
_ V9.12. 225

 Technical Notes

Freescale MPC5xxx & ST SPC56 Nexus Class 2+

 iSYSTEM, May 2015 1/12

Contents

Contents 1

1 Introduction 2

2 Nexus Trace 4
2.1 e200 Nexus Trace Configuration 4
2.1.1 Record everything 4
2.1.2 Trace Trigger 4
2.2 Nexus Trace Examples 7
2.3 Troubleshooting 11

3 Coverage 12

4 Profiler 12

 iSYSTEM, May 2015 2/12

1 Introduction

This document covers Freescale MPC5xxx and ST SPC56 microcontrollers featuring Nexus
Class 2+ interface. Refer to microcontroller reference manual to identify Nexus Class level of
a particular or contact iSYSTEM technical support for this information.

According to the Nexus standard, these devices contain multiple Nexus clients that
communicate over a single IEEEE-ISTO 5001-2003 Nexus class 2(+) combined JTAG
IEEEE 1149.1 auxiliary out interface. Combined, all of the Nexus clients are referred to as
the Nexus development interface (NDI). Class 2+ Nexus allows for program and ownership
trace of the microcontroller execution without access to the external data and address buses.

NDI Functional Block Diagram

The Nexus trace is based on messages and has its restrictions comparing to the in-circuit
emulator where the complete CPU address, data and control bus is available to the emulator
in order to implement exact and advanced trace features.

Nexus trace supports:

 Program and ownership trace for the e200 core

Program Trace

Using a branch-trace mechanism, the program trace feature collects the information to trace
program execution. For example, the branch-trace mechanism takes into account how many
sequential instructions the processor has executed since the last taken branch or exception.
Then the debugging tool can interpolate the instruction trace for sequential instructions from
a local image of program memory contents. In this way, the debugging tool can reconstruct
the full program flow. Self-modifying code cannot be traced due to this concept.

Nexus trace implements internal FIFO buffer, which keeps the data in the pipe when the
Nexus port bandwidth requirements are greater than capabilities. FIFO is heavily used when
the application sequentially accesses data, which yields heavy trace port traffic through a
narrow Nexus port.

Note that only transmitted addresses (messages) contain relatively (time of message, not of
execution) valid time stamp information. All CPU cycles being reconstructed by the debugger

 iSYSTEM, May 2015 3/12

relying on code image and inserted between the recorded addresses, do not contain valid
time information. Any interpolation with the recorded addresses containing valid time stamp
would be misleading for the user. Thereby, more frames displayed in the trace window
contain the same time stamp value.

Ownership Trace

Ownership trace is based on ownership trace messaging (OTM). OTM facilitates ownership
trace by providing visibility of which process ID or operating system task is activated. In
practice, an operating system writes to the process ID register (PID0), which yields an
ownership trace message for every write. Then it’s up to the data profiler to record these
messages and display the task activities (task profiler).

Nexus Class 2+ Trace Features (iC5000 & iTRACE GT):

 External trace buffer

 Program and OTM Trace for e200 core

 AUX inputs

 Profiler

 Execution Coverage

 iSYSTEM, May 2015 4/12

2 Nexus Trace

Default winIDEA instance allows debugging and tracing the primary e200 core. In case of the
second core, another winIDEA instance is open from the Debug/Core in order to debug and
trace the 2nd e200 core.

Analyzer window is open from the View menu.

Refer to a separate document titled Analyzer User’s Manual for more details on general
handling & configuring the analyzer window and its use. Only MPC5xxx Nexus L3+ specifics
are explained in this document.

A detailed and exhaustive explanation on how the Nexus trace works and the meaning
and purpose of all Nexus options, which are found in the Nexus configuration dialogs
within winIDEA, can be found in the individual Core Reference Manual. Identify the
core inside of your microcontroller and then refer to the belonging Core Reference
Manual, which can be typically found at and downloaded from the semiconductor
vendor web site. Some information may also be found in the Microcontroller
Reference Manual of a specific microcontroller.

2.1 e200 Nexus Trace Configuration

2.1.1 Record everything

This configuration is used to record the contiguous program flow either from the application
start or up to the moment when the application stops.

The trace can start recording on the initial program start from the reset or after resuming the
program from the breakpoint location. The trace records and displays program flow from the
start until the trace buffer fulfills.

This is the default mode when a new analyzer .trd file is created.

Buffer Size

This setting defines a maximum analyzer file size. The analyzer stops collecting Nexus trace
information when this limit is exceeded.

Note that this setting is not correlated to the physical trace buffer of the HW debug tool by
any means. The actual analyzer physical buffer size is limited by the debug tool. For
instance, if the debug tool is capable of recording 512KB of the Nexus trace information only,
limiting analyzer file size to 1MB poses no restriction at all. However, if the user finds just a
small portion of the analyzer record (e.g. 16kB) being of interest and requires a swift analyzer
window handling, it makes sense limiting the analyzer files size to 16kB. In this case, just a
belonging portion of the complete analyzer physical buffer is required and used.

2.1.2 Trace Trigger

This trace operation mode is used, when it’s required to trace the application around a
particular event or when only some parts of program or data have to be recorded.

Create a new Trace Trigger in the Analyzer window.

Trigger

Note: There is a single Trigger dialog which covers all different devices, which also
feature different set of on-chip debug resources. Based on the selected CPU, only
supported settings in the dialog are enabled and others are disabled.
The same on-chip debug resources are shared among e200 hardware execution

 iSYSTEM, May 2015 5/12

breakpoints, e200 access breakpoints and e200 on-chip trace trigger. Consequentially,
debug resources used by one debug functionality are not available for the other two debug
functionalities. In practice this would mean that no trace trigger can be set for instance on
instruction address, when four execution breakpoints are set already.

Trigger

Trace can trigger immediately after the trace is started or can trigger on one or more
watchpoints (debug events), which occur while the target application is running. Trigger
watchpoints can be IAC1-IAC3, DAC1-DAC2, CNT1-CNT2 and are described next.

Instruction

Four watchpoints (IAC1-IAC4) can be configured to trigger on executed instruction address
(program counter match). Four address matches, two address in/out range matches or two
address matches where address can be additionally masked, can be configured.

Trace Trigger Configuration dialog- Trigger tab

Data

Two watchpoints (DAC1, DAC2) can be configured to trigger on accessed data address.
Besides the access type, two address matches, one data address in/out range match or one
address match where address can be additionally masked, can be configured.

In case of MPC56xx derivatives, data address can be also combined with the data value
while the data value comparison is not available for the MPC551x devices.

 iSYSTEM, May 2015 6/12

When ‘Link to’ option is checked, configured data access is further conditional on instruction
defined by IAC1/IAC3 watchpoint. In practice, the user can restrict trigger on data access
caused by an explicit instruction.

Note: Data accesses are not visible since Nexus class L2+ doesn’t implement data trace.

Program Trace

Program trace is enabled by default. Most often setting for the Start is ‘immediately’ and for
the ‘End’ is ‘never’. However, user can select any of the previously described watchpoints to
act as Start or End condition on match.

There are two types of messages, which can be used for the Nexus program trace protocol.
‘Individual Branch Messages’ yield more information about program execution than the
‘Branch History Messages’ setting. Major advantage of the ‘Individual Branch Messages’
setting is more accurate time information but it requires more Nexus port bandwidth, which
means that the Nexus trace is more subject to the overflows, which are depicted in the trace
window when they occur. In case of overflows, program reconstruction in the trace window
resumes with next valid Nexus trace message.

OTM Trace

Enable OTM check box, when 8-bit writes to the process ID register should be recorded.

Generate periodic OTM

Periodically, once every 256 messages, the most recent state of the PID0 register is
messaged out when this option is checked.

Watchpoints

Per default all watchpoints are generated and recorded. If there are custom requirements,
the user can configure either ‘no watchpoints are generated’ or selects specific watchpoints
to be generated and recorded.

DQM Trace

Data acquisition trace provides a convenient and flexible mechanism for the debugger to
observe the architectural state of the core through software instrumentation.

 iSYSTEM, May 2015 7/12

For DQM, a dedicated 32-bit SPR has been allocated (DDAM). It is expected that the general
case is to instrument the software and use mtspr operations to generate Data Acquisition
Messages.

Nexus FIFO Control

Stall CPU

When this option is checked, the program execution is stalled before Nexus overruns.

2.2 Nexus Trace Examples

Following examples show some of the capabilities of the Nexus trace port.

Select ‘Nexus’ in the ‘Hardware/Analyzer Setup’ dialog.

Default trace configuration is used to record the continuous program flow either from the
program start on or up to the moment, when the program stops.

The trace can start recording on the initial program start from the reset or after resuming the
program from the breakpoint location. The trace records and displays program flow from the
start until the trace buffer fulfills.

As an alternative, the trace can stop recording on a program stop. ‘Continuous mode’ allows
roll over of the trace buffer, which results in the trace recording up to the moment when the
application stops. In practice, the trace displays the program flow just before the program
stops, for instance, due to a breakpoint hit or due to a stop debug command issued by the
user.

Example: The application behavior needs to be analyzed without any intrusion on the CPU
execution. The trace should display program execution just before the CPU is stopped by
debug stop command.

 Use ‘Record everything’ operation type in the ‘Analyzer’ window and make sure that
‘Continuous mode’ is configured to ensure that the trace buffer rolls over while
recording the running program. The trace will stop as soon as the CPU is stopped.
Note that this ‘Record everything’ operation type always apply for the e200 trace.

 Define reasonable buffer size depending on the required depth of the trace record.
Have in mind that a smaller buffer uploads faster. You can start with e.g. 128kB.

 iSYSTEM, May 2015 8/12

With these settings, the trace records program execution as long as it’s running. As soon as
the program is stopped, the trace stops recording and displays the results.

Following examples describe configuring trace to trigger on a specific function being
executed or to record specific variable data accesses.

The ‘On trigger break execution’ option in the ‘Trace Configuration’ dialog should be checked
when it’s required to stop the program on a trigger event.

Example: Trace triggers on Type_Struct function call.

 Create new Trace Trigger in the Analyzer window.

Trigger configuration dialog

Due to the relatively complex Trigger configuration dialog, it is recommended to use the
Wizard, which is open by pressing the ‘Wizard…’ button in the left bottom corner.

In first step, select ‘Simple Event’ for the Select Trigger Scenario.

 iSYSTEM, May 2015 9/12

In second step, select ‘Execution of Code’ for the Select Event.

In the third step, specify Code Address.

In the next step, keep the default setting ‘All - Program Flow’.

 iSYSTEM, May 2015 10/12

In the final step press Finish.

The trace is configured. The user can also change the size of working trace buffer and the
trigger position in the Trigger configuration dialog. Run the application and start the trace.
After the trace triggers, the results are uploaded and displayed. Let’s inspect the results.
Trigger point can be found around frame 0 and marked as ‘Watchpoint’ in the Content bus.

 iSYSTEM, May 2015 11/12

2.3 Troubleshooting

 Missing program code

If a “missing program code” message is displayed in the trace, it means that the program
was executed at addresses where no code image is available in the download file. The
debugger needs complete code image for the correct trace reconstruction! The code not
reported in the download file or a self-modifying code cannot be traced. In order to
analyze which code is missing in the trace, click on the last valid trace frame before the
“missing program code” message. This will point to the belonging program point in the
source or disassembly window. Set a breakpoint there, run the program until the
breakpoint is hit and then step the program (F11) from that point on to see where the
program goes.

 Trigger position

With Nexus trace, which is a message based trace, actual trigger point (frame 0) is most
likely not to be displayed next to the instruction which generated the trigger event. The
Nexus trace port broadcasts only addresses of non-sequential branch jumps. All the
sequential code in between is reconstructed by the debugger based on the code image
available from the download file. There is no exact information to which of the inserted
(reconstructed) sequential instructions the trigger event belongs. Nexus trace port
broadcasts a dedicated trace trigger message beside the non-sequential branch
messages.

For example, if there are 30 sequential instructions between the two non/sequential
jumps and there was a trigger event in between, trace will always depict the trigger at the
same position regardless which one of the 30 instructions generated the trigger event.
That's why you probably see the misalignment between the trigger event and the
belonging code.

 MPC563xM

There is an errata related to the Nexus port on MPC563xM devices. Slew rate on Nexus
pins remains slow when Nexus is enabled. Use below initialization sequence to change
the slew rate of Nexus pins. See Initialization Sequence help topic for more details on
initialization sequence configuration and use.

S 0xC3F901F6 W 0x000C
S 0xC3F901F8 W 0x000C
S 0xC3F901FA W 0x000C
S 0xC3F901FC W 0x000C
S 0xC3F901FE W 0x000C
S 0xC3F90200 W 0x000C
S 0xC3F90202 W 0x000C

InitializationSequence.html

 iSYSTEM, May 2015 12/12

S 0xC3F90206 W 0x000C
S 0xC3F90208 W 0x000C

Check the errata document for your target device to see if this issue is still applicable.

3 Coverage

Refer to winIDEA Contents Help, Coverage Concepts section for Coverage theory and
background.

Refer to winIDEA Contents Help, Analyzer Window section (or alternatively to the standalone
Analyzer.pdf document) for information on Coverage user interface and use.

4 Profiler

Refer to winIDEA Contents Help, Profiler Concepts section for Profiler theory and
background.

Refer to winIDEA Contents Help, Analyzer Window section (or alternatively to the standalone
Analyzer.pdf document) for information on Profiler user interface and use.

Disclaimer: iSYSTEM assumes no responsibility for any errors which may appear in this
document, reserves the right to change devices or specifications detailed herein at any time
without notice, and does not make any commitment to update the information herein.

 iSYSTEM. All rights reserved.

CoverageConcepts.html
AnalyzerWindow.html
ProfilerConcepts.html
AnalyzerWindow.html

