Institute for Robotics and Intelligent Systems Technical Report, IRIS01-416, USC, 2001

USC Robotics Laboratory
University of Southern California

Los Angeles, California, USA

Mezzanine User Manual

Version 0.00

Andrew Howard

This document may not contain the most current documentation on
Mezzanine. For the latest documentation, consult the Player/Stage homepage:
http://playerstage.sourceforge.net

May 20, 2002

ii

Contents

1 Introduction

1.1 Description e
1.2 History o
1.3 Licence
1.4 System Requirements
1.5 Getting Mezzanine L L
1.6 Building and Installing L L
1.7 Bugs . . . o e
1.8 Acknowledgements

2 QuickStart Guide

3 Using mezzaine

3.1 Physical Set-up
3.2 Hardware e
3.3 Running mezzanineo e e
3.4 How it works; in brief
3.5 Configuration e e
3.5.1 fgrab : frame-grabber interface L oL L.
3.5.2 classify : color classification. o000
3.5.3 Dblobfind : color blob segmentation
3.5.4 dewarp : image dewarping; image-to-world transformation
3.5.5 ident : object identification Lo oo
4 Using mezzcal
4.1 Running mezzcalo
4.2 Calibration
4.2.1 Imagemask
4.2.2 Color classes e
4.2.3 Blob properties
4.2.4 Dewarping e e e e e e
5 Using libmezz
5.1 Compiling and linking
5.2 Functions e
5.3 Structures e e e e e

iii

13
13
13
15
15
16
17

A TPC Specification
A.1 Signal Handling

A.2 Memory-Mapped File Layout,

v

Chapter 1

Introduction

Mezzanine is an overhead 2D visual tracking package intended primarily for use as a mobile robot
metrology system. It uses a camera to track objects marked with color-coded fiducials, and infers
the pose (position and orientation) of these objects in world coordinates. Mezzanine will work with
most color cameras (even the really cheap ones), and can correct for the barrel distortion produced
by wide-angle-lenses.

Mezzanine is language and architecture neutral: object poses are written into a shared memory-
mapped file which other programs can read and make use of as they see fit. Mezzanine itself is
written in pure C and was developed under Linux on x86 hardware.

1.1 Description

Mezzanine consists of three main components:
e mezzanine : the tracking program.
e mezzcal : a calibration program (for settings colors, etc).

e libmezz : an IPC library for communicating with mezzanine.

mezzanine : the tracking program

mezzanine captures images from a frame-grabber using Video4Linux, classifies and segments the
images into colored blobs, groups the blobs into known types of objects, computes the world
coordinates of these objects using a ground plane constraint (i.e., all objects are assumed to be
either on the ground or at some constant height above the ground), and writes the location of
objects into a shared memory-mapped file. Other processes can from read this file using libmezz,
or through their own native memory-mapped file API.

On a 700Mhz PIII, mezzanine is able to process 30 frames/second (i.e. the full NTSC frame-
rate) while utilising about 70% of the CPU.

mezzcal : the calibration program

mezzcal is a gui tool used calibrate the system. Users can control the color classes, blob properties,
and image-to-world transformation through a simple drag-and-drop interface. mezzcal is witten
using RTK2 (a GUI toolkit for robotics applications), which is in turn based on GTK+ (the GIMP
Toolkit).

libmezz : the IPC library

The 1ibmezz library provides a convenient C interface to mezzanine. It defines a small set of func-
tions and structures through which client programs written by users can interact with mezzanine.
Note that this library is provided mainly for convenience: users are free to write native interfaces
to mezzanine in any language they see fit, so long as that language supports access to shared
memory-mapped files.

See Appendix A for a complete IPC reference, and check out the examples directory for sample
programs.

1.2 History

Mezzanine was developed at the USC Robotics Research Laboratory as part of the Player/Stage
project http://playerstage.sourceforge.net, and is based partly on code developed for the
University of Melbourne’s RoboCup team http://www.cs.mu.oz.au/robocup.

1.3 Licence

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

1.4 System Requirements

Mezzanine is known to work on Linux/x86 using a 2.4 kernel. Video capture is done using
Video4Linux, so it should work with any frame-grabber card supported by V4L. Mezzanine also
requires the following third-party libraries:

e Video4Linux : Video support for Linux. See http://www.video4linux.net/.

e GTK+ 1.2 : The Gimp Toolkit is present on pretty much every Linux distro, and most other
Unix’es. See http://www.gtk.org

e GSL 0.9 or above : The GNU Scientific Library is available as package in most distros, but
often not installed by default. See http://sources.redhat.com/gsl/
1.5 Getting Mezzanine

The latest release of Mezzanine can be found at http://playerstage.sourceforge.net. From
here you can also get the latest, bleeding edge version from the CVS repository.

1.6 Building and Installing

Mezzanine does not currently use autoconf, so you may have to tweak the make files a little to
get it to compile on your system. On the other hand, if you already have the required third-party
libraries (see above), and you're using a standard Linux distro, you should be able to just

make; make install

For more detailed instructions, open the Mezzanine tarball and read the README in the top-level
directory.

1.7 Bugs

Mezzanine is research software, and is bound to contain some bugs. If you’ve broken something (or

better yet, fixed something), please submit a bug report to http://sourceforge.net/projects/playerstage.
Make sure you include the Mezzanine and OS version, together with a detailed description of the

problem. While there is no warranty on this software, we’ll try to fix things for you.

1.8 Acknowledgements

This work is supported by DARPA grant DABT63-99-1-0015 (MARS) and NSF grant ANI-9979457
(SCOWR), and possibly others.

Many thanks to Gavin Baker (gavinb@antonym.org) for providing the Video4Linux interface
(1ibfg).

Chapter 2

QuickStart Guide

If your frame-grabber card is installed and working, and is available as /dev/videoO, you should
be able to start Mezzanine by typing:

$ mezzanine --fgrab.norm NTSC
or
$ mezzanine --fgrab.norm PAL

depending on whether you're using an NTSC or PAL camera. You should see some introductory
information about versions, etc, then a list of numbers showing timing information. In another
terminal, you can now start the calibration program:

$ mezzcal

This should pop up three windows: one with an image from the camera overlaid with all sorts of
cryptic symbols, another showing a YUV color-space with some random colored pixels in it, and a
third containing a table of blob and object properties. You are now ready to calibrate the system,
for which you will need to read Chapter 4. Once the system is calibrated, you can start writing
your own client programs; see the examples directory for some code samples.

If the above sequence gave you no joy, you might want to try some of the following:

e Make sure mezzanine and mezzcal are in your executable path.
e Make sure you have read-write permission on /dev/videoO.
e Is your camera plugged in/turned on?

e [s your frame-grabber supported by Video4Linux? Some cards wont actually generate images,
even though V4L seems to run ok. Try running xawtv to see if you can get a picture.

If it still doesnt work, you will probably need to read either the V4L documentation or the rest of
this manual.

Chapter 3

Using mezzaine

3.1 Physical Set-up

Mezzanine is designed to track fiducials, i.e., color coded markers attached to the objects we wish
to track. Each fiducial is composed of a pair of solid colored circles, as shown in Figure 3.1. Any
pair of colors can be used, but best results are achieved when the colors are strongly saturated and
are well separated in color space; day-glo orange and green are a good combination, for example.
The size and separation of the fiducials will depend upon the quality of the camera and its distance
from the area of interest.

The fiducials allow Mezzanine can determine the position and orientation of objects, but not
their identity. We therefore rely on track-continuation to generate consisent object labels. As a
consequent, labels may swap if two fiducials come into very close proximity.

Mezzanine is designed to work with an overhead camera, as shown in Figure 3.2(a). Best results
are achieved when the camera is located centrally over the area of interest and is oriented to point
directly down. Mezzanine can also handle oblique camera angles, but tracking accuracy will be
decreased to some extent.

Figure 3.2(b) shows a typical image taken through an overhead camera. Note the barrel dis-
tortion produced by the wide-angle lens; Mezzanine uses a second-order polynomial to remove
this distortion, then uses a projective transform to convert from image to world coordinates. See
Chapter 4 for details on how to calibrate this transformation.

3.2 Hardware

Mezzanine uses Video4Linux to capture images from a frame-grabber. Video4Linux supports
most of the popular chipsets, including the Conexant series (BT848, BT878 and so on). See the
Video4Linux documentation for information on installing and using frame-grabbers under Linux
(http://www.video4linux.net/).

Mezzanine will work with pretty much any color camera, but will obviously give better results
when used with good hardware. RGB cameras are particularly nice (but very expensive); using
S-Video rather than Composite-Video will also help.

3.3 Running mezzanine

Start mezzanine by typing:

Figure 3.1: A fiducial marker composed of pink and green circles; each circle has a diameter of
50 mm. This fiducial has been mounted on top of a small tracked robot.

$ mezzanine

the program will read the default configuration file, then print out some version and timing in-
formation. The program can be stopped at any time using C. To start mezzanine with a custom
configuration file, use:

$ mezzanine myfile.opt
Options specified in the configuation file can also be over-ridden on the command line. For example:
$ mezzanine --fgrab.norm PAL myfile.opt

will command the frame grabber to acquire in PAL mode, irrespective of the settings in the con-
figuration file.

Mezzanine’s performance (measured in frames-per-second) will depend on the CPU and front-
side bus speed. On a 700MHz Pentium III, mezzanine has been shown to run at the video frame
rate (25Hz for PAL and 30Hz for NTSC) with about 80% CPU utilization. Note, however, that
even on lightly loaded machines, mezzanine may still drop occasional frames; it does not run as a
real-time process.

3.4 How it works; in brief

The algorithm for mezzanine is as follows.
1. fgrab : block until the next frame arrives.

2. classify : apply a mask to the image to decide which parts of the image should be processed
and which should be ignored. The mask is a simple polygon: only those points inside the
polygon will be processed.

3. classify : classify each pixel in the masked image as belonging to either one of the user-
specified classes, or to none of these classes. Classification is done in YUV space.

(a)

Figure 3.2: (a) Side view of a workspace; the camera is mounted in the ceiling directly above the
center of the workspace. (b) The view from the overhead camera; note the distortion produced by
the wide-angle lens.

4. blobfind : group classified pixels into blobs using a connected-component algorithm. Reject
those blobs which are too big or too small.

5. dewarp : compute the pose of each blob in world coordinates.

6. ident : identify objects by searching for pairs of blobs with suitable geometry; use track
continuation to label objects.

7. Raise a signal to notify waiting processes that new data is available.

8. Goto 1.

3.5 Configuration

Mezzanine requires quite a lot of configuration information (for describing color classes, the size of
the fiducials, image-to-world coordinate transformations, and so on). Configuration information is
stored in a file using a simple section-key-value syntax (and can be overridden on the command line
as indicated previously). The frame-grabber section of the configuration file might look something
like this:

This is a comment
fgrab.norm = ntsc
fgrab.width = 640
fgrab.height = 480

A sample configuration file mezzanine.opt is supplied with the package.
Note that the calibration program mezzcal may alter of the configuration settings. Such changes
are written back into the configuration file when mezzanine terminates.

3.5.1 fgrab : frame-grabber interface

The fgrab section of the configuration file specifies the properties of the camera and frame-grabber.

fgrab.norm

Specifies the type of video signal. Valid values are NTSC or PAL.

fgrab.width
fgrab.height

Image width and height (typically 640x480 for NTSC and 768x576 for PAL). Make sure
the values are valid for your frame-grabber, otherwise strange stuff will happen.

fgrab.depth

Color depth in bits. Valid values are 16 and 32, but only the former is recommended.

3.5.2 classify : color classification

The classify section of the configuration file defines the color classes that will be extracted from
the image. FEach color class is defined by a set of three polygons, one for each of the UV, YU
and VY color spaces. Only those pixels that project into all three polygons are assigned to the
corresponding color class. Most of the entries in this section are generated by the calibration
program mezzcal; see Chapter 4 for a complete description of the recommended color calibration
procedure.

classify.mask.poly[n]

Specifies the image mask: only those points inside the mask polygon will be processed.
The polygon is specified as a series of points in image coordinates. Use mezzcal to edit
the mask.

classify.class[n] .name
classify.class[n].color

A descriptive name and color for the n’th color class (to be used in mezzcal); only two
such classed are required.

classify.class[n].vupoly[m]

classify.class[n].yupoly [m]

classify.class[n].vypoly [m]
Class polygons in the VU, YU and VY projections of the YUV color space. Only those
pixels that project into all three polygons will be assigned to this class. Use mezzcal to
edit these values.

3.5.3 Dblobfind : color blob segmentation

The blobfind section controls the assignment of classified pixels into color blobs. Most of the
entries in this section can be edited using the calibration program.

blobfind.min_area
blobfind.max_area

10

The minimum and maximum number of pixels in a blob; blobs which are either too small
or too large will be discarded.

blobfind.min_sizex

blobfind.max_sizex
The minimum and maximum width of the blob (in pixels); blobs which are either too
narrow or too wide will be discarded.

blobfind.min_sizey
blobfind.max_sizey

The minimum and maximum height of the blob (in pixels); blobs which are either too
short or too tall will be discarded.

3.5.4 dewarp : image dewarping; image-to-world transformation

The dewarp section controls both the image dewarping (i.e., the removal of barrel distortion on wide
angle lenses) and the transformation from image to world coordinates. For this, mezzanine needs a
set of calibration points whose position in both image and world coordinates is known. Some care
must be taken in the selection of calibration points: mezzanine uses a 3rd order polynomial which
requires at least 7 non-colinear calibration points. The image coordinates of the calibration points
can be specified using mezzcal; see Chapter 4 for details.

dewarp.wpos [n]

World coordinates of the calibration points.

dewarp.ipos[n]

Image coordiantes of the calibration points. Use mezzcal to generate these values.

3.5.5 ident : object identification

The ident section controls the number of objects that will be tracked, and describes the properties
of the fiducials.

ident.object_count

Number of objects to track.

ident.class[0]

ident.class[1]
Class index for each of the two colors making up each fiducial. These will generally be 0
and 1, respectively.

ident.min _sep
ident.min_sep

Minimum and maximum separation (in world coordinates) between the two colors making
up each fiducial.

ident.max_disp

11

Maximum displacement of the fiducial between successive frames (in world coordinates).
Set this to a smaller value if labels are getting swapped when objects are in close proximity.
Set this to a larger value if objects are getting lost when moving at high speed.

ident .max missed

Maximum number of frames that can be missed (i.e., in which the object is not seen)
before trying to re-acqure the object elsewhere in the image.

12

Chapter 4

Using mezzcal

The mezzcal program allows users to calibrate mezzanine through a simple GUI interface. Note
that mezzanine will run significantly slower when mezzcal is running; it is therefore recommended
that users run mezzcal only during system calibration.

4.1 Running mezzcal

After starting mezzanine as per the instruction in Chapter 3, users can start mezzcal by typing:
$ mezzcal

Three windows should appear, as shown in Figure 4.1; these windows are called the image, color
and table windows.

e The image window shows the raw camera image, overlaid with various calibration information.
Use the View menu to turn these overlays on or off, and use the File menu to save calibration
changes.

e The color window shows three projections of the YUV color space, with the color classes
indicated. Use the View menu to turn the overlays for different classes on or off.

e The table window shows various editable properties, such as the minimum and maximum
allowed blob sizes.

Note that these window update at a rate of only few hertz; for calibration, it is not necessary to
update at the video frame rate.

4.2 Calibration

There are four steps in the calibration, which need only be done once for any given camera set-up.

1. Define the image mask.
2. Define the color classes.
3. Define the blob properties.

4. Calibrate the image-to-world transformation (dewarping).

These steps are detailed in the following sections.

13

mezzcal

mezzcal =3= . [mezzcal <2

hlob min area |20 Clagsses

L L

I
=]
=

bliob max area

| blob min width
| blob max width

Bl &
=1
L] L L

biob min feight
|
| blok max height

ra
=
L

Figure 4.1: The mezzcal program. Top: the image window, showing the raw camera output.
Bottom left: the table window. Bottom right: fhe color window, containing three projections of
the YUV color space.

Figure 4.2: The image mask. Points outside the mask are dimmed.

4.2.1 Image mask

The image mask describes the portion of the image that should be processed; i.e., it allows us to
‘mask out’ parts of this image that do not interest us. The image mask is defined by a simple
polygon: points inside the polygon are processed, points outside are ignored. Figure 4.2 shows
the mask in the image window; the mask can be modified by dragging the control points to new
locations.

4.2.2 Color classes

mezzanine classifies each pixel in the masked image based upon its color. Pixels can either belong
to one of the user specified color classes, or they may belong to none of these classes. Pixels that
fall into one of the user defined classes are shown in bright colors in the image window; un-classified
pixels are shown dimmed.

Color classes can be conveniently defined using mezzcal. First, sample pixels must be identified;
this is done by dragging the red sampling cross-hairs in the image window (there are four such
cross-hairs) to the desired location in the image. Pixels in the vicinity of these cross-hairs are then

15

Classes

Figure 4.3: Color classification. The cross-hairs in the image window indicate the sample points;
these sampled points are projected into the UV, UY and YV color spaces. The polygons define the
class boundaries.

automatically projected into the YUV color space shown in the color window. In the color window,
each class is defined by three polygons: one for each of the UV, UY and YV projections of the color
space; only those points that lie inside all three polygons are assigned to the corresponding class.
The class polygons can be modifed by dragging their vertices. This process is illustrated in Figure
4.3.

4.2.3 Blob properties

After pixels have been classified, mezzanine uses a connected-component analysis to group pixels
into blobs; these blobs are then analyzed to determine which ones correspond to fiducials. Thus,
for example, blobs which are either too large or too small are rejected. The remaining valid blobs
are shown in the image window, denoted by a rectangle drawn in the appropriate class color. The
blob definition can be modifed by adjusting the properties displayed in the table window.

16

Figure 4.4: The dewarping grid. Each rectangle denotes a calibration point; the accompanying
labels show the world coordinates.

4.2.4 Dewarping

The world coordinates of each blob is computed by transforming the blob’s image coordinates
through a 3rd order polynomial. The coefficients in this polynomial are calculated automatically
by mezzanine, based on a set of calibration points (i.e. points whose position in both world and
image coordinates is known). At least seven such points are required.

The world coordinates of the calibration points must be specified in the configuration file (see
Section 3.5.4); the image coordinates can be specified using mezzcal. Figure 4.4 shows the dewarp-
ing grid: note the calibration points (labelled by their world coordinates). The image coordinates
each point can be specified by dragging the point to the appropriate location in the image.

17

18

Chapter 5

Using libmezz

The libmezz library provides a convenient C interface to mezzanine. It defines a small set of
functions and structures through which client programs can interact with mezzanine.

5.1 Compiling and linking

Client programs should include the header mezz.h and link to 1libmezz.a.

5.2 Functions

libmezz defines five functions:
mezz_init ()

Initialise the IPC interface.

mezz_term()

Terminate the IPC interface.

mezz mmap ()

Return a pointer to the shared memory.

mezz_wait_event ()

Block until new data is available.

mezz_raise_event ()

Raises an event to indicate that new data is available. This function is used by mezzanine
and should not be used in client program.

The Mezzanine IPC library uses Unix signals to notify processes that new data is available.
After each new frame is acquired and processed, mezzanine sends a SIGUSER1 to each registered
process. These processes are expected to catch this signal and respond by reading the new data
from the memory-map. Processes using libmezz are automatically registered when the library
is initialised, and can use the mezz wait_event() function to wait for the receipt of new data.
See examples/simple for an example. Processes that do not wish to receive signals can poll the

19

count field in the memory-map, which is incremented after each new frame has been acquired and

processed.
See mezz.h for up-to-date documentation on each of these functions, and see the examples

directory for sample programs.

5.3 Structures

The mezz mmap() function returns a pointer to a structure of type mezz mmap_t; this structure
contains all of the exported data from mezzanine, including the raw and classified images, extracted
blobs, and objects. Some configuration information is also stored in this structure: mezzcal uses
these fields to configure mezzanine.

See mezz.h or Appendix A for up-to-date documentation on the mezz mmap_t structure.

20

Appendix A

IPC Specification

The primary specification for the IPC interface is the header file mezz.h; this appendix is provided
mostly for convenience and is largely auto-generated.

A.1 Signal Handling

The Mezzanine IPC library uses Unix signals to notify processes that new data is available. Af-
ter each new frame is acquired and processed, mezzanine sends a SIGUSER1 to each registered
process. These processes are expected to catch this signal and respond by reading the new data
from the memory-map. Processes using libmezz are automatically registered when the library is
initialised, and can use the mezz wait_event () function to wait for the receipt of new data. See
examples/simple for an example. Processes that are not using libmezz can register themselves
by writing into the pids[..] array in the memory-map. Insert the process pid into into the first
null element in this array.

Processes that do not wish to receive signals can monitor the count field in the memory-map,
which is incremented after each new frame has been acquired and processed.

A.2 Memory-Mapped File Layout

This is just a dump of mezz.h; I might do something more intelligent here at some point.

~
*

Mezzanine - an overhead visual object tracker.
Copyright (C) Andrew Howard 2002

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

¥ X X X X X X X X X X ¥ * x*

You should have received a copy of the GNU General Public License

21

* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*

*/

/***

* Desc: Mezzanine IPC interface
Author: Andrew Howard
Date: 28 Mar 2002

Notes:

*
*
b3
*
*
*
*
b3
£ 3
*
*
*
* the right and positive y is upwards.
*

A1l units are SI unless otherwise noted;
seconds. Standard coordinate systems are used: positive x is to

CVS: $Id: mezz.h,v 1.2 2002/05/03 04:55:52 inspectorg Exp $

This library sets up a shared, memory-mapped object for exchanging
data, and a signal for notifying other processes of updates to
that object. The mezzanine program will create the ipc interface;
other processes will connect to an existing interface.

i.e. meters, radians,

**/

#ifndef MEZZ_H
#define MEZZ_H

#include <sys/types.h> // For pid_t

#include <stdint.h> // For uint8_t, uint32_t, etc

// Some constants

#define MEZZ_MAX_AREA 768+%576 // Maximum
#define MEZZ_MAX_MASK 18 // Maximum
#define MEZZ_MAX_DEWARP 32 // Maximum
#define MEZZ_MAX_CLASSES 4 // Maximum
#define MEZZ_MAX_BLOBS 100 // Maximum
#define MEZZ_MAX_OBJECTS 100 // Maximum

number
number
number
number
number
number

// Image mask info; used to identify the part of
// that corresponds to the area of interest.

typedef struct

{
int poly[MEZZ_MAX_MASK][2]; // List of
} mezz_maskdef_t;

// Calibration info for dewarping
typedef struct

{
int points; // Number of dewarp points
int ipos[MEZZ_MAX_DEWARP] [2]; // The image
double wpos[MEZZ_MAX_DEWARP] [2]; // The world

points

double iwtrans[2][8]; // Parameters for the
double witrans[2][8]; // Parameters for the

22

of
of
of
of
of
of

pixels in the image.

points in the mask.
dewarping calibration points.
color classes we recognize.
blobs we will extract.
extracted objects.

the image

defining a polygon.

coords of the calibration points.
coords of the calibration points.
image-to-world transform.
world-to-image transform.

} mezz_dewarpdef_t;

// Structure describing a color class.
// Used by the vision system for color classification.
typedef struct
{
int color; // Descriptve color (RGB32); used by gui.
char name[64]; // Descriptive name for this color; used by gui.
int vupoly[4][2]; // Polygon in VU components
int yupoly[4][2]; // Polygon in YU components
int vypoly[4][2]; // Polygon in VY components
} mezz_classdef_t;

// List of color class definitions
typedef struct
{
int count;
mezz_classdef_t classdefs[MEZZ_MAX_CLASSES];
} mezz_classdeflist_t;

// Options for the color blob extraction.

typedef struct

{
int min_area, max_area; // Allowed area (number of classified pixels).
int min_sizex, max_sizex; // Allowed width.
int min_sizey, max_sizey; // Allowed height

} mezz_blobdef_t;

// Information describing an extracted color blob.
typedef struct

{
int class; // What color class the blob belongs to.
int min_x, max_x; // Bounding box for blob (image coords)
int min_y, max_y; // Bounding box for blob (image coords)

int area; // Area of the blob (pixels).

double ox, oy; // Blob centroid (image coords).

double wox, woy; // Blob centroid (world coords).

int object; // Index of the object this blob is part of.

} mezz_blob_t;

// A list of blobs
typedef struct
{

int count;
mezz_blob_t blobs[MEZZ_MAX_BLOBS] ;
} mezz_bloblist_t;

23

// Structure describing an object in the image.
// We assume all objects are made up of two blobs.
typedef struct

{
int class[2]; // Color class for the two blobs
double max_disp; // Maximum inter-frame displacement
double max_sep; // Maximum blob separation
int max_missed; // Max frames we can miss before we look for a new match.
int missed; // Number of missed frames (object not seen)

double px, py, pa; // Object pose (world cs).
} mezz_object_t;

// Structure describing a list of objects.
typedef struct
{

int count;

mezz_object_t objects[MEZZ_MAX_OBJECTS];
} mezz_objectlist_t;

// Combined memory map data
typedef struct

{
pid_t pids[32]; // List of pid’s that should get events
double time; // The system time
int count; // Frame counter
int calibrate; // Non-zero if a calibration program is running
int save; // Non-zero if changes should be saved
int width, height; // Image dimensions (pixels)
int area; // Number of pixels in the image.
int depth; // Image depth (bits): 16, 24 or 32.
mezz_maskdef_t maskdef; // The image mask (identifies the field in the image).
mezz_dewarpdef_t dewarpdef; // Dewarping calibration info.
mezz_classdeflist_t classdeflist; // Color class definitions.
mezz_blobdef_t blobdef; // Blob definitions.

uint32_t image[MEZZ_MAX_AREA]; // The raw frame data.

uint8_t mask[MEZZ_MAX_AREA]; // The image mask.

uint8_t class[MEZZ_MAX_AREA]; // The classified frame data.

mezz_bloblist_t bloblist; // The list of extracted blobs.

mezz_objectlist_t objectlist; // The list of identified objects.
} mezz_mmap_t;

// Initialise the interprocess comms.
// The server sets create to 1 to create the shared resources.
int mezz_init(int create);

// Finalize the ipc
// The server sets destroy to 1 to destroy the shared resources.

void mezz_term(int destroy);

// Get a pointer to the memory map

24

mezz_mmap_t *mezz_mmap() ;

// Raise an event (to be recieved by other processes)
void mezz_raise_event();

// Wait for an event (that was sent by another process)
int mezz_wait_event();

#endif

25

