
McCLIM User’s Manual

The Users Guide

and

API Reference

Copyright c© 2004,2005,2006 the McCLIM hackers.

i

Table of Contents

1 Introduction . 1
1.1 Standards . 1
1.2 How CLIM Is Different . 1

2 CLIM Demos and Applications 3
2.1 Running the Demos . 3
2.2 McCLIM Installation and Usage Tips . 4

2.2.1 Multiprocessing with CMUCL . 4
2.2.2 Adding Mouse Button Icons . 5

3 The First Application . 6
3.1 How CLIM applications produce output . 6
3.2 Panes and Gadgets . 7
3.3 Defining Application Frames . 7
3.4 A First Attempt . 7
3.5 Executing the Application . 8
3.6 Adding Functionality . 9
3.7 An application displaying a data structure . 12
3.8 Incremental redisplay . 13

4 Using presentation types . 16
4.1 What is a presentation type . 16
4.2 A simple example . 16

5 Using views . 18

6 Using command tables . 22

7 Concepts . 23
7.1 Coordinate systems . 23
7.2 Arguments to drawing functions . 23

8 Windowing system drawing functions 24

9 CLIM drawing functions . 25

10 Panes . 26
10.1 Layout protocol . 26

10.1.1 Space composition . 27
10.1.2 Space allocation . 27
10.1.3 Change-space Notification Protocol . 28

ii

11 Output Protocol . 29
11.1 Protocol Changes . 29

12 Command Processing . 30

13 Output Protocol Extensions 31

14 Output Recording Extensions 32
14.1 Standard classes . 32

15 Drawing Two-Dimensional Images 33
15.1 Image Architecture . 33

15.1.1 Images . 33
15.1.2 Utility Functions . 35

15.2 Reading Image Files . 35

16 File Selector Gadget . 36

17 PostScript Backend . 37
17.1 Postscript Fonts . 37
17.2 Additional functions . 37

18 Drei . 38
18.1 Drei Concepts . 38

18.1.1 Access Functions . 39
18.1.2 Special Variables . 39

18.2 External API . 39
18.3 Standard Drei Variants . 41
18.4 Protocols . 41

18.4.1 Buffer Protocol . 42
18.4.1.1 General Buffer Protocol Parts . 42
18.4.1.2 Operations Related To The Offset Of Marks 44
18.4.1.3 Inserting And Deleting Objects . 45
18.4.1.4 Getting Objects Out Of The Buffer 46
18.4.1.5 Implementation Hints . 47

18.4.2 Buffer Modification Protocol . 47
18.4.3 DREI-BASE Package . 48

18.4.3.1 Efficiency considerations . 48
18.4.4 Syntax Protocol . 49

18.4.4.1 General Syntax Protocol . 49
18.4.4.2 Incremental Parsing Framework . 51
18.4.4.3 Lexical analysis . 51
18.4.4.4 Earley Parser . 52
18.4.4.5 Specifying A Grammar . 52

18.4.5 View Protocol . 53

iii

18.4.6 Unit Protocol . 56
18.4.6.1 Motors And Limit Actions . 56
18.4.6.2 Motion Protocol . 57
18.4.6.3 Editing Protocol . 58
18.4.6.4 Generator Macros . 58

18.4.7 Redisplay Protocol . 58
18.4.8 Undo Protocol . 59

18.4.8.1 Protocol Specification . 59
18.4.8.2 Implementation . 60
18.4.8.3 How The Buffer Handles Undo . 60

18.4.9 Kill Ring Protocol . 63
18.4.9.1 Kill Ring Protocol Specification . 63
18.4.9.2 Kill Ring Implementation . 64

18.5 Defining Drei Commands . 65
18.5.1 Drei Command Tables . 65
18.5.2 Numeric Argument In Drei . 66
18.5.3 Examples Of Defining Drei Commands 66
18.5.4 Drei’s Syntax Command Table Protocol 67

19 Fonts and Extended Text Styles 69
19.1 Extended Text Styles . 69
19.2 Listing Fonts . 69

20 Tab Layout . 71

21 Listener . 74

22 Inspector . 75
22.1 Usage . 75

22.1.1 Quick Start . 75
22.1.2 The Basics . 75
22.1.3 Handling of Specific Data Types . 75

22.1.3.1 Standard Objects . 75
22.1.3.2 Structures . 75
22.1.3.3 Generic Functions . 75
22.1.3.4 Functions . 76
22.1.3.5 Symbols . 76
22.1.3.6 Lists and Conses . 76

22.2 Extending Clouseau . 76
22.3 API . 80

23 Glossary . 81

24 Development History . 84

iv

Concept Index . 87

Variable Index . 89

Function And Macro Index . 90

Chapter 1: Introduction 1

1 Introduction

CLIM is a large layered software system that allows the user to customize it at each level.
The most simple ways of using CLIM is to directly use its top layer, which contains appli-
cation frames, panes, and gadgets, very similar to those of traditional windowing system
toolkits such as GTK, Tk, and Motif.

But there is much more to using CLIM. In CLIM, the upper layer with panes and gadgets
is written on top of a basic layer containing more basic functionality in the form of sheets.
Objects in the upper layer are typically instances of classes derived from those of the lower
layer. Thus, nothing prevents a user from adding new gadgets and panes by writing code
that uses the sheet layer.

Finally, since CLIM is written in Common Lisp, essentially all parts of it can be modified,
replaced, or extended.

For that reason, a user’s manual for CLIM must contain not only a description of the
protocols of the upper layer, but also of all protocols, classes, functions, macros, etc. that
are part of the specification.

1.1 Standards

This manual documents McCLIM 0.9.6-dev which is a mostly complete implementation
of the CLIM 2.0 specification and its revision 2.2. To our knowledge version~2.2 of the
CLIM specification is only documented in the “CLIM 2 User’s Guide” by Franz. While
that document is not a formal specification, it does contain many cleanups and is often
clearer than the official specification; on the other hand, the original specification is a useful
reference. This manual will note where McCLIM has followed the 2.2 API.

Also, some protocols mentioned in the 2.0 specification, such as parts of the incremental
redisplay protocol, are clearly internal to CLIM and not well described. It will be noted
here when they are partially implemented in McCLIM or not implemented at all.

1.2 How CLIM Is Different

Many new users of CLIM have a hard time trying to understand how it works and how to
use it. A large part of the problem is that many such users are used to more traditional
GUI toolkits, and they try to fit CLIM into their mental model of how GUI toolkits should
work.

But CLIM is much more than just a GUI toolkit, as suggested by its name, it is an
interface manager, i.e. it is a complete mediator between application “business logic” and
the way the user interacts with objects of the application. In fact, CLIM doesn’t have to be
used with graphics output at all, as it contains a large collection of functionality to manage
text.

Traditional GUI toolkits have an event loop. Events are delivered to GUI elements called
gadgets (or widgets), and the programmer attaches event handlers to those gadgets in order
to invoke the functionality of the application logic. While this way of structuring code is
sometimes presented as a virtue (“Event-driven programming”), it has an unfortunate side
effect, namely that event handlers are executed in a null context, so that it becomes hard
to even remember two consecutive events. The effect of event-driven programming is that
applications written that way have very rudimentary interaction policies.

Chapter 1: Introduction 2

At the lowest level, CLIM also has an event loop, but most application programmers
never have any reason to program at that level with CLIM. Instead, CLIM has a command
loop at a much higher level than the event loop. At each iteration of the command loop:
1. A command is acquired. You might satisfy this demand by clicking on a menu item,

by typing the name of a command, by hitting some kind of keystroke, by pressing a
button, or by pressing some visible object with a command associated with it;

2. Arguments that are required by the command are acquired. Each argument is often
associated with a presentation type, and visible objects of the right presentation type
can be clicked on to satisfy this demand. You can also type a textual representation of
the argument, using completion, or you can use a context menu;

3. The command is called on the arguments, usually resulting in some significant modifi-
cation of the data structure representing your application logic;

4. A display routine is called to update the views of the application logic. The display
routine may use features such as incremental redisplay.

Instead of attaching event handlers to gadgets, writing a CLIM application therefore
consists of:
• writing CLIM commands that modify the application data structures independently

of how those commands are invoked, and which may take application objects as argu-
ments;

• writing display routines that turn the application data structures (and possibly some
"view" object) into a collection of visible representations (having presentation types)
of application objects;

• writing completion routines that allow you to type in application objects (of a certain
presentation type) using completions;

• independently deciding how commands are to be invoked (menus, buttons, presenta-
tions, textual commands, etc).

By using CLIM as a mediator of command invocation and argument acquisition, you can
obtain some very modular code. Application logic is completely separate from interaction
policies, and the two can evolve separately and independently.

Chapter 2: CLIM Demos and Applications 3

2 CLIM Demos and Applications

2.1 Running the Demos

The McCLIM source distribution comes with a number of demos and applications. They
are intended to showcase specific CLIM features, demonstrate programming techniques or
provide useful tools.

These demos and applications are available in the Examples and Apps subdirectories of
the source tree’s root directory. Instructions for compiling, loading and running some of the
demos are included in the files with the McCLIM installation instructions for your Common
Lisp implementation. See for example the file INSTALL if you use Allegro CL, INSTALL.CMU
for CMUCL, INSTALL.OPENMCL for OpenMCL, and so on.

Below is a complete list of the McCLIM demos and applications, sorted in alphabetical
order. Each entry provides a short description of what the program does, with instructions
for compiling and running it if not mentioned in the general installation instructions.

Apps/Listener
CLIM-enabled Lisp listener. See the compilation and execution instructions in
Apps/Listener/README.

Examples/address-book.lisp
Simple address book. See McCLIM’s installation instructions.

Examples/calculator.lisp
Simple desk calculator. See McCLIM’s installation instructions.

Examples/clim-fig.lisp
Simple paint program. You can run it by evaluating this form at the Lisp
prompt:

(clim-demo::clim-fig)

Examples/colorslider.lisp
Interactive color editor. See McCLIM’s installation instructions.

Examples/demodemo.lisp
Demonstrates different pane types. You can compile it by evaluating:

(compile-file "Examples/demodemo.lisp")

Then load it with:
(load "Examples/demodemo")

Finally, run it with:
(clim-demo::demodemo)

Examples/goatee-test.lisp
Text editor with Emacs-like key bindings. See McCLIM’s installation instruc-
tions.

Examples/menutest.lisp
Displays a window with a simple menu bar. See McCLIM’s installation instruc-
tions.

Chapter 2: CLIM Demos and Applications 4

Examples/postscript-test.lisp
Displays text and graphics to a PostScript file. Run it with:

(clim-demo::postscript-test)

The resulting file ps-test.ps is generated in the current directory and can be
displayed by a PostScript viewer such as gv on Unix-like systems.

Examples/presentation-test.lisp
Displays an interactive window in which you type numbers that are successively
added. When a number is expected as input, you can either type it at the
keyboard, or click on a previously entered number. Run it with:

(clim:run-frame-top-level (clim:make-application-frame
’clim-demo::summation))

Examples/sliderdemo.lisp
Apparently a calculator demo (see above). Compile with:

(compile-file "Examples/sliderdemo.lisp")

Load with:
(load "Examples/sliderdemo")

Run with:
(clim-demo::slidertest)

Examples/stream-test.lisp
Interactive command processor that echoes its input. Run with:

(clim-demo::run-test)

The following programs are currently known not to work:
• Examples/fire.lisp

• Examples/gadget-test-kr.lisp

• Examples/gadget-test.lisp

• Examples/puzzle.lisp

• Examples/traffic-lights.lisp

• Examples/transformations-test.lisp

2.2 McCLIM Installation and Usage Tips

This section collects useful installation and usage tips. They refer to specific Common Lisp
implementations or McCLIM features.

2.2.1 Multiprocessing with CMUCL

Before beginning a McCLIM session with CMUCL, you are strongly advised to initialize
multiprocessing by evaluating the form:

(mp::startup-idle-and-top-level-loops)

If you use the SLIME development environment under Emacs, evaluate the above form
from the *inferior-lisp* buffer, not from *slime-repl[n]*. Initializing multiprocessing
can make a difference between an application that starts instantaneously on, say, a Pentium
IV class PC, and one that may take minutes on the same machine.

Chapter 2: CLIM Demos and Applications 5

2.2.2 Adding Mouse Button Icons

McCLIM comes with experimental code for adding graphical mouse button icons to
pointer documentation panes. To use this feature, you have to first compile the file
Experimental/pointer-doc-hack.lisp in the source tree. Assuming you have built
McCLIM from source as explained in the installation instructions, evaluate this form to
compile the file:

(compile-file "Experimental/pointer-doc-hack.lisp")

Then, to activate the feature, load the compiled file before starting a McCLIM session
or application:

(load "Experimental/pointer-doc-hack")

Alternatively, you may dump a Lisp image containing McCLIM and the graphical pointer
documentation code. See the documentation of your Common Lisp system for more infor-
mation.

Chapter 3: The First Application 6

3 The First Application

3.1 How CLIM applications produce output

CLIM stream panes use output recording. This means that such a pane maintains a display
list, consisting of a sequence of output records, ordered chronologically, from the first output
record to be drawn to the last.

This display list is used to fill in damaged areas of the pane, for instance as a result of
the pane being partially or totally covered by other panes, and then having some or all of
its area again becoming visible. The output records of the display list that have some parts
in common with the exposed area are partially or totally replayed (in chronological order)
to redraw the contents of the area.

An application can have a pane establish this display list in several fundamentally dif-
ferent ways.

Very simple applications have no internal data structure to keep track of application
objects, and simply produce output to the pane from time to time as a result of running
commands, occasionally perhaps erasing the pane and starting over. Such applications
typically use text or graphics output as a result of running commands. CLIM maintains the
display list for the pane, and adds to the end of it, each time also producing the pixels that
result from drawing the new output record. If the pane uses scrolling (which it typically
does), then CLIM must determine the extent of the pane so as to update the scroll bar after
each new output.

More complicated applications use a display function. Before the display function is
run, the existing display list is typically deleted, so that the purpose of the display function
becomes to establish an entirely new display list. The display function might for instance
produce some kind of form to be filled in, and application commands can use text or graphics
operations to fill in the form. A game of tic-tac-toe could work this way, where the display
function draws the board and commands draw shapes into the squares.

Even more complicated applications might have some internal data structure that has
a direct mapping to output, and commands simply modify this internal data structure. In
this case, the display function is run after each time around the command loop, because a
command can have modified the internal data structure in some arbitrary ways. Some such
applications might simply want to delete the existing display list and produce a new one
each time (to minimize flicker, double buffering could be used). This is a very simple way of
structuring an application, and entirely acceptable in many cases. Consider, for instance,
a board game where pieces can be moved (as opposed to just added). A very simple way
of structuring such an application is to have an internal representation of the board, and
to make the display function traverse this data structure and produce the complete output
each time in the command loop.

Some applications have very large internal data structures to be displayed, and it would
cause a serious performance problem if the display list had to be computer from scratch
each time around the command loop. To solve this problem, CLIM contains a feature called
incremental redisplay. It allows many of the output records to be kept from one iteration of
the command loop to the next. This can be done in two different ways. The simplest way is
for the application to keep the simple structure which consists of traversing the entire data

Chapter 3: The First Application 7

structure each time, but at various points indicate to CLIM that the output has not changed
since last time, so as to avoid actually invoking the application code for computing it. This
is accomplished by the use of updating-output. The advantage of updating-output is that
the application logic remains straightforward, and it is up to CLIM to do the hard work of
recycling output records. The disadvantage is that for some very demanding applications,
this method might not be fast enough.

The other way is more complicated and requires the programmer to structure the ap-
plication differently. Essentially, the application has to keep track of the output records in
the display list, and inform CLIM about modifications to it. The main disadvantage of this
method is that the programmer must now write the application to keep track of the output
records itself, as opposed to leaving it to CLIM.

3.2 Panes and Gadgets

A CLIM application is made up of a hierarchy of panes and gadgets (gadgets are special
kinds of panes). These elements correspond to what other toolkits call widgets. Frequently
used CLIM gadgets are buttons, sliders, etc, and typical panes are the layout panes such
as hbox, vbox, hrack, etc.

3.3 Defining Application Frames

Each CLIM application is defined by an application frame. An application frame is an
instance of the class application-frame. As a CLIM user, you typically define a class
that inherits from the class application-frame, and that contains additional slots needed
by your application. It is considered good style to keep all your application-specific data
in slots in the application frame (rather than, say, in global variables), and to define your
application-specific application frame in its own package.

The usual way to define an application frame is to use the macro define-application-
frame. This macro works much like defclass, but also allows you to specify the hierarchy
of panes and gadgets to use.

3.4 A First Attempt

Let us define a very primitive CLIM application. For that, let us put the following code in
a file:

(in-package :common-lisp-user)

(defpackage "APP"
(:use :clim :clim-lisp)
(:export "APP-MAIN"))

(in-package :app)

(define-application-frame superapp ()
()
(:panes
(int :interactor :height 400 :width 600))

Chapter 3: The First Application 8

(:layouts
(default int)))

(defun app-main ()
(run-frame-top-level (make-application-frame ’superapp)))

As we can see in this example, we have put our application in a separate package, here
a package named APP. While not required, putting the application in its own package is
good practice.

The package for the application uses two packages: CLIM and CLIM-LISP. The CLIM
package is the one that contains all the symbols needed for using CLIM. The CLIM-LISP
package replaces the COMMON-LISP package for CLIM applications. It is essentially the same
as the COMMON-LISP package as far as the user is concerned.

In our example, we export the symbol that corresponds to the main function to start
our application, here called APP-MAIN.

The most important part of the code in our example is the definition of the application-
frame. In our example, we have defined an application frame called superapp, which
becomes a CLOS class that automatically inherits from some standard CLIM application
frame class.

The second argument to define-application-frame is a list of additional superclasses
from which you want your application frame to inherit. In our example, this list is empty,
which means that our application frame only inherits from the standard CLIM application
frame.

The third argument to define-application-frame is a list of CLOS slots to be added
to any instance of this kind of application frame. These slots are typically used for holding
all application-specific data. The current instance of the application frame will always be
the value of the special variable *application-frame*, so that the values of these slots can
be accessed. In our example, we do not initially have any further slots.

The rest of the definition of an application frame contains additional elements that CLIM
will allow the user to define. In our example, we have two additional (mandatory) elements:
:panes and :layouts.

The :panes element defines a collection of CLIM panes that each instance of your
application may have. Each pane has a name, a type, and perhaps some options that are
used to instantiate that particular type of pane. Here, we have a pane called int of type
:interactor with a height of 400 units and a width of 600 units. In McCLIM, the units
are initially physical units (number of pixels) of the native windowing system.

The :layouts element defines one or more ways of organizing the panes in a hierarchy.
Each layout has a name and a description of a hierarchy. In our example, only one layout,
named default, is defined. The layout called default is the one that is used by CLIM at
startup. In our example, the corresponding hierarchy is trivial, since it contains only the
one element int, which is the name of our only pane.

3.5 Executing the Application

In order to run a CLIM application, you must have a Lisp system that contains McCLIM.
If you use CMUCL or SBCL, you either need a core file that already has McCLIM in it, or

Chapter 3: The First Application 9

else, you have to load the McCLIM compiled files that make up the McCLIM distribution.
The fist solution is recommended so as to avoid having to load the McCLIM files each time
you start your CLIM application.

To execute the application, load the file containing your code (possibly after compiling
it) into your running Lisp system. Then start the application. Our example can be started
by typing (app:app-main).

3.6 Adding Functionality

In a serious application, you would probably want some area where your application objects
are to be displayed. In CLIM, such an area is called an application pane, and would be an
instance (direct or indirect) of the CLIM class application-pane. In fact, instances of this
class are in reality also streams which can be used in calls both to ordinary input and output
functions such as format and read and to CLIM-specific functions such as draw-line.

In this example we have such an application pane, the name of which is app. As you
can see, we have defined it with an option :display-time nil. The default value for this
option for an application pane is :command-loop, which means that the pane is cleared after
each iteration in the command loop, and then redisplayed using a client-supplied display
function. The default display function does nothing, and we have not supplied any, so if
we had omitted the :display-time nil option, the parity command would have written
to the pane. Then, at the end of the command loop, the pane would have been cleared,
and nothing else would have been displayed. The net result is that we would have seen no
visible output. With the option :display-time nil, the pane is never cleared, and output
is accumulated every time we execute the parity command.

For this example, let us also add a few commands. Such commands are defined by the
use of a macro called define-name-command, where name is the name of the application, in
our case superapp. This macro is automatically defined by define-application-frame.

Let us also add a pane that automatically provides documentation for different actions
on the pointer device.

Here is our improved example:
(in-package :common-lisp-user)

(defpackage "APP"
(:use :clim :clim-lisp)
(:export "APP-MAIN"))

(in-package :app)

(define-application-frame superapp ()
()
(:pointer-documentation t)
(:panes
(app :application :display-time nil :height 400 :width 600)
(int :interactor :height 200 :width 600))

(:layouts
(default (vertically () app int))))

Chapter 3: The First Application 10

(defun app-main ()
(run-frame-top-level (make-application-frame ’superapp)))

(define-superapp-command (com-quit :name t) ()
(frame-exit *application-frame*))

(define-superapp-command (com-parity :name t) ((number ’integer))
(format t "~a is ~a~%" number
(if (oddp number)

"odd"
"even")))

If you execute this example, you will find that you now have three different panes, the
application pane, the interactor pane and the pointer documentation pane. In the pointer
documentation pane, you will see the text R possibilities which indicates that if you
click the right mouse button, you will automatically see a popup menu that lets you choose a
command. In our case, you will have the default commands that are automatically proposed
by McCLIM plus the commands that you defined yourself, in this case quit and parity.

Figure 3.1 shows what ought to be visible on the screen.

Chapter 3: The First Application 11

Figure 3.1

Notice that commands, in order to be available from the command line, must have an
option of :name t. The reason is that some commands will be available only from menus
or by some other mechanism.

You may notice that if the output of the application is hidden (say by the window of
some other application) and then re-exposed, the output reappears normally, without any
intervention necessary on the part of the programmer. This effect is accomplished by a
CLIM mechanism called output recording. Essentially, every piece of output is not only
displayed in the pane, but also captured in an output record associated with the pane.
When a pane is re-exposed, its output records are consulted and if any of them overlap the
re-exposed region, they are redisplayed. In fact, some others may be redisplayed as well,
because CLIM guarantees that the effect will be the same as when the initial output was
created. It does that by making sure that the order between (partially) overlapping output
records is respected.

Chapter 3: The First Application 12

Not all panes support output recording, but certainly application panes do, so it is good
to use some subclass of application-pane to display application-specific object, because
output recording is then automatic.

3.7 An application displaying a data structure

Many applications use a central data structure that is to be on display at all times, and
that is modified by the commands of the application. CLIM allows for a very easy way
to write such an application. The main idea is to store the data structure in slots of the
application frame, and to use a display function that after each iteration of the command
loop displays the entire data structure to the application pane.

Here is a variation of the previous application that shows this possibility:
(in-package :common-lisp-user)

(defpackage "APP"
(:use :clim :clim-lisp)
(:export "APP-MAIN"))

(in-package :app)

(define-application-frame superapp ()
((currrent-number :initform nil :accessor current-number))
(:pointer-documentation t)
(:panes
(app :application

:height 400 :width 600
:display-function ’display-app)

(int :interactor :height 200 :width 600))
(:layouts
(default (vertically () app int))))

(defun display-app (frame pane)
(let ((number (current-number frame)))
(format pane "~a is ~a"
number
(cond ((null number) "not a number")

((oddp number) "odd")
(t "even")))))

(defun app-main ()
(run-frame-top-level (make-application-frame ’superapp)))

(define-superapp-command (com-quit :name t) ()
(frame-exit *application-frame*))

(define-superapp-command (com-parity :name t) ((number ’integer))
(setf (current-number *application-frame*) number))

Chapter 3: The First Application 13

Here, we have added a slot that is called current-number to the application frame. It
is initialized to NIL and it has an accessor function that allow us to query and to modify
the value.

Observe that in this example, we no longer have the option :display-time nil set in
the application pane. By default, then, the :display-time is :command-loop which means
that the pane is erased after each iteration of the command loop. Also observe the option
:display-function which takes a symbol that names a function to be called to display
the pane after it has been cleared. In this case, the name is display-app, the name of the
function defined immediately after the application frame.

Instead of immediately displaying information about its argument, the command
com-parity instead modifies the new slot of the application frame. Think of this function
as being more general, for instance a command to add a new object to a set of graphical
objects in a figure drawing program, or as a command to add a new name to an address
book. Notice how this function accesses the current application frame by means of the
special variable *application-frame*.

A display function is called with the frame and the pane as arguments. It is good style
to use the pane as the stream in calls to functions that will result in output. This makes it
possible for the same function to be used by several different frames, should that be called
for. In our simple example, the display function only displays the value of a single number
(or NIL), but you could think of this as displaying all the objects that have been drawn in
some figure drawing program or displaying all the entries in an address book.

3.8 Incremental redisplay

While the example in the previous section is a very simple way of structuring an applica-
tion (let commands arbitrarily modify the data structure, and simply erase the pane and
redisplay the structure after each iteration of the command loop), the visual result is not
so great when many objects are to be displayed. There is most often a noticeable flicker
between the moment when the pane is cleared and the objects are drawn. Sometimes this
is inevitable (as when nearly all objects change), but most of the time, only an incremental
modification has been made, and most of the objects are still in the same place as before.

In simple toolkits, the application programmer would have to figure out what has changed
since the previous display, and only display the differences. CLIM offers a mechanism called
incremental redisplay that automates a large part of this task. As we mentioned earlier,
CLIM captures output in the form of output records. The same mechanism is used to obtain
incremental redisplay.

To use incremental redisplay, Client code remains structured in the simple way that was
mention above: after each iteration of the command loop, the display function output the
entire data structure as usual, except that it helps the incremental redisplay mechanism by
telling CLIM which piece of output corresponds to which piece of output during the previous
iteration of the command loop. It does this by giving some kind of unique identity to some
piece of output, and some means of indicating whether the contents of this output is the
same as it was last time. With this information, the CLIM incremental redisplay mechanism
can figure out whether some output is new, has disappeared, or has been moved, compared
to the previous iteration of the command loop. As with re-exposure, CLIM guarantees that

Chapter 3: The First Application 14

the result is identical to that which would have been obtained, had all the output records
been output in order to a blank pane.

The next example illustrates this idea. It is a simple application that displays a fixed
number (here 20) of lines, each line being a number. Here is the code:

(in-package :common-lisp-user)

(defpackage "APP"
(:use :clim :clim-lisp)
(:export "APP-MAIN"))

(in-package :app)

(define-application-frame superapp ()
((numbers :initform (loop repeat 20 collect (list (random 100000000)))
:accessor numbers)
(cursor :initform 0 :accessor cursor))
(:pointer-documentation t)
(:panes
(app :application

:height 400 :width 600
:incremental-redisplay t
:display-function ’display-app)

(int :interactor :height 200 :width 600))
(:layouts
(default (vertically () app int))))

(defun display-app (frame pane)
(loop for element in (numbers frame)

for line from 0
do (princ (if (= (cursor frame) line) "*" " ") pane)
do (updating-output (pane :unique-id element
:id-test #’eq
:cache-value (car element)
:cache-test #’eql)

(format pane "~a~%" (car element)))))

(defun app-main ()
(run-frame-top-level (make-application-frame ’superapp)))

(define-superapp-command (com-quit :name t) ()
(frame-exit *application-frame*))

(define-superapp-command (com-add :name t) ((number ’integer))
(incf (car (elt (numbers *application-frame*)
(cursor *application-frame*)))

number))

Chapter 3: The First Application 15

(define-superapp-command (com-next :name t) ()
(incf (cursor *application-frame*))
(when (= (cursor *application-frame*)
(length (numbers *application-frame*)))
(setf (cursor *application-frame*) 0)))

(define-superapp-command (com-prev :name t) ()
(decf (cursor *application-frame*))
(when (minusp (cursor *application-frame*))
(setf (cursor *application-frame*)

(1- (length (numbers *application-frame*))))))

We store the numbers in a slot called numbers of the application frame. However, we
store each number in its own list. This is a simple way to provide a unique identity for
each number. We could not use the number itself, because two numbers could be the same
and the identities would not be unique. Instead, we use the cons cell that store the number
as the unique identity. By using :id-test #’eq we inform CLIM that it can figure out
whether an output record is the same as one that was issued previous time by using the
function eq to compare them. But there is a second test that has to be verified, namely
whether an output record that was issued last time has to be redisplayed or not. That is
the purpose of the cache-value. Here we use the number itself as the cache value and eql
as the test to determine whether the output is going to be the same as last time.

For convenience, we display a * at the beginning of the current line, and we provide two
commands next and previous to navigate between the lines.

Notice that in the declaration of the pane in the application frame, we have given the
option :incremental-redisplay t. This informs CLIM not to clear the pane after each
command-loop iteration, but to keep the output records around and compare them to the
new ones that are produced during the new iteration.

Chapter 4: Using presentation types 16

4 Using presentation types

4.1 What is a presentation type

The concept of presentation types is central to CLIM. Client code can choose to output
graphical or textual representations of application objects either as just graphics or text, or
to associate such output with an arbitrary Common Lisp object and a presentation type.
The presentation type is not necessarily related to the idea Common Lisp might have of the
underlying object.

When a CLIM command or some other client code requests an object (say as an argu-
ment) of a certain presentation type, the user of the application can satisfy the request by
clicking on any visible output labeled with a compatible presentation type. The command
then receives the underlying Common Lisp object as a response to the request.

CLIM presentation types are usually distinct from Common Lisp types. The reason is
that the Common Lisp type system, although very powerful, is not quite powerful enough
to represent the kind of relationships between types that are required by CLIM. However,
every Common Lisp class (except the built-in classes) is automatically a presentation type.

A presentation type has a name, but can also have one or more parameters. Parameters
of presentation types are typically used to restrict the type. For instance, the presentation
type integer takes as parameters the low and the high values of an interval. Such param-
eters allow the application to restrict objects that become clickable in certain contexts, for
instance if a date in the month of March is requested, only integers between 1 and 31 should
be clickable.

4.2 A simple example

Consider the following example:
(in-package :common-lisp-user)

(defpackage :app
(:use :clim :clim-lisp)
(:export #:app-main))

(in-package :app)

(define-application-frame superapp ()
()
(:pointer-documentation t)
(:panes
(app :application :display-time t :height 300 :width 600)
(int :interactor :height 200 :width 600))

(:layouts
(default (vertically () app int))))

(defun app-main ()
(run-frame-top-level (make-application-frame ’superapp)))

Chapter 4: Using presentation types 17

(define-superapp-command (com-quit :name t) ()
(frame-exit *application-frame*))

(define-presentation-type name-of-month ()
:inherit-from ’string)

(define-presentation-type day-of-month ()
:inherit-from ’integer)

(define-superapp-command (com-out :name t) ()
(with-output-as-presentation (t "The third month" ’name-of-month)
(format t "March~%"))

(with-output-as-presentation (t 15 ’day-of-month)
(format t "fifteen~%")))

(define-superapp-command (com-get-date :name t)
((name ’name-of-month) (date ’day-of-month))

(format (frame-standard-input *application-frame*)
"the ~a of ~a~%" date name))

In this application, we have two main panes, an application pane and an interactor pane.
The application pane is given the option :display-time t which means that it will not be
erased before every iteration of the command loop.

We have also defined two presentation types: name-of-month and day-of-month. The
out command uses with-output-as-presentation in order to associate some output, a
presentation type, and an underlying object. In this case, it will show the string “March”
which is considered to be of presentation type name-of-month with the underlying object
being the character string "The third month". It will also show the string “fifteen” which
is considered to be of presentation type day-of-month with the underlying object being the
number 15. The argument t to with-output-as-presentation indicates that the stream
to present on is *standard-output*.

Thus, if the out command has been executed, and then the user types “Get Date” in
the interactor pane, the get-date command will try to acquire its arguments, the first
of presentation type name-of-month and the second of type day-of-month. At the first
prompt, the user can click on the string “March” but not on the string “fifteen” in the
application pane. At the second prompt it is the string “fifteen” that is clickable, whereas
“March” is not.

The get-date command will acquire the underlying objects. What is finally displayed
(in the interactor pane, which is the standard input of the frame), is “the 15 of The third
month”.

Chapter 5: Using views 18

5 Using views

The CLIM specification mentions a concept called a view, and also lists a number of prede-
fined views to be used in various different contexts.

In this chapter we show how the view concept can be used in some concrete programming
examples. In particular, we show how to use a single pane to show different views of
the application data structure at different times. To switch between the different views,
we supply a set of commands that alter the stream-default-view feature of all CLIM
extended output streams.

The example shown here has been stripped to a bare minimum in order to illustrate the
important concepts. A more complete version can be found in Examples/views.lisp in
the McCLIM source tree.

Here is the example:
;;; part of application "business logic"
(defclass person ()
((%last-name :initarg :last-name :accessor last-name)
(%first-name :initarg :first-name :accessor first-name)
(%address :initarg :address :accessor address)
(%membership-number :initarg :membership-number :reader membership-number)))

;;; constructor for the PERSON class. Not strictly necessary.
(defun make-person (last-name first-name address membership-number)
(make-instance ’person

:last-name last-name
:first-name first-name
:address address
:membership-number membership-number))

;;; initial list of members of the organization we imagine for this example
(defparameter *members*
(list (make-person "Doe" "Jane" "123, Glencoe Terrace" 12345)

(make-person "Dupont" "Jean" "111, Rue de la Republique" 54321)
(make-person "Smith" "Eliza" "22, Trafalgar Square" 121212)
(make-person "Nilsson" "Sven" "Uppsalagatan 33" 98765)))

;;; the CLIM view class that corresponds to a list of members, one member
;;; per line of text in a CLIM application pane.
(defclass members-view (view) ())

;;; since this view does not take any parameters in our simple example,
;;; we need only a single instance of it.
(defparameter *members-view* (make-instance ’members-view))

;;; the application frame. It contains instance-specific data
;;; such as the members of our organization.
(define-application-frame views ()

Chapter 5: Using views 19

((%members :initform *members* :accessor members))
(:panes
(main-pane :application :height 500 :width 500

:display-function ’display-main-pane
;; notice the initialization of the default view of
;; the application pane.
:default-view *members-view*)

(interactor :interactor :height 100 :width 500))
(:layouts
(default (vertically ()

main-pane
interactor))))

;;; the trick here is to define a generic display function
;;; that is called on the frame, the pane AND the view,
;;; whereas the standard CLIM display functions are called
;;; only on the frame and the pane.
(defgeneric display-pane-with-view (frame pane view))

;;; this is the display function that is called in each iteration
;;; of the CLIM command loop. We simply call our own, more elaborate
;;; display function with the default view of the pane.
(defun display-main-pane (frame pane)

(display-pane-with-view frame pane (stream-default-view pane)))

;;; now we can start writing methods on our own display function
;;; for different views. This one displays the data each member
;;; on a line of its own.
(defmethod display-pane-with-view (frame pane (view members-view))

(loop for member in (members frame)
do (with-output-as-presentation

(pane member ’person)
(format pane "~a, ~a, ~a, ~a~%"

(membership-number member)
(last-name member)
(first-name member)
(address member)))))

;;; this CLIM view is used to display the information about
;;; a single person. It has a slot that indicates what person
;;; we want to view.
(defclass person-view (view)

((%person :initarg :person :reader person)))

;;; this method on our own display function shows the detailed
;;; information of a single member.
(defmethod display-pane-with-view (frame pane (view person-view))

Chapter 5: Using views 20

(let ((person (person view)))
(format pane "Last name: ~a~%First Name: ~a~%Address: ~a~%Membership Number: ~a~%"

(last-name person)
(first-name person)
(address person)
(membership-number person))))

;;; entry point to start our applciation
(defun views-example ()
(run-frame-top-level (make-application-frame ’views)))

;;; command to quit the application
(define-views-command (com-quit :name t) ()
(frame-exit *application-frame*))

;;; command to switch the default view of the application pane
;;; (which is the value of *standard-output*) to the one that
;;; shows a member per line.
(define-views-command (com-show-all :name t) ()
(setf (stream-default-view *standard-output*) *members-view*))

;;; command to switch to a view that displays a single member.
;;; this command takes as an argument the person to display.
;;; In this application, the only way to satisfy the demand for
;;; the argument is to click on a line of the members view. In
;;; more elaborate application, you might be able to type a
;;; textual representation (using completion) of the person.
(define-views-command (com-show-person :name t) ((person ’person))
(setf (stream-default-view *standard-output*)

(make-instance ’person-view :person person)))

The example shows a stripped-down example of a simple database of members of some
organization.

The main trick used in this example is the display-main-pane function
that is declared to be the display function of the main pane in the application
frame. The display-main-pane function trampolines to a generic function called
display-pane-with-view, and which takes an additional argument compared to the
display functions of CLIM panes. This additional argument is of type view which allows
us to dispatch not only on the type of frame and the type of pane, but also on the type
of the current default view. In this example the view argument is simply taken from the
default view of the pane.

A possibility that is not obvious from reading the CLIM specification is to have views
that contain additional slots. Our example defines two subclasses of the CLIM view class,
namely members-view and person-view.

The first one of these does not contain any additional slots, and is used when a global view
of the members of our organization is wanted. Since no instance-specific data is required

Chapter 5: Using views 21

in this view, we follow the idea of the examples of the CLIM specification to instantiate a
singleton of this class and store that singleton in the stream-default-view of our main
pane whenever a global view of our organization is required.

The person-view class, on the other hand, is used when we want a closer view of a single
member of the organization. This class therefore contains an additional slot which holds the
particular person instance we are interested in. The method on display-pane-with-view
that specializes on person-view displays the data of the particular person that is contained
in the view.

To switch between the views, we provide two commands. The command com-show-all
simply changes the default view of the main pane to be the singleton instance of the
members-view class. The command com-show-person is more complicated. It takes an
argument of type person, creates an instance of the person-view class initialized with the
person that was passed as an argument, and stores the instance as the default view of the
main pane.

Chapter 6: Using command tables 22

6 Using command tables

(to be filled in)

Chapter 7: Concepts 23

7 Concepts

7.1 Coordinate systems

CLIM uses a number of different coordinate systems and transformations to transform
coordinates between them.

The coordinate system used for the arguments of drawing functions is called the user
coordinate system, and coordinate values expressed in the user coordinate system are known
as user coordinates.

Each sheet has its own coordinate system called the sheet coordinate system, and posi-
tions expressed in this coordinate system are said to be expressed in sheet coordinates. User
coordinates are translated to sheet coordinates by means of the user transformation also
called the medium transformation. This transformation is stored in the medium used for
drawing. The medium transformation can be composed temporarily with a transformation
given as an explicit argument to a drawing function. In that case, the user transformation
is temporarily modified for the duration of the drawing.

Before drawing can occur, coordinates in the sheet coordinate system must be trans-
formed to native coordinates, which are coordinates of the coordinate system of the native
windowing system. The transformation responsible for computing native coordinates from
sheet coordinates is called the native transformation. Notice that each sheet potentially
has its own native coordinate system, so that the native transformation is specific for each
sheet. Another way of putting it is that each sheet has a mirror, which is a window in the
underlying windowing system. If the sheet has its own mirror, it is the direct mirror of the
sheet. Otherwise its mirror is the direct mirror of one of its ancestors. In any case, the
native transformation of the sheet determines how sheet coordinates are to be translated
to the coordinates of that mirror, and the native coordinate system of the sheet is that of
its mirror.

The composition of the user transformation and the native transformation is called the
device transformation. It allows drawing functions to transform coordinates only once before
obtaining native coordinates.

Sometimes, it is useful to express coordinates of a sheet in the coordinate of its parent.
The transformation responsible for that is called the sheet transformation.

7.2 Arguments to drawing functions

Drawing functions are typically called with a sheet as an argument.
A sheet often, but not always, corresponds to a window in the underlying windowing

system.

Chapter 8: Windowing system drawing functions 24

8 Windowing system drawing functions

A typical windowing system provides a hierarchy of rectangular areas called windows. When
a drawing functions is called to draw an object (such as a line or a circle) in a window of
such a hierarchy, the arguments to the drawing function will include at least the window
and a number of coordinates relative to (usually) the upper left corner of the window.

To translate such a request to the actual altering of pixel values in the video memory,
the windowing system must translate the coordinates given as argument to the drawing
functions into coordinates relative to the upper left corner of the entire screen. This is done
by a composition of translation transformations applied to the initial coordinates. These
transformations correspond to the position of each window in the coordinate system of its
parent.

Thus a window in such a system is really just some values indicating its height, its
width, and its position in the coordinate system of its parent, and of course information
about background and foreground colors and such.

Chapter 9: CLIM drawing functions 25

9 CLIM drawing functions

CLIM generalizes the concept of a hierarchy of window in a windowing system in several
different ways. A window in a windowing system generalizes to a sheet in CLIM. More
precisely, a window in a windowing system generalizes to the sheet region of a sheet. A
CLIM sheet is an abstract concept with an infinite drawing plane and the region of the
sheet is the potentially visible part of that drawing plane.

CLIM sheet regions don’t have to be rectangular the way windows in most windowing
systems have to be. Thus, the width and the height of a window in a windowing system
generalizes to an arbitrary region in CLIM. A CLIM region is simply a set of mathematical
points in a plane. CLIM allows this set to be described as a combination (union, intersection,
difference) of elementary regions made up of rectangles, polygons and ellipses.

Even rectangular regions in CLIM are generalizations of the width+height concept of
windows in most windowing systems. While the upper left corner of a window in a typical
windowing system has coordinates (0,0), that is not necessarily the case of a CLIM region.
CLIM uses that generalization to implement various ways of scrolling the contents of a
sheet. To see that, imagine just a slight generalization of the width+height concept of a
windowing system into a rectangular region with x+y+width+height. Don’t confuse the x
and y here with the position of a window within its parent, they are different. Instead,
imagine that the rectangular region is a hole into the (infinite) drawing plane defined by all
possible coordinates that can be given to drawing functions. If graphical objects appear in
the window with respect to the origin of some coordinate system, and the upper-left corner
of the window has coordinates (x,y) in that coordinate system, then changing x and y will
have the effect of scrolling.

CLIM sheets also generalize windows in that a window typically has pixels with integer-
value coordinates. CLIM sheets, on the other hand, have infinte resolution. Drawing
functions accept non-integer coordinate values which are only translated into integers just
before the physical rendering on the screen.

The x and y positions of a window in the coordinate system of its parent window in a
typical windowing system is a translation transformation that takes coordinates in a window
and transform them into coordinates in the parent window. CLIM generalizes this concepts
to arbitrary affine transformations (combinations of translations, rotations, and scalings).
This generalization makes it possible for points in a sheet to be not only translated compared
to the parent sheet, but also rotated and scaled (including negative scaling, giving mirror
images). A typical use for scaling would be for a sheet to be a zoomed version of its parent,
or for a sheet to have its y-coordinate go the opposite direction from that of its parent.

When the shapes of, and relationship between sheets are as simple as those of a typical
windowing system, each sheet typically has an associated window in the underlying win-
dowing system. In that case, drawing on a sheet translates in a relativly straightforward
way into drawing on the corresponding window. CLIM sheets that have associated windows
in the underlying windowing system are called mirrored sheets and the system-dependent
window object is called the mirror. When shapes and relationships are more complicated,
CLIM uses its own transformations to transform coordinates from a sheet to its parent
and to its grandparent, etc., until a mirrored sheet is found. To the user of CLIM, the net
effect is to have a windowing system with more general shapes of, and relationships between
windows.

Chapter 10: Panes 26

10 Panes

Panes are subclasses of sheets. Some panes are layout panes that determine the size and
position of its children according to rules specific to each particular type of layout pane.
Examples of layout panes are vertical and horizontal boxes, tables etc.

According to the CLIM specification, all CLIM panes are rectangular objects. For Mc-
CLIM, we interpret that phrase to mean that:

• CLIM panes appear rectangular in the native windowing system;

• CLIM panes have a native transformation that does not have a rotation component,
only translation and scaling.

Of course, the specification is unclear here. Panes are subclasses of sheets, and sheets
don’t have a shape per-se. Their regions may have a shape, but the sheet itself certainly
does not.

The phrase in the specification could mean that the sheet-region of a pane is a subclass
of the region class rectangle. But that would not exclude the possibility that the region
of a pane would be some non-rectangular shape in the native coordinate system. For that
to happen, it would be enough that the sheet-transformation of some ancestor of the pane
contain a rotation component. In that case, the layout protocol would be insufficient in its
current version.

McCLIM panes have the following additional restrictions:

• McCLIM panes have a coordinate system that is only a translation compared to that
of the frame manager;

• The parent of a pane is either nil or another pane.

Thus, the panes form a prefix in the hierarchy of sheets. It is an error for a non-pane to
adopt a pane.

Notice that the native transformation of a pane need not be the identity transformation.
If the pane is not mirrored, then its native transformation is probably a translation of that
of its parent.

Notice also that the native transformation of a pane need not be the composition of
the identity transformation and a translation. That would be the case only of the native
transformation of the top level sheet is the identity transformation, but that need not be
the case. It is possible for the frame manager to impose a coordinate system in (say)
millimeters as opposed to pixels. The native transformation of the top level sheet of such a
frame manager is a scaling with coefficients other than 1.

10.1 Layout protocol

There is a set of fundamental rules of CLIM dividing responsibility between a parent pane
and a child pane, with respect to the size and position of the region of the child and the
sheet transformation of the child. This set of rules is called the layout protocol.

The layout protocol is executed in two phases. The first phase is called the space com-
postion phase, and the second phase is called the space allocation phase.

Chapter 10: Panes 27

10.1.1 Space composition

The space composition is accomplished by the generic function compose-space. When
applied to a pane, compose-space returns an object of type space-requirement indicating
the needs of the pane in terms of preferred size, minimum size and maximum size. The
phase starts when compose-space is applied to the top-level pane of the application frame.
That pane in turn may ask its children for their space requirements, and so on until the
leaves are reached. When the top-level pane has computed its space requirments, it asks
the system for that much space. A conforming window manager should respect the request
(space wanted, min space, max space) and allocate a top-level window of an acceptable size.
The space given by the system must then be distributed among the panes in the hierarchy
space-allocation.

Each type of pane is responsible for a different method on compose-space. Leaf panes
such as labelled gadgets may compute space requirements based on the size and the text-style
of the label. Other panes such as the vbox layout pane compute the space as a combination
of the space requirements of their children. The result of such a query (in the form of a
space-requirement object) is stored in the pane for later use, and is only changed as a result
of a call to note-space-requirement-changed.

Most composite panes can be given explicit values for the values of :width, :min-width,
:max-width, :height, :min-height, and :max-height options. If such arguments are not
given (effectively making these values nil), a general method is used, such as computing
from children or, for leaf panes with no such reasonable default rule, a fixed value is given.
If such arguments are given, their values are used instead. Notice that one of :height and
:width might be given, applying the rule only in one of the dimensions.

Subsequent calls to compose-space with the same arguments are assumed to return the
same space-requirement object, unless a call to note-space-requirement-changed has been
called in between.

10.1.2 Space allocation

When allocate-space is called on a pane P, it must compare the space-requirement of the
children of P to the available space, in order to distribute it in the most preferable way. In
order to avoid a second recursive invokation of compose-space at this point, we store the
result of the previous call to compose-space in each pane.

To handle this situtation and also explicitly given size options, we use an :around method
on compose-space. The :around method will call the primary method only if necessary
(i.e., (eq (slot-value pane ’space-requirement) nil)), and store the result of the call
to the primary method in the space-requirement slot.

We then compute the space requirement of the pane as follows:

(setf (space-requirement-width ...) (or explicit-width
(space-requirement-width request)) ...
(space-requirement-max-width ...) (or explicit-max-width
explicit-width (space-requirement-max-width request)) ...)

When the call to the primary method is not necessary we simply return the stored value.

The spacer-pane is an exception to the rule indicated above. The explicit size you can
give for this pane should represent the margin size. So its primary method should only call

Chapter 10: Panes 28

compose on the child. And the around method will compute the explicit sizes for it from
the space requirement of the child and for the values given for the surrounding space.

10.1.3 Change-space Notification Protocol

The purpose of the change-space notification protocol is to force a recalculation of the space
occupied by potentially each pane in the pane hierarchy. The protocol is triggerred by a
call to note-space-requirement-changed on a pane P. In McCLIM, we must therefore
invalidate the stored space-requirement value and re-invoke compose-space on P. Finally,
the parent of P must be notified recursively.

This process would be repeated for all the panes on a path from P to the top-level pane,
if it weren’t for the fact that some panes compute their space requirements independently
of those of their children. Thus, we stop calling note-space-requirement-changed in the
following cases:
• when P is a restraining-pane,
• when P is a top-level-sheet-pane, or
• when P has been given explicit values for :width and :height

In either of those cases, allocate-space is called.

Chapter 11: Output Protocol 29

11 Output Protocol

11.1 Protocol Changes

[Generic Functionline-style-effective-thickness]line-style medium
The thickness in device units of the lines rendered on medium in the line style line-
style. The default method, assuming normal line width to be 1 device unit, is pro-
vided.

[Generic Function](setf output-record-parent) parent record
Additional protocol generic function. parent may be an output record or nil.

[Generic Function]replay-output-record record stream &optional region x-offset
y-offset

[Generic Function]map-over-output-records-containing-position function
record x y &optional x-offset y-offset &rest function-args

[Generic Function]map-over-output-records-overlapping-region function
record region &optional x-offset y-offset &rest function-args

x-offset and y-offset are ignored.

[Generic Function]add-output-record child record
Sets record to be the parent of child.

[Generic Function]delete-output-record child record &optional (errorp t)
If child is a child of record, sets the parent of child to nil.

[Generic Function]clear-output-record record
Sets the parent of all children of record to nil.

[Macro]with-new-output-record (stream &optional record-type record &rest
initargs) \body body

[Macro]with-output-to-output-record (stream &optional record-type record
&rest initargs) \body body

record-type is evaluated.

Chapter 12: Command Processing 30

12 Command Processing

[Macro]define-command-table name &key inherit-from menu inherit-menu

[Macro]make-command-table name &key inherit-from inherit-menu (errorp t)

By default command tables inherit from global-command-table. According to the
CLIM~2.0 specification, a command table inherits from no command table if \nil\ is passed
as an explicit argument to inherit-from. In revision~2.2 all command tables must inherit
from global-command-table. McCLIM treats a \nil\ value of inherit-from as specifying
’(global-command-table).

Chapter 13: Output Protocol Extensions 31

13 Output Protocol Extensions

[Generic Function]medium-miter-limit medium
Returns the minimal value of an angle for which :MITER line joint may be used; for

smaller angles :MITER is interpreted as :BEVEL.

Chapter 14: Output Recording Extensions 32

14 Output Recording Extensions

14.1 Standard classes

[Class]standard-output-recording-stream
This class is mixed into some other stream class to add output recording facilities. It is

not instantiable.

Chapter 15: Drawing Two-Dimensional Images 33

15 Drawing Two-Dimensional Images

15.1 Image Architecture

15.1.1 Images

Images are all rectangular arrangements of pixels. The type of a pixel depends on the exact
type of the image. In addition, a pixel has a color which also depends on the exact type of
the image. You can think of the color as an interpretation of the pixel value by the type of
image.

The coordinate system of an image has (0,0) in its upper-left corner. The x coordinate
grows to the right and the y coordinate downwards.

[Protocol Class]image
This class is the base class for all images.

[Generic Function]image-width image

[Generic Function]image-height image
This function returns the width and the height of the image respectively.

[Generic Function]image-pixels image
This function returns a two-dimensional array of pixels, whose element type depends
on the exact subtype of the image.

[Generic Function]image-pixel image x y
This function returns the pixel at the coordinate indicated by the values of x and y.
The type of the return value depends on the exact image type.

[Generic Function](setf image-pixel) x y pixel image
Set the value of the pixel at the coordinate indicated by the values of x and y. The
exact type acceptable for the pixel argument depends on the exact subtype of the
image. If x or y are not within the values of the width and height of the image, an
error is signaled.

[Generic Function]image-color image x y
This function returns the color value of the pixel indicated by the values of x and y.
The exact type of the return value depends on the specific subtype of the image.

[Generic Function](setf image-color) x y color image
Set the color value of the pixel at the coordinate indicated by the values of x and y.
The exact type acceptable for the color argument depends on the exact subtype of
the image. In addition, the exact color given to the pixel may be an approximation of
the value of the color argument. For instance, if the image is a gray-level image, then
the color given will correspond to the intensity value of the color argument. If x or y
are not within the values of the width and height of the image, an error is signaled.

[Protocol Class]spectral-image
This class is a subclass of the image class. It is the root of a subhiearchy for ma-
nipulating images represented in various spectral formats, other than RGB. [This
subhierarchy will be elaborated later in the context of the color model of Strandh and
Braquelaire].

Chapter 15: Drawing Two-Dimensional Images 34

[Protocol Class]rgb-image
This class is a subclass of the image class. It is the root of a subhierarchy for manip-
ulating images whose pixel colors are represented as RGB coordinates. The function
image-color always returns a value of type (unsigned-byte 24) for images of this type,
representing three different intensity values of 0-255.

[Protocol Class]truecolor-image
This class is a subclass of the rgb-image class. Images of this class have pixel values
of type (unsigned-byte 24). The pixel values directly represent RGB values.

[Protocol Class]colormap-image
This class is a subclass of the rgb-image class. Images of this class have pixel values
that don’t directly indicate the color of the pixel. The translation between pixel
value and color may be implicit (as is the case of gray-level images) or explicit with
a colormap stored in the image object.

[Protocol Class]gray-level-image
This class is a subclass of the colormap-image class. Images of this type have pixel
values that implicitely represent a gray-level. The function pixel-color always returns
an RGB value that corresponds to the identical intensities for red, green, and blue,
according to the pixel value.

[Generic Function]gray-image-max-levels gray-level-image
This function returns the maximum number of levels of gray that can be represented
by the image. The value returned by this function minus one would yield a color
value of 255,255,255 if it were the value of a pixel.

[Generic Function]gray-image-max-level gray-level-image
This function returns the maximum level currently present in the image. This function
may be very costly to compute, as it might have to scan the entire image.

[Generic Function]gray-image-min-level gray-level-image
This function returns the minimum level currently present in the image. This function
may be very costly to compute, as it might have to scan the entire image.

[Class]256-gray-level-image
This class is a subclass of the gray-level-image class. Images of this type have pixels
represented as 8-bit unsigned pixels. The function image-pixel always returns a value
of type (unsigned-byte 8) for images of this type. The function gray-image-max-levels
returns 256 for all instances of this class.

[Class]binary-image
This class is a subclass of the gray-level-image class. Images of this type have pixel
values of type bit. The function image-pixel returns values of type bit when applied
to an image of this type. The function pixel-color returns 0,0,0 for zero-valued bits
and 255,255,255 for one-valued bits.

Chapter 15: Drawing Two-Dimensional Images 35

15.1.2 Utility Functions

[Generic Function]rotate-image image angle &key (antialias t)

[Generic Function]flip-image image ...

[Generic Function]translate-image image ...

[Generic Function]scale-image image ...
...

15.2 Reading Image Files

[Generic Function]read-image source &key type width height
Read an image from the source. The source can be a pathname designator (a string
or a path), or a stream. The caller can supply a value for type, width, and height
for sources that don’t indicate these values. A value of nil for type means recognize
the type automatically. Other values for type are :truecolor (an array of 3-byte color
values) :256-gray-level (an array of 1-byte gray-level values) :binary (an array of bits).

[Generic Function]write-image image destination &key (type :pnm) (quality 1)
Write the image to the destination. The destination can be a pathname designator
(a string or a path), or a stream. Valid values of type are :pnm (pbm, pgm, or ppm
according to the type of image), :png, :jpeg, (more...). The quality argument is a value
from 0 to 1 and indicates desired image quality (for formats with lossy compression).

Chapter 16: File Selector Gadget 36

16 File Selector Gadget

Chapter 17: PostScript Backend 37

17 PostScript Backend

17.1 Postscript Fonts

Font mapping is a cons, the car of which is the name of the font (FontName field in the
AFM file), and the cdr is the size in points. Before establishing the mapping, an information
about this font should be loaded with the function load-afm-file.

17.2 Additional functions

Package clim-postscript exports the following functions:

[Function]load-afm-file afm-filename
Loads a description of a font from the specified AFM file.

Chapter 18: Drei 38

18 Drei

Drei - an acronym for Drei Replaces EINE’s Inheritor - is one of the editor substrates
provided by McCLIM. Drei is activated by default, but if it gives you problems, you can
disable it by evaluating (setf clim-internals::*use-goatee* t).

18.1 Drei Concepts

The reason for many of Drei’s design decisions, and the complexity of some of the code,
is due to the flexibility that Drei is meant to expose. Drei has to work as, at least, an
input-editor, a text editor gadget and a simple pane. These three different uses have widely
different semantics for reading input and performing redisplay - from passively being fed
gestures in the input editor, to having to do event handling and redisplay timing manually
in the gadget version. Furthermore, Drei is extensible software, so we wished to make the
differences between these three modi operandi transparent to the extender (as much as
possible at least, unfortunately the Law of Leaky Abstractions prevents us from reaching
perfection). These two demands require the core Drei protocols, especially those pertaining
to redisplay, gesture handling and accepting input from the user, to be customizable by the
different specialized Drei classes.

We call a specific instance of the Drei editor substrate a Drei instance. A Drei variant is
a specific subclass of drei that implements a specific kind of editor, such as an input-editor
or a gadget. A given Drei instance has a single view associated with it, this view must be
unique to the Drei instance (though this is not enforced), but may be changed at any time.
The most typical view is one that has a buffer and maintains syntax information about the
buffer contents. A buffer need not be unique to a buffer-view, and may be changed at any
time. The view instance has two marks into the buffer, called the top and bottom mark.
These marks delimit the visible region of the buffer - for some Drei variants, this is always
the entire buffer, while others may only have a smaller visible region. Note that not all of
the visible region necessarily is on display on the screen (parts, or all, of it may be hidden
due to scrolling, for example), but nothing outside the visible region is on display, though
remember that the same buffer may be used in several vires, and that each of these views
may have their own idea about what the visible region is. Most views also maintain marks
for the current point and mark. This means that different views sharing the same buffer
may have different points and marks. Every Drei instance also has a kill ring object which
contains object sequences that have been killed from the buffer, and can be yanked back in
at the users behest. These are generally not shared.

Every Drei instance is associated with an editor pane - this must be a CLIM stream
pane that is used for redisplay (see Section 18.4.7 [Redisplay Protocol], page 58). This is
not necessarily the same object as the Drei instance itself, but it can be. (With a little
work, the editor pane can be NIL, which is useful for resting.)

For each Drei instance, Drei attempts to simulate an application top-level loop with
something called a pseudo command loop, and binds a number of special variables appro-
priately. This is to make command writing more convenient and similar across all Drei
variants, but it also means that any program that uses one of the low-level Drei variants
that do not to this, such as drei-pane, need to bind these special variables themselves, or
Drei commands are likely to malfunction.

Chapter 18: Drei 39

18.1.1 Access Functions

The access functions are the primary interface to Drei state, and should be used to access
the various parts. It is not recommended to save the return value of these functions, as
they are by nature ephemeral, and may change over the course of a command.

[Function]drei:drei-instance &optional object
Return the Drei instance of object. If object is not provided, the currently running
Drei instance will be returned.

[Function]drei:current-view &optional object
Return the view of the provided object. If no object is provided, the currently running
Drei instance will be used.

[Function]esa:current-buffer
Return the currently active buffer of the running esa.

[Function]drei:point &optional object
Return the point of the provided object. If no object is provided, the current view
will be used.

[Function]drei:mark &optional object
Return the mark of the provided object. If no object is provided, the current view
will be used.

[Function]drei:current-syntax
Return the syntax of the current buffer.

18.1.2 Special Variables

Drei uses only a few special variables to provide access to data structures.

[Variable]drei-kill-ring:*kill-ring*
This special variable is bound to the kill ring of the running application or Drei
instance whenever a command is executed.

Additionally, a number of ESA special variables are used in Drei.

[Variable]esa:*minibuffer*
The minibuffer pane of the running application.

[Variable]esa:*previous-command*
When a command is being executed, the command previously executed by the appli-
cation.

18.2 External API

[Class]drei:drei
Class precedence list: drei, standard-object, slot-object, t

Slots:

Chapter 18: Drei 40

• %view — initargs: :view
The CLIM view that will be used whenever this Drei is being displayed. During
redisplay, the stream-default-view of the output stream will be temporarily
bound to this value.

• %kill-ring — initargs: :kill-ring
The kill ring object associated with the Drei instance.

• %previous-command

The previous CLIM command executed by this Drei instance. May be NIL if no
command has been executed.

• %editor-pane — initargs: :editor-pane
The stream or pane that the Drei instance will perform output to.

• %minibuffer — initargs: :minibuffer
The minibuffer pane (or null) associated with the Drei instance. This may be
NIL.

• %command-table — initargs: :command-table
The command table used for looking up commands for the Drei instance. Has a
sensible default, don’t override it unless you know what you are doing.

• %cursors

A list of which cursors are associated with the Drei instance. During redisplay,
display-drei-view-cursor is called on each element of this list.

• %point-cursor

The cursor object that is considered the primary user-oriented cursor, most prob-
ably the cursor for the editor point. Note that this cursor is also in the cursors-list.

The abstract Drei class that maintains standard Drei editor state. It should not
be directly instantiated, a subclass implementing specific behavior (a Drei variant)
should be used instead.

[drei Initarg]:editable-p
Whether or not the Drei instance will be editable. If NIL, the buffer will be set to
read-only (this also affects programmatic access). The default is T.

[drei Initarg]:single-line
If T, the buffer created for the Drei instance will be single line, and a condition of
type buffer-single-line will be signalled if an attempt is made to insert a newline
character.

[Macro]drei:handling-drei-conditions &body body
Evaluate body while handling Drei user notification signals. The handling consists of
displaying their meaning to the user in the minibuffer. This is the macro that ensures
conditions such as motion-before-end does not land the user in the debugger.

[Macro]drei:with-bound-drei-special-variables (drei-instance &key
kill-ring minibuffer command-parser partial-command-parser
previous-command prompt) &body body

Evaluate body with a set of Drei special variables ((drei-instance), *kill-ring*,
minibuffer, *command-parser*, *partial-command-parser*, *previous-

Chapter 18: Drei 41

command*, *extended-command-prompt*) bound to their proper values, taken from
drei-instance. The keyword arguments can be used to provide forms that will be
used to obtain values for the respective special variables, instead of finding their
value in drei-instance. This macro binds all of the usual Drei special variables,
but also some CLIM special variables needed for ESA-style command parsing.

[Macro]drei:performing-drei-operations (drei &rest args &key with-undo
redisplay) &body body

Provide various Drei maintenance services around the evaluation of body. This macro
provides a convenient way to perform some operations on a Drei, and make sure that
they are properly reflected in the undo tree, that the Drei is redisplayed, the syntax
updated, etc. Exactly what is done can be controlled via the keyword arguments.
Note that if with-undo is false, the *entire* undo history will be cleared after body
has been evaluated. This macro expands into a call to invoke-performing-drei-
operations.

[Generic Function]drei:invoke-performing-drei-operations drei continuation
&key with-undo redisplay redisplay

Invoke continuation, setting up and performing the operations specified by the
keyword arguments for the given Drei instance.

[Macro]drei:accepting-from-user (drei) &body body
Modidfy drei and the environment so that calls to accept can be done to arbitrary
streams from within body. Or, at least, make sure the Drei instance will not be a
problem. When Drei calls a command, it will be wrapped in this macro, so it should
be safe to use accept within Drei commands. This macro expands into a call to
invoke-accepting-from-user.

[Generic Function]drei:invoke-accepting-from-user drei continuation
Set up drei and the environment so that calls to accept will behave properly. Then
call continuation.

[Generic Function]drei:execute-drei-command drei-instance command
Execute command for drei. This is the standard function for executing Drei commands
- it will take care of reporting to the user if a condition is signalled, updating the syn-
tax, setting the previous-command of drei and recording the operations performed
by command for undo.

18.3 Standard Drei Variants

Because the standard drei class doesn’t implement immediately-usable editor behavior,
three subclasses have been defined to provide a concrete implementaton of the editor sub-
strate. These are the input-editor-oriented Drei variant, the pane-oriented Drei variant and
the gadget-oriented Drei variant.

18.4 Protocols

Much of Drei’s functionality is based on generic function protocols. This section lists some
of them.

Chapter 18: Drei 42

18.4.1 Buffer Protocol

The Drei buffer is what holds textual and other objects to be edited and displayed. Con-
ceptually, the buffer is a potentially large sequence of objects, most of which are expected
to be characters (the full Unicode character set is supported). However, Drei buffers can
contain any Common Lisp objects, as long as the redisplay engine knows how to render
them.

The Drei buffer implementation differs from that of a vector, because it allows for very
efficient editing operations, such as inserting and removing objects at arbitrary offsets.

In addition, the Drei buffer protocols defines that concept of a mark.

18.4.1.1 General Buffer Protocol Parts

[Class]drei-buffer:buffer
Class precedence list: buffer, standard-object, slot-object, t

The base class for all buffers. A buffer conceptually contains a large array of arbitrary
objects. Lines of objects are separated by newline characters. The last object of the
buffer is not necessarily a newline character.

[Class]drei-buffer:standard-buffer
Class precedence list: standard-buffer, buffer, standard-object,
slot-object, t

The standard instantiable class for buffers.

[Class]drei-buffer:mark
Class precedence list: mark, standard-object, slot-object, t

The base class for all marks.

[Class]drei-buffer:left-sticky-mark
Class precedence list: left-sticky-mark, mark, standard-object, slot-object,
t

A subclass of mark. A mark of this type will "stick" to the left of an object, i.e.
when an object is inserted at this mark, the mark will be positioned to the left of the
object.

[Class]drei-buffer:right-sticky-mark
Class precedence list: right-sticky-mark, mark, standard-object,
slot-object, t

A subclass of mark. A mark of this type will "stick" to the right of an object, i.e.
when an object is inserted at this mark, the mark will be positioned to the right of
the object.

[Generic Function]drei-buffer:offset mark
Return the offset of the mark into the buffer.

[Generic Function](setf drei-buffer:offset) new-offset mark
Set the offset of the mark into the buffer. A motion-before-beginning condition is
signaled if the offset is less than zero. A motion-after-end condition is signaled if the
offset is greater than the size of the buffer.

Chapter 18: Drei 43

[Generic Function]drei-buffer:clone-mark mark &optional stick-to
Clone a mark. By default (when stick-to is NIL) the same type of mark is returned.
Otherwise stick-to is either :left or :right indicating whether a left-sticky or a right-
sticky mark should be created.

[Generic Function]drei-buffer:buffer mark
Return the buffer that the mark is positioned in.

[Condition]drei-buffer:no-such-offset
Class precedence list: no-such-offset, error, serious-condition, condition,
slot-object, t

This condition is signaled whenever an attempt is made to access buffer contents that
is before the beginning or after the end of the buffer.

[Condition]drei-buffer:offset-before-beginning
Class precedence list: offset-before-beginning, no-such-offset, error,
serious-condition, condition, slot-object, t

This condition is signaled whenever an attempt is made to access buffer contents that
is before the beginning of the buffer.

[Condition]drei-buffer:offset-after-end
Class precedence list: offset-after-end, no-such-offset, error,
serious-condition, condition, slot-object, t

This condition is signaled whenever an attempt is made to access buffer contents that
is after the end of the buffer.

[Condition]drei-buffer:invalid-motion
Class precedence list: invalid-motion, error, serious-condition, condition,
slot-object, t

This condition is signaled whenever an attempt is made to move a mark before the
beginning or after the end of the buffer.

[Condition]drei-buffer:motion-before-beginning
Class precedence list: motion-before-beginning, invalid-motion, error,
serious-condition, condition, slot-object, t

This condition is signaled whenever an attempt is made to move a mark before the
beginning of the buffer.

[Condition]drei-buffer:motion-after-end
Class precedence list: motion-after-end, invalid-motion, error,
serious-condition, condition, slot-object, t

This condition is signaled whenever an attempt is made to move a mark after the end
of the buffer.

[Generic Function]drei-buffer:size buffer
Return the number of objects in the buffer.

[Generic Function]drei-buffer:number-of-lines buffer
Return the number of lines of the buffer, or really the number of newline characters.

Chapter 18: Drei 44

18.4.1.2 Operations Related To The Offset Of Marks

[Generic Function]drei-buffer:forward-object mark &optional count
Move the mark forward the number of positions indicated by count. This function
could be implemented by an incf on the offset of the mark, but many buffer imple-
mentations can implement this function much more efficiently in a different way. A
motion-before-beginning condition is signaled if the resulting offset of the mark is
less than zero. A motion-after-end condition is signaled if the resulting offset of
the mark is greater than the size of the buffer. Returns mark.

[Generic Function]drei-buffer:backward-object mark &optional count
Move the mark backward the number of positions indicated by count. This function
could be implemented by a decf on the offset of the mark, but many buffer imple-
mentations can implement this function much more efficiently in a different way. A
motion-before-beginning condition is signaled if the resulting offset of the mark is
less than zero. A motion-after-end condition is signaled if the resulting offset of
the mark is greater than the size of the buffer. Returns mark.

[Generic Function]drei-buffer:mark= mark1 mark2
Return t if the offset of mark1 is equal to that of mark2. An error is signaled if the
two marks are not positioned in the same buffer. It is acceptable to pass an offset in
place of one of the marks.

[Generic Function]drei-buffer:mark< mark1 mark2
Return t if the offset of mark1 is strictly less than that of mark2. An error is signaled
if the two marks are not positioned in the same buffer. It is acceptable to pass an
offset in place of one of the marks.

[Generic Function]drei-buffer:mark<= mark1 mark2
Return t if the offset of mark1 is less than or equal to that of mark2. An error is
signaled if the two marks are not positioned in the same buffer. It is acceptable to
pass an offset in place of one of the marks.

[Generic Function]drei-buffer:mark> mark1 mark2
Return t if the offset of mark1 is strictly greater than that of mark2. An error is
signaled if the two marks are not positioned in the same buffer. It is acceptable to
pass an offset in place of one of the marks.

[Generic Function]drei-buffer:mark>= mark1 mark2
Return t if the offset of mark1 is greater than or equal to that of mark2. An error is
signaled if the two marks are not positioned in the same buffer. It is acceptable to
pass an offset in place of one of the marks.

[Generic Function]drei-buffer:beginning-of-buffer mark
Move the mark to the beginning of the buffer. This is equivalent to (setf (offset mark)
0), but returns mark.

[Generic Function]drei-buffer:end-of-buffer mark
Move the mark to the end of the buffer and return mark.

Chapter 18: Drei 45

[Generic Function]drei-buffer:beginning-of-buffer-p mark
Return t if the mark is at the beginning of the buffer, nil otherwise.

[Generic Function]drei-buffer:end-of-buffer-p mark
Return t if the mark is at the end of the buffer, NIL otherwise.

[Generic Function]drei-buffer:beginning-of-line mark
Move the mark to the beginning of the line. The mark will be positioned either
immediately after the closest receding newline character, or at the beginning of the
buffer if no preceding newline character exists. Returns mark.

[Generic Function]drei-buffer:end-of-line mark
Move the mark to the end of the line. The mark will be positioned either immediately
before the closest following newline character, or at the end of the buffer if no following
newline character exists. Returns mark.

[Generic Function]drei-buffer:beginning-of-line-p mark
Return t if the mark is at the beginning of the line (i.e., if the character preceding
the mark is a newline character or if the mark is at the beginning of the buffer), NIL
otherwise.

[Generic Function]drei-buffer:end-of-line-p mark
Return t if the mark is at the end of the line (i.e., if the character following the mark
is a newline character, or if the mark is at the end of the buffer), NIL otherwise.

[Generic Function]drei-buffer:buffer-line-number buffer offset
Return the line number of the offset. Lines are numbered from zero.

[Generic Function]drei-buffer:buffer-column-number buffer offset
Return the column number of the offset. The column number of an offset is the num-
ber of objects between it and the preceding newline, or between it and the beginning
of the buffer if the offset is on the first line of the buffer.

[Generic Function]drei-buffer:line-number mark
Return the line number of the mark. Lines are numbered from zero.

[Generic Function]drei-buffer:column-number mark
Return the column number of the mark. The column number of a mark is the number
of objects between it and the preceding newline, or between it and the beginning of
the buffer if the mark is on the first line of the buffer.

18.4.1.3 Inserting And Deleting Objects

[Generic Function]drei-buffer:insert-buffer-object buffer offset object
Insert the object at the offset in the buffer. Any left-sticky marks that are placed at
the offset will remain positioned before the inserted object. Any right-sticky marks
that are placed at the offset will be positioned after the inserted object.

[Generic Function]drei-buffer:insert-buffer-sequence buffer offset sequence
Like calling insert-buffer-object on each of the objects in the sequence.

Chapter 18: Drei 46

[Generic Function]drei-buffer:insert-object mark object
Insert the object at the mark. This function simply calls insert-buffer-object with the
buffer and the position of the mark.

[Generic Function]drei-buffer:insert-sequence mark sequence
Insert the objects in the sequence at the mark. This function simply calls insert-
buffer-sequence with the buffer and the position of the mark.

[Generic Function]drei-buffer:delete-buffer-range buffer offset n
Delete n objects from the buffer starting at the offset. If offset is negative or
offset+n is greater than the size of the buffer, a no-such-offset condition is sig-
naled.

[Generic Function]drei-buffer:delete-range mark &optional n
Delete n objects after (if n > 0) or before (if n < 0) the mark. This function eventually
calls delete-buffer-range, provided that n is not zero.

[Generic Function]drei-buffer:delete-region mark1 mark2
Delete the objects in the buffer that are between mark1 and mark2. An error is
signaled if the two marks are positioned in different buffers. It is acceptable to pass
an offset in place of one of the marks. This function calls delete-buffer-range with
the appropriate arguments.

18.4.1.4 Getting Objects Out Of The Buffer

[Generic Function]drei-buffer:buffer-object buffer offset
Return the object at the offset in the buffer. The first object has offset 0. If offset
is less than zero or greater than or equal to the size of the buffer, a no-such-offset
condition is signaled.

[Generic Function](setf drei-buffer:buffer-object) object buffer offset
Set the object at the offset in the buffer. The first object has offset 0. If offset is
less than zero or greater than or equal to the size of the buffer, a no-such-offset
condition is signaled.

[Generic Function]drei-buffer:buffer-sequence buffer offset1 offset2
Return the contents of the buffer starting at offset1 and ending at offset2-1 as a
sequence. If either of the offsets is less than zero or greater than or equal to the size
of the buffer, a no-such-offset condition is signaled. If offset2 is smaller than or
equal to offset1, an empty sequence will be returned.

[Generic Function]drei-buffer:object-before mark
Return the object that is immediately before the mark. If mark is at the beginning of
the buffer, a no-such-offset condition is signaled. If the mark is at the beginning
of a line, but not at the beginning of the buffer, a newline character is returned.

[Generic Function]drei-buffer:object-after mark
Return the object that is immediately after the mark. If mark is at the end of the
buffer, a no-such-offset condition is signaled. If the mark is at the end of a line,
but not at the end of the buffer, a newline character is returned.

Chapter 18: Drei 47

[Generic Function]drei-buffer:region-to-sequence mark1 mark2
Return a freshly allocated sequence of the objects after mark1 and before mark2. An
error is signaled if the two marks are positioned in different buffers. If mark1 is
positioned at an offset equal to or greater than that of mark2, an empty sequence is
returned. It is acceptable to pass an offset in place of one of the marks. This function
calls buffer-sequence with the appropriate arguments.

18.4.1.5 Implementation Hints

The buffer is implemented as lines organized in a 2-3-tree. The leaves of the tree contain
the lines, and the internal nodes contain additional information of the left subtree (if it is
a 2-node) or the left and the middle subtree (if it is a 3-node). Two pieces of information
are stored: The number of lines in up to and including the subtree and the total number of
objects up to an including the subtree. This organization allows us to determine, the line
number and object position of any mark in O(log N) where N is the number of lines.

A line is an instance of the ‘buffer-line’ class. A line can either be open or closed. A
closed line is represented as a sequence. The exact type of the sequence depends on the
objects contained in the line. If the line contains only characters of type base-char, then
the sequence is of type base-string. If the line contains only characters, but not of type
base-char, the sequence is a string. Otherwise it is a vector of arbitrary objects. This way,
closed lines containing characters with code points below 256 have a compact representation
with 8 bits per character while still allowing for arbitrary objects when necessary. An open
line is represented as a cursorchain of objects.

Marks in a closed line are represented as an integer offset into the sequence. Marks in
an open line are represented as flexicursors.

When a line is opened, it is converted to a cursorchain. When a line is closed, it
is examined to determine whether it contains non-character objects, in which case it is
converted to a vector of objects. If contains only characters, but it contains characters with
code points above what can be represented in a base-char, it is converted to a string. If it
contains only base-chars, it is converted to a base-string.

A mark contains two slots: a flexicursor that determines which line it is on, and either an
integer (if the line is closed) that determines the offset within the line or another flexicursor
(if the line is open). For each line, open or closed, a list of weak references to marks into
that line is kept.

Lines are closed according to a LRU scheme. Whenever objects are inserted to or deleted
from a line, it becomes the most recently used line. We keep a fixed number of open lines
so that when a line is opened and the threshold is reached, the least recently used line is
closed.

18.4.2 Buffer Modification Protocol

The buffer modification protocol is based on the ESA observer/observable facility, which is
in return a fairly ordinary Model-View implementation.

[Class]drei-buffer:observable-buffer-mixin
Class precedence list: observable-buffer-mixin, observable-mixin,
standard-object, slot-object, t

Chapter 18: Drei 48

A mixin class that will make a subclass buffer notify observers when it is changed
through the buffer protocol. When an observer of the buffer is notified of changes,
the provided data will be a cons of two values, offsets into the buffer denoting the
region that has been modified.

Syntax-views use this information to determine what part of the buffer needs to be
reparsed. This automatically happens whenever a request is made for information that
might depend on outdated parsing data.

18.4.3 DREI-BASE Package

The buffer protocol has been designed to be reasonably efficient with a variety of different
implementation strategies (single gap buffer or sequence of independent lines). It contains
(and should only contain) the absolute minimum of functionality that can be implemented
efficiently independently of strategy. However, this minimum of functionality is not always
convenient.

The purpose of the DREI-BASE package is to implement additional functionality on top
of the buffer protocol, in a way that does not depend on how the buffer protocol was imple-
mented. Thus, the DREI-BASE package should remain intact across different implementation
strategies of the buffer protocol.

Achieving portability of the DREI-BASE package is not terribly hard as long as only buffer
protocol functions are used. What is slightly harder is to be sure to maximize efficiency
across several implementation strategies. The next section discusses such considerations
and gives guidelines to implementers of additional functionality.

Implementers of the buffer protocol may use the contents of the next section to make
sure they respect the efficiency considerations that are expected by the DREI-BASE package.

18.4.3.1 Efficiency considerations

In this section, we give a list of rules that implementors of additional functionality should
follow in order to make sure that such functionality remains efficient (in addition to being
portable) across a variety of implementation strategies of the buffer protocol.

Rule: Comparing the position of two marks is efficient, i.e. at most O(log n)
where n is the number of marks in the buffer (which is expected to be very
small compared to the number of objects) in all implementations. This is true
for all types of comparisons.

It is expected that marks are managed very efficiently. Some balanced tree management
might be necessary, which will make operations have logarithmic complexity, but only in
the number of marks that are actually used.

Rule: While computing and setting the offset of a mark is fairly efficient, it
is not guaranteed to be O(1) even though it might be in an implementation
using a single gap buffer. It might have a complexity of O(log n) where n is the
number of lines in the buffer. This is true for using incf on the offset of a mark
as well, as incf expands to a setf of the offset.
Do not hesitate computing or setting the offset of a mark, but avoid doing it in
a tight loop over many objects of the buffer.
Rule: Determining whether a mark is at the beginning or at the end of the
buffer is efficient, i.e. O(1), in all implementations.

Chapter 18: Drei 49

Rule: Determining whether a mark is at the beginning or at the end of a line
is efficient, i.e. O(1), in all implementations.
Rule: Going to the beginning or to the end of a line might have linear-time
complexity in the number of characters of the line, though it is constant-time
complexity if the implementation is line oriented.
It is sometimes inevitable to use this functionality, and since lines are expected
to be short, it should not be avoided at all cost, especially since it might be
very efficient in some implementations. We do recommend, however to avoid it
in tight loops.
Always use this functionality rather than manually incrementing the offset of a
mark in a loop until a Newline character has been found, especially since each
iteration might take logarithmic time then.
Rule: Computing the size of the buffer is always efficient, i.e., O(1).
Rule: Computing the number of lines of the buffer is always efficient, i.e., O(1).

Implementations of the buffer protocol could always track the number of insertions and
deletions of objects, so there is no reason why this operation should be inefficient.

Rule: Computing the line number of a mark or of an offset can be very costly,
i.e. O(n) where n is size of the buffer.

This operation is part of the buffer protocol because some implementations may imple-
ment it fairly efficiently, say O(log n) where n is the number of lines in the buffer.

18.4.4 Syntax Protocol

A syntax module is an object that can be associated with a buffer. The syntax module
usually consists of an incremental parser that analyzes the contents of the buffer and creates
some kind of parse tree or other representation of the contents in order that it can be
exploited by the redisplay module and by user commands.

18.4.4.1 General Syntax Protocol

[Class]drei-syntax:syntax
Class precedence list: syntax, name-mixin, standard-object, slot-object, t

Slots:
• %updater-fns — initargs: :updater-fns

A list of functions that are called whenever a syntax function needs up-to-date
syntax information. update-syntax is never called directly by syntax commands.
Each function should take two arguments, integer offsets into the buffer of the
syntax delimiting the region that must have an up-to-date parse. These argu-
ments should be passed on to a call to update-syntax.

The base class for all syntaxes.

The redisplay module exploits the syntax module for several things:
• highlighting of various syntactic entities of the buffer
• highlighting of matching parenthesis,
• turning syntactic entities into clickable presentations,

Chapter 18: Drei 50

• marking lines with inconsistent indentation,
• etc.

User commands can use the syntax module for:
• moving point by units that are specific to a particular buffer syntax, such as expressions,

statements, or paragraphs,
• transposing syntactic units,
• sending the text of a syntactic unit to a language processor,
• indenting lines according to the syntax,
• etc.

The ideal is that the view that the syntax module has of the buffer is updated only when
needed, and then only for the parts of the buffer that are needed, though implementing
this in practise is decidedly nontrivial. Most syntax modules (such as for programming
languages) need to compute their representations from the beginning of the buffer up to a
particular point beyond which the structure of the buffer does not need to be known.

There are two primary situations where updating might be needed:
• Before redisplay is about to show the contents of part of the buffer in a pane, to inform

the syntax module that its syntax must be valid in the particular region on display,
• as a result of a command that exploits the syntactic entities of the buffer contents.

These two cases do boil down to “whenever there is need for the syntax information to
be correct”, however.

The first case is handled by the invocation of a single generic function:

[Generic Function]drei-syntax:update-syntax syntax unchanged-prefix
unchanged-suffix &optional begin end

Method combination: VALUES-MAX-MIN (most-specific-last)
Inform the syntax module that it must update its view of the buffer. unchanged-
prefix unchanged-suffix indicate what parts of the buffer has not been changed.
begin and end are offsets specifying the minimum region of the buffer that must
have an up-to-date parse, defaulting to 0 and the size of the buffer respectively. It is
perfectly valid for a syntax to ignore these hints and just make sure the entire syntax
tree is up to date, but it *must* make sure at at least the region delimited by begin
and end has an up to date parse. Returns two values, offsets into the buffer of the
syntax, denoting the buffer region thas has an up to date parse.

It is important to realize that the syntax module is not directly involved in displaying
buffer contents in a pane. In fact, the syntax module should work even if there is no graphic
user interface present, and it should be exploitable by several, potentially totally different,
display units.

The second case is slightly trickier, as any views of the syntax should be informed that
it has reparsed some part of the buffer. Since update-syntax is only called by views, the
view can easily record the fact that some part of the buffer has an up-to-date parse. Thus,
functions accessing syntax information must go to some length to make sure that the view
of the syntax is notified of any reparses.

Chapter 18: Drei 51

[Function]drei-syntax:update-parse syntax &optional begin end
Make sure the parse for syntax from offset begin to end is up to date. begin and
end default to 0 and the size of the buffer of syntax, respectively.

18.4.4.2 Incremental Parsing Framework

[Class]drei-syntax:parse-tree
Class precedence list: parse-tree, standard-object, slot-object, t

The base class for all parse trees.

We use the term parse tree in a wider sense than what is common in the parsing literature,
in that a lexeme is a (trivial) parse tree. The parser does not distinguish between lexemes
and other parse trees, and a grammar rule can produce a lexeme if that should be desired.

[Generic Function]drei-syntax:start-offset parse-tree
The offset in the buffer of the first character of a parse tree.

[Generic Function]drei-syntax:end-offset parse-tree
The offset in the buffer of the character following the last one of a parse tree.

The length of a parse-tree is thus the difference of its end offset and its start offset.

The start offset and the end offset may be NIL which is typically the case when a parse
tree is derived from the empty sequence of lexemes.

18.4.4.3 Lexical analysis

[Class]drei-syntax:lexer
Class precedence list: lexer, standard-object, slot-object, t

Slots:

• buffer — initargs: :buffer
The buffer associated with the lexer.

The base class for all lexers.

[Class]drei-syntax:incremental-lexer
Class precedence list: incremental-lexer, lexer, standard-object,
slot-object, t

A subclass of lexer which maintains the buffer in the form of a sequence of lexemes
that is updated incrementally.

In the sequence of lexemes maintained by the incremental lexer, the lexemes are indexed
by a position starting from zero.

[Generic Function]drei-syntax:nb-lexemes lexer
Return the number of lexemes in the lexer.

[Generic Function]drei-syntax:lexeme lexer pos
Given a lexer and a position, return the lexeme in that position in the lexer.

Chapter 18: Drei 52

[Generic Function]drei-syntax:insert-lexeme lexer pos lexeme
Insert a lexeme at the position in the lexer. All lexemes following pos are moved to
one position higher.

[Generic Function]drei-syntax:delete-invalid-lexemes lexer from to
Invalidate all lexemes that could have changed as a result of modifications to the
buffer

[Generic Function]drei-syntax:inter-lexeme-object-p lexer object
This generic function is called by the incremental lexer to determine whether a buffer
object is an inter-lexeme object, typically whitespace. Client code must supply a
method for this generic function.

[Generic Function]drei-syntax:skip-inter-lexeme-objects lexer scan
This generic function is called by the incremental lexer to skip inter-lexeme buffer
objects. The default method for this generic function increments the scan mark until
the object after the mark is not an inter-lexeme object, or until the end of the buffer
has been reached.

[Generic Function]drei-syntax:update-lex lexer start-pos end
This function is called by client code as part of the buffer-update protocol to inform
the lexer that it needs to analyze the contents of the buffer at least up to the end
mark of the buffer. start-pos is the position in the lexeme sequence at which new
lexemes should be inserted.

[Generic Function]drei-syntax:next-lexeme lexer scan
This generic function is called by the incremental lexer to get a new lexeme from the
buffer. Client code must supply a method for this function that specializes on the
lexer class. It is guaranteed that scan is not at the end of the buffer, and that the
first object after scan is not an inter-lexeme object. Thus, a lexeme should always be
returned by this function.

18.4.4.4 Earley Parser

Drei contains an incremental parser that uses the Earley algorithm. This algorithm accepts
the full set of context-free grammars, allowing greater freedom for the developer to define
natural grammars without having to think about restrictions such as LL(k) or LALR(k).

Beware, though, that the Earley algorithm can be quite inefficient if the grammar is
sufficiently complicated, in particular if the grammar is ambiguous.

18.4.4.5 Specifying A Grammar

An incremental parser is created from a grammar.

[Macro]drei-syntax:grammar &body body
Create a grammar object from a set of rules.

[Rule]symbol -> (&rest arguments) &optional body
Each rule is a list of this form.

Here symbol is the target symbol of the rule, and should be the name of a CLOS class.

Chapter 18: Drei 53

[Rule argument](var type test)
The most general form of a rule argument.

Here var is the name of a lexical variable. The scope of the variable contains the test,
all the following arguments and the body of the rule. The type is a Common Lisp type
specification. The rule applies only of the type of the object contain in var is of that type.
The test contains arbitrary Common Lisp code for additional checks as to the applicability
of the rule.

[Rule argument](var type)
Abbreviated form of a rule argument.

Here, type must be a symbol typically the name of a CLOS class. This form is an abbrevi-
ation for (var type t).

[Rule argument](var test)
Abbreviated form of a rule argument.

Here, test must not be a symbol. This form is an abbreviation of (var var test), i.e., the
name of the variable is also the name of a type, typically a CLOS class.

[Rule argument]var
Abbreviated form of a rule argument.

This form is an abbreviation of (var var t).

The body of a rule, if present, contains an expression that should have an instance (not
necessarily direct) of the class named by the symbol (the left-hand-side) of the rule. It
is important that this restriction be respected, since the Earley algorithm will not work
otherwise.

If the body is absent, it is the same as if a body of the form (make-instance ’symbol)
had been given.

The body can also be a sequence of forms, the first one of which must be a symbol.
These forms typically contain initargs, and will be passed as additional arguments to (make-
instance ’symbol).

18.4.5 View Protocol

Drei extends CLIMs concept of “views” to be more than just a manner for determining the
user interface for accepting values from the user. Instead, the view is what controls the
user interface of the Drei instance the user is interacting with. To simplify the discussion,
this section assumes that the view is always associated with a single buffer. A buffer does
not have to be associated with a view, and may be associated with many views, though
each view may only have a single buffer. The view controls how the buffer is displayed to
the user, and which commands are available to the user for modifying the buffer. A view
may use a syntax module to maintain syntactical information about the buffer contents,
and use the resulting information to highlight parts of the buffer based on its syntactical
value (“syntax highlighting”).

Chapter 18: Drei 54

[Class]drei:drei-view
Class precedence list: drei-view, tabify-mixin, subscriptable-name-mixin,
name-mixin, standard-object, slot-object, t

Slots:
• %active — initargs: :active

A boolean value indicating whether the view is "active". This should control
highlighting when redisplaying.

• %modified-p — initargs: :modified-p
This value is true if the view contents have been modified since the last time this
value was set to false.

• %no-cursors — initargs: :no-cursors
True if the view does not display cursors.

• %full-redisplay-p

True if the view should be fully redisplayed the next time it is redisplayed.
• %use-editor-commands — initargs: :use-editor-commands

If the view is supposed to support standard editor commands (for inserting ob-
jects, moving cursor, etc), this will be true. If you want your view to support
standard editor commands, you should *not* inherit from editor-table - the
command tables containing the editor commands will be added automatically, as
long as this value is true.

• %extend-pane-bottom — initargs: :extend-pane-bottom
Resize the output pane vertically during redisplay (using change-space-
requirements), in order to fit the whole buffer. If this value is false, redisplay
will stop when the bottom of the pane is reached.

The base class for all Drei views. A view observes some other object and provides a
visual representation for Drei.

[Class]drei:drei-buffer-view
Class precedence list: drei-buffer-view, drei-view, tabify-mixin,
subscriptable-name-mixin, name-mixin, standard-object, slot-object, t

Slots:
• %buffer — initargs: :buffer

The buffer that is observed by this buffer view.
• %top

The top of the displayed buffer, that is, the mark indicating the first visible
object in the buffer.

• %bot

The bottom of the displayed buffer, that is, the mark indicating the last visible
object in the buffer.

• %cache-string

A string used during redisplay to reduce consing. Instead of consing up a new
string every time we need to pull out a buffer region, we put it in this string. The

Chapter 18: Drei 55

fill pointer is automatically set to zero whenever the string is accessed through
the reader.

• %displayed-lines

An array of the displayed-line objects displayed by the view. Not all of these
are live.

• %displayed-lines-count

The number of lines in the views displayed-lines array that are actually live,
that is, used for display right now.

• %max-line-width

The width of the longest displayed line in device units.

A view that contains a drei-buffer object. The buffer is displayed on a simple
line-by-line basis, with top and bot marks delimiting the visible region. These marks
are automatically set if applicable.

[Method]drei-buffer:buffer (drei-buffer-view drei-buffer-view)
The buffer that is observed by this buffer view.

[Class]drei:drei-syntax-view
Class precedence list: drei-syntax-view, drei-buffer-view, drei-view,
tabify-mixin, subscriptable-name-mixin, name-mixin, standard-object,
slot-object, t

Slots:
• %syntax

An instance of the syntax class used for this syntax view.
• %prefix-size

The number of unchanged objects at the beginning of the buffer.
• %suffix-size

The number of unchanged objects at the end of the buffer.
• %recorded-buffer-size

The size of the buffer the last time the view was synchronized.

A buffer-view that maintains a parse tree of the buffer, or otherwise pays attention
to the syntax of the buffer.

[Class]drei:point-mark-view
Class precedence list: point-mark-view, drei-buffer-view, drei-view,
tabify-mixin, subscriptable-name-mixin, name-mixin, standard-object,
slot-object, t

Slots:
• %goal-column

The column that point will be attempted to be positioned in when moving by
line.

A view class containing a point and a mark into its buffer.

Chapter 18: Drei 56

The synchronize-view generic function is the heart of all view functionality.

[Generic Function]drei:synchronize-view view &key force-p end begin
&allow-other-keys

Synchronize the view with the object under observation - what exactly this entails,
and what keyword arguments are supported, is up to the individual view subclass.

18.4.6 Unit Protocol

Many of the actions performed by an editor is described in terms of the syntactically unit(s)
they affect. The syntax module is responsible for actually dividing the buffer into syntactical
units, but the unit protocol is the basic interface for acting on these units. A unit is
some single syntactical construct - for example a word, a sentence, an expression or a
definition. The unit protocol defines a number of generic functions for the various unit
types that permit a uniform interface to moving a mark a given number of units, deleting
a unit, killing a unit, transposing two units and so forth. A number of macros are also
provided for automatically generating all these functions, given the definition of two simple
movement functions. All generic functions of the unit protocol dispatch on a syntax, so
that every syntax can implement its own idea of what exactly, for example, an “expression”
is. Defaults are provided for some units - if nothing else has been specified by the syntax, a
word is considered any sequence of alphanumeric characters delimited by non-alphanumeric
characters.

The type of unit that a protocol function affects is represented directly in the name
of the function - this means that a new set of functions must be generated for every new
unit you want the protocol to support. In most cases, the code for these functions is very
repetitive and similar across the unit types, which is why the motion protocol offers a set of
macros that can generate function definitions for you. These generator macros define their
generated functions in terms of basic motion functions.

A basic motion function is a function named FORWARD-ONE-unit or backward-one-unit
of the signature (mark syntax) that returns true if any motion happened or false if a limit
was reached.

There isn’t really a single all-encompassing unit protocol, instead, it is divided into two
major parts - a motion protocol defining functions for moving point in terms of units, and
an editing protocol for changing the buffer in terms of units. Both use a similar interface
and a general mechanism for specifying the action to take if the intended operation cannot
be carried out.

Note that forward-object and backward-object, by virtue of their low-level status
and placement in the buffer protocol (see buffer.lisp) do not obey this protocol, in that
they have no syntax argument. Therefore, all frob-object functions and commands (see
Section 18.4.6.3 [Editing Protocol], page 58) lack this argument as well. There are no
forward-one-object or backward-one-object functions.

18.4.6.1 Motors And Limit Actions

A limit action is a function usually named mumble-limit-action of the signature (mark
original-offset remaining-units unit syntax) that is called whenever a general mo-
tion function cannot complete the motion. Mark is the mark the object in motion; original-
offset is the original offset of the mark, before any motion; remaining-units is the number of

Chapter 18: Drei 57

units left until the motion would be complete; unit is a string naming the unit; and syntax
is the syntax instance passed to the motion function. There is a number of predefined limit
actions:

[Function]drei-motion:beep-limit-action mark original-offset remaining unit
syntax

This limit action will beep at the user.

[Function]drei-motion:revert-limit-action mark original-offset remaining
unit syntax

This limit action will try to restore the mark state from before the attempted action.
Note that this will not restore any destructive actions that have been performed, it
will only restore the position of mark.

[Condition]drei-motion:motion-limit-error
Class precedence list: motion-limit-error, error, serious-condition,
condition, slot-object, t

This error condition signifies that a motion cannot be performed.

[Function]drei-motion:error-limit-action mark original-offset remaining unit
syntax

This limit action will signal an error of type motion-limit-error.

A diligent motor is a combination of two motion functions that has the same signature as
a standard motion function (see Section 18.4.6.2 [Motion Protocol], page 57). The primary
motion function is called the motor and the secondary motion function is called the fiddler.
When the diligent motor is called, it will start by calling its motor - if the motor cannot
carry out its motion, the fiddler will be called, and if the fiddler is capable of performing its
motion, the motor will be called again, and if this second motor call also fails, the fiddler will
be called yet again, etc. If at any time the call to the fiddler fails, the limit action provided
in the call to the diligent motor will be activated. A typical diligent motor is the one used
to implement a Backward Lisp Expression command - it attempts to move backwards by
a single expression, and if that fails, it tries to move up a level in the expression tree and
tries again.

[Function]drei-motion:make-diligent-motor motor fiddler
Create and return a diligent motor with a default limit action of beep-limit-action.
motor and fiddler will take turns being called until either motor succeeds or fiddler
fails.

18.4.6.2 Motion Protocol

The concept of a basic motion function was introduced in Section 18.4.6 [Unit
Protocol], page 56. A general motion function is a function named forward-unit or
backward-unit of the signature (mark syntax &optional (count 1) (limit-action
#’ERROR-LIMIT-ACTION)) that returns true if it could move forward or backward over the
requested number of units, count, which may be positive or negative; and calls the limit
action if it could not, or returns NIL if the limit action is NIL.

Chapter 18: Drei 58

18.4.6.3 Editing Protocol

An editing function is a function named forward-frob-unit or backward-frob-unit , or
just frob-unit in the case where discering between forward and backward commands does
not make sense (an example is transpose-unit).

A proper unit is a unit for which all the functions required by the motion protocol has
been implemented, this can be trivially done by using the macro define-motion-commands
(see Section 18.4.6.4 [Generator Macros], page 58).

18.4.6.4 Generator Macros

18.4.7 Redisplay Protocol

A buffer can be on display in several panes, possibly by being located in several Drei
instances. Thus, the buffer does not concern itself with redisplay, but assumes that whatever
is using it will redisplay when appropriate. There is no predictable definitive rule for when
a Drei instance will be redisplayed, but when it is, it will be done by calling the following
generic function.

[Generic Function]drei:display-drei drei
drei must be an object of type drei and frame must be a CLIM frame containing the
editor pane of drei. If you define a new subclass of drei, you must define a method
for this generic function. In most cases, methods defined on this function will merely
be a trampoline to a function specific to the given Drei variant.

The redisplay engine supports view-specific customization of the display in order to
facilitate such functionality as syntax highlighting. This is done through the following two
generic functions, both of which have sensible default methods defined by drei-buffer-
view and drei-syntax-view, so if your view is a subclass of either of these, you do not
need to define them yourself.

[Generic Function]drei:display-drei-view-contents stream view
The purpose of this function is to display the contents of a Drei view to some output
surface. stream is the CLIM output stream that redisplay should be performed on,
view is the Drei view instance that is being displayed. Methods defined for this
generic function can draw whatever they want, but they should not assume that they
are the only user of stream, unless the stream argument has been specialized to some
application-specific pane class that can guarantee this. For example, when accepting
multiple values using the accepting-values macro, several Drei instances will be
displayed simultaneously on the same stream. It is permitted to only specialise stream
on clim-stream-pane and not extended-output-stream. When writing methods
for this function, be aware that you cannot assume that the buffer will contain only
characters, and that any subsequence of the buffer is coercable to a string. Drei
buffers can contain arbitrary objects, and redisplay methods are required to handle
this (though they are not required to handle it nicely, they can just ignore the object,
or display the princed representation.)

[Generic Function]drei:display-drei-view-cursor stream view cursor
The purpose of this function is to display a visible indication of a cursor of a Drei
view to some output surface. stream is the CLIM output stream that drawing should

Chapter 18: Drei 59

be performed on, view is the Drei view object that is being redisplayed, cursor is
the cursor object to be displayed (a subclass of drei-cursor) and syntax is the
syntax object of view. Methods on this generic function can draw whatever they
want, but they should not assume that they are the only user of stream, unless the
stream argument has been specialized to some application-specific pane class that
can guarantee this. It is permitted to only specialise stream on clim-stream-pane
and not extended-output-stream. It is recommended to use the function offset-
to-screen-position to determine where to draw the visual representation for the
cursor. It is also recommended to use the ink specified by cursor to perform the
drawing, if applicable. This method will only be called by the Drei redisplay engine
when the cursor is active and the buffer position it refers to is on display - therefore,
offset-to-screen-position is *guaranteed* to not return NIL or t.

18.4.8 Undo Protocol

Undo is the facility by which previous modifications to the buffer can be undone, returning
the buffer state to what it was prior to some modification.

Undo is organized into a separate module. This module conceptually maintains a tree
where the nodes represent application states and the arcs represent transitions between
these states. The root of the tree represents the initial state of the application. The undo
module also maintains a current state. During normal application operation, the current
state is a leaf of a fairly long branch of the tree. Normal application operations add new
nodes to the end of this branch. Moving the current state up the tree corresponds to an
undo operation and moving it down some branch corresponds to some redo operation.

Arcs in the tree are ordered so that they always point FROM the current state. When
the current state moves from one state to the other, the arc it traversed is reversed. The
undo module does this by calling a generic function that client code must supply a method
for.

18.4.8.1 Protocol Specification

[Condition]drei-undo:no-more-undo
Class precedence list: no-more-undo, error, serious-condition, condition,
slot-object, t

A condition of this type is signaled whenever an attempt is made to call undo when
the application is in its initial state.

[Class]drei-undo:undo-tree
Class precedence list: undo-tree, standard-object, slot-object, t

The base class for all undo trees.

[Class]drei-undo:undo-record
Class precedence list: undo-record, standard-object, slot-object, t

The base class for all undo records.

[Class]drei-undo:standard-undo-record
Class precedence list: standard-undo-record, undo-record, standard-object,
slot-object, t

Slots:

Chapter 18: Drei 60

• tree

The undo tree to which the undo record belongs.

Standard instantiable class for undo records.

[Generic Function]drei-undo:add-undo undo-record undo-tree
Add an undo record to the undo tree below the current state, and set the current
state to be below the transition represented by the undo record.

[Generic Function]drei-undo:flip-undo-record undo-record
This function is called by the undo module whenever the current state is changed
from its current value to that of the parent state (presumably as a result of a call to
undo) or to that of one of its child states.

Client code is required to supply methods for this function on client-specific subclasses
of undo-record.

[Generic Function]drei-undo:undo undo-tree &optional n
Move the current state n steps up the undo tree and call flip-undo-record on each
step. If the current state is at a level less than n, a no-more-undo condition is signaled
and the current state is not moved (and no calls to flip-undo-record are made).

As long as no new record are added to the tree, the undo module remembers which
branch it was in before a sequence of calls to undo.

[Generic Function]drei-undo:redo undo-tree &optional n
Move the current state n steps down the remembered branch of the undo tree and
call flip-undo-record on each step. If the remembered branch is shorter than n, a
no-more-undo condition is signaled and the current state is not moved (and no calls
to flip-undo-record are made).

18.4.8.2 Implementation

Application states have no explicit representation, only undo records do. The current
state is a pointer to an undo record (meaning, the current state is BELOW the transition
represented by the record) or to the undo tree itself if the current state is the initial state
of the application.

18.4.8.3 How The Buffer Handles Undo

[Class]drei:undo-mixin
Class precedence list: undo-mixin, standard-object, slot-object, t

Slots:

• tree

Returns the undo-tree of the buffer.
• undo-accumulate

The undo records created since the start of the undo context.
• performing-undo

True if we are currently performing undo, false otherwise.

Chapter 18: Drei 61

This is a mixin class that buffer classes can inherit from. It contains an undo tree,
an undo accumulator and a flag specifyng whether or not it is currently performing
undo. The undo tree and undo accumulators are initially empty.

[Generic Function]drei:undo-tree buffer
The undo-tree object associated with the buffer. This usually contains a record of
every change that has been made to the buffer since it was created.

Undo is implemented as :before methods on, insert-buffer-object, insert-buffer-sequence
and delete-buffer-range specialized on undo-mixin.

[Generic Function]drei:undo-accumulate buffer
A list of the changes that have been made to buffer since the last time undo was
added to the undo tree for the buffer. The list returned by this function is initially NIL
(the empty list). The :before methods on insert-buffer-object, insert-buffer-
sequence, and delete-buffer-range push undo records on to this list.

[Generic Function]drei:performing-undo buffer
If true, the buffer is currently performing an undo operation. The :before methods
on insert-buffer-object, insert-buffer-sequence, and delete-buffer-range
push undo records onto the undo accumulator only if performing-undo is false, so
that no undo information is added as a result of an undo operation.

Three subclasses insert-record, delete-record, and compound-record of
undo-record are used. An insert record stores a position and some sequence of objects to
be inserted, a delete record stores a position and the length of the sequence to be deleted,
and a compound record stores a list of other undo records.

The :before methods on insert-buffer-object and insert-buffer-sequence push
a record of type delete-record onto the undo accumulator for the buffer, and the :before
method on delete-buffer-range pushes a record of type insert-record onto the undo
accumulator.

[Macro]drei:with-undo (get-buffers-exp) &body body
This macro executes the forms of body, registering changes made to the list of buffers
retrieved by evaluating get-buffers-exp. When body has run, for each buffer it will
call add-undo with an undo record and the undo tree of the buffer. If the changes
done by body to the buffer has resulted in only a single undo record, it is passed
as is to add-undo. If it contains several undo records, a compound undo record is
constructed out of the list and passed to add-undo. Finally, if the buffer has no undo
records, add-undo is not called at all.

To avoid storing an undo record for each object that is inserted, the with-undo macro
may in some cases just increment the length of the sequence in the last delete-record.

The method on flip-undo-record specialized on insert-record binds performing-
undo for the buffer to T, inserts the sequence of objects in the buffer, and calls change-
class to convert the insert-record to a delete-record, giving it a the length of the
stored sequence.

The method on flip-undo-record specialized on delete-record binds performing-
undo for the buffer to T, deletes the range from the buffer, and calls change-class to convert

Chapter 18: Drei 62

the delete-record to an insert-record, giving it the sequence at the stored offset in the
buffer with the specified length.

The method on flip-undo-record specialized on compound-record binds performing-
undo for the buffer to T, recursively calls flip-undo-record on each element of the list of
undo records, and finally destructively reverses the list.

[Class]drei:drei-undo-record
Class precedence list: drei-undo-record, standard-undo-record, undo-record,
standard-object, slot-object, t

Slots:
• buffer — initargs: :buffer

The buffer to which the record belongs.

A base class for all output records in Drei.

[Class]drei:simple-undo-record
Class precedence list: simple-undo-record, drei-undo-record,
standard-undo-record, undo-record, standard-object, slot-object,
t

Slots:
• offset — initargs: :offset

The offset that determines the position at which the undo operation is to be
executed.

A base class for output records that modify buffer contents at a specific offset.

[Class]drei:insert-record
Class precedence list: insert-record, simple-undo-record, drei-undo-record,
standard-undo-record, undo-record, standard-object, slot-object, t

Slots:
• objects — initargs: :objects

The sequence of objects that are to be inserted whenever flip-undo-record is called
on an instance of insert-record.

Whenever objects are deleted, the sequence of objects is stored in an insert record
containing a mark.

[Class]drei:delete-record
Class precedence list: delete-record, simple-undo-record, drei-undo-record,
standard-undo-record, undo-record, standard-object, slot-object, t

Slots:
• length — initargs: :length

The length of the sequence of objects to be deleted whenever flip-undo-record
is called on an instance of delete-record.

Whenever objects are inserted, a delete-record containing a mark is created and
added to the undo tree.

Chapter 18: Drei 63

[Class]drei:compound-record
Class precedence list: compound-record, drei-undo-record, standard-undo-record,
undo-record, standard-object, slot-object, t

Slots:
• records — initargs: :records

The undo records contained by this compound record.

This record simply contains a list of other records.

18.4.9 Kill Ring Protocol

During the process of text editing it may become necessary for regions of text to be manip-
ulated non-sequentially. The kill ring and its surrounding protocol offers both a temporary
location for data to be stored, as well as methods for stored data to be accessed.

Conceptually, the kill ring is a stack of bounded depth, so that when elements are pushed
beyond that depth, the oldest element is removed. All newly added data is attached to a
single point at the “start of ring position” or SORP.

This protocol provides two methods which govern how data is to be attached to the
SORP. The first method moves the current SORP to a new position, on to which a new
object is attached. The second conserves the current position and replaces its contents with
a sequence constructed of new and pre-existing SORP objects. This latter method is refered
to as a “concatenating push”.

For data retrievial the kill ring class provides a “yank point” which allows focus to be
shifted from the SORP to other positions within the kill ring. The yank point is limited
to two types of motition, one being a rotation away from the SORP and the other being
an immediate return or “reset” to the start position. When the kill ring is modified, for
example by a push, the yank point will be reset to the start position.

18.4.9.1 Kill Ring Protocol Specification

[Class]drei-kill-ring:kill-ring
Class precedence list: kill-ring, standard-object, slot-object, t

Slots:
• max-size — initargs: :max-size

The limitation placed upon the number of elements held by the kill ring. Once
the maximum size has been reached, older entries must first be removed before
new ones can be added. When altered, any surplus elements will be silently
dropped.

• cursorchain

The cursorchain associated with the kill ring.
• yankpoint

The flexicursor associated with the kill ring.

A class for all kill rings

[Generic Function]drei-kill-ring:kill-ring-max-size kr
Returns the value of the kill ring’s maximum size

Chapter 18: Drei 64

[Generic Function]drei-kill-ring:kill-ring-length kr
Returns the current length of the kill-ring. Note this is different than kill-ring-
max-size.

[Generic Function]drei-kill-ring:kill-ring-standard-push kr vector
Pushes a vector of objects onto the kill ring creating a new start of ring position. This
function is much like an everyday Lisp push with size considerations. If the length of
the kill ring is greater than the maximum size, then "older" elements will be removed
from the ring until the maximum size is reached.

[Generic Function]drei-kill-ring:kill-ring-concatenating-push kr vector
Concatenates the contents of vector onto the end of the current contents of the top
of the kill ring. If the kill ring is empty the a new entry is pushed.

[Generic Function]drei-kill-ring:kill-ring-reverse-concatenating-push
kr vector

Concatenates the contents of vector onto the front of the current contents of the top
of the kill ring. If the kill ring is empty a new entry is pushed.

[Generic Function]drei-kill-ring:rotate-yank-position kr &optional times
Moves the yank point associated with a kill-ring one or times many positions away
from the start of ring position. If times is greater than the current length then the
cursor will wrap to the start of ring position and continue rotating.

[Generic Function]drei-kill-ring:reset-yank-position kr
Moves the current yank point back to the start of of kill ring position

[Generic Function]drei-kill-ring:kill-ring-yank kr &optional reset
Returns the vector of objects currently pointed to by the cursor. If reset is t, a call
to reset-yank-position is called before the object is yanked. The default for reset
is NIL. If the kill ring is empty, a condition of type empty-kill-ring is signalled.

18.4.9.2 Kill Ring Implementation

The kill ring structure is built mainly of two parts: the stack like ring portion, which is a
cursorchain, and the yank point, which is a left-sticky-flexicursor. To initialize a kill ring,
the :max-size slot initarg is simply used to set the max size. The remaining slots constisting
of the cursorchain and the left-sticky-flexicursor are instantized upon creation of the kill
ring.

Stored onto the cursorchain are simple-vectors of objects, mainly characters from a Drei
buffer. In order to facilitate this, the kill ring implementation borrows heavily from the
flexichain library of functions. The following functions lie outside the kill ring and flexichain
protocols, but are pertinent to the kill ring implementation.

[Generic Function]drei-kill-ring:kill-ring-chain ring
Return the cursorchain associated with the kill ring ring.

[Generic Function]drei-kill-ring:kill-ring-cursor ring
Return the flexicursor associated with the kill ring.

Chapter 18: Drei 65

18.5 Defining Drei Commands

Drei commands are standard CLIM commands that are stored in standard CLIM command
tables. Drei uses a number of distinct command tables, some of which are merely used
to group commands by category, and some whose contents may only be applicable under
specific circumstances. When the contents of a command table is applicable, that command
table is said to be active. Some syntaxes may define specific command tables that will only
be active for buffers using that syntax. Commands in such tables are called syntax-specific
commands.

18.5.1 Drei Command Tables

Here is a list of the command tables that are always active, along with a note describing
what they are used for:

[Command Table]comment-table
Commands for dealing with comments in, for example, source code. For syntaxes
that do not have the concept of a comment, many of the commands of this table will
not do anything.

[Command Table]deletion-table
Commands that destructively modify buffer contents.

[Command Table]editing-table
Commands that transform the buffer contents somehow (such as transposing two
words).

[Command Table]fill-table
Commands that fill (wrap) text.

[Command Table]case-table
Commands that modify the case of characters.

[Command Table]indent-table
Commands that indent text based on the current syntax.

[Command Table]marking-table
Commands that deal with managing the mark or nondestructively copying buffer
contents.

[Command Table]movement-table
Commands that move point.

[Command Table]search-table
Commands that can search the buffer.

[Command Table]info-table
Commands that display information about the state of the buffer.

[Command Table]self-insert-table
Commands that insert the gesture used to invoke them into the buffer. You probably
won’t need to add commands to this table.

Chapter 18: Drei 66

[Command Table]editor-table
A command table that inherits from the previously mentioned tables (plus some
more). This command table is the “basic” table for accessing Drei commands, and
is a good place to put your own user-defined commands if they do not fit in another
table.

There are also two conditionally-active command tables:

[Command Table]exclusive-gadget-table
This command table is only active in the gadget version of Drei.

[Command Table]exclusive-input-editor-table
This command table is only active when Drei is used as an input-editor.

When you define keybindings for your commands, you should put the keybindings in the
same command table as the command itself.

18.5.2 Numeric Argument In Drei

The numeric argument state is currently not directly accessible from within commands.
However, Drei uses ESA’s numeric argument processing code, Drei commands can thus be
provided with numeric arguments in the same way as ESA commands can. When using
set-key to setup keybindings, provide the value of *numeric-argument-marker* as an ar-
gument to have the command processing code automatically insert the value of the numeric
argument whenever the keybinding is invoked. You can also use *numeric-argument-p*
to have a boolean value, stating whether or not a numeric argument has been provided by
the user, inserted. Note that you must write your commands to accept arguments before
you can do this (see Section 18.5.3 [Examples Of Defining Drei Commands], page 66).

18.5.3 Examples Of Defining Drei Commands

A common text editing task is to repeat the word at point, but for some reason, Drei does
not come with a command to do this, so we need to write our own. Fortunately, Drei is
extensible software, and to that end, a DREI-USER package is provided that is intended for
user customizations. We’re going to create a standard CLIM command named com-repeat-
word in the command table editing-table. The implementation consists of cloning the
current point, move it a word backward, and insert into the buffer the sequence delimited
by point and our moved mark. Our command takes no arguments.

(define-command (com-repeat-word :name t
:command-table editing-table)

()
(let ((mark (clone-mark (point)))
(backward-word mark (current-syntax 1)
(insert-sequence mark (region-to-sequence mark (point))))

For (point) and (current-syntax), see Section 18.1.1 [Access Functions], page 39.
This command facilitates the single repeat of a word, but that’s it. This is not very useful

- instead, we would like a command that could repeat a word an arbitrary (user-supplied)
number of times. The primary way for a CLIM command to ask for user-supplied values
is to use command arguments. We define a new command that takes an integer argument
specifying the number of times to repeat the word at point.

Chapter 18: Drei 67

(define-command (com-repeat-word :name t
:command-table editing-table)

((count ’integer :prompt "Number of repeats"))
(let ((mark (clone-mark (point)))
(backward-word mark (current-syntax 1)
(let ((word (region-to-sequence mark (point)))

(dotimes (i count)
(insert-sequence mark word)))))

Great - our command is now pretty full-featured. But with an editing operation as
common as this, we really want it to be quickly accessible via some intuitive keystroke.
We choose M-C-r. Also, it’d be nice if, instead of interactively quering us for commands,
the command would just use the value of the numeric argument as the number of times to
repeat. There’s no way to do this with a named command (ie. when you run the command
with M-x), but it’s quite easy to do in a keybinding. We use the ESA set-key function:

(set-key ‘(com-repeat-word ,*numeric-argument-marker*)
’editing-table
’((#\r :control :meta)))

Now, pressing M-C-r will result in the com-repeat-word command being run with the
first argument substituted for the value of the numeric argument. Since the numeric argu-
ment will be 1 if nothing else has been specified by the user, we are guaranteed that the
first argument is always an integer, and we are guaranteed that the count argument will
have a sensible default, even if the user does not explicitly provide a numeric argument.

18.5.4 Drei’s Syntax Command Table Protocol

In order to provide conditionally active command tables, Drei defines the syntax-command-
table class. While this class is meant to facilitate the addition of commands to syntaxes
when they are run in a specific context (for example, a large editor application adding a
Show Macroexpansion command to Lisp syntax), their modus operandi is general enough to
be used for all conditional activity of command tables. This is useful for making commands
available that could not be generally implemented for all Drei instances — returning to
the Show Macroexpansion example, such a command can only be implemented if there is a
sufficiently large place to show the expansion, and this might not be available for a generic
Drei input-editor instance, but could be provided by an application designed for it.

Syntax command tables work by conditionally inheriting from other command tables,
so it is necessary to define one (or more) command tables for the commands you wish to
make conditionally available.

When providing a :command-table argument to define-syntax that names a syntax
command table, an instance of the syntax command table will be used for the syntax.

[Class]drei-syntax:syntax-command-table
Class precedence list: syntax-command-table, standard-command-table,
command-table, standard-object, slot-object, t

A syntax command table provides facilities for having frame-specific commands that
do not show up when the syntax is used in other applications than the one it is
supposed to. For example, the Return From Definition command should be available
when Lisp syntax is used in Climacs (or another editor), but not anywhere else.

Chapter 18: Drei 68

[Generic Function]drei-syntax:additional-command-tables editor
command-table

Method combination: APPEND (most-specific-first)
Return a list of additional command tables that should be checked for commands in
addition to those command-table inherits from. The idea is that methods are spe-
cialised to editor (which is at first a Drei instance), and that those methods may
call the function again recursively with a new editor argument to provide arbitrary
granularity for command-table-selection. For instance, some commands may be ap-
plicable in a situation where the editor is a pane or gadget in its own right, but
not when it functions as an input-editor. In this case, a method could be defined
for application-frame as the editor argument, that calls additional-command-
tables again with whatever the "current" editor instance is. The default method on
this generic function just returns the empty list.

[Macro]drei-syntax:define-syntax-command-table name &rest args &key
&allow-other-keys

Define a syntax command table class with the provided name, as well as defining a
CLIM command table of the same name. args will be passed on to make-command-
table. An :around method on command-table-inherit-from for the defined class
will also be defined. This method will make sure that when an instance of the syntax
command table is asked for its inherited command tables, it will return those of the
defined CLIM command table, as well as those provided by methods on additional-
command-tables. Command tables provided through additional-command-tables
will take precence over those specified in the usual way with :inherit-from.

Chapter 19: Fonts and Extended Text Styles 69

19 Fonts and Extended Text Styles

19.1 Extended Text Styles

McCLIM extends the legal values for the family and face arguments to make-text-style
to include strings (in additional to the portable keyword symbols), as permitted by the
CLIM spec, section 11.1.

Each backend defines its own specific syntax for these family and face names.
The CLX backend maps the text style family to the X font’s foundry and family values,

separated by a dash. The face is mapped to weight and slant in the same way. For example,
the following form creates a text style for -misc-fixed-bold-r-*-*-18-*-*-*-*-*-*-* :

(make-text-style "misc-fixed" "bold-r" 18)

In the GTK backend, the text style family and face are used directly as the Pango font
family and face name. Please refer to Pango documentation for details on the syntax of
face names. Example:

(make-text-style "Bitstream Vera Sans" "Bold Oblique" 54)

19.2 Listing Fonts

McCLIM’s font listing functions allow applications to list all available fonts available on a
port and create text style instances for them.

Example:
* (find "Bitstream Vera Sans Mono"

(clim-extensions:port-all-font-families (clim:find-port))
:key #’clim-extensions:font-family-name
:test #’equal)

#<CLIM-GTKAIRO::PANGO-FONT-FAMILY Bitstream Vera Sans Mono>

* (clim-extensions:font-family-all-faces *)
(#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Bold>
#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Bold Oblique>
#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Oblique>
#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Roman>)

* (clim-extensions:font-face-scalable-p (car *))
T

* (clim-extensions:font-face-text-style (car **) 50)
#<CLIM:STANDARD-TEXT-STYLE "Bitstream Vera Sans Mono" "Bold" 50>

[Class]clim-extensions:font-family
Class precedence list: font-family, standard-object, slot-object, t

The protocol class for font families. Each backend defines a subclass of font-family
and implements its accessors. Font family instances are never created by user code.
Use port-all-font-families to list all instances available on a port.

Chapter 19: Fonts and Extended Text Styles 70

[Class]clim-extensions:font-face
Class precedence list: font-face, standard-object, slot-object, t

The protocol class for font faces Each backend defines a subclass of font-face and
implements its accessors. Font face instances are never created by user code. Use
font-family-all-faces to list all faces of a font family.

[Generic Function]clim-extensions:port-all-font-families port &key
invalidate-cache invalidate-cache &allow-other-keys

Returns the list of all font-family instances known by PORT. With INVALIDATE-
CACHE, cached font family information is discarded, if any.

[Generic Function]clim-extensions:font-family-name font-family
Return the font family’s name. This name is meant for user display, and does not, at
the time of this writing, necessarily the same string used as the text style family for
this port.

[Generic Function]clim-extensions:font-family-port font-family
Return the port this font family belongs to.

[Generic Function]clim-extensions:font-family-all-faces font-family
Return the list of all font-face instances for this family.

[Generic Function]clim-extensions:font-face-name font-face
Return the font face’s name. This name is meant for user display, and does not, at
the time of this writing, necessarily the same string used as the text style face for this
port.

[Generic Function]clim-extensions:font-face-family font-face
Return the font family this face belongs to.

[Generic Function]clim-extensions:font-face-all-sizes font-face
Return the list of all font sizes known to be valid for this font, if the font is restricted
to particular sizes. For scalable fonts, arbitrary sizes will work, and this list represents
only a subset of the valid sizes. See font-face-scalable-p.

[Generic Function]clim-extensions:font-face-text-style font-face
&optional size

Return an extended text style describing this font face in the specified size. If size is
nil, the resulting text style does not specify a size.

Chapter 20: Tab Layout 71

20 Tab Layout

The tab layout is a composite pane arranging its children so that exactly one child is visible
at any time, with a row of buttons allowing the user to choose between them.

See also the tabdemo.lisp example code located under Examples/ in the McCLIM dis-
tribution. It can be started using demodemo.

[Class]clim-tab-layout:tab-layout
Class precedence list: tab-layout, sheet-multiple-child-mixin,
basic-pane, sheet-parent-mixin, mirrored-sheet-mixin, pane,
standard-repainting-mixin, standard-sheet-input-mixin, sheet-transformation-mixin,
basic-sheet, sheet, bounding-rectangle, standard-object, slot-object, t

The abstract tab layout pane is a composite pane arranging its children so that exactly
one child is visible at any time, with a row of buttons allowing the user to choose
between them. Use with-tab-layout to define a tab layout and its children, or
use the :pages argument to specify its contents when creating it dynamically using
make-pane.

[Class]clim-tab-layout:tab-layout-pane
Class precedence list: tab-layout-pane, tab-layout, sheet-multiple-child-mixin,
basic-pane, sheet-parent-mixin, mirrored-sheet-mixin, pane,
standard-repainting-mixin, standard-sheet-input-mixin, sheet-transformation-mixin,
basic-sheet, sheet, bounding-rectangle, standard-object, slot-object, t

A pure-lisp implementation of the tab-layout, this is the generic implementation cho-
sen by the CLX frame manager automatically. Users should create panes for type
tab-layout, not tab-layout-pane, so that the frame manager can customize the
implementation.

[Class]clim-tab-layout:tab-page
Class precedence list: tab-page, standard-object, slot-object, t

Instances of tab-page represent the pages in a tab-layout. For each child pane,
there is a tab-page providing the page’s title and additional information about the
child. Valid initialization arguments are :title, :pane (required) and :presentation-
type,:DRAWING-OPTIONS (optional).

[Macro]clim-tab-layout:with-tab-layout (default-presentation-type &rest
initargs &key name &allow-other-keys) &body body

Return a tab-layout. Any keyword arguments, including its name, will be
passed to make-pane. Child pages of the tab-layout can be specified using
BODY, using lists of the form (title PANE &KEY PRESENTATION-TYPE
DRAWING-OPTIONS enabled-callback). default-presentation-type will
be passed as :presentation-type to pane creation forms that specify no type
themselves.

[Generic Function]clim-tab-layout:tab-layout-pages tab-layout
Return all TAB-PAGEs in this tab layout, in order from left to right. Do not modify
the resulting list destructively. Use the setf function of the same name to assign a
new list of pages. The setf function will automatically add tabs for new page objects,
remove old pages, and reorder the pages to conform to the new list.

Chapter 20: Tab Layout 72

[Generic Function]clim-tab-layout:tab-page-tab-layout tab-page
Return the tab-layout this page belongs to.

[Generic Function]clim-tab-layout:tab-page-title tab-page
Return the title displayed in the tab for this page. Use the setf function of the same
name to set the title dynamically.

[Generic Function]clim-tab-layout:tab-page-pane tab-page
Return the CLIM pane this page displays. See also SHEET-TO-PAGE, the reverse
operation.

[Generic Function]clim-tab-layout:tab-page-presentation-type tab-page
Return the type of the presentation used when this page’s header gets clicked. Use
the setf function of the same name to set the presentation type dynamically. The
default is tab-page.

[Generic Function]clim-tab-layout:tab-page-drawing-options tab-page
Return the drawing options of this page’s header. Use the setf function of the same
name to set the drawing options dynamically. Note: Not all implementations of the
tab layout will understand all drawing options. In particular, the Gtkairo backends
understands only the :INK option at this time.

[Function]clim-tab-layout:add-page page tab-layout &optional enable
Add page at the left side of tab-layout. When enable is true, move focus to the new
page. This function is a convenience wrapper; you can also push page objects directly
into tab-layout-pages and enable them using (setf TAB-LAYOUT-ENABLED-
PAGE).

[Function]clim-tab-layout:remove-page page
Remove page from its tab layout. This is a convenience wrapper around SHEET-
DISOWN-CHILD, which can also be used directly to remove the page’s pane with
the same effect.

[Generic Function]clim-tab-layout:tab-layout-enabled-page tab-layout
The currently visible tab page of this tab-layout, or NIL if the tab layout does not
have any pages currently. Use the setf function of the name to change focus to
another tab page.

[Function]clim-tab-layout:sheet-to-page sheet
For a sheet that is a child of a tab layout, return the page corresponding to this
sheet. See also tab-page-pane, the reverse operation.

[Function]clim-tab-layout:find-tab-page-named name tab-layout
Find the tab page with the specified title in tab-layout. Note that uniqueness of
titles is not enforced; the first page found will be returned.

[Function]clim-tab-layout:switch-to-page page
Move the focus in page’s tab layout to this page. This function is a one-argument
convenience version of (setf TAB-LAYOUT-ENABLED-PAGE), which can also be
called directly.

Chapter 20: Tab Layout 73

[Function]clim-tab-layout:remove-page-named title tab-layout
Remove the tab page with the specified title from tab-layout. Note that uniqueness
of titles is not enforced; the first page found will be removed. This is a convenience
wrapper, you can also use FIND-TAB-PAGE-NAMED to find and the remove a page
yourself.

[Generic Function]clim-tab-layout:note-tab-page-changed layout page
This internal function is called by the setf methods for tab-page-title and -
DRAWING-OPTIONS to inform the page’s tab-layout about the changes, allowing it
to update its display. Only called by the tab-layout implementation and specialized
by its subclasses.

Chapter 21: Listener 74

21 Listener

Chapter 22: Inspector 75

22 Inspector

The inspector, called “Clouseau”, is used for interactively inspecting objects. It lets you
look inside objects, inspect slots, disassemble and trace functions, view keys and values in
hash tables, and quite a few other things as well. It can be extended to aid in debugging of
specific programs, similar to the way the Lisp printer can be extended with print-object.

22.1 Usage

22.1.1 Quick Start

To get up and running quickly with Clouseau:

1. With ASDF and McCLIM loaded, load the file

mcclim/Apps/Inspector/inspector.asd.

2. Load Clouseau with:

(asdf:operate ’asdf:load-op :clouseau)

3. Inspect an object with (clouseau:inspector object). If you use a multithreaded
Lisp implementation, you can also include the :new-process keyword argument. If it
is t, then Clouseau is started in a seperate process. This should be relatively safe; it is
even possible to have an inspector inspecting another running inspector.

22.1.2 The Basics

Once you inspect something, you will see a full representation of the object you are inspect-
ing and short representations of objects contained within it. This short representation may
be something like #<STANDARD-CLASS SALAD-MIXIN> or something as short as “. . . ”. To
see these objects inspected more fully, left-click on them and they will be expanded. To
shrink expanded objects, left-click on them again and they will go back to a brief form.

That’s really all you need to know to get started. The best way to learn how to use
Clouseau is to start inspecting your own objects.

22.1.3 Handling of Specific Data Types

Clouseau can handle numerous data types in different ways. Here are some handy features
you might miss if you don’t know to look for them:

22.1.3.1 Standard Objects

Standard objects have their slots shown, and by left-clicking on the name of a slot you can
change the slot’s value. You can see various slot attributes by middle clicking on a slot
name.

22.1.3.2 Structures

Structures are inspected the same way as standard objects.

22.1.3.3 Generic Functions

You can remove methods from generic functions with the Remove Method command.

Chapter 22: Inspector 76

22.1.3.4 Functions

You can disassemble functions with the Toggle Disassembly command. If the disassembly
is already shown, this command hides it.

22.1.3.5 Symbols

If a symbol is fbound, you can use the Trace and Untrace commands to trace and untrace
the function bound to it.

22.1.3.6 Lists and Conses

Lists and conses can be displayed in either the classic format (such as (1 3 (4 . 6)
"Hello" 42)) or a more graphical cons-cell diagram format. The default is the classic
format, but this can be toggled with the Toggle Show List Cells command.

The new cons cell diagram format looks like this:

22.2 Extending Clouseau

Sometimes Clouseau’s built-in inspection abilities aren’t enough, and you want to be able
to extend it to inspect one of your own classes in a special way. Clouseau supports this,
and it’s fairly simple and straightforward.

Suppose that you’re writing a statistics program and you want to specialize the inspector
for your application. When you’re looking at a sample of some characteristic of a population,
you want to be able to inspect it and see some statistics about it, like the average. This is
easy to do.

We define a class for a statistical sample. We’re keeping this very basic, so it’ll just
contain a list of numbers:

(in-package :clim-user)
(use-package :clouseau)

(defclass sample ()
((data :initarg :data

:accessor data
:type list :initform ’()))

(:documentation "A statistical sample"))

(defgeneric sample-size (sample)
(:documentation "Return the size of a statistical sample"))

(defmethod sample-size ((sample sample))
(length (data sample)))

Chapter 22: Inspector 77

The print-object function we define will print samples unreadably, just showing their
sample size. For example, a sample with nine numbers will print as #<SAMPLE n=9> We
create such a sample and call it *my-sample*.

(defmethod print-object ((object sample) stream)
(print-unreadable-object (object stream :type t)
(format stream "n=~D" (sample-size object))))

(defparameter *my-sample*
(make-instance ’sample

:data ’(12.8 3.7 14.9 15.2 13.66
8.97 9.81 7.0 23.092)))

We need some basic statistics functions. First, we’ll do sum:
(defgeneric sum (sample)
(:documentation "The sum of all numbers in a statistical

sample"))

(defmethod sum ((sample sample))
(reduce #’+ (data sample)))

Next, we want to be able to compute the mean. This is just the standard average that
everyone learns: add up all the numbers and divide by how many of them there are. It’s
written x

(defgeneric mean (sample)
(:documentation "The mean of the numbers in a statistical

sample"))

(defmethod mean ((sample sample))
(/ (sum sample)

(sample-size sample)))

Finally, to be really fancy, we’ll throw in a function to compute the standard deviation.
You don’t need to understand this, but the standard deviation is a measurement of how
spread out or bunched together the numbers in the sample are. It’s called s, and it’s
computed like this: s =

√
1

N−1

∑N
i=1(xi − x)2

(defgeneric standard-deviation (sample)
(:documentation "Find the standard deviation of the numbers

in a sample. This measures how spread out they are."))

(defmethod standard-deviation ((sample sample))
(let ((mean (mean sample)))
(sqrt (/ (loop for x in (data sample)

sum (expt (- x mean) 2))
(1- (sample-size sample))))))

This is all very nice, but when we inspect *my-sample* all we see is a distinctly inconve-
nient display of the class, its superclass, and its single slot, which we actually need to click
on to see. In other words, there’s a lot of potential being missed here. How do we take
advantage of it?

Chapter 22: Inspector 78

We can define our own inspection functions. To do this, we have two methods that we
can define. To change how sample objects are inspected compactly, before they are clicked
on, we can define an inspect-object-briefly method for our sample class. To change
the full, detailed inspection of samples, we define inspect-object for the class. Both of
these methods take two arguments: the object to inspect and a CLIM output stream. They
are expected to print a representation of the object to the stream.

Because we defined print-object for the sample class to be as informative as we want
the simple representation to be, we don’t need to define a special inspect-object-briefly
method. We should, however, define inspect-object.

(defmethod inspect-object ((object sample) pane)
(inspector-table (object pane)

;; This is the header
(format pane "SAMPLE n=~D" (sample-size object))

;; Now the body
(inspector-table-row (pane)

(princ "mean" pane)
(princ (mean object) pane))

(inspector-table-row (pane)
(princ "std. dev." pane)
(princ (standard-deviation object) pane))))

Here, we introduce two new macros. inspector-table sets up a box in which we can
display our representation of the sample. It handles quite a bit of CLIM work for us. When
possible, you should use it instead of making your own, since using the standard facilities
helps ensure consistency.

The second macro, inspector-table-row, creates a row with the output of one form
bolded on the left and the output of the other on the right. This gives us some reasonably
nice-looking output:

But what we really want is something more closely adapted to our needs. It would be
nice if we could just have a table of things like x = 12.125776 and have them come out
formatted nicely. Before we attempt mathematical symbols, let’s focus on getting the basic
layout right. For this, we can use CLIM’s table formatting.

(defmethod inspect-object ((object sample) pane)
(inspector-table (object pane)

;; This is the header
(format pane "SAMPLE n=~D" (sample-size object))

;; Now the body
(inspector-table-row (pane)

(princ "mean" pane)
(princ (mean object) pane))

(inspector-table-row (pane)
(princ "std. dev." pane)
(princ (standard-deviation object) pane))))

Chapter 22: Inspector 79

In this version, we define a local function x=y which outputs a row showing something
in the form “label = value”. If you look closely, you’ll notice that we print the label with
princ but we print the value with inspect-object. This makes the value inspectable, as
it should be.

Then, in the inspector-table body, we insert a couple of calls to x=y and we’re done.
It looks like this:

Finally, for our amusement and further practice, we’ll try to get some mathematical
symbols—in this case we’ll just need x. We can get this by printing an italic x and drawing
a line over it:

(defun xbar (stream)
"Draw an x with a bar over it"
(with-room-for-graphics (stream)
(with-text-face (stream :italic)

(princ #\x stream)
(draw-line* stream 0 0

(text-style-width *default-text-style*
stream) 0))))

(defmethod inspect-object ((object sample) pane)
(flet ((x=y (x y)

(formatting-row (pane)
(formatting-cell (pane :align-x :right)

;; Call functions, print everything else in italic
(if (functionp x)

(funcall x pane)
(with-text-face (pane :italic)
(princ x pane))))

(formatting-cell (pane) (princ "=" pane))
(formatting-cell (pane)

(inspect-object y pane)))))
(inspector-table (object pane)

;; This is the header
(format pane "SAMPLE n=~D" (sample-size object))

;; Now the body
(x=y #’xbar (mean object))
(x=y #\S (standard-deviation object)))))

Finally, to illustrate the proper use of inspect-object-briefly, suppose that we want
the “n=9” (or whatever the sample size n equals) part to have an itlicised n. We can fix
this easily:

(defmethod inspect-object-briefly ((object sample) pane)
(with-output-as-presentation (pane object ’sample)
(with-text-family (pane :fix)

Chapter 22: Inspector 80

(print-unreadable-object (object pane :type t)
(with-text-family (pane :serif)

(with-text-face (pane :italic)
(princ "n" pane)))

(format pane "=~D" (sample-size object))))))

Notice that the body of inspect-object-briefly just prints a representation to a
stream, like inspect-object but shorter. It should wrap its output in with-output-as-
presentation. inspect-object does this too, but it’s hidden in the inspector-table
macro.

Our final version looks like this:

For more examples of how to extend the inspector, you can look at inspector.lisp.

22.3 API

The following symbols are exported from the clouseau package:

[Function]inspector object &key new-process
Inspect object. If new-process is t, Clouseau will be run in a new process.

[Generic Function]inspect-object object pane
Display inspected representation of object to the extended output stream pane. This
requires that *application-frame* be bound to an inspector application frame, so
it isn’t safe to use in other applications.

[Generic Function]inspect-object-briefly object pane
A brief version of inspect-object. The output should be short, and should try to
fit on one line.

[Generic Function]define-inspector-command name args &rest body
This is just an inspector-specific version of define-command. If you want to define
an inspector command for some reason, use this.

[Macro]inspector-table (object pane) header \body body
Present object in tabular form on pane, with header evaluated to print a label in a
box at the top. body should output the rows of the table, possibly using inspector-
table-row.

[Macro]inspector-table-row (pane) left right
Output a table row with two items, produced by evaluating left and right, on pane.
This should be used only within inspector-table.
When possible, you should try to use this and inspector-table for consistency, and
because they handle quite a bit of effort for you.

Chapter 23: Glossary 81

23 Glossary

Direct mirror

A mirror of a sheet which is not shared with any of the ancestors of the sheet. All
grafted McCLIM sheets have mirrors, but not all have direct mirrors. A McCLIM sheet
that does not have a direct mirror uses the direct mirror of its first ancestor having a direct
mirror for graphics output. Asking for the direct mirror of a sheet that does not have a
direct mirror returns nil.

Whether a McCLIM sheet has a direct mirror or not, is decided by the frame manager.
Some frame managers may only allow for the graft to be a mirrored sheet. Even frame
managers that allow hierarchical mirrors may decide not to allocate a direct mirror for
a particular sheet. Although sheets with a direct mirror must be instances of the class
mirrored-sheet-mixin, whether a McCLIM sheet has a direct mirror or not is not determined
statically by the class of a sheet, but dynamically by the frame manager.

Mirror

A device window such as an X11 window that parallels a sheet in the CLIM sheet
hierarchy. A sheet having such a direct mirror is called a mirrored sheet. When drawing
functions are called on a mirrored sheet, they are forwarded to the host windowing system
as drawing commands on the mirror.

CLIM sheets that are not mirrored must be descendents (direct or indirect) of a mirrored
sheet, which will then be the sheet that receives the drawing commands.

Mirrored sheet

A sheet in the CLIM sheet hiearchy that has a direct parallel (called the direct mirror) in
the host windowing system. A mirrored sheet is always an instance of the class mirrored-
sheet-mixin, but instances of that class are not necessarily mirrored sheets. The sheet is
called a mirrored sheet only if it currently has a direct mirror. There may be several reasons
for an instance of that class not to currently have a direct mirror. One is that the sheet is
not grafted. Only grafted sheets can have mirrors. Another one is that the frame manager
responsible for the look and feel of the sheet hierarchy may decide that it is inappropriate
for the sheet to have a direct mirror, for instance if the underlying windowing system does
not allow nested windows inside an application, or that it would simply be a better use of
resources not to create a direct mirror for the sheet. An example of the last example would
be a stream pane inside a the viewport of a scroller pane. The graphics objects (usually
text) that appear in a stream pane can have very large coordinate values, simply because
there are many lines of text. Should the stream pane be mirrored, the coordinate values
used on the mirror may easily go beyond what the underlying windowing system accepts.
X11, for instance, can not handle coordinates greater than 64k (16 bit unsigned integer).
By not having a direct mirror for the stream pane, the coordinates will be translated to
those of the (not necessarily direct) mirror of the viewport before being submitted to the
windowing system, which gives more reasonable coordinate values.

It is important to realize the implications of this terminology. A mirrored sheet is
therefore not a sheet that has a mirror. All grafted sheets have mirrors. For the sheet to
be a mirrored sheet it has to have a direct mirror. Also, a call to sheet-mirror returns
a mirror for all grafted sheets, whether the sheet is a mirrored sheet or not. A call to
sheet-direct-mirror, on the other hand, returns nil if the sheet is not a mirrored sheet.

Chapter 23: Glossary 82

Mirror transformation

The transformation that transforms coordinates in the coordinate system of a mirror (i.e.
the native coordinates of the mirror) to native coordinates of its parent in the underlying
windowing system. On most systems, including X, this transformation will be a simple
translation.

Native coordinates

Each mirror has a coordinate system called the native coordinate system. Usually, the
native coordinate system of a mirror has its origin in the upper-left corner of the mirror,
the x-axis grows to the right and the y-axis downwards. The unit is usually pixels, but the
frame manager can impose a native coordinate system with other units, such as millimeters.

The native coordinate system of a sheet is the native coordinate system of its mirror
(direct or not). Thus, a sheet without a direct mirror has the same native coordinate
system as its parent. To obtain native coordinates of the parent of a mirror, use the mirror
transformation.

Native region

The native region of a sheet is the intersection of its region and the sheet region of all
of its parents, expressed in the native coordinates of the sheet.

Potentially visible area

A bounded area of an otherwise infinte drawing plane that is visible unless it is covered
by other visible areas.

Sheet coordinates

The coordinate system of coordinates obtained by application of the user transformation.
Sheet region

The region of a sheet determines the visible part of the drawing plane. The dimensions
of the sheet region are given in sheet coordinates. The location of the visible part of a sheet
within its parent sheet is determined by a combination of the sheet transformation and the
position of the sheet region.

For instance, assuming that the sheet region is a rectangle with its upper-left corner at
(2, 1) and that the sheet transformation is a simple translation (3, 2). Then the origin of
the sheet coordinate system is at the point (3, 2) within the sheet coordinate system of its
parent sheet. The origin of its the coordinate system is not visible, however, because the
visible region has its upper-left corner at (2, 1) in the sheet coordinate system. Thus, the
visible part will be a rectangle whose upper-left corner is at (5, 3) in the sheet coordinate
system of the parent sheet.

Panes and gadgets alter the region and sheet transformation of the underlying sheets
(panes and gadgets are special kinds of sheets) to obtain effects such as scrolling, zooming,
coordinate system transformations, etc.

Sheet transformation

The transformation used to transform sheet coordinates of a sheet to sheet coordinates
of its parent sheet. The sheet transformation determine the position, shape, etc. of a sheet
within the coordinate system of its parent.

Panes and gadgets alter the transformation and sheet region of the underlying sheets
(panes and gadgets are special kinds of sheets) to obtain effects such as scrolling, zooming,
coordinate system transformations, etc.

Chapter 23: Glossary 83

User Clipping region

A clipping region used to limit the effect of drawing functions. The user clipping region
is stored in the medium. It can be altered either by updating the medium, or by passing a
value for the :clipping-region drawing option to a drawing function.

User Coordinates

The coordinate system of coordinates passed to the drawing functions.
User Transformation

A transformation used to transform user coordinates into sheet coordinates. The user
transformation is stored in the medium. It can be altered either by updating the medium,
or by passing a value for the :transformation drawing option to a drawing function.

Visible area

Chapter 24: Development History 84

24 Development History

Mike McDonald started developing McCLIM in 1998. His initial objective was to be able to
run the famous “address book” demo, and to distribute the first version when this demo ran.
With this in mind, he worked “horizontally”, i.e., writing enough of the code for many of
the chapters of the specification to be able to run the address book example. In particular,
Mike wrote the code for chapters 15 (Extended Stream Output), 16 (Output Recording),
and 28 (Application Frames), as well as the code for interactor panes. At the end of 1999,
Mike got too busy with other projects, and nothing really moved.

Also in 1998, Gilbert Baumann started working “vertically”, writing a mostly-complete
implementation of the chapters 3 (Regions) and 5 (Affine Transformations). At the end
of 1999, he realized that he was not going to be able to finish the project by himself.
He therfore posted his code to the free-CLIM mailing list. Gilbert’s code was distributed
according to the GNU Lesser General Public Licence (LGPL).

Robert Strandh picked up the project in 2000, starting from Gilbert’s code and writing
large parts of chapters 7 (Properties of Sheets) and 8 (Sheet Protocols) as well as parts of
chapters 9 (Ports, Grafts, and Mirrored Sheets), 10 (Drawing Options), 11 (Text Styles),
12 (Graphics), and 13 (Drawing in Color).

In early 2000, Robert got in touch with Mike and eventually convinced him to distribute
his code, also according to the LGPL. This was a major turning point for the project, as the
code base was now sufficiently large that a number of small demos were actually running.
Robert then spent a few months merging his code into that produced by Mike.

Arthur Lemmens wrote the initial version of the code for the gadgets in june of 2000.
Bordeaux students Iban Hatchondo and Julien Boninfante were hired by Robert for a

3-month summer project during the summer of 2000. Their objective was to get most of
the pane protocols written (in particular space composition and space allocation) as well
as some of the gadgets not already written by Arthur, in particular push buttons. The
calculator demo was written to show the capabilities of their code.

In July of 2000, Robert invited Gilbert to the LSM-2000 metting in Bordeaux (libre
software meeting). This meeting is a gathering of developers of free software with the
purpose of discussing strategy, planning future projects, starting new ones, and working
on existing ones. The main result of this meeting was that Gilbert managed to merge his
code for regions and transformations into the main code base written by Mike, Robert,
Iban, and Julien. This was also a major step towards a final system. We now had one
common code base, with a near-complete implementation of regions, transformations, sheet
protocols, ports, grafts, graphics, mediums, panes, and gadgets.

Meanwhile, Mike was again able to work on the project, and during 2000 added much of
the missing code for handling text interaction and scrolling. In particular, output recording
could now be used to redisplay the contents of an interactor pane. Mike and Robert also
worked together to make sure the manipulation of sheet transformations and sheet regions
as part of scrolling and space-allocation respected the specification.

Robert had initially planned for Iban and Julien to work on McCLIM for their fifth-year
student project starting late 2000 and continuing until end of march 2001. For reasons
beyond his control, however, he was forced to suggest a different project. Thus, Iban and
Julien, together with two other students, were assigned to work on Gsharp, an interactive

Chapter 24: Development History 85

score editor. Gsharp was the original reason for Robert to start working on CLIM as he
needed a toolkit for writing a graphical user interface for Ghsarp. The lack of a freely-
available version of a widely-accepted toolkit such as CLIM made him decide to give it a
shot. Robert’s idea was to define the student project so that a maximum of code could be
written as part of McCLIM. The result was a complete rewrite of the space-allocation and
space-composition protocols, and many minor code snippets.

As part of the Gsharp project, Robert wrote the code for menu bars and for a large part
of chapter 27 (Command Processing).

Julien was hired for six months (April to September of 2001) by Robert to make major
progress on McCLIM. Julien’s first task was to create a large demo that showed many of the
existing features of McCLIM (a “killer app”). It was decided to use Gsharp since Julien was
already familiar with the application and since it was a sufficiently complicated application
that most of the features would be tested. An additional advantage of a large application
was to serve as a “smoke test” to run whenever substantial modifications to the code base
had been made. As part of the Gsharp project, Julien first worked on adding the possibility
of using images as button labels.

Early 2001, Robert had already written the beginning of a library for manipulating 2-
dimensional images as part of McCLIM. A group of four fourth-year students (Gregory
Bossard, Michel Cabot, Cyrille Dindart, Lionel Vergé) at the university of Bordeaux was
assigned the task of writing efficient code for displaying such images subject to arbitrary
affine transformations. This code would be the base for drawing all kinds of images such
as icons and button labels, but also for an application for manipulating document images.
The project lasted from January to May of 2001.

Another group of four fourth-year students (Löic Lacomme, Nicolas Louis, Arnaud
Rouanet, Lionel Salabartan) at the university of Bordeaux was assigned the task of writing
a file-selector gadget presented as a tree of directories and files, and with the ability to open
and close directories, to select files, etc. The project lasted from January to May of 2001.

One student in particular, Arnaud Rouanet started becoming interested in the rest of
CLIM as well. During early 2001, he fixed several bugs and also added new code, in
particular in the code for regions, graphics, and clx-mediums.

Arnaud and Lionel were hired by Robert for the summer of 2001 to work on several
things. In particular, they worked on getting output recording to work and wrote CLIM-
fig, a demo that shows how output recording is used. They also worked on various sheet
protocols, and wrote the first version of the PostScript backend.

Alexey Dejneka joined the project in the summer of 2001. He wrote the code for table
formatting, bordered output and continued to develop the PostScript output facility.

In the fall of 2001 Tim Moore became interested in the presentation type system. He
implemented presentation type definition and presentation method dispatch. Wanting to
see that work do something useful, he went on to implement present and accept methods,
extended input streams, encapsulating streams, and the beginnings of input editing streams.
In the spring of 2002 he wrote the core of Goatee, an Emacs-like editor. This is used to
implement CLIM input editing.

Brian Spilsbury became involved towards the beginning of 2001. His motivation for
getting involved was in order to have internationalization support. He quickly realized that
the first step was to make SBCL and CMUCL support Unicode. He therefore worked to

Chapter 24: Development History 86

make that happen. So far (summer 2001) he has contributed a number of cosmetic fixes
to McCLIM and also worked on a GTK-like gadget set. He finally started work to get the
OpenGL backend operational.

Concept Index 87

Concept Index

A
application frame . 7

B
basic motion function . 56
building an application . 6

C
CLIM Listener . 74
Clouseau . 75
command . 9, 30
command loop . 2
command processing . 30
command table . 22
command tables . 30

D
defining Drei commands . 66
demo applications . 3
Direct mirror . 81
display function . 12
drei . 38
Drei API . 41
Drei command defining . 66
Drei editing protocol . 56
Drei motion protocol . 56
Drei protocols . 41
Drei redisplay . 58
Drei unit protocol . 56

E
ehtoota . 1
event loop . 1
extensions . 31, 32

G
gadget . 7

I
incremental redisplay . 13
input-editor . 38
inspector . 75
interface manager . 1

L
layout protocol . 26

limit action . 57
limit-action . 57
Lisp Listener . 74
Listener . 74

M
Mirror . 81
Mirror transformation . 82
Mirrored sheet . 81
multiprocessing . 4

N
Native coordinates . 82
Native region . 82
numeric argument . 66

O
output recording . 11

P
pane . 7, 26
Potentially visible area . 82
presentation type . 16

S
sheet coordinate system. 23
sheet coordinates . 23
Sheet coordinates . 82
Sheet region . 82
Sheet transformation . 82
specification . 1
syntax command table . 67

T
text-editor . 38
text-editor API . 41
text-editor protocols . 41
text-editor redisplay . 58
text-field . 38

U
unit . 56
User Clipping region . 83
user coordinate system . 23
user coordinates . 23
User Coordinates . 83

Concept Index 88

User Transformation . 83

V
view . 18
view protocol . 53

views . 53
Visible area . 83

W
writing an application . 6

Variable Index 89

Variable Index

*
application-frame . 8

D
drei-kill-ring:*kill-ring* 39

E

esa:*minibuffer* . 39

esa:*previous-command* . 39

Function And Macro Index 90

Function And Macro Index

(
(setf drei-buffer:buffer-object) 46
(setf drei-buffer:offset) 42
(setf image-color) . 33
(setf image-pixel) . 33
(setf output-record-parent) 29

A
add-output-record . 29

C
clear-output-record . 29
clim-extensions:font-face-all-sizes 70
clim-extensions:font-face-family 70
clim-extensions:font-face-name 70
clim-extensions:font-face-text-style 70
clim-extensions:font-family-all-faces 70
clim-extensions:font-family-name 70
clim-extensions:font-family-port 70
clim-extensions:port-all-font-families . . . 70
clim-tab-layout:add-page 72
clim-tab-layout:find-tab-page-named 72
clim-tab-layout:note-tab-page-changed 73
clim-tab-layout:remove-page 72
clim-tab-layout:remove-page-named 73
clim-tab-layout:sheet-to-page 72
clim-tab-layout:switch-to-page 72
clim-tab-layout:tab-layout-enabled-page . . 72
clim-tab-layout:tab-layout-pages 71
clim-tab-layout:tab-page-drawing-options

. 72
clim-tab-layout:tab-page-pane 72
clim-tab-layout:tab-page-presentation-type

. 72
clim-tab-layout:tab-page-tab-layout 72
clim-tab-layout:tab-page-title 72
clim-tab-layout:with-tab-layout 71

D
define-command-table . 30
define-inspector-command 80
delete-output-record . 29
drei-buffer:backward-object 44
drei-buffer:beginning-of-buffer 44
drei-buffer:beginning-of-buffer-p 45
drei-buffer:beginning-of-line 45
drei-buffer:beginning-of-line-p 45
drei-buffer:buffer . 43, 55
drei-buffer:buffer-column-number 45
drei-buffer:buffer-line-number 45
drei-buffer:buffer-object 46

drei-buffer:buffer-sequence 46
drei-buffer:clone-mark . 43
drei-buffer:column-number 45
drei-buffer:delete-buffer-range 46
drei-buffer:delete-range 46
drei-buffer:delete-region 46
drei-buffer:end-of-buffer 44
drei-buffer:end-of-buffer-p 45
drei-buffer:end-of-line . 45
drei-buffer:end-of-line-p 45
drei-buffer:forward-object 44
drei-buffer:insert-buffer-object 45
drei-buffer:insert-buffer-sequence 45
drei-buffer:insert-object 46
drei-buffer:insert-sequence 46
drei-buffer:line-number . 45
drei-buffer:mark< . 44
drei-buffer:mark<= . 44
drei-buffer:mark= . 44
drei-buffer:mark> . 44
drei-buffer:mark>= . 44
drei-buffer:number-of-lines 43
drei-buffer:object-after 46
drei-buffer:object-before 46
drei-buffer:offset . 42
drei-buffer:region-to-sequence 47
drei-buffer:size . 43
drei-kill-ring:kill-ring-chain 64
drei-kill-ring:kill-ring-concatenating-push

. 64
drei-kill-ring:kill-ring-cursor 64
drei-kill-ring:kill-ring-length 64
drei-kill-ring:kill-ring-max-size 63
drei-kill-ring:kill-ring-reverse-

concatenating-push . 64
drei-kill-ring:kill-ring-standard-push . . . 64
drei-kill-ring:kill-ring-yank 64
drei-kill-ring:reset-yank-position 64
drei-kill-ring:rotate-yank-position 64
drei-motion:beep-limit-action 57
drei-motion:error-limit-action 57
drei-motion:make-diligent-motor 57
drei-motion:revert-limit-action 57
drei-syntax:additional-command-tables 68
drei-syntax:define-syntax-command-table . . 68
drei-syntax:delete-invalid-lexemes 52
drei-syntax:end-offset . 51
drei-syntax:grammar . 52
drei-syntax:insert-lexeme 52
drei-syntax:inter-lexeme-object-p 52
drei-syntax:lexeme . 51
drei-syntax:nb-lexemes . 51
drei-syntax:next-lexeme . 52
drei-syntax:skip-inter-lexeme-objects 52
drei-syntax:start-offset 51

Function And Macro Index 91

drei-syntax:update-lex . 52
drei-syntax:update-parse 51
drei-syntax:update-syntax 50
drei-undo:add-undo . 60
drei-undo:flip-undo-record 60
drei-undo:redo . 60
drei-undo:undo . 60
drei:accepting-from-user 41
drei:current-syntax . 39
drei:current-view . 39
drei:display-drei . 58
drei:display-drei-view-contents 58
drei:display-drei-view-cursor 58
drei:drei-instance . 39
drei:execute-drei-command 41
drei:handling-drei-conditions 40
drei:invoke-accepting-from-user 41
drei:invoke-performing-drei-operations . . . 41
drei:mark . 39
drei:performing-drei-operations 41
drei:performing-undo . 61
drei:point . 39
drei:synchronize-view . 56
drei:undo-accumulate . 61
drei:undo-tree . 61
drei:with-bound-drei-special-variables . . . 40
drei:with-undo . 61

E
esa:current-buffer . 39

F
flip-image . 35

G
gray-image-max-level . 34
gray-image-max-levels . 34
gray-image-min-level . 34

I
image-color . 33
image-height . 33
image-pixel . 33
image-pixels . 33
image-width . 33
inspect-object . 80
inspect-object-briefly . 80
inspector-table . 80
inspector-table-row . 80

L
line-style . 29
load-afm-file . 37

M
make-command-table . 30
map-over-output-records-containing-position

. 29
map-over-output-records-overlapping-region

. 29
medium-miter-limit . 31

R
read-image . 35
replay-output-record . 29
rotate-image . 35

S
scale-image . 35

T
translate-image . 35

W
with-new-output-record . 29
with-output-to-output-record 29
write-image . 35

	Introduction
	Standards
	How CLIM Is Different

	CLIM Demos and Applications
	Running the Demos
	McCLIM Installation and Usage Tips
	Multiprocessing with CMUCL
	Adding Mouse Button Icons

	The First Application
	How CLIM applications produce output
	Panes and Gadgets
	Defining Application Frames
	A First Attempt
	Executing the Application
	Adding Functionality
	An application displaying a data structure
	Incremental redisplay

	Using presentation types
	What is a presentation type
	A simple example

	Using views
	Using command tables
	Concepts
	Coordinate systems
	Arguments to drawing functions

	Windowing system drawing functions
	CLIM drawing functions
	Panes
	Layout protocol
	Space composition
	Space allocation
	Change-space Notification Protocol

	Output Protocol
	Protocol Changes

	Command Processing
	Output Protocol Extensions
	Output Recording Extensions
	Standard classes

	Drawing Two-Dimensional Images
	Image Architecture
	Images
	Utility Functions

	Reading Image Files

	File Selector Gadget
	PostScript Backend
	Postscript Fonts
	Additional functions

	Drei
	Drei Concepts
	Access Functions
	Special Variables

	External API
	Standard Drei Variants
	Protocols
	Buffer Protocol
	General Buffer Protocol Parts
	Operations Related To The Offset Of Marks
	Inserting And Deleting Objects
	Getting Objects Out Of The Buffer
	Implementation Hints

	Buffer Modification Protocol
	DREI-BASE Package
	Efficiency considerations

	Syntax Protocol
	General Syntax Protocol
	Incremental Parsing Framework
	Lexical analysis
	Earley Parser
	Specifying A Grammar

	View Protocol
	Unit Protocol
	Motors And Limit Actions
	Motion Protocol
	Editing Protocol
	Generator Macros

	Redisplay Protocol
	Undo Protocol
	Protocol Specification
	Implementation
	How The Buffer Handles Undo

	Kill Ring Protocol
	Kill Ring Protocol Specification
	Kill Ring Implementation

	Defining Drei Commands
	Drei Command Tables
	Numeric Argument In Drei
	Examples Of Defining Drei Commands
	Drei's Syntax Command Table Protocol

	Fonts and Extended Text Styles
	Extended Text Styles
	Listing Fonts

	Tab Layout
	Listener
	Inspector
	Usage
	Quick Start
	The Basics
	Handling of Specific Data Types
	Standard Objects
	Structures
	Generic Functions
	Functions
	Symbols
	Lists and Conses

	Extending Clouseau
	API

	Glossary
	Development History
	Concept Index
	Variable Index
	Function And Macro Index

