
_ US005371879A

UnIted States Patent [191 [11] Patent Number: 5,371,879
Schif?eger [45] Date of Patent: Dec. 6, 1994

[54] APPARATUS AND METHOD FOR TESTING 5,038,281 8/1991 Peters 395/DIG. 1
OF NEW OPERATING SYSTEMS THROUGH
PRIVILEDGED INSTRUCTION TRAPPING FOREIGN PATENT DOCUMENTS

03017 7 2 l 8 E P t. Off. .
[75] Inventor: Alan J. Schif?eger, Chippewa Falls, A 0 / 9 9 mopean a

Wis. OTHER PUBLICATIONS

[73] Assignee: Cray Research, Inc., Eagan, Minn. MC68020. 32-Bit Microprocessor User’s Manual, sec.
_ Edition 1985, Prentice—Hall, Inc., Englewood Cliffs,

[21] Appl' N°" 233’222 N.J., US; see pp. H; and 12.
[22] Filed: Apr. 26, 1994 u _

Primary Exammer-Robert B. Harrell
Related U 8 Application Data Attorney, Agent, or Firm-—Schwegman, Lundberg &

' ' Woessner

[63] Continuation of Ser. No. 678,127, Apr. 1, 1991, aban
doned. [57] ABSTRACT

[51] Int. Cl.5 G06F 9/455 A method of implementing a privileged instruction that
[52] US. Cl. 395/500; 364/DIG. 1; enables the development of new operating systems in

364/280; 364/280.8; 364/280.9; 364/282; user mode. The instruction decode logic includes a
364/ 975.4; 364/ 976; 364/976. 1; 364/ 976.2 maskable interrupt generator that interrupts the proces

[58] Field of Search 364/DIG. 1 MS File, SO1- during the processing of privileged instructions in
364/DIG- 2 MS File; 395/ 375, 50o, 700, 800; user mode. An exception handler processes the privi

371/19 leged instruction interrupt and performs a function
[56] References Cited similar to the execution of the privileged instruction in

Us. PATENT DOCUMENTS privileged instruction mode. The combination of the
privileged Instruction Interrupt and the post-mterrupt

4,123,830 12/1978 Cray, 31* -- 395/DIG- 1 exception handling enables the operating system devel
4'253’145 2/1981 GPldberg 395/500 oper to test new operating systems by laying them over
4,636,942 l/1987 Chen et a1. .. . the current Operating system
4,661,900 4/1987 Chen et a1.
4,745,545 5/1988 Schif?eger .. .

4,812,967 3/1989 Hirosawa et a1. 395/DIG. l 4 Claims, 6 Drawing Sheets

/1o
12

r 26 f 30

INTERRUPT MODE
I87 GENERATOR SELECT

- 14

] IB1 / / 28
‘Bo , READ-OUT ‘

00 "cm INSTRUCTION
EXECUTION

" UNIT
:7

ms'rRuc'noN
BUFFERS 24

US. Patent Dec. 6, 1994 Sheet 4 of 6 5,371,879

zocbmm 405.200

mm .OE JOmFZOO, O \ _

l
I@

.R/

E58”. 85 N2 530 mmm?mm mE?m 59225081 52:90

58%“. 226252.

mezzo: wmwwwwvwm 512 +8: uuzémpaum 295352. All 2E3 w

mmmhtnm ZOFODEMZ

5,371,879
1

APPARATUS AND METHOD FOR TESTING OF
NEW OPERATING SYSTEMS THROUGH
PRIVILEDGED INSTRUCTION TRAPPING

This is a continuation of application Ser. No.
07/678,127, ?led Apr. 1, 1991, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention pertains to the ?eld of high

speed digital data processors and more particularly, to a
method of instruction implementation useful for operat
ing system development.

2. Background Information
An operating system is a collection of programs that

controls the execution of other programs in a computer
system. Operating system programs reside in processor
memory where they coordinate, among other things,
such tasks as 1/0 operations and the execution of back
ground tasks and application programs on the system.
Operating systems free the application programmer
from hardware anomalies by, in effect, hiding the hard
ware behind a well-behaved and documented interface.
And they improve the ef?ciency of execution of a com
puter system by managing memory and controlling
when a program can execute. As such the performance
of the operating system is critical for achieving optimal
system performance.

Since operating systems perform these critical func
tions of program and memory control, processors have
evolved with powerful privileged instructions which
can be used to affect the execution of the machine.
Typical instructions are those used for I/O control,
interrupt handling and masking and program control.
Privileged instructions are typically constrained to exe
cute in a privileged instruction mode accessible only to
operating systems. This is done to protect systems from
catastrophic failure due to incorrectly written applica
tion programs.

In the Cray Y-MP manufactured by the Assignee of
the present invention, there are two modes of instruc
tion execution: monitor mode and user mode. Privi
leged instructions run only in monitor mode. If a privi
leged instruction issues while the processor is not in
monitor mode, it is treated as a no-operation instruction.
The operating system of the typical Cray Y-MP

computer system manages execution of application pro
grams through the use of exchange sequences, fetch
sequences and issue sequences. Exchange sequences
occur at initialization or when a program is started. An
exchange sequence moves sets of basic parameters
called exchange packages. Parameters currently resid
ing in the operating registers of a processor are moved
to memory and, simultaneously, different parameters
are loaded to the operating registers.
The Cray Y-MP is a multitasking system. That is, it

supports the execution of more than one program in a
processor at a time. It also is a multiprocessing system.
Therefore a program begun in one processor may be
swapped to memory and continued later in a different
processor. To facilitate this, each exchange package
contains information that is used to coordinate the tran
sition from one program to another. Exchange package
contents describe the state of the processor at the time
that a program is started or swapped to memory (ex
changed). This information includes the contents of
control registers, pending interrupts, current vector

5

15

25

30

35

40

45

50

60

65

2
length and memory addressing constraints. It also in
cludes the logical address of the processor that per
formed the exchange sequence. These are the basic
parameters necessary to provide continuity when a
program stops and restarts.
The development of an operating system is a compli

cated and time-consuming process which typically re
volves around many iterations of software releases. The
difficulty of the task is compounded by the need to test
the system in privileged instruction mode in order to
ascertain the function of the privileged instructions.
Since an operating system running in privileged instruc
tion mode is free of many of the constraints invoked to
protect other software, operating systems must be de
bugged separate from application code. Then the oper
ating system must be placed into a realistic environment
in which it can be tested performing its control tasks.

This problem is compounded in the case of new hard
ware platforms. In the development of new operating
systems on new hardware platforms, there is a great
deal of uncertainty as to whether the hardware, operat
ing system or application code is the source of a prob
lem.

In prior art systems, special instructions have been
provided that ease the task of debugging software. In
microprocessors such as the 68000 family by Motorola,
a facility is included for “tracing” following each in
struction. When “tracing” is enabled, an exception is
forced after each instruction is executed. Thus a debug
ging program can monitor the execution of the program
under test.
The 68000 family also features trap instructions. The

TRAP instruction always forces an exception and is
useful for implementing system calls for user programs.
Other instructions can force trap exceptions on abnor
mal conditions encountered during instruction execu
tion (such as a division operation with a divisor of zero).
Although instructions like a TRAP instruction and

facilities like trace make debugging of application code
much easier, they are less useful in the development of
operating systems. TRAP instructions can be used to
detect error conditions or to cause an unconditional
swap to the operating system. But they are of limited
use in program code executing in privileged mode.
Facilities such as trace create a large amount of over
head that can lead to uncharacteristic code execution
and may cause one to miss errors in code interactions.
This is especially critical in areas of system control such
as 1/0.

It is clear that there is a need for a method of develop
ing operating system code that will promote rapid and
accurate development of new operating systems. What
is needed is a privileged instruction that can be executed
to a limited extent in user mode without increasing the
danger of system instability.

SUMMARY OF THE INVENTION

The present invention is a method of implementing a
privileged instruction that enables the development of
new operating systems in user mode. The instruction
decode logic includes a maskable interrupt generator
that interrupts the processor during the processing of
privileged instructions in user mode. An exception han
dler processes the privileged instruction interrupt and
performs a function similar to the execution of the privi
leged instruction in privileged instruction mode. The
combination of the privileged instruction interrupt and
the post-interrupt exception handling enables the oper

5,371,879
3

ating system developer to ‘test new operating systems by
laying them over the current operating system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level block diagram of a portion of a
vector processor with privileged instruction interrupt
according to the present invention.
FIG. 2 shows the exchange package used in the vec

tor processing computing system of the present inven
tion.
FIGS. 3A and 3B show a simpli?ed block diagram of

one embodiment of the vector processor shown in FIG.
1.
FIGS. 4A and 4B show a more detailed block dia

gram of one embodiment of the vector processor shown
in FIG. 1.

DETAILED DESCRIPTION OF THE .
PREFERRED EMBODIMENT

In the following detailed description of the preferred
embodiment, references made to the accompanying
drawing which form a part thereof, and which is shown
by way of illustration a speci?c embodiment in which
the invention may be practiced. It is to be understood
that other embodiments may be utilized and structural
changes may be made without departing from the scope
of the present invention.
FIG. 1 illustrates a portion of processor 10 with privi

leged instruction interrupt according to the present
invention. Processor 10 includes an instruction execu
tion unit 28 connected to current instruction parcel
(CIP) register 20, lower instruction parcel (LIP) regis
ter 22, lower instruction parcel 1 (LIP1) register 24,
interrupt generator 26 and mode select 30. Current
instruction parcel 20 is connected through next instruc
tion parcel (NIP) 18 to two read-out registers 14 which
are connected in turn to the eight instruction buffers
12.1 through 12.8. Program address register 16 is con
nected to read-out registers 14 and instruction buffers
12.1 through 12.8. Program address register 16 provides
the address into buffers 12. Even-numbered words are
loaded into one of the read-out registers 14, while odd
numbered words are loaded into the other. Instruction
buffers 12.1 through 12.8 serve as intermediate storage
for instructions fetched from main memory (not
shown). They function as an elementary instruction
caching function.

In the preferred embodiment, instructions can be one,
two or three parcels long. Each parcel is sixteen bits.
Next instruction parcel register 18 receives an instruc
.tion parcel from one of the readout registers 14. While
the instruction is held in register 18, it is decoded to
determine if the instruction is a one, two or three parcel
instruction. The parcel is then passed on to current
instruction parcel register 20.
Current instruction parcel register 20 receives the

parcel from register 18 and holds it until it issues. Issue
of an instruction can be held for such things as resolu
tion of an access to a shared register. Once issued it is
executed by instruction execution unit 28.
Lower instruction parcel register 22 and lower in

struction parcel 1 register 24 are used to hold the second
and third parcels of an instruction, respectively, when
applicable. The full instruction is then presented to
instruction execution unit at instruction issue.

10

20

25

35

40

45

50

55

65

INTERRUPI‘ MODES

4
Interrupt generator 26 is used to cause an exception

on encountering a privileged instruction while in user
mode. In the preferred embodiment, parcels that begin
with a binary opcode of OOOOOOlXXXXXXYYY
(where any one of the X is non-zero and Y is don’t care)
or 001 101 IYYYYYYYYY (where Y is don’t care) will
generate a privileged instruction interrupt. Exception
handling software in the monitor mode software deter
mines the nature of the interrupt and, on determining it
is a privileged instruction interrupt, it mimics the effect
of execution of that privileged instruction. This is a
powerful tool that permits the testing of new operating
system software in the more forgiving environment of
user mode.
When the privileged instruction interrupt is enabled,

executing a privileged instruction in user mode gener
ates an exchange. The privileged instructions act like an
error exit or a normal exit instruction. If a privileged
instruction enters NIP (Next Instruction Parcel) regis
ter 18, then an interrupt ?ag is generated which in
structs the processor that an exchange must take place.
The interrupt ?ag will shut down the instruction

stream so that no other instructions get into NIP 18 by
holding P register 16. The processor then sets up to do
an exchange. The privileged instruction that had en
tered NIP 18 will go into CIP 20 and be executed as a
NO-OP because of user mode. Following this, the ex
change takes place.
The exchange brings in the operating system. Once

the privileged instruction was issued out of CIP 20, the
processor set a flag in the exchange package that tells .
the operating system that a privileged instruction had
issued in interrupt mode and that this is why the ex
change occurred. In this fashion, when the exchange
takes place, P register 16 is pointing at the instruction
after the privileged instruction.
The operating system decrements P register 16 in

order to ?nd the location of the privileged instruction.
It then looks at the instruction, branches to a subroutine
written to emulate the instruction and initiates an ex
change back to the original calling program. The privi
leged instruction interrupt can be masked by clearing a
bit in one of the operating registers that make up the
exchange package. In FIG. 1, mode select 30 is that
operating register. Clearing a bit in mode select 30 dis
ables the privileged instruction interrupt. Subsequent
privileged instructions are treated like no-operation
(NOP) instructions in user mode as in the Y-MP above.
The preferred embodiment of the exchange package

for the present invention is shown in FIG. 2. Exchange
package 50 is a l6-word block of data in memory associ
ated with a particular computer program. Exchange
package 50 contains the basic parameters necessary to
provide continuity when a program stops and restarts
from one section of the program to the next. The ex
change package also holds the contents of the address
(A) and scalar (S) registers. The address and scalar
registers, along with the exchange package used in the
present invention are described in more detail in US.
patent application No. 07/618,748 ?led Nov. 27, 1990,
entitled “Vector Shift By ‘Vo Shift Count in Vector
Supercomputer Processor”, which application is incor
porated herein by reference. Table 1 describes the bit
assignments for the interrupt modes, ?ags, status, and
mode (“MM”=monitor mode).

TABLE 1

5,371,879
5
TABLE l-continued

IRP INTERRUPT ON REGISTER PARITY ERROR
IUM INTERRUI’I' ON UNCORRECT ABLE MEMORY ERROR
IFP INTERRUP'I‘ ON FLOATING POINT ERROR
IOR INTERRUPT ON OPERAND RANGE ERROR
IPR INTERRUPT ON PROGRAM RANGER ERROR
FEX ENABLE FLAG ON ERROR EXIT (DOES NOT DISABLE EXCHANGE)
IBP INTERRUPI‘ ON BREAKPOINT
ICM INTERRUPT ON CORRECT ABLE MEMORY ERROR
IMC INTERRUPT ON MCU INTERRUPT
IRT INTERRUPT ON REAL-TIME INTERRUPT
IIP INTERRUP'T ON INTER-PROCESSOR INTERRUPT
IIO INTERRUI'I' ON I/O
IPC INTERRUPI‘ ON PROGRAMMABLE CLOCK
IDL INTERRUPT ON DEADLOCK
IMI INTERRUP'I‘ ON 001 (i,j NOT EQUAL 0) OR 033 INSTRUCTION
FNX ENABLE FLAG ON NORMAL EXIT (DOES NOT DISABLE EXCHANGE)
W
RPE REGISTER PARTY ERROR
MEU MEMORY ERROR - UNCORRECT ABLE
FPE FLOATING POINT ERROR
ORE OPERAND RANGE ERROR
PRE PROGRAM RANGE ERROR
EEX ERROR EXIT (000 ISSUED)
BPI BREAKPOINT INTERRUPT
MEC MEMORY ERROR - CORRECT ABLE
MCU MCU INTERRUPT
RTI REAL-TIME INTERRUPT
ICP INTER-PROCESSOR INTERRUPT
101 V0 INTERRUPT (IF IIO & SIE)
PCI PROGRAMMABLE CLOCK INTERRUPT
DL DEADLOCK (IF IDL 8: NOT MM)
M11 001 (i,j NOT EQUAL 0) OR 033 INSTRUCTION INTERRUPT

(IF IMI & NOT MM)
NEX NORMAL EXIT (O04 ISSUED)
STATUS MODES

PS PROGRAM STATUS MM MONITOR MODE
WS WAITING ON SEMAPHORE BDM ENABLE BI-DIRECTIONAL
FPS VECTORS POINT STATUS MEMORY
VNU VECTORS NOT USED ESL ENABLE 2nd VECTOR LOGICAL

C90 C90 MODE

In the preferred embodiment, processor 10 is a vector
processor for use in a multiprocessor vector supercom
puter. FIGS. 3A and 3B are simpli?ed block diagrams
of a vector processor 60. The preferred embodiment is
a multiprocessing system with sixteen processors. How
ever it should be obvious that the present invention is
independent of the number of processors.
FIGS. 4A and 4B are more detailed block diagrams

of the same processor 60. Each processor 60 contains
eight vector registers V0-V7. The vector registers
V0-V7 each contain 128 words, each word consisting
of 64 bits. For example, vector register V0 contains
words V0Q—V0127. The vector registers are interfaced to
functional units which perform various logical and
arithmetic functions on data from the vector registers.
The functional units are fully segmented with latches so
that operands can be sent to a functional unit on succes
sive clock periods. Therefore, during the execution of
an instruction, each part of a functional unit may be
operating on a different operand. Also, each functional
unit may operate independent of the other functional
units so that more than one result may be obtained from
the functional units for each clock period.
When exchange package 50 (as shown in FIG. 2) is

transferred from shared memory 12 to a processor 60,
exchange package 50 is broken up and the portions are
saved in different storage areas of processor 60. Bits
32-63 of words 0-7 are stored in exchange parameter
registers 74 (shown in FIG. 3B). Bits 0—31 of words 0-7,
are stored in A registers 72 (as shown in FIG. 3A and
4B). Finally, the remaining words 10-17 are stored in S
registers 70 (as shown in FIGS. 3A and 4A).

40

50

55

60

65

To use the present invention, one would set the privi
leged instruction mask bit in the exchange package to
enable the privileged instruction interrupt. The new
operating system software would be loaded in memory
and an exchange sequence initiated that starts the new
operating system program in user mode. At each occur
rence of a privileged instruction in the operating system
under test an interrupt would be generated that causes
an exchange to the current operating system. Exception
handling software would then determine the source of
the interrupt and the code to be executed that would
provide a state similar to the execution of the privileged
instruction. For example, in the preferred embodiment,
the instruction used to set up an I/O channel is a privi
leged instruction. If, in testing the new operating sys
tem, it should become necessary to set up an I/O chan
nel, the I/O channel privileged instruction will be is
sued. This will result in an interrupt and an exchange
into monitor mode. Once in monitor mode, the real
operating system will, with its knowledge of the current
state of the machine, assign an I/O channel by issuing a
privileged instruction. The operating system will then
clear the interrupt and perform an exchange back into
the operating system under test in user mode. Unlike the
trace mode, exceptions are encountered rarely so there
is little difference in system performance. And, unlike a
typical TRAP instruction, traps are performed on code
that is an integral part of the ?nal software. The TRAP
locations do not have to be rewritten to remove the test
points.
Although the present invention has been described

with reference to the preferred embodiments, those

5,371,879
7

skilled in the art will recognize that changes may be
made in form and detail without departing from the
spirit and scope of the invention.
What is claimed is:
1. An apparatus for debugging a new operating sys

tem within user mode of a processor having a privileged
instruction execution monitor mode wherein privileged
instructions are executed and a user mode wherein a
privileged instruction is typically treated as a no-opera
tion instruction, the processor comprising an instruction
execution unit which executes an instruction parcel
having an opcode, the processor further comprising a
current instruction parcel register, connected to the
instruction execution unit, which receives the instruc
tion parcel before passing the instruction parcel to the
instruction execution unit, the apparatus comprising:

processor interrupt means, connected to the current
instruction parcel register and the instruction exe
cution unit, for generating a hardware interrupt to
said instruction execution unit on encountering a
privileged instruction during user mode, wherein
the processor interrupt means comprise an inter
rupt generator which generates the hardware inter
rupt when the instruction parcel opcode received
by the current instruction parcel register is associ
ated with a privileged instruction; and

interrupt enable means connected to said processor
interrupt means for disabling said hardware inter
rupt, wherein the interrupt enable means comprise
a mode select register connected to the interrupt
generator, wherein the mode select register com
prises a mode select bit which operates to prevent
issuance of the hardware interrupt by the interrupt
generator.

2. The apparatus according to claim 1 wherein said
interrupt enabling means further comprise means for
changing the mode select bit under control of an ex
change packet.

3. A method of emulating an operating system having
a privileged instruction within user mode of a vector
processing computer having both a user mode and a
privileged instruction executing monitor mode, com
prising the steps of:

providing a processing unit comprising an instruction
execution unit, a current instruction register, an

15

25

35

45

50

55

65

8
interrupt generator and a mode select register com
prising a mode select bit having a’?rst and a second
logic state;

providing a sequence of instructions, wherein the
sequence of instructions includes a ?rst instruction
followed by a second instruction and wherein the
?rst instruction is a privileged instruction;

storing the ?rst instruction in the current instruction
register;

if the mode select bit is in the first logic state:
generating, from the interrupt generator to the

instruction execution unit, a hardware interrupt
associated with the privileged instruction;

performing a packet exchange sequence to enter
privileged instruction executing mode;

executing, in privileged instruction mode, a series
of instructions which emulate execution of the
privileged instruction; and

returning to user mode to fetch the second instruc
tion; and

otherwise, treating the ?rst instruction as a NO-OP
instruction and fetching the second instruction.

4. A method of testing program code for a new oper
ating system in a computer having both a user mode and
a privileged instruction executing monitor mode,
wherein the program code includes a privileged instruc
tion, the method comprising the steps of:

providing a hardware interrupt circuit for generating
a hardware interrupt when the privileged instruc
tion is detected while the computer is in said user
mode;

enabling the hardware interrupt circuit;
placing the computer in user mode;
loading the new operating system and executing the
new operating system program code within the
user mode;

trapping the privileged instruction, wherein the step
of trapping the privileged instruction comprises:
detecting the privileged instruction; and
generating the hardware interrupt when the privi

leged instruction is detected;
switching to the monitor mode; and
emulating the privileged instruction.

* * * * *

