

Politechnika Gda ńska
Wydział Elektrotechniki i Automatyki

PROGRAMMABLE CONTROLLERS

Part 1

Ireneusz Moso ń

Gdańsk, 2010

Publikacja jest dystrybuowana bezpłatnie

Materiał został przygotowany w zwi ązku z realizacj ą projektu pt. „Zamawianie
kształcenia na kierunkach technicznych, matematyczn ych i przyrodniczych –

pilota Ŝ” współfinansowanego ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

Nr umowy: 46/DSW/4.1.2/2008 – zadanie 018240 w okre sie od 21.08.2008 – 15.03.2012

Ireneusz Mosoń Programmable Controllers

- 2 -

Materiały pomocnicze do przedmiotu „Sterowniki prog ramowalne”
prowadzonego w j ęzyku angielskim w semestrze zimowym w roku
akademickim 2010/2011 dla V semestru specjalno ści zamawianej

„Technologie informatyczne w elektrotechnice”
na studiach pierwszego stopnia na kierunku Elektrot echnika

Ireneusz Mosoń Programmable Controllers

- 3 -

Preface

Complex automation in all branches of industry is one of the dominating tendencies in

technical development nowadays. Programmable controllers are among the most important

devices, implementation of which makes possible this complex automation . For the first time

programmable controllers were designed, produced and implemented in control systems of

production lines in General Motors automotive plants over forty years ago. At that time they

were named “programmable logic controllers”. Today’s programmable controllers are not

only “logic” as they were while used for the first time. Enormous changes in information

technology have influenced and caused such changes in programmable controllers technology

that increased controllers potential of signal processing, enabled easier programming,

improved controllers reliability, and network functions have been developed. Therefore the

number of programmable controllers implemented in industry increases constantly.

Concurrently there is a rising demand for engineers prepared for designing, programming,

starting-up and supervising control systems with programmable controllers.

The above listed trends clearly show that “Programmable controllers” is a subject that

engineering students have to be taught during their first level of study (B.Sc). One of the

groups of engineering students for whom at least basic knowledge of programmable

controllers is vital in their future professional activity are electrical engineering students. The

basic knowledge that electrical engineering students are expected to acquire comprises not

only programming aspects (the ability of writing, testing and commissioning control

programs) but also a variety of technical aspects – including mainly: systems design and

development, networking, structuring of user programs etc. Moreover, as far as complex

automation (with networking from a shop-floor to the management level) is concerned, a

more system approach to programmable controllers and their use is necessary. Such an

approach has been offered to students that study speciality “Information technologies in

electrical engineering” in the “Electrical engineering” field of study.

The course “Programmable controllers” – according to the Study programme for full-

time students in the field of “Electrical engineering” – is an obligatory course and is taught

during the 5-th semester (3-rd year of study). The course comprises: 30 hours of lectures, 15

hours of tutorials and 15 hours of laboratory works during the semester (two hours of lectures,

one hour of tutorials and one hour of laboratory per week). The course “Programmable

controllers” can be characterised by its syllabus and expected learning outcomes. There are 5

ECTS credit points allocated to this course.

Ireneusz Mosoń Programmable Controllers

- 4 -

In the academic year 2010/2011 for the speciality “Information technologies in

electrical engineering” the course is taught in English to help these students to improve their

communication skills in English, to prepare them to international exchange of students and

possible future professional work in an international team.

These materials (Part 1) written in English comprise basic information about

programmable controllers and their programming, according to the syllabus of the course.

Two programming software packages (Sucosoft S40 ver. 4.24 and Easy Soft CoDeSys ver.

2.3.5.) have been used to prepare examples and some software features that are included into

the materials. Additionally, because the basic source of information about programmable

controllers, their hardware and software, is the International Standard IEC 61131 (which is

also the European Standard EN 61131, as well as Polish Standard PN-EN 61131), selected

information from the standard has been included into this materials. Paragraphs and sentences

that have been taken directly from the standard are written in blue instead of using

parenthesis.

Part 2 of these materials is written in Polish to give students from the speciality

“Information technologies in electrical engineering” an opportunity to learn terminology

related to programmable controllers and control systems with programmable controllers in

both languages: English and Polish. In the second part such problems as: structuring of user

programs, control of sequential processes and networking programmable controllers are

presented.

In the list of references (the list is common for both parts of the materials) not only

references quoted in this materials have been included; there are also other references that can

be helpful in understanding lectures, tutorials and laboratory tasks.

Ireneusz Mosoń Programmable Controllers

- 5 -

Contents

Syllabus and learning outcomes of the course “Programmable Controllers” .……………… 6

1. Programmable Controllers Basics ...……………………………………………………... 7

1.1. What is a programmable controller? ………………………………………………. 7

1.2. Basic structure of a programmable controller ……………………………………... 8

1.3. General principle of operation ……………………………………………………... 9

1.4. Types and series of programmable controllers …………………………………… 12

2. Principle of Operation in Details ………………………………………………………. 15

2.1. Cyclical and periodic operation …………………………………………..………. 15

2.2. Operation with or without process image memory …………………………..…... 15

2.3. Control system and programmable controller response time ………...…………... 19

3. Examples of the Program Cycle Descriptions …………...…………..………………… 24

3.1. First example – Moeller PS4 series ………………………………………………. 24

3.2. Second example – Hitachi E series ………………………………………………. 25

3.3. Third example – Koyo DL series ………………………………………………… 27

3.4. Fourth example – GE Fanuc 90-30 series ………………………………………... 30

4. Programming of Programmable Controllers …………………………………………… 34

4.1. Programming model according to IEC 61131-3 …………………………………. 34

4.2. Data types and variables ………………………………………………………….. 37

4.3. Program organization units ……………………………….…………………….. 44

4.4. Programming languages …….……………………………………………………. 46

4.5. Standard functions and function blocks ……………………………..…………… 56

4.6. User functions and function blocks ………………………………………………. 57

5. International Standard IEC 61131 – Selected Information ………...…………………... 63

Conclusion ………………………………………………………………………………… 75

References …………………………………………………………………………………. 76

Ireneusz Mosoń Programmable Controllers

- 6 -

Syllabus and learning outcomes of the course “Programmable controllers”

Syllabus

LECTURE
Programmable controllers in control systems. Types, structure and principle of operation.
Execution of the user program. Process image memory. Hardware characteristics. Interaction
with a controlled process. Digital, analogue and special input/output circuits.
Fundamentals of programming. PN-EN 61131-3 standard. Programming model.
Programming languages. Data types and declaration of variables. Addressing. Program
organization units - programs, functions and function blocks. Creation of user functions and
function blocks. Structuring of user programs. Factors of a program quality.
Networking programmable controllers. Network structures. Communication interfaces and
transmission media. Methods of media access control. Communication protocols (Suconet K,
Modbus RTU, Profibus DP, AS-i). Industrial Ethernet (protocols: Modbus TCP, Powerlink,
Profinet).
Design of programmable controllers based control systems. Selection of a programmable
controller depending on an application. Realization of a human - machine interface (HMI).
SCADA programs.

TUTORIALS
Number systems used in programmable controllers. Data types and functions of their
conversion. Creation of control algorithms; graphical elements of the algorithms.
Programming software Easy Soft CoDeSys. Creation of control programs (in IL, LD, FBD,
ST, CFC languages) and their debugging with the use of program simulator (virtual
controller). Creation of visualisation applications. Programming of control of sequential
processes in SFC language.

LABORATORY
Programming software Sucosoft S40 (structure; configuring control systems; editing,
debugging, testing and documenting programs). Program for a conveyor control - I and II.
Conversion functions and arithmetic operators. Counting events and compiler options.
Creation of the user function block. Modifying programs and changing variable values in On-
line mode. Programming PS4-200 and PS4-150 series controllers in the network (master -
active slave).

Learning outcomes

Student describes types and structures of programmable controllers. Explains principle of
programmable controller operation and principle of execution of the user program. Student
selects programmable controllers for specific applications. Analyses requirements of control
tasks and creates control algorithms. Writes, debugs and tests programs of low and middle
complexity for control of different control objects. Creates user functions and function blocks.
Creates simple visualisation applications.

Ireneusz Mosoń Programmable Controllers

- 7 -

1. Programmable Controller Basics

1.1. What is a programmable controller?

 In brief it can be said that a programmable controller is a programmable electronic

device used in control systems. More precise explanation is published in the International

Standard IEC 61131-1 [40] (see also Chapter 5 of this materials).

The definition in the standard says that a programmable controller is a digitally operating

electronic system, designed for use in an industrial environment, which uses a programmable

memory for the internal storage of user-oriented instructions for implementing specific

functions such as logic, sequencing, timing, counting and arithmetic, to control, through

digital or analogue inputs and outputs, various types of machines or processes.

It also says that the programmable controller and its associated peripherals are designed so

that they can be easily integrated into an industrial control system and easily used in all their

intended functions.

 The definition, especially when reading it fast, may seem not very clear, but is precise

and refers to all programmable controllers; from the first programmable controller to the

newest controllers that are produced currently. It should be mentioned that the definition is

general (as it obviously should be) and it doesn’t mention that a programmable controller is a

microprocessor-based electronic system. This is so because first programmable controllers

were developed, produced and implemented some years before the first microprocessors were

produced and implemented in electronic systems.

 In practice not definition from the standard but another definition referring to the

performed functions and tasks can better explain what a programmable controller is.

According to definition of the authors of the references [16, 23] programmable controllers are

industrial computers which, under the control of the real time operating system:

� with the use of input modules acquire results of measurements from digital and analog

sensors and measurement devices;

� using acquired data from the controlled process or machine execute user programs that

comprise coded data processing and control algorithms;

� in accordance to results of user programs execution generate control signals and, with the

use of output modules, send them to actuators,

and additionally are able to:

� transmit data with the use of interfaces and communication modules;

� perform hardware and software diagnostic functions.

Ireneusz Mosoń Programmable Controllers

- 8 -

As mentioned in the standard, although for Programmable Controllers the

abbreviation PC should be used, this abbreviation could lead to confusion because PC is

commonly used as abbreviation for Personal Computer. Therefore for programmable

controllers the abbreviation PLC (Programmable Logic Controllers) is used instead.

Historically this is the first abbreviation used, because first programmable controllers were

using and processing only logic (binary) signals. Despite the fact that currently programmable

controllers operate not only on logic signals the abbreviation PLC is well recognized and still

in common use in the automation industry and in the literature (in technical books, journals,

documentations etc.).

 In resent years however one more abbreviation – PAC – have become popular; this

abbreviation stands for Programmable Automation Controller. In the year 2002 the company

National Instruments started to use this name for their programmable controllers. Very

quickly also many other companies followed and named their new programmable controllers

as programmable automation controllers (for example GE Fanuc and other companies). The

intention of this change from PLC to PAC was to underline their increased functionality and

processing capabilities.

 PLC and PAC are not the only abbreviations that mean programmable controllers.

Some companies use other names for their programmable controllers. For example the

Austrian company B&R their programmable controllers names Programmable Computer

Controller – abbreviation PCC, whereas the Swiss company SAIA their programmable

controllers names Programmable Control Device – abbreviation PCD.

1.2. Basic structure of a programmable controller

The basic functional structure of a programmable controller system is presented in the

standard, and in these materials is shown in figure 5.1 in the 5-th chapter. However, such a

detailed description of a programmable controller functions and hardware is not necessary in

this chapter to explain the principle of operation of a programmable controller. A simplified

hardware block diagram shown in figure 1.1 should be helpful instead.

This hardware block diagram consists of three blocks:

� inputs meaning input circuits;

� CPU (Central Processing Unit) in which a processor (microprocessor) and a memory are

the most important parts to understand the programmable controller principle of

operation;

� outputs meaning output circuits.

Ireneusz Mosoń Programmable Controllers

- 9 -

Inputs OutputsCPU

Processor

Memory

Fig. 1.1. Simplified hardware block diagram of a programmable controller

Input and output circuits are the programmable controller’s interfaces through which it is

connected to the controlled object – usually either a machine or machines in a production

line/center or a technology process.

Each programmable controller has an internal memory (which is a RAM memory) that

is used to store the application program and data. A part of the data memory is a process

image memory. The process image memory consists of two parts. One part is a process input

image memory – to store states of input signals during the program cycle. The other part is a

process output image memory – to store states of output signals during the program cycle.

Sometimes the process image memory is also called a process image register.

1.3. General principle of operation

The principle of operation of a programmable controller can be explained using a

simplified diagram shown in figure 1.2 – and analysed together with the simplified hardware

block diagram shown in figure 1.1.

The simplified diagram of a programmable controller operation consists of four blocks

which names refer to their functions:

� reading inputs;

� execution of the application (user) program;

� writing outputs;

� operating system functions.

The three blocks on the left hand side in figure 1.2 refer to certain phases of the program cycle

and are essential for explanation of the programmable controller operation.

Reading inputs

At the beginning of each cycle the processor reads the signal states of all inputs and stores

them in the process input image memory. After reading states of the input signals do not

change during the current cycle.

Ireneusz Mosoń Programmable Controllers

- 10 -

Reading inputs

Writing outputs

Execution of the
application
program

Operating
system

functions

Fig.1.2. Simplified diagram of a programmable controller operation

If, during execution of the application program, an operand is the input signal its state

is read from the process input image – not from the controller’s physical (hardware) input.

Therefore even if during program execution there will be a change in the state of the input

signal, this will not be taken into account during the current program cycle.

The advantage of such a way of operation is that for a single cycle the whole program

will be executed for the same states for each input signal and even if a change of an input

signal occur this will not influence corresponding state in the process input image memory

(until next reading of inputs in the next cycle).

Execution of the application program

Typically the application program is executed cyclically. The processor reads the application

program memory locations one after another, from the beginning to the end of the program.

This does not mean that in each cycle every instruction (every rung) is being processed. Some

parts of the program can be omitted if their execution is conditional. Conditional execution of

some program parts can depend on states of the controlled process or just on the program

realization of the control algorithm.

The program performs all necessary logic and arithmetic operations on the data. Every

time when an operand of the instruction is an input variable, its state is read from the process

input image memory. The same rule applies to output variables. Every time when an operand

of the instruction is an output variable, its state is changed in the process output image

Ireneusz Mosoń Programmable Controllers

- 11 -

memory. During a single program cycle the state of an output variable can be changed many

times, but the valid state of this variable at the end of the program cycle is the last state of this

variable written to the process output image memory.

In short it can be said that during execution of the application program the

programmable controller’s processor operates on images of physical (hardware) inputs and

outputs stored in the process image memory.

Writing outputs

After execution of the application program states of output variables from the process output

image memory are simultaneously written to the controller’s physical (hardware) outputs.

Thus all hardware outputs are updated simultaneously once in a cycle – at the end of the

program cycle.

Operating system functions

All operating system functions can be divided into two groups.

The first group is performed before execution of the application program begins in a

cycle or just after the end of execution of the application program in a cycle. Such functions

are for example the watchdog timer resetting and diagnostic functions.

The second one is a group of functions that are performed simultaneously with the

execution of the application program. They are event-driven functions because they are called

up by various operating system interrupts. These interrupts make possible that several

functions run virtually simultaneously. Functions belonging to this group are for example:

monitoring the cycle time (watch dog), monitoring the power supply, processing the basic

cycle pulses, communicating with a programming device – usually a personal computer with

programming software or a hand-held programmer (however it is used very rarely nowadays).

 As far as operating system functions are concerned it should be mentioned that apart

from functions performed in every program cycle programmable controllers perform also

operating system functions when the controllers are switched on or off.

Functions that are performed after switching on the controller are for example: self test

when starting, initialisation of the CPU, determining the start-up behaviour (restart

conditions), copying retentive data from the backup memory (in controllers with EEPROM)

into the working memory.

A function that is performed after switching off the controller is for example backup of

the retentive data into the backup memory (EEPROM).

Ireneusz Mosoń Programmable Controllers

- 12 -

The above listed functions are performed only once, before the first reading inputs

phase of the cycle, but they are not shown in figure 1.2, as being of a minor importance to

understand general principle of programmable controllers operation.

Typical execution of the application program in programmable controllers is cyclical,

what means that program cycles are performed one by one without any delay between them.

1.4. Types and series of programmable controllers

 Different divisions of programmable controllers into groups can be made depending

on what factor will be taken into account. Usually programmable controllers construction,

maximum number of inputs and outputs, the scale of applications in which controllers can be

implemented are these factors depending on which the classification can be made.

Taking into account programmable controllers’ construction they can be divided into:

� compact controllers;

� modular controllers.

Taking into account maximum number of inputs and outputs programmable controllers can be

divided into:

� small – with a few dozen inputs and outputs;

� medium size – up to several hundreds of inputs and outputs;

� big – over one thousand inputs and outputs.

Taking into account the scale of applications programmable controllers can be divided into:

� controllers used in small application tasks – usually control of an individual machine or a

small technological process;

� controllers used in medium-size application tasks – usually control of several machines in

a production line, technological processes in different branches of industry;

� controllers used in large and complex automation tasks – usually complex production and

technological processes in some branches of industry (chemical, petrochemical,

pharmaceutical etc.).

Only the first classification is based on a clearly technical factor. The other two classifications

are rather relative and subjective.

 Compact programmable controllers in their single enclosure have all necessary

systems to perform all programmable controller functions (figure 5.1). They have fixed

Ireneusz Mosoń Programmable Controllers

- 13 -

number of inputs and outputs of particular types. This does not mean that they cannot be

expanded. They can often be expanded up to hundreds or even thousands inputs and outputs.

For example Moeller PS4-201-MM1 programmable controllers have 8 digital inputs, 6 digital

outputs, 2 analog inputs and 1 analog outputs. After connecting to PS4-201-MM1 maximum

possible number of local expansion modules LE4 and also maximum number of remote

modules EM4 (using only the controller’s build-in network interface RS485 with Suconet K

protocol), the total number of digital inputs and outputs in such a system would be 1006.

 Modular programmable controllers do not have fixed hardware architecture as

compact controllers. They consist of a rack (or base) and some number of modules. Modules

are mounted in the rack or fixed on the base. The number of modules and their types depend

on the application. Some parts and modules are obligatory, other modules can be chosen or

not. Apart from the rack (base), power supply module and of course central processing (CPU)

module, other modules are optional. These optional modules can be:

� digital input modules;

� digital output modules;

� digital input/output modules;

� analog input modules;

� analog output modules;

� analog input/output modules;

� analog modules for temperature measurements;

� communication modules;

� high-speed counter modules;

� positioning modules,

and others less frequently used (co-processor modules, stepper motor control modules, etc.).

Modular programmable controllers can be expanded by remote racks (bases) connected to the

main rack (base) by a network connection. Expansion capabilities of modular controllers and

the maximum number of inputs and outputs are bigger than in case of compact controllers.

Producers of programmable controllers usually have and offer whole series of

controllers (sometimes they name them “families” of controllers).

For particular models of programmable controllers that belong to the same series it is

characteristic that:

� the same or similar technical solutions in particular controllers (and their modules)

construction have been used;

Ireneusz Mosoń Programmable Controllers

- 14 -

� usually controllers from the same series are programmed with the use of the same

programming software (programming package);

� very often application programs written for one programmable controller from a series can

be used either directly or after a small adaptation (or just only a new compilation) in

another controller from the series.

Below there are examples of series of programmable controllers that have been (or had been)

produced in the last twenty years.

 Simatic S5 and S7 series of programmable controllers are typical examples of

programmable controllers series and replacement in production of the older series (S5) by the

new series S7. In the older series Simatic S5 there are two compact mini programmable

controllers (S5-90U and S5-95U), one failsafe mini programmable controller (S5-95F), one

modular mini programmable controller (S5-100U) and three modular programmable

controllers (S5-115U, S5-135U and S5-155U – all of them with various CPU modules). In the

new series Simatic S7 there are in general three programmable controllers: S7-200, S7-300

and S7-400, each of them with a wide variety if CPU modules.

 Another example are Moeller (earlier Klockner-Moeller) programmable controllers. In

the last twenty years there were two changes in produced series of controllers: from the PS3

series (with PS3, PS306 compact programmable controllers, and PS316, PS32 modular

programmable controllers) to the PS4 series (with PS-100, PS-150, PS-200, PS-300 compact

programmable controllers, PS-400 compact fuzzy-logic programmable controller, and PS416

modular programmable controller), and recently to XC series (XC100 and XC200 modular

programmable controllers with various CPUs available). Currently only some of

programmable controllers from the PS4 series are produced (PS4-141-MM1, PS4-151-MM1,

PS4-201-MM1, PS4-271-MM1, PS4-341-MM1) and all controllers from the series XC.

Additionally there are produced Easy Control EC4P programmable controllers, and XV

operator panels with touch screen and integrated programmable controllers. The latter ones

and controllers from XC series are under the common name XControl.

Ireneusz Mosoń Programmable Controllers

- 15 -

2. Principle of Operation in Details

2.1. Cyclical and periodic operation

As it was mentioned earlier, standard operation of a programmable controller is

cyclical processing of the program cycle. In this case program cycles are performed one by

one without any delay – or it can be said “as quickly as possible” for the particular controller.

But cyclical is not the only possible way of operation; programmable controllers operation

can be also periodic. In such a case each next program cycle starts after a constant period of

time – this time is counted from the beginning of the previous program cycle. If, for periodic

operation, execution of the application program is shorter than the time set for periodic

operation, the operating system waits until the set time for periodic operation has elapsed, and

only then starts the next program cycle. While waiting for the set time of period to elapse, the

CPU is not idle – it performs operating system functions.

For example: if the cycle time equals 5 ms while the set time for periodic operation is

50 ms, the operating system waits 45 ms before the next program cycle is started.

In case of a single control task execution in a programmable controller there is not a

big difference between cyclical and periodic operation – provided that the time set for

periodic operation is reasonably short (taking into account time constants of the controlled

process).

The situation is different if it is possible to program and execute in a programmable

controller more than one control task. Lets assume that there are, for example, two control

tasks. One to control a fast process (with a short time constants); the other one to control a

slow process (with long time constants). In such a case there would be advantageous to

configure execution of the latter control task as periodic with the set time of period

significantly longer (for example n times longer) than the time of execution of the former

control task that has been configured as cyclical. Control signals of the faster process would

be updated then approximately n times more frequently than control signals of the slower

process.

2.2. Operation with or without process image memory

 Typically programmable controllers operate with the use of the process image

memory. However, the operation without using the process image memory is also possible. If,

as shown in figure 2.1, phases “Reading inputs” and “Writing outputs” are excluded from

Ireneusz Mosoń Programmable Controllers

- 16 -

Reading inputs

Writing outputs

Execution of the
application
program

Operating
system

functions

Fig.2.1. Excluding “Reading inputs” and “Writing outputs” in the simplified diagram

the program cycle, the controller operates without using the process image memory. In such a

case the simplified diagram of a programmable controller operation consists only of two

phases of the program cycle – as shown in figure 2.2.

Execution of the
application
program

Operating
system

functions

Fig. 2.2. Simplified diagram of a programmable controller operation without using the

process image memory

In this case every time when an operand of the instruction is an input variable its state

is read from the controller’s input (hardware input); analogously every time when an operand

of the instruction is an output variable its state is changed in the controller’s output (hardware

output).

An example of programmable controllers that work in such a way are PCD series

controllers produced by SAIA. Operation without using the process image memory is their

typical operation. Their outputs are updated at the point of time during the application

Ireneusz Mosoń Programmable Controllers

- 17 -

program execution when they are operands of the currently executed instructions. Writing

programs for PCD series controllers it is necessary to take into consideration that parts of the

application program can be executed for different states for each particular input variable. In

some applications this necessity could be a disadvantage. On the other hand updating outputs

during execution of the program is an advantage because the control system reaction is faster.

If the user of the PCD series controllers wants to work with a process image memory, such a

memory area have to be programmed by him.

Despite the fact that majority of programmable controllers use the process image

memory, it is usually possible to read input signal states directly and to write output signal

states directly. This is called direct access and this is necessary when signal states have to be

processed immediately in the control program. The purpose of direct access to inputs and

outputs is to shorten a control system reaction time.

Following are some examples of direct access to inputs and outputs in programmable

controllers from different manufacturers.

 In Siemens S5-115U modular programmable controllers digital module signal states

are stored in two memory areas; the second one is a process image memory. It is possible to

set parameters of this controller (changing one bit in the system data word SD120) that it will

not use the process image memory. In this case exchange of information with digital modules

takes place directly.

 In GE Fanuc 90-30 series programmable controllers a special function block Do I/O

(DO_IO) can be used to read selected input signal states directly, or to write selected output

signal states directly. This function block is used during execution of the program cycle.

Depending on the function block parameters the input signal states that have been read using

this function block either modify the input signal states that had been read at the beginning of

the program cycle (process image) or are written to a different memory area (for example

markers area). Similarly programmable controllers outputs can be updated during the program

cycle with signal states taken either from the process output image or from a specified

memory area (for example markers area). If necessary this function block can be used many

times in a program cycle.

 In Koyo DL405 modular controller, in order to shorten the programmable controller

reaction, so called “immediate inputs and outputs” that are special Boolean instructions can be

used. This immediate instructions are used to read directly input states and write directly

signal states to outputs during execution of the application program. The immediate

Ireneusz Mosoń Programmable Controllers

- 18 -

instructions take longer time to execute the program execution is interrupted while the CPU

reads or writes signal states from a digital module.

Immediate input and immediate output instructions in a different way influence signal states

that are stored in the process image memory.

Although an immediate input instruction reads the most current status of the input signal, it

only uses the result to solve that one instruction. It does not update the process input image

memory. Therefore, any regular (not immediate) instructions that follow will still use the

input states (not updated) from the process input image.

The immediate output instruction writes the current status of the output signal to the

corresponding output in a digital output module, and simultaneously updates this output

signal state in the process output image memory.

 In Moeller PS4 compact programmable controllers direct access to inputs and outputs

is possible using special addressing. However, direct access to inputs and outputs is possible

only to inputs and outputs of the controller itself (direct access is not possible to inputs and

outputs of local expansion modules and remote expansion modules connected to the

controller). Direct access is possible for single inputs, single outputs, input bytes and output

bytes (for bigger controllers like for example PS4-341-MM1 also for input words and output

words).

For example, standard addressing (when the process image memory is used) is %IB0.0.0.0 for

the input byte, and %QB0.0.0.0 for the output byte; direct addressing (the process image

memory is not used) is %IP0.0.0.0 for the input byte, and %QB0.0.0.0 for the output byte.

Single inputs and outputs can also be accessed – as it was mentioned earlier; for example

%IP0.0.0.0.5 means direct reading of the 5-th input in the 0 input byte, whereas %QP0.0.0.0.3

means direct writing to the 3-rd output in the 0 output byte.

For programmable controllers from the series PS4-150 and PS4-200 direct reading of inputs

and writing outputs during execution of the application program do not change states of the

corresponding inputs and outputs in the process image memory. In contrast to behaviour of

these controllers, the process image of the PS4-300 series controllers is updated immediately

during execution of the application program.

 Almost all considerations so far about usage of the process image memory referred to

digital (binary) inputs and outputs. For majority of programmable controllers using process

image memory for digital inputs and outputs is a standard. The situation is different as far as

other types of inputs and outputs are concerned. Some programmable controllers do not use

the process image memory for analog inputs and outputs.

Ireneusz Mosoń Programmable Controllers

- 19 -

For example in Siemens S5-115U modular programmable controller analog module signal

states are not written to the process image memory. They are read in or transferred to an

analog output module directly.

 As far as usage of process input image in programmable controllers is concerned it can

be concluded that majority of programmable controllers, as a standard solution, use the

process input image. On the other hand programmable controllers enable usage of direct

access to their inputs and outputs. However, technical solutions of how this can be achieved

are quite different for programmable controllers of different producers. Sometimes they can

be different even for different programmable controllers of the same producer. Therefore

detailed study of technical documentation of a particular programmable controller should

always be recommended.

2.3. Control system and programmable controller response time

The control system response time is the period between the occurrence of an event and

the reaction of the control system to this event.

 The programmable controller response time is the period between the change of a

signal state in the controller’s input and the change of a signal state on the controller’s output.

 The latter response time is of course shorter than the former one. The difference is the

sum of the following:

� time necessary for a sensor output signal change;

� time needed to transfer this signal to the controller’s input;

� time needed to transfer controller’s output signal to an actuator;

� time necessary for an actuator for its reaction.

The first time is not negligible because it is the response time of a sensor (for example an

inductive proximity switch).

The second and the third time are negligible in case of standard wiring of the control system,

but they are not negligible in case of usage of a bus system for sensors and actuators (for

example AS-interface).

The forth time is also not negligible because it is the response time for an actuator (for

example a contactor).

The sum of these times does not depend on the programmable controllers.

 What should be analysed in this chapter is the programmable controller response time.

This response time (often called the I/O response time) depends on:

Ireneusz Mosoń Programmable Controllers

- 20 -

� the delay of the controller’s input circuit;

� the program cycle time;

� the delay of the controller’s output circuit,

but is not just a sum of the listed factors, because the I/O response time depends also on the

point in the program cycle when the field input changes states.

 In practice the delay of the controller’s input circuit is longer than the delay of the

controller’s output circuit. The delay of the controller’s input circuit can be relatively big (in

comparison to the program cycle time) if the function of the input circuit is also hardware

filtering of input signals. The delay of the controller’s output circuit is often negligible in

comparison to the program cycle time.

 Two cases should be analysed: when the input signal state changes just before the

reading inputs phase of the program cycle (the best case) and when the input signal state

changes just after the reading inputs phase of the program cycle (the worst case).

 The I/O response time is the shortest when the input signal state change takes place

just before the reading inputs phase of the program cycle. The I/O response time for this case

is shown on the time diagram presented in figure 2.3.

Fig. 2.3. The I/O response time – better case

In the first case the I/O response time equals (approximately):

Ireneusz Mosoń Programmable Controllers

- 21 -

 Response time = Input delay + Program cycle time + Output delay

The I/O response time is the longest when the input signal state change takes place just

after the reading inputs phase of the program cycle. The I/O response time for this case is

shown on the time diagram presented in figure 2.4.

Fig. 2.4. The I/O response time – worse case

In the second case the I/O response time equals (approximately):

 Response time = Input delay + 2 x (Program cycle time) + Output delay

 Taking into account that input delay and output delay are usually substantially shorter

than the program cycle time it can be concluded, that the maximum response time is

(approximately) twice the program cycle time.

 In many applications even the maximum I/O response time is such, that the timing

analysis is, in fact, not relevant. However, some applications do require extremely fast

responses. In such cases direct access to controller’s inputs and outputs can be used.

 Using direct access with Boolean instructions during execution of the application

program not always is effective and shortens the response time. It depends on the point in

time when the change of the input signal took place; if before the instruction with direct

Ireneusz Mosoń Programmable Controllers

- 22 -

access then the response time is shorter, whereas if after the instruction with direct access then

it does not influence the response time.

 Instructions with direct access are always effective and make the response time

shorter, if used in special function blocks. For example in Moeller PS4 series controllers there

are three so called alarm function blocks. These are: CounterAlarm, EdgeAlarm and

TimerAlarm. The first one is associated with the high-speed counter input, the second one

with the interrupt input, and the third one with internal time interrupts. Direct access to inputs

and outputs, if used in these function blocks are always effective and the response is always

fast.

If, for example, the interrupt input (with the address %I0.0.0.0.1 in PS4-201-MM1

programmable controller) with the function block EdgeAlarm is used, outputs with addresses

%QP… will update the controller’s output signals at the point in time they are used in this

function block (FB). The I/O response time for this case is shown on the time diagram

presented in figure 2.5.

Fig. 2.5. The I/O response time when using the EdgeAlarm function block

Ireneusz Mosoń Programmable Controllers

- 23 -

The EdgeAlarm function block can be called in the program as a result of the input signal

rising edge in the controller’s interrupt input, or as a result of the input signal falling edge.

 There is one more problem concerning digital input signals that has not been discussed

yet. In the preceding analysis of programmable controllers’ input signals it was always

assumed (however never underlined) that the duration of an input signal is longer than the

program cycle time. Such signals can always be detected, because for at least one reading

inputs phase of the cycle their state is high.

The situation is different in case of signals which duration is shorter than the program

cycle time. They are detected in a stochastic manner; if it happens that they exist during the

reading inputs phase of the program cycle – they are detected; if opposite – they are not

detected.

However there are programmable controllers that have inputs on which such short

signals are always detected in a fully deterministic way. For example, Telemecanique TSX07

compact programmable controller has inputs from which short changes of input signal states

(shorter than one program cycle and existing between consecutive reading inputs phases) can

be stored and will have the high state during the next program cycle.

The time diagram of the described case is shown in figure 2.7.

Fig. 2.7. Detection of very short input signals in TSX07 programmable controllers

 As far as methods of shortening of the I/O response time are concerned it can be

concluded again that apart from common methods, specific technical solutions applied in

programmable controllers of particular producers can be found in their technical

documentations.

Ireneusz Mosoń Programmable Controllers

- 24 -

3. Examples of the Program Cycle Description

3.1. First example – Moeller PS4 series

First example refers to PS4 series compact programmable controllers produced by

Moeller Company. These programmable controllers can be in three different operating states:

Run, Ready, and Not Ready. Only when the controller is in Run state it executes the user

program. The program cycle for these programmable controllers is shown in figure 3.1.

Fig. 3.1. The program cycle for Moeller PS4 series programmable controllers

The CPU operating system activities during particular phases of the working cycle are as

follows:

Reading inputs

Before the user program execution begins, during the reading inputs phase of the cycle the

CPU reads (simultaneously) the states of all inputs and stores these values in the input image

register as high (H) or low (L) – for digital signals. The status image of all inputs remains

constant for a whole program cycle. Changes in status of the inputs which can take place

within processing of the program are therefore ignored by the controller.

Execution of the user program

During this phase of the program cycle the user program is executed. Each instruction of the

program is distinguished by its memory location number, the address. The program counter

has to select these addresses step-by-step. It starts from the zero address and ends on the

address with the instruction of the end of the program. During execution of the user program

Reading inputs

Execution of the
user program

Writing outputs Operat ing
system

Ireneusz Mosoń Programmable Controllers

- 25 -

every time when an input is the operand of an instruction its status is read from the input

image register. The output results of the program sequences are stored temporarily in the

output image register.

Writing outputs

At this phase (writing outputs) of the program cycle, after executing the whole user program,

states of the outputs from the output image register are allocated together (simultaneously) to

the controller physical outputs.

Operating system

During this phase of the program cycle, the controller’s operating system activities are carried

out. These system activities are independent of current program processing. For example

signal transfer between the programmable controller and a programmer. The programmer can

be a PC with programming software (Sucosoft S40) or a hand-held programmer (during on-

line operation with the programmer connected).

Looking at the program cycle for Moeller PS4 series programmable controllers it can

be concluded that it comprises the same phases as the diagram in figure 1.2. The names of the

cycle phases are almost the same, and the only difference is its circular form.

3.2. Second example – Hitachi E series

Second example refers to E series compact programmable controllers produced by

Hitachi Company. The E series programmable controllers have different number of digital

inputs/outputs (20, 28, 40, 64), are locally expandable (by additional 64 inputs/outputs), and

can have relay or transistor outputs. There are three modes of operation for these controllers:

PROG – programming mode, TEST – test mode, and RUN – operation mode. The program

cycle for these controllers is shown in figure 3.2.

The CPU operating system activities during particular phases of the program cycle are as

follows:

Input processing

During this phase the ON/OFF status of the external inputs is taken into the data RAM of the

E series. For each input its status in the data RAM remains unchanged even if the ON/OFF

status of any external input changes during the arithmetic processing of the program. The

status change will be taken into the data RAM when input processing is made for the next

Ireneusz Mosoń Programmable Controllers

- 26 -

scan. To be sure that the change of the input signal status will be taken into the data RAM, the

pulse width should exceed one scan time.

IP AP F S/R PP OP IP

IP – Input Processing

AP – Arithmetic processing of the program

F S/R – Forced Setting / Resetting

PP – Peripherial Processing

OP – Output Processing

1 scan time

Fig. 3.2. The program cycle for Hitachi E-series programmable controllers

Arithmetic processing of the program

A written program is arithmetically processed starting from the first step according to the

commands of the program. The arithmetic processing causes the contents of external outputs

and internal outputs (i.e. markers and registers) to be changed from time to time in the data

RAM.

Forced setting/resetting

During operation of the programmable controller, forced setting will be made after

completion of all operations of the program. Once this function is activated, the power failure-

protected internal outputs, timers and counters in the data RAM can be set or reset.

Peripheral processing

In case the ON/OFF status of input/output or the current value of timer/counter are monitored

via the programmer, the content of the data RAM is displayed during the peripheral

processing phase.

Output processing

During this phase of the scan the ON/OFF status of each external output in the data RAM is

sent out to the external output terminal (driving the output relays).

Ireneusz Mosoń Programmable Controllers

- 27 -

Looking at this example it can be concluded that despite different names of the

program cycle phases in figure 3.2 they are very similar to those at the simplified diagram

shown in figure 1.2: reading inputs is named input processing, execution of the user

programme is named arithmetic processing of the program, writing outputs is named output

processing, and finally forced setting/resetting and peripheral processing are the operating

system tasks.

3.3. Third example – Koyo DL series

Third example refers to DL205 and DL405 modular programmable controllers

produced by Koyo Company. These programmable controllers’ CPU has two operating

modes that allow different types of operations. These modes are: Program Mode and Run

Mode. The program cycle for these controllers is shown in figure 3.3.

Read Inputs

Read Inputs from Specialty I/O

Service Peripherials, Force I/O

CPU Bus Communication

Update Clock, Special Relays

Solve the Application Program

Write Outputs to Specialty I/O

Write Outputs

Diagnostics

Fig. 3.3. The program cycle for Koyo DL series programmable controllers

Ireneusz Mosoń Programmable Controllers

- 28 -

The CPU operating system activities during particular phases of the program cycle are as

follows:

Read Inputs

The CPU reads the status of all input modules present in the local CPU base and local

expansion bases. The status of each input is stored in the process input image register.

Read Inputs from Specialty I/O

After the CPU reads the inputs from the input modules, it reads ant input point data from the

specialty modules, that are installed, such as High Speed Counter (HSC) modules, etc. In this

phase of the cycle also the input status from Remote I/O are read.

Service Peripherals and Force I/O

After the CPU reads the inputs from the Specialty I/O modules, it reads any attached

peripheral devices. This is primarily a communication service for a programming device to

see if any input or output status needs to be modified. Or, the programmer may be requesting

a Run-Time Edit or a change to Program Mode. The CPU also gets any output forcing

information during this phase.

One of the most popular requests is forcing an input on, even though it is really off. This

allows the programmer to change the point status that was stored in the process image

register. This value will be valid until the process image register location is written to during

the Read Inputs phase of the next cycle. This forced value is used in solving the application

programme, but only during the current cycle. In the next cycle if there is no another request

for a force, the process input image register maintains the status obtained during the reading

of the inputs.

CPU Bus Communication

During this phase of the cycle the CPU communicates with intelligent modules (like, for

example, Data Communication Modules) that must be placed in the CPU base. The CPU

performs both read and write requests.

Update Clock, Special Relays

During this phase of the cycle special memory locations that hold the Clock and the Calendar

(i.e. the Real Time Clock – RTC) information are updated on every cycle. This information

can be used therefore in the application programme.

There are also several different Special Relays, such as diagnostic relays, etc., that are also

updated during this phase of the cycle.

Ireneusz Mosoń Programmable Controllers

- 29 -

Solve the Application Program

The CPU evaluates each instruction in the application programme during this phase of the

cycle. The instructions define the relationship between the input conditions and the desired

output response.

The CPU uses the process output image register to store the status of the desired action of the

outputs. The actual outputs are updated during the Write Outputs phase of the cycle.

If the CPU have obtained and stored forcing information when it serviced peripheral devices,

the process output image register also contains this information, but if an output point was

used in the application programme, the results of the programme solution will overwrite any

forcing information that was stored.

Write Outputs

After solving the application programme the CPU sends current output states of the process

output image register to the output modules – located in the local CPU base or the local

expansion bases. Forced outputs that are not used in the programme are also sent and

corresponding outputs continue to be turned on until their forcing will be released.

Write Outputs to Specialty I/O

After updating the outputs in the local and expansion bases the CPU sends the output

information that is required by any specialty modules which are installed. In this phase of the

cycle also the information from the process output image register that is intended for the

Remote I/O racks is updated.

Diagnostics

During this part of the cycle, the CPU performs all system diagnostics and other tasks such as

calculating the scan time, updating special relays and resetting the watchdog timer. There are

many various error conditions that are automatically detected.

One of the most important CPU activities during this phase of the cycle is the scan time

calculation and the watchdog timer control. The watchdog timer stores the maximum time

allowed to solve the application programme and complete a cycle. If this time is exceeded the

CPU will enter the Program Mode and will turn off all outputs. The default value (for the

DL405 CPU) set from the factory is 200 ms. It is possible to view the minimum, maximum

and current scan time. An error is automatically signalised.

Looking at this example it can be concluded that despite different names of the

program cycle phases in figure 3.3 they are very similar to those at the simplified diagram

shown in figure 1.2: reading inputs is named read inputs and read inputs from specialty I/O,

Ireneusz Mosoń Programmable Controllers

- 30 -

execution of the user programme is named solve the application program, writing outputs is

named write outputs and write outputs to specialty I/O, and finally service peripherals and

force I/O, CPU bus communication, update clock and special relays, diagnostics are all the

operating system tasks.

3.4. Fourth example – GE Fanuc 90-30 series

The forth example refers, among others, to 90-30 series and VersaMax programmable

controllers produced by GE-Fanuc Company. In documentations of these controllers the

sequence of operations necessary to execute a program one time is called a sweep. The sweep

includes: obtaining data from input devices, executing the logic program, sending data to

output devices, performing internal housekeeping, diagnostics, servicing the programmer, and

servicing other communications. The program cycle (the sweep) is shown in figure 3.4.

START-OF-SWEEP
HOUSEKEEPING

DATA
INPUT

PROGRAM
EXECUTION

DATA
OUTPUT

PROGRAMMER
SERVICE

SYSTEM
COMMUNICATIONS

DIAGNOSTICS

Fig. 3.4. The program cycle (the sweep) for 90-30 series programmable controllers

Ireneusz Mosoń Programmable Controllers

- 31 -

Programmable controllers of this series normally operate in standard program sweep

mode. They can also operate in constant sweep mode. In both listed above modes the

controller executes the logic program. Other operating modes include stop with I/O disabled

mode, and stop with I/O enabled mode. In the latter two modes the logic program is not

executed. Each of the listed modes is controlled by external events and application

configuration settings. The programmable controller makes the decision regarding its

operating mode at the start of every sweep.

The CPU operating system activities during particular phases of the program cycle (for

standard program sweep) are as follows:

Housekeeping

During this phase of the sweep (cycle) all of the tasks necessary to prepare for the start of the

sweep are performed. Among the most important tasks are: calculation of the sweep time,

determination of an operating mode of the next sweep, updating fault reference tables,

updating timer values, and reset of the watchdog timer. If the controller is in constant sweep

mode, the sweep is delayed until the required sweep time elapses. If the required time has

already elapsed, the system variable meaning oversweep is set, and the sweep continuous

without any delay.

Data input

During this phase of the sweep all input modules are scanned, and the obtained data are stored

in discrete inputs memory (%I) or analog inputs memory (%AI) accordingly. Any data

received from Genius communication modules are stored in the part of memory for global

data (%G). If the CPU is in the stop with I/O disabled mode, the input scan is skipped.

Program execution

The application logic execution starts immediately after the data input phase of the sweep.

Solving the program logic provides a new set of output signals which are stored in discrete

outputs memory (%Q) or analog outputs memory (%AQ) accordingly. In some CPU models

there are logic co-processors; the logic co-processor executes the Boolean instructions. In

such a case the time needed to solve the application program is shortened.

Data output

During this phase of the sweep, following the program execution, outputs are updated

according to data from discrete outputs memory (%Q) and analog outputs memory (%AQ).

Global data (%G) are sent to Genius communication modules. This phase continues until all

outputs in output modules are updated. If the CPU is in the stop with I/O disabled mode, the

Ireneusz Mosoń Programmable Controllers

- 32 -

output scan is skipped.

Programmer service

This phase of the sweep is performed if a programmer is connected to the programmable

controller. The programmer is either a PC with a programming package (VersaPro or

Logicmaster) or the Hand-Held Programmer, however usage of the latter is very rare

nowadays. During this phase of the sweep the CPU executes the programmer communication

window. The programmer can communicate with the CPU or with intelligent option modules.

In the default limited window mode the CPU performs one operation for the programmer each

sweep. If the programmer makes a request that requires more than 6 ms to process (for some

CPU models 8 ms), the request processing is spread out over several sweeps – lengthening

each of these sweeps by no more than 6 (or 8) ms.

System communications

In this phase of the sweep communication requests from intelligent option modules are

processed. Communication with intelligent option modules is performed in the order of

appearing requests, but according to the rule – communication with one intelligent option

module in a sweep. In the default run-to completion mode, the length of the system

communications window is limited to 50 ms. If an intelligent option module makes a request

that requires more than 50 ms to process, the request is spread out over multiple sweeps –

lengthening each of these sweeps by no more than 50 ms.

Diagnostics

Diagnostics is made as a checksum calculation performed on the user program at the end of

every sweep. The number of words to be checked can be specified by the user (from 0 to 32).

If the calculated checksum does not match the reference checksum, the system variable

meaning the program checksum failure is set. This causes a fault entry to be inserted into the

programmable controller fault table and the controller mode to be changed to stop. The

default number of words for checksum calculation is 8.

 In the standard program sweep, each sweep executes as quickly as possible, with a

varying duration of a sweep. An alternative to this is a constant sweep mode; in this mode

duration of each sweep is the same. A value from 5 to 200 ms (for some CPU models up to

500 ms) can be set for the constant sweep timer.

Constant sweep mode is used if it is necessary to update input and output variables at a

constant frequency (as required in many control algorithms). Constant sweep mode is also

used to ensure that a certain amount of time elapses between outputs update in current sweep

Ireneusz Mosoń Programmable Controllers

- 33 -

and reading inputs in the next sweep (this time delay is necessary to be sure that particular

input signals have changed their states after the output signals that influence these input

signals had been changed).

Looking at this example it can be concluded that despite small differences in names of

the program cycle phases in figure 3.4 they are very similar to those at the simplified diagram

shown in figure 1.2: reading inputs is named data input, execution of the user programme has

almost exactly the same name – program execution, writing outputs is named data output, and

finally housekeeping, programmer service, system communications, and diagnostics are all

the operating system tasks.

Ireneusz Mosoń Programmable Controllers

- 34 -

4. Programming of Programmable Controllers

In this chapter basic information about programming programmable controllers is

presented. This chapter is based on the third part of IEC 61131 and covers main terms and

ideas – presented with more details during lectures. In order to learn the whole material

Readers should refer to the standard itself or to one of the references [16, 23], in which the

content of the standard is presented more widely.

 The third part of the standard is tightly connected to the first part of the standard, in

which definitions are established and characteristics of programmable controllers and

programmable controller systems are presented. Therefore a lot of information (all necessary),

as the selected information from IEC 61131-1, is placed in the last chapter of this materials.

All definitions and programmable controllers characteristics to which there are references in

the programming model are in this last chapter.

 In this materials the main stress is put on these elements of the programming model

according to IEC 61131-3 that have been implemented and are used in programming

packages Sucosoft S40 and Easy Soft CoDeSys (that are used during tutorials and in the

laboratory). Presentation of other elements of the programming model (for example: tasks,

access paths) is less detailed.

4.1. Programming model according to IEC 61131-3

The third part of IEC 61131 specifies syntax and semantics of programming languages

for programmable controllers. Syntax describes language elements and the way they can be

used whereas semantics – their meaning.

Semantics is the relationship between the symbolic elements of a programming language and

their meaning, interpretation and use.

The standard defines basic terms, general rules, programming model, communication

model as well as basic types and data structures.

In IEC 61131-3 the elements of programmable controller programming languages are

classified as follows:

� Data types;

� Variables;

� Program Organization Units (POUs):

- Functions;

- Function Blocks;

Ireneusz Mosoń Programmable Controllers

- 35 -

- Programs;

� Configuration elements:

- Global variables;

- Resources;

- Tasks;

- Access paths;

� Sequential Function Chart elements.

The software model from the standard is shown in figure 4.1. Definitions and explanations to

the software model elements are as follows.

A configuration is a language element which corresponds to a programmable controller

system as defined in IEC 61131-1.

A resource corresponds to a “signal processing function” and its “man-machine interface” and

“sensor and actuator interface” functions (if any) as defined in IEC 61131-1.

A configuration contains one or more resources, each of which contains one or more

programs executed under the control of zero or more tasks. A program may contain zero or

more function blocks or other language elements as defined in this part.

Configurations and resources can be started and stopped via the “operator interface”,

“programming, testing, and monitoring” or “operating system” functions defined in IEC

61131-1. The starting of a configuration shall cause the initialization of its global variables

according, followed by the starting of all the resources in the configuration. The starting of a

resource shall cause the initialization of all the variables in the resource, followed by the

enabling of all the tasks in the resource. The stopping of a resource shall cause the disabling

of all its tasks, while the stopping of a configuration shall cause the stopping of all its

resources.

A task is an execution control element providing for periodic or triggered execution of a

group of associated POUs.

 The standard describes also mechanisms for the control of tasks and mechanisms for

the starting and stopping of configurations and resources via communication functions.

 Yet, for majority of programmable controllers (and programmable controller systems)

not all language elements that are present in the programming model, have been implemented

in operating systems of controllers and their programming packages. Still, the most common

situation for programmable controllers working in different control systems is that the

controller performs one application program and there is only one resource in the

Ireneusz Mosoń Programmable Controllers

- 36 -

configuration (which is usually not explicitly declared). For programmable controllers that are

used during tutorials and in the laboratory instead of configurations, topologies of control

systems are being created. Other language elements of the programming model are created

either for the program (for example global variables) or for the topology (for example

communication functions).

RESOURCE

TASK

PROGRAM PROGRAM

TASK

FB FB

RESOURCE

TASK

PROGRAM PROGRAM

TASK

FB FB

ACCESS PATHS

GLOBAL AND DIRECTLY REPRESENTED VARIABLES

Communication function

Execution control path

FB

Variable access paths

Function block

Variable

or

CONFIGURATION

Fig. 4.1. Software model

Ireneusz Mosoń Programmable Controllers

- 37 -

Communication functions are also described in IEC 61131-3 while describing the

communication model. In the communication model the ways that values of variables can be

communicated among software elements are presented.

Data exchange between program elements in programmable controller systems can

take place between:

� elements of a single program (for example, between function blocks with the use of input

and output variables);

� programs within a single configuration (for example, with the use of global variables);

� different configurations (for example, using declared access paths or with the use of

communication functions).

Communication functions are executed by communication function blocks and can perform

data exchange not only between different configurations (topologies) but also within a single

configuration or even within a single program.

4.2. Data types and variables

 A number of elementary (pre-defined) data types are recognized by the standard.

Additionally, generic data types are defined for use in the definition of overloaded functions.

and a mechanism for the user or manufacturer to specify additional data types (derived data

types) are also defined.

A data type is a set of values together with a set of permitted operations.

A generic data type is a data type which represents more than one type of data.

Overloaded: with respect to an operation or function, capable of operating on data of different

types.

Certain data types can be grouped together to form generic data types. Generic data types are

identified by the prefix “ANY”.

Generic data types and their hierarchy:

ANY ⇒⇒⇒⇒ (1) ANY_BIT (BOOL, BYTE, WORD, DWORD)

 ⇒⇒⇒⇒ (2) ANY_NUM ⇒⇒⇒⇒ (2a) ANY_INT (SINT, INT, DINT, USINT, UINT, UDINT)

 ⇒⇒⇒⇒ (2b) ANY_REAL (REAL, LREAL)

⇒⇒⇒⇒ (3) ANY_DATE (DATE, TIME_OF_DAY, DATE_AND_TIME)

 ⇒⇒⇒⇒ (4) TIME

 ⇒⇒⇒⇒ (5) STRING

 ⇒⇒⇒⇒ (6) Derived data types

Ireneusz Mosoń Programmable Controllers

- 38 -

Among other groups of data types there is also a group of derived data types.

Derived data types are special manufacturer or user defined data types derived from

elementary data types and which have been assigned a new name. They are declared with the

keywords TYPE … END_TYPE and can thus be used with the new names in variable

declarations.

Derived data types can be divided into:

� Enumerated data type;

� Sub-range data type;

� Array data type;

� Structured data type.

Examples of derived data type (with their characteristic) are shown later in the current

chapter.

Variables provide a means of identifying data objects whose content may change, for

example, data associated with the inputs, outputs, or memory of the programmable controller.

A variable can be declared to be one of the elementary types or one of the derived types.

Declaration is the mechanism for establishing the definition of a language element. A

declaration normally involves attaching an identifier to the language element, and allocating

attributes such as data types and algorithms to it.

All variables can be divided into:

� directly represented variables;

� symbolic variables.

Direct representation is a means of representing a variable in a programmable controller

program from which a manufacturer-specified correspondence to a physical or logical

location may be determined directly.

The manufacturer shall specify the correspondence between the direct representation

of a variable and the physical or logical location of the addressed item in memory, input or

output. When a direct representation is extended with additional integer field separated by

periods, it shall be interpreted as a hierarchical physical or logical address with the leftmost

field representing the highest level of the hierarchy, with successively lower levels appearing

to the right.

For example:

%I0033 – if this digital input variable refers to 90-30 series modular programmable

controller in which the first three modules are digital input modules

(with 16 digital inputs each), this is the first input in the third module.

Ireneusz Mosoń Programmable Controllers

- 39 -

%I1.2.3.1.7 – if this digital input variable refers to PS4 series compact programmable

controller with EM4 network stations and LE4 local expansion modules, this is

the seventh digital input in the first byte, in the third module, in the second

network station, in the first communication line.

In this case the physical hierarchy is: controller – network – station – module –

input byte – single digital input.

If the hierarchy is logical it is usually with no relation to the physical structure of the

programmable controller’s inputs, outputs, memory.

 For directly represented variables their memory location is always known. Depending

on the variable it can be stored in the controller’s memory or in the communication buffer

(network variables). It should be remembered that digital input and output variables are stored

in the process image memory.

 The available addresses depend on the programmable controllers hardware.

The following symbols can be used to specify a variable length:

Symbol Meaning Length Examples

X or none Bit 1 bit %I0.0.0.0.3 ; %M0.0.0.1.7

B Byte 8 bits %IB0.0.0.0 ; %MB0.0.0.1

W Word 16 bits %IW0.0.0.0 ; %MW0.0.0.2

D Double word 32 bits %ID0.0.0.0 ; %MD0.0.0.8

Remark: Examples shown in the table are input and memory addresses used in PS4 series

programmable controllers. Double word applies only to PS416 modular programmable

controller.

Apart from direct representation of variables there is also symbolic representation of

variables.

Symbolic representation means the use of identifiers to name variables.

An identifier is a string of letters, digits and underline characters which shall begin with a

letter or underline character.

The case of letters shall not be significant in identifiers; the underline characters positions in

identifiers are significant. Identifiers are usually called variable names.

 In contrast to directly represented variables there is automatic memory allocation of

symbolic variables.

Ireneusz Mosoń Programmable Controllers

- 40 -

Symbolic names usually are but do not have to be assigned to directly represented

variables. In this case (symbolic names not assigned) the operands are addressed with their

physical addresses – starting with the % character. In the declaration the keyword AT is

entered before the physical address – separated by a space. However even with directly

represented variables the use of symbolic names is recommended because this enables faster

modifications in POUs while programming, debugging, testing and starting-up programs.

An operand is a language element on which an operation is performed.

An operator is a symbol that represents the action to be performed in an operation.

For both – direct and symbolic – variable representation an initial value can be

assigned to the variable.

An initial value is the value assigned to a variable at system start-up.

If an initial value is not assigned during declaration of a variable, the variable will be

assigned its default value at the programmable controller start-up. The default value depends

on the data type of the variable. For variables of ANY_BIT, ANY_NUM and TIME data

types their default initial value is zero. For variables of STRING data type their default initial

value is empty string. For variables of ANY_DATE data types their default initial value

depends on the manufacturer.

There are different types of variables. The types of all variables are defined in the

declaration section of a program organisation unit. Variable types are identified with

keywords. Variables of the same type are stored in the declaration block. A declaration block

starts with a keyword that depends on the variable type and ends with a keyword that depends

on the variable type.

VAR … END_VAR

Local variables are declared in this declaration block. They are valid only within the POU

where they were declared.

VAR_GLOBAL … END_VAR

Global variables are declared in this declaration block. A variable is declared as a global

variable if it is to be used in a program and in POUs which can be called by this program. A

global variable called up in a program is known within this program and within the POUs that

are called up by this program. The variable must be declared with the same identifier (name)

as external variable in all invoked POUs in which it is used.

VAR_EXTERNAL … END_VAR

Ireneusz Mosoń Programmable Controllers

- 41 -

External variables are declared in this declaration block. If a global variable is used within a

function block, it must be declared there as external variable with the same identifier (name).

VAR_INPUT … END_VAR

Input variables are declared in this declaration block. A variable is declared as an input

variable if it is to be read only within a function or within a function block, or if it is to be

used for transferring parameters in a function or a function block. This variable value cannot

then be changed in this POU.

VAR_OUTPUT … END_VAR

Output variables are declared in this declaration block. Output variables are used as outputs in

function blocks.

VAR_IN_OUT … END_VAR

Input-output variables are declared in this declaration block. An input-output variable is read,

processed and output under the same name by the function block in which it is used. Since

operations on an input-output variable have direct effect on its value, this variable cannot be

of a type that does not permit write operations – for example: variables with the attribute

CONSTANT.

TYPE … END_TYPE

Derived data types are declared in this declaration block.

Declaration of various variable types and the range of their usage:

Keywords – beginning of the declaration block

VAR ⇒ P , F , FB

TYPE ⇒ P , F , FB (locally within the POU)

VAR_GLOBAL ⇒ P

VAR_EXTERNAL ⇒ FB

VAR_INPUT ⇒ F , FB

VAR_OUTPUT ⇒ FB

VAR_IN_OUT ⇒ FB

Keyword – end of the declaration block

END_VAR or END_TYPE

where: P – means program; F – means function; FB – means function block.

Ireneusz Mosoń Programmable Controllers

- 42 -

Derived data types with examples

Declaration of a data type as enumeration

The declaration of an enumerated data type defines a list of identifiers whose values may

contain a data element. In order to declare the enumerated data type the variable list is entered

in parenthesis, with individual elements separated with a comma. An initialisation value can

be assigned to a variable of this data type. If an initialization value has not been assigned

during declaration, the variable will be assigned the value of the first element in the

enumeration list at the controller start-up.

Declaration of a variable “SYGNALIZACJA” of a data type as enumeration with the initial

value “Zolte” is shown in figure 4.2 as an example.

Fig. 4.2. Declaration of derived data types – examples

Declaration of a sub-range data type (restricted value range)

The use of derived data types enables the user to restrict the value range for the used data

type. If values beyond the value range are assigned, the limit value next to it will be entered

automatically. This rule applies also to initial values.

Declaration of a variable “Temperatura_C” of integer data type with restricted value range

from 0 to 100 with the initial value 25, and declaration of a variable “Temperatura_F” of

unsigned integer data type with restricted value range from 32 to 212 and the initial value 77

are shown in figure 4.2 as examples.

Ireneusz Mosoń Programmable Controllers

- 43 -

Declaration of a data type as array

Various data elements of the same type can be combined into an array which can consist of

elementary or derived data types. This data type is declared with the keyword ARRAY and

the definition of the number of array elements and their data type. Array variables may be

assigned with a direct address which is an address of the first element of the array.

Declaration of the array “Tablica_1” as a vector of 6 variables of byte data type and initial

values written in hex format (data delimited on the left by 16#), and declaration of the two-

dimensional array “Tablica_2” of 12 variables (three rows and four columns) of unsigned

integer data type with initial values are shown in figure 4.2 as examples.

Declaration of a data type as structure

Several data elements of different data types can be grouped together into a single structure. A

structure may consist of elementary or derived data types. A structure is declared with the

keywords STRUCT … END_STRUCT and a list of the structure elements specifying their

data types.

A structured data type is an aggregate data type which has been declared using a STRUCT or

FUNCTION_BLOCK declaration.

An aggregate is a structured collection of data objects forming a data type.

Declaration of a structure is shown in figure 4.2 as an example. “Zdarzenie” is a structure

comprising 5 variables of different data types; “Kod” is of unsigned short integer data type,

“Data_i_czas” is of DATE_AND_TIME type, whereas “Wartosc_1”, “Wartosc_2” and

“Wartosc_3” are of integer data type.

The declaration of local and global variables can be supplemented with the following

attributes (qualifiers): RETAIN and CONSTANT.

RETAIN

The attribute RETAIN is used to declare a retentive local or global variable. Retentive means

that with a warm start the variable declared as retentive keeps the last valid value it had before

the stop. The attribute RETAIN is written behind the keyword VAR or VAR_GLOBAL after

a space.

Remark: In some programmable controllers non retentive variables are called volatile, and

retentive variables are called non volatile.

CONSTANT

The attribute CONSTANT is used to declare a local or global variable if its value cannot be

Ireneusz Mosoń Programmable Controllers

- 44 -

changed. The attribute CONSTANT is written behind the keyword VAR or VAR_GLOBAL

after a space.

 Additionally there are two other attributes that refer to BOOL data type and can only

be used as input variables (VAR_INPUT) for user function blocks. These are: R_EDGE

(rising edge) and F_EDGE (falling edge). The user function block input declared as R_TRIG

or F_TRIG is high for one program cycle if the variable associated to its input changes its

value from low to high (for R_TRIG declaration) or from high to low (for F_TRIG

declaration). If the user function block is not executed every cycle, the user function block

input will remain high until the next execution of this user function block.

4.3. Program organization units

There are three Program Organisation Units that have been distinguished in the

programming model:

� F – Functions ;

� FB – Function Blocks ;

� P – Programs .

A function (procedure) is a program organization unit which, when executed, yields exactly

one data element and possibly additional output variables (which may be multi-valued, for

example, an array or structure), and whose invocation can be used in textual languages as an

operand in an expression.

A function block type is a programmable controller programming language element

consisting of: 1) the definition of a data structure partitioned into input, output, and internal

variables; and 2) a set of operations to be performed upon the elements of the data structure

when an instance of the function block type is invoked.

An input variable (input) is a variable which is used to supply an argument to a program

organisation unit.

An output variable (output) is a variable which is used to return result(s) of the evaluation of a

POU.

An argument is synonymous with input variable, output variable or in-out variable.

An instance is an individual, named copy of the data structure associated with a function

block type or a program type, which persist from one invocation of the associated invocation

to the next.

Ireneusz Mosoń Programmable Controllers

- 45 -

An instance name is an identifier associated with a specific instance.

An instantiation is the creation of an instance.

Before the standard IEC 61131 had been created such program organisation units as

functions and function blocks were usually called sub-programs. Sub-programs could be

called from programs or other sub-programs (nested calls). According to the standard there

are some clear distinctions between functions and function blocks. Differences between

functions and function blocks are shown comparatively in table 4.1.

Declaration of a function block is called its instantiation.

Each instantiation means that a copy of the function block with a new name has been created.

The name of a function block assigned to it during creation is called the instance name.

During function block declaration a part of the programmable controller’s memory is

reserved to store all internal variables of this function block. These internal variables can be

either allocated dynamically in the controller’s memory or it is necessary to know how many

registers are needed to store all internal variables and point out the address of the first register

(n consecutive registers are used to store the function block internal data).

 Table 4.1. Differences between Functions and Function blocks

Functions

Function blocks

Functions are not declared. Function blocks need to be declared.

Each function can be used many times.
Each function block can be used many
times, but each time it need to be
declared with a different name.

Function can have many inputs, but only
one output.

Function block can have many inputs and
many outputs.

Function has not internal variables. Function block has internal variables.

Function is a static language element;
that means, that each time for the same
combination of values of input signals the
value of the output signal is always the
same.

Function block is a dynamic language
element; that means, that for the same
combination of values of input signals,
the values of the output signals can be
different.

 Although a function can have only one output, the output variable can consist of many

elements – as, for example, an array type variable.

Ireneusz Mosoń Programmable Controllers

- 46 -

4.4. Programming languages

There are two groups of programming languages defined in the standard: textual and

graphical.

Textual languages:

� IL – Instruction List ;

� ST – Structured Text .

Graphical languages:

� LD – Ladder Diagram ;

� FBD – Function Block Diagram .

In the IEC 61131-3 standard a method of creation of a program structure as a Sequential

Function Chart (SFC) is also presented. The SFC enables description of sequential control

tasks by means of graphs consisting of steps and transitions between these steps. Transitions,

and actions that are associated with the particular steps, are programmed in one of the

programming languages. Sequential control is presented in Part 2 of this materials.

An additional programming language (available in some programming packages) is

Continuous Function Chart (CFC). This is also a graphical language.

Instruction List (IL)

The Instruction List language looks like and is similar to an assembler language. The IL

language consists of a series of instructions. Each instruction begins in a new line and

contains an operator and, depending on the type of operation, one or more operands separated

by commas.

In front of the first instruction in a program sequence there can be a label followed by a colon.

A POU written in the IL language can have also comments. Comments are placed between

parenthesis with asterisks; for example: (* This is a comment *).

Operators and modifiers that can be used in IL language are shown in table 4.2 [X,X].

In the table CR means “current result” and this is the value which is stored in the

accumulator; N means Boolean negation of the operand, modifier (means that the result of

consecutive operators until the operator) is met, is an operand; C means condition, whereas

CN means negation of the condition; for example: JMPC means jump conditional, JMPCN

means jump conditional not; ES1 is the label name; NFB1 is the function block name.

Ireneusz Mosoń Programmable Controllers

- 47 -

 Table 4.2. Operators and modifiers in the IL language

Operator Modifiers Operand Description

 LD N * Operand is loaded into the accumulator (CR)

 ST N * CR is stored as the operand value

 S

 R

BOOL

BOOL

(Set) if CR = 1 , then the operand is TRUE

(Reset) if CR = 1 , then the operand is FALSE

 AND N, (, N(BOOL Boolean AND (CR and operand)

 OR N, (, N(BOOL Boolean OR (CR and operand)

 XOR N, (, N(BOOL Boolean XOR (CR and operand)

 ADD (* Addition (CR and operand)

 SUB (* Subtraction (CR and operand)

 MUL (* Multiplication (CR and operand)

 DIV (* Division (CR and operand)

 GT (* (Greater Than) comparison: CR > operand

 GE (* (Greater than or Equal) comparison: CR > = operand

 LT (* (Less Than) comparison: CR < operand

 LE (* (Less than or Equal) comparison: CR < = operand

 EQ (* (Equal) comparison: CR = operand

 NE (* (Not Equal) comparison: CR < > operand

 JMP C, CN ES1 Jump to the label ES1

 CAL C, CN NFB1 Call FB with the name NFB1

 RET C, CN Return (from F or FB)

) Delimiter of the modifier (

An example of a program sequence written in the IL language (with the use of Sucosoft S40

programming package) is shown in figure 4.3.

Ireneusz Mosoń Programmable Controllers

- 48 -

Fig. 4.3. An example of a program sequence written in IL language

Structured Text (ST)

The Structured Text language is similar to high level languages. The instruction section of a

POU written in the ST language consists of at least one ST statement or a sequence of

statements. Each statement must be terminated with a semicolon. This separator allows a

statement to cover several lines, and several statements can be written on the same line.

Comments can be positioned at any place as required. They are placed exactly as in the IL

language – between parenthesis with asterisks.

An expression is not an independent statement, but a construction which, after its evaluation,

returns a result (a value) for further processing in the statement. An expression consists of one

or several operands that are linked together by means of operators. An operand can be a

constant, a variable, a function call, or another expression.

The evaluation of an expression takes place by means of processing the operators according to

certain binding rules. The operator with the strongest binding is processed first, then the

operator with the next strongest binding, etc., until all operators have been processed.

Operators with equal binding strength are processed from the left hand side to the right hand

side.

Ireneusz Mosoń Programmable Controllers

- 49 -

Operators that can be used in ST language are shown in table 4.3 [41, 16].

 Table 4.2. Operators in the ST language

Operation Symbol Binding strength

 Parenthesization () 1 (high)

 Function call Name () 2

 Two’s complement - 3

 Two’s complement used twice + 3

 One’s complement NOT 3

 Exponentiation ** 4

 Multiplication * 5

 Division / 5

 Modulo MOD 5

 Addition + 6

 Subtraction - 6

 Comparison >, > =, <, < = 7

 Equality = 8

 Inequality < > 8

 Logic AND AND, & 9

 Logic EXCLUSIVE-OR XOR 10

 Logic OR OR 11 (low)

Instructions of the ST language are listed below [41, 16].

Elementary statements

Value assignment

Syntax: Data element := Expression ;

Empty statement

 Example: ; (a single semicolon can be used as an empty statement)

Ireneusz Mosoń Programmable Controllers

- 50 -

Branching within a POU

Conditional statement

 Syntax: IF Expression THEN StatementSequence END_IF ;

Single alternative statement

 Syntax: IF Expression THAN StatementSequence1

 ELSE StatementSequence2 END_IF ;

Multiple alternative statement

 Syntax: IF Expression1 THEN StatementSequence1

 ELSIF Expression2 THEN StatementSequence2

 ELSIF Expression3 THEN StatementSequence3

 …

 ELSE StatementSequenceN END_IF ;

Multiple selection (CASE statement)

 Syntax: CASE Expression OF

 ValueList1 : StatementSequence1

 ValueList2 : StatementSequence2

 …

 ELSE StatementSequenceN

 END_CASE ;

WHILE loop

 Syntax: WHILE Expression DO StatementSequence END_WHILE ;

REPEAT loop

 Syntax: REPEAT StatementSequence UNTIL Expression END_REPEAT ;

FOR loop

Syntax: FOR LoopVariable := ExpressionInitialValue TO ExpressionEndValue BY

StepWidth DO StatementSequence END_FOR ;

Loop exit

 Syntax: EXIT ;

Branching within the application

POU exit

 Syntax: RETURN ;

Call of a function block (with assignment of inputs and outputs)

Remark: Function calls are not separate statements but expressions; therefore they can only

be used within expressions.

Ireneusz Mosoń Programmable Controllers

- 51 -

An example of a POU written in the ST language (with the use of Easy Soft CoDeSys

programming package) is shown in figure 4.4.

Fig. 4.4. An example of a POU written in the ST language

Function Block Diagram (FBD)

The Function Block Diagram is a graphically oriented programming language. It works with a

list of networks. Each network contains a structure which represents either a logical or

arithmetic expression, the call of a function block, a jump, or a return instruction.

An example of a network written in the FBD language (with the use of Sucosoft S40

programming package) is shown in figure 4.5.

Ladder Diagram (LD)

The Ladder Diagram is a graphically oriented programming language which resembles the

structure of an electric circuit. A program written in the LD language consists of a series of

networks. A network is limited on the left hand side and on the right hand side by vertical

lines. In the middle there is a circuit diagram made up of contacts, coils and connecting lines.

Ireneusz Mosoń Programmable Controllers

- 52 -

Fig. 4.5. An example of a network written in the FBD language

The left vertical line can be treated as a power supply line, usually 24 V DC in a control

electric circuit, whereas the right vertical line can be treated as a 0 V line. Networks are

analysed in a similar way as electric circuits – whether they pass signal (current) from the left

hand side to the right hand side or not.

An example of a network written in the LD language (with the use of Sucosoft S40

programming package) is shown in figure 4.6.

Contacts

Each network on the left hand side consists of a number of contacts (contacts are represented

by two parallel lines). A Boolean variable is associated with each contact. The value of a

Boolean variable can be TRUE or FALSE. If the value of the variable associated with the

contact is TRUE, then the signal is passed on through this contact. If opposite – i.e. the value

of the variable associated with the contact is FALSE, then the signal is not passed on through

this contact.

Ireneusz Mosoń Programmable Controllers

- 53 -

Fig. 4.6. An example of a network written in the LD language

A contact can be negated (negated contact is represented by the slash in the contact symbol).

If the value of the variable associated with the negated contact is FALSE, then the signal is

passed on through this contact. If opposite – i.e. the value of the variable associated with the

negated contact is TRUE, then the signal is not passed on through this contact.

Contacts can be connected in parallel, then one of the parallel branches must transmit the

signal so that the parallel branch transmits the signal; or contacts can be connected in series,

then all contacts must transmit the signal. This therefore corresponds to electric circuits:

parallel and series circuit.

Coils

On the right hand side of a network in LD there can be any number of so-called coils (coils

are represented by parenthesis). They can only be in parallel.

A coil transmits the signal (is energized) if the signal in the network has been passed on to the

entry line (on the left) of the coil. Then the Boolean value of the variable associated with this

coil takes the value TRUE. Otherwise the Boolean value of the variable associated with this

coil is FALSE.

Ireneusz Mosoń Programmable Controllers

- 54 -

Coils can also be negated (negated coil is represented by the slash in the coil symbol). A

negated coil is energized if the signal in the network has not been passed on to the entry line

of the coil; the variable associated with this coil is then TRUE. Otherwise the negated coil is

not energised and the variable associated with this coil is FALSE.

Set / Reset coils

Coils can also be defined as set or reset coils. A set coil can be recognized by the “S” in the

coil symbol. A reset coil can be recognized by “R” in the coil symbol.

Boolean variables are associated with set and reset coils. In a POU the same Boolean variable

is associated with at least one set coil and with at least one reset coil.

A set coil never writes over the value TRUE of the associated Boolean variable. That is, if the

variable was once set at TRUE, then it remains so. A reset coil never writes over the value

FALSE of the associated Boolean variable. If the variable has been once set on FALSE, then

it remains so. Therefore it is rather pointless to have a Boolean variable associated with either

only a set coil (set coils) or only a reset coil (reset coils).

Function blocks in the LD network

Apart from contacts and coils function blocks can also be entered in an LD network. In the

network they must have an input and an output with Boolean variables and can be used at the

same places as contacts, that is on the left hand side of the LD network.

In some LD editors however, function blocks can be entered in a POU only as separate rungs

in the ladder. Only single variables can be associated with their inputs and outputs. If a value

of an input variable depends on a complex condition, this should be evaluated in a separate

rung. Such an example is shown and discussed in chapter 4.6.

An example of a network in the LD language (with the use of Easy Soft CoDeSys

programming package) with two function blocks connected in parallel (a signal generator and

an up-counter) is shown in figure 4.7.

Continuous Function Chart (CFC)

The Continuous Function Chart editor does not operate like Function Block Diagram with

networks, but rather with elements that can be placed, quite freely, in different positions. This

allows, for example, feedback connections.

An example of a POU written in the CFC language (with the use of Easy Soft CoDeSys

programming package) is shown in figure 4.8.

Ireneusz Mosoń Programmable Controllers

- 55 -

Fig. 4.7. An example of use of function blocks in the LD language

Fig. 4.8. An example of a POU written in the CFC language

Ireneusz Mosoń Programmable Controllers

- 56 -

4.5. Standard functions and function blocks

 In the International Standard IEC 61131-3 there is a number of standard functions

declared. All these functions are divided into seven groups [41, 16]:

� Type conversion functions;

� Numerical functions;

� Bit string functions;

� Selection and comparison functions;

� Character string functions;

� Functions of time and data types;

� Functions of enumerated data types.

All function blocks that are mentioned in the International Standard IEC 61131-3 are divided

into four groups [41, 16]:

� Bistable elements;

� Edge detection elements;

� Counters;

� Timers.

Functions and function blocks belonging to the listed above groups are not discussed in these

materials because there is a detailed description of all these functions and function blocks in

the standard IEC 61131-3. Description of these functions and function blocks can be also

found in some references, for example in [16]. In these materials only some important

remarks have been made.

 Manufacturers of programmable controllers usually provide quite a lot of diverse

functions and function blocks, more than those described in the standard IEC 61131-3. This is

so because their programming packages have been evolving during past years and contain

functions and function blocks which have been developed before the International Standard

IEC 61131 have been established. The use of such functions and function blocks should not

be recommended if analogous IEC functions and function blocks exist, but is fully acceptable

if these functions and function blocks are somehow unique, for example, because they can

implement specific programmable controllers’ hardware features.

 The prototypes of IEC and manufacturer functions and function blocks often have

generic data types (ANY) associated with their inputs and outputs. Generic data types cannot

be used for declaration of user function blocks. Overloaded data types of this kind are only

Ireneusz Mosoń Programmable Controllers

- 57 -

possible with input and output parameters of IEC or manufacturer functions and function

blocks.

 In graphical languages POUs (functions and function blocks) can have an additional

input EN and an additional output ENO. The EN input and the ENO output are always of the

BOOL type. The EN meaning is: the POU with EN input is evaluated if the EN input has the

value TRUE. The ENO meaning is: after correct evaluation of the POU with EN input the

ENO output has the value TRUE. Otherwise the output has the value FALSE. These special

inputs and outputs are used to control the application program execution.

An example how the EN input of the function can be used (or not) in a program to

control the program execution is shown in figures 4.9 and 4.10. The intention was to add the

value 526 to the variable “Wartosc” only once – in the first program cycle after the

programmable controller has been switched on.

In the first program (part of which is shown in figure 4.9) this was realized in the

following way. There is a Boolean variable “Pom” declared with an initial value TRUE. In

the first program cycle the condition for the conditional jump to the label “skok” is therefore

not fulfilled. The next rung with the ADD function is executed (any time the function ADD is

executed the value on the EN input is TRUE) and 526 is added to the variable “Wartosc”. In

the next rung the Boolean variable “Pom” is reset by itself. In the following program cycles,

until the variable “Pom” will remain FALSE the jump condition will be fulfilled and the rung

with the ADD function will be skipped.

In the second program (part of which is shown in figure 4.10) this was realized with

the use of EN input. There is also a Boolean variable “Pom” declared with an initial value

TRUE. In the first program cycle when the value of the Boolean variable “Pom” is TRUE the

ADD function is executed (because the value on the EN input is TRUE) and 526 is added to

the variable “Wartosc”. In the next rung the Boolean variable “Pom” is reset by itself. In the

following program cycles, until the variable “Pom” will remain FALSE the ADD function

will not be executed.

4.6. User functions and function blocks

 Apart from IEC and manufacturer functions and function blocks also user functions

and user function blocks can be used in application programs. User POUs (functions and

function blocks) are created using appropriate to particular programmable controllers

programming packages.

Ireneusz Mosoń Programmable Controllers

- 58 -

Fig. 4.9. Unconditional execution of the function ADD

Fig. 4.10. Conditional execution of the function ADD

Ireneusz Mosoń Programmable Controllers

- 59 -

 Creation and usage of user POUs in application programs, especially user function

blocks, has many advantages:

� helps in structuring application programs;

� important application program quality features (verifiability, modifiability and reusability)

are improved;

� creation of application programs can be less time consuming, as function blocks can be

declared and used many times;

� it is possible to create user function blocks that refer to specific hardware features;

� once user function blocks has been thoroughly tested it is then easier to test and start-up

application programs.

Usage of user function blocks helps in structuring application programs, because its structure

becomes more clear. Part of the application program complexity is covered by user function

block bodies. This in turn positively influences many important application program quality

features: verifiability, modifiability and reusability. It is easier to analyse such a structured

program and make changes if necessary during the control system life time.

A user function block once created can be declared (with different names) and used in an

application program many times. Therefore repeated section of a program can be programmed

as a user function block and used many times. Moreover, even if there are no repeated

sections in a program and a user function block will be created, it can be used in other

programs. In such a way a programmer can create its own library of user function blocks, to

save time in writing other application programs in future.

The use of tested user function blocks helps in testing an starting-up application programs. If

there are errors in a program it is easier to find them debugging the program, because the

programmer can be quite sure that they are not inside its user function blocks.

The other important difference between IEC or manufacturer function blocks and user

function blocks is the fact, that user function blocks can refer to specific features of the

sensors, actuators and other automation equipment that operates in a programmable controller

based control system. Unlike standard function blocks, user function blocks can be created as

specific hardware functions oriented function blocks.

 Such a user function block created (with the use of Sucosoft S40 programming

package) for control of a specific hardware element is shown in figure 4.11. This is a user

function block named IZM_1T to control a circuit breaker of IZM type. This function block

has 4 digital inputs, 2 time inputs and 6 digital outputs. As it can be seen in the declaration

Ireneusz Mosoń Programmable Controllers

- 60 -

section this function block has been used in the program several times (with the following

names: CB_TR1, CB_TR12, CB_TR2, CB_TR3, CB_TR4). Each time different variables

have been associated with its inputs and outputs.

Fig. 4.11. User function block IZM_1T for control of the ICM circuit breaker

An interesting function block declaration feature is, that after declaring a function

block its inputs and outputs can be used in the program without any additional declaration.

Even if there are no variables associated with some inputs and outputs of the function block,

that does not mean that these inputs and outputs are not used in the program. For example,

even if there is no variable on the “WAR_ZAL” function block input it is used in the

program. This is shown in figure 4.12.

In the lower rung shown in the figure there is an output variable (coil) with the name

“CB_TR1.WAR_ZAL”. The first part of this name refers to the function block CB_TR1,

whereas the second part of the name means the particular input of this function block, which

is WAR_ZAL. Such usage of inputs and outputs of function blocks can limit the number of

auxiliary variables that need to be declared in the program (or other POU). This is also a proof

Ireneusz Mosoń Programmable Controllers

- 61 -

that during declaration of a function block a part of the programmable controller’s memory is

reserved to store the function block input, output and internal variables.

Fig. 4.12. Usage of the function block input variable as a program variable that do not need to

be declared

Another example of a user function block (created with the use of Easy Soft CoDeSys

programming package) is shown in figure 4.13. This is the user function block

“OBL_UCIAG” which has been declared with the name “ZAD_UCIAG”. It has one input of

UINT data type and three outputs of UINT data type.

Additionally it has an EN input (BOOL type) and an ENO output (BOOL type) but these

input and output are not used in the program.

The OBL_UCIAG function block has been programmed in the ST language and the body of

this user function block has been shown in figure 4.4.

 In the declaration section declaration of some variables can be seen. It is worth to

mention that apart from symbolically represented variables FST_SCAN and ALWAYS_ON

(which are declared with an initial value TRUE) other variables are directly represented

Ireneusz Mosoń Programmable Controllers

- 62 -

variables (the keyword with the variables addresses). Comments in (* … *) have been

associated to all variables shown in figure.

Fig. 4.13. An example of a user function block

 Basing on the above shown examples it can be definitely concluded that usage of user

function blocks helps to structure and reduces the complexity of application programs.

Ireneusz Mosoń Programmable Controllers

- 63 -

5. International Standard IEC 61131 – Selected Information

International Standard IEC 61131 consists of the following parts under the general title:

Programmable controllers.

Part 1: General information

Part 2: Equipment requirements and tests

Part 3: Programming languages

Part 4: User guidelines

Part 5: Communications

Part 6: Reserved

Part 7: Fuzzy-control programming

Part 8: Guidelines for the application and implementation of programming languages for

programmable controllers

The purposes of this standard are:

Part 1 establishes the definitions and identifies the principal characteristics relevant to the

selection and application of programmable controllers and their associated peripherals;

Part 2 specifies equipment requirements and related tests for programmable controllers (PLC)

and their associated peripherals;

Part 3 defines, for each of the most commonly used programming languages, major fields of

application, syntactic and semantic rules, simple but complete basic sets of

programming elements, applicable tests and means by which manufacturers may

expand or adapt those basic sets to their own programmable controller

implementations;

Part 4 gives general overview information and application guidelines of the standard for the

PLC end-user;

Part 5 defines the communication between programmable controllers and other electronic

systems;

Part 6 is reserved;

Part 7 defines the programming language for fuzzy control;

Part 8 gives guidelines for the application and implementation of the programming languages

defined in Part 3.

The first part of the standard (IEC 61131-1) applies to programmable controllers (PLC) and

their associated peripherals such as programming and debugging tools (PADTs), humane

Ireneusz Mosoń Programmable Controllers

- 64 -

machine interfaces (HMIs), etc., which have as their intended use the control and command of

machines and industrial processes.

PLCs and their associated peripherals are intended to be used in an industrial environment and

may be provided as open or enclosed equipment. If a PLC or its associated peripherals are

intended for use in other environments, than the specific requirements, standards and

installation practices for those other environments must be additionally applied to the PLC

and its associated peripherals.

The functionality of a programmable controller can be performed as well on a specific

hardware and software platform as on a general-purpose computer or a personal computer

with industrial environment features. This standard applies to any products performing the

function of PLCs and/or their associated peripherals. This standard does not deal with the

functional safety or other aspects of the overall automated system. PLCs, their application

programme and their associated peripherals are considered as components of a control

system.

Since PLCs are component devices, safety considerations for the overall automated system

including installation and application are beyond the scope of this Part. However, PLC safety

as related to electric shock and fire hazards, electrical interference immunity and error

detecting of the PLC-system operation (such as the use of parity checking, self-testing

diagnostics, etc.), are addressed. Refer to IEC 60364 or applicable national/local regulations

for electrical installation and guidelines.

This Part of IEC 61131 gives the definitions of terms used in this standard. It identifies the

principal functional characteristics of programmable controller systems.

Two other parts are indispensable for the application of the IEC 61131-1 part of the standard:

� IEC 61131-2, Programmable controllers – Part 2: Equipment requirements and tests;

� IEC 61131-3:2003, Programmable controllers – Part 3: Programming languages.

For the purposes of the first part of the standard the following terms and definitions apply.

Application programme or user programme

Logical assembly of all the programming language elements and constructs necessary for the

intended signal processing required for the control of a machine or process by a PLC-system.

Automated system

Control system beyond the scope of IEC 61131, in which PLC-systems are incorporated by or

for the user, but which also contains other components including their application programs.

Ireneusz Mosoń Programmable Controllers

- 65 -

Field device

Catalogued part to provide input and/or output interfaces or to provide data pre-

processing/post-processing to the programmable controller system. A remote field device may

operate autonomously from the programmable controller system. It can be connected to the

programmable controller using a field bus.

Ladder diagram or relay ladder diagram

One or more networks of contacts, coils, graphically represented functions, function blocks,

data elements, labels, and connective elements, delimited on the left and (optionally) on the

right by power rails.

Programmable (logic) controller (PLC)

Digitally operating electronic system, designed for use in an industrial environment, which

uses a programmable memory for the internal storage of user-oriented instructions for

implementing specific functions such as logic, sequencing, timing, counting and arithmetic, to

control, through digital or analogue inputs and outputs, various types of machines or

processes. Both the PLC and its associated peripherals are designed so that they can be easily

integrated into an industrial control system and easily used in all their intended functions.

Programmable controller system or PLC-system

User-build configuration, consisting of a programmable controller and associated peripherals,

that is necessary for the intended automated system. It consists of units interconnected by

cables or plug-in connections for permanent installation and by cables or other means for

portable and transportable peripherals.

Programming and debugging tool PADT)

Catalogued peripheral to assist in programming, testing, commissioning and troubleshooting

the PLC-system application, programme documentation and storage and possibly to be used

as HMIs. PADTs are said to be pluggable when they may be plugged or unplugged at any

time into their associated interface, without any risk to the operators and the application. In all

other cases, PADT are said to be fixed.

Remote input/output station (RIOS)

Manufacturer’s catalogued part of a PLC-system including input and/or interfaces allowed to

operate only under the hierarchy of the main processing unit (CPU) for I/O

multiplexing/demultiplexing and data pre-processing/post-processing. The RIOS is the only

permitted limited autonomous operation, for example, under emergency conditions such as

Ireneusz Mosoń Programmable Controllers

- 66 -

breakdown of the communication link to the CPU or of the CPU itself, or when maintenance

and trouble shooting operations are to be performed.

FUNCTIONAL CHARACTERISTICS

Basic functional structure of a programmable controller system

The general structure with main functional components in a programmable controller system

is presented in figure 5.1. These functions communicate with each other and with the signals

of the machine/process to be controlled.

Fig.5.1. Basic functional structure of a PLC-system

Signal processing functions

The CPU function consists of the application programme storage, the operating system, and

Ireneusz Mosoń Programmable Controllers

- 67 -

the execution of the application programme functions.

The CPU processes signals obtained from sensors as well as internal data storage and

generates signals to actuators as well as internal data storage in accordance with the

application programme.

Interface function to sensors and actuators

The interface function to sensors and actuators converts

� the input signals and/or data obtained from the machine/process to appropriate signal

levels for processing;

� the output signals and/or data from the signal processing function to appropriate signal

levels to drive actuators and/or displays.

The input/output signals to the interface functions may be coming from special modules

which pre-process external sensor signals according to the defined functions contained in the

special modules themselves. Examples of such special modules include PID module, fuzzy-

control module, high-speed counter module, motion modules and others.

Communication function

The communication function provides data exchange with other systems (third-party devices)

such as other PLC-systems, robot controllers, computers, etc.

Human-machine interface (HMI) function

The HMI function provides for interaction between the operator, the signal processing

function and the machine/process.

Programming, debugging, testing and documentation functions

These functions provide for application programme generation and loading, monitoring,

testing and debugging as well as for application programme documentation and archiving.

Power-supply functions

The power-supply functions provide for the conversion and isolation of the PLC-system

power from the mains supply.

Characteristics of the CPU function

The capabilities of the programmable controllers are determined by programmable functions

which, for ease of use, are subdivided into application oriented groups:

� logic control (logic, timers, counters);

� signal/data processing (mathematical functions, data handling, analogue data processing);

� interfacing functions (input/output, other systems, HMI, printers, mass memory);

Ireneusz Mosoń Programmable Controllers

- 68 -

� execution control;

� system configuration.

Operating system

The operating system function is responsible for the management of internal PLC-system

interdependent functions (configuration control, memory management, application

programme execution management, communication with peripherals and with the interface

functions to sensors and actuators, etc.).

After a power-down or a distortion, the PLC system can restart in three different ways.

Cold restart

Restart of the PLC-system and its application programme after all dynamic data (variables

such as I/O image, internal registers, timers, counters, etc., and programme contexts) are reset

to a predetermined state. A cold restart may be automatic (for example, after a power failure,

a loss of information in the dynamic portion(s) of the memory(ies), etc.) or manual (for

example, push-button reset, etc.).

Warm restart

Restart after a power failure with a user-programmed predetermined set of remnant data and a

system predetermined application programme context. A warm restart is identified by a status

flag or equivalent means made available to the application programme indicating that the

power failure shut-down of the PLC-system was detected in the run mode.

Hot restart

Restart after power failure that occurs within the process-dependent maximum time allowed

for the PLC-system to recover as if there had been no power failure.

All I/O information and other dynamic data as well as the application programme context are

restored or unchanged.

Hot-restart capability requires a separately powered real-time clock or timer to determine

elapsed time since the power failure was detected and a user-accessible means to programme

the process-dependent maximum time allowed.

Memory for application data storage

Application programme storage

The application programme storage provides for memory locations to store a series of

instructions whose periodic or event-driven execution determines the progression of the

Ireneusz Mosoń Programmable Controllers

- 69 -

machine or the process. The application programme storage may also provide for memory

locations to store initial values for application programme data.

Application data storage

The application data storage provides for memory locations to store I/O image table and data

(for example, set values for timers, counters, alarm conditions, parameters and recipes for the

machine or the process) required during the execution of the application programme.

Memory type, memory capacity, memory utilisation

Various types of memory are in use: read/write (RAM), read-only (ROM), programmable

read-only (PROM), reprogrammable read-only (EPROM/UV-PROM, EEPROM). Memory

retention at power failure is achieved by a proper selection of the memory type where

applicable (for example, EPROM, EEPROM) or the use of memory back-up for volatile

memories (for example, a battery).

Memory capacity relates to the number of memory locations in Kbytes, which are seserved to

store both the application programme and the application data. Memory capacity

measurements are:

� capacity in the minimum useful configuration;

� size(s) for expansion increments;

� capacity(ies) at maximal configuration(s).

Each programmable function used by the application programme occupies memory locations.

The number of locations required generally depends on the programmable functions and the

type of programmable controller.

Application data storage requires memory capacity depending on the amount and format of

data stored.

Execution of the application programme

An application programme may consist of a number of tasks. The execution of each task is

accomplished sequentially, one programmable function at a time until the end of the task. The

initiation of a task, periodically or upon the detection of an event (interrupt condition), is

under the control of the operating system.

Characteristics of the interface function to sensors and actuators

Types of input/output signals

Status information and data from the machine/process are conveyed to the I/O system of the

programmable controller by binary, digital, incremental or analogue signals. Conversely,

Ireneusz Mosoń Programmable Controllers

- 70 -

decisions and results determined by the processing function are conveyed to the

machine/process by use of appropriate binary, digital, incremental or analogue signals. The

large variety of sensors and actuators used requires accommodating a wide range of input and

output signals.

Characteristics of the input/output system

Various methods of signal processing, conversion an isolation are used in input/output

systems. The behaviour and performance of the PLC-system depend on the static/dynamic

evaluation of the signal (detection of events), storing/non-storing procedures, opto-isolation,

etc.

Input/output systems in general display a modular functionality which allows for

configuration of the PLC-system according to the needs of the machine/process and also for

later expansion (up to the maximum configuration).

The input/output system may be located in close proximity to the signal processing function

or may be mounted close to the sensors and actuators of the machine/process, remotely from

the signal processing function.

Characteristics of the communication function

The communication function represents the communication aspects of a programmable

controller. It serves the programme and data exchange between the programmable controller

and external devices or other programmable controllers or any devices in an automated

system.

It provides functions such as device verification, data acquisition, alarm reporting, programme

execution, and I/O control, application programme transfer, and connection management to

the signal-processing unit of the PLC from or to an external device.

The communication function is generally accomplished by serial data transmission over local

area networks or point-to-point links.

Characteristics of the human-machine interface (HMI) function

The HMI function has two purposes.

� To provide the operator with the information necessary for monitoring the operation of the

machine/process.

� To allow the operator to interact with the PLC-system and its application programme in

order to make decisions and adjustments beyond their individual user scope.

Ireneusz Mosoń Programmable Controllers

- 71 -

Characteristics of the programming, debugging, monitoring, testing and documentation

functions

These functions are implemented as either an integral or an independent part of a

programmable controller and provide for code generation and storage of the application

programme and application data in the programmable controller memory(ies) as well as

retrieving such programmes and data from memory(ies).

Language

For the programming of the application, there is a set of languages defined in IEC 61131-3.

Textual languages

Instruction list (IL) language

A textual programming language using instructions for representing the application

programme for a PLC-system.

Structured text (ST) language

A textual programming language using assignment, sub-programme control, selection and

iteration statements to represent the application programme for a PLC-system.

Graphical languages

Function block diagram (FBD) language

A graphical programming language using function block diagrams for representing the

application programme for a PLC-system.

Ladder diagram (LD) language

A graphical programming language using ladder diagrams for representing the application

programme for a PLC-system.

Sequential function chart (SFC)

A graphical and textual notation for the use of steps and transitions to represent the structure

of a program organisation unit (program or function block) for a PLC-system. The transition

conditions and the step action can be represented in a subset of the above-listed languages.

Writing the application programme

Generating the application programme

The application programme may be entered via alphanumeric or symbolic keyboards and,

when menu-driven displays are, or a graphical programme entry is, used via cursor keys,

joystick, mouse, etc. All programme and data entries are generally checked for validity and

Ireneusz Mosoń Programmable Controllers

- 72 -

internal consistency in such a way that the entry of incorrect programmes and data is

minimized.

Displaying the application programme

During application programme generation, all instructions are displayed immediately,

statement by statement or segment by segment (in the case of a monitor or other large

display). In addition, the complete programme can generally be printed. If alternative

representation of programming language elements is available, than the display representation

is generally user-selectable.

Automated system start-up

Loading the application programme

The generated programme resides either in the memory of the programmable controller or in

the memory of the PADT. The latter requires a programme transfer via down-loaded or

memory cartridge insertion into the programmable controller before start-up.

Accessing the memory

During start-up or trouble-shooting operations, the application programme and application

data storage are accessed by the PADT as well by the processing unit to allow programme

monitoring, modification and correction. This may be done on line (i.e. while the PLC-system

is controlling the machine/process).

Adapting the programmable controller system

Typical functions for adapting the PLC-system to the machine/process to be controlled are:

� test functions which check the sensors and actuators connected to the PLC-systems (for

example, forcing the outputs of the PLC-system);

� test functions which check the operation of the programme sequence (for example, setting

the flags and forcing the inputs);

� setting or resetting of variables (for example, timers, counters, etc.).

Indicating the automated system status

The ability to provide information about the machine/process and the internal status of the

PLC-system and of its application programme facilitates the start-up and debugging of a PLC

application. Typical means are:

� status indication for inputs/outputs;

� indication/recording of status changes of external signals and internal data;

� scan time/execution time monitoring;

� real-time visualization of programme execution and data processing;

� fuse/short-circuit protection status indicators.

Ireneusz Mosoń Programmable Controllers

- 73 -

Testing the application programme

Test functions support the user during writing, debugging and checking the application

programme. Typical test functions are:

� checking the status of inputs/outputs, internal functions (timers, counters);

� checking programme sequences, for example, step-by-step operations, variations of

programme cycle time, halt commands;

� simulation of interface functions, for example, forcing of I/Os, of information exchanged

between tasks or modules internal to the PLC-system.

Modifying the application programme

Functions for modification provide for changing, adjusting and correcting application

programmes. Typical functions are search, replace, insert, delete, and add; they apply to

characters, instructions, programme modules, etc.

Documentation

A documentation package should be provided to fully describe the PLC-system and the

application. The documentation package may consist of

� description of the hardware configuration with project-dependent notations;

� application programme documentation consisting of

- programme listing, with possible mnemonics for signals and data processed;

- cross-reference tables for all data processed (I/Os, internal functions such as internal

stored data, timers, counters, etc.);

- comments;

- description of modifications;

- maintenance manual.

Application programme archiving

For rapid repair and to minimize down-time, the user may want to store the application

programme in non-volatile media such as flash, PC-cards, EEPROM, EPROM, discs, etc.

Such a record needs to be updated after every programme modification so that the programme

executed in the PLC-system and the archived programme remain the same.

Characteristics of the power-supply functions

The power supply functions generate voltages necessary to operate the PLC-system and

generally also provide control signals for proper ON/OFF synchronization of the equipment.

Various power supplies may be available depending on supply voltages, power consumption,

parallel connection, requirements for uninterruptible operation, etc.

Ireneusz Mosoń Programmable Controllers

- 74 -

AVAILABILITY AND RELIABILITY

Every automated system requires a certain level of availability and reliability of its control

system. It is the user’s responsibility to ensure that the architecture of the overall automated

system, the characteristics of the PLC-system and its application programme will jointly

satisfy the intended application requirements.

Architecture of the automated system

Techniques such as redundancy, fault tolerance and automatic error checking, as well as

machine/process diagnostic functions can provide enhancements in the area of availability of

the automated system.

Architecture of the programmable controller system

A modular construction in conjunction with suitable internal self-tests allowing rapid fault

identification may provide enhancements in the area of maintainability of the PLC-system and

therefore of the availability of the automated system. Techniques such as redundancy and

fault tolerance of the availability of the automated system. Techniques such as redundancy

and fault tolerance may also be considered for special applications.

Design, testing and maintenance of the application programme

The application programme is a key component of the overall automated system. Most

programmable controllers provide enough computing power to permit implementation of

diagnostic functions in addition to the minimum control function. Machine/process behaviour

modelling and subsequent identification of faulty conditions should be considered.

Adequate testing of the application programme is mandatory. Every modification implies

proper design and testing so that the overall availability and reliability are not impaired. The

programme documentation shall be maintained and annotated accordingly.

Installation and service conditions

PLC-systems are typically of rugged design and intended for general purpose service.

However, as for any equipment, the more stressing the service conditions, the worse is the

reliability, and benefit in this area may be expected when permitted service conditions are

better than the normal service conditions specified in IEC 61131-2. Some applications may

require consideration of special packaging, cooling, electrical noise protection, etc., for

reliable operation.

Ireneusz Mosoń Programmable Controllers

- 75 -

Conclusion

In Part 1 of these materials information about programmable controllers, their

principle of operation and programming is presented. It was intended to start presentation of

each problem starting from its basics, and end with its detailed analysis. Any time it was

appropriate, necessary comparisons in relation to various programmable controllers have been

made and discussed. A special effort have been made to present all material step-by-step in a

well organised manner – especially Chapter 4 about programming. In the last chapter in this

part of materials selected information from the International Standard IEC 61131 is presented.

It should help to get acquainted with programmable controllers and programmable controller

based control systems basics, as well as with programmable controllers nomenclature.

These materials are auxiliary materials for students to better understand the course

“Programmable controllers”. Completion of this course should give them a good basis to start

their engineering activities in the field of programmable controllers applications.

Ireneusz Mosoń Programmable Controllers

- 76 -

References

1. Automation Systems and Drives. Main Catalogue 2001/2002. Moeller GmbH, Bonn,

01/2001, HPL0213-2001/2002GB.

2. Automation systems. Main Catalogue 2004/2005. Moeller GmbH, Bonn, HPL0213-

2004/2005GB-INT MM/We 10/04.

3. Bauernfeind D., Dung O., Skupin J.: CM4-505-GS1 AS-Interface Master: Gateway for

Suconet K – Actuator Sensor Interface. Moeller GmbH, Bonn, AWB 27-1271-GB, 09/96.

4. Berger H.: Automatyzacja za pomocą sterownika SIMATIC S5-115U. SIEMENS AG,

Erlangen, 1987.

5. Brock S., Muszyński R., Urbański K., Zawirski K.: Sterowniki Programowalne.

Wydawnictwo Politechniki Poznańskiej, Poznań, 2000.

6. Broel-Plater B.: Układy wykorzystujące sterowniki PLC. Projektowanie algorytmów

sterowania. Wydawnictwa Naukowe PWN, Warszawa, 2010.

7. Cena G., Valenzano A., Vitturi S.: Hybrid Wired/Wireless Networks for Real-Time

Communications. IEEE Industrial Electronics, Vol.2, Nr 1, 2008, pp. 8-20.

8. DL405 User Manual, 2nd Edition. Direct Logic Koyo, PLC Direct Inc., 1995.

9. Dirnfeldner M.: Automation with Programmable Controllers. An Introduction for

Beginners. LS 27-064 GB, Klockner-Moeller 12/88.

10. Flaga S.: Programowanie sterowników PLC w języku drabinkowym. Wydawnictwo BTC,

Legionowo, 2010.

11. Gomółka W.: Realizacja algorytmów sterowania sekwencyjnego za pomocą sieci działań

GRAFCET. PAK,1990, Nr 7, s. 136-141.

12. Hitachi Programmable Controller - E Series. Operation Manual, No. NJI 008A.

13. Kamiński K.: Programowanie sterownika S7. Norkom, Gdańsk, 2000.

14. Kamiński K.: Programowanie w Step 7 MicroWin. Wydawnictwo GRYF, Gdańsk, 2006.

15. Kamiński K.: Podstawy sterowania z PLC. Wydawnictwo GRYF, Gdańsk, 2009.

16. Kasprzyk J.: Programowanie sterowników przemysłowych. WNT, Warszawa, 2006.

17. Kiełtyka L., Stoiński D., Fengler W.F.: Wykorzystywanie sieci Petriego do sterowania

procesami sekwencyjnymi. Prace IX Sympozjum SPD-9 „Symulacja procesów

dynamicznych”, Polana Chochołowska, 10-14 czerwiec 1996, s. 125-129.

18. Konen P.L., Leuchs K.: Networking Programmable Controllers. An Introduction for

Beginners. G 27-2100-GB, Klockner-Moeller 5/90.

Ireneusz Mosoń Programmable Controllers

- 77 -

19. Król A., Moczko-Król J.: S5/S7 Windows. Programowanie i symulacja sterowników PLC

firmy SIEMENS. Wydawnictwo Nakom, Poznań, 2000.

20. Kwaśniewski J.: Programowalne sterowniki przemysłowe w systemach sterowania.

J.Kwaśniewski & Fundacja Dobrej KsiąŜki, Kraków, 1999.

21. Kwaśniewski J.: Sterowniki PLC w praktyce inŜynierskiej. Wydawnictwo BTC,

Legionowo, 2008.

22. Kwaśniewski J.: Programowalny sterownik SIMATIC S7-300 w praktyce inŜynierskiej.

Wydawnictwo BTC, Legionowo, 2009.

23. Legierski T., Kasprzyk J., Hajda J., Wyrwał J.: Programowanie sterowników PLC.

Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 1998.

24. Lüder A., Lorentz K.: IAONA Handbook – Industrial Ethernet. IAONA e.V., Magdeburg,

2005.

25. Maczyński A.: Sterowniki programowalne PLC. Budowa systemu i podstawy

programowania. Astor Sp. z o.o., Kraków, 2002.

26. Menden R., Petrick B.: Manual. Structuring of User Programs. Klockner-Moeller, Bonn

5/91, AWB 27-1011-GB.

27. Mikulczyński T., Samsonowicz Z.: Synteza sekwencyjnych układów sterowania

zautomatyzowanych procesów technologicznych. PAK, Nr 7, 1994.

28. Mikulczyński T., Samsonowicz Z.: O syntezie sekwencyjnych układów sterowania ZPT.

PAK, Nr 10, 1994.

29. Mikulczyński T., Samsonowicz Z.: Analiza wybranych metod modelowania i

programowania dyskretnych procesów produkcyjnych. PAK, Nr 3, 1995.

30. Mikulczyński T., Samsonowicz Z.: Automatyzacja dyskretnych procesów produkcyjnych.

WNT, Warszawa, 1997.

31. Mosoń I., Karkosiński D.: Programowalne sterowniki logiczne w dydaktyce.

„Zastosowanie komputerów w dydaktyce ’94”, Cykl seminariów zorganizowanych przez

PTETiS Oddział w Gdańsku, Zesz. Nauk. Wydz. Elektrycznego Politechniki Gdańskiej

Nr 6, 1994, s.89-94.

32. Mosoń I.: Sterowniki programowalne PS4 w zdecentralizowanych systemach sterowania.

Elektroinstalator (Automatyka) 1996, Nr 11, s.27-30.

33. Mosoń I., Karkosiński D.: Program sterowania, diagnozowania stanu technicznego i

monitorowania parametrów pracy linii technologicznej okleinowania płyt meblowych.

Opis algorytmu. 1998, 15 s. 2 rys. 3 tabl. bibliogr. 6 poz. maszyn.

Ireneusz Mosoń Programmable Controllers

- 78 -

34. Mosoń I.: Język GRAFCET a weryfikacja algorytmów i programów sterowania.

Materiały: Seminarium Naukowo-Techniczne „Zastosowanie nowoczesnej aparatury

Schneider Electric w urządzeniach i instalacjach elektroenergetycznych niskiego

napięcia”, Gdańsk, 9 czerwiec 1999, s. 4-14.

35. Mosoń I.: Wybrane aspekty wprowadzenia do dydaktyki przedmiotu Sterowniki

Programowalne. „Zastosowanie komputerów w dydaktyce ’99”, IX cykl seminariów

zorganizowanych przez PTETiS Oddział w Gdańsku, Zesz. Nauk. Wydz. Elektrotechniki

i Automatyki Politechniki Gdańskiej Nr13, 1999, s.101-106.

36. Mosoń I.: Sterowniki programowalne – strukturyzacja programów sterowania.

„Zastosowanie komputerów w nauce i technice 2001”, XI cykl seminariów

zorganizowanych przez PTETiS Oddział w Gdańsku, Zesz. Nauk. Wydz. Elektrotechniki

i Automatyki Politechniki Gdańskiej Nr 17, 2001, s.145-152.

37. Mosoń I., śukowski K.: Symulator Sym-PS4 sterownika programowalnego PS4-201-

MM1. „Zastosowanie komputerów w nauce i technice 2002”, XII cykl seminariów

zorganizowanych przez PTETiS Oddział w Gdańsku, Zesz. Nauk. Wydz. Elektrotechniki

i Automatyki Politechniki Gdańskiej Nr 18, 2002, s.125-130.

38. Mosoń I.: Control systems with programmable controllers – teaching aspects. IX

Konferencja Naukowo-Techniczna „Zastosowania Komputerów w Elektrotechnice”

ZKwE’2004, Poznań/Kiekrz, 19-21 kwietnia 2004, s. 621-624.

39. Orłowski H.: Komputerowe układy automatyki. WNT, Warszawa, 1987.

40. PN-EN 61131-1:2004. Sterowniki programowalne – Część 1: Postanowienia ogólne.

41. PN-EN 61131-3:2004. Sterowniki programowalne – Część 3: Języki programowania.

42. Practical Aspects of Industrial Control Technology. Telemecanique Technical Collection.

Editions CITEF, 1994.

43. Roersch P.: LE4-505-BS1 AS-I Network Module. Hardware and Engineering. Moeller

GmbH, Bonn, AWB 27-1314 GB, 02/98.

44. Ruda A., Olesiński R.: Sterowniki Programowalne PLC. Wydawnictwo COSiW SEP,

Warszawa, 2003.

45. Sałat R., Korpysz K., Obstawski P.: Wstęp do programowania sterowników PLC.

Wydawnictwo Komunikacji i Łączności, Warszawa, 2010.

46. Schunemann U.: Programming PLCs with an Object-Oriented Approach. ATP

International, Automation Technology In Practice. Nr 2, 2007, pp. 59-63.

47. Seta Z.: Wprowadzenie do zagadnień sterowania – wykorzystanie programowalnych

sterowników logicznych PLC. Wydawnictwo NIKOM, Warszawa, 2002.

Ireneusz Mosoń Programmable Controllers

- 79 -

48. Simatic S5-115U Programmable Controller. Manual. Siemens AG, 1991, EWA 4NEB

811 6130-02a.

49. Stańczak W.: Przemysłowe sieci lokalne. Sieciowe systemy komunikacyjne integrujące

automatyzację wytwarzania. Podręczniki Nr 6. PIAP, Warszawa, 1998.

50. Sterownik VersaMax. Podręcznik uŜytkownika. Astor Sp. z o.o., Kraków, 1999.

51. Tassin A.: Structured Programming and Utilities for the Series PCD. User’s Guide. SAIA

AG, 1992, Edition 26/732 E4 06.94.

52. Trybus L.: Regulatory wielofunkcyjne. WNT, Warszawa, 1992.

53. Volberg J.: Actuator-Sensor Interface. Networking I/O on the fieldbus. Klockner-Moeller,

Bonn, 1996.

