENTS TO THE ClIIPS INDICATED TO MAKE
THE SYSTEM WORK.

SOFTWARE

TilE 1852 I/O PORT WHICII 1I0LDS THE SEGMENT ADDRESSES CAN BE TIED TO ANY
AVAILABLE 110 LINE ON THE 1802. IN WHAT FOLLOWS I ASSUME IT IS TIED TO NO.
AN 'OUTl' (61) INSTRUCTION CAN THEN BE USED TO WRITE rna SEGMENT ADDRESSES
TO TillS PORT. TIlE IIIGII ORDER 4 BITS OF THE BYTE STORED IN THE PORT WOULD
CONTAIN TilE PROGRAM SEGMENT WHILE THE LOW ORDER 4 BITS WOULD CONTAIN THE
DATA SEGMENT.

TilE DATA SEGMENT CAN EASILY BE CHANGED AT ANY TIME UNDER PROGRAM
CONTROL. LISTING I GIVES A SMALL PROGRAM TIIAT WOULD COPY DATA FROM SEGMENT
1 TO SEGMENT 2.

CHANGING THE PROGRAM SEGMENT WOULD BE A LITTLE MORE DIFFICULT, SINCE
TilE PROGRAM COUNTER WOULD BE UNAFFECTED BY THE CHANGE OF SEGMENT ADDRESS.
FOR EXAMPLE, IF TilE 'OUTl' INSTRUCTION TIIAT CHANGED TilE SEGMENT ADDRESS
WERE AT LOCATION 001FO, AND TilE SEGMENT WERE CHANGED FROM 0 TO 2, THE NEXT
INSTRUCTION EXECUTED WOULD BE THE ONE AT LOCATION 201Fl. TO GET AROUND
TillS, A PROGRAM SEGMENT CIIANGE CONVENTION OF SOME KIND WOULD HAVE TO BE
SET UP. MY SUGGESTION IS TIIAT EVERY SEGMENT USED AS A PROGRAM SEGMENT IIAVE
A 'SEP RO' INSTRUCTION IN LOCATION 0000 AND AN 'OUTl' INSTRUCTION IN
LOCATION FFFF (TillS COULD BE IMPLEMENTED IN HARDWARE). TUEN, TO CHANGE
PROGIMM SEGMENTS, THE PROCEDURE WOULD BE AS FOLLOWS:

-SWITCII TIlE PC TO A REGISTER OTHER TIIAN RO,

-POINT TilE X-REGISTER TO A BYTE CONTAINING TilE TWO NEW SEGMENT
ADDRESSES,

-POINT REGISTER RO TO TilE ENTRY POINT OF TilE PROGRAM TO BE EXECUTED IN
THE NEW SEGMENT,

-BRANCH TO LOCATION FFFF.

CONTROL WOULD THEN JUMP TO rna 'OUTl' INSTRIlCTION AT LOCATION FFFF, TIlE
SEGMENT WOULD CIIANGE. TilE NEXT INSTRUCTION EXECUTEI) WOULD BE THE 'SEP RO'
INSTltUCTION AT LOCATION 0000 OF rna NEW SEGMENT, CAUSING A BRANCH TO THE
DESIRED PROGRAM.

TO TAKE ADVANTAGE OF THE SEPARATE ADDRESS SPACE, SPECIAL ASSEMBLER AND
BASIC SOFTWAlm WOULD IIAVE TO BE DEVELOPED. FOR EXAMPLE, ADDRESS LABELS
WOULD HAVE TO BE MARKED SOMEHOW AS TO WHETHER THEY wEim ADDRESSES IN TilE
PROGRAM OR DATA SPACE. EXISTING SOFTWARE WOULD STILL RUN, BUT IT WOULD BE
CONFINED TO TIlE USUAL 64K.

•
13

MEMORY PROTECTION

INIIERENT IN TillS SCIIEME IS A USEFUL FORM OF MEMORY PROTECTION. IF THE
PROGRAM AND DATA SEGMENTS ARE DIFFERENT, IT IS IMPOSSIBLE FOR TilE PROGRAM
TO BE CLOnBElmDBY A STRAY DATA POINTER OR FOR TilE SYSTEM TO ATTEMPT TO
EXECUTE DATA. FURTIIERMORE, DATA IN SEGMENTS OTIIER TIIAN THE TWO ACTIVE ONES
CANNOT BE ACCESSED AT ALL, UNLESS AN ERRONEOUS 'OUT l' INSTRUCTION IS
EXECUTED.

FRONT PANEL FUNCTIONS

WITH A BIT OF ADDITIONAL HARDWARE, A FEW USEFUL FRONT PANEL FEATURES
COULD BE ADDED. FOR EXAMPLE

-TilE OUTPUT OF IC6 COULD BE USED TO LATCH OUT THE CURRENT TRUE PROGRAM
COUNTER FROM TilE ADDRESS LINES.

-THE ACTIVE SEGMENT ADDRESS(ES) COULD BE DISPLAYED ON TilE FRONT PANEL.

-TilE PROGRAM AND DATA SEGMENTS COULD BE CONTROLLED FROM THE FRONT
PANEL BY OVERRIDING TilE OUTPUT OF IC7.

OTIIER CONSIDERATIONS

OF COURSE, IT WOULD NOT BE NECESSARY TO ACTUALLY HAVE A MEGABYTE OF
STORAGE, OR EVEN 64K, TO 'fAKE ADVANTAGE OF THIS SCHEME. IN rns SYSTEM I
ENVISAGE, SEGMENT 0 WOULD CONSIST ENTIRELY OF ROM, AND WOULD CONTAIN THE
OPERATING SYSTEM (STARTUP PROGRAMS, MONITOR, INTERPRETERS, MATHEMATICAL
SUBROUTINES, ETC.). SEGMENT 1 WOULD BE RAM, BUT PART OF IT WOULD BE
RESERVED FOR USE BY TilE OPERATING SYSTEM TO STORE DATA, MAINTAIN STACKS,
PASS PARMETERS, ETC. SEGMENTS 3 TO F WOULD BE AVAILABLE TO THE USER. IF
NOT USED FOR MEMORY, ONE OR MORE OF THE SEGMENTS COULD BE USED FOR
MEMORY-MAPPED I/O. SOME OF THE SEGMENTS COULD BE MISSING ALTOGETHER OR
COULD CONTAIN LESS THAN 64K. IT WOULD, OF COURSE, BE UP TO TilE USER TO
REMEMBER WHERE TilE HOLES ARE IN lIIS ADDRESS SPACE.

ONE IDEA THAT INTRIGUES ME IS TO HAVE A 64K APL INTERPRETER IN SEGMENT
0, WITH THE OTHER 15 SEGMENTS AVAILABLE AS APL WORKSPACES. (APL IS MY
FAVOURITE LANGUAGE.)

IT WOULD BE NICE IF RCA (OR SOME ENTERPRISING SECOND-SOURCER) CAME OUT
WITH A ONE-CIIIP CMOS IC CONTAINING TilE ABOVE CIRCUITRY, WITHOUT TilE 4515,
BUT INCLUDING A LATCII TO TAKE OFF TIlE UPPER ADDRESS BYTE. THE WHOLE TIlING
COULD BE DONE IN A SINGLE 40 PIN IC. WHICH WOULD ADD A LOT OF POWER TO THE
1802 SERIES, AND ALSO MAKE LIFE EASIER FOR us JlOMEBREWERS.

14

•

I

I

teo

.....---+---------------- ..

DATA f>U"

Ica .eoo.a
IC" ".5
IC4 4..,

04

01

••..

15

CONCLUSION
AS I SAID EARLIER, TillS WHOLE SCHEME IS JUST THEORY AT THE MOMENT.

UNFORTUNATELY I AM NOT VERY WELL EQUIPPED FOR THE AMOUNT OF BREADBOARDING
THAT TillS SYSTEM WOULD ENTAIL. I WELCOME ANYONE ELSE TO TRY IT OUT AND
SEND ME ANY COMMENTS THEY MAY HAVE.

LISTING I - SAMPLE PROGRAM TO COpy DATA BETWEEN SEGMENTS

* THIS PROGRAM COPIES DATA FROM SEGMENT 1 TO SEGMENT 2.
** R8 - STACK POINTER FOR DATA SEGMENT 1
* R9 - STACK POINTER FOR DATA SEGMENT 2
* RA - CONTAINS START ADDRESS OF DATA IN SEGMENT 1
* RB - CONTAINS DESTINATION ADDRESS IN SEGMENT 2
* RC - CONTAINS NUMBER OF BYTES TO BE COPIED
*

SEX R8
LDI -X02
STR R8
OUTl
DEC R8
SEX R9
LDI -XOI
STR R9
OUTl
DEC R9

LOOP LDR RA
SEX R8
OUTl
DEC R8
STR RB
SEX R9
OUTl
DEC R9
INC RA
INC RB
DEC RC
GLO RC
BNZ LOOP
Gill RC
BNZ LOOP
*END

SEGMENT POINTER P-O D-2
SAVE ON STACK IN SEGMENT 1
SWITCH DATA SEGMENT TO 2

SEGMENT POINTER P-O D-l
SAVE ON STACK IN SEGMENT 2
SWITCH DATA SEGMENT BACK TO 1

GET BYTE TO BE COPIED

SWITCH DATA SEGMENT TO 2

STORE IN DATA SEGMENT 2

SWITCH DATA SEGMENT TO 1

BRANCH BACK UNTIL RC IS ZERO

16

HEXKEYBOARD FOR THE ELF

- ~

Here is another simple keyboard that will replace the data

switches on the original ELF. The original circuit was taken

from ETI Magazine (September 77, pa o60) and modified to hold

the data into two latches. The circuit uses TTL chips because

they were handy and cost me almost nothing. The circuit could

be modified to use CMOS or LSTTL. The keypad comes from a sur

plus calculator keyboard bought from Rdio Shack. It was modi

fied to make it a 16 spst switches arrangement with one. side

common o This was done by cutting the printed circuit and re

wiring the sWitches. There are various surplus keyboard on the

market and it should be easy to do the same with any keyboard

providing you have accessto the switches or the printed circuit.

Most keyboard are 'matrix' type so they have to be modified

to work in this circuit. 16 spst sWitches could also .be used

(push button type). Use Ie socket for your circuit. The control

circuit was built on a small phenolic board and screwed under

the keypad with 12 wires coming out. (8 data, +5v, grd, strobe,

enter). The extra switch replac~ the IN switch in the original·

ELF I call it ENTER. A led (kbd ready) indicates the circuit

is ready to accept another byte. When the second digit is pressed

a data ready strobe is generated and inverted to drive an EF

line on the 1802. I am including a short program that will

input data in memory sequencely, it uses EF2 for input strobe.

•

17

t:
:::s
Vc
G
~

0
a:

!v

.-
~~
~w
::.:::

0
X
~

~TA READY I~SfON
'I'D ~ U LIM

ri~i!

lJJ 0 V CIA ~ • II) l\o. .. 1ft ~ f') (\I 0

.,
~-00-
Z-> II

1ft
cI)+

+tV W
47 t< •

MTA MtDr

18

1802 TO S-lOO BUS CONVERTER
- by David W. Schuler, 3032 Avon Road, Bethlehem, Pa. 18017, U.S.A.

Theory of Operation:

Bus buffer Ul is used to buffer the data 1i nes from the 1802. Si nce the
S-lOO bus has separate data in/out lines, the chip select of the buffer is
always enabled (pins 1 and 19 = 0). U2 is used to strobe the data from the
S-lOO bus onto the 1802 bi -di rect i ona1 data bus when a memory read is
requested. The chip select of U2 is generated by U3a and U4a on the Elf II
only. On the Elf II, pin 1 of U4a is connected to pin 69 of the 86 pin bus
on the main board. This line indicates if an on-board memory address has
been selected. If pin 69 = 0, the S-lOO buffer is disabled. If pin 69 =
1, the S-lOO bus buffer is enabled when a memory read request is received.

The Netronics Elf II also requires a latch for the upper 8 address bits (A8
to A15). The required circuit is in Figure 3. This will latch the 8 high
order addr. bits, and then the lower 8 address bits. This is because the
S-lOO board specifications require that the full 16 bit address be present
on the bus at the same time.

For both the Quest Super Elf and the Netronics Super Elf, U3a, U3b, and U3c
are required to invert the 1802 signals to the required S-lOO signals.

Construction:

The entire ci rcuit can be buiIt on one S-lOO interface card by either wi re
wrappi ng or poi nt-to-poi nt connections.· If the Super Elf or the Elf II
wi th Quest Adapter board is used, only a 50 conductor cable and S-lOO
prototypi ng card are needed. If only an El f I lis used, a Kl udge Card for
the 86 pin bus, an S-lOO prototyping card and appropriate cable will be
required. In either case, a S-lOO mother board will be required.

El f II Note:

In some cases, transistor Ql on all 4K Static RAM cards will have to be
replaced with a higher speed transistor. Al so, sometimes diode D4 on the
Giant Board will have to be replaced with a higher speed germanium diode.

If there are any questions or comments on the interface outlined here,
please send a SASE (Self Addressed Stamped Enveloped) along with your
questions and I will try to help you out.

19
FIGURE 1

8-100 cormect to 1802
(Pin I) (Signal name) (Signalname)

1 +8VDC " -2 +16VDC "
20 GND " -
25 pSTVAL " m
29 A5 " A5
30 A4 " A4
31 .A.3 " A3
32 .A.15 " A15 (Note 1)
33 A12 " A12 (Note 1)
J4 A9 " A9 (Note 1)
35 oot " 001 (Note 2)
36 oo~ " 00_ (Note 2)
37 Al_ " Al_ (Note 1)
J8 D04 " D04 (Note 2)
39 005 " D05 (Note 2)
40 006 " 006 (Note 2)
41 DI2 " DI2 (Note 2)
42 DI3 " DI3 (Note 2)
43 DI7 " DI7 (Note 2)
45 sOUT " GND
46 sINP " GND
47 sMEMR " (Note 3)
50 GND " GND
51 +8VDC "
52 -16VDC "68 MWRT " (Note 3)
70 GND " -
77

~ " iiiR
79 " A_
80 Al " .A.1
81 A2 " .A.2
82 A6 .. A6
83 A7 " A7
84 A.8 .. A8 (Note 1)
85 A13 " A13 (Note 1)
86 A14 .. A14 (Note 1)
87 A11 " All (Note 1)
88 D02 " 002 (Note 2)
89 003 " 003 (Note 2)
90 007 " DC1l (Note 2)
91 DI4 " DI4 (Note 2)
92 DI5 " DI5 (Note 2)
93 DI6 II DI6 (Note 2~
~ DIl " DIl (Note 2
95 DI_ " DI_ (Note 2)
99 POC " (Note 3)

100 GND II GND

NotesI 1 - Elf' II onlyI See Figure :3 tor latch
c1rcuit tor Address lines A.8 to A15.

2 - All I See Figure 2 tor da:ta latch.-Z- All' See Figure 2 tor cirauit data•
. - other 8-100 lines may have to be added

as required by irxlividual boards.

20 - N
:> J

, I !itU'R.E z

":' •'&. ,,,
~

itS

c+ : 35Po
~'i 'lit

rl ct .,
IiP 7

~" '4.
/'1\ r=-. : t"p.

~@ 'iii
V\
J

~
\I>

~ II 1&
~

~'2, 'e...II ·U
ri

~::
'&..

~ ~ '3' -
~

~!'1
I

U 1/\

~
...

~ II; "top
0

'It I-
r- 90p

'i3

'i1M-')
10

11&

~ ••
V')c.

R/W ~ If'(Q~ Ol'\ly)
II - ~ll.st - COf\ned to tS"

Ne+ronic.c; - Pi", ,,~ " Sb pin bu~

",
AI
A).

A'

~
'&.
~ T?"

fi
\}!.
iL

M

II>

Aft

A1

U I. U2,

u3
Uli
VS,UD

t
8

'i a
7 10

IJ)
13 :> II

1'1 I

~!>
I"

HV

T
, ,~

-s

"
~

, It) 10
;)

'I11

1'1 ,
e
1

'l>04'R.,'S L I ~ T

ell..$'IiO /.,

.,..,I-S9I'1
1~L.S¢~

'10"':.l.. l'Jr 'i$"o~

Iii
'1'1

Jl.,
~
'&
I

1/\

0
I-

,~

IS
II»

31

21

ANOTABLE ASSEMBLER LOADER.
_ by D. Stevens, 4 Washington Sq. Village, #13R, N.Y., N.Y., USA, 10012

~nis routine allows one to assemble long object files without
using tape or disk; it can produce an object file with length a

RAM/3. I wrote it because I am tired of hand assembling my codes
and do not have a terminal or an assembler, just an ELF-II with
8 K RAM. The source (which is machine code + address instruc
tions) is usually less than twice as long as the assembled object
file. The routine fits in 3 pages and runs slowly, needing for
instance 20 seconds to process its own source (5 pages) and
needing 200 seconds to process my operating system (source a 15
pages, object length = 08AO). It requires only 3 pages because it
keeps no tables. It will run much faster and can be used as a
loader if just the high address bytes are computed.

The source for the assembler has no mnemonics, only op codes
and address data. The address da.ta is given in strings of bytes
all beginning with 68. For example, the address of a particular
op code is given the name "AB" by preceeding the op code with
"68 61 AB", it is given the name "CD EF" by preceeding it with
"68 62 CD EF". In the source file, a short branch to these
locations would be "30 68 11 AB" and "30 68 12 CD EF". When the
assembler encounters a data form such as is in the left column
below it performs the action described in the right column. Now
look at the source listing of the assembler. The first two bytes
tell the assembler to write the object code starting at 1000, the
68 03 01 00 tells the assembler that the load address of the
object code is 01 00. The next data up to 0417 is op codes,
compare with the object code listing. At 0418 is 68 22 01 26,
then more op codes. At 0112 in the object listing the byte 03
occurs instead. The name "01 26" is defined at 0823 (the
68 62 01 26) and the address of the following byte is 035D.

Data String

68 00

68 01 xx yy

68 02 xx yy

68 03 xx yy

Compiler Action

A "68" will be inserted in the object code.

The address of the next byte in the object
code will be the address of the last byte
in the object code plus xx yy. This is a
SKIP instruction to the compiler.

The low byte of the address of the next byte
in the object code will be yy. The high byte
will be the high byte of the last byte plus xx.

The address of the next byte in the object code
will be xx yy This is an ORG instruction to
to the compiler.

68 1j (j bytes)

68 2j (j bytes)

68 3j (j bytes)

68 4j (j bytes)

68 6j (j bytes)

22

.
The low byte of the address associated with the
name will be inserted.

The high byte of the address associated with
the name will be inserted.

The high and low bytes of the address associated
with the name will be inserted.

A preprocessor changes the source file as
follows: if the current object address is on
the same page as the address of the name
the 4j will be changed to 1j and the byte
preceeding the 68 will be changed from xy
to 3y. Oherwise the 4j will be changed to
3j and the byte preceeding the 68 will be
changed to Cy.

The name is associated with the address of the'
next byte of the object code. The name is a
statement label.

68 7j(j bytes)hh11 The name refers to address hh11. This
is an EQUATE instruction to the compiler.

The routine is used as follows. It is assumed that your
system uses SCRT. The assembler object code is put at 0100-0308.
R8 should point to the low address end of a RAM area, the
assembler will store useful data, described below. R9 should
point to the start of a source file, and RA should point to the
end of the file. The last byte in the file should not be part of
a 68... address specifier; if it is, add a 00 to the end of your
source. Note the 00 at the end of the source listing of the
assembler. The source should start with uu vv 68 03 xx yy, where
uu vv is the memory location where the object code will be put by
the assembler and xx yy is the load address where the code will
run. The assembler output should not overwrite the source.
During assembly the high address byte of the source byte being
processed is displayed. On return only registers R8, R9, RA and
RF a re changed. R9 noe has uu vv and RA points to the end of the
object code just generated. The source is modified; 68 4J
patterns are changed to 68 lJ or to 68 3J patterns.

If a 68 1j ••••• combination occurs and the referenced add
ress is on a different page, the assembled program possibly will
not be ok. Soa list of all such questionable references is made
with R8 the stack pointer. This stack grows upward. If for
instance on entry R8 was 1400 and on exit R8 was 1404, then [1400]
[1401] is the address in the source of a questionable combination,
and also [1402] [1403]. Entries are also made if a 68 3j •••••
combination refers to an address which is on the same page.

The routifte at 0327 - 0337 puts out the object bytes (the SF
instruction). This may be modified to fill a buffer and write to
tape or disk rather than to memory.

23

If an error in the source data is detected the prosraa
branches to COOO. This error branch address can be changed, it is
at 036C in the object code in the listing and at 0842 in the
source part of the listing. The routine at COOO (or wherever)
should save R3, R9, and RB. The error table below lists the
possible error conditions.

Error Table
R3 Diagnosis

019B illegal data at RB
01AE a "4j" in the source was not changed , is the source in ROM?
01BO illegal data at RB
0227 illegal data at RB-1
0281 RB points to the last byte of a name which wsn' t found
02C6 illegal data at R9
0305 illegal data at R9-1

Summa ry of Usage

1. Set up the source file
a. First five bytes are uu vv 68 xx yy
b. No mne1'lOmcs
c. Final byte not compiler instruction (68 ••••••)

2. Put the assembler at 0100
3. Put an error handling routine at COOO (or an address you pick)
4. Set up R8, R9 and RA
5. Do SCRT call to 0100
6. If the routine exits to the error routine use the table above
7. If the routine makes a normal exit, check R8 and the data in

the R8 stack.

Listing of Assembler Object Code

0100 E2 8E 73 9E 73 87 73 97 73 82 FF 24 A7 92 7F 00
0110 B7 F8 03 'BE F8 5D AE DE 04 19 19 D4 03 38 05 40
0120 FO 68 FF 02 D4 03 8C 17 07 32 69 8A 73 9A 73 17
0130 47 BA BB BC 07 AA AB AC 1B 1C D4 02 A2 47 BD 12
0140 42 BA 02 AA D4 02 4A E7 9D F3 17 32 5B OC FB 70
0150 5C 2C 2C OC FA OF F9 CO 5C 30 1B DC FB 50 5C 2C
0160 2C OC FA OF F9 30 5C 30 1B 99 BB 89 AB 2B 19 19
0170 19 E9 OB F7 AC 2B 29 OB 77 BC 1B 29 29 8B 52 E2
0180 8A F3 3A 8A 9B 52 9A F3 32 FE 1B 9B 52 64 22 OB
0190 FB 68 3A BE 1B OB FE 3B 9B DE 00 F6 F6 F6 F6 F6
OlAO FE FC A4 A3 30 C5 30 C8 30 DC 30 E2 DE 00 DE 00
01BO 30 F9 OB FA OF FC 02 1B FF 01 3A B7 30 7D OB B5
01CO D4 03 27 30 7D CO 02 16 9B 58 18 8B 58 28 D4 02
01DO 4A 9D E7 F3 32 D8 18 18 17 07 30 BF D4 02 4A 47
OlEO 30 BF 9B 58 18 8B 58 28 D4 02 4A 9D E7 F3 3A F2
01FO 18 18 47 B5 D4 03 27 30 D9 OB FA OF 30 B7 9F BA
0200 8F AA DE 08 29 09 AF 29 09 B9 8F A9 12 42 B7 42
0210 A7 42 BE 02 AE D5 4B 32 27 FF 01 32 2D FF 01 32
0220 3D FF 01 32 46 DE 00 F8 68 2B CO 01 BF 1B OB 52
0230 8D F4 AD 2B 4B 52 9D 74 BD 2D CO 01 7D 4B 52 9D
0240 F4 BD OB AD 30 3A 4B BD 30 42 DE 01 OB FA OF A8

24

0250 B8 1B FF 01 3A 51 9B BF 8B AF OF 2F E7 73 F8 FF

0260 73 28 88 3A SA 98 F9 60 73 F8 EF 73 F8 68 73 F8

0270 FF 73 98 FC 02 73 D4 03 8C 17 47 FB 55 :32 81 DE

0280 00 47 BA 07 AA 1A OA FA 10 3A 92 2A D4 02 A2 DE

0290 02 D5 98 1A FF 01 3A 93 1A 1A E7 OA 73 2A OA 57

02A0 30 8F DE 01 89 52 8A F3 3A B8 99 52 9A F3 3A B8

02BO 88 57 27 98 57 DE 02 D5 49 FB 68 32 CO 18 30 A4

02CO 09 FE 3B C6 DE 00 F6 F6 F6 F6 F6 FE FC CF A3 30
02DO FO 30 ED 30 ED 30 EC 30 EC DE 00 30 E9 49 19 19

02E0 FA OF 19 FF 01 3A E2 30 A4 49 30 EO 18 18 30 E9

02F0 49 C2 03 05 FF 01 C2 03 09 FF 01 C2 03 19 FF 01

0300 C2 03 23 DE 00 18 CO 02 A4 19 09 52 88 F4 A8 29

0310 49 19 52 98 74 B8 28 30 20 49 52 98 F4 B8 49 A8

0320 CO 02 A4 49 B8 30 IE 8D 52 8C F4 AF 9D 52 9C 74
0330 BF 95 SF 94 B5 1D 9F D5 46 AF E7 46 73 2F 8F 3A
0340 3B D5 8D 73 9D 73 8C 73 9C 73 8B 73 9B 73 30 5C
0350 SA 73 9A 73 89 73 99 73 88 73 98 73 D3 43 E2 F6
0360 33 50 F6 33 6E F6 33 42 F6 33 7D CO CO 00 12 42
0370 B8 42 A8 42 69 42 A9 42 BA 02 AA 30 5C 12 42 BB

0380 42 AB 42 BC 42 AC 42 BD 02 AD 30 5C DE 01 DE 04
0390 17 07 BB AB 97 B8 87 A8 1A 2B 2A 8B 3A 99 9B AB
03AO E7 99 BC 89 AC 98 B7 88 A7 4C 17 F2 17 F3 3A C1
03BO 2B 8B 3A A9 89 73 99 73 F8 55 57 27 DE 08 DE 02
03C0 D5 E2 99 52 9A F3 32 CB 19 30 9E 89 52 8A F33A
03DO C8 2B 8B 32 BA 17 17 30 D1

0400 11 00 68 03 01 00 E2 8E 73 9E 73 87 73 97 73 82
0410 FF 24 A7 92 7F 00 B7 F8 68 22 01 26 BE F8 68 12
0420 01 26 AE 68 62 00 EO DE 04 19 19 68 62 00 E1 D4
0430 68 32 01 20 05 40 FO 68 00 FF 02 D4 68 32 00 DO
0440 17 07 32 68 12 00 E3 8A 73 9A 73 17 47 BA BB BC
0450 07 AA AB AC 1B 1C D4 68 32 01 OA 47 BD 12 42 BA
0460 02 AA D4 68 32 01 00 E7 9D F3 17 32 68 12 00 E2
0470 OC FB 70 5C 2C 2C OC FA OF F9 CO 5C 30 68 12 00
0480 E1 68 62 00 E2 OC FB 50 5C 2C 2C OC FA OF F9 30
0490 5C 30 68 12 00 E1 68 62 00 E3 99 BB 89 AB 2B 19
04A0 19 19 E9 OB F7 AC 2B 29 OB 77 BC 1B 29 29 68 62
04BO 00 E4 8B 52 E2 8A F3 3A 68 12 00 E5 9B 52 9A F3
04C0 32 68 12 00 F3 68 62 00 E5 1B 9B 52 64 22 OB FB
04DO 68 00 3A 68 12 00 E9 1B OB FE 3B 68 12 00 E6 DE
04EO 00 68 62 00 E6 F6 F6 F6 F6 F6 FE FC 68 12 00 E7
04FO A3 68 62 00 E7 30 68 12 00 EB 30 68 12 00 EC 30
0500 68 12 00 EF 30 68 12 00 FO DE 00 DE 00 30 68 12
0510 00 F2 OB FA OF FC 02 68 62 00 E8 1B FF 01 3A 68
0520 12 00 E8 30 68 12 00 E4 68 62 00 E9 OB 68 62 00
0530 EA B5 D4 68 32 01 IF 30 68 12 00 E4 68 62 00 EB
0540 CO 68 32 00 F4 68 62 00 EC 9B 58 18 8B 58 28 D4
0550 68 32 01 00 9D E7 F3 32 68 12 00 ED 18 18 68 62
0560 00 ED 17 68 62 00 EE 07 30 68 12 00 EA 68 62 00
0570 EF 04 68 32 01 00 47 30 68 12 00 EA 68 62 00 FO
0580 9B 58 18 8B 58 28 D4 68 32 01 00 9D E7 F3 3A 68
0590 12 00 F1 18 18 68 62 00 F1 47 B5 D4 68 32 01 IF
oSAO 30 68 12 00 EE 68 62 00 F2 OB FA OF 30 68 12 00
05BO E8 68 62 00 F3 9F BA. 8F AA DE 08 29 09 AF 29 09

25

OSCO B9 8F A9 12 42 B7 42 A7 42 BE 02 AE D5 68 62 00
05DO F4 4B 32 68 12 00 F5 FF 01 32 68 12 00 F6 FF 01
OSEO 32 68 12 00 F8 FF 01 32 68 12 00 FA DE 00 68 62
05FO 00 F5 F8 68 00 2B CO 68 32 00 EA 68 62 00 F6 1B
0600 OB 52 an F4 AD 2B 4B 52 9D 74 BD 2D 68 62 00 F7
0610 CO 68 32 00 E4 68 62 00 F8 4B 52 9D F4 BD 68 62
0620 00 F9 OB AD 30 68 12 00 F7 68 62 00 FA 4B BD 30
0630 68 12 00 F9 68 62 01 00 DE 01 OB FA OF A8 B8 68
0640 62 01 01 1B FF 01 3A 68 12 01 01 9B BF 8B AF 68
0650 62 01 02 OF 2F E7 73 F8 FF 73 28 88 3A 68 12 01
0660 02 98 F9 60 73 F8 EF 73 F8 68 00 73 F8 FF 73 98
0670 FC 02 73 D4 68 32 00 DO 17 47 FB 55 32 68 12 01
0680 03 DE 00 68 62 01 03 47 BA 07 AA 1A OA FA 10 3A
0690 68 12 01 05 2A D4 68 32 01 OA 68 62 01 04 DE 02
06A0 D5 68 62 01 05 98 68 62 01 06 1A FF 01 3A 68 12
06BO 01 06 1A 1A E7 OA 73 2A OA 57 30 68 12 01 04 68
06C0 62 01 OA DE 01 68 62 01 OB 89 52 8A F3 3A 68 12
06DO 01 OC 99 52 9A F3 3A 68 12 01 OC 88 57 27 98 57
06E0 DE 02 D5 68 62 01 OC 49 FB 68 00 32 68 12 01 OD
06FO 18 30 68 12 01 OB 68 62 01 OD 09 FE 3B 68 12 01
0700 (E DE 00 68 62 01 OE F6 F6 F6 F6 F6 FE FC 68 12
0710 01 OF A3 68 62 01 OF 30 68 12 01 15 30 68 12 01
0720 14 30 68 12 01 14 30 68 12 01 13 30 68 12 01 13
0730 DE 00 30 68 12 01 12 49 19 19 68 62 01 10 FA OF
0740 68 62 01 11 19 FF 01 3A 68 12 01 11 30 68 12 01
0750 OB 68 62 01 12 49 30 68 12 01 10 68 62011318
0760 68 62 01 14 18 30 68 12 01 12 68 62 01 15 49 C2
0770 68 32 01 16 FF 01 C2 68 320117FF 01 C2 68 32
0780 01 18 FF 01 C2 68 32 01 1B DE 00 68 62 01 16 18
0790 CO 68 32 01 OB 68 62 01 17 19 09 52 88 F4 A8 29
07AO 49 19 52 98 74 B8 28 30 68 12 01 1A 68 62 01 18
07BO 49 52 98 F4 B8 68 62 01 19 49 A8 68 62 01 1A CO
07CO 68 32 01 OB 68 62 01 1B 49 B8 30 68 12 01 19 68
07D0 62 01 1F an 52 8C F4 AF 9D 52 9C 74 BF 95 5F 94
07E0 B5 1D 9F D5 68 62 01 20 46 AF E7 68 62 01 21 46
07F0 73 2F 8F 3A 68 12 01 21 D5 68 62 01 23 8D 73 9D
0800 73 8C 73 9C 73 8B 73 9B 73 30 68 12 01 25 68 62
0810 01 24 8A 73 9A 73 89 73 99 73 88 73 98 73 68 62
0820 01 25 D3 68 62 01 26 43 E2 F6 33 68 12 01 24 F6
0830 33 68 12 01 27 F6 33 68 12 01 23 F6 33 68 12 01
0840 28 CO CO 00 68 62 01 27 12 42 B8 42 A8 42 B9 42
0850 A9 42 BA 02 AA 30 68 12 01 25 68 62 01 28 12 42
0860 BB 42 AB 42 BC 42 AC 42 BD 02 AD 30 68 12 01 25
0870 68 62 00 DO DE 01 DE 04 17 07 68 62 00 D1 BB AB
0880 97 B8 87 A8 1A 68 62 00 D2 2B 2A 8B 3A 68 12 00
0890 D2 68 62 00 D3 9B AB E7 99 BC 89 AC 98 B7 88 A7
OBAO 68 62 00 D4 4C 17 F2 17 F3 3A 68 12 00 D6 2B 8B
08BO 3A 68 12 00 D4 89 73 99 73 F8 55 68 62 00 D5 57
08C0 27 DE 08 DE 02 D5 68 62 00 D6 E2 99 52 9A F3 32
0800 68 12 00 D8 68 62 00 D7 19 30 68 12 00 D3 68 62
OBEO 00 DB 89 52 8A F3 3A 68 12 00 D7 68 62 00 D9 2B
08FO 8B 32 68 12 00 D5 17 17 30 68 12 00 D9 00

26

A HARDWARE CLOCK FOR THE 1802
_ by J. swofford, 2302 N. Fairview Ave. Decater, Illinois, USA, 62526

Lalt apring I ordered an OKI real-time olook/oalendar to till a
need for time-keeping in my RLF II. My oirouit built around thia
I.C. is memory-mapped via 8255 PPI and allows aooeaa to time in
hours, minutea and seoondl and the date al well al the day-ot
week. Time oan be kept in either a 12 or 24 hour tormat and leap
year oompenaation il provided. My aystem has the 8255 looated
at FFOOH to FF03H. Unfortunately, the Netronioa monitor inter
terea with looationa beyond FDFFH, ao some ELF II ownera may wilh
to looate the 8255 elsewhere or, as I did, enable the Netronioa
monitor only tor FOOOH to FOFFH (aa it should have been, anyway).

•

8 ~_-,/,

A
I'\r--"'"

&1S5

PIGURB 1

1102...

.~A.us "'--~
Mii~--4I

~~-----4111

INTERFACING THi CLOCK
The data sheet trom OKI showa a auggelted arrangement using the
Intel 8255 PPI. Sinoe I already had a tew aparea, it seemed the
eaaiest route to take. The oapabilities ot the PPI are too ex
tensive to oover here 10 I will be oonoerned with only thoae aapeots
whioh arteot this applioation. Memory looationa FPOOH to PF03H
will be aaaum.d. All three ot the 8255 I/O porta are u.ed. The
PPI operate. here in mode 0 in two oonfigurations; one to read
trom the olook and one to write to the
olook (aee figure 1). Theae atatea are
oreated by writing 80H into looation }
PF03H tor olook WRITE and 90H for olock
RBAD. Theae byte. oontrol hOW the 8255
itselt operates. An 80H will allow port
A to be an output port (ports Band C
remain output ports tor both olook READ
and olook WRITE). Similarly, 90H allows
port A to input the data nibble trom ,the
olook data linea. Port B is uaed to pro
vide the olook addrea. nibble and port C
ia tor olook oontrol (aee table 1). Vhen the 8255 ia reset, all
24 bits (th~e 8 bit porta) normally float. In thia oirouit, R1
R16 will pull theae linea high. Thia would normally plaoe the olook
in a HOLD Itata, atopping the ttme inorement. Theretore, POO
(bit O-port 0) 1s inverted betore going to the ohip .eleot pin
on the olook. Thia removea all oontrol (inoluding HOLD) trom the

ct

clock and allows it to continue keeping time. Th. upp.r portion.
ot port. A and B (PA4-7 and P~-7) are not u.ed. P.14-7 i. tied
to ground through 10K re.istorl to avoid having to '.trip' th.m
ott in .ottware during clock READ•

.lDDRBSSING

----iitv

, ~IANT aOM.p

~.

Since I use other 8255. in my .ystem, the .chematic .how. a 74LS154
providing CS tor the clock'. 8255. U.ing this arrangement, 16
ditferent PPI. can be .elected yielding 48 8-bit I/O port.. Many
good method. ot high order addr.s. latching and chip ••lection
have appeared in Ip.o Facto. Thi. one work. tor me. Since you
may not have an interest in this expan.ion iel.a, you may wi.h to
use an alternate method of chip .el.ct which eliminate. the 74LS30,
74LS32, 74LS154 and 74LS374 (tigure 2). Out the trac. on the
N.tronic. Giant Board betw••n pin 8 on .113 and pin 16 on A10.
Run a lin. from .113 pin 8 to point ~ (chip .elect~••e clock
.ch.matic). A10 pin 16 .hould be tied high to di.abl. the ROM.
The 8255 will now have addre•••• POOOH to FOO3H. The D.mo program
vill run unmodifi.d with this arrang.m.nt. I have tried thi.-
it work.. It .hould be po••ibl. to plac. a .witch on the Giant

-, Board to .witch trom the monitor to the
clock and vice v.rsa. It you are using
Netronic.' Full BASIO, the only way to
into BASIC i. through the monitor. You

~\1f ,..-."C:-'-
'-I may want to d.velop the id.a in tigure 3
----~~o,' u.ing SF1# to .nabl. the olook ono. !lSIC

·"&lSS
hal been entered (I have not tri.cl thi.).

, Th. modular appearano. ot the addre.. and
FIGURE 2 ••l.ct cirouitry i. to empha.i•• the idea

of u.ing pre.ently available cirouitry you may already have in your
.y.tem. If you have the upper addre•• bit. already latoh.d from
.ame other project, try conn.cting tho.e lin•• to the 74LS30 at
point ®' eliminating the 74LS374. I should mention that the
Netronics 4K memory board ha. the.e addre•• bits already latch.d
and marked on the board itself. I have not tried using them, how
.ver. Note that CMOS was not u.ed. I have had no probl... using
TTL but you may wieh to u.e the 740 .erie., anyway.

28
THE CLOCK
The MSM5832 is basioally a digital watoh in a DIP paokage. Each
of the 13 digits available (HH MM 55 W MM DD YY) must be oalled
for one at a time. This is done by addressing the digit to be
read/written (don't contuse with the ELF address/data lines),
oommanding the olook and reading/writing the clock (see figure 4).
The HOLD line should not be high for more than one second in order
that the olook oan inorement. The demo program does not use HOLD
on READ due partly to this requirement. (see figure 5).

FIGURE 3

The FMO and D10 digits are special. The H10 digit oontains flags
for PM and 24 hour operation. The D10 digit contains a flag for
leap ye~r (table 2). The ±30 seoond adjust oauses 1 minute to be

added to the LSB of the minutes if seconds are 30 or more as the
seoonds are set to zero. If less than 30 seconds, only the s.conds

o

are affeoted. Battery backup is provided
by 2 alkaline penlight oells. Backup is
not required; it is recommended. It is
a pain to reload the clook every time the
computer has been powered down. Just ask
any TRS-80 model III owner. The very low
drain of the 5832 should give many months
(years?) of service. Time regulation is
through C1. Deorease C1 to speed the
olock; increase C1 to slow the olook.

cs
tU'faT e~'-S

oft/,. ("'M ''4 v, HAT. I_OM a~"«1»

SOFTWARE
The c100k demo was written for an ELF II using the Netronios video
board and the 8255 at FFOOH. In Cenker' s BA.SIC ver. 5, this program
uses about 1.5K of memory without HEMs. The program is easily

altered to run at any location by ehangdng line 60 ("Iff and "8'1

indioates hexidecimal in Quest BASIC). The olook READ did not use
HOLD sinoe BASIC tied up the olook too long and caused it to lose
time. Constant interrogation of the clock should be done in maohine
code. The time and date is updated on the CRT about every 4 seoonds.
A more frequent update can be aohieved by leaving out the unnecessary
statements and not calling for the date everytime. ~

29

D'J }.3. I
tl OAT~ /0
..~

:t)AWl "Uti

"")
MO~P
tEAl)...,."'"

~_"""" d1&T

COMMENTS
Information on obtaining parts is in order. The MSM5832 and cryatal
(32.768 Hz) is available form aeveral aources including Concord
Computer Products, 1971 So. State College, Anaheim, Ca. 92806 and
Digi-Key, Hiway 32 South, P.O. Box 677, Thief River Falls, Mo.
56701. Both suppliers provide the data aheet. The 8255 and other
ICs are available from just about anywhere. The trimmer (C1) is
sold by Jameco, 1355 Shoreway Road, Belmont, Ca. 94002. The
components can be mounted on a Radio Shack perf boar-d pIN 276-1395.
For those of us who aren't made of money, here
are a couple of suggestions. Don't throw away
that digital watch. You may be able to use the
small crystal in it like I did (32.768Hz). As
for the other parts, try a hamfest. I have
saved millions(?} by doing my parts proourement
at hamrests. Ask any amateur radio operator for
information on where and when.

"O~D/Sill'Cf
G-L.oc..K

,. I SO 'j$
IIL Ann?

~uct\

~',"I'"
u ...o-,,£
S£Lec.tl

~.......... "'Cl'-~

FIGURE 5

One aspect of the 5832 which I have FIGURE 4
not mentioned is the interrupt signals (figure 6).
~ile I have not made use of them in this circuit,
there are many ways to utilize the se pulses which, I
hope, others will find. For example, the 1024 Hz
and 1 Hz could be combined for a software controlled
beeper (aee figure 7) while the clock is not being
accessed. The 60 Hz pulse could be used for a time
base in an UPS (Uninterruptable Power Supply) system.
The 1 Hz could be used to flash lights. I suppoae
you could even use these signals for interrupts. What
about the clock? How about this:

*Interrupt driven timer
*Countdown timer with a HOLD capability
*Event control (BSR control system)
~I-Data timestamping

The design is relatively simple, the applications are
many. From control to display, this clock can be a
useful addition to any system.

Ref. OKI data sheet, Maroh 1980
Intel data manual, Ootober 1977, pp 6-223 to 6-240

30

TABLE 1 demo program variables
term hex value decimal value

A

B

C

D

E

F

G

H

FFOO

FF01

FF02
FF03

90
20
50
80

65280
65281
65282
65283

144
32
80

128

summary
used in program for:

ELF memory addreas-port A (clk II.
ELF memory addreas-port B (clk adr~

ELF memory address-port C (clk contl)

ELF memory addreaa-8255 contl port
control for 8255 (A=input·)
port C-enable clk SELECT!READ
port C-enable clk SEIECT/HOLD/WRITE

8255 oontrol-ports A,B,C are outputs
==-=

TABLE 2 clock functions
clock clock
data address

~se IS8

aeconds lsb 0000

seconds msb 0001

minutes lab 0010

minutes msb 0011

hours lsb 0100

hours msb 0101

week 0110

day lsb 0111

day msb 1000

month lsb 1001

month msb 1010

year lab 1011

year msb 1100

oomments
seoonds are automatioally set to zero
when clk is written into

bit 2 h1gh=PM bit 3 high=24 hour form"
range 0-6 (O=Sunday)

bit 2=leap year

==
S'31

'1,1.00 " DJ
'/.0 M&.- o:a.
,11& - OJ

,O:l1.4 H&. pC!)

N [

Al
410.

~I
L. MO\o'D
H ttt.AV

""tl'~" ,~'" l'

"0'-1) t1~,. ,. ~~,.""1 'ioCL.UT A~." NlIn .It It"""
1'OA~\...'" ·'NT. 1"Vl"S.S

FIGURE 6

Stu

FIGURE 7

31

10 REMlHt*****************'******
20 REM**** CLOCK DEMO *****

• 30 REMrHt J. SWOFFORD 11-7-81 **
40 REM*************************
50 REM*** SET MEMOR Y POINTERS *
60 A~00:B=@FF01 :C=@FF02:D~FF03

70 REH*** DATA USED FOR CONTROL

80 E=#90:H=#80:REM 8255 CONTROL BYTES

90 F=#20:G=H50:REM CLOCK CONTROL BYTES

100 DIM T(13}

110 T$=" ":REM INITIALIZE T$

120 B$="N" :REM INITIALIZE B$

130 REM

140 REM*** INPUT TIME/DATE ***
150 CLS

160 INPUT "CHANGE TIMEIDATE--Y OR N" A$

1 70 IF A$="N" GOTO 450

180 IF A$<>"Y" GOTO 160

190 PRINT "INPUT TIME IN THIS FORMAT"

200 PRINT" H,H,M,M"

210 INPUT T(6),T(5},T(4},T(3}

220 T(2}=0:T(1 }=O:REM SECONDS ARE SET TO ZERO BY CLK, ANWAY

230 INPUT "24 HOUR FORMAT--Y/N" B$

240 IF B$="Y" T(6)=T(6)+#08:GOTO 270:REM BIT 3 INDICATES 24 HR FORMAT

250 INPUT "(A)M OR (P)M" C$

260 IF C$="p" T(6}=T(6)+#04:REM SET BIT 2 FOR PM

270 REM

280 REM

290 PRINT "INPUT DATE IN THIS FORMAT"

300 PRINT" W,M,M,D,D,Y,Y"

310 INPUT T (7) , T (11) , T (10) ,T (9) ,T (8) , T (1 3) , T (12)

320 T(7)=T(7}-1 :REM RANGE FOR DAY-OF-wEEK IS 0-6 - (SUNDAY-SATURDAY)

330 INPUT "LEAP YEAR--Y OR N" D$

340 IF D$="Y" T(9}=T(9)+#04:REM BIT 2 FOR LEAP YEAR

350 REM

360 INPUT "PRESS RETURN TO ENTER TIMEIDATE" E$:REM ENTER TIME ON QUEUE

370 REM

..

32

380 POKE (D,H) :REM SET UP 8255-PORTS A, B, C AS OUTPUTS

390 POKE (C,G) :REM PORT C (CLK CONTROL) CLOCK WRITE

400 REM

410 FOR 1=1 TO 13

420 POKE (B, 1-1) :REM SET CLK ADDRESS LINES

430 POKE (A,T(I»:REM SHOVE T(I) INTO CLOCK

440 NEXT I

~50 POKE (D,E):REM MAKE PORT A AN INPUT, PORTS B & C ARE OUTPUTS

460 POKE (C,F) :REM CLOCK READ

470 REM .

480 CLS

490 FOR 1=1 TO 7

500 READ A${ I) :REM USED FOR DAY-OF-wEEK

510 NEXT I

520 REM

530 PRINT CHR$(4); :REM CURSOR HOME

540 REM

550 FOR 1=1 TO 13

560 POKE (B,I-1):REM CLOCK ADDRESS LINES

570 T(I)=PEEK(A):REM LOAD T{I)

580 NEXT I

590 T$=" AM" :REM T$ DEFAULT

600 IF INT(T(6)/#Q2»0 T$=" PM":REM IF BIT 1 THEN PM

610 IF INT{T(6)/#08»0 T$=" HRS":REM IF BIT 3 THEN 24 HR FORMAT

620 IF T(6»2 IF T(6)<7 T(6)=T{6)-#04:REM STRIP OF BIT 2

630 IF T(6»7 T(6)=T(6)-#08:REM STRIP OFF BIT 3

640 IF T(9»3 T(9)=T(9)-#04:REM STRIP OFF BIT 2

650 PRINT "TIME ";T(6);T(5);":";T(4);T(3);":";T(2);T{1);

660 PRINT T$

670 PRINT A$(T (7)+1);

680 PRINT TAB(10);T{11);T{10);"/";T{9);T(8);"/";T(13);T(12)

690 GOTO 530 :REM GO UPDATE TIME AND DATE FOR DISPLAY

700 DATA "SUNDAY", "MONDAY", "TUESDAY", ''WEDNESDAY'', "THURSDAY"

71 0 DATA "FRIDAY", "SATURDAY"

720 END

e e

c., s-~rf

-=- 11'l2'JQ
100-4. - c.R..

'-~-.L+"-" -t-c.ez. =T c....
•"'1.~ \ "'FD

~
.-or-

"3
1I"\f'D

btoJD rl _', ~ 1t

~cs

10K

L ?PCf# 1'+ 1 I

~\ J<"> ?«~ 1-,VJm ~?<~> ~«'< <~;.> ;.?~~ ,,,
<'<?~> ~?<? ?"<l? »» 0 sw

P:7 ~ y~ I ~fW\S632.
• 40 I,s
• , " D3 "'0" ,.,• 2 T -~T

3 ID • ~

M_ ~ I~ ~ bd~
.t> 1lM'N. __

)C.,. C2. l2.0 r f
~3 12. J 7 "'3 TEST'"

• 0 !I •

~ Ie 4 Afj
PC4 13 I A MOlJ)
PC.5 1% lUAD
~ II ~~

'r
~

8255

" l'-... 2- 3S !ESET

S MiD
I"'MIR.

1:17

·····

e
EJ-JD

.D_

I"\t.1/IIlA_

-r-

-L-.
w
w

'Tf'f\

7
'3e
10
7

Ii

6Nf>

61S5 2,6

~~2. :
2D

:~
Z'f

Vc.c:,

Zi~~ib+
~4L53Z.
14f.L5 '54

.
"'-

.'\

C"" \p sea.~c:.T,

II I I I::t~

HIGH O~lt ADP~ESS L.ATC14

.MA_

"'''1

1802 R£AL-TI~ <:.4QCK /CALE.NDAR

0000

34
***********************~ r**************************************
:***********************~*************************************115

* POINT PLOTTER - 6S47 SEMIGRAPHIC-SIX MODE (64 X 4S) *
* ** CREATED: 9 NOV 1981 REV. 0.02 13 NOV 81 *
* **
* ** ENTRY: PROGRAM LABEL IS JUMPLOT (SOURCE) *
* OBJCODE«« PLOTOUT *
* ASM. LISTING « PLOTLIST *
* AUTHOR: JORGEN MUNCK *
* ** DESCRIPTION: THESE ROUTINES WERE ,WRITTEN TO BE USED *
* WITH TOM PITTMAN'S TINY BASIC USR FUNCTION. *
* C = USR(4195) CLEAR SCREEN *
* P = USR(4096,X,Y) PLOT POINT *
* WHERE: X = 0 TO +63, Y = 0 TO 47 *
* SCREEN LOCATION = 32*Y/3 + X/2 + EOOOH (HEX) *
* *

------- EGUATES ---
ZEROS EGU 0

*---~
0000
1000 SA
1001 BA
1002 FSOO
1004 AA
1005 FE
1006 9A
1.007 FF03
1009 3BOE
100B lA
100C 3007
100E FC03
1010 BS
1011 SA
1012 FE
1013 FE
1014 FE
1015 FE
1016 FE
1017 AA
1018 F8EO
lOlA 3B1E
101C 7COO
101E BA
101F 88

INITLZ

YCOOR
SUBT

GUOTY

MULT

HOMEHI
XCOOR

ORG
GLO
PHI
LDI
PLO
SHL
GHI
SMI
BNF
INC
BR
ADI
PHI
GLO
SHL
SHL
SHL
SHL
SHL
PLO
LDI
BNF
ADCI
PHI
GLO

1000H
A
A
ZEROS
A

A
.03
GUOTY
A
SUBT
.03
S
A

A
lEO
HOMEHI
ZEROS
A
8

D (-- ARG3(Y), RA.1 (-- Yi
o - 47 PERMISSIBLE

CLEAR OUT RA.O FOR CT OF Y/3

SHIFT '0' INTO DATA FLAG
GET Y INTO ACCUMULATOR
SUBTRACT 3; DF = 0 IF BORROW
IF BORROW, THEN GUOTIENT DONE

ELSE, INCR REG A FOR Y/3
QUOTIENT COUNT

FIX FOR LAST SUBTRACT
AND STORE IN RS. 1

GET Y/3 FROM RA.O
MULTIPLY

BY 32

STORE (32 X Y/3) IN RA.O
SCREEN HOME AT 4tEOOO
IF DF = 0, 32 X Y/3 IS < 9 BITS

ADD OVERFLOW TO LSB OF RA. 1~
SAVE CURSOR HIGH PORTION ~

GET X (ARG 2)i 0-63 PERMISSIBLE

1020 F6
"1 52
~ F800
1024 7E
1025 A8
1026 8A
1027 F1
1028 AA
1029 98
102A FE
102B B8
102C 88
102D 76
102E 98
102F 7COO
1031 3247
1033 FBOl
1035 324A
1037 Fa03
1039 324D
103B FaOl
103D 3250
103F FB07
1041 3253
1043 FaOl
1045 3256
1047 F820
~C8
l""A F810
104C C8
104D F808
104F C8
1050 F804
1052 C8
1053 F802
1055 C8
1056 F801
1058 52
1059 OA
105A Fl
105B 5A
105C D5

QUOTX

SCREEN
CHROW

CHCOL

SIX

FIVE

FOUR

THREE

TWO

ONE

SHR
STR
LDt
SHLC
PLO
GLO
OR
PLO
GHI
SHL
PHI
GLO
SHRC
GHI
ADCI
az
XRI
BZ
XRI
az
XRI
az
XRI
BZ
XRI
az
LDI
LSKP
LDI
LSKP
LDI
LSKP
LDI
LSKP
LDI
LSKP
LDI
STR
LDN
OR
STR
SEP

35

2
ZEROS

8
A

A
8

8
8

8
ZEROS
SIX
101
FIVE
103
FOUR
101
THREE
107
TWO
101
ONE
120

tl=10

108

#04

102

101
2
A

A
5

PUSH REMAINDER OF X INTO DF
SAVE X/2

CLEAR ACCUMULATOR
PUSH DF INTO ACCUM
AND SAVE REMAINDER OF X/2

GET 32 X Y/3
COMBINE WITH X/2

SCREEN ADDRESS COMPLETE
GET Y/3 REMAINDER (ROW)

MULTIPLY BY 2
SAVE

GET REMAINDER FROM X/2
DF = 1 IF REMAINDER WAS A ONE

GET ROW INFO INTO ACCUM
ADD CARRY

TEST FOR POSITION OF PIXEL

THESE ARE HEXADECIMAL WEIGHTING
FOR PIXEL POSITIONING

STORE IN MEMORY FOR 'OR'
GET OLD PIXEL

'OR' IN NEW PIXEL
AND RESTORE TO VDG MEMORY

RETURN

105D
1063
1065
1066
1068
1069
106A
106C

~.
1070

F8El
BA
F8FF
AA
EA
F800
73
9A
FBDB
3A6A

SCRNCLR

CLEAR

ORG
LDI
PHI
LDI
PLO
SEX
LDX
STXD
GHI
XRI
BNZ

1063H
IEl
A
*FF
A
A
ZEROS

A
ID'
CLEAR

LOAD SCREEN BOTTOM - HI BYTE

AND LO aYTE

SET X FOR CLEARING
LOAD 'ZEROS' FOR

BLACK BACKGROUND
GET HI ADDR

TO TEST IF DONE

1072 E2
1073 D5

1074

36

SEX
SEP

END

RESTORE X = 2
AND RETURN

y ~O$IT 1011I

1.1HIE..
-------rn
-------FIi

I
I I
, I

GHAM'TIE1l
"PDSITIO/'i

I. Lol NE. • • .;. QUOTIENT.

a. CHA'R ACTER, "'POSITiON: ! gUOTI£~T.

'1. C.OL.UMN" OF CHA"RACT~. f 'REMAIN't?E1§.

oS •"&IT ~OSlTl ON:: ("ROW") -It 2 ... COLUMN ..

o
~------ ~I

"1=

2~ Isf 0

37

SPRECH - ASIMPLE SOFTWARE VOICE SYNTHESIZER

- by P. G. Lteschesk t III, 4510 Duval St., #203, Aust;n, Texas, 78751

SPRECH is an output software package which can give the 1802 a voice.
It basically accepts an ASCII numeric character in RF.1 or a binary nibble (least
significant) from the accumulator D, and synthesizes the sound of that hexidigit.
It is mainly intended as a software novelty; however, it may be quite useful in
conjunction with a monitor.

SPRECH is basically a digital voice recorder. Its algorithm is basically
similar to that used by Bobby R. Lewis in QUESTDATA (Vol. 2,#2,p. 1). The RECORD
routine is used to generate the raw voice data. After manipulation and rearrange
ment of this data, the TEST and INTERFACE routine can be used to regenerate the
sounds of the hexidigits: 0,1,2,3 •••F. The TALK routine is the basic subroutine
which regenerates the sound from the data in memory. TALK performs the inverse
function of RECORD.

The most difficult part of this package to implement is the voice digital
ization and the voice data manipulation. After this task, SPRECH should be quite
simple to use. First, this software must be entered into the 1802 computer. It
is assumed that this package will be executed from a monitor which sets R2 as
stack pointer, R3 as program counter, and uses R4 and R5 for SCRT Call and Return
registers. Some form of audio device such as a tape recorder or an amplifier
with microphone must have its output properly connected to the EF3 line. With this
the RECORD routine is executed at location 005B. After pushing the I-key, the
numbers between 0 and F are quickly but clearly pronounced into the microphone.
The recording period should last for about twenty (20) seconds. After this, the
memory between addresses 0100 and 4000 is examined. If the amplifier is not too
noisy, the memory should be filled with primarily zeros and occasional non-zero
patches. These non-zero patches or blocks of memory are merely the digitalized
sound of each number. The first block should represent the sound for zero, while
the second block should represent the sound of one and so on. The data block
for the sound of zero is moved to memory locations 0100-02FF, while the data for
one is moved to 0300-04FF, and so on until the number F. The voice data will occupy
8K of memory since the sound for each number can be contained within two pages of
memory. After this task, the memory contents between locations 0000 and 20FF
should be saved on tape for safe keepings.

Now with this, the voice synthesieer can be used. For hardware, an amplifier
with speaker should have its input connected to the Q line (see figure 1). To
test the program and data, one should execute the TEST routine at location 0000.
With this, one can enter a number on the hexpad. After pressing the I-key, the
sound of that number will be regenerated. This routine will allow one to easily
check the sound quality of each number.

In order to use SPRECH in conjunction with a monitor, one should patch the
monitor's output routine so that the INTERFACE routine will be called at location
OOOA. The routine assumes that the output ASCII byte iR contained in RF.1~· Also

38

it is assumed that R3 is the program counter; R2 is the stack pointer and SCRT
is used. The routine will ignore ASCII characters which are not considered to be
numeric.

In its initial testing, the package could reproduce the sound with fair
quality. Some problems are encountered with B,C,D and E. These numbers tend
to sound the same. This flaw could be the result of a poor audio system. The
audio system used in the initial test was a tape recorder connected to the tape
I/O ports of the computer. A filtering system as described by James C. Anderson
in BYTE (Vol. 6,#2,p. 36) may improve the sound quality. It is hoped that this
voice synthesizer package can be put to some practical use.

Register Assignments:

R2 - Stack Pointer
R3 - Program Counter
R4 - SCRT Call register
R5 - SCRT Return register
R8 - 8-bit Counter
R9 - Data Memory pointer
RF.1 - ASCII Output code pass

Basic Hardware Setup:

Amplifier

Tape
Input
(EF3)

1802
Elf

Tape
Output
(Q)

Amplifier

Speaker

, * 39
* SPRECH * Phillip B. Liescheski III * 10-16-81

** TEST - Voice Tester

*
0000: 3F 00

02: 37 02
6C
D4 00 32
30 00

*

I-key wait delay

Get number from Hexpad (Input 4)
Call TALK
Do it again

* INTERFACE - Monitor Interface

*
OOOA: 9F

FF 30
3B 25
FF OA
33 19
FC OA

15: D4 00 32
D5

19: FF 07
3B 25
FF 06
33 25
FC 10
30 15

25: F8 FF
27: C4 C4

C4 C4
C4 C4
FF 01
3A 27
D5

Get ASCII character from RF.l
Check for Non-numeric ASCII code

Check for Numeric ASCII code: 0-9
Convert ASCII to binary number
Call TALK
Return to monitor
Continue to check for Non-numeric ASCII code

Check for Numeric ASCII code: .A-F
Convert ASCII code to a binary number
Jump to TALK
Momentary Delay for Non-numeric ASCII code
Delay Loop

Bump Delay Counter

Return to Monitor

*
* TALK - A Routine that regenerates sound from voice data

*
0032: FA OF

FE
FC 01
B9
FC 02
73
"'8 00
A9

3E: F8 08
A8
49
52

43: 99
60
F3
C6
D5
C4

49: 22
FO
F6
33 4F
7A

4F: 3B 52

Mask off upper nibble of D
Calculate page address of voice data block

which represents the number in D
Store Page number in R9
Calculate & Store end address on stack

Finish the voice block address in K9

Set up R8 as 8-bit counter

Get a byte from voice block using R9 as memory pointer
Store it on stack
Cheek if finished with voice block

Skip return if not finished
Return
Fi!! in the skip gap
Sump stack pointer(assume X=2)
Get voice byte from stack
Shift right
Toggle Q according to DF bit
Q-1 if DF=1

7B
52: 52

28
88
32 3E
C4 C4
30 43

40
Q=O if DF=O
Push processed voice byte back onto stack
Bump 8-bit counter •
Check if finished with the voice byte
If finished with byte, then fetch the next voice byte from memory
Keep timing smooth
If not, continue as usual with the voice byte

** RECORD - A Routine to produce the voice data

*
005B: F8 00

A9
F8 01
B9

61: 3F 61
63: 37 63
65: F8 08 1\'6

19
69: 99

FB 40
C6
00 00

6F: 49
F6

71: 3E 75
F9 80

75: 36 79
F9 00

79: 29
59
28
88
32 65
88 A8
30 69

*
*
*

Start recording of voice on page one of memory
Set up R9 as memory pointer

Wait for I-key depression

Set up R8 as 8-bit counter
Bump memory pointer R9
Check if finished with recording
Last recording page of memory is 40
Skip halt if not finished
Halt!
Get byte from memory
Shift right
Check the EF3 line
If EF3=1, then set most significant bit of D

If EF3=0, then reset most significant bit of D
Bump memory pointer
Store byte back in memory for safe keepings
Bump 8-bit counter
Check if finished with this byte
If so, start working on a new byte
Keep timing smooth
If not, continue as usual

