
jrios777 Sixto Josue Rios
xalicex1 Alice Cheng
tadrip Tadrill Perry
jli93 Jessica Li
cho1993 Michelle Cho
jhzhu10 Junhao (Ian) Zhu
kkbrandt Kaleo Brandt
thaond Thao Nguyen Dang

Architectural Design

System Architecture

Major Modules/Classes
• Account (Abstraction)

o User account object that represents a single user account of the application. It stores all
the required/optional information of the user (such as name, email, gender, etc)

• AccountManager (Utility Class)
o Has the methods that will be used to manage user's current accounts (editing, adding,

deleting information).
o Acts between the activity classes that listen to events and the Database that stores all of

the data
• DatabaseManager (Utility Class)

o Has the methods that will be used to manage the data and information needed for this
application. Allows other classes to look up, edit, add information to the database.

• MealPlan (Abstraction)
o An object that represents a single MealPlan that exists in the application. This stores all

of the information of the event (data, time, host, etc.).
• MealPlanManager (Utility Class)

o Has the methods that will be used to manage the MealPlans. This allows MealPlans to be
changed or updated or deleted.

User Interaction Classes

• CreateMealPlanActivity
o Listens to see if the user wants to create a new MealPlan and notifies the

MealPlanManager to carry out the appropriate work to add the meal plan for the user.
• JoinMealPlanActivity

o Listens to see if the user wants to join an exisiting meal plan. It notifies the
MealPlanManager to carry out the appropriate work to join the meal plan.

• SignInActivity
o Listens to see if the user needs to sign in. It notifies the AccountManager to verify any

information to allow the user to sign in to their account with all their information and
MealPlans.

• SignUpActivity

o Listens to see if the user does not have an existing account and notifies the
AccountManager to create a new Account that interacts with the DatabaseManager to
add the new information to the application.

• ManageAccountFragment
o Listens to see if the user wants to update any of their information and notifies the

AccountManager to carry out the respective events.
• HomeFragment

o Listens to the interaction of user and the Home Page of the application to allow different
views to appear. This notifies the UI to switch tabs when necessary and the
DatabaseManager to retrieve the appropriate data to be displayed to the user.

• MyMealFragment
o Displays all the lists of meal plans that user is hosting or joining
o Listens to add meal plan button to start CreateMealPlanActivity

• SettingsActivity (Extra feature)
o Listens to see if the user decides to change/update the settings.

• HelpActivity (Extra feature)
o Listens to see if the user clicks on a help button that will display information about the

application to the user.

Data

• Our system stores user information such as name, gender, year, email, and phone, account
information such as email and password, and meal plan information, such as all the meal plans
created and their hosts, food, date, time, location, attendees, and description. For account
authentication we'll be using Amazon's Android SDK to connect to Amazon Web Services'
(AWS) Cognito/Sync service and for the databases storing user and meal plan information we'll
be using Java's JDBC library to talk to AWS' RDS databases. The schema is as follows:

o Account(id, name, gender, year, email, activated, validationCode, major)
o Attending(planID, attendeeID)
o MealPlan(planID, hostID, food, location, dateTime, description)

Alternative Designs

• One alternative design for displaying the Meal plans' feeds/homepage, user's current meal
plans, and user's account information was to have separate activities instead of one activity with
fragment tabs. However, we chose to go with tabs to allow the user a more efficient, quick way
of maneuvering between frequent visited sections of the application.

o Pros of alternative: It can potentially simplify the user interface because there would not
be any tabs showing and it is easier to implement.

o Cons of alternative: It usually does not allow the client to switch between different
sections in one click.

o Pros of chosen design: It helps the user switch from screen to screen in an efficient
manner and gives them the freedom to choose which screen they want to look at.

o Cons of chosen design: More difficult to implement.
• Another alternative design was to store and query all information from the database when

needed from whatever class. The design we chose was to store in memory account information
and query information, providing a refresh action to reload data up to date.

o Pro of alternative: this would reduce coupling between classes and whatever the query
returns will be up to date.

o Con of alternative: Expensive and slower to receive information. Needs to load
dynamically from database server.

o Pro of chosen design: easy and fast access to information.
o Con of chosen design: More dependencies. Chance of returning out of date information.

Assumptions

• User has internet connection for application to function properly
• User will need to have an account to be able to use the application
• User must have UW (CSE) netID

Diagrams

UML Class Diagram:

A second view at our system from an MVC design:

Sequence Diagram for Creating a Meal Plan

Sequence Diagram for Joining a Meal Plan

Process

Risk Assessment
The most serious risk is if the integration between the back-end and front-end components of the
system fails. The likelihood of this occurring is high since the teams working on the front-end and
back-end are different. Therefore, the possibility of a bug or problem occurring substantially increases.
The impact of this risk can range from low to high depending on what part of the system fails. If the
integration completely fails, then the app will not work. If there is a very small integration error, then the
error could go undiscovered. In order to minimize this risk, we've assigned the integration team to
facilitate communication. Additionally, the testing team will carry out black box experiments concerning
everything from documentation to app usability in order to detect whether this problem occurs. If a
problem is detected, it will be posted on the bug issue tracker, where a team member will be delegated
to fix the problem.

Another major risk is the failing to provide and update information instantaneously. The likelihood of this
occurring is high, because many group members have not worked with networking before.
Furthermore, a bug may occur if the device using the app fails to connect to the Internet in the time
between when the user submits their data and the time it reaches the server. The impact of this risk
may also range from low to high, depending on how often the failure occurs. We know these estimates
are true because in an earlier group meeting, we proposed an idea of how to handle the networking,
but then discovered many possible places where a bug may be introduced within our plan. In order to
reduce the likelihood of this risk, a few group members will be required to read guides on networking
and we thoroughly discussed how we plan to approach this problem in our group meeting. We have
also decided to try to run network operations on a separate thread from the user interface as
recommended by the Android development guide. In order to discover potential bugs, the testing team
will develop black box tests that attempt to create and retrieve information when there is no Internet
connection or the Internet connection breaks down in the middle of the app. To mitigate this risk, we
plan to test for networking bugs early, so that we have time to find a solution for the bug.

Implementing the software as an Android app is another major risk since most group members have
no experience with Android development or SQL. Therefore, there is a high possibility that the software
may fail to work due to lack of knowledge about how to implement the app. This would highly impact the
project if it occurs. For this, all members have already done an Android tutorial and will be required to
read guides on Android development. If this problem occurs, it will be very apparent, so we should not
need to do anything additional to detect the problem. To mitigate the impact of this risk, we may need to
end up simplifying the interface or functionality of our app.

Most members have also not used the external software and libraries before, so there is also a high
possibility that the software may fail to work due to not knowing how to use the external software. For
example, we have considered using external software to manage login information to make our
database more secure. The impact of failing this software is medium, because there are many
alternative software products that implement this functionality. However, our database may be at risk to
SQL injection or other unsavory practices. In order to reduce this risk, a few group members will be
delegated to do related tutorials for the external software. The testing team will run black-box tests to
check whether the functionality of the external software works, but we will not be able to detect any
internal bugs within the external software. If external software fails for login, we can attempt to
implement our own login database using SQL.

Another risk which was slightly mentioned in the previous one is the possibility that our database and
network will not be secure. The likelihood of this occurring is very high, because our group members
have limited knowledge about security. The impact of this is low regarding to the completion of this
project since an unsecure app still works, but would have an extremely high impact if this software
becomes available to the public. In order to reduce the likelihood of this occurring, a few group
members will be required to read guides on security. We will not be able to detect whether this problem
occurs, but we will know that it is always likely that our database and network are not very secure. In
order to mitigate this risk, we will try use reputable external software for private account information,
and hope that people who created them have a strong knowledge in security. We will also limit user
input by preventing them from using symbols that may cause SQL injections.

Project Schedule

Week -
Group goals

Back End - Alice and
Josue

Front End - Jessica
and Thao

Integration - Ian
and Michelle

Testing - Kaleo
and Tad

4/27 - Zero
feature
release:
Login
System
complete
5/1 - due

Alice: Implement
Account login/signup
methods in
DBManager
Josue: Setup the
AWS instances
/databases needed

Jessica: Implement
MainActivity &
MyAccountFragment
Thao: Implement
LoginActivity &
SignUpActivity

Michelle:
Implement
Account
Ian: Implement
core
AccountManager
methods

Tad: Write black
box tests for
Account and
AccountManager.
Kaleo: Write
UI/Integration tests
for signing up,
logging in & logging
out

5/4 -
Beta
Release:
MealPlan
System
complete

5/8 - due

Alice: Implement
insert and remove for
DBManager.
Josue: Setup tables
in database and
implement query

Jessica: Implement
MyPlansFragment &
HomeFragment
Thao: Implement
CreatePlanActivity &
PlanInfoActivity

Michelle:
Implement
MealPlan
Ian: Implement
core
MealPlanManager
methods

Tad: Write black
box tests for
MealPlan and
MealPlanManager.
Kaleo: Write
UI/Integration tests
for creating meal
plan, joining meal
plan, & deleting
meal plan

5/11 -
Stretch
Feature:
Implement
account
verification
and forgot
password
validation

Alice: Implement
DBManager
methods needed for
verifying accounts
and validating
forgotten password
codes
Josue: Setup the
any necessary tools
to complete the back
end for the feature

Jessica: Design and
implement the user
interface for account
verification
Thao: Design and
implement the user
interface for forgotten
password codes

Michelle:
Implement
AccountManager
methods needed
for account
validation
Ian: Implement
AccountManager
methods needed
for forgotten
password recovery

Tad: Write tests for
forgotten
passwords

Kaleo: Write tests
for account
verification

5/18 – Alice: Research and Jessica: Design and Michelle: Tad: Write

Feature-
Complete
Release:
Stretch
Feature:
Push
Notification
Services

5/22 - due

implement how to
use Amazon SNS
services for push
notifications.
Josue:
Setup necessary
settings on AWS to
enable push
notifications

implement the
notification received
in the notification bar
Thao: Design the
color scheme and
app icon for the app

Implement the
necessary data
abstractions to
facilitate push
notifications
Ian: Implement
any architectural
design changes in
order to promote
modularity

integration tests for
push notifications

Kaleo: Write a
system test that
simulates the
usage of a user
during a session

5/25 – Recovery week: Fix any issues, catch up

6/1 –
Prepare for
Presentation

Alice: Presentation
Prep
Josue: Presentation
Prep

Jessica:
Presentation Prep
Thao: Presentation
Prep

Michelle:
Presentation Prep
Ian: Presentation
Prep

Tad: Presentation
Prep
Kaleo:
Presentation Prep

Team Structure
Josue will be the project manager because he is the only one with Android development experience.
The roles of all members are to work on their assigned weekly tasks in pairs and collectively contribute
to the group assignments. The weekly tasks are divided into four teams:

• Front End
o Members: Jessica and Thao
o Responsibility: Designing and implementing user interfaces and interaction activities.

• Back End
o Members: Alice and Josue
o Responsibility: Setting up, managing, and connecting to the AWS Cognito service and

RDS database service.
• Integration

o Members: Michelle and Ian
o Responsibility: Providing data abstractions needed to promote modularity and facilitating

communication between the front end and back end.
• Testing

o Members: Tad and Kaleo
o Responsibility: Writing black box tests to ensure proper documentation, integration/UI

tests to ensure functionality, and system tests to ensure system behavior.

Group meetings will be held every Tuesday 9:30~10:30 and Friday 3:30~4:30 to coordinate efforts and
resolve issues. The main outline of the weekly status reports will be discussed on Tuesday meetings,
where one member of the group will be delegated with the responsibility of compiling the report. The
final report will be uploaded into the GitLab project repository for final inspection, before being turned in.
Our main method of communication outside of the weekly meetings will be through the Telegram app,
Google docs, and Gitlab, which allow group discussions, issue tracking, and status reports.

Test Plan
We will be using unit testing to test each class as it's written. The authors of each class will write white-
box tests for that class. In addition, the testing team will be writing weekly black-box unit tests for the
classes to ensure that they follow the specs. All of our tests will be run with continuous integration to
detect integration errors as they appear. We will be using Cruise Control to run builds that run as
members and parts of the system.

To test the system and its integration the testing group will come up with black box tests involving
multiple classes as they would interact in our system. For instance, we will need to test that network
failures provide a dialogue with a helpful error message. We will also need to test that general use
cases work as expected, such as login/logout and creating/ deleting/joining meal plans. Some of these
tests will need to be simulated programmatically, such as network failures. The system will also be
tested by using the MeetAGenius application on a Genymotion emulator on screens of varying sizes
as well as physical mobile devices. This makes sure that the UI is integrated correctly and all buttons
and interactions seem to do what they are supposed to. The system testing will be done every week
during meetings and written by the testing team between meetings.

To test how intuitive our interface is and the simplicity of our program we will ask people to try out our
UI and see what they say. Since the team has extensive knowledge of the system it would help to have
someone else chime in on the ease-of-use of our application. These interactions with potential users
would need to happen at least once after we come up with a complete GUI.

To be sure that our testing is adequate, we will enforce strict testing protocols for each team to
minimize bugs and ensure system reliability, such as testing before pushing and adding regression
tests. Teams will be required to write detailed JavaDoc comments before pushes to ensure ease of
testing. Finally, we will use GitLab's issue tracker to track bugs and delegate fixing responsibilities.

Documentation Plan
When users set up new accounts, we will provide a user's guide integrated in the user interface,
demonstrating how to use the app. As for external documents, we will write out an online user manual
consisting of two sections. The beginner section will include basic functionality while the advanced
section will include descriptions of additional features. Moreover, we could also create a promotional
video to serve as a user guide and an advertisement if there is remaining time.

Coding Style Guidelines
Since this app will be developed for the Android platform, we have decided to use the "Android's Code
Style for Contributors" located at URL: http://source.android.com/source/code-style.html as the coding
style guideline for Java. In order to enforce these guidelines, members will be required to read the
guideline and adhere by them. Each week we will have everyone briefly look at each other's code to
ensure coding style is consistent with the guidelines. Before turning in the project, there will be a group
meeting to review the entire project for proper coding style.

