
Stanford  Program Verification  Group
Report No. 18

. June 1980

Department of Computer  Science
Report  No. STAN-CS-80-E)  11

AN EXTENDED SEMANTIC DEFINITION OF PASCAL FOR PROVING
THE ABSENCE OF COMMON RUNTIME ERRORS

bY

Steven M. German

Research sponsored by

Advanced Research Projects Agency
and

Rome Air Development Center

COMPUTER SCIENCE DEPARTMENT
Stanford University





An Extended Semantic  Definition of Pascal
for Proving the Absence of Common Runtime  Errors

by Steven M. German

We present an axiomatic definition of Pascal which is the logical basis of the Runcheck
system, a working verifier for proving the absence of runtime errors such as arithmetic
overflow, array subscripting out range, and accessing an uninitialized variable. Such
errors cannot be detected at compile time by most compilers. Because the occurrence
of a runtime error may depend on the values of data supplied to a program, techniques
for assuring the absence of errors must be based on program specifications. Runcheck
accepts Pascal programs documented with assertions, and proves that the
specifications are consistent with the program and that no runtime errors can occur. Our
axiomatic definition is similar to tloare’s  axiom system, but it takes into account certain
restrictions that have not been considered in previous definitions. For instance, our
definition accurately models uninitialized variables, and requires a variable to have a
well defined value before it can be accessed. The logical problems of introducing the
concept of uninitialized variables are discussed. Our definition of expression evaluation
deals more fully with function calls than previous axiomatic definitions.

Some generalizations of our semantics are presented, including a new method for
verifying programs with procedure and function parameters. Our semantics can be easily
adopted to similar languages, such as ADA.

One of the main potential problems for the user of a verifier is the need to write
detailed, repetitious assertions. We develop some simple logical properties of our
definition which are exploited by Runcheck  to reduce the need for such detailed
assertions.

This research was supported by the Defense Advanced Research Projects Agency under contract
MDA903-80-C-0159  and by the Rome Air Development Center under contract F30602-80-G
0022.



_----



Llhtroduction

In most programming languages, there are various undefined conditions and illegal

operations such as arithmetic overflow and array subscripting out of range.  We call

these  condit ions  runtime errors b e c a u s e  they  are violations of language or

implementation imposed restrictions on program execution. Current  compilers do not

attempt to detect runtime  errors  during compilation, though they commonly insert

special code to test for certain errors  during execution. This approach is costly in

execution time and compiled program  size, and of course gives no assurance that a

program will run to completion.

The occurrence of a runtime  error  may depend on the values of data supplied to a

program.  For this reason, any technique for assuring the absence of runtime  errors  must

be based on some method for specifying programs. Showing the absence of runtime

errors  is thus a natural problem in program verification.

We have been developing an automatic verifier  for proving the absence of runtime

errors  in the language  Pascal. The Runcheck system takes as input a Pascal program

with entry, exit and optional invariant  assertions,  and proves  that the specifications are

consistent with the program  and that no runtime  errors  can occur. Invariant assertions

are not required in many cases because the system is able to generate simple invariants

automatically, but more subtle invariants must be supplied by the user.  The system

currently checks for the following kinds  of errors:  accessing a variable that has not been

assigned  a value, array subscripting out of range,  subrange  type error, dereferencing a

NIL pointer, arithmetic overflow, division by zero, control stack overflow, exceeding

heap storage bounds, and UNION’ type selection errors. The verifier and our semantic

definition of Pascal do not yet include REAL or SET types, but pointers  are permitted.

Obviously, the notion of runtime  error does  not include every kind of programming

’ The language accepted by the verifier includes verifiable UNION types instead of Pascal’s variant records. Refer to [3]  for a
discussion of the problems of variants and the details of our UNION types.



2 Introduction

error. The runtime  errors  for a langauge are the conditions under  which progams

cannot continue to execute or continued execution would give undetermined results. For

a program to be useful, one needs to know more about it than that it does not have

runtime  errors. Consider a program which is intended to copy a list made of pointers

and records; it can have an error  which causes it to produce the wrong result without

any runtime  errors in the sense we are using. Runcheck makes it possible to verify such

a program at several levels of detail. For the least detailed verification, the program is

submitted to Runcheck without additional specifications related to list copying. In this

case., Runcheck attempts to prove only that the program is free from runtime errors.  In

general, it may be. necessary for the user to supply some specifications and invariants

even at this level of detail. For instance, the program  may have a control stack

overflow unless the input is acyclic. User supplied invariants would be needed in case

the simple invariants generated automatically by the system are not sufficient to prove

absence of runtime  errors.  A more detailed verification could be obtained by adding

specifications saying that the result of the program is a copy of the input. An even

more detailed  verification could establish bounds on the performance of the program,

such as the maximum number of times each statement is executed as a function of the

input [ 101.

The purpose of Runcheck is to automate the routine aspects of the least detailed

verifications, while still allowing the user to supply additional information for more

detailed verifications. Thus although Runcheck is primarily used to perform shallow

verifications, it provides a general logical framework  for proving detailed properties.

Every program verified by Runcheck is assured to have, as a minimum, the property

that no runtime  errors  can occur if the entry assertion is satisfied.

This paper is concerned with an extended  axiomatic definition of Pascal, which is the

logical basis of Runcheck. The extended definition is similar to the familiar Hoare

axiom system IS], but it takes into account certain restrictions on the computation that

have not been considered in previous axiomatic language definitions.



Introduction 3.

Although the details of our semantic definition refer specifically to Pascal, most of the

ideas are broadly applicable. The runtime errors which exist in Pascal are also present

in many other  languages, and the ideas in our semantic definition can be adopted to

other  languages with additional kinds of errors. ADA 171 is an especially interesting

case; it should be possible to define much of the language by generalizing our definition

of Pascal. For instance,  the problem of generalizing our definition to allow dynamic

subrange types is discussed briefly in section 8.1.

Our axiomatic definition of Pascal consists of some  first order  theories plus axioms and.

inference rules for reasoning about programs. One of the first order theories concerns a

predicate, DEF(x),  which is true of expressions having a well defined value. The other

first order theories are familiar ones such as arithmetic. Runcheck is more than a direct

implementation of these logical components; a practical program verifier should provide

as much assistance as possible, e.g., in generating inductive assertions. All of t h e

example programs discussed in this paper have been handled completely automatically

by the system.

Practical results with Runcheck have been reported in 121.  An earlier approach t o

formalizing the extended semantics is presented in collaboratjon with D. Luckham  and

D. Oppen in [4].

The theorems in the Hoare  axiom system are of the form, P{A)Q Intuitively, this

formula states that if P holds before executing a program A, then if and when A

terminates, Q will hold. In [5,6] and elsewhere, the relation P{A)Q  is taken to be true

if there is a runtime  error in executing A. Hoare chose to make the interpretation that

if an error occurred, the effect of the program would be “undefined,” as if the program

had failed to terminate.

In our extended semantics, mAj’@, is defined to mean that if P holds, then A executes

without runtime  errors, and if A terminates Q will hold. Since virtually all programs

are intended to execute without runtime  errors, a proof of PEAI]Q is much more useful



4 Introduction

than one of P{A)Q,  from a practical point of view. 2 If it is possible to verify the absence

of runtime  errors in a program, the implementation can omit the usual runtime  error

checking code -- an increase of efficiency without loss of reliability. Also, the extended

semantics is a convenient system for showing the absence of certain errors  in programs

that are not intended to terminate.

Our proof system is general purpose in that any partial correctness specification can be

expressed by choosing P and Q Absence of runtime  errors is proven together with

other properties. There are other possible formulations; one could develop a proof

system based on statements of the form SAFELP, A],  meaning that if  P holds

beforehand, then A executes  without runtime  error.  The disadvantage of such a system

is that proofs of the absence of runtime errors often require lemmas about more general

properties of the program.

For example, consider a simple program which searches in an array A for an element

equal to KEY. The elements are stored in AD], . . . ,A[N-I]. The fast linear search

stores the key in the last position of the array A before searching, so that the search

,loop does  not have to test whether the index has become greater than N. The result of

the search is returned in the variable I.

Example  1: Fast Linear Table Search.

VAR N:INTEGER;
TYPE ARR=ARf?AY[l  :N] OF INTEGER;

PROCEDURE SEARCH(KEY:INTEGER; A:ARR; VAR I:INTEGER);
GLOBAL (N);
ENTRY DEF(N)  A l<N  A NMAXINT;

BEGIN
A[N]:=KEY;
I:=1 ;
WHILE A[I&KEY  DO I:=I+l ;

END;

2 Thewe are cases  where  the difficulty of proving absence
approach in such cases  is to leave some  errors unchecked

of  rll runtima errors outweighs the4 additional benefit. A practical



Introduction 5

This program depends on the fact that A[N] has the value KEY throughout execution

of the loop. Otherwise, if the key was not found in A, the loop would continue and

attempt to access A[N+l],  causing a subscripting error. It is necessary to prove that

A[N]=KEY is an invariant of the loop, and in our extended semantics, such lemmas can

be proven together in one step with the proof of absence of runtime  errors

The procedure SEARCH is presented to the Runcheck system with an ENTRY assertion

stating that N has a value between 1 and MAXINT, the largest integer. The system is

able in this case to verify absence of subscripting errors, arithmetic overflow, and

uninitialized variable errors (the use of the value of a variable before it has been

assigned a value), automatically, given only the ENTRY assertion and program text as

shown in Example 1. In particular, the necessary loop invariants including A[N]=KEY

are generated automatically without any effort on the part of the user. The reader is

warned not to form an opinion of the system’s capabilities on the basis of this small

introductory example alone; a variety of more interesting programs have been handled

by the system. Some of them can be found in section 7 of this paper and in [Z].

This paper is divided into nine sections and two appendices. Section 2 contains

important definitions, particularly the definitions of the language and notation of the

extended semantics. Section 3 is mainly concerned  with the predicate DEF, which is

true of expressions having a well defined value. Section 4 presents some of the basic

inference rules of the extended semantics. Section 5 presents a precise axiomatic

definition of the evaluation of expressions in Pascal. In section 6, the definition of

expression evaluation is used as the basis of a definition of Pascal statements, functions,

and procedures. Section 7 develops some properties of the extended definition that

are valuable when verifying actual programs. Section 8 discusses some

generalizations of the extended  definition, including a new method of verifying

programs with procedure parameters. Following this is a discussion of our general

conclusions. Finally, Appendix A gives details of the implementation of the extended

semantics in Runcheck, based on the principles developed in section 7, and Appendix



6 Introduction

B discusses the details of a definition of simultaneous substitution for disjoint Pascal

variables.

2. Preliminaries

2.1 General definitions

#T reference class (see Cl l]), used to represent the set of values of a
dereferenced pointer of type tT.

#TcP3 value of the variable Pi where P has type tT. Throughout this paper, first
order language terms of the form RcP3 will denote Pascal expressions of the form Pt.
Any Pascal expression involving pointers can be translated into this notation, provided
that the types of the pointer variables have been specified. For further details, refer to
ElII.

P O I N T E R S T O set of all pointer values of type tT.

<A, [II, E> value of the array A after assigning the value E in the Ith position.
<R, .F, E> value of R after R.F:=E.
<#T, cP3, E> value of #T after Pt:=E, where P has type tT.

Functions mapping Pascal expressions into types:

type(E) the type of an expression E.
indextype value is R if A has type ARRAY[Rj  OF S.

Phrases used in a special sense:

The phrase simple variable is synonymous with both variable identifier  and declared
v&able.
A selected variable is a component of a variable identifier (e.g. A[11  is a selected
variable.).
A Pcrsccal variable is either a variable identifier or a selected variable 191.



Notation for Substitution

2.2 Notation for Substitution

Simultaneous Substitution for Identifiers.

If P(X, Y) is a formula where X = [xl, . . . ,xnl and Y = (~1, . . . ,ym] are ordered sets of
free variable identifiers, then P(A, B), where A = [al, . . . ,anl and B = Ebl, . . . ,bml are
ordered sets of terms, stands for the result of simultaneously substituting the ai for the
xi and the bj for the yj in P.

If the set X of free variable identifiers of a formula P(X) is partitioned into subsets Xl
and X2, then P(X1, X2) stands for P(X), and P(A1, A2), where Al and A2 are ordered
sets of terms, stands for the result of simultaneously substituting in P the terms in Al
for the variables Xl and the terms in A2 for the variables X2.

Substitution for a Pascal Variable.

where v is any term denoting a Pascal variable, is defined recursively as follows.

where x is an identifier, stands for P with t substituted for x.

plFf = Pl:v,.f,t>

P IVP= =pv
t I <v,cpqt>

2.3 Disjoint Pascal Variables

Intuitively, two Pascal variables are disjoint iff an assignment to one of them cannot

affect the value of the other. It is obvious that in languages with array subscripting

and pointers, disjointness is a dynamic property - it depends on the values of variables.

For instance, A[i] and A[j]  are disjoint iff i+j.

If VI,. . . ,vn are disjoint Pascal variables, it is possible to define the simultaneous



8 Disjoint Pascal Variables

substitution

P
I
v l vn
t l ’ l ’ tn

of n expressions for n Pascal variables, in terms of the sequential substitutions defined

above in 2.2. This definition and the formal definition of disjointness are needed only

for the procedure call rules; details are presented in Appendix B.

2.4 Formulas in the extended semantics

The syntax of formulas is ordinary, and is included here mainly for reference. A

formula1 is a pure first order formula. The syntactic category of program statements

includes all executable Pascal statements plus some additional statements which are used

only at intermediate steps during proofs. The new statement types, known as evaluation

statements and assume statements, do not initially appear in programs, but can be

introduced by certain rules during the course of a proof. Evaluation statements

correspond to the action of evaluating an expression or computing the location of a

variable. Assume statements are used by some of the proof rules to record previously

justified logical assumptions at points within the body of an executable program.

Implicitly associated with each formula is a set of declarations of constants, variables,

types, and defined procedures and functions, corresponding to a static scope in a

program. The syntactic distinction between declared and undeclared symbols is made

with respect to the scope. It is assumed that all name conflicts in the scope are removed

by renaming.

<variable>:: = <declared variable> 1 <undeclared variable>

<op>::= <Pascal built in function>
1 <declared function sign>
1 <undeclared function sign>

<term>::= <op> (<termlist>) J <variable> J <constant>



Formulas in the extended semantics 9

<termlist>::= [<term> [, <term>l*l

<predicate>::= <declared boolean function sign>
f <Pascal built in predicate (=, #, <, I)>
1 <undeclared predicate sign>

<atomic>::= <predicate> (<termlist>)  f True J False

<formula1  >::= <formula1 > <logical connective> <formula1 > 1 --) <formula1  >
1 V <undeclared variable> <formula1  >
1 <atomic>

<statement>::= <Pascal executable statement>
1 <assume statement>
1 <evaluation statement>
J <statement>; <statement>

<assume statement>::= ASSUME <formula1 >

<evaluatiin statement>::= Eval <Pascal expression>
1 Locate <Pascal variable>

<subprogram declaration>::= <Pascal function declaration>
1 <Pascal procedure declaration>

<formula of unextended definition>::= <formula1 >
1 <formula1  > {<statement>} <formula1 >
f <formula 1) {<subprogram declaration>} <formula 1 >

<formula>::= <formula1  >
1 <formula1 > [<statement>] <formula1 >
1 <formula1  > a<subprogram  declaration>3  <formula1 >

Throughout the paper, we will distinguish between the type of an expression and its

sort in the many sorted first order language. By the type of an expression, we mean its

Pascal type according to the scope. By the sort  of an expression, we mean its sort in the

first order  language. Except for subranges, the sort of an expression is the same as its

type. Integer and integer subrange  expressions are of sort integer. Similarly, expressions

whose type is a subrange of an enumerated type have the same sort  as the enumeration.

A sort  will be said to cover both the type with the same name and all subranges of the



10 Formulas in the extended semantics

To be well formed, a statement must satisfy the syntax and type requirements of the

programming language [91. Because of the correspondence between types and sorts, an

expression satisfies the type requirements of the programming language iff it is a well

formed term according to the sorts. A formula1 is a first order formula which may

contain free occurrences of declared and undeclared variables. Each term or atomic

formula whose outer sign is declared or Pascal predefined, must also satisfy the type

requirements of the programming language.

2.5 Notation for the extended semantics

The axioms and inference rules in the extended semantic definition are actually schemes,

or infinite sets of axioms and rules. In this respect, our system is no different from

previous axiomatic definitions. When a scheme is applied, information from the

program scope must be substituted in certain places. To specify the information that is

to be substituted, we use a meta  notation. An expression involving a function or

predicate sign in Bold Ztalics  indicates a term or formula to be substituted. Instances of

the axiom or rule are formed by evaluating the italicized meta  expression to produce a

term or formula For example, the rule for assignment to a whole variable is:

P aEva yn Znrmgc(y,  type(x))  A QIr
---------------------------1-1-
P Ex := yJ Q

Consider a typical context:

TYPE. s= 1.500;
VAR g:s; h:INTEGER;
. . .
9 := h+4;

Since g is a subrange  variable, the assignment statement will cause a subrange error

unless h+4 is in the correct range. Znrange(y,  type(x)) is the notation for a formula

which asserts that the value of y is in the range of the variable x. In the example



Notation for the extended semantics 11

context, the desired instance of the rule is:

P [rEval h+4n 1 sh+4  A h+45500  A Q g
Ih+4I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p ag := h+4n Q

2.8 Formula Constructing Functions

Inrange(<expression>,  <type>)

Inrange is a function mapping <expression> x <type>  + <formulal>.  The expression

must be of a sort which covers  the type.

if type is a subrange a..b,
Inrange(expression, type) + alexpression  A expressionlb.

otherwise,
Inrange(expression, type) + TRUE.

Dis joint( <Pascal variable>, <Pascal variable>)

The function Disjoint maps a pair of Pascal variables into a formula1 which is true iff

the variables are disjoint. Refer to Appendix B for a detailed  definition of Disjoint.

Dis joint-set( <set of Pascal variables>)

For any finite set of Pascal variables, Disjoint-set constructs a formula1 which is true iff

all pairs of variables in the set are disjoint.

3. Theory of Definedness: The Predicate DEF

In order  to introduce the possibility that a program variable can be uninitialized, we



12 Theory of Definedness: The Predicate DEF

assume the existence of an uninitialized scalar value, Q. The value of a newly  created

program variable is unspecified. (This is explained more fully in section 6.3.) Before

the program can use the value of a variable, it must assign the variable a fully

initialized value: one such that none of its components is equal to fl. The predicate DEF

will be true only of these fully initialized values

In the intended model of the first order theory of DEF, terms of a simple sort range

over a universe of values including n. Values of compound sorts are built up by using

the sets  of simple values as components. For example, the possible values of a variable

of sort  ARRAYkl OF INTEGER include arrays with some positions equal to n.

Axioms DEFl-DEFS below describe the properties  of DEF and of Pascal types.

DEFl)  for every constant c, DEF(c) is an axiom.

DEF2) if e is of an enumerated sort (cl, . . . ,cn),
DEF(e) 3 e=clv . . . ve=cn.

DEF3a)  if x is an expression of sort ARRAY[a..bl OF t,
DEF(x)  E (Vi a<i&b 3 DEF(x[il)).

DEFSb)  if r is of a Pascal record sort, and f 1, . . . ,fn are the record field names,
DEF(r) I DEF(r.fl )A . . . ADEF(r.fn).

DEF3c)  if #t is of a reference class sort,
DEF(#t) = (Vp B POINTERSTO(  (p#NIL  = DEF(#tcp$).

DEF4) DEF(a)ADEF(b) 2 DEF(a @ b)
where 8 is an operator in {+, -, $, =, 2, <, I, AND, OR, NOT}

DEFS)  DEF(a)ADEF(b)AbO  2 DEF(a/b)ADEF(a  DIV b)ADEF(a MOD b)

Axiom DEF6 defines equality for compound types: ,

DEF6a)  if x and y are expressions of a record sort, and f 1, . . . ,fn are the field names,
x=y 1 (x.fl =y.f 1 A . . . A x.fn=y.fn).

DEF6b) if x and y are expressions of sort ARRAY[a..bl OF t,
x=y s (Vi al&b =) x[i]=y[i]).

The following two axioms are not normally needed for proving absence of runtime

errors in programs, but are included for thoroughness:



Theory of Definedness: The Predicate DEF 13

DEF7) for each sort3  s, (3Xs -DEF(X,))  is an axiom, where Xs is a variable of sort s.

Axiom DEFS states that the result of selecting a component of an array or reference

class using an undefined or out of range index is not DEF.

DEF8a) if x is of sort ARRAY[a..bl of t,
DEF(x[i])  I> a<iAilb.

DEF8b) if #t is of a reference class sort,
DEF(#tcp$  =) DEF(~)A~~NIL.

The resulting theory of DEF is still not logically complete, e.g. because it does not say

much about the undefined values. But we should not expect to find such details in a

programming language definition. All of the properties needed for proving absence of

errors in programs have been included.

3.1ConsistencyofthetheoriesofDEFanddatatypes.

Each sort has some standard properties which must be included in the complete logical

system. Proofs involving the integer sort appeal to the usual properties of integers etc.

In the extended semantics, each sort ranges over a universe including some uninitialized

values. This section is concerned with the question of how the presence of uninitialized

values affects the theories of the sorts. One problem that could potentially arise is that

the standard properties associated with a sort could imply that all its elements are DEF,

contradicting axiom DEF’7.

Consider the conjunction of axioms DEFl and DEF7. Axiom DEFl says that every

constant symbol in the language corresponds to an initialized value. Axiom DEF7

asserts that there are values for which DEF is false. Obviously, these values cannot be

named constants or terms built from constants. This raises the questions of consistency

and of what the models of the sorts are like. In the extended semantics, each sort must

3 except for array sorts with no components, such at ARRAY[l..O] OF t.



14 Consistency of the theories of DEF and datatypes.
.

have a theory whose models contain at least one unnamed element. This requirement is

easily satisfied, but it must be taken into account in choosing axioms for each sort. For

instance, axiom DEF2 permits the models of enumerated sorts to contain extra elements

which are not DEF. Consequently, all finite simple and compound sorts  have extra

elements that are not DEF.

The extended semantics is intended to be used with a “standard” theory  of the integers,

and with standard theories of data structures with the selection and assignment

operations [I 11. Each of these theories  has a standard  model containing only the values

for which DEF is true in the extended semantics. It would be possiole  to assure the

consistency of the combined theories by restricting the axiomatization of data structures

to values for which DEF is true. Under this approach, if Vx P(x), is a standard  axiom

for a certain sort,  then Vx DEF(x)2P(x),  would be chosen as the corresponding axiom in

the extended semantics. The obvious disadvantages of this approach are that the

axioms are more complicated and proofs would have to establish the truth of DEF for

every term in order  to apply sort axioms. We would like the extended semantics to

have the same sort  axioms as the ordinary system, so we choose  to use the standard

axioms of data structures  and to take advantage of the existence of nonstandard models.

For instance, since all of the standard  integers have constant symbols, the models of our

integer sort under the DEF axioms are the nonstandard models of arithmetic -- models

with extra elements. There is only one point that requires some care, and that is

combining the theories of DEF and arithmetic. The “standard” theory of arithmetic

must not contain the symbol DEF. If an axiom system for arithmetic is used, it must not

contain DEF. For example, if the axiom system has an induction schema, instances

involving DEF cannot be used. Without this precaution, the axioms would give a

contradiction. Suppose that the induction scheme for integers is

a(O)  A ( V n  a(n) 3 Q(n-l)AO(n+l))  2 (Vx a(x)). (W

Then from DEF(0)  and DEF(n) 3 DEF(n-l)ADEF(n+l)  one could deduce Vx DEF(x),

which contradicts axiom DEF7.



Consistency of the theories of DEF and datatypes. 15

Another approach is to use a special axiomatization of arithmetic that allows instances

with DEF. One such scheme for induction on the integer sort is:

e(O)  A ( V n  @(n) 2 @(n-l)d(n+l))  3 (Vx  DEF(x) =) 4(x)). (S-PI

3.2 The relationship between DEF and Inrange

In Pascal, every subrange type is bounded by two constants: ab. Thus according to the

definition of Inrange,  Inrange(x, s) implies DEF(x), if s is a subrange. This follows from

t,he properties of the I ordering of the integers. For example, it is a theorem in the

theories of integer ordering and DEF that

V x  (15x A x14) 3 DEF(x),

because the standard properties of integer ordering imply that

vX(l<XA x14)3(X=1  V X=2 V X=3 V X = 4 )

and each of these constants is DEF. Note, however, that

‘dxvyvz  (DEF(x)  A OEF(z)  A xSy A ye) 3 DEF(y) (3.1)

is not a theorem about DEF, because it cannot be proven from S-P, the special form of

induction on the integers. Indeed, there are nonstandard interpretations of the theories

of DEF and integers for which formula 3.1 is not satisfied.

Also note that it is not necessary for a variable to be Inrange if it is DEF: under the

axioms of DEF, there can be a variable of a declared subrange type, whose value is both

DEF and not Inrange. In the definition of P EAJ Q no program is permitted to assign a

value to a subrange  variable unless the value is Inrange. If P [A] Q holds, a subrange

variable can only be out of bounds before it has been assigned a value.

4 Mom  flaxibb  bqpgos  arm d’-d in section  ?k



16 Fundamental inference rules.

4. Fundamental inference rules.

The following two rules are included in both the unextended and extended definitions:

P {A) Q, Q {B} R
---------------w--
P {A; B} R

Concatenation of programs. (CONCAT)

PuAnQ, QibnR
------B-----I---I-

P IA; B] R

PDQ,  Q {A) R, RDS
- - - - - - - - - - - - I - - - - -

p CA? s

Consequence rule. (CONSEQ)

PDQ,  Q EAl R, RDS
1- - - - - - -1 - - - - - - - -1

p BAD s

These rules will be used implicitly, beginning in the next section on the semantics of

expression evafuation. Later, after P EA] Q has been defined, we will develop its logical

relationship to P {A} Q in more detail.

5. Expression Evaluation.

This section introduces and defines evaluation statements. Evaluation statements have

the forms

Eva1 <Pascal expression>
Locate <Pascal variable>

and in the extended semantics, they can be combined with Pascal statements and

assertion statements to form the general statements which appear inside brackets in a

formula P [An Q Evaluation statements will be used in section 6 to define the

conditions for error free execution of Pascal statements containing expressions and

variables.

The statement Eval E, corresponds to the action of evaluating the expression E, which



Expression Evaluation. 17

may not have side effects. P [EvaI EI] Q is defined to mean that if P holds, then E

evaluates without runtime  error, and if E terminates then Q will hold. Since E does  not

have side effects,  P and Qrefer to states with the same values for variables. By having

two assertions, it is possible to make partial correctness statements about function calls.

For instance, if f is a (strictly) partial function,

Nx> [Eva1 fwn Qh, f(x))

may be a provably true statement about the evaluation of f(x), while the pure first order

statement

P(x) = Qb, f(x))

would not be true since it does  not account for divergence of f(x).

The other form of evaluation statement, Locate V, corresponds  to the action of

computing the location of a variable. The difference between this and evaluating a

variable is that to compute a location, all of the subscripts must be evaluated and all

dereferenced  pointers  must be evaluated, but the variable itself need not have a value.

For instance, to execute the assignment statement A[j]:=e, the subscript j must have a

value in the correct range, but the left hand side A[j] is not required to have a value.

The definition of A[j]:=e  is expressed in terms of Locate A[j], and Eva1 e, since the

right hand side must yield a value. The formula P KLocate W] Q is defined  to mean

that if P is true,  then the location of V can be computed without execution errors, and if

the computation terminates, Q will hold.

The exact meaning of expression evaluat ion is  often  a point of confusion in

programming languages and definitions. The definitions presented here assume that

sufficient restrictions are used to prevent side effects. Pascal 191 assumes a fixed order

of evaluation within statements and expressions, so the final value of an expression is

well determined even in the presence of side effects. It is a simple matter to replace a

function definition which has side effects  by an equivalent procedure definition, by

adding a new VAR parameter to return the function value. Thus it is possible to



18 Expression Evaluation.

rewrite  a Pascal program in which functions have side effects into an equivalent

program in which function calls are replaced by procedure calls and all expressions are

free of side effects.  This transformation would convert the evaluation of an expression

with side effects  into a sequence of procedure  calls involving some new variables to

store temporary values. Since this transformation can be easily mechanized, our Pascal

semantics are indirectly applicable even to programs with function side effects.

If runtime  errors  are not being considered, as in the original Hoare axiom system,

function calls without side effects can be defined by the following rule,

$(X1,  . . * ,Xn,G) {Function f(X1 :tl ; . . . ;Xn:tn):tf; B) Of(X1, . . . ,Xn,G),
P {Eval Al; . . e ;Eval An) If(A1, . . . ,An,G) A (Of(Al, . . . ,An,G) 2 Q)
-----------------------------------------------------------~-

P {Eval f(A1, . . . ,An)} Q

which states that evaluation of f(A 1, . . . ,An) can be reduced to the evaluation of

A l , . . . ,An in order, followed by the application of f, if If and Of are shown to be

valid entry and exit assertions for f. G is the set of read only global variables, and B is

the body of the function f.

A fine point to be considered at the practical level is that some compilers change the

order of evaluation within expressions if there are no side effects. If the evaluation of

an expression terminates, it terminates with the same result under all orderings. Since

the truth of P (Eva1 E) Q depends only on whether evaluation of E terminates and the

value of each subexpression, all orders  of evaluation are equivalent with respect to

P {Eval E) Q The truth of P {Eval E) Q can be determined by choosing any possible

ordering and considering whether it is true for that ordering. Rule Fl above, depends

on choosing one ordering. Thus Fl is correct even if there is reordering.

The situation is different when proving absence of runtime errors.  Then, different

possible orders of evaluation must be considered separately. For instance, an expression

such as f(x)+a[i]  might have a runtime  error if i is out of range. If f(x) is evaluated

first and does  not terminate,  the error cannot occur. But if the order  is changed and a[i]



Expression Evaluation. 19

is evaluated first, the error could occur. Since different orders of evaluation can give

different results, we define P EEval  En Q to be true iff every order of execution is error

free  and Q will hold after every terminating execution.

Another complication is the possibility of short circuit evaluation in Boolean expressions.

In evaluating an expression such as r AND s, when the value of r is False, Pascal permits

compilers to omit the evaluation of s. The expression r AND s is assumed to have the

value False because r is False. Observe that if s does  not terminate or if it has a

runtime  error,  the short circuit has a different partial correctness  semantics from full

evaluation. For example,

P [EvaI r AND sn False

may be true for full evaluation but not for short circuit. Short circuit evaluation is

really  a form of branching within expressions. The axiomatic definition assumes that

full evaluation is used. Some languages, such as ADA, permit short circuit evaluation in

certain contexts but require the user to explicitly request it. This seems to be a cleaner

approach, and we show below (rule E3S) how it can be formalized in the extended

semantics.

In summary, our detailed semantic definition of Pascal statements will be based on

partial correctness  assertions about evaluation of expressions and variables. It is argued

that even in the absence of side effects, the definition of expression evaluation should as

a practical matter account for possible variations in the order  of evaluation. We will

give an axiomatic definition that does not assume any fixed ordering. On the other

hand, function call rule Fl can be used if evaluation order is fixed, or if runtime  errors

are not considered.

The rules defining P [EvaI en Q are as follows:



20 Expression Evaluation.

Expression evaluation.

P KLocate Vl] OEF(V)  A Q
---------------------o-o

P [Eva1  VI Q
(V is any Pascal variable.)

P BEval  A] Q
--------o------------o-

P &val (@ A)I] Q
033

(where @ is one of the monadic operators, +, -, NOT)

The following rule for evaluation of an operator expression contains three conditions.

The first two assert  that A and B evaluate without runtime  error if P holds. These

conditions make the rule independent of any fixed order  of evaluation, by requiring

either operand to evaluate correctly if evaluated first. The third condition states that

after both operands  have been evaluated, Q must hold. Since there are no side effects

and the first two conditions have established that the operands evaluate without errors,

the order in the third condition is not significant. Notice, though, that the first

condition is redundant because the third one also requires A to evaluate safely. In

stating the rest  of the rules, we will omit redundant conditions such as this.

P [EvaI A] True,
P IEva Bl] True,
P IEva A; Eval Bj’j Q
e-----------------o-

P [EvaI A@Bn Q
(where @ is a relation sign or boolean connective.)

(E3)

Rule E3S formalizes evaluation of ADA conditions. In ADA, the boolean conditions for

controlling IF and WHILE statements etc. can have one of the forms

<expression> AND THEN <expression>
<expression> OR ELSE <expression>

which indicate that the left hand expression is to be evaluated first, after which the

right hand expression will be evaluated only if its value is needed to determine the

value of the condition. The following rule for evaluation of A AND THEN B states that it



Expression Evaluation. 21

must always be possible to evaluate A, and that 1) if A is false, Qmust hold, and 2) if

A is true, it must be possible to evaluate B, after which Qmust hold.

P [Evai AI] -A 3 Q,
P [EvaI  A; ASSUME A; Eva1 B] Q
- - - - - - I - - - - - _ - - - - - - _ - - - - - - - - - -

P EEval  A AND THEN B] Q
E3S)

Maxint is an undeclared integer  variable representing the range on which integer

arithmetic operators  do not overflow. The axiomatic definition makes no assumption

about  the values of Maxint. In order  to prove  absence of overflow,  the user m u s t

supply assertions  relating Maxint to the computations in the program.

P EEval  Bg True,
P [rEval A; Eva1  Bn -MAXINTsA@BsMAXINT  A Q
--------------------_________I__________-

P [rEval AeB’Il Q
(where $ is one of the arithmetic operators, +, -, *:)

P EEval  BJ True,
P IfEval A; Eva1 Bj &O A Q
------------------*----------------------

P [EvaI A@Bn Q
E5)

(where @ is DIV, MOD, or 1)

Maxint  can have any value such that  integer  arithmetic does not overflow in the range

-Maxint . . Maxint Note that many computers use twos complement arithmetic, in which

the smallest negative integer has an absolute value one greater than the largest positive

integer.  This situation (and other  possible number systems with asymmetrical ranges)

can be more accurately modeled by introducing a separate variable Minint to stand for

the smallest integer,  and making the obvious changes in rules E2, E4, and E5.

The following rule defines the evaluation of a function call f(A1, . . . ,An), where each of

the Ai is a value parameter  and C is a list of read only global variables. For error free

evaluation of the function call, each of the  Ai must evaluate and yield a value in the

proper  range. The second the third premises of the rule  state that if If and Of are

valid entry and exit assertions for f, then they can be used to show NEval f(A)m  If the



22 Expression Evaluation.

parameters  A and G satisfy the entry condition  If, then Of will hold on exit.  Also,

f(A,G) will be DEF and Inrange -- these properties  are assured  by the declaration rule.

for i=l, . . . ,n, P UEval  Ail] Inrange(Ai,  ti),
If(X1,  . . . ,Xn,G)  {Function f(X1 :ti; . . . ;Xn:tn):tf;  B} Of(X1, . . . ,Xn,G),
P [EvaI Al ; . . . ;Eval  An] If(A,G)  A (Of(A,G) A DEF(f(A,G))  A Inrange(f(A,G), tf) => Q)
~~~~~~~~~-~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~-~~~~~~~-~~~~~~~~~~~~~~~~~ E6)
P UEval  f(A1, . . . ,An)B Q

Location Validlity.

P ULocate  VJ P
(this is an axiom for any declared variable identifier V)

P BLocate Rn Q
I c---------------

P [Locate RF] Q
(where R is of a record type with a .F field)

P UEval  Zl] ZzNIL A Q
I 1--1----------------

P ULocate Ztn Q
(where Z is of a pointer type)

P UEval  I] True,
P [Locate A; Eva1  a Znrange(1,  indextype(  A Q
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

. P [Locate A[Ifl Q
(where A is of an array type)

Example 2: Show Q UEval a[i]+pll]  True, where

(L1)

(La

O-3)

(14)

Q E DEF(i)  A Olill 0 0  A DEF(a[i])  A 01a[i]l25  A DEF(p) A pirNIL  A pl=6  A 1 OOOIMAXINT

with the variable declarations
V/AR a: ARRAY[O:l  001 OF INTEGER;
VAR i: INTEGER;
VAR p: HNTEGER;

By a p p l y i n g  the inference rules in reverse,  we can find simpler  sufficient conditions for

the formula to be true. W e  w i l l  continue  to work  backwards  until we reach  sufficient

conditions  that  are obviously true. At this point, the formula will be proven,  because  it

will  be possible  to construct  a formal  proof by starting with the final conditions  md



Expression Evaluation. 23

applying the inference rules until the original formula is deduced. The first step is to

use rule E4 in reverse,  reducing the problem of proving a statement about Eva1  a[i]+pT

to proving statements about Eva1  a[i] and Eva1  p7.

Q KEval  ptn True,
and Q EEval  a[i]; Eva1  pt] -MAXINT  I a[il+pt 5 MAXINT.

(5*1)
(5.2)

Before finishing the example, we pause to mention a fact about the extended semantics

which is helpful in removing redundancy from proofs. Since expressions do not have

side effects, we can assume in proofs that the state does not change when an expression

is evaluated. The following lemma states this fact in a useful form.

Lemma. t- P [EvaI eD True, lff l- P UEval en P.
t- P [Locate efl True, iff l- P BLocate en P.

Another point about redundancy is that when applying the inference rules directly to

prove P UEval  EI] GI, the proof of error free execution of some subexpressions may appear

many times. A mechanical evaluator of the preconditions can easily take  the repetition

into account and only verify each subexpression once.

Continuing the example, show 5.1:

Q lfEval ptn True

+ QULocate ptn DEF(pt) (by El)

c Q UEval p] ~wNIL  A DEF(pt) (by L3)

c Q BLocate pl DEF(p)  A prNIL  A DEF(pt) (by El)

c Q 2 (DEF(p)  A p#NIL A DEF(pW (by Ll and CONSEQ)

t True. (by definition of Q)

Next, show Q IEva aria True

t Q [Locate aria DEF(aCi1) (by El)

t Q UEval i] DEF(aCil),
and Q BLocate A; Evai in 0% 100 A DEF(aJll) (by L4)



24 Expression Evaluation.

These last two formulas are trivially provable, since the assertion Qimplies that i has a

value, and the whole variable A is always a valid location by Ll. Having shown that

both di] and pr evaluate without any errors, we can use the CONCAT  rule to infer that

one can be evaluated after  the other,  i.e.

Q {Eval a[i]; Eva1  pT) True (by CONCAT). t5*3)

It only remains to show that there is no overflow, formula 5.2.

Q {Eval a[i]; Eva1 pl) -MAXINT  I a[il+pt  5 MAXINT

t Q 2 -MAXINT  I a(i]+pt I MAXINT
(by CONSEQ and Iemma applied to 5.3)

+ True.

Example 3: User defined partial functions in expressions.

VAR x: INTEGER;
VAR a: ARRAY[O:lOOl  OF BOOLEAN;

FUNCTION sqrt(n: INTEGER): INTEGER;
ENTRY True;
EXIT Olsqrtln
BEGIN

X if n < 0, then loop forever without execution errors;
otherwise, set sqrt t integer part of square root n.

x

Suppose the function sqrt has been defined to correctly return the integer square root

of n unless n is negative, in which case it loops forever without runtime errors. Using

the function declaration rule which will be given in section 6.3, it is possible to prove

True UFunction  sqrt(n:INTEGER):INTEGER;  body3  Olsqrt(n)ln. (5.4)

The entry and exit specifications of sqrt can then be used to show that if sqrt is called

with an argument x whose value is less than 100, the location of the variable a[sqrt(x)]

can be computed without runtime  error.



Expression Evaluation. 25

DEF(x)  A xl1 00 BLocate a[sqrt(x)a  True

t DEF(x)  A xl1 00 lfEvai sqrt(x)l)  True, (5.5)

and DEF(x)  A xl1 00 Ilocate a; Eva1  sqrt(x)]  Olsqrt(x)ll  00 (by L4) (5.6)

Using the function call rule E6, the first part 5.5 reduces to

DEF(x)  A ~5100  UEval  sqrt(x)n True

t DEF(x)  A xl1 00 [Eva1  xl True,

and True IFunction sqrt(n:INTEGER): INTEGER; body1 Orsqrt(x)lx,

and DEF(x)  A xl1 00 UEval x3 True A {Olsqrt(x)<x  A DEF(sqrt(x))  2 True)

which are all true.

The second part 5.6 can be simplified

DEF(x)  A xl1 00 [[Locate a; Eva1  sqrt(x)]  Olsqrt(x)ll  00

t DEF(x)  A xl1 00 [EvaI sqrt(x)l]  Olsqrt(x)slOO  (by Ll a n d  CONCAT)

t DEF(x)  A x< 100 UEval xl (Olsqrt(x)lx  A DEF(sqrt(x))  3 Olsqrt(x)s 100)
(by EN

t OEF(x) A x,< 100
BLocate xn DEF(x)  A (Olsqrt(x)lx  A DEF(sqrt(x))  =) Olsqrt(x)<lOO)

(by El)

t DEF(x)  A xl1 0 0  3 DEF(x)  A (Olsqrt(x)lx  A DEF(sqrt(x))  3 Olsqrt(x)llOO)
(by Ll and CONSEQ)

+ True

6. Extended axiomatic semantics of Pascal

6.1 Assume statements

The meaning of the statement ASSUME L, is that L can be assumed to be a true assertion



26 Assume statements

at a certain point in a program. Assume statements do not initially appear in programs,

but can be introduced during the course of a proof to record logical assumptions which

hold at points within a program. For instance, the rule for IF statements reduces a

formula involving IF L THEN Sl ELSE S2 to two  formulas for the two  cases of the

condition L. In one formula, the statement ASSUME L records the assumption that L was

true, and in the other formula, ASSUME -L records the assumption that L was false.

(PAL) 2 Q
- - - - - - - - - - - - - - -

P ~ASSUME  L] Q
(ASSUME)

6.2 Executable statements

Assignment statements

The following rule applies to all assignment statements.

P EEval  en True,
P KLocate pv; Eva1 el] Inrmge(e, type(pv))  A Qly
----------------_---------------------------------------

p Ifpv := e]Q

where pv is any Pascal variable

(ASSIGN)

In order for P upv := en Q to hold, it is necessary for the assignment to execute without

any runtime  errors, and for Q to be true in the updated state. The rule requires the

right hand side, e, to evaluate without runtime  error and to yield an initialized value;

the location calculation for left hand side pv is also required to be free from errors. If

pv is a subrange  variable, the Inrange clause requires the value of e to be in the correct

range. The updated formula Q is formed by substituting e for the Pascal variable pv,

using the definition of substitution given in section 2.2.



Executable statements 27

IF statements

P IEva L; ASSUME L; Sll) Q,
P KEval  L;  A S S U M E  -L; S23]  a
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P KIF L THEN Sl ELSE 5211  Q
(IFI

CASE statements

for i=l, . . . ,n, P IEva X; ASSUME X=Ci;  Sd Q,
P [EvaI Xl Xc{Cl,  . . . ,Cn)
-------------_--------I-----------------------------

P EcASE x 0F cl :sl;  . . . ;c,:sJ  Q
(CASE)

The Ci are lists of constants for each branch of the CASE statement. The second

condition requires the CASE expression X to evaluate to one of the constants in one of

the Ci.

NEW procedure

The following axiom states that the effect of the Pascal statement NEW(x), where x is a

variable identifier of a pointer type, is to change the value of x to a new pointer value

xo, and to add the new value xo to the reference  class.

-(x0 c P O I N T E R S T O (  A DEF(x0) A x&NIL  2 Q IQT
I x#T u (x03 x0

[rNEW(x)n Q (NEWl)

where x is an identifier of type tT (pointer to object of type T),
x0 is a fresh identifier not appearing in Q,
#T is the reference class for type T,
#T u {x0) stands for the reference class after adding an object pointed to by x0.

The antecedents on the left side of the rule state that 1) the value x0 generated by NEW

is a new pointer, not a pointer to the reference  class #T, 2) x0 has an initialized value,

and 3) x0 is not the pointer NIL. The term #T u {x0} represents the new reference class

after the dynamic variable xOt has been allocated. A more complete discussion of

POINTERSTO and the operation of adding new elements to a reference  class can be found

in Ill].



28 Executable statements

The following rule reduces a NEW statement involving a selected variable to a NEW

statement with an argument which is an identifier.

P [NEw(so);  S:=S0n Q
- - - - - - - - - I - - “ - - - - - - - - - -

P [NEW(S)n  Q
(NEW2)

where SO is a new identifier not appearing in the scope, P, or Q.
the declaration VAR SO: type(S) is added to the scope.

WHILE statements

P 2 I,
r [EvaI 6; ASSUME 8; Sn I,
I BEval  Bn -B 3 Q
--------------------___________ (WHILE 1)
P [I N V A R I A N T  I W H I L E  B  D O  Sn Q

fn this rule, the invariant is chosen to be true before each evaluation of the While test

B. The rule can be rearranged to correspond to other choices of invariants.

6.3 Functions and procedures

6.3.1 Function declaration

With the function declaration rule, one can infer that I and 0 are valid entry exit

specifications for a function f, if for inputs satisfying I, the body of the function

executes without runtime  errors and assigns a final value to the function which satisfies

the exit assertion 0.



Function declaration 29

1(X1, . . . ,Xn,G)  A DEF(X1  )A . . . nDEF(Xn) A hfange(X1  ,tl)~ . . . tinrange(Xn,tn)
KBJ O(f,Xl, . . . ,Xn,G) A DEF(f) A Inrange(f,  tf)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (FD)
I(X1, . . . ,Xn,G)  [Function f(X1 :tl ; . . . ;Xn:tn):tf;  BB O(f(X1,  . . . ,Xn),Xl,  . . . ,Xn,G)

where f has the function declaration
FUNCTION f(X1 :tl; . . . ;Xn:tn):tf;
GLOBAL G;
ENTRY 1(X1, . . . ,Xn,G);
EXIT O(f,Xl, . . . ,Xn,G);
B;

The rule requires that the function have only value parameters Xl, . . . ,Xn and a set of

read only globals G. The rule assumes that each of the value parameters has an

initialized value in the correct  range; this assumption is justified by the call rule, which

checks the actual parameters. If global variables are accessed, the entry  assertion must

assert that they have been initialized.

In the exit assertion O(f,X 1, . . . ,Xn), the variable f stands for the value returned by the

function. The rule checks that the body assigns f a value in the correct  range.  As we

will see in section 7.4, the condition Inrange(f,  tf) appearing after execution of the

body is redundant. Because the declaration rule requires f to be DEF after execution of

the body, it is not necessary to require f to be Inrange.

6.3.2 Note on Global Variables

Runcheck requires the user to declare lists of all global variables that could potentially

be accessed or altered by each subprogram. The system  checks the lists by a syntactic

examination of the subprogram body. For instance, a global variable g which is used in

an assignment statement g := e, must be declared read write. Also, if the body of p

contains calls to q, then all globals listed for q must be listed for p.

Reference classes are a special case of global variables which are implicitly accessed or

altered although they do not appear explicitly in the executable program text. If a



30 Note on Global Variables

subprogram evaluates pr, this is considered an implicit access to a reference class. An

assignment pt := e is considered an implicit write to the reference class. The system

requires all reference classes which are used as globals of a subprogram to be explicitly

listed by the user as global parameters.

The presence of a pointer formal parameter does not necessarily imply that a reference

class will be accessed or altered by a subprogram. For instance, a procedure p with a

VAR formal parameter x which is a pointer to an integer,

TYPE ptr = tINTEGER;

PROCEDURE p(VAR x: ptr);
BEGIN x := NIL END;

may assign to x without altering the reference class #INTEGER. No globals would be

listed for this procedure, since it changes only the pointer x and not any of the integer

variables pointed to.

On the other hand, in a procedure p2 which assigns to xt, it would be necessary to list

the reference  class  #INTEGER as a read write global,

TYPE ptr = IINTEGER;

PROCEDURE p2(VAR  x: ptr);
GLOBAL (VAR #INTEGER);
BEGIN xt := 0 END;

because an integer variable accessed by a pointer is changed.

Observe  that depending on the actual argument, a call to the procedure p above could

have the effect  of changing a reference  class, as in the call

TYPE ptr = tINTEGER;
ptr2 = tptr;

VAR y: ptr2;

P(YV; % changes #ptr %



Note on Global Variables 31

which changes the reference class #ptr of variables of type ptr which are accessed  by

pointers. In this case #ptr  is not considered a global, although the call rules do account

for the fact that part of #ptr is altered by being passed as a VAR parameter. Which

reference class is altered in this example depends on the call, not on the definition of p.

For example, in the call

TYPE ptr = tINTEGER;
ptrarray = ARRAYS 1 ..l 001 OF ptr;
ptrptrarray = tptrarray;

VAR z: ptrptrarray:

z is a pointer to variables of type ptrarray, z7 is an array of pointer variables, and

zr[SO]  is a pointer to an integer, and hence the correct type to be an argument to

procedure p. The variable which p changes in this case is an element of an array

accessed by a pointer, and this causes a change to the reference class #ptrarray.

The ability of a procedure  with a VAR pointer parameter to change  different reference

classes depending on the actual parameter, is exactly analogous to the ability of a

procedure  with a VAR integer parameter to change components of different integer

arrays.

PROCEDURE q(VAR x: INTEGER);
BEGIN x:= 0 END; % no giobais %

The first call in

TYPE arr = ARRAY11  ..5001 OF INTEGER;
VAR vl, v2: arr;

qw cm);
qwc~o1);

alters  part  of vl, but the second one alters part  of ~2.



32 Procedure declaration

6.3.3 Procedure declaration

I(X,Y,G)  A DEF(X1  )A . . . ADEF(Xm)  A hrange(Xl,tl)~  . . . nhrange(Xm,tm)
EBn OWXG)

-_-------------_----______l____________l-------------------------------------- U’D)
I(X,Y,G) I[Procedure  p(X1 :tl; . . . ;Xm:tm;  VAR Yl :ul ; . . . ; VAR Yn:un);  Bn O(X,Y,G)

where p has the procedure deciaration
PROCEDURE p(X1  :tl ; . . . ;Xm:tm; VAR Yl :ul ; . . . ; VAR Yn:un);
GLOBAL GR, VAR GW;
ENTRY I(X,Y,G);
EXIT O(X,Y,G);
B;
GR are the readoniy global variables,
GW are the read write global variables,
G stands for the set of all global variables, GR u GW.

Like the function declaration rule, the procedure declaration rule assumes that the value

parameters are initialized by each call with values in the correct range On the other

hand, there is nothing unusual about procedures that work correctly with uninitialized

VAR parameters. Consider a simple procedure p which is called with an integer j and

two array variables, x and y, and assigns x[j] the value y[j].

TYPE s = 1 ..l 00;
TYPE arr = ARRAYIs OF INTEGER;

PROCEDURE p(j: s; VAR x, y: ad;
BEGIN

xCj1 := yCj1;
END;

Since the procedure does not test the range  of j before executing the assignment, a call to

p will produce a subscripting error unless j is between 1 and 100. Also, the actual

variable supplied for y[j] must have been assigned a value before the call to p. No

other  restrictions are needed to assure error free execution. In particular, p will work

regardless of whether x has been initialized, and regardless of whether portions of y

other than y[j] have been initialized. For instance, the following sequence executes

without errors.



Procedure declaration

VAR a, b: arr;
VAR k: INTEGER;

33

BEGIN
k := 50;
b[k] := 1000;
ptk, a, bk

% now a[501 = 1000 %
END;

The behavior of p can be specified by providing it with entry and exit assertions.

TYPE s = 1 ..lOO;
TYPE arr = ARRAY[sl  OF INTEGER;

PROCEDURE p(J: s; VAR x, y: arr);
INITIAL y = y0;
ENTRY DEF(y[jl);
EXIT y = y0 A x[jl = ycjl;
BEGIN

xCj1 := yCj1;
END;

The entry assertion states that y[j] has a value when p is called. Note that since j is a

value parameter with a subrange type, the declaration rule assumes that it will be

supplied with a value in the correct  range  -- this will be checked by the call rule. The

Initial statement simply introduces a new name y0 to stand for the initial value of y at

the time of entry to the procedure. The exit assertion states that the value of y is

unchanged, and that x[j] is equal to y[j].

To summarize the point of this example, all of the rules for subprograms assume that

value parameters must be supplied with initialized values in the correct range. This is

our interpretation of what it means to correctly call a subprogram with a value

parameter. No such assumption can be made for VAR parameters, and so it is

necessary to describe the behavior of each one by means of entry and exit assertions.

It is of course possible for there to be implementations of Pascal, in which calls with

value parameters will produce the desired results in some cases even if the actual

parameter is not fully initialized. This is merely an artifact of certain possible



34 Procedure declaration

implementation techniques. Our definition attempts to capture what is meant by the

language itself, and is intended  to be sufficiently restrictive to be consistent with all

possible implementations.

As was mentioned earlier, the initial value of local variables is not specified by the

function or procedure declaration rules. Another approach, which seems reasonable at

first glance, is to assert that every local is initially undefined. This is not needed in the

extended semantics, because for P [A]1 Q to be valid, every variable must be assigned a

value which is DEF before its value is used.

The declaration rules could be modified to specify an initial value for locals, but this

would unnecessarily complicate the definition and lead to confusion in applying the

extended semantics. It would be possible to introduce a new constant Cs for each sort to

stand for the initial value. The axioms would be changed to state that for each of these

constants, -DEF(C,),  and also -DEF(t)  for terms t formed by selecting components of C,

For each local L, L=C, would be added as a premiss in the declaration rule. But this is

an unnecessary complication. Also, it does  not accurately model the implementation of

Pascal, in which initial values are left unspecified to reduce overhead. For this reason,

it would give confusing results in practice. If a program, A, never used two  variables of

the same sort,  x and y, and otherwise executed without errors, it would be possible to

prove that the variables were equal after the program,

P {A3 x=y.

Such a result differs  from the implementation and probably conceals a programming

error.

6.3.4 Procedure call

The procedure call rule requires each value parameter to evaluate without runtime



Procedure call 35

.

error,  yielding a value in the correct  range,  and each VAR parameter to yield a location

without runtime error.

for i=l,. . . ,m, P [EvaI Aij Znrange(Ai,  ti),
for i=l, . . . ,n, P [CLocate  Vi] True,
I(X,Y,G) (rprocedure p(X1  :tl; . . . ;Xm:tm; VAR Yl :ul; . . . ; VAR Yn:un);  B] O(X,Y,G),
PO[EvalAl;... ;Eval Am; Locate Vl; . . . ;Locate  Vn] Disjoint-set(V  u G) A I(A,V,G)

A vz,Gw (o(A,Z,GR,GW)  3 GII”:,  . . . “,“,,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P (rp(A1, . . . ,Am,Vl, . . . ,Vn)l Q
(pm

Each of the actual VAR parameters, Vi, must be a distinct Pascal variable not in GW.

Note that this definition depends on the definition of substitution when Vi is not an

identifier.

7. Metatheory of the extended definition

In this section, we discuss some properties of the extended definition which are helpful

in reducing the complexity of program specifications and the length of proofs.

By itself, the extended semantics is not a complete solution to the problem of verifying

the absence of common errors. In practice, there are two main kinds of difficulty in

doing actual verifications. These practical difficulties were  carefully considered  in the

design of the Runcheck system.

The problem of redundancy in proofs is solved in Runcheck by a special simplifier

which efficiently eliminates redundant verification conditions.

A more serious problem is the need for lengthly, detailed specifications and inductive

assertions in programs. Several distinct approaches are needed to deal with this

problem. In Appendix A, we discuss the derived WHILE rule, which shows how the

extended definition reduces the need for detailed documentation. The derived WHILE

rule and other rules are logically justified by certain simple properties of the theory of



36 Metatheory of the extended definition

the extended definition, which are presented in the remainder of this section.

7.1 Ordinary Semantics Lemma

Any specification provable in the extended definition is also provable in the ordinary

definition.

Lemma 7.1 If I- P KA] Q, then I- P {A) Q.

The significance of this lemma is that all specifications, even those involving DEF, are

theorems  of the ordinary system. 5 The extended definition only places more restrictions

cm the allowable computations. Consistency of the extended definition is a direct

consequence of this lemma

7.2 Specification lemma

When proving complicated specifications for a program, it is sometimes helpful to prove

the specifications without considering possible runtime  errors, and then prove separately

that no errors occur. In this way, the details about runtime  errors can be isolated in the

proof. The next lemma says that  proofs  in the extended definition can always be

factored  in this manner.

Lemma 7.2 If I- P {A) Q, and J- Pl KAj Ql, then t- PAPS [TA] Q/\Ql.

The reason for this is that if both P {A) Q and Pl aA] Ql can be proven separately,

then it is always possible to combine the proofs  to show PAPI [fl Q/\Ql.

The design of the automatic Documenter in Runcheck is based on this lemma The

5 In the  case of built in procedures, it is necessary to choose slightly nonstandard definitions if the resulting system is to be
complsts with respect to specifications involving DEF. The  “ordinary” system that we have in mind has  axioms stating that the
r8eults of built in procedures such as READ rnd NEW srs DEF.



Specification lemma 37

documenter constructs inductive assertion@  that are valid in the ordinary semantics.

The assertions can then be assumed true in proofs in the extended semantics. Thus the

documenter does not have to consider possible runtime  errors while constructing the

invariants.

7.3 LESSDEF lemma

One of the basic properties of the extended definition is that if P ES3 Q holds, S cannot

assign an uninitialized value to any variable. Over any sequence of statements that

executes without runtime error, the extent of variable initialization cannot decrease.

LESSDEF(x,  y), a prtiicate  for two terms of the same sort, is defined to be true if y is at

least as completely initialized as x.

LDl) if x and y are of the same simple sort,
LESSDEF(x,  y) = OEF(x)aDEF(y).

L02) if x and y are of the same record sort, and the field names are fl, . . . ,fn,
LESSDEF(x,  y) = LESSDEF(x.f  1, y.f 1)~ . . . ALESSOEF(x.fn, y.fn).

LD3) if x and y are of sort ARRAY[a..bl OF t,
LESSDEF(x,  y) = ( V j  aljrb 3 LESSDEF(xCj1,  ycjf)).

LD4) if x and y are of sort REFCLASS(t)  for some t,
LESSDEF(x,  y )  c (VpPOINTERSTO(x)  LESSOEF(xcpq  ycp~)).

The LESSDEF lemma says that for any variable in a program that executes without

errors, the final value will be at least as fully initialized as the initial value.

Lemma 7.3 If t- P [An True, and v is a declared variable identifier then,

I- P A v’=v [AD LESSDEF(v’,  v)

where v’ is a new identifier not appearing in P, A, or the scope.

’ Refer to [2]  for dstrib of ths documenter.



38 LESSDEF lemma

In Runcheck, the lemma is used to reduce the need for detailed assertions on loops and

procedures. If a variable is known to be DEF before entering a loop, it is not necessary

to state in the invariant that it continues to be DEF. Similar assertions about VAR

parameters can be omitted from procedure specifications.

-ample  4: Merging two sorted arrays

This example shows how Runcheck uses the Lessdef lemma to reduce the need for

repetitious, detailed assertions. The program takes as input previously sorted arrays A

and B of length 100 and merges their contents into the array C, which has length 200.

The user has supplied only an ENTRY assertion saying that A and B are fully

initialized, and an EXIT assertion saying that C is fully initialized. The interesting

aspect of this example is that the initialization of C takes place in two loops. The first

loop partially initializes C, merging elements from A and B until either A or B has been

completely transferred. Then the initialization of C continues in either the second loop

or the third loop.

TYPE INARR=ARRAY[l  : 1001 OF INTEGER;
TYPE OUTARR=ARRAY[  1:2003 OF INTEGER;
VAR I,J,N:INTEGER;
VAR A,B:INARR;  C:OUTARR;
ENTRY OEF(A)ADEF(B);
EXIT DEF( C);
BEGIN
N:=lOO;
I:=1 ;
J:=l ;
INVARIANT DEFRANGE(  7,Z+J-2, C)

A I<ZA ZgN+7 A 7sJ A JgN+7
WHILE (IIN)  AND (JsN) 00

%EGIN
IF A[I]sB[Jl  THEN BEGIN CCI+J-1  I:=ACII;  I:=I+l EN0

ELSE BEGIN C[I+J-l]:=B[J];  J:=J+l END;
END;

Z’*Z;
INVARIANT DEFRANGE(Z’+N,  Z+N- 1, C) A Z’<I h I,< N+7
WHILE IsN DO BEGIN C[I+N]:=A[I];  I:=I+l END;
J’CJ;
INVARIANT DEFRANGE(J’+N,  J+N- 7, C) A JIgJ h J,(N+ 7
WHILE JsN DO BEGIN C[J+N]:=BtJ];  J:=J+l END;
END



LESSDEF lemma 39

The system will verify

DEF(A)  A DEF(  8) Ibody DEF( C)

i.e., that the program does not have any execution errors and that no elements of C are

missed. All of the other variables are initialized before the first loop. Still, it is

necessary to prove that they are DEF each time they are accessed. In the case of a

variable such as I, Runcheck uses the Lessdef lemma to infer that it has a value

everywhere in the program after the assignment I:= 1. Even though I is changed on the

first loop, it is not necessary to write DEF(1) (or A, B, J, N) as an invariant.

In many array programs, the arrays are either supplied as fully initialized parameters,

or are initialized at the beginning. Without the Lessdef lemma, it would be necessary to

have invar iants  repeat ing the fact that  an array  or other data structure  is DEF at

various points within a program.

Consider now the more complicated case of proving DEF(C).  The system automatically

generates the statements shown in bold italics. By examining the first loop, one can see

that at any time, values have been assigned to the positions C[l], . . . ,C[I+J-21. This

fact is discovered by the system and is expressed in the invariant as

DEFRANGE( 1, I+&2, C).

DEFRANGE is a special predicate used to express that a subrange of an array is DEF.

Its definition is

DEFRANGE(x,y,a)  P (Vi xl&y 2 DEF(aCi1)).

The invariant for the second loop states that C[I’+N], . . . ,C[I+N-I] are DEF, where I’

stands for the value of I before entering the second loop. Similarly, the assertion for the

third loop states that C[J’+N],  . . . ,C[J+N-I]  have been assigned values. The system

also produces the arithmetic inequalities shown on each loop.

To be able to prove the exit assertion, DEF(C),  it is necessary to show that all of



40 LESSDEF lemma

C[l], . . . ,C[200] have values after the third loop. Notice that each invariant only

describes the initializations done by its own loop. For instance, the third invariant only

deals with the last part of C, and does not repeat the fact that the first part of C is

initialized by the first loop. Runcheck uses the Lessdef lemma to infer that the first part

of C continues to be DEF, even though that fact is not included in the later invariants.

Thus the invariants shown are sufficient to prove that C is fully initailized on exit.

The documenter’s assertions are also sufficient to show that the program executes safely.

7.4 lnrange lemma

The Inrange lemma says that a program for which P [AI] True holds cannot cause the

value of a subrange variable to become out of range  (when started in a state which

satisfies P). If a subrange  variable is known to always be DEF at some point in a

program that executes without errors, then the variable must be Inrange at that point.

To begin, we define Inrangsk,  a formula constructor similar to Inrange.  The difference

between the two is that Inrange asserts that a subrange  variable is in the correct range

and  is always true for other types, while Inranp asserts that every subrange  variable

contained as a component of its argument is in the correct range.

Definition. Inrange* is a mapping <Pascal variable> x <type> + <formula>. For simple
types,  Inrange*(v,  t) is true if Inrange(v, t) is. Inrange*(v,  t) is true for a compound
type if Inrange*(c, type(c)) is true for every component c of v.

The idea of the Inrange lemma is a characterization of the possible sets of states of

programs that always execute without runtime  errors. Any actual execution must begin

in the outermost block with all variables uninitialized. Data needed by the program is

obtained by a READ procedure which always returns values that are DEF and Inrange.

Given that the program always runs without errors, what do we know about the set of

all possible states if it terminates? Variables that the program assigns to every time it is

run will always be DEF and Inrange* at the end. Variables that are never touched by

the program will be completely unspecified at the end. Variables assigned to on some



Inrange  lemma 41

runs but not on others can be -DEF at the end, or can have a value dependent on the

values of the other variables. If the value is dependent on the other variables, it must

be an Inrang-  value. The essential point is: If a program determines the value of a

variable, the value must be Inrange*. If a variable is always DEF at the end of a

program, then it must always be Inrange*.

Definition. Let X be the set of simple components of the declared variables. For

instance if v is declared

VAR v: ARRAY CL.21 OF RECORD f:INTEGER;  g:ROOtEAN  END;

then X will contain the variables vC1 l.f, v(2l.f, v[l ].g, v12l.g.  Note that X is a set of

variables, not a set of the values the variables. A state of a program is an assignment

of values to each of the elements of X. To refer conveniently to the value of a given

variable FX and the overall state, we will use the notation that the y-form of a state is

a pair <z,Z>, where z stands for the value of y, and Z stands for the values of the

variables in X-(y).

A set S of states is DEF-convex for the variable y, iff- -

for all Z,
(VZ <z,Z>cSy =) DEF(z))  implies (VW (w,Z>cSy = Znrangehw,  type(y))).

where Sy is the set of states in S, represented in y-form.

A set of states of X is DEF-convex iff it is DEF-convex for every variable in X. A

formula containing free occurrences of declared variables is DEF-convex iff it is

satisfied by a DEF-convex set of states.

Examples: assume the declared variables are
VAR x: INTEGER;
VAR y: 1 ..l 0;

(7.1) True, False both DEF-convex
(7.2) y=2 DEF-convex
( 7 . 3 )  y=40 not DEF-convex
( 7 . 4 )  y*40 DEF-convex
(7-5)  DEF(y) not DEF-convex



42 Inrange lemma

( 7 . 6 )  x=1 2 y=2 DEF-convex
( 7 . 7 )  x=1 3 y=40 not DEF-convex

If S is the set of final states of a program that does not have runtime errors, then S is

DEF-convex.  In the examples, a program can set y to 2, so 7.2 is DEF-convex, but 7.3

cannot be DEF-convex because 40 is out of range. Although y+40 is DEF-convex, it is

not a possible set of final states  - the DEF-convex sets include more than final states

sets. To attempt to characterize only final states would require much more detail than

we need here. Note that 7.5 is too weak to be a final set of states because it includes

both 7.2 (a possible set) and 7.3 (an impossible set).

Lenrma 7.4a If a program is started in a DEF-convex set of states and always

executes without runtime error, then the final set of states will be DEF-convex.

It follows that if a program always leaves a variable DEF when it halts, the variable

must be Inrange* at the end,

Lemma 7.4b If B is a Pascal statement, pv is a Pascal variable, P is a DEF-convex

predicate, and k P KB] DEF(pv), then i- P EBl Znrange*(pv,  fype(pv)).

The restriction on P in this lemma is necessary. Recall that extended semantics does not

specify the initial values of variables, and that subrange  type variables have the same

sort as the base type of the subrange. Consequently, there is nothing that says a

subrange  variable cannot be out of range if its value is not assigned by the program.

The following formula is a a theorem,  even if the variable S declared with a subrange

of only L.100.

i- S=500 Bernpfyn  DEF(S) A S=500.

Of course, the extended definition checks that any program that uses the value of S first

assigns it a value in the proper range.

Runcheck makes use of a restriction that the entry assertion for the outermost block of a



Inrange lemma 43

program must be DEF-convex.’ With this assumption, Runcheck can infer bounds on

the value of a subrange  variable if it is known to be DEF. In some cases, this can

permit lengthly assertions to be omitted. For instance, if a complex data structure

c o n t a i n s  subrange  variables and the entire  data structure  is DEF,  bounds for the

subrange variables can be deduced without any additional assertions. By induction on

the depth of procedure calls, the lemma can also be applied to formal parameters when

reasoning about a procedure body. Since a value parameter v must  be DEF on entry,

Inrangti(v,t)  must be true initially. Variable parameters do not have to be DEF on

entry, but if the value is used somewhere in a procedure body it must be possible to

prove that the variable is DEF and the Inrange lemma applies at that point.

Ehcample  5: Constructing a Spanning Tree.

The following program is a simple algorithm [ 121 for finding a spanning tree of an

undirected loop-free graph with E edges and V vertices. If the graph is disconnected, it

grows a spanning forest. The graph is entered as a table of edges  in the arrays IA and

JA, so that the vertices of the kth edge are IA[k]  and JA[k]. The program stores the

indices of the spanning tree’s  edges  in Till, . . . ,T[V-P], where P is set to the number of

trees in the spanning forest.

This example illustrates the use of subranges and the inrange lemma to strengthen the

entry assertion of a procedure. Since IA and JA are tables of vertices, they have been

declared  as arrays of subrange values IV. It is typical in graph manipulating programs

to use a value stored  in one array to compute an index into another array. Here, the

variable I is set to IA[K]  and then VA[I] is accessed. For the latter access to be in the

subscript range 1:V of VA on every iteration, all elements of IA must have been in the

’ In m actwt  Pasal  program,  no rssumptions an be m& &out  tb initirl  vrlues  of vrrbbles  decbrad in l outermost bbck.  To
be strictly nrlistic,  t)n  vorifior should not permit ontry rssortions thora.  Thv  are permitted as I smrll  convanianco;  l mrin bkxk
with an entry wtion  is constirud  to b a shorthand for 8 procedure  with gbbals. The signifiunco  of this is thrt the truth of
the entry rrrsortion  must be rssurod by some ailing  program  i.e.  it is possible to decbre l procedure with rn entry msartion  that
is not DEF-comnx,  but its rctwl  wt of entry strtos  is thn l DEF-convex restriction of the dacbred entry condition.



44 Inrange lemma

range initially. Because IA and JA are value parameters, their initial values must be

DEF, and by the inrange lemma, Runcheck can infer that the elements are in the correct

range. Similar reasoning is required for other array accesses.

VAR E,V:INTEGER;

PROCEDURE SPANNING(IA,JA:  ARRAY[l  :El OF 1 :V;
VAR P: INTEGER;
VAR T: ARRAY[l  :V-11 OF INTEGER);

ENTRY DEF(E)  A DEF(V)  A 1sE A 2sV;
EXIT TRUE;
VAR I,J,K,C,N,R:  INTEGER;
VAR VA: ARRAY[l  :V] OF INTEGER;

BEGIN
c:=o;
N:=O;
FOR K:=l TO V ZNVARZANT I,<K A K,<V+I  A DEFRANGE(I,K-&VA)

DO VA[K]:=O;
FOR K:=l TO E

I N V A R I A N T  l,<K A K,<E+?  A OSN A O,<C  A N,<K-I A C,<K-I A K$V+N-1
DO BEGIN

IF K-N=V-1 THEN GOT0  1;
I: =IA[K];
J:=JA[K];
IF VA[I]=O  THEN
BEGIN

T[K-N]:=K;
IF VA[J]=O THEN BEGIN

C:=C+l ;
VA[J]:=C;
VAtI]:=C;
END
ELSE VA[I]:=VA[JI;

END
ELSE IF VA[J]=O  THEN
BEGIN

T[K-N]:=K;  VA[J]:=VA[I];
END
ELSE IF VA[I&VA[JI THEN
BEGIN

T{K-N]:=K; I:=VA[I]; J:=VA[JI;
FOR R:=l TO V INVARIANT I,(t? A RgV+I

DO IF VA[R]=J  THEN VA[R]:=I;
END
ELSE N:=N+l

END;
1: P:=V-E+N;
END;



Inrange lemma 45

Note that IA and JA could have been declared as arrays of INTEGER, and the restriction

on the values could have been part of the entry assertion. Expressing the restriction

would involve a quantified assertion such as

Vx (1 <xsE 2 1 <IA[xlsV).

This is both more difficult to write than the subrange type specification, and it causes

difficulty in theorem proving.

8. Generalizations of the extended semantics

8.1 Dynamic subranges

There are programming languages more flexible than Pascal, which allow declaration of

dynamic subranges. ADA, in particular, has flexible dynamic type declarations. A

reasonable extension to Pascal is to permit subrange  declarations involving expressions,

3

TYPE s = l..2*x;

The expressions for the bounds are evaluated each time the scope is entered, and the

range of s is fixed for the duration. Dynamic arrays can be obtained by using a

dynamic subrange  as the index type for an array etc.

The extended semantics can be adopted to handle dynamic subranges by defining

Inrange(e,  s) to refer to the values obtained when the expressions for the bounds on s

are evaluated. The declaration rules for functions and procedures would be changed to

check for error free evaluation of the expressions in the type declarations. Also,

depending on the restrictions in the programming language, renaming would be needed

to distinguish between the initial values of the variables appearing in the type

declaration and the values assigned after the dynamic declaration was evaluated.



46 Bounds on depth of recursion and dynamic variable allocation

8.2 Bounds on depth of recursion and dynamic variable allocation

Like the bound for arithmetic overflow,  bounds on recursion and heap storage  are

implementation dependent. In critical applications, the actual bounds may be set in

advance, and one might want to verify that the available storage  will be sufficient. In

other cases, the particular bound is not important, but it might be useful to verify that a

program does  not attempt unlimited recursion etc.

To describe bounds on depth of calls, two new undeclared integer variables are

introduced in the procedure call rule. The variable Stksize represents  the maximum

depth of calling; Stkptr  represents  the  current  depth. The procedure  call rule is

modified to enforce a restriction that StkptrlStksize.  Neither variable can be assigned

to by the program. Stkptr is 0 on entry to a main program, and each level of function

or procedure calling increases it by 1. With these additions, the procedure call rule is

for i=l, . . . ,m, P (rEval Ail] Znrange(Ai, ti),
for i=l , . . . ,n, P KLocate Vi3 True,
I(X,Y,G,S) IProcedure  p(X1 :tl ; . . . ;Xm:tm; VAR Yl :ul; . . . ; VAR Yn:un); 61 O(X,Y,G,S);
P aEva Al;. . . ;Eval  Am; Locate Vl; . . . ;Locate Vn] Disjoint-set(V  u G)

A I(A,V,G,Stkptr+ 1 ,Stksize)
A VZ,GW  (O(A,Z,GR,GW,Stkptr+l  ,Stksize) 2 Q
/\ Stkptr+l&tksize

I
Vl Vn

Zl l ** Zn
1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P [p(Al, . . . ,Am,Vl, . . . ,Vn)]  Q

where  S stands for the set of variables {Stkptr, Stksize}. Note that in practical

applications, it might be important  to use some measure of the actual amount of stack

space used by a program instead of just the depth of recursion. It would be simple to

define a different function that depended e.g., on the number and types of variables in

the procedure, for incrementing Stackptr. To measure the heap storage  used, counters

can be added to the rules for NEW statements.



Bounds on depth of recursion and dynamic variable allocation 47

Example 6: Recursive Tree Traversal.

Type PTR is defined to be a pointer to a record with .A and .B fields of type PTR.

The recursive procedure WALK simply does a depth first walk on a tree P. To avoid

stack overflow, P must not lead to any cyclic list structure and there  must be enough

roan on the stack for DEPTH(P, #REC) procedure calls, so Stacksize must be greater than

or equal to Stackptr+DEPTH(P,  #REC).  Stackptr and Stacksize are declared as VIRTUAL,

variables to indicate that they may appear in assertions, but may not be used in

executable parts of the program. ACYCLIC and  DEPTH are user defined symbols for

documenting programs that operate on trees. The assertion DEF(#REC) states that every

allocated record in the heap of type REC is fully initialized. This assures that WALK

will not encounter uninitialized dynamic variables.

TYPE PTR=tREC;
REC=RECORD A:PTR; B:PTR END;

VIRTUAL VAR Stackptr, Stacksize: INTEGER;

PROCEDURE WALK(P:PTR);
ENTRY ACYCLIC(P, WREC) A DEF(#REC)  A Stacksize 1 Stackptr+DEPTH(P,  #REC);
EXll TRUE;

BEGIN
IF bNIL THEN BEGIN WALK(Pt.A); WALK(Pt.B) END;
END;

The proof depends on two lemmas about acyclic list structure, If p is a pointer to

acyclic list structure  in the reference  class rr, then pr.f points to acyclic list structure. If

p points to acyclic list structure, then the depth of pt.f is less than the depth of p.

ACYCLIC(p,  #r) A pleNIL  =) ACYCLIC(pt.f,  #r)
ACYCLIC(p,  #r) A r#NIL =) DEPTH(pt.f, #r) 5 DEPTH(p,  #d-l

(where .f is .A or .B)

The lemmas are provided by the user to the system in the form of inference rules [13]

to be used by the theorem prover.



48 Procedure Parameters

8.3 Procedure Parameters

Procedure (and function) formal parameters in Pascal have the weakness that the

arguments of formal procedures are not declared. It is not possible to determine

syntactically whether a procedure parameter is called with the right number and type of

arguments. It is a simple matter to tighten the language by introducing more detailed

declarations; if this is done, the usual syntactic checks  can be performed for procedure

parameters, and they can be included in the axiomatic definition.8 As an example of a

program using more detailed declarations, Sum(a,b,f)  computes the sum of f(x) when x

ranges  from a to b.

FUNCTION Sum(a,b:INTEGER;  f:FUNCTION(INTEGER):INTEGER):  INTEGER;
VAR i,s:INTEGER;
BEGIN

s:=o;
FOR i:=a TO b DO s:=s+f(i);
Sum:=s

END;

Clarke [ 13 shows that any sound and complete axiomatic definition of procedure

parameters in a language with recursion, static scoping, read write global variables, and

internal procedure declarations, must depend on some method of making assertions

about the state of the runtime  stack of local variables. Such an approach would greatly

complicate both the semantic definition and the process of specifying and verifying

programs. Instead, we will make the restriction that functions or procedures with

globals may not be passed as parameters. With this restriction, procedure parameters

can be introduced in a natural manner.

The specification method will be to declare an Entry and Exit assertion for each formal

parameter; these will be used in the ordinary call rules when the formal is called. When

a procedure parameter is passed, the call rules will check that the actual satisfies the

declared specifications of the formal.

8 Thie section  discusses axtensions  planned but not yet imp+amentd  in the verifier.



Procedure Parameters 49

Nesting of procedure parameters is permitted to any finite depth. Thus a procedure can

have a procedure parameter which takes another procedure as one of its parameters, but

self application of procedures is not possible. The various possibilities are illustrated in

the example below: a procedure p has value parameters U, variable parameters V, a

function parameter s, and a procedure parameter  q. The procedure q takes a function

parameter r.

The main specification given for p is a set of entry-exit assertions, Ip and Op. An

occurrence in the assertions of the formal function parameter s as a function sign stands

for the value of the functional parameter, and not for a constant function. The

assertions may be thought of as first order schemes, which the procedure call rule adopts

to particular calls by substituting the actual function sign for the formal s. To

distinguish this kind of substitution from sustitution for free variables, the following

notation will be used.

Notation: Nf](X) is a formula containing the function sign f and free variables X. After
a particular formula Nf](X)  has been introduced, we will write Q[g](Y)  to stand for the
result of replacing the function sign f by g and substituting Y for X in Q.

Each formal procedure parameter has a declaration in p of its entry-exit assertions.

The declarations are like ordinary procedure declarations, except that the reserved  word

FORMAL is used in place of the procedure body. Since the formal parameter q takes a

function r as an argument, the declaration of q has a declaration for r nested inside it.



50 Procedure Parameters

Declarations with procedure and function formals.

PROCEDURE p(lJ;  VAR V;
FUNCTION s(Y):t;
PROCEDURE q(W;  Function r(Y):t));

FUNCTION s(Y):t;
ENTRY Is(Y);
EXIT Oscsl(Y,s);
FORMAL;

X specifications of formal parameter s %

PROCEDURE q(W;  Function r(Y):t); % specifications of q %
Function r(Y):t; % specifications of formal parameter of q %
ENTRY Ir(Y);
EXIT OrCrl(Y,r);
FORMAL;

ENTRY Iq[rl(W);
EXIT OqCrl( W);
FORMAL;

GLOBAL GR, VAR GW;
ENTRY Ip[sl(U,V,G);
EXIT Op[sl(U,V,G); % specifications of p %

BEGIN pbody END; % executable statements of p %

Notation: In the following rules, entry-exit assertions enclosed in brackets, 4X,02+,  are
included in the procedure headers as an abbreviation for the full procedure declarations
as shown above.

The idea of the declaration rule is to use the declared entry exit specifications of the

formal parameters, in this case s and q, to prove the specifications for p. Then for calls

to p, the call rule will check that the actual function and procedure parameters satisfy

the specifications declared for s and q.

Example Procedure declaration.

{Is(Y) IFunction s(Y):t;  FORMAL3  OSCSI(Y,S),
Iq[r](W) EProcedure q(W; r:<Ir,OrB);  FORMAL3  Oq[rl(W))

l- Ip[s](U,V,G)  A DEF(U)  A Znrange(Ui,ti)  [pbodyj OpCsl(U,V,G)
---.----------------------------------------------------------------------

IpLsl(U,V,G)
[Procedure p(U;  V; s:<Is,OsB; q(W;  r:<Ir,Or>):<Iq,Oq>);  pbodyn  OpCsl(U,V,G)

03.1)
(8.2)
(8.3)



Procedure Parameters 51

ExampleProcedurecall.

for i=l, . . . ,m, P [EvaI Ail Inrange(Ai, ti),
for i=l,. . . ,n, P lfLocate  Bin True,

(8.4)
(8.5)

EProcedure p(U;  V; s:gIs,Os>;  q(W; r:<Ir,Or>):<Iq,Oq>);  pbody] Optsl(U,V,G),
U3.8)

Is(Y) IFunction c(Y):t;  cbodytY]lj  OsCc3(Y,c), (8.7)

Iq[r](X) [Procedure d(X; r:#Zr,OrB); dbody[X;rll)  Oqhl(X), (8.8)

PuEvalAl;.. . ;Eval Am; Locate Bl;  . . . ;Locate Bnn Disjoint-set(B  u G)
A IpCd(A,B,G)
A VZ,GW  (Optcl(A,Z,GR,GW)  3 QI”:,  . . . Fn,

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
P up(A,B,c,d)n  Q

(8.9)

In the declaration rule, the specifications of the procedure parameters s and q are used

as assumptions (8.1 and 8.2) for proving the entry-exit specifications of the main

procedure p. This rule can be justified by the type requirements, which do not permit

self applications that could lead to circular proofs.

For the procedure call, conditions 8.4, 8.5 and 8.6 are as before. Condition 8.7 checks

that the actual function parameter c satisfies the specifications of s; 8.8 checks the entry-

exit assertions for the actual procedure d.

9. Discussion

Our definition of Pascal describes some important aspects of the language that  have not

been included in previous axiomatic definitions. We began by recalling that a proof of

P {A) Q does not give any assurance that a program will be free from runtime  errors,

and argued that  a stronger relation, P UA] Q, is a better indicator of program reliability.

As part of our presentation of Pascal semantics, we have developed a precise and

comprehensive definition of the evaluation of expressions and Pascal variables, using

partial correctness statements to account for function calls within expressions. Previous



52 Discussion

axiomatic definitions have not dealt fully with the semantics of function calls within

expressions. We then used the definition of evaluation to define Pascal statements,

procedures and functions. The complete definition is very concise, although it captures

many complicated details of the language. One of the crucial advantages of our

axiomatic technique is its simplicity; absent are the clouds of obscuring notation

commonly found in denotational definitions. The clarity and simplicity of our approach

are of greatest importance when the definition is actually used to verify programs;

because program specifications and the proofs are also simple and understandable, the

user is free to concentrate on the real issues surrounding a program and its correctness.

Our axiomatic definition has been part of a development with the goal of building a

useful automatic verifier. This has influenced the definition in several ways. One

important requirement for useful verification is to have convenient methods for

specifying programs. In Runcheck, specifications are greatly simplified by having a

single predicate, DEF, as the basis of all predicates referring to variable initialization.

The Lessdef and Inrange lemmas also eliminate the need for certain kinds of detail in

specifications. Although the idea of derived inference rules is by no means new, this

technique is more useful in practice than has been previously realized.

Appendix A= Development of the WHILE Rule.

This section explains the actual While rule used in Runcheck. The rule of section

sect ion 6.2,

I [EvaI  B; ASSUME B; Sn I,
I UEval  Bl] -B 3 Q
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P [ INVARIANT I  WHILE B  DO sn Q
(W HILE 1)

does not help to reduce the need for detailed invariants and is not convenient to use in

practice. The implemented rule has four additional features:



Appendix A: Development of the WHILE Rule. 53

1) It adds an invariant referring to the evaluation of the While test, B. B is evaluated

once on each iteration, and so it must be an invariant of the loop that B can evaluate

safely.

2) It makes it unnecessary for the invariant to refer to variables which cannot be

changed in the loop. This has been previously called a j+ame axiom 18,141.

3) It applies the Lessdef lemma, adding to the invariant the information that variables

changed on the loop cannot become less fully initialized.

4) Runcheck’s automatic documenter generates invariants which are valid in the

unextended semantics. Because proofs in the extended semantics can be separated, with

part done in the ordinary semantics (Specification lemma), the extended While rule can

assume the validity of documenter invariants without reproving them.

We now discuss the implementation of these changes.

1) From the definition of P [Eva1 en 9, one can write down a sufficient precondition

for e to evaluate without error.  This formula will be called PRECEval  e; True1  As an

example, if the test of a While loop is f(a)+b<O and f has the declaration

FUNCTION f(x: INTEGER): c:d;
ENTRY I(x);
EXIT O(x);
. . .

then the condition

PRECEval  f(a)+blO;  True]
= DEF(a) A DEF(b) A I ( a )

A to(a)  A DEF(f(a))  A clf(a)ld  =) -MAXINTlf(a)+bMAXINT)

is added as an invariant of the loop.

2) The variable identifiers are divided into a subset X which are not changed in the

body of the loop and a subset Y which may be changed. A set of new unique variables,

Y’, is introduced. The extended form of the frame rule is



54 Appendix A: Development of the WHILE Rule.

Nx,y) = mn
P(X,Y)AI(X,Y’)  UEval  B(X,Y’); Assume B(X,Y’); S(X,Y’)] I(X,Yl),
P(X,Y)AI(X,Y’)  [EvaI B(X,Y’)I] -B(X,Y’)  3 Q(X,Y’)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P(X,Y) BInvariant  I(X,Y)  While B(X,Y)  Do S(X,Y)l)  Q(X,Y)

where the Y variables stand for the values of variables before the loop and the Y’

variables stand for the values of variables during or after the loop.

3) For each variable, y, which can be changed in the body, Lessdef(y, y’) can be

assumed to be a valid invariant.

4) Documenter invariants D(X,Y,Y’) can be assumed valid.

The final rule is:

P(X,Y) 2 I(X,Y)APRE,

P(X,Y)/\I(X,Y’)/\PRE/\LeSSdef(Y,Y’)
nD(X,Y,Y’)  UEval  B(X,Y’);  Assume B(X,Y’); S(X,Y’)n  I(X,Y’)APRE,

f (X,Y)AI(X,Y’)/\PREALessdef(Y,Y’)
AD(X,Y,Y’) [EvaI B(X,Y’)]  -B(X,Y’)  3 Q(X,Y’)

---------------------------I---------I--------------------------------

P(X,Y) KInvariant  I(X,Y)  While B(X,Y) Do S(X,Y)] Q(X,Y)
(WHILE2)

where PRE is PRECEval  B;TRUE].

Appendix B: Simultaneous Substitution for DisJoint Variables

In this section, we present the definitions of disjointness for Pascal variables and

simultaneous substitution for disjoint Pascal variables. To begin, we need to define the

translation of a Pascal variable into a standard representation as a sequence consisting

of a main variable identifier followed by zero or more selectors. In the following,

ccl, . . . ,en> denotes a sequence of n terms, and the operator e stands for concatenation

of finite sequences.



Appendix B: Simultaneous Substitution for Disjoint Variables

The function Seq(v):  <Pascal variable> + <term sequence> is defined as follows:

Seq(id) = <id> if id is an identifier
Seq(v.f) = Seq(v)  e <.f>
Seq(vCi1)  = Seq(v)  @ <i>
Seq(vt) = <#t, v> where #t is the reference class

Definition of Disjoint(v,  w)

55

Let v and w be Pascal variables and Seq(v)  = <vO, . . . ,vn>, Seq(w) = <wO,  . . . ,wm>,

and assume msn.  Then Disjoint(v, w) is the following formula:

if v0 and wtl are distinct identifiers, then Disjoint(v, w) + True;

otherwise, Disjoint(v, w) + (vlzwl  v . . . v vnwwm)

The current implementation of Runcheck uses a much more restrictive definition of

disjointness (it only compares v0 and ~0); this restriction is not essential and will be

removed in a later version.

Simultaneous Substitution

We can now define a simultaneous substitution of n terms el, . . . ,en for disjoint

vl, . . . ,vn. Let Seq(vi) = <viO, . . . ,vimi>  for i = 1, . . . ,n. Let tl, . . . ,tn and di. for
J

.
l- 1 8 - -,n,j= I,... ,mi, be new identifiers not appearing in P, the vi or the ei.

Define Unseq: <term sequence> + <Pascal variable> to be the inverse of Seq;

un=q(SqW) = v-



56 Appendix B: Simultaneous Substitution for Disjoint Variables .

Then we can define

Ply,; *.. “,“,

= P
I
UiIw(<VI  Ogdl  1 g-..gdl ml >)

t1
. . .

I
unseq( <vno,dn  1 ,...,dn,,>)

tn

Example B.1: Simultaneously swapping di] with a[j] and changing i.

aCi1  a[j] i
P(a’i9”l  a[j] a(i] i+ 1

= PWa, Cjl, aDI>, El, aCjl>,  i+l , j)

Note that <:<a,  [j], ali]>, [i], a[j]> stands for the value of the array a after first assigning

the value a[i] to the jth position, and assigning a[jl to the ith position.

Example B.2:  Swapping two variables accessed by pointers.

Consider the effect of simultaneously interchanging xt and yt, where x and y are

pointer variables.



Appendix B: Simultaneous  Substitution for Disjoint Variables 57

TYPE ptr = IINTEGER;
VAR x, y: PTR;

P(x, y, #INTEGER)1  ;;‘;E;=;; #INTEGER=‘=
C #INTEGERcx1

= P(x, y, <<#INTEGER,  cy~, #INTEGERcx2>,  CXD,  #INTEGERcy1>)

The final value  of the reference class  #INTEGER is exactly  analogous  to the final v a l u e

of the array  a in example 33.1.



a

58

1. Clarke, EM., Programming Language Constructs for Which It is Impossible to Obtain Good Hoare  Axiom Systems, J. ACM 26, 1
Lhuary  1979),  pp. 129-  147.

2. German, SM., Automating Proofs of the Absence of Common Runtime  Errors, Proceedings of the Fifth ACM Symposium on
Principles of Programming Languages, January 1978.

3. German, SM.,
Memo.

Verification with Variant Records, Unions, and Direct Access to Data Representations, forthcoming Stanford A.I.

4. German, SM., D. Luckham,  and D. Oppen,  Extended Pascal Semantics for Proving the Absence of Common Runtime  Errors,
unpublished manuscript; available from Stanford Program Verification Group.

5. Hoare,  CAR., An axiomatic basis for computer programming, Comm. ACM 12, 10 (Oct. 19691, ~~576-581.

6. Hoare,  C.A.R. and N. Wirth, An Axiomatic Definition of the Programming Language Pascal, Acta  Informatica, Vol. 2, 1973, pp.335
355.

7. khbiah,  J.D. at al, Preliminary ADA Reference Manual, in ACM Sigphn Notices, Volume 14, Number 6, June 1979.

8. Igarashi, S, R.1  London and D.C. Luckham,  Automatic Program Verification I: Logical Basis and its Implementation, Acta
Informatica, Volume 4, 1975, pp. 145 182.

9. Jensen, K. and N. Wirth, Pascal User Manual and Report, second edition, Springer-Verlag, New York, 1975.

10. Luckham,  D. and N.
36.

Suzuki, Proof of Termination Within a Weak Logic of Programs, Acta  Informatica, Volume 8, 1977, pp.2 l-

11. Luckham,  D. and N. Suzuki, Verification of Array, Record, and Pointer Operations in Pascal, ACM TOPLAS 1, 2 (October 19791,
~~-226-244.

12.  Seppanen,  Il.,  Algorithm 399 Spanning Tree, Collected Algorithms from CACM, (May  1970).

13.

14.

Stanford Verification
March 1979.

Stanford

!&zuki, N., Automatic Verification
Stanford University, 1976.

Of Programs with Complex

Verifier User Manual, Report No. 11, STAN-(X-79-73  1, Stanford University,

Structures, Ph.D. dissertation, Dept. of Computer Science,


