
Technische Universit�at Chemnitz-Zwickau

DFG-Forschergruppe \SPC" � Fakult�at f�ur Mathematik

Thomas Apel

SPC-PMPo 3D | User's Manual

Acknowledgement. The package SPC-PMPo3D has been developed in the re-

search group SPC at the Fakult�at f�ur Mathematik of the Technische Universit�at

Chemnitz{Zwickau under the supervision of A. Meyer and Th. Apel. Other main

contributors are G. Globisch, D. Lohse, M. Meyer, F. Milde, M. Pester, and M. The�.

Section 3.4 and Appendix A of this documentation were written together with

F. Milde and G. Globisch, respectively, Section 3.5 was written by D. Lohse. The

tests in Section 4 were partially carried out by A. Meyer and U. Reichel. The

manuscript was in
uenced by remarks of A. Meyer and it was typed by U. Reichel.

The research group SPC is supported byDeutsche Forschungsgemeinschaft (Ger-

man Research Foundation), No. La 767/3.

All this collaboration and support is gratefully acknowledged.

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

\Scienti�c Parallel Computing"

SPC 95 33 December 1995

Contents

1 Introduction 1

2 Basic description 3

2.1 Mathematical background : 3

2.2 Installation : 4

2.3 The �les control.tet and control.quad : 6

2.4 Output information/a typical run of the program : : : : : : : : : : : : : : : 10

3 Meshes and boundary conditions 15

3.1 General remarks : 15

3.2 Structure of the input �le *.std : 15

3.3 The tools ren�ndsun and renedgsun : 19

3.4 Generation of meshes via oldnetz : 19

3.5 The program xbc : 22

4 Examples 25

4.1 Poisson equation : 25

4.2 Lam�e system : 31

A Mesh generation and related programs 35

Bibliography 39

Index 41

21.12.1995 15:32 Release 1 of User's Manual, page 0

Chapter 1

Introduction

At present time much e�ort is being spent in both developing and implementing parallel

algorithms. The experimental package SPC-PMPo 3D is part of the ongoing research of

the Chemnitz research group Scienti�c Parallel Computing (SPC) into �nite element meth-

ods for problems over three dimensional domains. Special emphasis is paid to choose �nite

elementmeshes which exhibit an optimal order of the discretization error, to develop precon-

ditioners for the arising �nite element system based on domain decomposition and multilevel

techniques, and to treat problems in complicated domains as they arise in practice.

The package SPC-PMPo3D is based on a set of libraries which are still under devel-

opment. They are documented in the Programmer's Manual [4] and in other separate

papers [13, 16, 17, 18]. The aim of this User's Manual is to provide an overview over

the program, its capabilities, its installation, and handling. Moreover, test examples are

explained.

In Version 2.0 the program can solve the Poisson equation and the Lam�e system of linear

elasticity with in general mixed boundary conditions of Dirichlet and Neumann type, see

Section 2.1. The domain
 � IR

3

can be an arbitrary bounded polyhedron. The input

is a coarse mesh, a description of the data and some control parameters. The program

distributes the elements of the coarse mesh to the processors, re�nes the elements, generates

the system of equations using linear or quadratic shape functions, solves this system and

o�ers graphical tools to display the solution. Further, the behavior of the algorithms can

be monitored: arithmetic and communication time is measured, the discretization error is

measured, di�erent preconditioners can be compared. We plan to extend the program in

the next future by including a multigrid solver, an error estimator and the treatment of

coupled thermo-elastic problems.

The program has been developed for MIMD computers; it has been tested on Parsytec

machines (GCPowerPlus{128 with Motorola Power PC601 processors and GCel{192 on

transputer basis) and on workstation clusters using PVM. The special case of only one

processor is included, that means the package can be compiled for single processor machines

without any change in the source �les. We point out that the implementation is based on

a special data structure which allows that all components of the program run with almost

optimal performance (O(N) or O(N lnN)).

In this documentation we use slanted style for really existing paths and �lenames, italic

style for program parameters, sans serif style to characterize buttons and menu items of

programs with a graphical user interface, and typewriter style for the names of variables.

21.12.1995 15:32 Release 1 of User's Manual, page 1

2 CHAPTER 1. INTRODUCTION

List of contributors

Dr. Thomas Apel email: apel@mathematik.tu-chemnitz.de

contribution: supervision, assembly, error assessment, com-

munication, tests

Dr. Gerhard Globisch email: globisch@mathematik.tu-chemnitz.de

contribution: PARMESH3D, ren�ndsun (see 3.3)

Dag Lohse email: lohse@mathematik.tu-chemnitz.de

contribution: input �les, xbc (see 3.2, 3.5)

Prof. Arnd Meyer email: a.meyer@mathematik.tu-chemnitz.de

contribution: supervision, solver, communication

Dr. Magdalene Meyer email: m.meyer@mathematik.tu-chemnitz.de

contribution: interface to GRAPE

Frank Milde email: milde@physik.tu-chemnitz.de

contribution: general frame of program, mesh re�nement,

tests, and oldnetz (see 3.4)

Dr. Matthias Pester email: pester@mathematik.tu-chemnitz.de

contribution: maintaining the libraries, time measurement,

communication

Uwe Reichel email: reichel@mathematik.tu-chemnitz.de

contribution: domain decomposition via recursive spectral

bisection, tests

Michael St�ubner email: m.stuebner@mathematik.tu-chemnitz.de

contribution: error norms

Michael The� email: thess@mathematik.tu-chemnitz.de

contribution: solver

21.12.1995 15:32 Release 1 of User's Manual

Chapter 2

Basic description

2.1 Mathematical background

Consider the Poisson problem in the notation

��u = f in
 � IR

3

;

u = u

0

on @

1

;

@u

@n

= g on @

2

;

@u

@n

= 0 on @
 n @

1

n @

2

;

or the Lam�e problem for u = (u

(1)

; u

(2)

; u

(3)

)

T

���u+ (�+ �) grad div u = f in
 � IR

3

;

u

(i)

= u

(i)

0

on @

(i)

1

; i = 1; 2; 3;

t

(i)

= g

(i)

on @

(i)

2

; i = 1; 2; 3;

t

(i)

= 0 on @

(i)

n @

(i)

1

n @

(i)

2

; i = 1; 2; 3;

where t = (t

(1)

; t

(2)

; t

(3)

)

T

= S[u] � n is the normal stress, the stress tensor S[u] = (s

ij

)

3

i;j=1

is

de�ned with x = (x

(1)

; x

(2)

; x

(3)

)

T

by

s

ij

= �

�

@u

(i)

@x

(j)

+

@u

(j)

@x

(i)

�

+ �

ij

�r � u;

n is the outward normal, and �

ij

is the Kronecker delta. The domain
 � IR

3

must be

bounded. In the present version curved boundaries can not be treated by the re�nement

procedure, thus
 is restricted to be a polyhedron.

The boundary value problem is solved by a standard �nite element method, using either

tetrahedral or brick elements with linear or quadratic shape functions of the serendipity

class, see Figure 2.1. The initial mesh must be generated outside SPC-PMPo3D. After

the �le input it is distributed to the processors using a spectral bisection algorithm [20].

That means, the domain
 is decomposed in non-overlapping subdomains, the basis for our

parallel algorithms. Then the elements are hierarchically re�ned to generate the �nal �nite

element mesh, for a description of the algorithm see Chapter 3 in [4].

21.12.1995 15:32 Release 1 of User's Manual, page 3

4 CHAPTER 2. BASIC DESCRIPTION

� �

�

�

1 2

3

4

� �

�

�

�

�

� �

�

�

1 2

3

4

5

7

8 9

6

10

� �

� �

� �

��

1 2

4 3

5

6

78

� �

� �

� �

��

�

�

�

�

�

�

�

�

�

�

1 2

4 3

5

6

78

12

13

20

9

16

17

19

11

14

18

10

15

Figure 2.1: Finite elements implemented in SPC-PMPo3D.

The �nite element sti�ness matrix and the right hand side are generated locally in the

subdomains by approximating the integrals using a quadrature rule, see Sections 4.1 and 4.2

in [4]. The resulting system of equations is solved using a parallel version of the conjugate

gradient method with Jacobi-, Yserentant- (hierarchical basis) or BPX preconditioning,

which are described in [4, Chapter 5]. It is planned to include also a multigrid method.

The postprocessing includes a simple variant of error assessing. If in special test examples

the exact solution of the problem is known then the error in L

2

- and H

1

-norms are calculated

by numerical integration, additionally the error is measured in the discrete maximumnorm,

see [4, Subsection 4.4.1]. In general the exact solution of the problem is not available, thus

we must rely on an error estimator. We plan to implement an improved variant of the

residual type error estimator, see [14].

2.2 Installation

Provided AFS (the Andrew File System) is installed, any user can install the package by

using the shellscript:

/afs/tu-chemnitz.de/home/urz/p/pester/bin/install3d name of destdir

where name of destdir should be a name which does not yet exist.

For a quick start do the following:

1. Edit the Make�le in name of destdir, and adjust the variables $PARDEST and

$PPCDEST; ensure that these directories exists at the corresponding machines. More-

over, it is useful to copy the directories mesh3 and mesh4 to the remote machine,

or link the directories /afs/tucz/home/urz/t/tap/fem/mesh3 and . . . /mesh4 to di-

rectories mesh3 and mesh4 in the working directory of the remote maschine.

2. Choose the architecture you want to work with by calling one of the shellscripts

/usr/global/bin/setpvm,

/usr/global/bin/setparix,

or /usr/global/bin/setppc.

Some variables including $archi are now de�ned.

3. Call make.

21.12.1995 15:32 Release 1 of User's Manual

2.2. INSTALLATION 5

linked to /afs/tucz/home/urz/t/tap/fem/mesh4

linked to /afs/tucz/home/urz/t/tap/fem/mesh3

mesh4

mesh3

Solve

Netz

Makedir Allgemein

Quader

Tetraeder

Assem

name of destdir

Figure 2.2: File structure after installation of SPC-PMPo 3D.

Then, after successful compilation, the executable �les tet.$archi (for tetrahedral meshes)

and quad.$archi (for cuboidal meshes) should be contained in your directory and, for

$archi=parix and $archi=ppc, in the directories on the remote machines.

Before we are going to describe in some detail the use of the various �les which were

created during the installation we explain the diverse values of the variable $archi: It is

used to distinguish the di�erent architectures for which an executable �le shall be compiled

and linked, because the compiler, libraries and especially the communication routines are

di�erent.

� $archi=SUN4 is set after calling setpvm on a SUN4 workstation. The executable �les

are tet.SUN4 and quad.SUN4, they can run under pvm, or without the daemon of

pvm, as single processor variant at a SUN workstation.

� $archi=HPPA is set by calling setpvm on a HP workstation.

� $archi=parix is set by setparix. The executable �les run at Parsytec transputer

machines as the GCel{192 under the operating system PARIX.

� $archi=ppc is the setting after calling setppc which causes the compilation of an

executable �le for Parsytec machines based on the Motorola Power PC601 chip, as the

Xplorer or the GCPowerPlus{128 under the operating system PARIX.

After the installation there is a �le structure as given in Figure 2.2. The directories Assem,

Gra�k, Netz/*, and Solve contain source �les, links to some include �les, and a Make�le

which works together with the �le LIBLISTE. A call of make in these subdirectories is done

by a make in the main directory. If a user wants to include additional source �les, he/she

should add it in the �le LIBLISTE.

Sometimes it is necessary to describe problem data by function subroutines (right hand

sides, exact solution if available). These routines are contained in the �le Assem/bsp.f. Our

approach is to save example data in �les bsp.example name and to copy the appropriate �le

to bsp.f.

The directory Makedir contains some architecture speci�c �les which are distinguished

by the variable $archi, see also below. The �le variante.$archi is included in the main

source �le and de�nes the length of a long vector for storing all vector data, its length must

be adapted to the size of the memory of the machine to be used. The �le make�le.$archi

is included in the main make�le and contains speci�c options and directories which are

machine dependent. The variable $GRAF can be set to Graf or NoGraf, thus the graphic

21.12.1995 15:32 Release 1 of User's Manual

6 CHAPTER 2. BASIC DESCRIPTION

libraries are linked or not, which results in a considerable di�erence in the length of the

executable �le.

A couple of meshes for tests are contained in the directories mesh3 (tetrahedral meshes)

and mesh4 (cuboidal meshes): *.std. The �le structure is described in Section 3.2. These

directories are linked to /afs/tucz/home/urz/t/tap/fem/mesh[3,4], in order to prevent that

the data �les exist several times. In some cases there is a �le name.txt which gives some

information about the corresponding problem name.std. These AFS-directories are readable

and executable for any user. Th. Apel is administrating these directories and can include

further AFS-users to a list of people who are allowed to add �les in these directories.

The directory mesh3 contains also a couple of �les with the extension .out. These �les

were created with the mesh-generator PARMESH3D, see [11], and can be processed with

the program mesh3/ren�ndsun on a SUN4 workstation. This program produces a �le with

the right data structure and with boundary conditions, which are set by a dialog with the

user. Moreover, ren�ndsun can optionally renumerate the nodes to minimize the bandwidth

of the resulting sti�ness matrix, see Section 3.3.

The program mesh3/oldnetz produces a restricted class of tetrahedral meshes, see Sub-

section 3.4. The program mesh3/xbc in an XView-application to view meshes and to set or

to change boundary conditions interactively, see Section 3.5.

In the main directory name of destdir there is the main Make�le, some more FOR-

TRAN source �les, include �les, and the �les control.tet / control.quad which are described

in Section 2.3. The Make�le is used to compile source �les, to create libraries, to link the

executable �le and to copy it to the appropriate machine (george.informatik or kain.hrz).

The destination for the remote copy is de�ned by two variables $PARDEST and $PPCDEST in

the Make�le, which should be adjusted by the user, see above. Note that it is possible to

link only tet.$archi or quad.$archi by calling make tet or make quad, respectively.

The Make�le can also be used to remove the libraries, tar-�les, and executable �les: make

clean removes the target �les for the current architecture, and make CLEAN removes them

for all architectures. Only the �les of the installation as well as user created �les remain.

The additional option make tar creates a archive with all sources, includes, Make�les, and

meshes.

2.3 The �les control.tet and control.quad

The mesh and the boundary conditions are described in �les with the extension .std, see

Subsection 3.2. Additionally, there is a couple of variables controlling the execution of the

program. They are described together with their standard values in Table 2.1. Some of the

variables contain numbers of quadrature formulas. They are given for the di�erent types of

elements in Tables 2.2 { 2.6. Note that the standard values may change during the evolution

of the program.

These standard values can be overwritten by de�ning other values in a �le control.tet or

control.quad, respectively. The lines in this �le have the form

variable : value,

or variable : value lin / value quad.

The \:" is relevant, variable must be written in lower case. There is no check of the

usefulness of the value. Di�erent values for the linear and the quadratic case can be given

21.12.1995 15:32 Release 1 of User's Manual

2.3. THE FILES CONTROL.TET AND CONTROL.QUAD 7

Standard Possible

Variable

values value

Description

lin quad 1 [1,2]

kind of shape functions

1 : linear shape functions

2 : quadratic shape functions

vertvar 2 [1,2]

kind of coarse grid partitioning

1 : trivial partitioning

2 : partitioning via recursive spectral bisection

femakkvar 2 [1,2]

there are two variants of accumulation of dis-

tributed data, see [2]

loesvar 3 [1. . . 5]

choice of the preconditioner:

1 : Jacobi

2 : Yserentant without coarse grid solver

3 : Yserentant with coarse grid solver

4 : BPX without coarse grid solver

5 : BPX with coarse grid solver

nint2ass 14/31 [1. . . 3][1. . . 4]

number of the quadrature formula used for assem-

bling Neumann boundary data.

1

st

digit : quadrilaterals, see Table 2.2

2

nd

digit : triangles, see Table 2.3

nint3ass 311/151

[1. . . 5][1. . . 5]

[1. . . 8]

number of quadrature formula for 3D elements used

in the assembling.

1

st

digit : tetrahedra, see Table 2.4

2

rd

digit : hexahedra (bricks), see Table 2.6

3

nd

digit : pentahedra (triangular prisms),

see Table 2.5

nint2error 11/31 [1. . . 3][1. . . 4]

as nint2ass, but used in the error estimator for the

integration of the jump of the normal derivatives

nint3error 311/131

[1. . . 5][1. . . 5]

[1. . . 8]

as nint3ass, but used for the integration of 3D

integrals in the error calculation

ion 1 integer

controls the amount of output of the program

> 0 : message after each ion-th CG-iteration

� 0 : no information about the iteration

� �1 : no startup screen and no problem info

� �2 : no information on numbers of coupling

faces / edges / nodes

� �10 : no menus

� �11 : no input request messages

iter 200 integer>0 maximal number of iterations in the CG algorithm

epsilon 1.E�4 real>0

stop criterion for the CG (relative decrease of the

norm of the residual)

ndiag 70 integer>0

upper estimate for the number of nonzero entries in

any row of the sti�ness matrix. If it is chosen too

large, the program may suffer from lack of memory

and if it is chosen too small, the number is itera-

tively increased) waste of time

verf 0 real2[0,1]

mesh re�nement parameter for a certain class of

examples, see Subsection 4.1.7.

0 : no change of the mesh

Table 2.1: Variables in control.tet / control.quad.

21.12.1995 15:32 Release 1 of User's Manual

8 CHAPTER 2. BASIC DESCRIPTION

Formula Number of exact for

number points

Description

x

i

y

j

with

1 1 midpoint (center of gravity) i; j � 1

2 4 2x2 Gaussian points i; j � 3

3 9 3x3 Gaussian points i; j � 5

Table 2.2: Quadrature formulas for quadrilaterals.

Formula Number of exact for

number points

Description

x

i

y

j

with

1 1 center of gravity i; j � 1

2 3 midpoints of the edges i; j � 2

3 4 Gaussian points i; j � 3

4 7 Gaussian points i; j � 5

Table 2.3: Quadrature formulas for triangles.

Formula Number of exact for

number points

Description

x

i

y

j

z

k

with

1 1 center of gravity i+ j + k � 1

2 4 Gaussian points i+ j + k � 2

3 5 Gaussian points i+ j + k � 3

4 11 Gaussian points i+ j + k � 4

5 14 Gaussian points i+ j + k � 5

Table 2.4: Quadrature formulas for tetrahedra.

Formula Number of the formula is a cross product of the formulas exact for

number points for triangle for interval (z-direction) x

i

y

j

z

k

with

1 1 = 1 � 1 center of gravity midpoint i+ j � 1; k � 1

2 3 = 3 � 1 midpoints of edges midpoint i+ j � 2; k � 1

3 4 = 4 � 1 4 Gaussian points midpoint i+ j � 3; k � 1

4 6 = 3 � 2 midpoints of edges 2 Gaussian points i+ j � 2; k � 3

5 8 = 4 � 2 4 Gaussian points 2 Gaussian points i+ j � 3; k � 3

6 12 = 4 � 3 4 Gaussian points 3 Gaussian points i+ j � 3; k � 5

7 14 = 7 � 2 7 Gaussian points 2 Gaussian points i+ j � 5; k � 3

8 21 = 7 � 3 7 Gaussian points 3 Gaussian points i+ j � 5; k � 5

Table 2.5: Quadrature formulas for pentahedra.

Formula Number of exact for

number points

Description

x

i

y

j

z

k

with

1 1 midpoint (center of gravity) i; j; k � 1

2 8 2x2x2 Gaussian points i; j; k � 3

3 27 3x3x3 Gaussian points i; j; k � 5

4 6 midpoints of the faces i+ j + k � 3

5 14 Irons formula i+ j + k � 5

Table 2.6: Quadrature formulas for hexahedra.

21.12.1995 15:32 Release 1 of User's Manual

2.3. THE FILES CONTROL.TET AND CONTROL.QUAD 9

for all integer variables. This is especially useful for the quadrature rules and for ndiag. If

a variable appears more than once in the �le then the last value is taken.

Note that these �les can be omitted, if only standard values shall be used. As an example

consider the case that the user likes to change the stop criterion in the CG method to

" < 10

�10

. He/she has two possibilities: Either one can change this during the execution, see

the last paragraph in Section 2.4. Or he/she introduces the �le control.tet (or control.quad)

with one line

epsilon : 1.E-10

As an example, we display here the �le control.tet as it is contained in the distribution of

SPC-PMPo3D:

! File zur Anpassung von Standardwerten fuer PFEM

!

! Kommentarzeilen sollten mit '!' beginnen

! Datenzeilen haben die Form:'schluesselwort:wert'

! Der Doppelpunkt ist wichtig

! Grosz-/Kleinschreibung ist signifikant

! Die Richtigkeit der Werte wird nicht ueberprueft

!

! Folgende Schluesselworte sind zulaessig, ihr Name entspricht der

! zu besetzenden Variable, deren Bedeutung und zulaessige Werte

! gehen aus dem Quelltext standard.f hervor.

!

! lin_quad 1

! vertvar 2

! femakkvar 2

! loesvar 3

! nint2ass 14

! nint3ass 311

! nint2error 11

! nint3error 311

! ion 1

! iter 200

! epsilon 1E-4

! ndiag 70

! verf 0.

!

! Fuer alle Integer-Werte koennen zwei Werte fuer linear/quadratisch angegeben

! werden. Trennzeichen '/' erforderlich !!!

!

! Diese Liste musz bei Veraenderung von standard.f gegebenenfalls

! aktualisiert werden.

!

! Bei Mehrfachdefinition gilt die Letzte (Reihenfolge im File)

! Bei Nichtdefinition kommen die Werte aus control.f zur Anwendung

!femakkvar:1

lin_quad : 1

! vertvar : 1

loesvar : 4

nint2ass : 34

nint2error : 34

nint3ass : 111/211

nint3error : 511/511

ion : 1

iter : 500

epsilon : 1.e-10

ndiag : 150/200

! verf : 0.5

21.12.1995 15:32 Release 1 of User's Manual

10 CHAPTER 2. BASIC DESCRIPTION

2.4 Output information/a typical run of the program

Output information can be classi�ed into two groups:

� information that is printed in dependence of the variable ion, see Table 2.1,

� information that can be called by choosing a menu item.

We explain this information by following a typical run with ion = 1. After calling the

program we get an introduction screen with the number of the version, the names of main

authors, the length of the working vector, and the number of processors used. Then we get

a copy of the control parameters and the input request for a problem �le.

tap@kain:fem% xr8 tet.ppc

run : Requesting network by calling nrm.

run : Creating 4 * 2 descriptor by calling mkdesc.

run : Starting D-Server at kain link 3.

#

#

SSSS PPPPP CCCC PPPPP M M PPPPP 333

SS SS PP PP CC CC PP PP MM MM PP PP 33 33

SS PP PP CC PP PP MMM MMM PP PP 33

SSSS PPPPP CC ### PPPPP MM MMM MM PPPPP OOO 333

SS PP CC PP MM M MM PP OO OO 33

SS SS PP CC CC PP MM MM PP OO OO 33 33

SSSS PP CCCC PP MM MM PP OOO 333

#

#

#

Programm-Modul 3D-Potentialprobleme

Version: 1.95

#

DFG-Forschergruppe "SPC"

TU Chemnitz-Zwickau, Fakultaet fuer Mathematik

#

Th.Apel, A.Meyer, M.Meyer, F.Milde, M.Pester, M.Thess

#

16-MB-Variante (3600000 Worte) - bis zu 1024 Prozessoren

in Benutzung: 8 Prozessor(en)

Gelinkt mit bsp.z

#

#

**

* Belegung der Steuerparameter *

* (kann mittels File control.tet angepasst werden) *

**

* *

* vertvar = 2 lin_quad = 1 *

* nen2d = 3 nen3d = 4 *

* femakkvar = 2 loesvar = 5 *

* nint2ass = 14 nint3ass = 311 *

* nint2error = 11 nint3error = 311 *

* iter = 200 epsilon = 0.10E-03 *

* ion = 1 ndiag = 70 *

* *

* Verzeichnis fuer Netze : mesh3/ *

**

Filename: cubus1

21.12.1995 15:32 Release 1 of User's Manual

2.4. OUTPUT INFORMATION/A TYPICAL RUN OF THE PROGRAM 11

The �le name is typed in, here cubus1 (the input of a question mark generates a ls-command

for the appropriate directory). Then we are asked for the number of re�nement steps. There

is also the possibility to escape by typing -1 for a new mesh or -2 to quit the program.

GEWUENSCHTE ZAHL VON VERFEINERUNGSSCHRITTEN

-1 = NEUES NETZ

-2 = PROGRAMM BEENDEN

EINGABE : 2

After this we get information on the current state of the program and to problem data.

EINLESEN DER NETZDATEN AUS : mesh3/cubus1.std

Wuerfel, Kantenlaenge 10, oben/unten Dirichlet ...

Gerhard Globisch

07.11.1994

Poisson-Gleichung

PARMESH, RENFINDSUN

3D

EINLESEN BEENDET, IER= 0

VERTEILUNG DER TETRAEDER DURCH REKURSIVE SPEKTRALBISEKTION.

Anzahl der Elemente in den Prozessoren:

2 2 2 2 4 4 4 4

0 0 2 2 2 2 2 2

0 0 1 1 1 1 1 1

NETZ VERFEINERT VFS=1

NETZ VERFEINERT VFS=2

START GENERIEREN/ASSEMBLIEREN

ASSEMBLIEREN BEENDET

Coars-Grid-Matrix-Generation: Ier= 0

Groesse der Matrix (VBZ) : 30

* Probleminformationen (lokal Prozessor P):

- globale Anzahl Crosspoints : 8

- Anzahl der Knoten (lokal) : 35

- davon: lok. Crosspoints : 4

Summe der Randketten : 30

Koppelknoten : 34

innere Knoten : 1

- Anzahl der Koppelkanten : 6

- Anzahl der Koppelflaechen : 4

* Probleminformationen (global):

- Anzahl der Prozessoren: 8

- Anzahl der Knoten : 125

- davon : Koppelknoten : 119

- interne Knoten : 6

-> Gesamtanzahl der Freiheitsgrade : 125

* Start der Simulation: Vorkonditionierung Nr. 5

<enter>

copy of the information of the

input �le (extension .std)

information on the progress of

the recursive spectral bisec-

tion

information on the coarse grid

matrix

information on data on pro-

cessor 0

global information

At this stage, the coarse mesh data are read in and distributed to the processors, the mesh is

21.12.1995 15:32 Release 1 of User's Manual

12 CHAPTER 2. BASIC DESCRIPTION

hierarchically re�ned and the sti�ness matrix as well as the coarse grid matrix are assembled.

After an enter the system of equation is solved, giving information on the convergence and

on times for communication and arithmetics. Finally, the program stops in the next menu.

IT (r,w) (As,s) ALFA BETA

1 6.964812E+01 2.071824E+02 -3.361682E-01 0.000000E+00

2 6.968691E+01 9.348962E+02 -7.453972E-02 1.000557E+00

3 1.382542E+01 1.788189E+02 -7.731519E-02 1.983933E-01

4 2.990811E+00 3.549269E+01 -8.426555E-02 2.163270E-01

5 4.965188E-01 4.576239E+00 -1.084993E-01 1.660148E-01

6 1.323842E-01 1.472371E+00 -8.991227E-02 2.666248E-01

7 3.502404E-02 3.375455E-01 -1.037610E-01 2.645636E-01

8 8.619178E-03 5.656719E-02 -1.523706E-01 2.460932E-01

9 2.135504E-03 1.573281E-02 -1.357357E-01 2.477620E-01

10 5.290934E-04 3.136041E-03 -1.687138E-01 2.477604E-01

11 2.299528E-04 1.639463E-03 -1.402611E-01 4.346167E-01

12 4.114933E-05 3.600621E-04 -1.142840E-01 1.789468E-01

13 7.486498E-06 5.780739E-05 -1.295076E-01 1.819349E-01

14 7.883535E-07 6.721151E-06 -1.172944E-01 1.053034E-01

15 1.570714E-07 6.721151E-06 -1.172944E-01 1.992398E-01

IT= 15

Zeiten fuer Warten+Kommunikation [s]

Prozessor

log. / phys. input : in % : output: in % : gesamt:

0 0 0 0 0.08 30.79 0.07 25.36 0.28

1 0 0 1 0.13 45.22 0.15 53.75 0.28

2 0 0 3 0.11 38.12 0.16 58.00 0.28

3 0 0 2 0.24 85.56 0.03 10.59 0.28

4 0 1 0 0.08 28.84 0.19 66.89 0.28

5 0 1 1 0.23 82.91 0.03 13.73 0.28

6 0 1 3 0.21 75.40 0.05 19.94 0.28

7 0 1 2 0.24 83.99 0.03 12.30 0.28

reine Arithmetikzeit (max): 0.12

**

** AUSGABEMENUE **

**

* 0 : WEITER *

* 1 : GRAPE *

* 2 : AUSGABE DER NETZDATEN *

* 3 : AUSGABE DER RANDKETTENDATEN *

* 4 : AUSGABE DER LOESUNG *

* 5 : AUSGABE VON FEHLERNORMEN *

**

-> EINGABE : 4

With item 0 we exit the menu, with item 1 we are asked for the host name for displaying, then

we start the data transfer to the interactive graphics package GRAPE, see [18], provided the

program f3 sun or f3 sgi runs at the own workstation (host name). In this case a control and

a graphics window will appear in order to display the grid and / or solution. One solution

(starting with the �rst degree of freedom) can appear at one time. Using the control window

we can make visible the other degrees of freedom by pressing the buttons with the names

of the corresponding functions. Pressing the continue button in the control window the

program on the parallel computer is forced to continue, for example to compute a new

solution. During this time the graphical program may go on displaying the old data until

21.12.1995 15:32 Release 1 of User's Manual

2.4. OUTPUT INFORMATION/A TYPICAL RUN OF THE PROGRAM 13

the FE3D neu button is pressed to receive new data from the parallel computer (again via

menu item 1). With Exit we can �nish the graphics program.

The choice of item 2 leads to the output of the local mesh data to �les

netzred.number of processor.dat

(one �le per processor). The same is done by item 3 with the coordinates of the nodes stored

in Kettes, for the term Kette see [2]; they are stored in �les

kettinf.P number of processor.dat.

With menu item 4 we get a table of values into a �le loesung.dat or on screen. The table

includes the local node numbers, their coordinates, the calculated solution, the solution

using the function u from bsp.f (probably the previously known exact solution), and their

di�erence for each processor, see the printout.

AUSGABE DER WERTETABELLE DER LOESUNG

AUSGABE IN FILE LOESUNG.DAT (J/N) :

PROZESSOR 0: NUMNP= 0

PROZESSOR 1: NUMNP= 0

PROZESSOR 2: NUMNP= 35

| NR | X | Y | Z |BER. LOESUNG| EXAKTE LSG.| DIFFERENZ |

| 1| 10.000| 0.000| 10.000| 1.00000| 1.00000| 0.00000D+00|

| 2| 0.000| 10.000| 10.000| 1.00000| 1.00000| 0.00000D+00|

| 3| 0.000| 0.000| 0.000| 0.00000| 0.00000| 0.00000D+00|

| 4| 10.000| 0.000| 0.000| 0.00000| 0.00000| 0.00000D+00|

| 5| 10.000| 0.000| 7.500| 0.75000| 0.75000|-0.39456D-05|

| 6| 10.000| 0.000| 5.000| 0.50000| 0.50000| 0.43561D-06|

| 7| 10.000| 0.000| 2.500| 0.24998| 0.25000|-0.23232D-04|

| 8| 7.500| 2.500| 10.000| 1.00000| 1.00000| 0.00000D+00|

| 9| 5.000| 5.000| 10.000| 1.00000| 1.00000| 0.00000D+00|

| 10| 2.500| 7.500| 10.000| 1.00000| 1.00000| 0.00000D+00|

| 11| 7.500| 0.000| 7.500| 0.74999| 0.75000|-0.62478D-05|

| 12| 5.000| 0.000| 5.000| 0.50000| 0.50000| 0.15223D-05|

...

| 19| 0.000| 2.500| 2.500| 0.25002| 0.25000| 0.22938D-04|

| 20| 2.500| 0.000| 0.000| 0.00000| 0.00000| 0.00000D+00|

Abbruch ? (J/N) - j

If the output is on screen it can be terminated by entering any character at a enter -request.

Menu item 5 gives the results of local and global error calculations/estimations.

**

** AUSGABEMENUE **

**

* 0 : WEITER *

* 1 : GRAPE *

* 2 : AUSGABE DER NETZDATEN *

* 3 : AUSGABE DER RANDKETTENDATEN *

* 4 : AUSGABE DER LOESUNG *

* 5 : AUSGABE VON FEHLERNORMEN *

**

-> EINGABE : 5

21.12.1995 15:32 Release 1 of User's Manual

14 CHAPTER 2. BASIC DESCRIPTION

AUSGABE VON FEHLERNORMEN (LOKAL):

|PROZ| MAX-NORM| L2-NORM| H1-NORM|

| 0| 0.00000E+00| 0.00000E+00| 0.00000E+00|

| 1| 0.00000E+00| 0.00000E+00| 0.00000E+00|

| 2| 0.23232E-04| 0.78504E-04| 0.93344E-04|

| 3| 0.22938E-04| 0.89531E-04| 0.72902E-04|

| 4| 0.10585E-04| 0.42743E-04| 0.46008E-04|

| 5| 0.22938E-04| 0.40395E-04| 0.64121E-04|

| 6| 0.15438E-04| 0.78381E-04| 0.54767E-04|

| 7| 0.23232E-04| 0.56625E-04| 0.55416E-04|

AUSGABE VON FEHLERNORMEN (GLOBAL):

| MAX-NORM| L2-NORM| H1-NORM|

| 0.23232E-04| 0.16428E-03| 0.16225E-03|

**

** AUSGABEMENUE **

**

* 0 : WEITER *

* 1 : GRAPE *

* 2 : AUSGABE DER NETZDATEN *

* 3 : AUSGABE DER RANDKETTENDATEN *

* 4 : AUSGABE DER LOESUNG *

* 5 : AUSGABE VON FEHLERNORMEN *

**

-> EINGABE : 0

GEWUENSCHTE ZAHL VON VERFEINERUNGSSCHRITTEN

-1 = NEUES NETZ

-2 = PROGRAMM BEENDEN

EINGABE : -2

**

* PROGRAMMENDE *

**

run : Returning network by calling nrm.

run : Terminating with result = 0.

tap@kain:fem%

The choice of item 0 led to the main menu, see above.

Some of the information is also written in the �les fort.08 and fort.09, but this is only

for test reasons and permanently changing. Furthermore, we note that at the stage

* Start der Simulation: Vorkonditionierung Nr. 4

<enter>

some special letters can be entered to control the PCCG iteration process

v for a change of the preconditioner (loesvar),

i for a change of the maximal number of iterations (iter),

e for a change of the stop tolerance (epsilon),

d for a scaling of the coarse grid matrix,

z for a change of the variable ion.

These corrections are valid only during the following CG iteration and do not overwrite the

standard values of these variables, see Subsection 2.3. An exception is ion.

21.12.1995 15:32 Release 1 of User's Manual

Chapter 3

Meshes and boundary conditions

3.1 General remarks

The program SPC-PMPo3D has not been designed to generate coarse meshes or boundary

data. It is assumed that these data are prepared before and stored in a �le with extension

.std. The structure of such �les is described in [15]; we summarize it brie
y in Section 3.2.

There are several ways to create such an input �le. For the easiest domains one can just

create it with an editor. Moreover, several mesh generators have been programmed in the

past. Because they use di�erent �le structures there have been developed adapter programs,

see Appendix A. In Section 3.3 we describe the adapter program mesh3/ren�ndsun (author

G. Globisch) which writes �les of the structure appropriate for SPC-PMPo3D. This program

has two additional features: renumeration of the nodes to minimize the pro�le of the coarse

grid matrix and an interactive de�nition of boundary conditions.

For �ve classes of meshes which were used already with the sequential program FEM-

PS3D, there is the tool mesh3/oldnetz (author F. Milde) which is described in Section 3.4.

In Section 3.5 we introduce the tool mesh3/xbc (author D. Lohse) which is an XView-

application to visualize meshes and boundary conditions which are stored in *.std �les.

Furthermore, it is possible to (re-)de�ne boundary conditions with this tool.

3.2 Structure of the input �le *.std

The input �le is a (7-bit) ASCII-�le which contains data lines, control lines and key word

lines (both starting with a \#"), and comment lines (starting with \##"), see for example

Cubus1.std in Table 3.3.

The �le starts with a control line de�ning the version

#VERSION: 1.0

in order to circumvent incompatibilities when the data structure is extended or changed.

The �le input is stopped either by reaching the end of the �le or the statement

#END_OF_DATA

After the #VERSION statement there may be optional information statements, see Table 3.1

for a selection. Moreover, it is possible to rede�ne some internal array dimensions via such

statements, see [15]. The information part and the data part of the �le are separated by a

#HEADER statement. It determines the maximal number of data lines of the di�erent types.

21.12.1995 15:32 Release 1 of User's Manual, page 15

16 CHAPTER 3. MESHES AND BOUNDARY CONDITIONS

Statement Description

#DESCRIPTION : string description of the �le for cataloging

#DATE : date date of creation of the �le

#USER : username Login name of the creator of the �le

#HOST : hostname name of the host where the �le was created

#PROGRAM : name name of the creating program

#DIMENSION : 3D geometrical dimension of the problem, here only 3D useful

#EQN TYPE : string problem type, de�nes e.g. the meaning of the material data

#DEG OF FREE : integer number of degrees of freedom (standard: 5)

Table 3.1: Selection of information statements in the input �le

Key word line Description

#VERTEX:

name

I

xcoord

R

ycoord

R

zcoord

R

#EDGE:

name

I

type

I

start

I

end

I

f[middle] j [pointer data]g

I I arbitrary

type = 1: straight edge

type = 2: arc of a circle

#FACE:

name

I

type

I

n

I

edge 1

I

. . .

edge n

I

[pointer data]

I arbitrary

type=1: plain face

#SOLID:
name

I

type

I

n

I

face 1

I

. . .
face n

I

[pointer data]

I arbitrary

type = 1 (parameter is not used yet)

#REGION:

name

I

type

I

n

I

solid 1

I

. . .

solid n

I

type = 1 (parameter is not used yet)

#DIRICHLET:
name

I

type

I

data

R

[pointer data]g

I arbitrary

(one line per d.o.f.)

type = 0: no Dirichlet condition for this d.o.f.

type = 1: constant value, given in data

type = 2: boundary values are given by a linear function in

global coordinates

u

0

(x; y; z) = data[1] � x+ data[2] � y + data[3] � z +

data[4].

type � 100: function pointer, boundary values are taken from

function subroutine in bsp.f

#NEUMANN: in analogy to #DIRICHLET

#MATERIAL:

name

I

n

I

data 1

R

. . .

data n

R

Table 3.2: Structure of the data blocks in the input �le

21.12.1995 15:32 Release 1 of User's Manual

3.2. STRUCTURE OF THE INPUT FILE *.STD 17

#VERSION: 1.0

#DESCRIPTION: 6 kongruente Tetraeder

#DATE: 13.7.1995

#USER: Thomas Apel

#DIMENSION: 3D

#EQN_TYPE: Poisson

#DEG_OF_FREE: 1

#HEADER: 8

8 19 18 6 0 4 0 0

#VERTEX: 8

1 0. 0. 0.

2 1. 0. 0.

3 1. 1. 0.

4 0. 1. 0.

5 0. 0. 1.

6 1. 0. 1.

7 1. 1. 1.

8 0. 1. 1.

#EDGE: 19

1 1 1 2

2 1 2 3

3 1 3 4

4 1 4 1

5 1 1 5

6 1 2 6

7 1 3 7

8 1 4 8

9 1 5 6

10 1 6 7

11 1 7 8

12 1 8 5

13 1 1 3

14 1 1 6

15 1 2 7

16 1 4 7

17 1 1 8

18 1 5 7

19 1 1 7

#FACE: 18

1 1 3 1 2 13

2 1 3 3 4 13

3 1 3 1 6 14

4 1 3 9 5 14

5 1 3 2 7 15

6 1 3 10 6 15

7 1 3 3 7 16

8 1 3 11 8 16

9 1 3 4 8 17

10 1 3 12 5 17

11 1 3 9 10 18

12 1 3 11 12 18

13 1 3 13 7 19

14 1 3 18 5 19

15 1 3 1 15 19

16 1 3 14 10 19

17 1 3 4 16 19

18 1 3 11 17 19

#SOLID: 6

1 1 4 1 5 13 15

2 1 4 15 3 6 16

3 1 4 16 4 11 14

4 1 4 2 7 13 17

5 1 4 17 9 8 18

6 1 4 18 10 12 14

#DIRICHLET: 4

1

1 0.0

2

1 0.0

11

1 1.0

12

1 1.0

#END_OF_DATA

Table 3.3: The �le Cubus1.std

#HEADER: vertices edges faces solids regions n

dirfaces neumfaces materials

Note that the backslash marks a continuation of the line, dirfaces and neumfaces means the

number of faces with Dirichlet and Neumann data, respectively.

The actual data blocks follow now in any permutation. A block consists of a key word

line and a number of data lines. Note that the key word line may contain an integer. The key

words and the structure of the data lines is summarized in Table 3.2, for a full explanation

see [15].

The �le Cubus1.std (see Table 3.3) may serve as an introductory example which describes

the partition of a cube
 = (0; 1)

3

into 6 congruent tetrahedra, compare Table 3.4 and

Figure 3.1 for the understanding of the topology. Here, no #REGION is de�ned; a region

name is useful to point to an internal table of materials. If unde�ned, all elements belong

to one region with the name 1.

21.12.1995 15:32 Release 1 of User's Manual

18 CHAPTER 3. MESHES AND BOUNDARY CONDITIONS

Tetrahedron Names of faces Names of edges Names of nodes

1 1 5 13 15 1 2 13 7 15 19 1 2 3 7

2 15 3 6 16 1 15 19 6 14 10 1 2 6 7

3 16 4 11 14 10 14 19 5 9 18 1 5 6 7

4 2 7 13 17 3 4 13 7 16 19 1 4 3 7

5 17 9 8 18 4 16 19 8 17 11 1 4 8 7

6 18 10 12 14 11 17 19 5 12 18 1 5 8 7

Table 3.4: Names of faces, edges, and nodes of the 6 tetrahedra in Cubus1.std.

3

5

6

4

7

21

2

3

j edges

10

12

15

18

11

11

78

9

k faces

5

12

6

1

14

5

i nodes

6

Figure 3.1: View of the cube, which is described in Cubus1.std.

21.12.1995 15:32 Release 1 of User's Manual

3.3. THE TOOLS RENFINDSUN AND RENEDGSUN 19

3.3 The tools ren�ndsun and renedgsun

Because of the importance of the �les file.std for the package SPC-PMPo3D the program

ren�ndsun shall be described in more detail here. The program ren�ndsun converts the

ASCII output �le *.out (see [10, 19] for a description of the structure of the �le) of the

parallel mesh generator parmesh3d (tetrahedral meshes) into the �le *.std, see 3.2 for this

data structure. This means a change of the node related data structure into the edge/face

structure. Note that ren�ndsun may also store the output data as file.edg. This is another

�le type for the edge related data structure, see [10]. It organized similarly to file.out.

This transfer includes the setting of boundary conditions (type and data) to the boundary

faces by a dialog with the user. There are two possibilities, namely face by face or by

de�ning face groups. The second variant is described in 3.4.2. The �rst possibility consists

in the facewise screen output of the coordinates of the three nodes and in prompting for the

description of the related boundary condition for each degree of freedom. For both methods,

this information consists of the kind (Dirichlet, Neumann, 3

rd

kind/Robin), the type, and

eventually some real values, see Table 3.2. The mesh and the boundary conditions can be

visualized by means of the program xbc, which is also capable to impose/change boundary

conditions, see Section 3.5.

Moreover, the user can determine whether he/she wants to renumerate the nodal points

of the mesh in order to reduce the bandwidth/pro�le of the corresponding matrix (adja-

cency matrix to the edge graph). The corresponding algorithm is implemented to be an

e�cient combination of minimal degree ordering and nested dissection, see [9]. The numer-

ical expense is O(N

3

2

) for two-dimensional meshes, where N denotes the number of nodes;

in the three-dimensional case we were not able to prove an estimate. Note that �les which

have already the structure file.std can be renumerated by the program renedgsun, even a

repeated application of renedgsun can further reduce the bandwidth/pro�le.

The mesh generator parmesh3d can also construct meshes consisting of tetrahedra having

curved boundaries. The corresponding internal data structure is given in [10]. But to date

there is no agreement about the �le structure for curved elements. The corresponding

extension of the related programs will be done in the future.

3.4 Generation of meshes via oldnetz

3.4.1 Mesh generation

The program oldnetz is compiled for a SUN4 workstation and can be used interactively to

generate 5 di�erent families of meshes, to describe the boundary conditions, and to store

this information in a �le file.std with the data structure as given in Section 3.2. The user

is requested to enter the number of the family and the corresponding parameters, for a short

description see Figures 3.2 { 3.6. For re�ning meshes using the parameter � see [3, 5, 6, 7].

3.4.2 Setting boundary conditions

If a mesh contains not only a few elements then it is boring to enter the boundary conditions

face by face. Thus a dialog with the user was programmed to de�ne groups of faces and

21.12.1995 15:32 Release 1 of User's Manual

20 CHAPTER 3. MESHES AND BOUNDARY CONDITIONS

x

y

0

r

r-b

1

2

3

4

5

6

7

8

9

10

11

12 = K

1

2

3

4

5=N

b

Input parameter:

� mesh re�nement parameter (here � =

0:4)

N number of circular arcs

K number of nodes at the edge

R outer radius (radius of the middle cir-

cle of the torus)

A z-coordinate of this middle circle

B radius of of the sector in the cross

section

Figure 3.2: Description of the 1

st

family, a 90

�

-sector of a torus: perspective view, top view,

and cross section.

1

2

3

4=N

b

Input parameter:

� mesh re�nement parameter (here � =

1)

N number of slices in the cross section

(see �gure)

K number of nodes at the edge

R outer radius (radius of the middle cir-

cle of the torus)

A z-coordinate of this middle circle

B length of the cathete in the cross

section

Figure 3.3: 2

nd

family: as before but with another cross section.

21.12.1995 15:32 Release 1 of User's Manual

3.4. GENERATION OF MESHES VIA OLDNETZ 21

2� � !

Input parameter:

! internal angle of the sector

� mesh re�nement parameter (here � =

0:4)

N number of circular arcs

K number of nodes at the edge

R radius of the circular edge (the middle

circle of the torus)

A z-coordinate of this middle circle

B radius of of the sector in the cross

section

IS number of sectors for mesh genera-

tion (here 4)

Figure 3.4: 3

rd

family: sector of a torus with arbitrary internal angle !.

z

�y

�x

1

2

3

N = 4

1

2

3

4

5

6

7

K = 8

Input parameter:

! internal angle of the sector

� mesh re�nement parameter (here � =

0:6)

N number of circular arcs

K number of nodes at the edge

R radius of the cylinder

A height of the cylinder

IS number of sectors for mesh genera-

tion (here 4)

Figure 3.5: 4

th

family: sector of a cylinder with arbitrary internal angle !.

z

yx

0

1

2

3 = N

Input parameter:

N reciprocal value of the mesh size

Figure 3.6: 5

th

family: Fichera corner.

21.12.1995 15:32 Release 1 of User's Manual

22 CHAPTER 3. MESHES AND BOUNDARY CONDITIONS

to enter the type and the data of the boundary condition once for the whole group. This

procedure is repeated for each degree of freedom.

To de�ne the group one enters conditions of the form

x

�

< x < x

+

,

y

�

< y < y

+

,

z

�

< z < z

+

,

r

�

x

< r

x

< r

+

x

,

r

�

y

< r

y

< r

+

y

,

r

�

z

< r

z

< r

+

z

.

In this way all nodes are marked which satisfy all the conditions given. The group consists of

all faces which have only marked nodes. Note the special case when no condition is entered;

then all boundary faces are in the group.

After de�ning the group of faces the user is asked for

� the kind of boundary condition (1 - Dirichlet, 2 - Neumann

1

),

� the type and the data for the boundary conditions, see Table 3.2 for the explanation.

Then the next group of boundary faces can be de�ned or one may exit this menu. In the

second case one is asked for a �lename to store the data and the program terminates.

Note that faces can be included in groups several times, then the boundary condition

is always rede�ned for these faces. This feature can be use for correcting errors or to enter

complicated boundary data. For example, if all faces but one have Dirichlet conditions, one

can �rst enter the Dirichlet condition for all faces and then rede�ne the exceptional face.

3.5 The program xbc

3.5.1 Description

xbc was planned as a tool to check the integrity of �les *.std and as test environment for

routines managing standard �les. It is grown up to a visualization tool for objects stored

in the standard �le format (general polyhedra in boundary representation as well as 3D

meshes) with the capability to create and to manipulate boundary values on that objects.

The program needs an XView environment, there is no plain X-Windows nor Motif based

version.

3.5.2 Command Line Parameters

All the standard XView command line parameters are available, e.g. -display displayname

or -fg colorname. xbc -help shows a list of these parameters. Although all of these param-

eters work, there is no test of bad usage implemented.

Two additional parameters allow a quick �le access:

� -InPath pathname is the main path for the input �les, if no -InPath is present, the

actual working directory is used as path for the input �les.

� -InFile filename : is the name of the input �le relative to the input path.

1

The menu o�ers also boundary condition of 3

rd

kind, but SPC-PMPo 3D can not treat them yet.

21.12.1995 15:32 Release 1 of User's Manual

3.5. THE PROGRAM XBC 23

A list of all implemented parameters is shown by xbc -Help. All other parameters will be

interpreted as �le names. If no input �le is speci�ed, the user has to enter �le name and

path manually in the File menu.

3.5.3 Loading and Saving Files

If a �le name is speci�ed in the command line, xbc loads this �le automatically. The user can

enter the �le name manually by opening the File menu and choosing the Load File button.

Loading a �le xbc �rst reads the information part, shows this information and asks

for con�rmation. During the loading process xbc checks the integrity of the data. Any

problems will be shown in error messages and the user will be asked for continuing the

reading procedure.

After a successful load procedure the Show-button becomes available. It switches to the

view window.

To save a �le it's necessary to choose the Save File button in the File menu and to enter

the �le name manually. There is no command line parameter for a standard save �le.

3.5.4 The View Window

The view window is used to visualize the object and to choose faces to set boundary condi-

tions. There are two buttons and two menus in the view window:

� The Back button switches to the main window.

� The Repaint button is reserved for a general hidden line algorithm that will be imple-

mented soon.

� The Settings menu is used to control the behavior of xbc.

� The BC menu contains tools to manipulate the boundary conditions.

The object in the view window can be rotated by moving the mouse holding the middle

mouse button down. A single click with this button forces a refresh of the viewport.

Faces without boundary conditions are shown in gray, faces with Dirichlet conditions

in red, and faces with Neumann conditions blue. The presence of both types of boundary

conditions is represented by violet color.

3.5.5 The BC Menu

In the current release V0.9 only the Set BC button of the BC menu is active. It is used to

manipulate values of boundary conditions. Pressing this button opens an Object Selection

window and enables the selection mode for the mouse buttons.

Pressing the left mouse button in the viewport selects the visible face at the mouse

pointer. The right mouse button unselects the face. It is also possible to select or unselect

faces by editing the Face Name line in the Object Selection window. The Reset button in

this window unselects all. Selected faces change their color to yellow.

The Cancel button terminates the whole value setting process, the OK button �nishes

the selection process and opens the Set BC Values window. This window allows the simple

choice of the kind of boundary condition (Dirichlet/Neumann) as well as the input of the

21.12.1995 15:32 Release 1 of User's Manual

24 CHAPTER 3. MESHES AND BOUNDARY CONDITIONS

actual number of the degree of freedom, the equation type (Poisson or Lam�e) and the set

of values of that boundary condition.

If more than one degree of freedom is used for some faces it is necessary to set all degrees

of freedom in one step by using the Apply button of the Set BC Values window. A Set BC

procedure �nished by the OK button overwrites all settings of the chosen faces. Cancel stops

the whole setting process.

The meaning of the equation types are:

� Free : No BC is given at the current degree.

� Const : The BC is constant on the surface, the value is given in the �eld Value 1.

� Lin Glob : The BC is given by u = V 1 � x + V 2 � y + V 3 � z + V 4, (x,y,z) are the

coordinates in the global system.

� User: The values of the BC will be given by special routines of the user program.

3.5.6 The Settings Menu

The Settings menu controls the general behavior of xbc. It includes two buttons, the View

Control button and the Zoom menu.

The View Control button opens a window which allows to choose the drawing method

(Solid; Hidden Line; Wire Frame). This window is also used to control the visibility of the

names (e.g. integers) of objects like vertices, edges, or faces.

The Zoom menu o�ers some standard zoom factors and the capability to enter user

de�ned factors (using the Other button).

21.12.1995 15:32 Release 1 of User's Manual

Chapter 4

Examples

4.1 Poisson equation

4.1.1 Introduction

We consider the Poisson equation with in general mixed Dirichlet and Neumann boundary

conditions:

��u = f in
;

u = u

0

on @

1

;

@u

@n

= g on @

2

;

@u

@n

= 0 on @
 n @

1

n @

2

:

In the next subsections we describe some test examples, which demonstrate that our code

gives the right result and works very e�ectively.

4.1.2 cubus1.std with bsp.z

The �le cubus1.std describes a cube
 = (0; 10)

3

with Dirichlet boundary conditions u

0

= 0

at the bottom face fx 2

�

 : z = 0g and u

0

= 1 at the top face fx 2

�

 : z = 10g. That

means the boundary conditions are not taken from bsp.f but directly from the �le, and for

the successful test the program should be linked with bsp.z. This means a setting

f � 0

for the right hand side and

u =

z

10

; u

x

= 0; u

y

= 0; u

z

=

1

10

for the exact solution which is used to calculate error norms.

In this example, there is no discretization error, thus the error is proportional to error

tolerance in the solver. If not, check �rst the integration rules, for example:

Nint3ass =

�

111

211

in the linear case,

in the quadratic case,

Nint3error = 211 ((u� u

h

)

2

is quadratic).

26 CHAPTER 4. EXAMPLES

linear elements quadratic elements

Level

L

1

L

2

H

1

L

1

L

2

H

1

0 0 5.77e+2 1.82e+2 1.84e�13 1.63e�12 6.35e�13

1 2.49e+0 1.42e+2 9.05e+1 3.85e�9 2.21e�8 2.25e�8

2 1.07e+0 3.60e+1 4.54e+1 5.66e�9 3.28e�8 3.59e�8

3 3.89e�1 9.07e+0 2.27e+1 1.37e�8 3.31e�8 5.70e�8

4 1.26e�1 2.27e+0 1.14e+1 1.05e�8 1.28e�7 1.01e�7

5 3.89e�2 5.70e�1 5.70e+0 | | |

Table 4.1: Discretization error for u = z

2

.

linear elements quadratic elements

Level

L

1

L

2

H

1

L

1

L

2

H

1

0 0 8.72e+3 2.82e+3 7.05e+1 9.69e+2 6.28e+2

1 8.60e+1 2.36e+3 1.50e+3 9.89e+0 1.22e+2 1.61e+2

2 3.28e+1 6.31e+2 7.76e+2 1.24e+0 1.56e+1 4.18e+1

3 1.15e+1 1.62e+2 3.93e+2 1.61e�1 1.99e+0 1.07e+1

4 3.58e+0 4.11e+1 1.97e+2 2.04e�2 2.52e�1 2.72e+0

5 1.06e+0 1.03e+1 9.87e+1 | | |

Table 4.2: Discretization error for u = z

3

.

4.1.3 cubusu.std with bsp.z, bsp.z2, and bsp.z3

With these examples we test the discretization error orders. Again we have
 = (0; 10)

3

with Dirichlet boundary conditions at @

1

= fx 2

�

 : z = 0 or z = 10g but this time the

boundary values are taken from the corresponding function in the �le bsp.f.

If we copy bsp.z (u =

z

10

) to bsp.f we get no discretization error, see Subsection 4.1.2.

With bsp.z2 the exact solution is u = z

2

(f = �2) and we get an error with linear

elements but no error with quadratic elements. The third example bsp.z3 corresponds with

u = z

3

(f = �6z) and we observe in both cases the optimal order of the error h

k�m+1

(k. . . degree of the shape functions, m. . . order of the Sobolev space H

m

(
), m = 0; 1, to

measure the error). Tables 4.1 and 4.2 contains the values.

The tests were carried out with

Nint3ass =

�

211

311

for linear elements (f �' is quadratic for u = z

3

),

for quadratic elements (f �' is cubic for u = z

3

),

Nint3error = 511

((u�u

h

)

2

is of degree 6, but 5 is the best formula

programmed),

Epsilon = 10

�10

;

LoesVar = 4 BPX without coarse grid solver.

4.1.4 cubusug.std

The example di�ers from cubusu.std only by the boundary conditions. Again we have

Dirichlet boundary conditions on @

1

= fx 2

�

 : z = 0 or z = 10g, but on the remaining

part of the boundary we have Neumann conditions @

2

= @
 n @

1

. The values of u

0

and

21.12.1995 15:32 Release 1 of User's Manual

4.1. POISSON EQUATION 27

Level Nodes Jacobi Yserentant BPX

1 27 12 16 10

2 125 24 32 16

3 729 46 49 19

4 4913 82 64 21

5 35937 159 85 22

Table 4.3: Numbers of iterations for cubus2.std, bsp.xy and 8 or 16 processors (Yserentant

and BPX without coarse grid solver here).

Level cube48 cube96 cube192 cube384 cube768

0 27 45 65 123 205

1 125 225 369 725 1305

2 729 1377 2465 4905 9265

3 4913 9537 17985 35931 69729

4 35937 70785 137345 274593 540865

5 274625 545025 1073409 2146625 |

6 2146689 | | | |

Table 4.4: Number of nodes for di�erent re�nement levels.

g are taken from bsp.f. The use of bsp.z yields no discretization error which can be used as

a test.

4.1.5 cubus2.std

The domain and the mesh cubus2.std are identical to cubus1. The boundary conditions are

@

1

= fx 2

�

 : z = 0g; @

2

= @
 n @

1

;

where the values of u

0

and g are taken from bsp.f. For example, one can link with bsp.xy

as bsp.f which corresponds to u

0

= xy, f = g = 0. Table 4.3 shows the number of iterations

for di�erent preconditioners in this case. We used Epsilon = 10

�4

and linear elements.

4.1.6 cube*.std with bsp.xy

The family of meshes cube48.std, cube96.std, cube192.std, cube384.std, and cube768.std

was generated in order to have test examples with equidistributed coarse meshes on any

number 2

k

, k = 0; : : : ; 7 , of processors and with numbers of nodes as large as possible, see

Table 4.4. The number of elements of cuben in level l is n � 2

l

. The domain is the cube

(0; 2)

3

.

The meshes were generated using the mesh-generator PARMESH3D [11] from 2D refer-

ence meshes, see Figure 4.1, which are reproduced several times into the third dimension.

Thus prisms with triangular basis can be formed and divided in three tetrahedra each.

The corresponding reference meshes and the number of their reproduction is given in Ta-

ble 4.5. Note that cube384 and cube768 represent di�erent meshes than cube48 and cube96,

respectively, with one re�nement step, though they have the same number of elements.

21.12.1995 15:32 Release 1 of User's Manual

28 CHAPTER 4. EXAMPLES

(a) (b) (c)

Figure 4.1: 2D reference meshes for the cube* family.

mesh cube48 cube96 cube192 cube384 cube768

2D reference (a) (a) (b) (c) (c)

number of reproductions 2 4 4 2 4

Table 4.5: The cube* family and their corresponding reference meshes.

The mesh data are stored in the �les cube*.out which can be processed by the program

ren�ndsun in order to describe boundary conditions and to create the data structure of

standard �les. The boundary conditions in the standard �les cuben.std are @

1

= fx 2

�

 : z = 0 or z = 2g where the boundary conditions are taken from the function u in bsp.f.

In Table 4.6 we document tests with these meshes with bsp.xy used as bsp.f and di�erent

preconditioners.

The �les cubena.std de�ne @

1

= @
 and were used in [1, 2] to compare two communi-

cation routines. The results are not reproducible because since then a scaling error in the

hierarchical list was discovered and removed, which in
uenced the number of iterations. In

Table 4.7 we give some results with the correct version of preconditioner. The tests were

carried out with bsp.xy as bsp.f, which means

��u = 0 in
; u = xy on @
;

linear shape functions, cube192a.std, Epsilon = 10

�4

, LoesVar = 2 (Yserentant without

coarse grid solver).

4.1.7 amw*.std with bsp.amw

The amw family of meshes describes the domain

 = fx = (r cos'; r sin'; z) 2 IR

3

: 0 < r < 1; 0 < ' <

3

2

�; 0 < z < 1g;

which was used extensively in the papers [3, 5, 6] (but on serial computers). The two

digits in the �lename gives the number of intervals in r- and z-direction, that means their

reciprocal value corresponds to the mesh size. The d as the last letter of the base name

stands for global Dirichlet boundary conditions @

1

= @
. Contrary, in amw22.std we have

@

1

= fu 2 @
 : z = 0g.

The meshes are useful in connection with bsp.amw, where the exact solution is given by

u = (10 + z)r

�

sin�'; � =

2

3

:

21.12.1995 15:32 Release 1 of User's Manual

4.1. POISSON EQUATION 29

cube48

LoesVar

Level 3 5

1 2

d = 0:07

4

d = 0:1

1 17 19 21 14 13

2 34 33 36 17 17

3 67 47 52 21 21

4 131 69 70 23 23

5 249 93 97 25 25

cube192

LoesVar

Level 3 5

1 2

d = 0:05

4

d = 0:05

1 27 25 22 18 18

2 52 40 38 21 18

3 98 58 57 24 22

4 191 80 80 25 25

5 364 101 98 26 26

cube384

LoesVar

Level 3 5

1 2

d = 0:05

4

d = 0:1

1 40 35 37 31 31

2 85 53 53 45 45

3 172 74 76 60 60

4 338 100 110 71 71

5 | 138 | 77 |

cube768

LoesVar

Level 3 5

1 2

d = 0:05

4

d = 0:1

1 38 33 27 27 18

2 80 46 41 32 24

3 161 67 61 38 35

4 323 95 84 42 38

| | | | | |

Table 4.6: Iteration numbers for di�erent preconditioners in di�erent examples.

Input/Output time, FEMAKKVar=1

Number of processors

Level 16 16 64

8 nodes 16 nodes 32 nodes

1 0.28 0.25 0.48

2 0.86 0.78 1.12

3 1.52 1.43 1.94

4 3.46 3.08 4.10

Input/Output time, FEMAKKVar=2

Number of processors

Level 16 16 64

8 nodes 16 nodes 32 nodes

1 0.29 0.25 0.48

2 0.54 0.50 0.90

3 1.08 0.99 1.64

4 2.94 2.58 3.71

Total time, FEMAKKVar=1

Number of processors

Level 16 16 64

8 nodes 16 nodes 32 nodes

1 0.30 0.28 0.51

2 0.94 0.84 1.16

3 1.96 1.83 2.11

4 8.36 7.11 5.34

Total time, FEMAKKVar=2

Number of processors

Level 16 16 64

8 nodes 16 nodes 32 nodes

1 0.32 0.30 0.51

2 0.66 0.61 0.97

3 1.59 1.44 1.85

4 8.08 6.75 5.05

Table 4.7: Comparison of two data accumulation algorithms [2] for di�erent numbers of

processors and di�erent problem sizes (running on Parsytec GCPP, time in seconds).

21.12.1995 15:32 Release 1 of User's Manual

30 CHAPTER 4. EXAMPLES

amw11d amw12d amw21d amw22d

Level

Elements Nodes Elements Nodes Elements Nodes Elements Nodes

0 12 12 24 18 48 30 96 45

1 96 45 192 75 384 135 768 225

2 768 225 1536 405 3072 765 6144 1377

3 6144 1377 12288 2601 24576 5049 49152 9537

4 49152 9537 98304 18513 196608 36465 393216 70785

5 393216 70785 786432 139425 1572864 276705 3145728 545025

6 3145728 545025 | | | | | |

Table 4.8: Number of nodes for di�erent re�nement levels.

(a) (b)

(c)

Figure 4.2: (a) coarse mesh with z = 0, (b) one re�nement step with � = 0, (c) one

re�nement step with � = 1.

For this and only this domain
 a value verf 6= 0 in control.tet is useful in order to control

an anisotropic mesh re�nement. The following coordinate transformation is carried out

(l. . . re�nement level, � =verf . . . grading parameter):

t = 1�

�

1

2

�

l+2

;

r = (x

2

old

+ y

2

old

)

1

2

;

h =

�

r

�1+

1

�

if r � t

r

�1

if r > t

;

x

new

= h � x

old

;

y

new

= h � y

old

:

For � = verf = 1 we get a change in the coordinates only for points with r > t, that means

they are moved on the curved boundary, see Figure 4.2.

In Tables 4.9 and 4.10 we show some results for the error behavior for di�erent values of

� = verf. The tests were carried out with amw22d.std and the following parameters

Nint3ass =

�

111

211

for linear elements,

for quadratic elements,

Nint3error = 511;

Nint2ass = 11;

Nint2error =

�

11

12

for linear elements,

for quadratic elements,

21.12.1995 15:32 Release 1 of User's Manual

4.2. LAM

�

E SYSTEM 31

linear elements quadratic elements

Level

L

1

L

2

H

1

L

1

L

2

H

1

1 4.0797e�1 1.6819e�1 2.3825e+0 2.0854e�1 3.5542e�2 9.2351e�1

2 3.3811e�1 7.6697e�2 1.5922e+0 1.4325e�1 1.3205e�2 5.6153e�1

3 2.3133e�1 3.2269e�2 1.0164e+0 9.3024e�2 4.8989e�3 3.4802e�1

4 1.5039e�1 1.3063e�2 6.4116e�1 5.9467e�2 1.8467e�3 2.1748e�1

5 9.5848e�2 5.1834e�3 4.0279e�1 | | |

Table 4.9: Discretization error for verf = � = 1.

linear elements quadratic elements

Level

L

1

L

2

H

1

L

1

L

2

H

1

1 2.8163e�1 1.9642e�1 2.2927e+0 1.3677e�1 7.8165e�2 1.2327e+0

2 1.3241e�1 7.2266e�2 1.3627e+0 4.9917e�2 2.0029e�2 4.3328e�1

3 6.0739e�2 1.8634e�2 7.1794e�1 2.2336e�2 4.4908e�3 1.5496e�1

4 2.5277e�2 5.0494e�3 3.7083e�1 1.2162e�2 8.2507e�4 5.5923e�2

5 1.0240e�2 1.3128e�3 1.8848e�1 | | |

Table 4.10: Discretization error for verf = � = 0:5 with linear elements and verf = � = 0:3

with quadratic elements.

Epsilon = 10

�10

;

LoesVar = 4 (BPX without coarse grid solver).

4.1.8 �chera*.std

The domain mesh is
 = (�1; 1)

3

n [0; 1]

3

which is known as a Fichera corner. It was used

with the sequential code for the tests in [7], but not yet on the parallel computer. The digit

* means in analogy to 4.1.7 the reciprocal of the meshsize.

4.1.9 fem.std

The domain consists of the letters FEM which have a di�erent size in the third direction.

The coarse mesh consists of 93 elements with 122 nodes. We have Dirichlet boundary

conditions at the bottom face @

1

= fx 2 @
 : z = 0g. In Figure 4.4 we demonstrate

isolines at the surface of the domain (calculated with bsp.xy, Level=2).

4.2 Lam�e system

4.2.1 Introduction

We consider the Lam�e equation system

���u+ (�+ �) grad divu = f

for u = (u

(1)

; u

(2)

; u

(3)

)

T

with the boundary conditions

u

(i)

= u

(i)

0

on @

(i)

1

; i = 1; : : : ; 3;

21.12.1995 15:32 Release 1 of User's Manual

32 CHAPTER 4. EXAMPLES

Figure 4.3: Fichera corner.

Figure 4.4: Isolines on FEM.

t

(i)

= g

(i)

on @

(i)

2

; i = 1; : : : ; 3;

t

(i)

= 0 on @
 n @

(i)

1

n @

(i)

2

; i = 1; : : : ; 3;

where t = (t

(1)

; t

(2)

; t

(3)

)

T

is the normal stress.

4.2.2 druck.std

This is again the cube
 = (0; 10)

3

, divided into six tetrahedra. The boundary conditions

are

u = 0 on fx 2 @
 : z = 0g;

u =

0

@

0

0

�2

1

A

on fx 2 @
 : z = 10g;

t = 0 elsewhere.

The exact solution is not known. With � = 0:3, E = 2 � 10

5

we get a deformation as shown

in Figure 4.5.

4.2.3 zug.std and zug1.std

The two �les zug.std and zug1.std describe the same example, but they were created by

di�erent programs. We have again the cube
 = (0; 10)

3

. The boundary conditions are

u = 0 on fx 2 @
 : z = 0g;

t =

0

@

0

0

1

1

A

on fx 2 @
 : z = 10g;

t = 0 elsewhere.

The exact solution is not known. We calculated again with � = 0:3, E = 2 � 10

5

, the result

is shown in Figure 4.6.

21.12.1995 15:32 Release 1 of User's Manual

4.2. LAM

�

E SYSTEM 33

Figure 4.5: Cube under pressure. Figure 4.6: Cube under pull.

4.2.4 The etest family

For tests of the validity of the computer results we use the following example, which is

described by bsp.etest:

� = � = 0:2; u =

0

@

x

y

z

1

A

;

consequently f = 0; t = n. There is no discretization error, thus the error is in the range

of the error of the solver.

We prepared two test examples: In etestd.std and etestdu.std the whole boundary is of

Dirichlet type, while in etest.std and etestu.std also Neumann boundary conditions appear:

u =

0

@

x

y

z

1

A

on fx 2 @
 : z = 0 or z = 10g;

t = n elsewhere.

The �les with and without the u at the end of the basename di�er by the way the boundary

conditions are described. In the version without the u the data of the conditions are de�ned

in the �le, whereas in the version with u the functions from bsp.f are called.

There is a third pair of �les in this family: etest1.std and etest1u.std, which di�ers from

the �rst two pairs by the Neumann condition

u =

0

@

x

y

z

1

A

on fx 2 @
 : z = 0 or z = 10g;

t = 0 elsewhere.

In this case the exact solution is not known.

21.12.1995 15:32 Release 1 of User's Manual

34 CHAPTER 4. EXAMPLES

4.2.5 lame22d.std with bsp.lame

This is a test with a known solution which has the typical behavior near an edge. The

domain and the meshes are the same as in 4.1.7, the exact solution is

u =

0

@

r

5=9

[

p

3(� cos

5

9

'+ cos

13

9

')� (5 sin

5

9

'+ sin

13

9

')]

r

5=9

[

p

3(�3 sin

5

9

'+ sin

13

9

') + (� cos

5

9

'+ cos

13

9

')]

r

2=3

sin

2

3

'

1

A

:

and with � =

17

36

we get f = 0 in
 and u = 0 on the faces forming the edge. In lame22d.std

there are Dirichlet boundary conditions de�ned on the whole boundary, the values are taken

from bsp.f = bsp.lame. Unfortunately the system is very badly conditioned because � is

close to

1

2

:

1

2

� � =

1

36

, which results in very high iteration numbers.

Examples of the error behavior for di�erent values for verf are given in the �le

mesh3/lame22d.txt. The numbers are not really promising, may be there is still an er-

ror anywhere. Hints are welcome.

21.12.1995 15:32 Release 1 of User's Manual

Appendix A

Mesh generation and related

programs

Our research group has been developing several programs for the automatic generation

of meshes (2D/3D, sequential/parallel) and their visualization. Due to historical reasons,

the pre-, main-, and postprocessing tools use input and output �les with di�erent data

structure. Therefore a few little programs for converting the �les from one structure into

the other have been made available. This is useful for reusing meshes in other programs for

example for benchmark tests. A survey of the programs and tools is given in Figure A.1,

stressing their connection with respect to the data structure. A detailed description of the

programs is beyond the scope of this manual, we restrict ourselves to the following list.

Note that $AFS stands for /afs/tu-chemnitz.de/home/urz/p/pester/bin; such programs can

be accessed from all computers with AFS installed.

Graphical editors

GRAFED: (f:nfemtoolsngrafedv2.exe) Graphical editor for describing geometrical data in

2D at PC, storing them as file.inp (M. Fritz), see also [8].

NETS: (k:nutilnnetsnnet.exe) as GRAFED, but storing data as file.net (M. Seibt, M. Pe-

ster).

Automatic mesh generation

PARMESH3D: ($AFS/parix/parmesh3d.px, $AFS/ppc/parmesh3d.px) Automatic parallel

2D/3D mesh generation [10, 11], output �les have structure file.out or 2D-file.wqf

(G. Globisch).

PREMESH : ($AFS/SUN4/premeshg, f:nfemtoolsnpremesh.exe) Sequential 2D grid genera-

tion in a UNIX and DOS version [19] (M. Goppold).

Converting data structures

GRAFEDSUN : ($AFS/SUN4/grafedsun) Converting file.inp (see GRAFED) into

file.bsp (see FEMOOBEM) and vice versa (G. Haase).

GUNDOLFSUN : ($AFS/SUN4/gundolfsun) Converting file.net (see NETS) into file.bsp

(see FEMOOBEM) and vice versa (G. Haase).

21.12.1995 15:32 Release 1 of User's Manual, page 35

36 APPENDIX A. MESH GENERATION AND RELATED PROGRAMS

PARMESH3D.PX

PREMESHG

PREMESH.EXE

-

2D{�le.wqf

-

-

-

6

GRAFEM

6

FEMGP

- . . .

POS2NET

-

2D{�le.net

?

DECOMP

2D{�le.out

?

SHOWNET

RENEDGSUN

-

XBC

3D{�leren.std

6

3D{�le.std

-

XBC

by PATRAN

-

6

RENFINDSUN

-

3D-�le.edg

GRAPE

-

3D{�le.out

-

-

FEM OO BEM

2D/(3D){�le.inp

2D{�le.net

?

2D{�le.net

-

6

2D{�le.bsp

-

?

2D{�le.bsp

6

?

?

6

GUNDOLFSUN/

GRAFEDSUN

GRAFED

2D{�le.inp

?

NETS

VINP

TRANSFERSUN

-

-

-

2D{�le.inp

2D{�le.inp

3D{�le.inp

6

by hand

2D{�le.inp

6

?

�

ADAPMESH

BALMESH

�

2D{�le.wqf

. . .main processing . . .mesh generation/visualization . . . converting data structures

Figure A.1: Connection of the tools corresponding to the data structure.

POS2NET: ($AFS/SUN4/pos2net) Converting file.wqf into file.net, involving a renum-

bering of the nodes and the setting of boundary conditions (G. Globisch).

RENEDGSUN : ($AFS/SUN4/renedgsun) Renumbering the nodes to minimize the matrix

pro�le, input and output are �les of *.std structure (G. Globisch).

RENFINDSUN : ($AFS/SUN4/ren�ndsun) Conversion of file.out (3D; node related,

see [10, 19]) into file.std (3D; edge related, see 3.2), involving a renumbering of

the nodes to minimize the matrix pro�le and the interactive setting of boundary con-

ditions (G. Globisch), see also 3.3, 3.4.2.

TRANSFERSUN : ($AFS/SUN4/transfersun) Converting file.net (see NETS) into

file.inp (see GRAFED) (G. Globisch).

Visualization

1

F3: ($AFS/SUN4/f3 sun (dynamically linked), $AFS/SUN4/f3grape.sun (statically linked),

$AFS/SGI5/f3 sgi (dynamically linked), $AFS/SGI5/f3grape.sgi (statically linked))

Visualization of 3D data received via socket connection [18]; based on GRAPE

(M. Meyer).

GRAFEM : (f:nfemtoolsngrafem.exe) Visualization of 2D FEM data including the solution,

data type file.wql [19] (G. Haase).

1

see also Graphical editors above

21.12.1995 15:32 Release 1 of User's Manual

37

GRAPE: ($AFS/SUN4/grape sun) Visualization of 3D data �les file.out (node related

structure) based on GRAPE [21] (Th. Hommel).

SHOWNET: ($AFS/SUN4/shownet) Visualization of 2D FEM data including the solution

(isolines), data type file.out, possible output as ps-�le (F. Br�auer).

VINP: (f:nfemtoolsnvinp.exe, $AFS/SUN4/vinp) Visualization of 2D data �les file.inp [19]

(M. Goppold).

XBC: ($AFS/SUN4/xbc) Visualization of 3D data �les file.std (edge related) and modi�-

cation of boundary conditions (D. Lohse), see also Section 3.5.

Other preprocessing

DECOMP: ($AFS/SUN4/decomp) Spectral graph partitioning of �nite element meshes for

parallel computations (M. Goppold).

Main processing

FEMGP: Package for solving 2D-boundary value problems on sequential computers,

see [19], based on �les file.wqf, and partially file.out (M. Jung, T. Steidten,

W. Queck, and others).

FEMOOBEM : Package for solving 2D-boundary value problems using a coupled FEM-BEM-

strategy on parallel computers, based on �les file.bsp, see [12] (G. Haase, M. Jung,

and others).

FEMPS3D: Package for solving the Poisson equation over 3D domains on sequential com-

puters, see [3], based on internal mesh generation and on another �le structure

*.ada (Th. Apel, F. Milde).

SPC-PMCFD: ($AFS/workcfd/pmhi.ppc.px) Parallel simulation of
uid dynamics in 2D

(St. Meinel, A. Meyer).

SPC-PMEL2D: ($AFS/workel/pmhi.ppc.px) Parallel simulation of elasticity in 2D

(A. Meyer).

SPC-PMPo2D: ($AFS/worksy/pmhi.ppc.px) Parallel simulation of potential problems in

2D (A. Meyer).

21.12.1995 15:32 Release 1 of User's Manual

38 APPENDIX A. MESH GENERATION AND RELATED PROGRAMS

21.12.1995 15:32 Release 1 of User's Manual

Bibliography

[1] Th. Apel, G. Haase, A. Meyer, and M. Pester. Numerical comparison of two commu-

nication algorithms. Documentation, TU Chemnitz-Zwickau, 1995.

[2] Th. Apel, G. Haase, A. Meyer, and M. Pester. Parallel solution of �nite element

equation systems: e�cient inter-processor communication. Preprint SPC95 5, TU

Chemnitz-Zwickau, 1995.

[3] Th. Apel and F. Milde. Realization and comparison of various mesh re�nement strate-

gies near edges. Preprint SPC94 15, TU Chemnitz-Zwickau, 1994.

[4] Th. Apel, F. Milde, and M. Thess. SPC-PMPo 3D | Programmer's Manual. Preprint

SPC95 34, TU Chemnitz-Zwickau, 1995.

[5] Th. Apel, R. M�ucke, and J. R. Whiteman. An adaptive �nite element technique with

a-priori mesh grading. Technical Report 9, BICOM Institute of Computational Math-

ematics, 1993.

[6] Th. Apel and S. Nicaise. Elliptic problems in domains with edges: anisotropic regularity

and anisotropic �nite element meshes. Preprint SPC94 16, TU Chemnitz-Zwickau,

1994.

[7] Th. Apel, A.-M. S�andig, and J. R. Whiteman. Graded mesh re�nement and error

estimates for �nite element solutions of elliptic boundary value problems in non-smooth

domains. Technical Report 12, BICOM Institute of Computational Mathematics, 1993.

To appear in Math. Meth. Appl. Sci.

[8] M. Fritz. Gra�scher Editor f�ur die Netzmanipulation. Diplomarbeit, TU Chemnitz,

Sektion Mathematik, 1991.

[9] G. Globisch. Der Algorithmus HYBRID zur Knotenumordnung. Praktikumsarbeit, TH

Karl{Marx{Stadt, Sektion Mathematik, 1985.

[10] G. Globisch. On an automatically parallel generation technique for tetrahedral meshes.

Preprint SPC 94 6, TU Chemnitz{Zwickau, 1994.

[11] G. Globisch. PARMESH { a parallel mesh generator. Parallel Computing, 21(3):509{

524, 1995.

[12] G. Haase, B. Heise, M. Jung, and M. Kuhn. FEMooBEM { A parallel solver for

linear and nonlinear coupled FE/BE{equations. Report nr. 96{16, DFG{Schwerpunkt

Randelementmethoden, 1994.

21.12.1995 15:32 Release 1 of User's Manual, page 39

40 APPENDIX A. MESH GENERATION AND RELATED PROGRAMS

[13] G. Haase, Th. Hommel, A. Meyer, and M. Pester. Bibliotheken zur Entwicklung paral-

leler Algorithmen. Preprint SPC 95 20, TU Chemnitz{Zwickau, 1995. Updated version

of SPC 94 4 and SPC 93 1.

[14] G. Kunert. Ein Residuenfehlersch�atzer f�ur anisotrope Tetraedernetze und Dreiecksnetze

in der Finite-Elemente-Methode. Preprint SPC 95 10, TU Chemnitz{Zwickau, 1995.

[15] D. Lohse. Datenschnittstelle I { Standard�le. Preprint SPC95 Z, TU Chemnitz-

Zwickau, 1995. In preparation.

[16] M. Meisel and A. Meyer. Implementierung eines parallelen vorkonditionierten Schur-

Komplement CG-Verfahrens in das Programmpaket FEAP. Preprint SPC 95 2, TU

Chemnitz{Zwickau, 1995.

[17] A. Meyer and M. Pester. Verarbeitung von Sparse-Matrizen in Kompaktspeicherform

(KLZ/KZU). Preprint SPC 94 12, TU Chemnitz{Zwickau, 1994.

[18] M. Meyer. Gra�k-Ausgabe vom Parallelrechner f�ur 3D-Gebiete. Preprint SPC 95 4,

TU Chemnitz{Zwickau, 1995.

[19] W. Queck. FEMGP { Finite-Element-Multi-Grid-Package { Programmdokumenta-

tion und Nutzerinformation. Report, TU Chemnitz-Zwickau, Fachbereich Mathematik,

1993.

[20] C. Walshaw and M. Berzins. Dynamic load balancing for PDE solvers on adaptive

unstructured meshes. Research Report 92.32, University of Leeds, School of Computer

Studies, 1992.

[21] A. Wierse and M. Rumpf. GRAPE { Eine objektorientierte Visualisierungs- und Nu-

merikplattform. Informatik Forsch. Entw., 7:145{151, 1992.

21.12.1995 15:32 Release 1 of User's Manual

Index 41

Index

The italic numbers denote the pages where the corresponding entry is described, numbers

underlined point to the de�nition, all others indicate the places where it is used.

Symbols

.edg �le 19

.out �le 6, 19, 37{39

.std �le . 6, 15, 19, 22, 38, 39

amw22.std 28, 30

cube192.std 27

cube192a.std 28

cube384.std 27

cube48.std 27

cube768.std 27

cube96.std 27

cubus1.std 25

cubus2.std 27

cubusu.std 26

cubusug.std 26

druck.std 32

etest.std 33

etest1.std 33

etest1u.std 33

etestd.std 33

etestdu.std 33

etestu.std 33

fem.std 31

�chera*.std 31

lame22d.std 34

zug*.std 32

$PARDEST 4

$PPCDEST 4

$archi 4, 5

A

architecture 4, 5

B

boundary conditions . 19, 23

bsp.f 5

bsp.amw 28

bsp.etest 33

bsp.lame 34

bsp.xy 27, 28, 31

bsp.z 25{27

bsp.z2 26

bsp.z3 26

C

change 14

of the maximal number

of iterations 14

of the preconditioner . 14

of the stop tolerance . . 14

of the variable ion . . . 14

control.quad 6, 7, 9

control.tet 6, 7, 9

E

element types 3, 4

epsilon 7, 9

F

f3 sgi 12, 38

f3 sun 12, 38

femakkvar 7

G

GRAPE 12, 35, 38, 39

graphics, switch o� 5

I

installation 4

ion 7

iter 7

L

Lam�e system 3, 31

LIBLISTE 5

lin quad 7

loesvar 7

M

make 6

CLEAN 6

clean 6

quad 6

tar 6

tet 6

Make�le 4{6

make�le.$archi 5

menu 11, 12, 14

meshes 6

N

ndiag 7

nint2ass 7

nint2error 7

nint3ass 7

nint3error 7

O

oldnetz 6, 19, 35

P

parmesh3d . . 19, 27, 35, 37

Poisson equation 3, 25

postprocessing 4, 12

Q

quadrature formulas 8

quick start 4

R

renedgsun 19, 38

ren�ndsun . 6, 19, 28, 35, 38

renumerate nodes 19

S

scale coarse grid matrix . . 14

set boundary condition 19, 23

solver 4

V

variante.$archi 5

verf 7, 30, 31, 34

vertvar 7

X

xbc 6, 22, 35, 39

21.12.1995 15:32 Release 1 of User's Manual

Other titles in the SPC series concerning implementation:

93 2 M. Pester and S. Rjasanow. A parallel version of the preconditioned conjugate gradient method for

boundary element equations. June 1993.

93 3 G. Globisch. PARMESH { a parallel mesh generator. June 1993.

94 1 J. Weickert and T. Steidten. E�cient time step parallelization of full-multigrid techniques. January

1994.

94 2 U. Groh. Lokale Realisierung von Vektoroperationen auf Parallelrechnern. March 1994.

94 5 U. Groh, Chr. Israel, St. Meinel and A. Meyer. On the numerical simulation of coupled transient

problems on MIMD parallel systems. April 1994.

94 6 G. Globisch. On an automatically parallel generation technique for tetrahedral meshes. April 1994.

94 10 M. Pester and T. Steidten. Parallel implementation of the Fourier Finite Element Method. June

1994.

94 12 A. Meyer and M. Pester. Verarbeitung von Sparse-Matrizen in Kompaktspeicherform (KLZ/KZU).

June 1994.

94 15 Th. Apel and F. Milde. Realization and comparison of various mesh re�nement strategies near edges.

August 1994.

94 23 M. Pester. On-line visualization in parallel computations. November 1994.

94 24 M. Pester. Gra�k-Ausgabe vom Parallelrechner f�ur 2D-Gebiete. November 1994.

95 2 M. Meisel, A. Meyer. Implementierung eines parallelen vorkonditionierten Schur-Komplement CG-

Verfahrens in das Programmpaket FEAP. Januar 1995.

95 4 M. Meyer. Gra�k-Ausgabe vom Parallelrechner f�ur 3D-Gebiete. Januar 1995

95 5 T. Apel, G. Haase, A. Meyer, M. Pester. Parallel solution of �nite element equation systems: e�cient

inter-processor communication. Februar 1995

95 6 U. Groh. Ein technologisches Konzept zur Erzeugung adaptiver hierarchischer Netze f�ur FEM-

Schemata. Mai 1995

95 8 P. Kunkel, V. Mehrmann, W. Rath, J. Weickert. GELDA: A Software Package for the Solution of

General Linear Di�erential Algebraic Equation. February 1995

95 13 A. Meyer, D. Michael. Some remarks on the simulation of elasto-plastic problems on parallel com-

puters. March 1995

95 15 B. Heinrich, B. Lang, B. Weber. Parallel computation of Fourier-�nite-element approximations and

some experiments. May 1995

95 19 M. Meisel, A. Meyer. Kommunikationstechnologien beim parallelen vorkonditionierten Schur-

Komplement CG-Verfahren. Juni 1995

95 20 G. Haase, T. Hommel, A. Meyer andM. Pester. Bibliotheken zur Entwicklung paralleler Algorithmen.

Juni 1995.

95 26 C. Israel. NETGEN69 - Ein hierarchischer paralleler Netzgenerator. August 1995.

95 27 M. Jung. Parallelization of multi-grid methods based on domain decomposition ideas. November

1995.

95 33 Th. Apel. SPC-PMPo 3D | User's manual. December 1995.

95 34 Th. Apel, F. Milde, M. The�. SPC-PMPo 3D | Programmer's manual. December 1995.

Some papers can be accessed via anonymous ftp from server ftp.tu-chemnitz.de,

directory pub/Local/mathematik/SPC. (Note the capital L in Local!)

The complete list of current and former preprints is available via

http://www.tu-chemnitz.de/~pester/sfb/spc95pr.html.

