UNIA EUROPEJSKA * Xk
KAPITAL LUDZKI EUROPEISKI [N
NARODOWA STRATEGIA SPOINOSCI FUNDUSZ SPOLECZNY i + o

Politechnika Gda nska
Wydziat Elektrotechniki i Automatyki

PROGRAMMABLE CONTROLLERS

Part 1

Ireneusz Moso n

Gdansk, 2010
Publikacja jest dystrybuowana bezptatnie

Materiat zostat przygotowany w zwi gzku z realizacj g projektu pt. ,Zamawianie
ksztalcenia na kierunkach technicznych, matematyczn ych i przyrodniczych —
pilota 2’ wspotfinansowanego ze srodkdw Unii Europejskiej w ramach
Europejskiego Funduszu Spotecznego
Nr umowy: 46/DSW/4.1.2/2008 — zadanie 018240 w okre sie od 21.08.2008 — 15.03.2012

Ireneusz Mosoh Programmable Controllers

Materiaty pomocnicze do przedmiotu ,Sterowniki prog ramowalne”
prowadzonego w j ezyku angielskim w semestrze zimowym w roku
akademickim 2010/2011 dla V semestru specjalno $ci zamawianej
»rechnologie informatyczne w elektrotechnice”
na studiach pierwszego stopnia na kierunku Elektrot echnika

Ireneusz Mosoh Programmable Controllers

Preface

Complex automation in all branches of industry s f the dominating tendencies in

technical development nowadays. Programmable d@msocare among the most important

devices, implementation of which makes possible tbimplex automation . For the first time

programmable controllers were designed, producedimplemented in control systems of

production lines in General Motors automotive pdaower forty years ago. At that time they
were named “programmable logic controllers”. Todaprogrammable controllers are not
only “logic” as they were while used for the fitsine. Enormous changes in information

technology have influenced and caused such changesegrammable controllers technology

that increased controllers potential of signal pssing, enabled easier programming,
improved controllers reliability, and network fuimts have been developed. Therefore the
number of programmable controllers implemented mdustry increases constantly.

Concurrently there is a rising demand for engingeepared for designing, programming,

starting-up and supervising control systems witigpgmmable controllers.

The above listed trends clearly show that “Prograinlen controllers” is a subject that
engineering students have to be taught during fivsir level of study (B.Sc). One of the
groups of engineering students for whom at leagticbknowledge of programmable
controllers is vital in their future professionatigity are electrical engineering students. The
basic knowledge that electrical engineering stusl@né expected to acquire comprises not
only programming aspects (the ability of writinggsting and commissioning control
programs) but also a variety of technical aspeciacluding mainly: systems design and
development, networking, structuring of user praggaetc. Moreover, as far as complex
automation (with networking from a shop-floor teetitnanagement level) is concerned, a
more system approach to programmable controllets their use is necessary. Such an
approach has been offered to students that studgiadipy “Information technologies in
electrical engineering” in the “Electrical enginiegy’ field of study.

The course “Programmable controllers” — accordmghe Study programme for full-
time students in the field of “Electrical engine®yi — is an obligatory course and is taught
during the 5-th semester (3-rd year of study). ¢txerse comprises: 30 hours of lectures, 15
hours of tutorials and 15 hours of laboratory watksing the semester (two hours of lectures,
one hour of tutorials and one hour of laboratory meek). The course “Programmable
controllers” can be characterised by its syllabug expected learning outcomes. There are 5

ECTS credit points allocated to this course.

-3-

Ireneusz Mosoh Programmable Controllers

In the academic year 2010/2011 for the specialityfofrmation technologies in
electrical engineering” the course is taught in Ii&hgto help these students to improve their
communication skills in English, to prepare themirternational exchange of students and
possible future professional work in an internaticieam.

These materials (Part 1) written in English consorisasic information about
programmable controllers and their programmingoetiog to the syllabus of the course.
Two programming software packages (Sucosoft S404/:@4 and Easy Soft CoDeSys ver.
2.3.5.) have been used to prepare examples anel soitivare features that are included into
the materials. Additionally, because the basic e®wf information about programmable
controllers, their hardware and software, is therimational Standard IEC 61131 (which is
also the European Standard EN 61131, as well ashP8tandard PN-EN 61131), selected
information from the standard has been included tihis materials. Paragraphs and sentences
that have been taken directly from the standard vanéten in blue instead of using
parenthesis.

Part 2 of these materials is written in Polish teegstudents from the speciality
“Information technologies in electrical engineefingn opportunity to learn terminology
related to programmable controllers and controtesys with programmable controllers in
both languages: English and Polish. In the secamtdguch problems as: structuring of user
programs, control of sequential processes and mkingp programmable controllers are
presented.

In the list of references (the list is common fathb parts of the materials) not only
references quoted in this materials have beendeduthere are also other references that can

be helpful in understanding lectures, tutorials Eibratory tasks.

Ireneusz Mosoh Programmable Controllers

Contents
Syllabus and learning outcomes of the course “Rirognable Controllers” 6
1. Programmable Controllers BaSICSc.uiuieeine e ie s ee e e e eaeans 7
1.1. What is a programmable controller?cooviiiiiieii i e 7
1.2. Basic structure of a programmable controller..............cooooiii i, 8
1.3. General principle of operationoooii i 9
1.4. Types and series of programmable controllers...............ccocooiii 12
2. Principle of Operation in Detailscooiiiiiiiiii e e e e e e 15
2.1. Cyclical and periodiC Operationccciiiuiiieieie i reirene e aans 15
2.2. Operation with or without process image memor..........covvevevevenveneenennn 15
2.3. Control system and programmable controllspoase time 19
3. Examples of the Program Cycle DescCriptionsccooevviiiiiiiiiiie i ceiienaas 24
3.1. First example — Moeller PS4 SEreSccciuiriieiitcemeae e ee e 24
3.2. Second example — Hitachi E Series ociviiiiiiiiiiiiiiiiiiiiieieinenee. 25
3.3. Third example — KOyo DL SEIMEScceiviiiiiiiiiiiiiieiieiiiiinienieeeane e 27
3.4. Fourth example — GE Fanuc 90-30 SErESwmmmeeereeieeieeseniennenn. 30
4. Programming of Programmable Controllersoocemviiiiiiie i 34
4.1. Programming model according to IEC 61131-3............cccevvvvviviinnenn.... 34
4.2. Datatypes and variablesco.oiiiiiiiiii e —— 37
4.3. Program organization UNItS cccoevuiiiiiiiiietieneere e immme e ee e eneanan 44
4.4. Programming [aNQUAGESoviviiiiie e e e e e e e e et e amnn 46
4.5. Standard functions and function blocks e 56
4.6. User functions and function blocks ...t 57
5. International Standard IEC 61131 — Selectedri@tioncc.coooviiiiiiinnnnnn. 63
(@0 o 113 o o PP o
RO I CES ..ot e 76

Ireneusz Mosoh Programmable Controllers

Syllabus and learning outcomes of the course “Progmmable controllers”

Svllabus

LECTURE

Programmable controllers in control systems. Tymgjcture and principle of operation.
Execution of the user program. Process image menitagdware characteristics. Interaction
with a controlled process. Digital, analogue anelcgd input/output circuits.

Fundamentals of programming. PN-EN 61131-3 standaRtogramming model.
Programming languages. Data types and declaratiomanables. Addressing. Program
organization units - programs, functions and funrctblocks. Creation of user functions and
function blocks. Structuring of user programs. Bexbf a program quality.

Networking programmable controllers. Network stawes. Communication interfaces and
transmission media. Methods of media access cor@mhmunication protocols (Suconet K,
Modbus RTU, Profibus DP, AS-i). Industrial Etherrgptotocols: Modbus TCP, Powerlink,
Profinet).

Design of programmable controllers based contretesys. Selection of a programmable
controller depending on an application. Realizatddra human - machine interface (HMI).
SCADA programs.

TUTORIALS

Number systems used in programmable controllerda Dgpes and functions of their
conversion. Creation of control algorithms; graphicelements of the algorithms.
Programming software Easy Soft CoDeSys. Creatiocoatrol programs (in IL, LD, FBD,
ST, CFC languages) and their debugging with the oflgrogram simulator (virtual
controller). Creation of visualisation applicatiorBrogramming of control of sequential
processes in SFC language.

LABORATORY

Programming software Sucosoft S40 (structure; goming control systems; editing,

debugging, testing and documenting programs). Rrodior a conveyor control - | and Il

Conversion functions and arithmetic operators. @agnevents and compiler options.

Creation of the user function block. Modifying prams and changing variable values in On-
line mode. Programming PS4-200 and PS4-150 seoesotlers in the network (master -

active slave).

Learning outcomes

Student describes types and structures of progréencontrollers. Explains principle of
programmable controller operation and principleegécution of the user program. Student
selects programmable controllers for specific ajgpions. Analyses requirements of control
tasks and creates control algorithms. Writes, delargl tests programs of low and middle
complexity for control of different control objectSreates user functions and function blocks.
Creates simple visualisation applications.

Ireneusz Mosoh Programmable Controllers

1. Programmable Controller Basics

1.1. What is a programmable controller?

In brief it can be said that a programmable cdleiras a programmable electronic
device used in control systems. More precise egbiam is published in the International
Standard IEC 61131-1 [40] (see also Chapter 5isfrtfaterials).

The definition in the standard says that a prograbien controller is aigitally operating
electronic system, designed for use in an inddstngironment, which uses a programmable
memory for the internal storage of user-orientedtrictions for implementing specific
functions such as logic, sequencing, timing, countand arithmetic, to control, through
digital or analogue inputs and outputs, varioug$ypf machines or processes.

It also says that the programmable contradled its associated peripherals are designed so
that they can be easily integrated into an indalstontrol system and easily used in all their
intended functions.

The definition, especially when reading it fasgynseem not very clear, but is precise
and refers to all programmable controllers; frore first programmable controller to the
newest controllers that are produced currenthghltuld be mentioned that the definition is
general (as it obviously should be) and it doesréntion that a programmable controller is a
microprocessor-based electronic system. This iBestause first programmable controllers
were developed, produced and implemented some eéose the first microprocessors were
produced and implemented in electronic systems.

In practice not definition from the standard bubther definition referring to the
performed functions and tasks can better explaiat\@alprogrammable controller is.
According to definition of the authors of the refiaces [16, 23] programmable controllers are
industrial computers which, under the control @& thal time operating system:

= with the use of input modules acquire results ohsaeements from digital and analog
sensors and measurement devices;

= using acquired data from the controlled processmachine execute user programs that
comprise coded data processing and control algosith

» in accordance to results of user programs execginerate control signals and, with the
use of output modules, send them to actuators,

and additionally are able to:
= transmit data with the use of interfaces and comoation modules;

= perform hardware and software diagnostic functions

-7 -

Ireneusz Mosoh Programmable Controllers

As mentioned in the standard, although fBrogrammable Controllers the
abbreviation PC should be used, this abbreviatmudclead to confusion because PC is
commonly used as abbreviation fétersonal Computer. Therefore for programmable
controllers the abbreviation PLCProgrammable Logic Controllers) is used instead.
Historically this is the first abbreviation usedkdause first programmable controllers were
using and processing only logic (binary) signalespite the fact that currently programmable
controllers operate not only on logic signals thberaviation PLC is well recognized and still
in common use in the automation industry and inliteeature (in technical books, journals,
documentations etc.).

In resent years however one more abbreviation € PAave become popular; this
abbreviation stands fdrogrammableAutomationController. In the year 2002 the company
National Instruments started to use this name Ii@irtprogrammable controllers. Very
quickly also many other companies followed and réatheir new programmable controllers
as programmable automation controllers (for exangte Fanuc and other companies). The
intention of this change from PLC to PAC was to entide their increased functionality and
processing capabilities.

PLC and PAC are not the only abbreviations thaanmprogrammable controllers.
Some companies use other names for their prografen@mntrollers. For example the
Austrian company B&R their programmable controllel@mesProgrammableComputer
Controller — abbreviation PCC, whereas the Swiss paom SAIA their programmable

controllers nameBrogrammableControl Device — abbreviation PCD.

1.2. Basic structure of a programmable controller

The basic functional structure of a programmabigratler system is presented in the
standard, and in these materials is shown in figutein the 5-th chapter. However, such a
detailed description of a programmable controlierctions and hardware is not necessary in
this chapter to explain the principle of operataira programmable controller. A simplified
hardware block diagram shown in figure 1.1 shoddelpful instead.

This hardware block diagram consists of three ldock
* inputs meaning input circuits;
= CPU (Central Processing Unit) in which a procegsacroprocessor) and a memory are
the most important parts to understand the prograolen controller principle of
operation;

» outputs meaning output circuits.

Ireneusz Mosoh Programmable Controllers

q Processor <

—> —>
Inputs CPU Outputs

LN Memory S

Fig. 1.1. Simplified hardware block diagram of agnammable controller

Input and output circuits are the programmable radlet’s interfaces through which it is
connected to the controlled object — usually eitaanachine or machines in a production
line/center or a technology process.

Each programmable controller has an internal merfwhych is a RAM memory) that
Is used to store the application program and datpart of the data memory is a process
image memory. The process image memory considtsamparts. One part is a process input
image memory — to store states of input signalsnduhe program cycle. The other part is a
process output image memory — to store states tpubsignals during the program cycle.

Sometimes the process image memory is also calpedcass image register.

1.3. General principle of operation

The principle of operation of a programmable cdtgrocan be explained using a
simplified diagram shown in figure 1.2 — and anaty/sogether with the simplified hardware
block diagram shown in figure 1.1.

The simplified diagram of a programmable controiperation consists of four blocks
which names refer to their functions:

= reading inputs;
= execution of the application (user) program;
= writing outputs;
= operating system functions.
The three blocks on the left hand side in figurgfer to certain phases of the program cycle

and are essential for explanation of the prograntenadmntroller operation.

Reading inputs

At the beginning of each cycle the processor réhdssignal states of all inputs and stores
them in the process input image memory. After negditates of the input signals do not

change during the current cycle.

-9-

Ireneusz Mosoh Programmable Controllers

A 4

Reading inputs

Execution of the Operating
application system
program functions

A

A 4

Writing outputs

Fig.1.2. Simplified diagram of a programmable colhr operation

If, during execution of the application program,aerand is the input signal its state
is read from the process input image — not fromdetroller’'s physical (hardware) input.
Therefore even if during program execution therth @ a change in the state of the input
signal, this will not be taken into account durthg current program cycle.

The advantage of such a way of operation is thaa feingle cycle the whole program
will be executed for the same states for each ismnal and even if a change of an input
signal occur this will not influence correspondisigite in the process input image memory

(until next reading of inputs in the next cycle).

Execution of the application program

Typically the application program is executed ayally. The processor reads the application
program memory locations one after another, froenlidginning to the end of the program.
This does not mean that in each cycle every instmu¢every rung) is being processed. Some
parts of the program can be omitted if their exiecuis conditional. Conditional execution of
some program parts can depend on states of theotedtprocess or just on the program
realization of the control algorithm.

The program performs all necessary logic and aetitmoperations on the data. Every
time when an operand of the instruction is an injautable, its state is read from the process
input image memory. The same rule applies to outptitibles. Every time when an operand

of the instruction is an output variable, its steechanged in the process output image

-10 -

Ireneusz Mosoh Programmable Controllers

memory. During a single program cycle the statarobutput variable can be changed many
times, but the valid state of this variable atehd of the program cycle is the last state of this
variable written to the process output image memory

In short it can be said that during execution oé thpplication program the
programmable controller’'s processor operates omg@wnaf physical (hardware) inputs and

outputs stored in the process image memory.

Writing outputs

After execution of the application program statésutput variables from the process output
image memory are simultaneously written to the maletr’s physical (hardware) outputs.
Thus all hardware outputs are updated simultangowste in a cycle — at the end of the

program cycle.

Operating system functions

All operating system functions can be divided itvio groups.

The first group is performed before execution & #pplication program begins in a
cycle or just after the end of execution of thel@pgion program in a cycle. Such functions
are for example the watchdog timer resetting aadraistic functions.

The second one is a group of functions that aréopeed simultaneously with the
execution of the application program. They are &deiven functions because they are called
up by various operating system interrupts. Thegermmpts make possible that several
functions run virtually simultaneously. Functiobslonging to this group are for example:
monitoring the cycle time (watch dog), monitorirtge tpower supply, processing the basic
cycle pulses, communicating with a programming dew usually a personal computer with

programming software or a hand-held programmer @vewit is used very rarely nowadays).

As far as operating system functions are conceingidould be mentioned that apart
from functions performed in every program cycle greonmable controllers perform also
operating system functions when the controllerssargéched on or off.

Functions that are performed after switching onddtroller are for example: self test
when starting, initialisation of the CPU, determipi the start-up behaviour (restart
conditions), copying retentive data from the backegmory (in controllers with EEPROM)
into the working memory.

A function that is performed after switching ofethontroller is for example backup of
the retentive data into the backup memory (EEPROM).

-11 -

Ireneusz Mosoh Programmable Controllers

The above listed functions are performed only otedore the first reading inputs
phase of the cycle, but they are not shown in &gu2, as being of a minor importance to
understand general principle of programmable cdietsoperation.

Typical execution of the application program in gnammable controllers is cyclical,

what means that program cycles are performed ormméyvithout any delay between them.

1.4. Types and series of programmable controllers

Different divisions of programmable controllerdargroups can be made depending
on what factor will be taken into account. Usuglipgrammable controllers construction,
maximum number of inputs and outputs, the scalgppfications in which controllers can be

implemented are these factors depending on whieleltssification can be made.

Taking into account programmable controllers’ camgion they can be divided into:
= compact controllers;

= modular controllers.

Taking into account maximum number of inputs antpots programmable controllers can be
divided into:

= small — with a few dozen inputs and outputs;

= medium size — up to several hundreds of inputscapluts;

= big — over one thousand inputs and outputs.

Taking into account the scale of applications paogmnable controllers can be divided into:

= controllers used in small application tasks — Uguadntrol of an individual machine or a
small technological process;

= controllers used in medium-size application tasksually control of several machines in
a production line, technological processes in diffi branches of industry;

= controllers used in large and complex automatiskga- usually complex production and
technological processes in some branches of indu@themical, petrochemical,
pharmaceutical etc.).

Only the first classification is based on a cleaglghnical factor. The other two classifications

are rather relative and subjective.

Compact programmable controllers in their singlel@esure have all necessary

systems to perform all programmable controller fioms (figure 5.1). They have fixed

-12 -

Ireneusz Mosoh Programmable Controllers

number of inputs and outputs of particular typelisTdoes not mean that they cannot be
expanded. They can often be expanded up to hundrexlen thousands inputs and outputs.
For example Moeller PS4-201-MM1 programmable cdigrs have 8 digital inputs, 6 digital
outputs, 2 analog inputs and 1 analog outputs.rA&f@necting to PS4-201-MM1 maximum
possible number of local expansion modules LE4 alsd maximum number of remote
modules EM4 (using only the controller’s build-ietwork interface RS485 with Suconet K

protocol), the total number of digital inputs andputs in such a system would be 1006.

Modular programmable controllers do not have fixeardware architecture as
compact controllers. They consist of a rack (orepand some number of modules. Modules
are mounted in the rack or fixed on the base. Tureber of modules and their types depend
on the application. Some parts and modules argatbliy, other modules can be chosen or
not. Apart from the rack (base), power supply medanid of course central processing (CPU)
module, other modules are optional. These optioralules can be:

= digital input modules;

= digital output modules;

= digital input/output modules;

= analog input modules;

= analog output modules;

= analog input/output modules;

= analog modules for temperature measurements;

= communication modules;

= high-speed counter modules;

= positioning modules,
and others less frequently used (co-processor rasdsiepper motor control modules, etc.).
Modular programmable controllers can be expandeckinote racks (bases) connected to the
main rack (base) by a network connection. Expansapabilities of modular controllers and

the maximum number of inputs and outputs are bitjggar in case of compact controllers.

Producers of programmable controllers usually hawel offer whole series of
controllers (sometimes they name them “familiestontrollers).
For particular models of programmable controllenattbelong to the same series it is
characteristic that:
= the same or similar technical solutions in paricutontrollers (and their modules)

construction have been used;

-13 -

Ireneusz Mosoh Programmable Controllers

= usually controllers from the same series are prograd with the use of the same
programming software (programming package);

= very often application programs written for onegraammable controller from a series can
be used either directly or after a small adaptafmnjust only a new compilation) in

another controller from the series.

Below there are examples of series of programmedniérollers that have been (or had been)

produced in the last twenty years.

Simatic S5 and S7 series of programmable contsolre typical examples of
programmable controllers series and replacemeptaduction of the older series (S5) by the
new series S7. In the older series Simatic S5 theeetwo compact mini programmable
controllers (S5-90U and S5-95U), one failsafe nprogrammable controller (S5-95F), one
modular mini programmable controller (S5-100U) atfttee modular programmable
controllers (S5-115U, S5-135U and S5-155U — athein with various CPU modules). In the
new series Simatic S7 there are in general thregr@mmable controllers: S7-200, S7-300
and S7-400, each of them with a wide variety if QRtdules.

Another example are Moeller (earlier Klockner-Megl programmable controllers. In
the last twenty years there were two changes idymed series of controllers: from the PS3
series (with PS3, PS306 compact programmable drgpand PS316, PS32 modular
programmable controllers) to the PS4 series (wh1B0, PS-150, PS-200, PS-300 compact
programmable controllers, PS-400 compact fuzzyelpgogrammable controller, and PS416
modular programmable controller), and recently © Xeries (XC100 and XC200 modular
programmable controllers with various CPUs avadabl Currently only some of
programmable controllers from the PS4 series avdymed (PS4-141-MM1, PS4-151-MM1,
PS4-201-MM1, PS4-271-MM1, PS4-341-MM1) and all colkrs from the series XC.
Additionally there are produced Easy Control EC4Bgmmmable controllers, and XV
operator panels with touch screen and integrategrammable controllers. The latter ones

and controllers from XC series are under the comnaone XControl.

-14 -

Ireneusz Mosoh Programmable Controllers

2. Principle of Operation in Details

2.1. Cyclical and periodic operation

As it was mentioned earlier, standard operationaoprogrammable controller is
cyclical processing of the program cycle. In thése program cycles are performed one by
one without any delay — or it can be said “as dyicls possible” for the particular controller.
But cyclical is not the only possible way of opéat programmable controllers operation
can be also periodic. In such a case each nextgrogycle starts after a constant period of
time — this time is counted from the beginninglté previous program cycle. If, for periodic
operation, execution of the application programsh®rter than the time set for periodic
operation, the operating system waits until thetissd for periodic operation has elapsed, and
only then starts the next program cycle. While ingifor the set time of period to elapse, the
CPU is not idle — it performs operating system fioms.

For example: if the cycle time equals 5 ms while slet time for periodic operation is
50 ms, the operating system waits 45 ms beforae¢leprogram cycle is started.

In case of a single control task execution in eg@mmable controller there is not a
big difference between cyclical and periodic ogerat— provided that the time set for
periodic operation is reasonably short (taking iat@ount time constants of the controlled
process).

The situation is different if it is possible to gram and execute in a programmable
controller more than one control task. Lets asstimé there are, for example, two control
tasks. One to control a fast process (with a sty constants); the other one to control a
slow process (with long time constants). In suchaae there would be advantageous to
configure execution of the latter control task aiqic with the set time of period
significantly longer (for example n times longehnpah the time of execution of the former
control task that has been configured as cycliCahtrol signals of the faster process would
be updated then approximately n times more fredpehan control signals of the slower
process.

2.2. Operation with or without process image memagr

Typically programmable controllers operate withe thse of the process image
memory. However, the operation without using thecpss image memory is also possible. If,
as shown in figure 2.1, phases “Reading inpast “Writing outputs” are excluded from

- 15 -

Ireneusz Mosoh Programmable Controllers

Execution of the Operating
application system
program functions

A

A 4

Wriwuts

Fig.2.1. Excluding “Reading inputs” and “Writing tpuits” in the simplified diagram

the program cycle, the controller operates withaibhg the process image memory. In such a
case the simplified diagram of a programmable odletr operation consists only of two

phases of the program cycle — as shown in figuze 2.

Execution of the Operating
application system
program functions

A

Fig. 2.2. Simplified diagram of a programmable coltér operation without using the

process image memory

In this case every time when an operand of theuosbn is an input variable its state
is read from the controller’s input (hardware ijpanalogously every time when an operand
of the instruction is an output variable its statehanged in the controller’s output (hardware
output).

An example of programmable controllers that worksuth a way are PCD series
controllers produced by SAIA. Operation withoutngsithe process image memory is their

typical operation. Their outputs are updated at poent of time during the application

-16 -

Ireneusz Mosoh Programmable Controllers

program execution when they are operands of theewtly executed instructions. Writing
programs for PCD series controllers it is necestatgke into consideration that parts of the
application program can be executed for differeates for each particular input variable. In
some applications this necessity could be a dis#dga. On the other hand updating outputs
during execution of the program is an advantagaumexthe control system reaction is faster.
If the user of the PCD series controllers wanta/éok with a process image memory, such a

memory area have to be programmed by him.

Despite the fact that majority of programmable oadligrs use the process image
memory, it is usually possible to read input sigstates directly and to write output signal
states directly. This is called direct access &mlis necessary when signal states have to be
processed immediately in the control program. Thepgse of direct access to inputs and
outputs is to shorten a control system reactioe.tim
Following are some examples of direct access tats@nd outputs in programmable
controllers from different manufacturers.

In Siemens S5-115U modular programmable contsokkgital module signal states
are stored in two memory areas; the second ongieaess image memory. It is possible to
set parameters of this controller (changing onenbihe system data word SD120) that it will
not use the process image memory. In this caseaegehof information with digital modules
takes place directly.

In GE Fanuc 90-30 series programmable controflespecial function block Do 1/O
(DO_IO) can be used to read selected input sigiag¢s directly, or to write selected output
signal states directly. This function block is ussating execution of the program cycle.
Depending on the function block parameters thetispmnal states that have been read using
this function block either modify the input sigrstiates that had been read at the beginning of
the program cycle (process image) or are writtela wifferent memory area (for example
markers area). Similarly programmable controllarpats can be updated during the program
cycle with signal states taken either from the psscoutput image or from a specified
memory area (for example markers area). If necesba function block can be used many
times in a program cycle.

In Koyo DL405 modular controller, in order to stear the programmable controller
reaction, so called “immediate inputs and outpthat are special Boolean instructions can be
used. This immediate instructions are used to dieettly input states and write directly

signal states to outputs during execution of theliegtion program. The immediate

-17 -

Ireneusz Mosoh Programmable Controllers

instructions take longer time to execute the pnwgexecution is interrupted while the CPU
reads or writes signal states from a digital module

Immediate input and immediate output instructiams idifferent way influence signal states
that are stored in the process image memory.

Although an immediate input instruction reads thestrcurrent status of the input signal, it
only uses the result to solve that one instructibdoes not update the process input image
memory. Therefore, any regular (not immediate)ruddions that follow will still use the
input states (not updated) from the process inpagke.

The immediate output instruction writes the curretdatus of the output signal to the
corresponding output in a digital output moduled aimultaneously updates this output
signal state in the process output image memory.

In Moeller PS4 compact programmable controllereaiaccess to inputs and outputs
is possible using special addressing. Howeverctdaecess to inputs and outputs is possible
only to inputs and outputs of the controller its@lirect access is not possible to inputs and
outputs of local expansion modules and remote esipanmodules connected to the
controller). Direct access is possible for singiputs, single outputs, input bytes and output
bytes (for bigger controllers like for example PB4-MML1 also for input words and output
words).

For example, standard addressing (when the praoegge memory is used) is %IB0.0.0.0 for

the input byte, and %QB0.0.0.0 for the output byteect addressing (the process image
memory is not used) is %IP0.0.0.0 for the inputebynd %QB0.0.0.0 for the output byte.

Single inputs and outputs can also be accessedit-was mentioned earlier; for example

%I1P0.0.0.0.5 means direct reading of the 5-th inpdihe O input byte, whereas %QP0.0.0.0.3
means direct writing to the 3-rd output in the @pot byte.

For programmable controllers from the series P3drtd PS4-200 direct reading of inputs
and writing outputs during execution of the apglma program do not change states of the
corresponding inputs and outputs in the procesgieémmemory. In contrast to behaviour of

these controllers, the process image of the PS4s8€6s controllers is updated immediately

during execution of the application program.

Almost all considerations so far about usage efffocess image memory referred to
digital (binary) inputs and outputs. For majoritly programmable controllers using process
image memory for digital inputs and outputs isandard. The situation is different as far as
other types of inputs and outputs are concernetheSarogrammable controllers do not use

the process image memory for analog inputs andutsitp

-18 -

Ireneusz Mosoh Programmable Controllers

For example in Siemens S5-115U modular programmetieroller analog module signal
states are not written to the process image menidrgy are read in or transferred to an

analog output module directly.

As far as usage of process input image in prograiphencontrollers is concerned it can
be concluded that majority of programmable corgrsll as a standard solution, use the
process input image. On the other hand programmedrirollers enable usage of direct
access to their inputs and outputs. However, teahisolutions of how this can be achieved
are quite different for programmable controllersddferent producers. Sometimes they can
be different even for different programmable coltrs of the same producer. Therefore
detailed study of technical documentation of aipaldr programmable controller should

always be recommended.

2.3. Control system and programmable controller reponse time

The control system response time is the period é&&tvithe occurrence of an event and
the reaction of the control system to this event.
The programmable controller response time is theod between the change of a
signal state in the controller’s input and the deaf a signal state on the controller’'s output.
The latter response time is of course shorter tharformer one. The difference is the
sum of the following:
= time necessary for a sensor output signal change;
» time needed to transfer this signal to the cordgr@linput;
= time needed to transfer controller’s output signan actuator;
= time necessary for an actuator for its reaction.
The first time is not negligible because it is tlesponse time of a sensor (for example an
inductive proximity switch).
The second and the third time are negligible ireaasstandard wiring of the control system,
but they are not negligible in case of usage ola $ystem for sensors and actuators (for
example AS-interface).
The forth time is also not negligible because iths response time for an actuator (for
example a contactor).
The sum of these times does not depend on thegmogable controllers.

What should be analysed in this chapter is thgnaramable controller response time.

This response time (often called the 1/0O respoimse)tdepends on:

-19 -

Ireneusz Mosoh Programmable Controllers

= the delay of the controller’s input circuit;

= the program cycle time;

= the delay of the controller’s output circuit,
but is not just a sum of the listed factors, beeah® /O response time depends also on the
point in the program cycle when the field input ohes states.

In practice the delay of the controller’s inputcait is longer than the delay of the
controller’s output circuit. The delay of the caniter’s input circuit can be relatively big (in
comparison to the program cycle time) if the fumetof the input circuit is also hardware
filtering of input signals. The delay of the corleos output circuit is often negligible in
comparison to the program cycle time.

Two cases should be analysed: when the input Isgjate changes just before the
reading inputs phase of the program cycle (the bas¢) and when the input signal state
changes just after the reading inputs phase grbgram cycle (the worst case).

The 1/O response time is the shortest when thatisgnal state change takes place
just before the reading inputs phase of the progrgate. The 1/0O response time for this case

is shown on the time diagram presented in figuse 2.

» Program cycle e Program cycle J
| |
FProgram Program Program Frogram
execution execution execution exacution
Reading Writing Operating
inputs outputs system

Field input functions

|
|
Input pfffon delay

|
|
| Output offfon delay
|

]

|
/O response time I
- ol
+ >

Fig. 2.3. The I/O response time — better case

In the first case the I/O response time equalsr(a@mately):

-20 -

Ireneusz Mosoh Programmable Controllers

Response time = Input delay + Program cycle tinGuiput delay

The I/O response time is the longest when the igjguial state change takes place just
after the reading inputs phase of the program cyidhe I/O response time for this case is

shown on the time diagram presented in figure 2.4.

» Program cycle L Program cycle J
I 1 1
FProgram Program Program Program
execution execution execution execution
Y
Reading | Writing
inputs outputs

Field input

|
I
|
s
L]
I
]
|
|
I

|
|
| Output offfon delay
I —m

b——

1

I/O response time

- __

Fig. 2.4. The 1/O response time — worse case

In the second case the I/0O response time equgscfamately):

Response time = Input delay + 2 x (Program cyoileX + Output delay

Taking into account that input delay and outpuagare usually substantially shorter
than the program cycle time it can be concludedt thhe maximum response time is

(approximately) twice the program cycle time.

In many applications even the maximum I/O respditee is such, that the timing
analysis is, in fact, not relevant. However, sonppligations do require extremely fast
responses. In such cases direct access to corfratiputs and outputs can be used.

Using direct access with Boolean instructions rmyirexecution of the application
program not always is effective and shortens tlsparse time. It depends on the point in

time when the change of the input signal took platéefore the instruction with direct

-21 -

Ireneusz Mosoh Programmable Controllers

access then the response time is shorter, whdrafherithe instruction with direct access then
it does not influence the response time.

Instructions with direct access are always eféectand make the response time
shorter, if used in special function blocks. Foample in Moeller PS4 series controllers there
are three so called alarm function blocks. These &wounterAlarm, EdgeAlarm and
TimerAlarm. The first one is associated with thghaspeed counter input, the second one
with the interrupt input, and the third one witheimal time interrupts. Direct access to inputs
and outputs, if used in these function blocks &nays effective and the response is always
fast.

If, for example, the interrupt input (with the adds 9%10.0.0.0.1 in PS4-201-MM1
programmable controller) with the function blockgedlarm is used, outputs with addresses
%QP... will update the controller's output signalstta¢ point in time they are used in this
function block (FB). The 1/O response time for tlugse is shown on the time diagram
presented in figure 2.5.

Program cycle Program cycle

I
Input offion delay

—

Program Program Program
execution execution execution
,
-~
Reading | | || Writing
inputs | | outputs
11 [
Lol [
11 [
11 [
11 FB 1o
I execution I
11 [
11 [
11 [
11 [
11 [
Field input : : : :
[
] T 1
1 [
I [
1 [
1

| [
| I 1
I Cutput offfon delay |
| [

|

I

I

| |
| PR

|

I

I

|

IO response time [
[

i -
o >

Fig. 2.5. The 1/O response time when using the Btigen function block

-22 -

Ireneusz Mosoh Programmable Controllers

The EdgeAlarm function block can be called in tmegoam as a result of the input signal
rising edge in the controller’s interrupt input,a® a result of the input signal falling edge.

There is one more problem concerning digital irgighals that has not been discussed
yet. In the preceding analysis of programmable rotiets’ input signals it was always
assumed (however never underlined) that the duratfoan input signal is longer than the
program cycle time. Such signals can always bectite because for at least one reading
inputs phase of the cycle their state is high.

The situation is different in case of signals whitthration is shorter than the program
cycle time. They are detected in a stochastic maning happens that they exist during the
reading inputs phase of the program cycle — theydmtected; if opposite — they are not
detected.

However there are programmable controllers thaehaputs on which such short
signals are always detected in a fully determioigtay. For example, Telemecanique TSX07
compact programmable controller has inputs fromctvlshort changes of input signal states
(shorter than one program cycle and existing betveemsecutive reading inputs phases) can
be stored and will have the high state during #sd program cycle.

The time diagram of the described case is shoviigume 2.7.

| Program cycle Frogram cycle

Program Program Program Program
execution execution execution execution
ey Fa
s
Reading Writing
inputs autputs Operating
system
Field input functions

Input signal state

Fig. 2.7. Detection of very short input signalsli®X07 programmable controllers

As far as methods of shortening of the I/O respoisie are concerned it can be
concluded again that apart from common methods;ifspeechnical solutions applied in
programmable controllers of particular producersn che found in their technical

documentations.

-23 -

Ireneusz Mosoh Programmable Controllers

3. Examples of the Program Cycle Description

3.1. First example — Moeller PS4 series

First example refers to PS4 series compact progabtencontrollers produced by
Moeller Company. These programmable controllersbmm three different operating states:
Run, Ready, and Not Ready. Only when the contradlen Run state it executes the user
program. The program cycle for these programmatutérallers is shown in figure 3.1.

Operating
system

Writing outputs Reading inputs

Execution of the
user program

Fig. 3.1. The program cycle for Moeller PS4 sepesgrammable controllers

The CPU operating system activities during paréicylhases of the working cycle are as

follows:

Reading inputs

Before the user program execution begins, durirgréading inputs phase of the cycle the
CPU reads (simultaneously) the states of all inpat$ stores these values in the input image
register as high (H) or low (L) — for digital signaThe status image of all inputs remains
constant for a whole program cycle. Changes irustaf the inputs which can take place

within processing of the program are therefore rgddy the controller.

Execution of the user program

During this phase of the program cycle the useggaum is executed. Each instruction of the
program is distinguished by its memory location bem the address. The program counter
has to select these addresses step-by-step. t tam the zero address and ends on the

address with the instruction of the end of the paog During execution of the user program

-24 -

Ireneusz Mosoh Programmable Controllers

every time when an input is the operand of an ulg$ion its status is read from the input
image register. The output results of the prograguences are stored temporarily in the

output image register.

Writing outputs

At this phase (writing outputs) of the program eydfter executing the whole user program,
states of the outputs from the output image regate allocated together (simultaneously) to
the controller physical outputs.

Operating system

During this phase of the program cycle, the colgrs operating system activities are carried
out. These system activities are independent ofentiprogram processing. For example
signal transfer between the programmable contralher a programmer. The programmer can
be a PC with programming software (Sucosoft S48 band-held programmer (during on-

line operation with the programmer connected).

Looking at the program cycle for Moeller PS4 sepesgrammable controllers it can
be concluded that it comprises the same phasé® aBagram in figure 1.2. The names of the
cycle phases are almost the same, and the onéreliite is its circular form.

3.2. Second example — Hitachi E series

Second example refers to E series compact prograientantrollers produced by
Hitachi Company. The E series programmable comtt®lhave different number of digital
inputs/outputs (20, 28, 40, 64), are locally ex@dote (by additional 64 inputs/outputs), and
can have relay or transistor outputs. There amethtodes of operation for these controllers:
PROG - programming mode, TEST — test mode, and RWideration mode. The program
cycle for these controllers is shown in figure 3.2.

The CPU operating system activities during paréiciyghases of the program cycle are as

follows:

Input processing
During this phase the ON/OFF status of the extanpalts is taken into the data RAM of the

E series. For each input its status in the data RAMains unchanged even if the ON/OFF

status of any external input changes during th#hraetic processing of the program. The
status change will be taken into the data RAM wimaut processing is made for the next

-25 -

Ireneusz Mosoh Programmable Controllers

scan. To be sure that the change of the input sggatus will be taken into the data RAM, the
pulse width should exceed one scan time.

1 scan time

P AP FS/R| PP |OP| IP

IP — Input Processing

AP — Arithmetic processing of the program
F S/R — Forced Setting / Resetting

PP — Peripherial Processing

OP — Output Processing

Fig. 3.2. The program cycle for Hitachi E-seriesggemmable controllers

Arithmetic processing of the program

A written program is arithmetically processed startfrom the first step according to the
commands of the program. The arithmetic processauges the contents of external outputs
and internal outputs (i.e. markers and registerd)et changed from time to time in the data
RAM.

Forced setting/resetting

During operation of the programmable controllerycéul setting will be made after
completion of all operations of the program. Ortus function is activated, the power failure-

protected internal outputs, timers and countethéndata RAM can be set or reset.

Peripheral processing

In case the ON/OFF status of input/output or theeru value of timer/counter are monitored
via the programmer, the content of the data RAMdisplayed during the peripheral
processing phase.

Output processing

During this phase of the scan the ON/OFF statusach external output in the data RAM is

sent out to the external output terminal (drivihg butput relays).

- 26 -

Ireneusz Mosoh Programmable Controllers

Looking at this example it can be concluded thatpde different names of the
program cycle phases in figure 3.2 they are vemylar to those at the simplified diagram
shown in figure 1.2: reading inputs is named inpubcessing, execution of the user
programme is named arithmetic processing of thgram, writing outputs is named output
processing, and finally forced setting/resettingl geripheral processing are the operating

system tasks.

3.3. Third example — Koyo DL series

Third example refers to DL205 and DL405 modular gorasnmable controllers
produced by Koyo Company. These programmable cdiesb CPU has two operating
modes that allow different types of operations. sehenodes are: Program Mode and Run

Mode. The program cycle for these controllers mvwahin figure 3.3.

!

Read Inputs

!

Read Inputs from Specialty 1/0

!

Service Peripherials, Force 1/10

!

CPU Bus Communication

!

Update Clock, Special Relays

!

Solve the Application Program

!

Write Outputs

!

Write Outputs to Specialty 1/0

!

Diagnostics

Fig. 3.3. The program cycle for Koyo DL series peogmable controllers

-27 -

Ireneusz Mosoh Programmable Controllers

The CPU operating system activities during paréiciyghases of the program cycle are as

follows:

Read Inputs
The CPU reads the status of all input modules ptesethe local CPU base and local

expansion bases. The status of each input is stotbé process input image register.

Read Inputs from Specialty I/O

After the CPU reads the inputs from the input medult reads ant input point data from the
specialty modules, that are installed, such as Sigéed Counter (HSC) modules, etc. In this

phase of the cycle also the input status from Rerti6t are read.

Service Peripherals and Force I/1O

After the CPU reads the inputs from the Special modules, it reads any attached
peripheral devices. This is primarily a communigatservice for a programming device to
see if any input or output status needs to be nealliOr, the programmer may be requesting
a Run-Time Edit or a change to Program Mode. Th&) GIso gets any output forcing
information during this phase.

One of the most popular requests is forcing antirgmy even though it is really off. This
allows the programmer to change the point statas wWas stored in the process image
register. This value will be valid until the prosdamage register location is written to during
the Read Inputs phase of the next cycle. This tbkadue is used in solving the application
programme, but only during the current cycle. le tiext cycle if there is no another request
for a force, the process input image register naaistthe status obtained during the reading

of the inputs.

CPU Bus Communication

During this phase of the cycle the CPU communicatghl intelligent modules (like, for
example, Data Communication Modules) that must laeegl in the CPU base. The CPU
performs both read and write requests.

Update Clock, Special Relays

During this phase of the cycle special memory locatthat hold the Clock and the Calendar
(i.e. the Real Time Clock — RTC) information aredafed on every cycle. This information
can be used therefore in the application programme.

There are also several different Special Relaysh s diagnostic relays, etc., that are also
updated during this phase of the cycle.

- 28 -

Ireneusz Mosoh Programmable Controllers

Solve the Application Program

The CPU evaluates each instruction in the apptinairogramme during this phase of the
cycle. The instructions define the relationshipwsstn the input conditions and the desired
output response.

The CPU uses the process output image registéon® the status of the desired action of the
outputs. The actual outputs are updated during\thee Outputs phase of the cycle.

If the CPU have obtained and stored forcing infdromawhen it serviced peripheral devices,
the process output image register also contairssitifiormation, but if an output point was

used in the application programme, the resulthefgrogramme solution will overwrite any

forcing information that was stored.

Write Outputs
After solving the application programme the CPUdseaurrent output states of the process

output image register to the output modules — &mtan the local CPU base or the local
expansion bases. Forced outputs that are not usdbei programme are also sent and
corresponding outputs continue to be turned on thwir forcing will be released.

Write Outputs to Specialty I/O

After updating the outputs in the local and expamsbases the CPU sends the output
information that is required by any specialty ma@s$uivhich are installed. In this phase of the
cycle also the information from the process outipuige register that is intended for the
Remote I/O racks is updated.

Diagnostics
During this part of the cycle, the CPU performssgitem diagnostics and other tasks such as

calculating the scan time, updating special rekys resetting the watchdog timer. There are
many various error conditions that are automaiyadditected.

One of the most important CPU activities duringstphase of the cycle is the scan time
calculation and the watchdog timer control. Thecakdbg timer stores the maximum time
allowed to solve the application programme and detefa cycle. If this time is exceeded the
CPU will enter the Program Mode and will turn off autputs. The default value (for the
DL405 CPU) set from the factory is 200 ms. It isgble to view the minimum, maximum

and current scan time. An error is automaticaliyalised.

Looking at this example it can be concluded thatpde different names of the
program cycle phases in figure 3.3 they are vemlar to those at the simplified diagram
shown in figure 1.2: reading inputs is named requliis and read inputs from specialty 1/O,

-29 -

Ireneusz Mosoh Programmable Controllers

execution of the user programme is named solvapipication program, writing outputs is
named write outputs and write outputs to specildy and finally service peripherals and
force 1/0, CPU bus communication, update clock apécial relays, diagnostics are all the

operating system tasks.

3.4. Fourth example — GE Fanuc 90-30 series

The forth example refers, among others, to 90-3@s@nd VersaMax programmable
controllers produced by GE-Fanuc Company. In docuat®ns of these controllers the
sequence of operations necessary to execute aapmagre time is called a sweep. The sweep
includes: obtaining data from input devices, ex®cuthe logic program, sending data to
output devices, performing internal housekeepimagrbstics, servicing the programmer, and

servicing other communications. The program cyitle éweep) is shown in figure 3.4.

A 4

START-OF-SWEEP
HOUSEKEEPING

Y

DATA
INPUT

A 4

PROGRAM
EXECUTION

Y

DATA
OUTPUT

Y

PROGRAMMER
SERVICE

Y

SYSTEM
COMMUNICATIONS

Y

DIAGNOSTICS

Fig. 3.4. The program cycle (the sweep) for 90-@tes programmable controllers

-30 -

Ireneusz Mosoh Programmable Controllers

Programmable controllers of this series normallgrape instandard program sweep
mode. They can also operate ¢onstant sweep mode. In both listed above modes the
controller executes the logic program. Other opregatnodes includatop with 1/0 disabled
mode, andstop with 1/0 enabled mode. In the latter two modes the logic progranmas
executed. Each of the listed modes is controlled elyernal events and application
configuration settings. The programmable controlleakes the decision regarding its

operating mode at the start of every sweep.

The CPU operating system activities during paréicyphases of the program cycle (for

standard program sweep) are as follows:

Housekeeping
During this phase of the sweep (cycle) all of ekt necessary to prepare for the start of the

sweep are performed. Among the most important tas&s calculation of the sweep time,
determination of an operating mode of the next gpwegdating fault reference tables,
updating timer values, and reset of the watchdwoegtti If the controller is in constant sweep
mode, the sweep is delayed until the required svieep elapses. If the required time has
already elapsed, the system variable meaning oeesws set, and the sweep continuous

without any delay.

Data input
During this phase of the sweep all input modulessaanned, and the obtained data are stored

in discrete inputs memory (%I) or analog inputs ragm(%Al) accordingly. Any data
received from Genius communication modules areedtan the part of memory for global
data (%G). If the CPU is in the stop with I/O dik&bmode, the input scan is skipped.

Program execution

The application logic execution starts immediatefter the data input phase of the sweep.
Solving the program logic provides a new set ofpatisignals which are stored in discrete
outputs memory (%Q) or analog outputs memory (%Acordingly. In some CPU models

there are logic co-processors; the logic co-pramessecutes the Boolean instructions. In

such a case the time needed to solve the applicptagram is shortened.

Data output
During this phase of the sweep, following the pamgrexecution, outputs are updated

according to data from discrete outputs memory (%Q) analog outputs memory (%AQ).
Global data (%G) are sent to Genius communicatiodutes. This phase continues until all
outputs in output modules are updated. If the C®W ithe stop with /O disabled mode, the

-31 -

Ireneusz Mosoh Programmable Controllers

output scan is skipped.

Programmer service

This phase of the sweep is performed if a programmseonnected to the programmable
controller. The programmer is either a PC with agpamming package (VersaPro or
Logicmaster) or the Hand-Held Programmer, howeveaga of the latter is very rare
nowadays. During this phase of the sweep the CRIdutgs the programmer communication
window. The programmer can communicate with the @PWith intelligent option modules.
In the default limited window mode the CPU perforome operation for the programmer each
sweep. If the programmer makes a request thatresgmore than 6 ms to process (for some
CPU models 8 ms), the request processing is spretidver several sweeps — lengthening
each of these sweeps by no more than 6 (or 8) ms.

System communications

In this phase of the sweep communication requeasi® fintelligent option modules are
processed. Communication with intelligent optiondules is performed in the order of
appearing requests, but according to the rule —noamcation with one intelligent option
module in a sweep. In the defaulin-to completion mode, the length of the system
communications window is limited to 50 ms. If ateifigent option module makes a request
that requires more than 50 ms to process, the seédsiespread out over multiple sweeps —

lengthening each of these sweeps by no more thams50

Diagnostics
Diagnostics is made as a checksum calculation peeit on the user program at the end of

every sweep. The number of words to be checkedeapecified by the user (from 0 to 32).
If the calculated checksum does not match the eater checksum, the system variable
meaning the program checksum failure is set. Thises a fault entry to be inserted into the
programmable controller fault table and the colgromode to be changed to stop. The
default number of words for checksum calculatio8.is

In the standard program sweep, each sweep exeasitgaickly as possible, with a
varying duration of a sweep. An alternative to tisisa constant sweep mode; in this mode
duration of each sweep is the same. A value fraim Z00 ms (for some CPU models up to
500 ms) can be set for the constant sweep timer.

Constant sweep mode is used if it is necessarpdate input and output variables at a
constant frequency (as required in many controbralgmns). Constant sweep mode is also

used to ensure that a certain amount of time etaps®veen outputs update in current sweep

-32 -

Ireneusz Mosoh Programmable Controllers

and reading inputs in the next sweep (this timey& necessary to be sure that particular
input signals have changed their states after thipud signals that influence these input

signals had been changed).

Looking at this example it can be concluded thapde small differences in names of
the program cycle phases in figure 3.4 they arg sinilar to those at the simplified diagram
shown in figure 1.2: reading inputs is named dapaut, execution of the user programme has
almost exactly the same name — program executiotingvoutputs is named data output, and
finally housekeeping, programmer service, systemmanications, and diagnostics are all

the operating system tasks.

-33-

Ireneusz Mosoh Programmable Controllers

4. Programming of Programmable Controllers

In this chapter basic information about programmprggrammable controllers is
presented. This chapter is based on the thirdgddC 61131 and covers main terms and
ideas — presented with more details during lectuesorder to learn the whole material
Readers should refer to the standard itself omi af the references [16, 23], in which the
content of the standard is presented more widely.

The third part of the standard is tightly conndcte the first part of the standard, in
which definitions are established and charactesstf programmable controllers and
programmable controller systems are presentedeldrera lot of information (all necessary),
as the selected information from IEC 61131-1, acell in the last chapter of this materials.
All definitions and programmable controllers chaeaistics to which there are references in
the programming model are in this last chapter.

In this materials the main stress is put on treements of the programming model
according to IEC 61131-3 that have been implemergad are used in programming
packages Sucosoft S40 and Easy Soft CoDeSys (teatisd during tutorials and in the
laboratory). Presentation of other elements of glegramming model (for example: tasks,

access paths) is less detailed.

4.1. Programming model according to IEC 61131-3

The third part of IEC 61131 specifies syntax anuaatics of programming languages
for programmable controllers. Syntax describes uagg elements and the way they can be
used whereas semantics — their meaning.

Semantics ishe relationship between the symbolic elements fogramming language and

their meaning, interpretation and use.

The standard defines basic terms, general rulegrgamming model, communication
model as well as basic types and data structures.
In IEC 61131-3 the elements of programmable coletroprogramming languages are
classified as follows:
= Data types;
= Variables;
= Program Organization Units (POUS):
- Functions;

- Function Blocks;

-34 -

Ireneusz Mosoh Programmable Controllers

- Programs;

= Configuration elements:
- Global variables;
- Resources;
- Tasks;
- Access paths;

= Sequential Function Chart elements.

The software model from the standard is shownguaré 4.1. Definitions and explanations to
the software model elements are as follows.

A configuration is a language element which corresponds to a prograthemaimtroller
system as defined in IEC 61131-1.

A resourcecorresponds to a “signal processing function” emdman-machine interface” and
“sensor and actuator interface” functions (if aag)defined in IEC 61131-1.

A configuration contains one or more resourcesheaft which contains one or more
programs executed under the control of zero or nesks. A program may contain zero or
more function blocks or other language elementiefised in this part.

Configurations and resources can be started amgestiovia the “operator interface”,
“programming, testing, and monitoring” or “operairsystem” functions defined in IEC
61131-1. The starting of a configuration shall eatlse initialization of its global variables
according, followed by the starting of all the nesmes in the configuration. The starting of a
resource shall cause the initialization of all theiables in the resource, followed by the
enabling of all the tasks in the resource. The@tapof a resource shall cause the disabling
of all its tasks, while the stopping of a configiza shall cause the stopping of all its
resources.

A task is anexecution control element providing for periodic taggered execution of a
group of associated POUSs.

The standard describes also mechanisms for thieot@f tasks and mechanisms for

the starting and stopping of configurations andueses via communication functions.

Yet, for majority of programmable controllers (amabgrammable controller systems)
not all language elements that are present inribgr@mming model, have been implemented
in operating systems of controllers and their paogning packages. Still, the most common
situation for programmable controllers working different control systems is that the

controller performs one application program andreghé only one resource in the

-35 -

Ireneusz Mosoh Programmable Controllers

configuration (which is usually not explicitly deckd). For programmable controllers that are
used during tutorials and in the laboratory inste&donfigurations, topologies of control
systems are being created. Other language eleroétit® programming model are created
either for the program (for example global variabler for the topology (for example

communication functions).

CONFIGURATION
RESOURCE RESOURCE
TASK TASK TASK TASK
\ \ \
PROGRAM PROGRAM PROGRAM
Lk
[]
-
]
>
GLOBAL AND DIRECTLY REPRESENTED VARIABLES
A
ACCESS PATHS

Communication function

Execution control path

<“—>» o —> Variable access paths
FB
I Function block
[] Variable

Fig. 4.1. Software model

- 36 -

Ireneusz Mosoh Programmable Controllers

Communication functions are also described in IEX13-3 while describing the
communication model. In the communication maihel ways that values of variables can be
communicated among software elements are presented.

Data exchange between program elements in progralancantroller systems can
take place between:

= elements of a single program (for example, betwaaation blocks with the use of input
and output variables);
= programs within a single configuration (for exampkith the use of global variables);
= different configurations (for example, using deethraccess paths or with the use of
communication functions).
Communication functions are executed by commurgdoatiinction blocks and can perform
data exchange not only between different configomat (topologies) but also within a single

configuration or even within a single program.

4.2. Data types and variables

A number of elementary (pre-defined) data types racognized by the standard.
Additionally, generic data types are defined foe usthe definition of overloaded functions.
and a mechanism for the user or manufacturer toifgpadditional data types (derived data
types) are also defined.

A data types aset of values together with a set of permitted afpens.

A generic data types adata type which represents more than one typeataf d

Overloadedwith respect to an operation or function, capalbleperating on data of different

types.
Certain data types can be grouped together to gmmeric data types. Generic data types are

identified by the prefix “ANY”.
Generic data types and their hierarchy:
ANY = (1) ANY_BIT (BOOL, BYTE, WORD, DWORD)
= (2)ANY_NUM = (2a)ANY_INT (SINT, INT, DINT, USINT, UINT, UDINT)
— (2b) ANY_REAL (REAL, LREAL)
— (3)ANY_DATE (DATE, TIME_OF_DAY, DATE_AND_TIME)
= (4) TIME
— (5) STRING

= (6) Derived data types

-37 -

Ireneusz Mosoh Programmable Controllers

Among other groups of data types there is alsmapof derived data types.

Derived data types are special manufacturer or wuefined data types derived from
elementary data types and which have been assgned name. They are declared with the
keywords TYPE ... END_TYPE and can thus be used wh# new names in variable
declarations.

Derived data types can be divided into:

= Enumerated data type;
= Sub-range data type;
= Array data type;
= Structured data type.
Examples of derived data type (with their charastie) are shown later in the current

chapter.

Variables provide a means of identifying data ofsj@ehose content may change, for
example, data associated with the inputs, outputs)emory of the programmable controller.
A variable can be declared to be one of the eleangiypes or one of the derived types.
Declarationis the mechanism for establishing the definition ofaaguage element. A
declaration normally involves attaching an ideatifio the language element, and allocating
attributes such as data types and algorithms to it.

All variables can be divided into:
= directly represented variables;
= symbolic variables.

Direct representations a means of representing a variable in a programmebigroller

program from which a manufacturer-specified coroesience to a physical or logical
location may be determined directly.

The manufacturer shall specify the corresponderteden the direct representation
of a variable and the physical or logical locatmnthe addressed item in memory, input or
output. When a direct representation is extendetl additional integer field separated by
periods, it shall be interpreted as a hierarchitglsical or logical address with the leftmost
field representing the highest level of the higngravith successively lower levels appearing
to the right.

For example:

%I10033 — if this digital input variable reseto 90-30 series modular programmable
controller in which the first three modules arei@iignput modules
(with 16 digital inputs each), this is the firspurt in the third module.

- 38 -

Ireneusz Mosoh Programmable Controllers

%I1.2.3.1.7 — if this digital input variable refassPS4 series compact programmable
controller with EM4 network stations and LE4 loealpansion modules, this is
the seventh digital input in the first byte, in ttikerd module, in the second
network station, in the first communication line.

In this case the physical hierarchy is: controHeretwork — station — module —
input byte — single digital input.

If the hierarchy is logical it is usually with nelation to the physical structure of the

programmable controller’s inputs, outputs, memory.

For directly represented variables their memopatmn is always known. Depending
on the variable it can be stored in the contraleriemory or in the communication buffer

(network variables). It should be remembered tigital input and output variables are stored

in the process image memory.

The available addresses depend on the programmaiiellers hardware.

The following symbols can be used to specify aaldd length:

Symbol Meaning Length Examples
X or none Bit 1 bit %10.0.0.0.3 ; %MO0.0.0.1.7
B Byte 8 bits %1B0.0.0.0 ; %MB0.0.0.1
W Word 16 bits %IWO0.0.0.0 ; %MWO0.0.0.2
D Double word 32 bits %I1D0.0.0.0 ; %MDO0.0.0.8

Remark: Examples shown in the table are input and memory addresses used in PS4 series
programmable controllers. Double word applies only to PS416 modular programmable

controller.

Apart from direct representation of variables thisralso symbolic representation of
variables.

Symbolic representatiomeanghe use of identifiers to name variables.

An identifier is a string of letters, digits and underline charactehich shall begin with a
letter or underline character.
The case of letters shall not be significant imideers; the underline characters positions in

identifiers are significant. Identifiers are usyathlled variable names.

In contrast to directly represented variablesdhsrautomatic memory allocation of

symbolic variables.

-39 -

Ireneusz Mosoh Programmable Controllers

Symbolic names usually are but do not have to Begasd to directly represented
variables. In this case (symbolic names not asdigtiee operands are addressed with their
physical addresses — starting with the % charabtethe declaration the keyword AT is
entered before the physical address — separated fyyace. However even with directly
represented variables the use of symbolic name=c@nmended because this enables faster
modifications in POUs while programming, debuggitegting and starting-up programs.

An operands alanguage element on which an operation is performed

An operatotis asymbol that represents the action to be perforimesh operation.

For both — direct and symbolic — variable represon an initial value can be
assigned to the variable.
An initial valueis the value assigned to a variable at system spart-u

If an initial value is not assigned during declematof a variable, the variable will be
assigned its default value at the programmableralbet start-up. The default value depends
on the data type of the variable. For variablesAdfY _BIT, ANY_NUM and TIME data
types their default initial value is zero. For adnlies of STRING data type their default initial
value is empty string. For variables of ANY_DATEtaaypes their default initial value

depends on the manufacturer.

There are different types of variables. The typesalbvariables are defined in the
declaration section of a program organisation uNfriable types are identified with
keywords. Variables of the same type are stord@terdeclaration block. A declaration block
starts with a keyword that depends on the varigige and ends with a keyword that depends

on the variable type.

VAR ... END_VAR
Local variables are declared in this declaratioockl They are valid only within the POU

where they were declared.

VAR_GLOBAL ... END_VAR

Global variables are declared in this declaratitotkh A variable is declared as a global
variable if it is to be used in a program and inURQvhich can be called by this program. A
global variable called up in a program is knownhmtthis program and within the POUs that
are called up by this program. The variable mustidéegared with the same identifier (name)

as external variable in all invoked POUs in whicls iused.

VAR_EXTERNAL ... END_VAR

-40 -

Ireneusz Mosoh Programmable Controllers

External variables are declared in this declarabilmck. If a global variable is used within a
function block, it must be declared there as exlevariable with the same identifier (name).

VAR_INPUT ... END_VAR

Input variables are declared in this declaratioockl A variable is declared as an input
variable if it is to be read only within a functiam within a function block, or if it is to be
used for transferring parameters in a function érrection block. This variable value cannot
then be changed in this POU.

VAR_OUTPUT ... END_VAR
Output variables are declared in this declaratiook Output variables are used as outputs in

function blocks.

VAR_IN_OUT ... END_VAR

Input-output variables are declared in this detianablock. An input-output variable is read,

processed and output under the same name by thB8oiurlock in which it is used. Since

operations on an input-output variable have dieffgct on its value, this variable cannot be
of a type that does not permit write operationsordxample: variables with the attribute
CONSTANT.

TYPE ... END_TYPE
Derived data types are declared in this declardilook.

Declaration of various variable types and the ravfgbeir usage:

Keywords — beginning of the declaration block

VAR = P,F,FB

TYPE = P, F, FB (locally within the POU)
VAR_GLOBAL = P

VAR_EXTERNAL = FB

VAR_INPUT = F,FB

VAR_OUTPUT = FB

VAR_IN_OUT = FB

Keyword — end of the declaration block

END_VAR or END_TYPE

where: P — means program; F — means function; Fi@ans function block.

-41 -

Ireneusz Mosoh Programmable Controllers

Derived data types with examples

Declaration of a data type as enumeration

The declaration of an enumerated data type definbst of identifiers whose values may
contain a data element. In order to declare thenenated data type the variable list is entered
in parenthesis, with individual elements separateéd a comma. An initialisation value can
be assigned to a variable of this data type. lirdgtnalization value has not been assigned
during declaration, the variable will be assignég tvalue of the first element in the
enumeration list at the controller start-up.

Declaration of a variable “SYGNALIZACJA” of a datgpe as enumeration with the initial

value “Zolte” is shown in figure 4.2 as an example.

% POU Editor - [Test2 - PROGRAM]

File Edit Insert Wiew Options wWindows Help

b b = B =5 == === ==
BRI B[] EEEEe] FE (@28
TYPE
SYGWNALIZACTA: [Czerwone, Zolte, Zielone) = Zolte:
Temperatura C: INT(0..100) = 25;
Temperatura F: UINT(32..212) := 77
Tablica 1: LRRALY[O..5] OF BYTE := [16#9L, 16#AE, 16#BC, 16#CD, 16H#DE, 16fEF]:
Tablica Z: ARRAY[1..3,1..4] oOF UINT := [[1,2,3,4],.[5,6,7,8],.[9,10,11,12]7]:
Zdarzenie:
STREUCT
Eod: rsInT:
Data i Czas: DATE_iND_ TIME:
Wartosc 1: INT:
Wartosc 2: INT:
Wartosc_3: INT:
END_STRUCT;
END TYFE

|

Fig. 4.2. Declaration of derived data types — exasp

Declaration of a sub-range data type (restrictédeveange)

The use of derived data types enables the usesstaat the value range for the used data
type. If values beyond the value range are assjghedimit value next to it will be entered
automatically. This rule applies also to initialwes.

Declaration of a variable “Temperatura_C” of integata type with restricted value range
from O to 100 with the initial value 25, and dealdwn of a variable “Temperatura_F” of
unsigned integer data type with restricted valugeafrom 32 to 212 and the initial value 77

are shown in figure 4.2 as examples.

-42 -

Ireneusz Mosoh Programmable Controllers

Declaration of a data type as array

Various data elements of the same type can be camabnto an array which can consist of
elementary or derived data types. This data tymgedared with the keyword ARRAY and
the definition of the number of array elements #meir data type. Array variables may be
assigned with a direct address which is an addretse first element of the array.

Declaration of the array “Tablica_1" as a vector6o¥ariables of byte data type and initial
values written in hex format (data delimited on k&k by 16#), and declaration of the two-
dimensional array “Tablica_2” of 12 variables (#mows and four columns) of unsigned

integer data type with initial values are showrfigure 4.2 as examples.

Declaration of a data type as structure

Several data elements of different data types eagrduped together into a single structure. A
structure may consist of elementary or derived dgtas. A structure is declared with the
keywords STRUCT ... END_STRUCT and a list of the cfinee elements specifying their

data types.

A structured data typis anaggregate data type which has been declared ussiiR&CT or
FUNCTION_BLOCK declaration.
An aggregatés astructured collection of data objects forming aadstpe.

Declaration of a structure is shown in figure 42am example. “Zdarzenie” is a structure
comprising 5 variables of different data types; tKas of unsigned short integer data type,
“Data_i_czas” is of DATE_AND_TIME type, whereas “Wasc_1", “Wartosc_2" and

“Wartosc_3” are of integer data type.

The declaration of local and global variables carsbpplemented with the following
attributes (qualifiers): RETAIN and CONSTANT.
RETAIN
The attribute RETAIN is used to declare a retenkbgal or global variable. Retentive means
that with a warm start the variable declared asntete keeps the last valid value it had before
the stop. The attribute RETAIN is written behin@ keyword VAR or VAR_GLOBAL after
a space.
Remark: In some programmable controllers non retentive variables are called volatile, and

retentive variables are called non volatile.

CONSTANT
The attribute CONSTANT is used to declare a locaglobal variable if its value cannot be

-43 -

Ireneusz Mosoh Programmable Controllers

changed. The attribute CONSTANT is written behind keyword VAR or VAR_GLOBAL

after a space.

Additionally there are two other attributes thafer to BOOL data type and can only
be used as input variables (VAR_INPUT) for userction blocks. These are: R_EDGE
(rising edge) and F_EDGE (falling edge). The usaction block input declared as R_TRIG
or F_TRIG is high for one program cycle if the ahle associated to its input changes its
value from low to high (for R_TRIG declaration) émom high to low (for F_TRIG
declaration). If the user function block is not exied every cycle, the user function block

input will remain high until the next executiontbfs user function block.

4.3. Program organization units

There are three Program Organisation Units thate hasen distinguished in the
programming model:
* F —Functions;
= FB —Function Blocks ;

= P —Programs.

A function (procedure)s aprogram organization unit which, when executed|dg exactly

one data element and possibly additional outpuitkbes (which may be multi-valued, for
example, an array or structure), and whose invogatan be used in textual languages as an

operand in an expression.

A function block type is a programmable controller programming language efgme

consisting of: 1) the definition of a data struetyrartitioned into input, output, and internal
variables; and 2) a set of operations to be peddropon the elements of the data structure

when an instance of the function block type is keah

An input variable(input) is avariable which is used to supply an argument foragram
organisation unit.

An output variablgoutput) is avariable which is used to return result(s) of éhaluation of a
POU.

An argumenis synonymous with input variable, output variablemsout variable.

An instanceis anindividual, named copy of the data structure asg$ed with a function
block type or a program type, which persist frone amvocation of the associated invocation

to the next.

-44 -

Ireneusz Mosoh Programmable Controllers

An instance names anidentifier associated with a specific instance.

An instantiations the creation of an instance.

Before the standard IEC 61131 had been created mogmam organisation units as
functions and function blocks were usually calladb-programs. Sub-programs could be
called from programs or other sub-programs (nestdid). According to the standard there
are some clear distinctions between functions antttion blocks. Differences between
functions and function blocks are shown comparétiwetable 4.1.

Declaration of a function block is called its ingiation.
Each instantiation means that a copy of the fundblock with a new name has been created.

The name of a function block assigned to it dudregation is called the instance name.

During function block declaration a part of the gnammable controller's memory is
reserved to store all internal variables of thisction block. These internal variables can be
either allocated dynamically in the controllersmu@y or it is necessary to know how many
registers are needed to store all internal varsabiel point out the address of the first register

(n consecutive registers are used to store thaimblock internal data).

Table 4.1. Differences between Functions anmttfon blocks

Functions Function blocks

Functions are not declared. Function blocks nedxktdeclared.

Each function block can be used many
times, but each time it need to be
declared with a different name.

Each function can be used many times

Function can have many inputs, but on
one output.

yFunction block can have many inputs and
many outputs.

Function has not internal variables. Function blbak internal variables.

Function is a static language element; | Function block is a dynamic language

that means, that each time for the sam¢
combination of values of input signals t
value of the output signal is always the
same.

> element; that means, that for the same
heombination of values of input signals,
the values of the output signals can be
different.

Although a function can have only one output,dhput variable can consist of many

elements — as, for example, an array type variable.

- 45 -

Ireneusz Mosoh Programmable Controllers

4.4. Programming languages

There are two groups of programming languages eeéfim the standard: textual and
graphical.
Textual languages:
= |L — Instruction List ;
= ST — Structured Text .
Graphical languages:
= LD - Ladder Diagram ;
= FBD — Function Block Diagram .

In the IEC 61131-3 standard a method of creatiom grogram structure as a Sequential
Function Chart (SFC) is also presented. The SF®lesalescription of sequential control

tasks by means of graphs consisting of steps amgitions between these steps. Transitions,
and actions that are associated with the particsieps, are programmed in one of the

programming languages. Sequential control is ptesen Part 2 of this materials.

An additional programming language (available @ams programming packages) is

Continuous Function Chart (CFC). This is also ggi@al language.

Instruction List (IL)

The Instruction List language looks like and is ilamto an assembler language. The IL
language consists of a series of instructions. Hastruction begins in a new line and
contains an operator and, depending on the typp@fation, one or more operands separated
by commas.

In front of the first instruction in a program sequee there can be a label followed by a colon.
A POU written in the IL language can have also cants. Comments are placed between

parenthesis with asterisks; for exampleTijfs is a comment *).

Operators and modifiers that can be used in ILUagg are shown in table 4.2 [X,X].

In the table CR means “current result” and thisthe value which is stored in the
accumulator; N means Boolean negation of the openarodifier (means that the result of
consecutive operators until the operator) is fisean operand; C means condition, whereas
CN means negation of the condition; for exampleP@Mmeans jump conditional, JMPCN
means jump conditional not; ES1 is the label nad#eB1 is the function block name.

- 46 -

Ireneusz Moson

Programmable Controllers

Table 4.2. Operators and modifiers in the ILglaage

Operator | Modifiers | Operand Description
LD N * Operand is loaded into the accumulator JCR
ST N * CR is stored as the operand value
S BOOL | (Set) if CR =1, then the operand is TRUE
R BOOL | (Reset) if CR =1, then the operand is FALSE
AND N, (, N(BOOL | Boolean AND (CR and operand)
OR N, (, N(BOOL | Boolean OR (CR and operand)
XOR N, (, N(BOOL | Boolean XOR (CR and operand)
ADD (* Addition (CR and operand)
SUB (* Subtraction (CR and operand)
MUL (* Multiplication (CR and operand)
DIV (* Division (CR and operand)
GT (* (Greater Than) comparison: CR > operand
GE (* (Greater than or Equal) comparison: CR eperand
LT (* (Less Than) comparison: CR < operand
LE (* (Less than or Equal) comparison: CR < =i@nd
EQ (* (Equal) comparison: CR = operand
NE (* (Not Equal) comparison: CR < > operand
JMP C,CN ES1 Jump to the label ES1
CAL C,CN NFB1 | Call FB with the name NFB1
RET C,CN Return (from F or FB)
) Delimiter of the modifier (

An example of a program sequence written in théaiiguage (with the use of Sucosoft S40

programming package) is shown in figure 4.3.

=47 -

Ireneusz Mosoh Programmable Controllers

@ POU Editor - [Example1 - PROGRAM]

@ File Edit Insert Wiew Options Windows Help
BBB= w0 Bl ElE|(=Ee] 3] (@] 28
| wWame | type [1nitial value| Attribute | adaress | Comment
1 Var I1 BiOL I0.0.0.0.1 First input
2 Var IZ BiOL I0.0.0.0.2 SGecond input
] Var_ I3 BioOL I0.0.0.0.3 Third input
4 Var I4 BooL I0.0.0.0.4 Forth input
5 Var IS BOOL I0.0.0.0.5 Fifth input
& Var_ O ECioL Qo.0.0.0.0 output inr 0)
7
4 [[\ Type A Local £ Global / |« |
X
[*in example with digital wvariabhles¥))ij:l wee e | =
Lakel El1:
LD - Var Il AHD | oR | 2R
OF ‘U’ar:Iz Aoo | sue [| oo
LMD Var I3 wler s s
LMD War I4
SR ‘Uar_IS I GE | &T | LE | LT
ST ‘Uar:O ea | HE [amF |RET
caL | oAt ane freT

Fig. 4.3. An example of a program sequence writtdh language

Structured Text (ST)

The Structured Text language is similar to higheldanguages. The instruction section of a
POU written in the ST language consists of at leamt ST statement or a sequence of
statements. Each statement must be terminated avgamicolon. This separator allows a

statement to cover several lines, and severals&atts can be written on the same line.

Comments can be positioned at any place as requitezly are placed exactly as in the IL

language — between parenthesis with asterisks.

An expression is not an independent statementa lwoinstruction which, after its evaluation,
returns a result (a value) for further processmthe statement. An expression consists of one
or several operands that are linked together bynmed operators. An operand can be a

constant, a variable, a function call, or anothgression.

The evaluation of an expression takes place by meBprocessing the operators according to
certain binding rules. The operator with the stesigbinding is processed first, then the
operator with the next strongest binding, etc.,iluall operators have been processed.
Operators with equal binding strength are procefsed the left hand side to the right hand

side.

-48 -

Ireneusz Mosoh Programmable Controllers

Operators that can be used in ST language are simaahle 4.3 [41, 16].

Table 4.2. Operators in the ST language

Operation Symbol Binding strength
Parenthesization () 1 (high)
Function call Name () 2
Two’s complement - 3
Two’s complement used twice + 3
One’s complement NOT 3
Exponentiation *x 4
Multiplication * 5
Division / 5
Modulo MOD 5
Addition + 6
Subtraction - 6
Comparison > >=<,<= 7
Equality = 8
Inequality <> 8
Logic AND AND, & 9
Logic EXCLUSIVE-OR XOR 10
Logic OR OR 11 (low)

Instructions of the ST language are listed beloly [1B].

Elementary statements

Value assignment
Syntax: Data element := Expression ;
Empty statement

Example: ; (a single semicolon can be used asmutyestatement)

-49 -

Ireneusz Mosoh Programmable Controllers

Branching within a POU

Conditional statement
Syntax: IF Expression THEN StatementSequence END_IF ;
Single alternative statement
Syntax: IF Expression THAN StatementSequencel
ELSE StatementSequence2 END_IF ;
Multiple alternative statement

Syntax: IF Expressionl THEN StatementSequencel

ELSIF Expression2 THEN StatementSequence?2
ELSIF Expression3 THEN StatementSequence3

ELSE StatementSequenceN END_IF ;
Multiple selection (CASE statement)
Syntax: CASE Expression OF

Valuelistl : StatementSequencel

Valuelist2 : StatementSequence2

ELSE StatementSequenceN

END_CASE ;
WHILE loop
Syntax: WHILE Expression DO StatementSequence END_WHILE ;
REPEAT loop
Syntax: REPEAT StatementSequence UNTIL Expression END_REPEAT ;
FOR loop
Syntax: FOR LoopVariable := ExpressionlnitialValue TO ExpressionEndValue BY
StepWidth DO StatementSequence END_FOR ;
Loop exit
Syntax: EXIT ;

Branching within the application
POU exit
Syntax: RETURN ;

Call of a function block (with assignment of inpaisd outputs)
Remark: Function calls are not separate statements but expressions; therefore they can only

be used within expressions.

-850 -

Ireneusz Mosoh Programmable Controllers

An example of a POU written in the ST language lwhe use of Easy Soft CoDeSys
programming package) is shown in figure 4.4.

=i XSoft - WCKEO5x1. pro - [OBL_UCIAG (FB-ST)]
Q;; File Edit Project Insert Extras Online indow Help

B|=|8| B|@]|2dE|S S| * [Bo] 5|5
0001 fUNCTION_EILOCK CBRL_LICIAG
El POUs 000Z[VAR_INPUT

oo @ GEMERATOR [FB] 0003 EM:BOOL;, i*Wejscie "Enable" *)

OBL_UCIAG [FB) 0004 ZL: UIMT, (* Zadana wartosc uciagu)

DO0SEMD _WAR
O00BMWAR_QUTPUT
onoy ERD: BOOL; Mivizcie "Enable Outpot™)
ooog ZUP: UINT, * Zadana wartosc uciagu w procentach =)
onng WAL UINT, * Maksymalna zadana warosc uciagu w procentach
o010 eI LIMNT, * Minimalna zadana wartosc uciagu w procentach)
001 1|EMD _WAR
001 2[wAR
001 3EMD _WAR
ant4d

<
0001)IF ZU=801 THEM ZURP=20,
0002 ELSE ZUP=21U140;
0003 EMD_IF;
0004IF ZUP=100 THEM ZUP:=100;
0005 EMD_IF;
O00EMMAR =ZLIP+T;
O007)IF ZUP-T=20 THEM WhtIM:=19;
0008 ELSE WM =ZUP-T;
OOo9EMD_IF,
001 A EMC=EM;
0011

Ard Al

Fig. 4.4. An example of a POU written in the STgaage

Function Block Diagram (FBD)
The Function Block Diagram is a graphically oriehpgogramming language. It works with a
list of networks. Each network contains a structwi@ch represents either a logical or

arithmetic expression, the call of a function bloggump, or a return instruction.

An example of a network written in the FBD languagéth the use of Sucosoft S40
programming package) is shown in figure 4.5.

Ladder Diagram (LD)

The Ladder Diagram is a graphically oriented prograng language which resembles the
structure of an electric circuit. A program writtenthe LD language consists of a series of
networks. A network is limited on the left handesidnd on the right hand side by vertical

lines. In the middle there is a circuit diagram magh of contacts, coils and connecting lines.

-51 -

Ireneusz Mosoh Programmable Controllers

@ POU Editor - [Example1 - PROGRAM]

@File Edit Insert Wiew Options Windows Help
BREEEmw] [a8 (EREe] Z3) (E[2N
| Hame | Type | Tnitial value| Attribute | Address | Comment
1 Var Il BEOoL I6.0.0.0.1 First input
2 Var I2 BEOoL I0.0.0.0.2 SGecond input
3 Var I3 EooL I0.0.0.0.3 Third input
4 Var I4 BOL I0n.0.0.0.4 Forth input
5 Var IS BOOL I0.0.0.0.5 Fifth input
5] Var O BoOL o0.0.0.0.0 |Out.put. fnr 0)
7
4| » [\ Type ALocal £ Global / |« |
|
[3] | wes |40 [=
ool L&bEl_El ANHD | oF | #oR
An example with digital variables b il
Lo 5T 5 F
=E T LE LT
OR EQ HE |JMF |RET
‘-.?ar_Il AND CAL ch JrgP RET
War IZ
Var I3
- OFR
Var T4
— War_ O
Var TI5 3
[]

Fig. 4.5. An example of a network written in the-Binguage

The left vertical line can be treated as a powgapbuline, usually 24 V DC in a control
electric circuit, whereas the right vertical linancbe treated as a 0 V line. Networks are
analysed in a similar way as electric circuits -ethier they pass signal (current) from the left
hand side to the right hand side or not.

An example of a network written in the LD languafeith the use of Sucosoft S40

programming package) is shown in figure 4.6.

Contacts

Each network on the left hand side consists ofralrar of contacts (contacts are represented
by two parallel lines). A Boolean variable is asated with each contact. The value of a
Boolean variable can be TRUE or FALSE. If the vahiehe variable associated with the
contact is TRUE, then the signal is passed on girdhis contact. If opposite — i.e. the value
of the variable associated with the contact is FBEL®en the signal is not passed on through

this contact.

-52 -

Ireneusz Mosoh Programmable Controllers

% POU Editor - [Example1 - PROGRAM]

@File Edit Inmsert ‘iew Options ‘Windows Help
EBEEEE]fw (] [[EaE]EEE] EE) (@12
Hame | Type | Initial value| Attribute | Address | Comment
1 Var Il EoL If.0.0.0.1 First input
2 Var I2 EoL I0.0.0.0.2 Second input
3 Var I3 EoL I0.0.0.0.3 Third input
4 Var I4 BEOOL I0.0.0.0.4 Forth input
5 Var IS BEOOL I0.0.0.0.5 Fifth input
=) Var O BEOOL o0.0.0.0.0 |Output. (nr 0
7
4| [\ Type pLocal £ Global / | |
I
] -ED Hes [HHE | =
ool Label_El AHD | OF | #OR
An example with digital wvariables i ol el
Lo 5T 5 R
Var T1 Var I3 Var T4 Var O P
|| | |J,r| PO
[[K| oS ea | HE |amF | RET
Var I2 cau [cat [ane [rer
[1
10
Var TI5
| |
[
[

Fig. 4.6. An example of a network written in the ldhguage

A contact can be negated (negated contact is rmex$ by the slash in the contact symbol).
If the value of the variable associated with thgated contact is FALSE, then the signal is
passed on through this contact. If opposite -the.value of the variable associated with the
negated contact is TRUE, then the signal is nadguhsn through this contact.

Contacts can be connected in parallel, then onthefparallel branches must transmit the
signal so that the parallel branch transmits tgeadi or contacts can be connected in series,
then all contacts must transmit the signal. Thisrdfore corresponds to electric circuits:

parallel and series circuit.

Coils

On the right hand side of a network in LD there banany number of so-called coils (coils
are represented by parenthesis). They can only parallel.

A colil transmits the signal (is energized) if thgnal in the network has been passed on to the
entry line (on the left) of the coil. Then the Beah value of the variable associated with this
coil takes the value TRUE. Otherwise the Booledne/af the variable associated with this
coil is FALSE.

-B3 -

Ireneusz Mosoh Programmable Controllers

Coils can also be negated (negated coil is repteddoy the slash in the coil symbol). A
negated coil is energized if the signal in the meknhas not been passed on to the entry line
of the coil; the variable associated with this ¢sithen TRUE. Otherwise the negated coil is

not energised and the variable associated withcthiss FALSE.

Set / Reset coils

Coils can also be defined as set or reset coilsetAicoil can be recognized by the “S” in the
coil symbol. A reset coil can be recognized by fRthe coil symbol.

Boolean variables are associated with set and cedlst In a POU the same Boolean variable
is associated with at least one set coil and withast one reset coil.

A set coil never writes over the value TRUE of #ssociated Boolean variable. That is, if the
variable was once set at TRUE, then it remainsAsmeset coil never writes over the value
FALSE of the associated Boolean variable. If thealde has been once set on FALSE, then
it remains so. Therefore it is rather pointleskdoe a Boolean variable associated with either

only a set coil (set coils) or only a reset cagls@t coils).

Function blocks in the LD network

Apart from contacts and coils function blocks césode entered in an LD network. In the
network they must have an input and an output ®Bdblean variables and can be used at the
same places as contacts, that is on the left hded§the LD network.

In some LD editors however, function blocks carehtered in a POU only as separate rungs
in the ladder. Only single variables can be assediwith their inputs and outputs. If a value
of an input variable depends on a complex conditibis should be evaluated in a separate

rung. Such an example is shown and discussedapteh4.6.

An example of a network in the LD language (witle thse of Easy Soft CoDeSys
programming package) with two function blocks casted in parallel (a signal generator and

an up-counter) is shown in figure 4.7.

Continuous Function Chart (CFC)
The Continuous Function Chart editor does not dpelike Function Block Diagram with
networks, but rather with elements that can begalaquite freely, in different positions. This

allows, for example, feedback connections.

An example of a POU written in the CFC languagetiivine use of Easy Soft CoDeSys

programming package) is shown in figure 4.8.

-54 -

Ireneusz Mosoh

Programmable Controllers

4 XSoft - Nowy1.pro® - [PLC_PRG (PRG-LD]]

ﬁFl\e Edit Project Insert Extras Online Window Help

%Fi\e Edit Project Insert Extras Online ‘Window Help

e
Bls]e] Bi@ldeSEg & EnmE o - ol %
— 1 [DO0M[PROGRAM PLC_PRG
(3 POUs D002[VAR
@ ooo3| Gent: BLINK, (*Generator impulsow o czestotliwosci 10 Hz%)
aon4| Licznik1: CTU,; ("Licznik zliczajacy impulsy 2 generatora™
0005 Kasuj: BOOL; (Zrnienna kasujaca liczhik po doliczeniu do 100 impulsow®
000B|EMD_vaR
0oo7|
00og
[] k4
oot
Start Fozwolenie
I I
; — | {5}—
002
Stop Pozwolenie
| I
— | £
Ilnfufc}
Gent Liczhik1 y
Fozwolenie BLINK 310 Kasuj
—] ENABLE ouT| U wnnne Q { +—
T#a0ma—TIMELOW [T kasuireseT BBl ovi—Liczba
T#40mMs—{TIMEHIGH |~ = 100-PY 1
< >
Loading lkrary TP rogram FileswCormmon FilesiCAS-Targetsaelenlib CormmaniitilLib!
Loading lbrary 'SP rogram FilesiComman FilesiCAA-TargetsiMoellenlib_CommaniStandard.|ib'
< | >
[[BHONE [Bv [READ

et e L Tl e S e Y o e e = = T el [S e S
B00[FUNCTION_BLOCK proces3 ~
{3 POUs D002[VAR_INPLIT =
Stopz: BOOL, I |
~~[f] PLC_PRG [PRG) Up: BOOL;
Dawen: BOOL;

chin o i

— 3
|
Generatorimpulsow —]
T e T2 -

TON 0 TON @
770
T#0 15 - T#O 15— -
[Ukiad napelniania i oprazniania hiomika |
AND
@ S
@ AND CTUD
AND T2Q -
AN
w
Stop2 I—C
|Ze!rzymame procesu po asiagnieciy granicznychwartosei |

i

&iml >

I [ORLINE [OW [REED

Fig. 4.8. An example of a POU written in the CF@gaage

-55 -

Ireneusz Mosoh Programmable Controllers

4. 5. Standard functions and function blocks

In the International Standard IEC 61131-3 thera isumber of standard functions

declared. All these functions are divided into segeoups [41, 16]:

= Type conversion functions;

= Numerical functions;

= Bit string functions;

= Selection and comparison functions;

= Character string functions;

= Functions of time and data types;

= Functions of enumerated data types.

All function blocks that are mentioned in the Imational Standard IEC 61131-3 are divided
into four groups [41, 16]:

= Bistable elements;

= Edge detection elements;

= Counters;

= Timers.

Functions and function blocks belonging to theetisabove groups are not discussed in these
materials because there is a detailed descripfi@il these functions and function blocks in
the standard IEC 61131-3. Description of these tians and function blocks can be also
found in some references, for example in [16]. llese materials only some important

remarks have been made.

Manufacturers of programmable controllers usugltgvide quite a lot of diverse
functions and function blocks, more than those dlesd in the standard IEC 61131-3. This is
so because their programming packages have bedvingvduring past years and contain
functions and function blocks which have been dgwedl before the International Standard
IEC 61131 have been established. The use of suxttidns and function blocks should not
be recommended if analogous IEC functions and fondilocks exist, but is fully acceptable
if these functions and function blocks are somehmwgue, for example, because they can
implement specific programmable controllers’ haroai@atures.

The prototypes of IEC and manufacturer functiond &unction blocks often have
generic data types (ANY) associated with their ispand outputs. Generic data types cannot

be used for declaration of user function blockseaded data types of this kind are only

- 56 -

Ireneusz Mosoh Programmable Controllers

possible with input and output parameters of IECy@nufacturer functions and function
blocks.

In graphical languages POUs (functions and funchimcks) can have an additional
input EN and an additional output ENO. The EN inpadl the ENO output are always of the
BOOL type. The EN meaning is: the POU with EN inpuévaluated if the EN input has the
value TRUE. The ENO meaning is: after correct eatadun of the POU with EN input the
ENO output has the value TRUE. Otherwise the outistthe value FALSE. These special
inputs and outputs are used to control the apphicgtrogram execution.

An example how the EN input of the function canused (or not) in a program to
control the program execution is shown in figureés @nd 4.10. The intention was to add the
value 526 to the variable “Wartosc” only once —the first program cycle after the
programmable controller has been switched on.

In the first program (part of which is shown inurg 4.9) this was realized in the
following way. There is a Boolean variable “Pom’ctiged with an initial value TRUE. In
the first program cycle the condition for the cdiwgial jump to the label “skok” is therefore
not fulfilled. The next rung with the ADD functida executed (any time the function ADD is
executed the value on the EN input is TRUE) andiS2filded to the variable “Wartosc”. In
the next rung the Boolean variable “Pom” is resgettgelf. In the following program cycles,
until the variable “Pom” will remain FALSE the jungondition will be fulfilled and the rung
with the ADD function will be skipped.

In the second program (part of which is shown guife 4.10) this was realized with
the use of EN input. There is also a Boolean vé&idBom” declared with an initial value
TRUE. In the first program cycle when the valudle Boolean variable “Pom” is TRUE the
ADD function is executed (because the value onBNenput is TRUE) and 526 is added to
the variable “Wartosc”. In the next rung the Boaoleariable “Pom” is reset by itself. In the
following program cycles, until the variable “Pomiill remain FALSE the ADD function

will not be executed.

4.6. User functions and function blocks

Apart from IEC and manufacturer functions and fiworc blocks also user functions
and user function blocks can be used in applicapmgrams. User POUs (functions and
function blocks) are created using appropriate #otiqular programmable controllers

programming packages.

- 57 -

Ireneusz Mosoh Programmable Controllers

< XSoft - Cwiczenia_05_11_2009.pro - [PLC_PRG (PRG
% File Edit Project Insert Extras Online Window Help

2l=8| 5@
0013 Impuley_2: BOGL, A

{
‘3 POUs 0014 Alarm: BOOL;
[0018 Pom: BOOL = TRUE;

0016 \Wpisz BOOL,
0017 Wwartose: LINT = 204;
0018 Cisnienie_X1: LINT,
0019 Cisnienie_X2: UINT;
00200 X BOOL; =
0021|END_VAR
[&l 3
[T Al
Fom
/| [skok
Lulikg
ADD
EN
Wartosc— Wartosc -
526
nog
Pam Pom
| i
— | F—
003 |[skok
¥
€ e | >
Lozading lbran 'CaProgram FilesiCammon FllesiCAA-TargetstMoellerlib Cormmmonil ik
L | | [Loading library 'CiPragram FilesiGammon FllesiCas- TargetsihiosllerLib_CommonSTANDARD LIB'
B =NER < | >
I [BNLINE [Ov [REED

Fig. 4.9. Unconditional execution of the functioDB

<4 XSoft - Cwiczenia_05_11_2009x.pro* - [PLC_PRG (PRG-LD)]
% File Edit Project Insert Extras Online Window Help

AR BT % (Bl [-] o] |5

gl=8| 29
|08 Awaria_czujnika: BOOL, A

3 POUs (0009 Licznik CTUD;
(0010 Gent:BLINK

|0011| Genz:BLINK;

0012 Impulsy_1:BOOL;

| 0013 Impulsy_2: BOOL,

|ootd Alarmc BOOL;

001 Porm: BOOL = TRUE;

(0016 pisz BOOL,

ooty wartosc: LINT = 204;

[oote cisnienie_x1: UINT,

lools Cisnienie_xz: UINT,

oozl x BOOL;

[00Z1|END_vAR

(o0 >
[el ¥
A
006
Fam ADD
—| I L EN
Wartosc— Wartosc
526 :
noo?
Pom Pom
I i
— |]
008 | |
e | >
Lozading lbran 'CaProgram FilesiCammon FllesiCAA-TargetstMoellerlib Cormmmonil ik
L | | [Loading library 'CiPragram FilesiGammon FllesiCas- TargetsihiosllerLib_CommonSTANDARD LIB'
BN =R < | >
I [BNLINE [Ov [REED

=

Fig. 4.10. Conditional execution of the function BD

-B8 -

Ireneusz Mosoh Programmable Controllers

Creation and usage of user POUs in applicatiomgraros, especially user function
blocks, has many advantages:

= helps in structuring application programs;

= important application program quality features {fvaility, modifiability and reusability)
are improved;

= creation of application programs can be less tim@sgming, as function blocks can be
declared and used many times;

= jtis possible to create user function blocks tie&tr to specific hardware features;

= once user function blocks has been thoroughly deistis then easier to test and start-up

application programs.

Usage of user function blocks helps in structuapglication programs, because its structure
becomes more clear. Part of the application programplexity is covered by user function
block bodies. This in turn positively influences mgamportant application program quality
features: verifiability, modifiability and reusaityl. It is easier to analyse such a structured

program and make changes if necessary during thteotgystem life time.

A user function block once created can be decléneth different names) and used in an
application program many times. Therefore repeagetion of a program can be programmed
as a user function block and used many times. Memceven if there are no repeated
sections in a program and a user function block el created, it can be used in other
programs. In such a way a programmer can creatmtslibrary of user function blocks, to

save time in writing other application programstuture.

The use of tested user function blocks helps itingsn starting-up application programs. If
there are errors in a program it is easier to fimeim debugging the program, because the

programmer can be quite sure that they are nateriss user function blocks.

The other important difference between IEC or maouwirer function blocks and user

function blocks is the fact, that user function di® can refer to specific features of the
sensors, actuators and other automation equipranoperates in a programmable controller
based control system. Unlike standard function kdpaser function blocks can be created as

specific hardware functions oriented function bkck

Such a user function block created (with the useSwcosoft S40 programming
package) for control of a specific hardware elemsrghown in figure 4.11. This is a user
function block named 1ZM_1T to control a circuitelker of IZM type. This function block

has 4 digital inputs, 2 time inputs and 6 digitatputs. As it can be seen in the declaration

- 59 -

Ireneusz Mosoh Programmable Controllers

section this function block has been used in tlogmam several times (with the following
names: CB_TR1, CB_TR12, CB_TR2, CB_TR3, CB_TR4)chEame different variables

have been associated with its inputs and outputs.

® POU Editor - [PROG_BC1 - PROGRAM]
@ File Edt Insert View Options Windows Help |5 EJ
BT alw] (% 5[] Be] EE)[E=E=] B3] @2
[Bl2] [0 [] [we]=] (E[Z]
Hame Type [Initial value | Attribute | Address Comment l;
ioz CE:TR1 i IZM 1T Obsluga wylacznika CE/TERL
103 |cE TR1Z IZN 1T Obslugs wylacznika CB/TR1Z [
104 CE_TR2 IZM 1T Obsluga wylacznika CE/TRZ2
105 CE_TR3 LZM 1T Obsluga wylacznika CE/TRS
106 CE_TR4 IZM 1T Ohsluga wylacznika CE/TR4
107 CETG11_ W BOOL |e1.3.3.0.1 Wylaceenie CE/TS11
108 CBTG11 Z BOOL 01.3.3.0.0 Zalaczenie CB/TG11
108 CETG1z W BCOOL |91L.3.3.0.3 Uylaczenie CB/TG12 -
4] v [§ Type jLocal £ Glohal / | ER IR Sl
0055 =
(— !
CE_TR1 | ves [41 | 3|
— AND | OF | ROR
IZM_1T a0 [sue [v | o |
WCE_TRL WNHI_NC ZAL CETR1_Z sl | |l 1
GE | 6T | LE LT 1
WAR_ZAL WYL CETR1_W ol e Do dner
ere | At Jame [reT
WAR_WY¥L NIE ZAL it [[
AUTO PHL Kasowanie HNIE_ WYL
TH#1500ms Czasz 01 NIE_PRZIEL M5 3
T#500me Czag 10 TRWA PREZE
ul
0056 s
. s
[Help wvia key F1 PS4-300 [INS 05632

. POL Editor - [PROG_. ..

Fig. 4.11. User function block 1ZM_1T for contrdithhe ICM circuit breaker

An interesting function block declaration featusg that after declaring a function
block its inputs and outputs can be used in thgrara without any additional declaration.
Even if there are no variables associated with smmets and outputs of the function block,
that does not mean that these inputs and outpetaarused in the program. For example,
even if there is no variable on the “WAR_ZAL” furant block input it is used in the
program. This is shown in figure 4.12.

In the lower rung shown in the figure there is artpat variable (coil) with the name
“CB_TR1.WAR_ZAL". The first part of this name reteto the function block CB_TR1,
whereas the second part of the name means theypartinput of this function block, which
iIs WAR_ZAL. Such usage of inputs and outputs ofction blocks can limit the number of

auxiliary variables that need to be declared inpifegram (or other POU). This is also a proof

-60 -

Ireneusz Mosoh Programmable Controllers

that during declaration of a function block a p#Erthe programmable controller's memory is

reserved to store the function block input, ougmd internal variables.

® POU Editor - [PROG_BC1 - PROGRAM]

Fila Edit Insert ‘iew Options ‘Windows Help o = i]
BIEE=[E] xR B Ea) E=e] [FE) B[N

BIR) [[=] [el=] =]

Hame Tvpe [Initial value | Attribute | Address Comment I;
10z CE TR1 i IZM 1T Ohelugs wylacznika CE/TRL =t
103 CE_TRiZz LZM 1T Obsluya wylacznika CB/TR1Z
104 CB_TR2 IZM 1T Obsluga wylacznika CE/TRE
105 CB_TR3 IZM 1T Ohsluga wylacznika CE/TR3 =
«[» [\ Type jLocal £ Glohal / I« | o]

ao52 =
Stany zasilania 1 wylacznikow przy ktorych ma nastapic zalaczenie CE/TR1 i
WSD_TR1xl WSD_TRZxl
ull WCB_TR1Z 2 2 FWE_G PWP_GEN PWP B2 Z_CB_TR1
__| | | | | | | | I,-'rl | | ¢] ey,
[[l [[11 141 11 R
uiz
WD _TR1xl
u1s WCE_TRZ 2
_| | | | | |
I I I
Ul5 WCE TR2Z WCE TRL2
_| | |1 ||
[[[
ul
0053
Kontrola warunkow umcozliwiajacych zalaczenie CE/TRL
CE_TR1.WA
Z CB_TR1 TRIP_N1 AUTC N1 R ZAL
| | ‘f‘ || Fa
[I 14T | o |
o 4
« o
[Help wia key F1 [PS4-300 NS (00413

vigator - EIZZI'J‘!T!iE:{; & POL Editor - [PROG_..,

Fig. 4.12. Usage of the function block input vakeahs a program variable that do not need to
be declared

Another example of a user function block (creatéith the use of Easy Soft CoDeSys
programming package) is shown in figure 4.13. Ti8sthe user function block
“OBL_UCIAG” which has been declared with the nanZ&D_UCIAG”. It has one input of
UINT data type and three outputs of UINT data type.

Additionally it has an EN input (BOOL type) and &NO output (BOOL type) but these
input and output are not used in the program.
The OBL_UCIAG function block has been programmedhie ST language and the body of

this user function block has been shown in figure 4

In the declaration section declaration of somaabdes can be seen. It is worth to
mention that apart from symbolically representedaldes FST_SCAN and ALWAYS_ON

(which are declared with an initial value TRUE) @thvariables are directly represented

-61 -

Ireneusz Moson

Programmable Controllers

variables (the keyword with the variables address€omments in (* ... *) have been

associated to all variables shown in figure.

4 XSofi - WCKFO5x1. pro - [PLC_PRG (PRG-LD)]

% File Edt Project Insert Extras Online Window Help

i3 POUs
~[#9 GENERATOR (FE]
DBL_LICIAG [FE)

G]

-8 %
B EE R e A e e e N e i £ R e]
an3o0| H_AUTO AT %02 4: BOOL, (* Lampka - praca automatyczna *) A
a0 H_AWARIAAT % Q2.5 BOOL, (* Lampka - awaria sterowania ®
0032 WENT_HAM AT %032 6: BOOL; (7 Zalaczony wentylator Uklady hamowania =
an3s REZ_W AT S@x2 7: BOOL, * Wiyjscie rezenwowe =)
0034 Z_PREDKAT %4 LINT; (* Zadajnik predkosci od 0 do +10V* =
0038 7 UCIAG AT %IWE: UINT; * Zadajnik uciagu od 0 do +10v *
0036 MOMENT AT %18 UINT; * Biezaca warosc momentu od O do +10% z wyjscia Abd *)
0037 OMEGA AT %1 0: LINT, {* Biezaca wartosc predkasci obrotowe] od O do +1 0V z wyjscia AMI*)
0038 PREDKOSC AT %Cid: UINT, (* Zadawana wartose predkosci obrotowe] na falownik od 0 do +10Y %)
an3s REZ_AMALOG AT %G LINT; (* Rezenva wyjscia analogoweago ™)
0040| FET_SCAN: BOOL '=TRUE; * Plerwszy cykl obiegu programu *)
4 ALW_ON: BOOL = TRUE; (* Fawsze wartosc TRLUE *)
0042 Fakaz: BOOL; (* Brak pozwolenia - manetka wychylona *) o
& >
0016 A
Timer_4
Wie_Timer_4 TON_ We_Timer_4
| ff
| B e
T#1 000ms—PT ET—
0017
ZAD_UCIAG
OBL_UCIAG
EM EMO
l7_Uciac—zU ZUP—7_ UCIAG_F
WA —UCIAG A
MIN—U CIAG_MIMN
¥
< | ¥
Loading llbrary 'CiProgram FllesiComman FilesiCAA TargetsiMoellenlib_Commanilitillin'
Loading library 'CiProgram FllesiCommon Files\CAA-Targetsioellenlib_CommaoniStandard lib'
< | >

:4 Start

Fig. 4.13. An example of a user function block

= -

[BNLINE 3% [READ

Basing on the above shown examples it can beitifirconcluded that usage of user

function blocks helps to structure and reducestmplexity of application programs.

-62 -

Ireneusz Mosoh Programmable Controllers

5. International Standard IEC 61131 — Selected Imfrmation

International Standard IEC 61131 consists of tHevieng parts under the general title:
Programmable controllers.

Part 1: General information

Part 2: Equipment requirements and tests

Part 3: Programming languages

Part 4: User guidelines

Part 5: Communications

Part 6: Reserved

Part 7: Fuzzy-control programming

Part 8: Guidelines for the application and impletagan of programming languages for

programmable controllers

The purposes of this standard are:

Part 1 establishes the definitions and identifiesgrincipal characteristics relevant to the
selection and application of programmable contrslénd their associated peripherals;

Part 2 specifies equipment requirements and retatdd for programmable controllers (PLC)
and their associated peripherals;

Part 3 defines, for each of the most commonly ygedramming languages, major fields of
application, syntactic and semantic rules, simpiiecomplete basic sets of
programming elements, applicable tests and meamstmph manufacturers may
expand or adapt those basic sets to their own gnogiable controller
implementations;

Part 4 gives general overview information and agpion guidelines of the standard for the
PLC end-user;

Part 5 defines the communication between prograrterantrollers and other electronic
systems;

Part 6 is reserved,;

Part 7 defines the programming language for fuzmnyrol,

Part 8 gives guidelines for the application andlenpentation of the programming languages
defined in Part 3.

The first part of the standard (IEC 61131applies to programmable controllers (PLC) and

their associated peripherals such as programmingda&bugging tools (PADTs), humane

- 63 -

Ireneusz Mosoh Programmable Controllers

machine interfaces (HMIs), etc., which have asrtimeénded use the control and command of
machines and industrial processes.

PLCs and their associated peripherals are intetadbd used in an industrial environment and
may be provided as open or enclosed equipmentPIE@ or its associated peripherals are
intended for use in other environments, than thecifp requirements, standards and
installation practices for those other environmantsst be additionally applied to the PLC

and its associated peripherals.

The functionality of a programmable controller che performed as well on a specific

hardware and software platform as on a generalgsergomputer or a personal computer
with industrial environment features. This standapgplies to any products performing the
function of PLCs and/or their associated periplserdhis standard does not deal with the
functional safety or other aspects of the overatbmated system. PLCs, their application
programme and their associated peripherals areidsyed as components of a control
system.

Since PLCs are component devices, safety considesator the overall automated system
including installation and application are beyohd scope of this Part. However, PLC safety
as related to electric shock and fire hazards,t@tat interference immunity and error

detecting of the PLC-system operation (such asue of parity checking, self-testing

diagnostics, etc.), are addressed. Refer to IEG46@8 applicable national/local regulations
for electrical installation and guidelines.

This Part of IEC 61131 gives the definitions ofnterused in this standard. It identifies the

principal functional characteristics of programngabbntroller systems.

Two other parts are indispensable for the appbcatif the IEC 61131-1 part of the standard:
= |EC 61131-2, Programmable controllers — Part 2:ijgigent requirements and tests;
= |EC 61131-3:2003, Programmable controllers — PaRr8gramming languages.

For the purposes of the first part of the standiaedfollowing terms and definitions apply.

Application programme or user programme
Logical assembly of all the programming languagemgnts and constructs necessary for the

intended signal processing required for the comfa machine or process by a PLC-system.

Automated system
Control system beyond the scope of IEC 61131, irchvRLC-systems are incorporated by or

for the user, but which also contains other comptimcluding their application programs.

-64 -

Ireneusz Mosoh Programmable Controllers

Field device

Catalogued part to provide input and/or output riatees or to provide data pre-

processing/post-processing to the programmableatartsystem. A remote field device may

operate autonomously from the programmable coetr@ystem. It can be connected to the

programmable controller using a field bus.

Ladder diagram or relay ladder diagram
One or more networks of contacts, coils, graphycadpresented functions, function blocks,
data elements, labels, and connective elementsnitkdl on the left and (optionally) on the

right by power rails.

Programmable (logic) controller (PLC)

Digitally operating electronic system, designed @ise in an industrial environment, which
uses a programmable memory for the internal stomfgeiser-oriented instructions for
implementing specific functions such as logic, ssting, timing, counting and arithmetic, to
control, through digital or analogue inputs and pots, various types of machines or
processes. Both the PLC and its associated peaisha&re designed so that they can be easily
integrated into an industrial control system ansllgaised in all their intended functions.

Programmable controller system or PLC-system

User-build configuration, consisting of a prograntmheacontroller and associated peripherals,
that is necessary for the intended automated sydteconsists of units interconnected by
cables or plug-in connections for permanent irstialh and by cables or other means for
portable and transportable peripherals.

Programming and debugging tool PADT)

Catalogued peripheral to assist in programmindingscommissioning and troubleshooting

the PLC-system application, programme documentadimh storage and possibly to be used
as HMIs. PADTs are said to be pluggable when thay ive plugged or unplugged at any
time into their associated interface, without aisi to the operators and the application. In all
other cases, PADT are said to be fixed.

Remote input/output station (RIOS)

Manufacturer’s catalogued part of a PLC-systemuiticlg input and/or interfaces allowed to
operate only under the hierarchy of the main praiogs unit (CPU) for 1/O
multiplexing/demultiplexing and data pre-procesfmwogt-processing. The RIOS is the only
permitted limited autonomous operation, for exampleder emergency conditions such as

- 65 -

Ireneusz Mosoh Programmable Controllers

breakdown of the communication link to the CPU bthe CPU itself, or when maintenance

and trouble shooting operations are to be performed

FUNCTIONAL CHARACTERISTICS

Basic functional structure of a programmable contrdler system

The general structure with main functional compaseém a programmable controller system
is presented in figure 5.These functions communicate with each other artld thie signals

of the machine/process to be controlled.

Other systems

ﬁ

1 [RUMAN-MACHINE
— [N TERFACE —= OPERATOR
COMMUNICATION functions
functions
PROGRAMMIMNG,
» DEBUGGING, » APPLICATION
TESTIMNG prograrnmer
~7 functions
SIGHAL PROCESSING
functions OPERATIMNG
—=] S STER
functions
POWER APPLICATION
. APPLICATION
Mains SLUPPLY I PROGRAMME
supply function PROGRAMME 1 STORAGE
functions ; .
unctions
» DATA
| STORAGE
INTERFACE functions to
sensors and actuators
i}]

Machine/Process
Fig.5.1. Basic functional structure of a PLC-system

Signal processing functions
The CPU function consists of the application progree storage, the operating system, and

- 66 -

Ireneusz Mosoh Programmable Controllers

the execution of the application programme funcion
The CPU processes signals obtained from sensomselisas internal data storage and
generates signals to actuators as well as intedatd storage in accordance with the

application programme.

Interface function to sensors and actuators
The interface function to sensors and actuatorserts
= the input signals and/or data obtained from the him&¢process to appropriate signal
levels for processing;
= the output signals and/or data from the signal ggsimg function to appropriate signal
levels to drive actuators and/or displays.
The input/output signals to the interface functionay be coming from special modules
which pre-process external sensor signals accotditige defined functions contained in the
special modules themselves. Examples of such d$pmaoidules include PID module, fuzzy-

control module, high-speed counter module, moti@dutes and others.

Communication function
The communication function provides data exchantle @ther systems (third-party devices)

such as other PLC-systems, robot controllers, coenpuetc.

Human-machine interface (HMI) function
The HMI function provides for interaction betweemetoperator, the signal processing

function and the machine/process.

Programming, debugging, testing and documentationuinctions
These functions provide for application programmenegation and loading, monitoring,
testing and debugging as well as for applicati@mgpmme documentation and archiving.

Power-supply functions
The power-supply functions provide for the convamsiand isolation of the PLC-system

power from the mains supply.

Characteristics of the CPU function

The capabilities of the programmable controllers @etermined by programmable functions
which, for ease of use, are subdivided into appboeoriented groups:
= |ogic control (logic, timers, counters);
= signal/data processing (mathematical functionsgg dahdling, analogue data processing);
= interfacing functions (input/output, other systeldb)l, printers, mass memory);

- 67 -

Ireneusz Mosoh Programmable Controllers

= execution control;

= gystem configuration.

Operating system

The operating system function is responsible f@ mhanagement of internal PLC-system
interdependent functions (configuration control, nmeey management, application
programme execution management, communication petipherals and with the interface
functions to sensors and actuators, etc.).

After a power-down or a distortion, the PLC sysigan restart in three different ways.

Cold restart

Restart of the PLC-system and its application @ogne after all dynamic data (variables
such as I/0 image, internal registers, timers, tegnetc., and programme contexts) are reset
to a predetermined state. A cold restart may benaatic (for example, after a power failure,

a loss of information in the dynamic portion(s) toe memory(ies), etc.) or manual (for

example, push-button reset, etc.).

Warm restart

Restart after a power failure with a user-prograchmedetermined set of remnant data and a
system predetermined application programme confextarm restart is identified by a status
flag or equivalent means made available to theiegmn programme indicating that the

power failure shut-down of the PLC-system was detém the run mode.

Hot restart

Restart after power failure that occurs within grecess-dependent maximum time allowed
for the PLC-system to recover as if there had lmeepower failure.

All I/0O information and other dynamic data as waslthe application programme context are
restored or unchanged.

Hot-restart capability requires a separately podeesal-time clock or timer to determine
elapsed time since the power failure was deteatedaauser-accessible means to programme

the process-dependent maximum time allowed.

Memory for application data storage

Application programme storage

The application programme storage provides for mgniocations to store a series of

instructions whose periodic or event-driven exemutdetermines the progression of the

- 68 -

Ireneusz Mosoh Programmable Controllers

machine or the process. The application programim@ge may also provide for memory
locations to store initial values for applicatiomgramme data.

Application data storage

The application data storage provides for memocgtions to store I/O image table and data
(for example, set values for timers, counters,malaonditions, parameters and recipes for the

machine or the process) required during the exacwi the application programme.

Memory type, memory capacity, memory utilisation

Various types of memory are in use: read/write (RAKead-only (ROM), programmable
read-only (PROM), reprogrammable read-only (EPROWARROM, EEPROM). Memory
retention at power failure is achieved by a propelection of the memory type where
applicable (for example, EPROM, EEPROM) or the ofanemory back-up for volatile
memories (for example, a battery).
Memory capacity relates to the number of memorgatioos in Kbytes, which are seserved to
store both the application programme and the amjpbic data. Memory capacity
measurements are:

= capacity in the minimum useful configuration;

= size(s) for expansion increments;

= capacity(ies) at maximal configuration(s).
Each programmable function used by the applicgtr@gramme occupies memory locations.
The number of locations required generally depemmdghe programmable functions and the
type of programmable controller.
Application data storage requires memory capaciyedding on the amount and format of

data stored.

Execution of the application programme

An application programme may consist of a numbetasks. The execution of each task is
accomplished sequentially, one programmable fundiica time until the end of the task. The
initiation of a task, periodically or upon the dgten of an event (interrupt condition), is
under the control of the operating system.

Characteristics of the interface function to sens®@ and actuators

Types of input/output signals
Status information and data from the machine/pmege conveyed to the I/O system of the
programmable controller by binary, digital, increrted or analogue signals. Conversely,

-69 -

Ireneusz Mosoh Programmable Controllers

decisions and results determined by the procesdungtion are conveyed to the
machine/process by use of appropriate binary, aligmcremental or analogue signals. The
large variety of sensors and actuators used reqjadeommodating a wide range of input and

output signals.

Characteristics of the input/output system

Various methods of signal processing, conversionisatation are used in input/output
systems. The behaviour and performance of the Bis@s depend on the static/dynamic
evaluation of the signal (detection of events)risggnon-storing procedures, opto-isolation,
etc.

Input/output systems in general display a modulancfionality which allows for
configuration of the PLC-system according to thedseof the machine/process and also for
later expansion (up to the maximum configuration).

The input/output system may be located in closipriby to the signal processing function
or may be mounted close to the sensors and actuaftthe machine/process, remotely from
the signal processing function.

Characteristics of the communication function

The communication function represents the commutioicaaspects of a programmable

controller. It serves the programme and data exghdetween the programmable controller
and external devices or other programmable coetolbr any devices in an automated
system.

It provides functions such as device verificatidata acquisition, alarm reporting, programme
execution, and /O control, application programmansfer, and connection management to
the signal-processing unit of the PLC from or taeaternal device.

The communication function is generally accomplisbg serial data transmission over local

area networks or point-to-point links.

Characteristics of the human-machine interface (HM) function

The HMI function has two purposes.
= To provide the operator with the information neeeggor monitoring the operation of the
machine/process.
= To allow the operator to interact with the PLC-systand its application programme in

order to make decisions and adjustments beyonditftBvidual user scope.

-70 -

Ireneusz Mosoh Programmable Controllers

Characteristics of the programming, debugging, morioring, testing and documentation

functions

These functions are implemented as either an iategr an independent part of a
programmable controller and provide for code geimraand storage of the application
programme and application data in the programmabl&roller memory(ies) as well as

retrieving such programmes and data from memony(ies
Language
For the programming of the application, there sgtof languages defined in IEC 61131-3.

Textual languages

Instruction list (IL) language

A textual programming language using instructiors fepresenting the application
programme for a PLC-system.

Structured text (ST) language

A textual programming language using assignmert;pgagramme control, selection and

iteration statements to represent the applicatiogramme for a PLC-system.

Graphical languages
Function block diagram (FBD) language

A graphical programming language using functioncklaiagrams for representing the
application programme for a PLC-system.

Ladder diagram (LD) language

A graphical programming language using ladder @iangr for representing the application
programme for a PLC-system.

Sequential function chart (SFC)

A graphical and textual notation for the use opstand transitions to represent the structure
of a program organisation unit (program or functidock) for a PLC-system. The transition

conditions and the step action can be representacgubset of the above-listed languages.

Writing the application programme

Generating the application programme

The application programme may be entered via alpm@nic or symbolic keyboards and,
when menu-driven displays are, or a graphical @ogne entry is, used via cursor keys,

joystick, mouse, etc. All programme and data estaee generally checked for validity and

-71 -

Ireneusz Mosoh Programmable Controllers

internal consistency in such a way that the entryincorrect programmes and data is
minimized.

Displaying the application programme

During application programme generation, all instians are displayed immediately,
statement by statement or segment by segment éincélse of a monitor or other large
display). In addition, the complete programme canegally be printed. If alternative
representation of programming language elemerasgagable, than the display representation

is generally user-selectable.

Automated system start-up

Loading the application programme

The generated programme resides either in the meaidhe programmable controller or in
the memory of the PADT. The latter requires a paiogne transfer via down-loaded or
memory cartridge insertion into the programmableticler before start-up.

Accessing the memory

During start-up or trouble-shooting operations, #pplication programme and application
data storage are accessed by the PADT as wellédyprbcessing unit to allow programme
monitoring, modification and correction. This mag done on line (i.e. while the PLC-system
is controlling the machine/process).

Adapting the programmable controller system

Typical functions for adapting the PLC-system te thachine/process to be controlled are:
= test functions which check the sensors and acwiatmnnected to the PLC-systems (for
example, forcing the outputs of the PLC-system);
= test functions which check the operation of thegproxme sequence (for example, setting
the flags and forcing the inputs);
= setting or resetting of variables (for example etig} counters, etc.).

Indicating the automated system status

The ability to provide information about the madprocess and the internal status of the
PLC-system and of its application programme fat#is the start-up and debugging of a PLC
application. Typical means are:

= status indication for inputs/outputs;

indication/recording of status changes of extesigials and internal data;

scan time/execution time monitoring;

real-time visualization of programme execution dath processing;

fuse/short-circuit protection status indicators.

-72 -

Ireneusz Mosoh Programmable Controllers

Testing the application programme

Test functions support the user during writing, wging and checking the application
programme. Typical test functions are:
= checking the status of inputs/outputs, internatfioms (timers, counters);
= checking programme sequences, for example, stegtdpy-operations, variations of
programme cycle time, halt commands;
= simulation of interface functions, for example,diog of I/Os, of information exchanged
between tasks or modules internal to the PLC-system

Modifying the application programme

Functions for modification provide for changing, juEling and correcting application
programmes. Typical functions are search, replatert, delete, and add; they apply to

characters, instructions, programme modules, etc.

Documentation
A documentation package should be provided to fdiscribe the PLC-system and the
application. The documentation package may coosist
= description of the hardware configuration with paijdependent notations;
= application programme documentation consisting of
- programme listing, with possible mnemonics for aigrand data processed,;
- cross-reference tables for all data processed ,(if@srnal functions such as internal
stored data, timers, counters, etc.);
- comments;
- description of modifications;
- maintenance manual.

Application programme archiving

For rapid repair and to minimize down-time, therusey want to store the application
programme in non-volatile media such as flash, B@ds; EEPROM, EPROM, discs, etc.
Such a record needs to be updated after everygroge modification so that the programme

executed in the PLC-system and the archived proginemain the same.

Characteristics of the power-supply functions

The power supply functions generate voltages nacgs® operate the PLC-system and
generally also provide control signals for propét/OFF synchronization of the equipment.
Various power supplies may be available dependmgupply voltages, power consumption,
parallel connection, requirements for uninterruptilgperation, etc.

-73 -

Ireneusz Mosoh Programmable Controllers

AVAILABILITY AND RELIABILITY

Every automated system requires a certain levavailability and reliability of its control
system. It is the user’s responsibility to ensuna the architecture of the overall automated
system, the characteristics of the PLC-system #&mdapplication programme will jointly

satisfy the intended application requirements.

Architecture of the automated system
Techniques such as redundancy, fault toleranceaamoimatic error checking, as well as
machine/process diagnostic functions can provideecements in the area of availability of

the automated system.

Architecture of the programmable controller system

A modular construction in conjunction with suitabigernal self-tests allowing rapid fault
identification may provide enhancements in the afgaaintainability of the PLC-system and
therefore of the availability of the automated syst Techniques such as redundancy and
fault tolerance of the availability of the autonthtgystem. Techniques such as redundancy
and fault tolerance may also be considered foriapapplications.

Design, testing and maintenance of the applicatiomrogramme

The application programme is a key component of dkerall automated system. Most
programmable controllers provide enough computiogvgr to permit implementation of

diagnostic functions in addition to the minimum tohfunction. Machine/process behaviour
modelling and subsequent identification of faulyditions should be considered.

Adequate testing of the application programme isaatory. Every modification implies

proper design and testing so that the overall alpgity and reliability are not impaired. The

programme documentation shall be maintained andtated accordingly.

Installation and service conditions

PLC-systems are typically of rugged design andnuie for general purpose service.
However, as for any equipment, the more stresdiegservice conditions, the worse is the
reliability, and benefit in this area may be expdctvhen permitted service conditions are
better than the normal service conditions speciiietEC 61131-2. Some applications may
require consideration of special packaging, coeliatpctrical noise protection, etc., for

reliable operation.

-74 -

Ireneusz Mosoh Programmable Controllers

Conclusion

In Part 1 of these materials information about pmogmable controllers, their
principle of operation and programming is presentedas intended to start presentation of
each problem starting from its basics, and end wi#hdetailed analysis. Any time it was
appropriate, necessary comparisons in relatioratmws programmable controllers have been
made and discussed. A special effort have been togoieesent all material step-by-step in a
well organised manner — especially Chapter 4 apoagramming. In the last chapter in this
part of materials selected information from thesinaitional Standard IEC 61131 is presented.
It should help to get acquainted with programmaialetrollers and programmable controller
based control systems basics, as well as with panagrable controllers nomenclature.

These materials are auxiliary materials for stusléntbetter understand the course
“Programmable controllers”. Completion of this ceeishould give them a good basis to start

their engineering activities in the field of progmaable controllers applications.

-75 -

Ireneusz Mosoh Programmable Controllers

References

10.

11.

12.
13.
14.
15.
16.
17.

18.

Automation Systems and Drives. Main Catalogu8122002. Moeller GmbH, Bonn,
01/2001, HPL0213-2001/2002GB.

Automation systems. Main Catalogue 2004/2005eldo GmbH, Bonn, HPL0213-
2004/2005GB-INT MM/We 10/04.

Bauernfeind D., Dung O., Skupin J.: CM4-505-G&3-Interface Master: Gateway for
Suconet K — Actuator Sensor Interface. Moeller GmBshn, AWB 27-1271-GB, 09/96.
Berger H.. Automatyzacja za pomosterownika SIMATIC S5-115U. SIEMENS AG,
Erlangen, 1987.

Brock S., Muszfski R., Urbaski K., Zawirski K.: Sterowniki Programowalne.
Wydawnictwo Politechniki Pozmakiej, Pozna, 2000.

Broel-Plater B.: Uktady wykorzystge sterowniki PLC. Projektowanie algorytmow
sterowania. Wydawnictwa Naukowe PWN, Warszawa, 2010

Cena G., Valenzano A., Vitturi S.: Hybrid Wirédfeless Networks for Real-Time
Communications. IEEE Industrial Electronics, Vo, 1, 2008, pp. 8-20.

DL405 User Manual, 2nd Edition. Direct Logic KpyPLCDirect[] Inc., 1995.
Dirnfeldner M.: Automation with Programmable Q@ufiers. An Introduction for
Beginners. LS 27-064 GB, Klockner-Moeller 12/88.

Flaga S.: Programowanie sterownikow PLGzyku drabinkowym. Wydawnictwo BTC,
Legionowo, 2010.

Gomoétka W.: Realizacja algorytmdéw sterowanianscyjnego za pomacsieci dziata
GRAFCET. PAK,1990, Nr 7, s. 136-141.

Hitachi Programmable Controller - E Series. @pen Manual, No. NJI 008A.

Kamnski K.: Programowanie sterownika S7. Norkom, @xka 2000.

Kamnski K.: Programowanie w Step 7 MicroWin. Wydawniot®RYF, Gdask, 2006.
Kamnski K.: Podstawy sterowania z PLC. Wydawnictwo GR@gaisk, 2009.
Kasprzyk J.: Programowanie sterownikdéw przeowgth. WNT, Warszawa, 2006.
Kiettyka L., Stakski D., Fengler W.F.: Wykorzystywanie sieci Petdedo sterowania
procesami sekwencyjnymi. Prace IX Sympozjum SPD-8ymulacja proceséw
dynamicznych”, Polana Chochotowska, 10-14 czerd@26, s. 125-129.

Konen P.L., Leuchs K.: Networking Programmablentrollers. An Introduction for
Beginners. G 27-2100-GB, Klockner-Moeller 5/90.

-76 -

Ireneusz Mosoh Programmable Controllers

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Krél A., Moczko-Krdél J.: S5/S7 Windows. Prograwanie i symulacja sterownikéw PLC
firmy SIEMENS. Wydawnictwo Nakom, Pozing2000.

Kwasniewski J.: Programowalne sterowniki przemystowe systemach sterowania.
J.Kwasniewski & Fundacja Dobrej Ksiki, Krakow, 1999.

Kwaniewski J.: Sterowniki PLC w praktyce zynierskiej. Wydawnictwo BTC,
Legionowo, 2008.

Kwasniewski J.: Programowalny sterownik SIMATIC S7-3@0praktyce imynierskiej.
Wydawnictwo BTC, Legionowo, 2009.

Legierski T., Kasprzyk J., Hajda J., Wyrwat Programowanie sterownikow PLC.
Wydawnictwo Pracowni Komputerowej Jacka Skalmiexgki Gliwice, 1998.

Luder A., Lorentz K.: IAONA Handbook — IndustrEthernet. IAONA e.V., Magdeburg,
2005.

Maczyski A.: Sterowniki programowalne PLC. Budowa system podstawy
programowania. Astor Sp. z 0.0., Krakow, 2002.

Menden R., Petrick B.: Manual. Structuring afeld Programs. Klockner-Moeller, Bonn
5/91, AWB 27-1011-GB.

Mikulczyaski T., Samsonowicz Z.. Synteza sekwencyjnych udadsterowania
zautomatyzowanych proceséw technologicznych. PAK{ NL994.

Mikulczyaski T., Samsonowicz Z.: O syntezie sekwencyjnycladdw sterowania ZPT.
PAK, Nr 10, 1994.

Mikulczyaski T., Samsonowicz Z.: Analiza wybranych metod wslodania i
programowania dyskretnych procesow produkcyjny@&k ANr 3, 1995.

Mikulczyaski T., Samsonowicz Z.: Automatyzacja dyskretnyotcpsow produkcyjnych.
WNT, Warszawa, 1997.

Mosa |I., Karkoshski D.: Programowalne sterowniki logiczne w dydaley
.Zastosowanie komputerow w dydaktyce '94”, Cykl $eaniow zorganizowanych przez
PTETIS Oddziat w Gdasku, Zesz. Nauk. Wydz. Elektrycznego Politechnikiatzkiej
Nr 6, 1994, s.89-94.

Mosa |.: Sterowniki programowalne PS4 w zdecentralizoyeh systemach sterowania.
Elektroinstalator (Automatyka) 1996, Nr 11, s.27-30

Mosa |., Karkoshski D.: Program sterowania, diagnozowania staninieznego i
monitorowania parametrow pracy linii technologigzio&leinowania ptyt meblowych.

Opis algorytmu. 1998, 15 s. 2 rys. 3 tabl. biblidpoz. maszyn.

-77 -

Ireneusz Mosoh Programmable Controllers

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Mosar |.: Jkzyk GRAFCET a weryfikacja algorytméw i programéwerstwania.
Materiaty: Seminarium Naukowo-Techniczne ,ZastosoManowoczesne] aparatury
Schneider Electric w usgzeniach i instalacjach elektroenergetycznych aipki
napkcia”, Gdask, 9 czerwiec 1999, s. 4-14.

Mosa [|.: Wybrane aspekty wprowadzenia do dydaktyki gramtu Sterowniki
Programowalne. ,Zastosowanie komputerow w dydaktig®, IX cykl seminariéw
zorganizowanych przez PTETIS Oddziat w @slau, Zesz. Nauk. Wydz. Elektrotechniki
i Automatyki Politechniki Gdaskiej Nr13, 1999, s.101-106.

Mosa I.: Sterowniki programowalne - strukturyzacja peogéw sterowania.
.Zastosowanie komputeréw w nauce i technice 200Xl cykl seminariow
zorganizowanych przez PTETIS Oddziat w @slau, Zesz. Nauk. Wydz. Elektrotechniki
i Automatyki Politechniki Gdaskiej Nr 17, 2001, s.145-152.

Mosd |., Zukowski K.: Symulator Sym-PS4 sterownika programiowgo PS4-201-
MM1. ,Zastosowanie komputerow w nauce i technicdd2Q XII cykl seminariéw
zorganizowanych przez PTETIS Oddziat w @slau, Zesz. Nauk. Wydz. Elektrotechniki
i Automatyki Politechniki Gdaskiej Nr 18, 2002, s.125-130.

Mosa |.: Control systems with programmable controllersteaching aspects. IX
Konferencja Naukowo-Techniczna ,Zastosowania Korepiw w Elektrotechnice”
ZKwE’'2004, Pozné/Kiekrz, 19-21 kwietnia 2004, s. 621-624.

Ortowski H.: Komputerowe uktady automatyki. WNWarszawa, 1987.

PN-EN 61131-1:2004. Sterowniki programowalr@zes¢ 1: Postanowienia ogolne.
PN-EN 61131-3:2004. Sterowniki programowaln@zes¢ 3: kzyki programowania.
Practical Aspects of Industrial Control Teclugyl. Telemecanique Technical Collection.
Editions CITEF, 1994.

Roersch P.: LE4-505-BS1 AS-I Network Module.rdideare and Engineering. Moeller
GmbH, Bonn, AWB 27-1314 GB, 02/98.

Ruda A., Olesski R.: Sterowniki Programowalne PLC. Wydawnictw®@&W SEP,
Warszawa, 2003.

Salat R., Korpysz K., Obstawski P.. ¥stdo programowania sterownikow PLC.
Wydawnictwo Komunikacji i icznaci, Warszawa, 2010.

Schunemann U.: Programming PLCs with an Olfpgsnted Approach. ATP
International, Automation Technology In Practice.2\ 2007, pp. 59-63.

Seta Z.. Wprowadzenie do zagadnserowania — wykorzystanie programowalnych

sterownikow logicznych PLC. Wydawnictwo NIKOM, Waeswva, 2002.

-78 -

Ireneusz Mosoh Programmable Controllers

48. Simatic S5-115U Programmable Controller. Man@&émens AG, 1991, EWA 4NEB
811 6130-02a.

49. Staiczak W.: Przemystowe sieci lokalne. Sieciowe systémmunikacyjne integrage
automatyzaegj wytwarzania. Podczniki Nr 6. PIAP, Warszawa, 1998.

50. Sterownik VersaMax. Paghznik uzytkownika. Astor Sp. z 0.0., Krakéw, 1999.

51. Tassin A.: Structured Programming and Utilifiesthe Series PCD. User’s Guide. SAIA
AG, 1992, Edition 26/732 E4 06.94.

52. Trybus L.: Regulatory wielofunkcyjne. WNT, Waasva, 1992.

53. Volberg J.: Actuator-Sensor Interface. Netwogki/O on the fieldbus. Klockner-Moeller,
Bonn, 1996.

-79 -

