
  UEIModbus User Manual 

 
 

 

 1 

 
 

 

 

 

 

 

 

 

 

 

  
 

 

UEIModbus User Manual 2.1 

 
 

 

 
 

 

 

 

 
February 2013 Edition 

 

 

 
© Copyright 2013 United Electronic Industries, Inc. All rights reserved 

 

 

 

 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, 

electronic, mechanical, by photocopying, recording, or otherwise without prior written permission. 

 

 



  UEIModbus User Manual 

 
 

 

 2 

Table of contents

1. Introduction ............................................................................................ 3 

1.1. Register tables ..................................................................................................... 3 

1.2. Mapping of PowerDNA I/O layers to MODBUS register tables. ...................... 4 

1.2.1. Digital device representation ...................................................................... 4 

1.2.2. Analog device representation ...................................................................... 5 

2. Configuring the UEIModbus from the command line ....................... 6 

2.1. Connecting through the serial port ...................................................................... 6 

2.2. Configuring the IP address.................................................................................. 7 

2.3. Starting/Stopping MODBUS slave service ......................................................... 7 

2.4. Configuring I/O channels .................................................................................... 8 

2.4.1. Configuring an analog input device ............................................................ 8 

2.4.2. Configuring an analog output device .......................................................... 9 

2.4.3. Configuring a digital input device ............................................................ 10 

2.4.4. Configuring a digital output device .......................................................... 10 

3. UEIModbus configuration GUI .......................................................... 13 

3.1. Configure IP address ......................................................................................... 14 

3.2. Configuring I/O channels .................................................................................. 16 

3.3. Test I/O channels .............................................................................................. 17 



  UEIModbus User Manual 

 
 

 

 3 

1. Introduction 
MODBUS is a messaging protocol developed by Modicon in 1979, used to establish 

master-slave/client-server communication between intelligent devices. It is a de facto 

standard, truly open, and the most widely used network protocol in the industrial 

manufacturing environment. (Specifications available at http://www.modbus-ida.org). 

 

MODBUS devices communicate using a master-slave technique in which only one 

device (the master) can initiate transactions (called queries). The other devices (slaves) 

respond by supplying the requested data to the master, or by taking the action requested 

in the query.  

A slave is any peripheral device (I/O transducer, valve, network drive, or other measuring 

device), which processes information and sends its output to the master using MODBUS. 

Masters can address individual slaves, or can initiate a broadcast message to all slaves. 

Slaves return a response to all queries addressed to them individually, but do not respond 

to broadcast queries. 

 

UEIModbus extends the capability of the PowerDNA distributed data acquisition system 

by turning it into a MODBUS/TCP slave that can be accessed by any software client that 

can act as a MODBUS/TCP master. Most popular HMI software packages support the 

MODBUS/TCP protocol. 

 

1.1. Register tables 

The MODBUS specification defines four register tables (or register maps) in which I/Os 

can be read or written. 

 

Register 

table 

Classic Name Description Data 

representation 

0xxxx Coils 

(Read/Write) 

A 0x reference address is used to drive 

output data to a digital output channel. 

1 bit 

1xxxx Discrete 

Inputs (Read-

only) 

Read Discrete Inputs. The ON/OFF status 

of a 1x reference address is controlled by 

the corresponding digital input channel. 

1 bit 

3xxxx Input 

Registers 

(Read-only) 

A 3x reference register contains a 16-bit 

number received from an external source 

like an analog input signal. 

16 bits 

4xxxx Holding 

Registers 

(Read/Write) 

A 4x register is used to store 16-bits of 

numerical data (binary or decimal), or to 

send the data from the CPU to an output 

channel. 

16 bits 

http://www.modbus-ida.org/


  UEIModbus User Manual 

 
 

 

 4 

 

For each of those tables, the protocol allows a maximum of 65536 data items to be 

accessed. It is slave dependent, in which data items are accessible by a master.  

Typically, a slave implements only a small memory area.  

 

UEIModbus only implements memory areas big enough to hold the number of channels 

used on each layer. 

 

1.2. Mapping of PowerDNA I/O layers to MODBUS register 
tables. 

Each PowerDNA I/O layer is addressed using a device number starting with 0 for the top 

layer, 1 for the layer below, and so on. This device number is used to calculate the 

address of the MODBUS registers associated with each layer by multiplying it by 1000. 

 

Device 0 MODBUS registers will start at address 0 

Device 1 MODBUS registers will start at address 1000 

… 

Device x MODBUS registers will start at address 1000*x 

 

Coils and Discrete Inputs registers can only represent one bit. They are used to hold the 

digital output and input line state of digital devices. 

 

Input and Holding registers can represent 16-bit. Each register can represent a digital port 

or an analog channel raw value for devices of resolution lesser or equal to 16 bits. 

 

To represent values greater than 16 bits, two Input or Holding registers are needed. 

Two registers are also needed to represent the scaled value of analog channels using the 

32-bit IEEE floating point representation. 

Four registers are needed to represent the scaled values of analog channels using the 64-

bit IEEE double precision floating point representation. 

 

1.2.1. Digital input/output device representation 

Digital I/O devices are always mapped twice: 

 Each individual line is mapped in the Coil (for output) or Discrete Input(for input) 

tables 

 Each port is mapped in the Holding register (for output) or Input register (for 

input) tables. 

 

Here is an example for a 12-bit DI layer at dev. 2. 



  UEIModbus User Manual 

 
 

 

 5 

 

Discrete Input table Physical channel 

2001 Input port 0 line 0 

2002 Input port 0 line 1 

2003 Input port 0 line 2 

… … 

2011 Input port 0 line 10 

2012 Input port 0 line 11 

 

Input Register table Physical port 

2001 Input port 0 

 

 

1.2.2. Analog device representation 

Analog input devices are mapped in the input register table and the holding register table. 

Analog output devices are mapped in the holding register table. 

 

Here is an example for a 16 channels AI layer at dev3 configured to acquire data as 

simple precision floating point values (32-bits: two registers per channel): 

Input Register table Holding Register table Physical channel 

3001 3001 channel 0 

3003 3003 channel 1 

… … … 

3031 3031 channel 15 

 

Here is an example for an 8 channels AO layer at dev5 configured to use double precision 

floating point values (64-bits: 4 registers per channel): 

Holding Register table Physical channel 

5001 channel 0 

5005 channel 1 

… … 

5027 channel 6 

5031 channel 7 

 



  UEIModbus User Manual 

 
 

 

 6 

2. Configuring the UEIModbus from the command line 
You will need to configure the IP address and the I/O channels you wish to make 

available to MODBUS/TCP masters. 

 

The IP address must be configured using the serial port. 

 

The I/O channels are configured in the file “/etc/modbusslave.conf”, located on the root 

file system. 

 

2.1. Connecting through the serial port 

Connect the serial cable to the serial port on the UEIModbus cube and the serial port on 

your PC. 

 

You will need a serial communication program: 

 Windows: ucon, MTTTY or HyperTerminal. 

 Linux: minicom or cu (part of the uucp package). 

 

The PowerDNA I/O module uses the serial port settings: 57600 bits/s, 8 data bits, 1 stop 

bit and no parity. Run your serial terminal program and configure the serial 

communication settings accordingly. 

 

Connect the DC output of the power supply (24VDC) to the “Power In” connector on the 

PowerDNA cube and connect the AC input on the power supply to an AC power source. 

 

You should see the following message on your screen: 

 
U-Boot 1.1.4 (Jan 10 2006 - 19:20:03) 

 

CPU:   MPC5200 v1.2 at 396 MHz 

       Bus 132 MHz, IPB 66 MHz, PCI 33 MHz 

 

Board: UEI PowerDNA MPC5200 Layer 

I2C:   85 kHz, ready 

DRAM:  128 MB 

Reserving 349k for U-Boot at: 07fa8000 

FLASH:  4 MB 

In:    serial 

Out:   serial 

Err:   serial 

Net:   FEC ETHERNET 

 

Type "run flash_nfs" to mount root filesystem over NFS 



  UEIModbus User Manual 

 
 

 

 7 

 

Hit any key to stop autoboot:  5 

 

## Booting image at ffc10000 ... 

   Image Name:   Linux-2.6.16.1 

   Created:      2006-11-10  16:07:06 UTC 

   Image Type:   PowerPC Linux Kernel Image (gzip compressed) 

   Data Size:    917636 Bytes = 896.1 kB 

   Load Address: 00000000 

   Entry Point:  00000000 

   Verifying Checksum ... OK 

   Uncompressing Kernel Image ... OK 

id mach(): done 

... 

< lots of kernel messages > 

... 

BusyBox v1.2.2 (2006.11.03-19:16+0000) Built-in shell (ash) 

Enter 'help' for a list of built-in commands. 

 

~ # 

 

You can now navigate the file system and enter standard Linux commands such as ls, ps, 

cd… 

2.2. Configuring the IP address 

Your UEIModbus cube is configured at the factory with the IP address 192.168.100.2 to 

be part of a private network. 

 

You can change the IP address for the current session using the command: 
setip <new IP address> 

 

2.3. Starting/Stopping MODBUS slave service 

MODBUS/TCP request from MODBUS masters are handled by the MODBUS slave 

service. 

 

The UEIModbus is pre-configured to automatically start the MODBUS slave service at 

boot time. 

 

Use the following command to stop the MODBUS slave service: 
/etc/init.d/modbusslave stop 

 

Use the following command to start the MODBUS slave service: 
/etc/init.d/modbusslave start 



  UEIModbus User Manual 

 
 

 

 8 

 

Use the following command to restart the MODBUS slave service: 
/etc/init.d/modbusslave restart 

 

Use the following command to disable automatic start of MODBUS slave service: 
mv /etc/rc.d/S40modbusslave /etc/rc.d/K40modbusslave 

 

Use the following command to enable automatic start of MODBUS slave service: 
mv /etc/rc.d/K40modbusslave /etc/rc.d/S40modbusslave 

 

2.4. Configuring I/O channels 

The file /etc/modbusslave.conf describes the devices and channels that will be available 

through the MODBUS protocol. 

 

Each line starting with ‘#’ is a comment. 

Each line starting with “AI” configures an analog input device. 

Each line starting with “AO” configures an analog output device. 

Each line starting with “DI” configures a digital input device. 

Each line starting with “DO” configures a digital output device. 

Each line starting with “CI” configures a counter input device. 

Each line starting with “CO” configures a frequency/PWM output device 

 

You must re-start the MODBUS slave service to activate changes made to the 

configuration file: 
/etc/init.d/modbusslave restart 

 

 

2.4.1. Configuring an analog input device 

The configuration line for an analog input device can contain any of the following 

“name=value” pairs. If a parameter is omitted, a default value will be used instead. 

It is not case sensitive. 

 

 Device={X}: the id of the device to configure. 

 NumChannels={X}: the number of channels to use (first channel is always 0). 

 InputMode={DIFF|RSE}: the input mode 

 Gain={X}: the gain, “0” for gain of 1, “1” for next higher gain and so on. 

For example AI-207 comes with the following gains: 

1,2,4,8,10,20,40,80,100,200,400,800. 

Set Gain=6 to configure gain of 40, Gain =7 to configure gain of 80 and so on. 

 MeasurementType={V|TC}: the measurement type, voltage or thermocouple. 



  UEIModbus User Manual 

 
 

 

 9 

 TCType={E|J|K|S|R|T|B|N|C}: the thermocouple type. 

 TempScale={C|F|K}: the temperature scale, Celsius, Fahrenheit or Kelvin. 

 CJCType={BUILTIN|CONSTANT}: the cold-junction compensation type. 

“BUILTIN” uses the sensor on the terminal panel, “CONSTANT” uses a constant 

value. 

 CJCConst={X}: the cold-junction compensation temperature to use when 

CJCType is set to “CONSTANT”. 

 DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit 

values between the slave and the master. 

f32: single-precision floating point 

swf32: single-precision floating point. Upper 16-bits and lower 16-bits are 

swapped 

f64: double precision floating point.  

swf64: double precision floating point. Upper 32-bits and lower 32-bits are 

swapped 

 

The following example configures device 2 to acquire temperatures on its first 4 channels 

(don’t wrap the line when typing it): 
AI device=2 numChannels=4 inputMode=DIFF gain=8 measurementType=TC 

TCType=K tempScale=C CJCType=BUILTIN dataType=f32 

 

2.4.2. Configuring an analog output device 

The configuration line for an analog output device can contain any of the following 

“name=value” pairs. If a parameter is omitted, a default value will be used instead. 

It is not case sensitive. 

 

 Device={X}: the id of the device to configure. 

 NumChannels={X}: the number of channels to use (first channel is always 0). 

 DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit 

values between the master and the slave. 

f32: single-precision floating point 

swf32: single-precision floating point. Upper 16-bits and lower 16-bits are 

swapped 

f64: double precision floating point.  

swf64: double precision floating point. Upper 32-bits and lower 32-bits are 

swapped 

 

The following example configures device 0 to generate on its first 4 channels: 
AO device=0 numChannels=4 dataType=f32 

 

 



  UEIModbus User Manual 

 
 

 

 10 

2.4.3. Configuring a digital input device 

The configuration line for a digital input device can contain any of the following 

“name=value” pairs. If a parameter is omitted, a default value will be used instead. 

It is not case sensitive. 

 

 Device={X}: the id of the device to configure. 

 NumChannels={X}: the number of ports to use (first port is always 0). 

 DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit 

values between the slave and the master. 

i16: 16-bits integer 

i32: 32-bits integer 

swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped 

 

The following example configures device 5 to acquire digital signals on its first port: 
DI device=5 numChannels=1 dataType=i32 

 

 

2.4.4. Configuring a digital output device 

The configuration line for a digital output device can contain any of the following 

“name=value” pairs. If a parameter is omitted, a default value will be used instead. 

It is not case sensitive. 

 

 Device={X}: the id of the device to configure. 

 NumChannels={X}: the number of ports to use (first port is always 0). 

 DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit 

values between the master and the slave. 

i16: 16-bits integer 

i32: 32-bits integer 

swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped 

 

The following example configures device 1 to generate digital patterns on its first port: 
DO device=1 numChannels=1 dataType=i32 

 

2.4.5. Configuring a counter input device 

The configuration line for a counter input device can contain any of the following 

“name=value” pairs. If a parameter is omitted, a default value will be used instead. 

It is not case sensitive. 

 

 Device={X}: the id of the device to configure. 

 NumChannels={X}: the number of counters/ports to use (first port is always 0). 



  UEIModbus User Manual 

 
 

 

 11 

 DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit 

values between the slave and the master. 

i16: 16-bits integer 

i32: 32-bits integer 

swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped 

 Mode={count|quad|period|pulsewidth}: The mode used to configure the counter 

to measure events, quadrature encoder position, period or pulse width 

 Source={internal|external}: The source signal to count or measure, internal uses 

the on-board 66MHz clock, external uses the signal connected to the counter’s 

input pin. 

 Gate={internal|external}: The gate signal to enable/disable the counter, internal 

sets the gate automatically when counter starts, external uses a signal connected to 

the counter’s gate pin. 

 InputInverted={0|1}: Set to 1 to invert the input signal. 

 

The following example configures device 2 to measure quadrature encoders position 

connected to ports 0,1,2,3: 
CI device=2 numChannels=4 dataType=i32 mode=quad source=external 

gate=internal inputinverted=0 

 

 

2.4.6. Configuring a frequency/PWM output device 

The configuration line for a frequency output device can contain any of the following 

“name=value” pairs. If a parameter is omitted, a default value will be used instead. 

It is not case sensitive. 

 

 Device={X}: the id of the device to configure. 

 NumChannels={X}: the number of counters/ports to use (first port is always 0). 

 DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit 

values between the master and the slave. 

i16: 16-bits integer 

i32: 32-bits integer 

swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped 

 Mode={pulse|train}: The mode used to configure the counter to output pulse(s), 

“pulse” will output a single pulse each time a new value is written to the Modbus 

register. “train” will continuously output pulses.  

 lowticks={X}: The initial number of clock ticks used to specify the low state 

duration. 

 highticks={X}: The initial number of clock ticks used to specify the high state 

duration. 



  UEIModbus User Manual 

 
 

 

 12 

The following example configures device 2 to output pulses out of ports 0,1,2,3: 
CO device=2 numChannels=4 dataType=i32 mode=train lowticks=1000 

highticks=1000 



  UEIModbus User Manual 

 
 

 

 13 

3. UEIModbus configuration GUI 
The UEIModbusConf provides a GUI to ease configuration and test of the UEIModbus. 

 

 Connect the serial cable to the serial port on the UEIModbus cube and the serial 

port on your PC. 

 Connect the DC output of the power supply (24VDC) to the “Power In” connector 

on the PowerDNA cube and connect the AC input on the power supply to an AC 

power source. 

 Run the UEIModbusConf.exe program 

 



  UEIModbus User Manual 

 
 

 

 14 

3.1. Configure IP address 

 
 Select the host PC serial port connected to the UEIModbus 

 Type the IP address of the UEIModbus 

 Click on Change IP Address to program the new IP address 

 Click on Test IP Address to test the IP address 

 

Once the IP address test is successful, the list of I/O layers installed in the UEIModbus 

will appear in the Devices list box. The button Next> will also become enabled. 

 



  UEIModbus User Manual 

 
 

 

 15 

 
 



  UEIModbus User Manual 

 
 

 

 16 

3.2. Configuring I/O channels 

 
 

Enable the devices you wish to access. 

 

Configure the parameters for each selected device. Refer to section 2.4 for more 

informations about device parameters 

 

Click on Next> to test the configured I/O channels 

 



  UEIModbus User Manual 

 
 

 

 17 

3.3. Test I/O channels 

 

 

Click on Start to start reading from the I/O channels using MODBUS/TCP protocol. 

 

 
 

Check Automatically start modbus server to start MODBUS slave service at boot time. 

 

Click on Finish to save the changes to the UEIModbus and terminate the configuration 

program. 


