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1   Introduction. 

1.1 Document purpose. 

This document will describe the design of our project the Targeted Encryption Device (TED).  It will describe what 

engineering problems were faced, how we approached these problems, and how we solved these problems.  This paper 

will also define the requirements of this device and present the testing to support that the requirements were met. 

1.2 Background. 

A Targeted Encryption Device is a hardware implementation that will secure network data communication between 

itself and another TED, which are used as a pair between two secure endpoints.  Figure 1-1 shows how the TED will 

operate inside a simple network.  The TED will not be addressable on the network, and will be transparent in the 

network communication process.   

 
Figure 1-1: TED Implementation 

Virtual private networks (VPN) are currently the most common solution to secure communications between two 

endpoints.  Often these endpoints require the same protocol, configuration and encryption to speak to each other.  

VPNs that run on an operating system have an inherit risk that some information intended to be secured, was not.   

There are a number of flaws as a result of this implementation.  The major flaws that we intend to address are the 

following: memory leaks from software running on the secure endpoint; detection of the VPN signature by packet 

signature categorization; and/or an accidental plaintext transmission.  The TED will overcome these limitations and 

vulnerabilities associated with VPN software by abstracting the encryption and configuration from secure endpoints to 

our proposed hardware solution. 

1.2.1 Proposed Use Cases.   
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The four proposed use cases will be described in reference to Figure 1-1. 

1.2.1.1      Secure Endpoint 2 to Secure Endpoint 4.   

The main use case describes two separate secure endpoints, (secure endpoint 2, and secure endpoint 4) whose network 

traffic will be encrypted by two TEDs. All network traffic originating from secure endpoint 2 will be received by TED A 

through the red interface.  TED A will then inspect the details of each frame of data and then choose to encrypt the layer 3 

payload and retransmit the frame.  The destination is secure endpoint 4, the layer 3 payload is then encrypted and a new 

layer 4 header is generated and inserted into the frame along with the encrypted payload.  This new frame is 

retransmitted through the black interface of TED A to gateway 1 and routed to secure endpoint 4.  When the frame is 

received by TED B through the black interface, it is inspected to determine if the source IP address matches secure 

endpoint 2 and that the destination matches secure endpoint 4.  If both of these conditions are met, the layer 3 payload is 

decrypted and the original frame as transmitted by secure endpoint 2 is retransmitted on the red interface to secure endpoint 4. 

1.2.1.2      Secure Endpoint 2 to Non-Secure Endpoint 3.   

Network Traffic generated by secure endpoint 2 is received by TED A through the red interface.  The frame is actively 

ignored because it is not destined for a secure endpoint and therefore is transmitted on the black interface of TED A to 

gateway 1.  The frame is routed to non-secure endpoint 3 as any normal frame. 

1.2.1.3      Non-Secure Endpoint 1 to Secure Endpoint 4.   

Network traffic generated by endpoint 1 is received by gateway1 and routed to secure endpoint 4.  The packet is received by 

the black interface of TED B.  The frame is inspected to see if the source address is originating from a secure endpoint, is 

actively ignored by TED B, and retransmitted through the red interface to secure endpoint 4. 

1.2.1.4      Non-Secure Endpoint 1 to Non-Secure Endpoint 3.   

This is a standard network communication. 

1.3 Aim. 

The aim of our project is to design and prove the concept of a pair of TEDs, capable of operating in line between a 

secure endpoint and a gateway to provide a secure method of network communication.   

The intent is to abstract the encryption and configuration from secure endpoints.  In order to provide transparent 

operation, our solution must be able to process the data coming from a secure endpoint, determine if it is destined for its 

pair, and whether to encrypt or actively ignore, and then retransmit the frame through the black interface to the gateway, 

and the inverse is true of decryption. 

1.4 Scope.  
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1.4.1 TED Capabilities. 

The TED encrypts network traffic with a custom cryptographic module.  A custom cryptographic module presents a 

lower attack vector than an open source cipher due to its less-commonly used nature, and the non-readily available tools 

and scripts for decryption.  The downside of a custom designed cryptographic module is the lack of any formal peer 

review or validation process.  The system design is modular so alternate block ciphers can be used in place of the custom 

cryptographic module. 

The TED operates transparently on any Ethernet switched local area network (LAN).  In line operation between a 

secure endpoint and gateway, ensures all network traffic generated by or destined for the secure endpoint will be 

intercepted by the applicable red or black interface of the TED.  This eliminates the need for addressable interfaces.  

The TED operates across network address translation (NAT) configured networks.   The knowledge of the public IP 

addresses for each host is required. 
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2  Applicable Documents. 

[1]  DE2-115 User Manual 1 Jan. 2010. Altera Inc. Web. 5 Nov. 2014. 

<ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE2-115/DE2_115_User_Manual.pdf>. 

This user manual was used in order to configure and use the  FPGA development board for the TED, the Terasic DE2-

115. 

[2]  IEEE Working Group. "IEEE 802.3 ETHERNET." IEEE 802.3 ETHERNET. IEEE, 23 Aug. 2014. Web. 7 

Sept. 2014. <http://www.ieee802.org/3/>. 

The 802.3 standard was used to deconstruct Ethernet frames into the different layers, as well to implement full-duplex 

and half-duplex flow control into the TED red and black interfaces. 

[3]  IETF. "RFC 793 - Transmission Control Protocol." RFC 793 - Transmission Control Protocol. IETF, 1 Sept. 1981. 

Web. 7 Sept. 2014. <http://tools.ietf.org/html/rfc793>. 

RFC 793 was used specifically to determine the layer four header structure as it relates to TCP in order to perform deep 

packet inspection of TCP IP packets. 

[4]  IETF. "RFC 791 - Internet Protocol." RFC 791 - Internet Protocol. IETF, 1 Sept. 1981. Web. 7 Sept. 2014. 

<http://tools.ietf.org/html/rfc791>. 

RFC 791 was used in order to determine the layer three header structure as it relates to IP in order to perform deep 

packet inspection of IP packets. 

[5] Nios II Software Developer's Handbook 13 June 2013. Web. 9 Nov. 2014. 

<www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf>. 

The NIOS II software developers’ handbook was used when writing C code for the NIOS II processor in order to 

conform to best practices when programming this particular processor.  

[6] Nios II Hardware Development Tutorial 11 May 2011. Altera Inc. Web. 9 Nov. 2014. 

<www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf>. 

The NIOS II hardware developers’ tutorial was used when developing the custom cryptography module for the QSYS 

system builder in order to be able to integrate the module with  the Avalon bus, and in order to write hardware drivers to 

integrate the module with the NIOS II processor architecture. 

[7]  Postel, J.. "RFC 768 - User Datagram Protocol." RFC 768 - User Datagram Protocol. IETF, 28 Aug. 1980. Web. 7 

Sept. 2014. <http://tools.ietf.org/html/rfc768>. 

RFC 768 was used in order to determine the layer four header structure as it relates to UDP in order to perform deep 

packet inspection of UDP IP packets. 

[8]  "RMC 4th Year Project Page." Segfaults.net. Project Management Office EEE455/457, 1 Sept. 2013. Web. 7 

Sept. 2014. <http://projects.segfaults.net/joomla/index.php/en/statement-of-work>. 
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The RMC 4th year project page was used as a reference for timelines and document templates in order to conform with 

the 4th year final project standards and deadlines.  

[9]  Quartus II Handbook 18 Aug. 2014. Altera Inc. Web. 5 Nov. 2014. 

<http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf> 

The Quartus II handbook was used as a general reference when implementing all parts of the TED in order to provide a 

reference when using different programs in the suite (QSYS, Quartus II, NIOS SBT).
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3 Product Requirements.  

3.1 Functional Requirements. 

FR-01:  Network Visibility – The device must be in-line of data transmission in order to achieve visibility and 

control over all packets transmitted and received by the secure endpoint. 

FR-02:  TED Pairing – TEDs will work in units of two.  Both TEDs will have a shared secret key and operate 

point to point. 

3.2 Interface Requirements. 

 IR-01:  Network Access – TED will be connected directly to the secure endpoint and the gateway with RJ45. 

 IR-02:  NAT Configuration – Static NAT setup on the gateway will be required if NAT mode is enabled. 

IR-03:  Admin User Configuration – Develop a graphical user interface capable of sending configuration 

commands to the TED from a secure endpoint. 

3.3  Performance/Timing Requirements. 

PR-01:  Device Network Speed - The TED must be able to operate in real-time with the secure endpoint and the 

gateway at 100Mbps. 

 PR-02:  TED Processing - The delay of processing the encryption decision will not exceed 10mS. 

 PR-03:  Duplexity – The TED must be able to send and receive concurrently on its red and black ports.  

3.4 Implementation Restrictions. 

IMP-01:  Hardware Restriction - A field programmable gate array (FPGA) will be used to buffer packets coming 

in and out of a secure end point.  During this buffer, the FGPA will process all packets to determine if a packet 

is flagged for encryption/decryption.  If flagged, the FGPA will encrypt/decrypt the packet and retransmit the 

packet. 

IMP-02:  FPGA Software – This project will require the use of a hardware description language (HDL) capable 

of configuring an FPGA.  

IMP -03:  Custom Cryptographic Module – The cryptographic module will be a custom design based on the request 

of the customer. 
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4 TED Architecture. 

The FPGA platform being used is the Terasic DE2-115 board that utilizes a Cyclone IV FPGA chip from the 

manufacturer Altera.  The architecture model of the DE-115 is shown in figure 4-1. The NIOS processor will be 

running our designed packet processing software that will perform deep packet inspection of every single packet that 

moves through the TED.  The Encryption and Decryption DMA modules consist of a designed DMA and a designed 

cryptographic block cipher.  The design of the DMA is meant to provide the cryptographic cipher with a way to 

interface with the packet processor in a way that will be much faster than with the CPU. 

 

 
Figure 4-1: Architecture Model 

The architecture of the TED will be realized within software.  Integrated Development Environments (IDE) will be 

used to translate software code into hardware builds.  The programs that we will employ are summarized below: 

Quartus II software will be used to write all custom hardware interface modules using very high speed integrated circuit 

hardware description language (VHDL).  These modules will be defined using the Avalon interface specification, which 

is an open-source interface specification used by the standard central processing unit (CPU) and peripherals included 

with the Altera suite. 

QSYS is used to incorporate standard modules, such as on-chip FPGA random access memory (RAM)/read-only 

memory (ROM), a NIOS II standard processor, as well as any custom modules that we define for the TED.  QSYS also 

creates a memory map for all I/O and peripherals, assignment of interrupt priorities, as well as defining a system 

interconnect bus (that takes care of the creation of chip select signals for various peripherals) allowing for ease of our 

design of the TED, as that is not included in our scope.   

Finally, after our hardware design is compiled and downloaded to our target board, the NIOS II software build tools 

(SBT) will be used to program hardware drivers for our peripherals, DMA control algorithms, and deep packet 
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inspection and packet processing.  The language used in the SBT is C, and the environment is a custom Eclipse 

distribution. 

Figure 4-2 provides a summary of each program and the modules that will use them. 

 
Figure 4-2: Altera Hardware/Software Tool Suite 

Figure 4-3 shows our development flow as we progressed through the project.  There were no major deviations on the 

execution of our development. 
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Figure 4-3: TED Development Flow  
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5 Detailed Design. 

5.1 Overview. 

The modules within the TED were designed and implemented using ANSI C and VHDL.  With the exception of the 

DMA, all modules are portable to other chipsets that support standard VHDL and compile ANSI C.   

5.2 Limitations. 

5.2.1 NAT Operation. 

The TED was tested and designed to operate on a static NAT configuration.  

5.3 Modules. 

5.3.1 Cryptographic Module. 

5.3.1.1 Cryptographic Design Specification. 

There are three specific requirements that our algorithm must meet, which are inherited requirements from the system 

level requirements:   

The algorithm must not have a significant impact on system level latency or bandwidth. 

The algorithm must be able to produce a different cryptographic hash for identical packets. 

The algorithm must be able to produce a different cryptographic hash for identical blocks. 

5.3.1.2 Cryptographic Design. 

The first step for the algorithm was deriving the constants of the algorithm.  A block size of 32-bits was chosen, simply 

due to alignment with our 32-bit processor.  This meant that two 32 bit values could be XOR together in a single clock 

cycle.  A key size of 56-bits was chosen.  This would be made up of 3 parts: 

1. 8-bit key: bits(55 downto 48) 

2. 16-bit key: bits(47 downto 32) 

3. 32-bit key: bits (31 downto 0) 

The purpose of this key arrangement was to ensure that during key generation, an 8-bit pattern was left unmasked, 

which follows that each of the keys must not equal zero during generation. 

The requirement that each packet must produce a different cryptographic hash is a very common issue with block 

ciphers.  Figure 5-1 demonstrates visually the side effect of having the same hash function for each packet.  The left 

image is the source, the middle image is with no salt, and the final image is the desired end state. 
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Figure 5-1: Demonstration of Weak Cryptographic Hash 

The solution to this requirement is to introduce a unique value that would pair with the encryption key to produce a 

variation in the hash.  This variation value is known as a salt.  The salt that we used for each packet was derived from the 

identification value found within the layer IP header.  This is a 16-bit value, so it was expanded with itself in order to 

provide a 32-bit salt.  An identification value of 0xE74b will result in a 32-bit salt of 0xE74bE74b 

The 32-bit salt would only be used to provide the first initialization vector (IV).  Each subsequent block will be salted by 

the cryptographic hash of the preceding block, as shown in figure 5-2.  Figure 5-3 shows the decryption model, notice 

that the major difference between the two methods is that the initialization vector is applied after the cipher block.    

 
Figure 5-2: Encryption Structure for a Block Chain Cipher 

 

 
Figure 5-3: Decryption Structure for a Block Chain Cipher 

The final requirement is to ensure that each block within a packet is hashed differently.  Consider the case where there 

are more than 5 blocks of data, and each block contains an identical set of data.  If the data is identical, the salt for any 
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block will be identical to the salt of the block that came before it.  This greatly reduces the security of the cipher.  The 

solution to this requirement was a key rotation algorithm to ensure that each block is encrypted with a different subset 

of the original key.  This allows the data to remain the same, but produce a different salt for the next block.  So for each 

block that is processed, the 8,16 and 32 bit keys is mutated to produce a different hash for each block of data.   

5.3.1.3  Internal Structure. 

Referring to Figure 5-3 and Figure 5-4 for encryption and decryption, our cryptographic design is placed within the 

cipher block.  Figures A-1 and A-2 in Annex A below show the encryption and decryption models for how the 

algorithm is applied within the cipher block. 

5.3.1.4  Operation. 

The requirements of the cipher mentioned earlier in the paper outlined the importance of hashing and data repetition.  

The application of the cipher was on a per packet basis.  This means that the first 32 bits of each packet will be block 0, 

and each packet would have a different salt value. To demonstrate the importance of this, some sample sets of data are 

shown to highlight the importance of these requirements. 

For the following tables, the following sets of data were used. 

 Plaintext Contents: aaaa aaaa aaaa aaaa aaaa (5 32-bit blocks of ASCII a) 

 Ascii Hex Code for ‘a’: 0x61 

 Salt 1: 0x47112015 

 Salt 2: 0x20154711 

Table 5-1 shows the result of the cipher with no salt and no rotation.  The final hash of this packet is 988F3FF9.  This 

hash was produced in this mode every single time it processed a packet with the same data.  Also, the values after each 

block is processed cancel each other out.  As the cipher text from a preceding block is passed to the next block, it 

reverses the operation performed on it.  As a result, we are left with a hash that is only one operation away from 

decryption.   

Table 5-1: Cipher Output with no Salt or Rotation 

Salt None 

Value after the 1st operation: 0x988F3FF9 

Value after the 2nd operation: 0x0 

Value after the 3rd operation: 0x988F3FF9 
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Value after the 4th operation: 0x0 

Value after the 5th operation: 0x988F3FF9 

 

Table 5-2 shows the results of the cipher with different salts but the same data, and no rotation.  The same issue of 

rotation where the operations cancel each other out exist, but this time we have the same data with different hashes.  

The salt value ensures that data is processed differently each time.  This helps eliminate table lookup attacks on this 

cipher.    

 

 

Table 5-2: Cipher Output with Salt 

Salt: 0x47112015 

Value after the 5th operation: 0xDF9E1FEC 

Salt: 0x20154711 

Value after the 5th operation: 0xB89A78E8 

 

Table 5-3 shows the final iteration of our cipher development.  The addition of a rotation algorithm on the key values is 

added.  This rotation ensures that each block will be processed differently. 

Table 5-3: Cipher Output with Rotation and Salt 

Salt 0x47112015 

Value after the 1st operation: 0xDF9E1FEC 

Value after the 2nd operation: 0xA689B540 

Value after the 3rd operation: 0xA07D94C2 

Value after the 4th operation: 0x37DD6ABF 

Value after the 5th operation: 0x55A8AFBC 
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The structure of the algorithm with 32, 16 and 8 bit keys requires that we do not produce a repeating pattern with the 

key throughout the encryption of the packet.  The initial condition of the keys must not be reached for a valid packet 

size of 1500 bytes.  The rotating mechanism that we have chosen allows us to rotate the 16-bit key sixteen times, the 8-

bit key eight times, and each rotation of the 16-bit and 8-bit keys allows the use of 31 rotations of the 32-bit key.  

Formula 1 shows that the equation for the amount of blocks that can be processed with unique values of our rotating 

key set.  The final value of this is 3255 blocks as shown in formula 5-1.  As a comparison, a 1500 byte packet contains 

375 blocks including the header data.   

Formula 5-1: Block Repetition 

𝐵𝑙𝑜𝑐𝑘 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = (31 ∗ 15 ∗ 7) = 3255 𝐵𝑙𝑜𝑐𝑘𝑠  

 

5.3.1.5  Error Handling. 

The error handling for this module will rely on the higher layer network mechanisms for error detection such as TCP 

and IP protocols on the end user workstations.  In the event of an error, the packet will simply be discarded and 

retransmitted.   

5.3.2 CPU/Memory Module. 

5.3.2.1 CPU/Memory Design Specification. 

This CPU and Memory modules will be responsible for the packet decomposition and target selection.  The packet 

decomposition must perform the following operations: 

1. Determine the size of the incoming frame. 

2. Determine the size of the present headers up to the transport layer 

3. Determine the start point of the data 

The target selection must be able to compare the incoming packet data with list of encryption and decryption targets it 

has stored in memory. 

The packet processor receives a notification that the packet is ready for inspection from MAC controller.  The value is 

passed to the packet processor as a void pointer that represents the start of the packet.  Initially the packet shows up as a 

block of data, and the end state is to return whether or not to encrypt the packet, and which interface to send the packet 

on. 

5.3.2.2 CPU/Memory Design. 
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The function of the packet processor will be a relative bit offset from the initial byte of the packet.  Each packet will 

have constants that can be relied upon.  Figures 5-4 shows the Ethernet and IPv4 pairing that is expected.  The packet 

processor will be looking for this packet, and if it does not see it, it will forward the traffic without further processing.  

The dark fields denote a portion of the header that we use to perform the relative bit offset mechanic that allows us to 

deconstruct the packet. 

 
Figure 5-4: Ethernet and IPv4 Headers 

Figure 5-5 and 5-6 show the only choice point we enter into with our program.  Once an Ethernet and IPv4 packet are 

confirmed, the next layer expected is a TCP or UDP packet.  If neither is found, the packet is forwarded without further 

processing.   

 
Figure 5-5: TCP Header 

 
Figure 5-6: UDP Header 

Figures 5-7 and 5-8 show a graphical view of the packet prior to entering the packet processor and the boundaries that 

are created once it leaves the packet processor respectively.  
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Figure 5-7: Packet Processor Initial View 

 
Figure 5-8: Packet Parser Final View 

5.3.2.3  Internal Structure. 

Figure 5-9 shows the function relationships of the software.  All the code inside NIOS II block is part of the packet 

processor written entirely with ANSI C.  The relationships that move across the boundaries are VHDL functions.   
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Figure 5-9: Packet Processor Structure 

 

Figure 5-10 is the data structure of the packet processor.  In order to dissect a packet, a series of buffers are taken 

relative to where the packet pointer is located in the code.  ANSI C is not an object orientated language, however 

utilizing the struct type, it is possible to create some reusability within the code.  Structs allow us to apply a rigid template 

to place over each packet, which make the code very stream lined and much more manageable than bit masking or void 

pointers.  The other data type is the TARGET type, which is a linked-list.  This allows the packet processor to perform 

lookups on the targets that will flag the TED when a packet requires encryption or decryption. 
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Figure 5-10: Packet Processor Data Structure 

5.3.2.4 Operation. 

Figure 5-11 shows the dynamic view of the lifetime of a packet as it transverses the packet processor .   
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Figure 5-11: Packet Processor Flow Diagram 

5.3.2.5 Error Handling. 

The module relies on the end points for error detection and correction.  If the TED causes and error it will rely on the 

station to request the entire packet as indicated by the TCP sequence numbers. 

5.3.2.6 Miscellaneous. 

The packet processor also handles administration functions for the TED.  The TED will be looking for a very specific 

UDP packet, destined for IP address 10.10.10.10 with a payload that defines the key value and three four-tuples of 

trigger information:  Source and destination IP address as well as source and destination port numbers. 

The data format for the administration packet will have the following structure. 

1. 56-bit Key Value 

2. Target[1], Target[2], Target[3] 
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Figure 5-12 shows the allocation of the key and four-tuple data structure. 

 
Figure 5-12: Admin Packet Data Structure 

Received configurations will not be appended.  Each configuration packet received will replace the old configuration in 

its entirety.  

5.3.3 DMA Module. 

5.3.3.1  DMA Design Specification. 

The DMA modules inside the TED must be able to interface with the Avalon bus communication protocol. In addition 

they must be able to transfer data independently of the processor with a minimum of intervention, using either memory 

mapped semaphores or interrupts to signal they are finished with transfers. 

The cryptographic module will also use a form of DMA in order to complete the encryption and decryption operations.  

5.3.3.2 DMA Design. 

When looking at Figure 5-13, the interfaces in the architecture that required the use of DMA, and their types are: 

1. Triple speed Ethernet MAC Red Receive (Red Rx) interface. This required the use of a streaming-to-memory-

mapped (MM) DMA in order to write incoming streaming data as it is received from the red receive interface, 

to sequential locations in the outgoing memory block. 

2. Triple speed Ethernet MAC Black Transmit (Black Tx) interface. This required the use of a MM-to-streaming 

DMA in order to write data from sequential locations in the outgoing memory block, to a stream to the black 

transmit interface. 

3. Triple speed Ethernet MAC Black Receive (Black Rx) interface. This required the use of a streaming-to-MM 

DMA in order to write incoming streaming data as it is received from the black receive interface, to sequential 

locations in the incoming memory block. 

4. Triple speed Ethernet MAC Red Transmit (Red Tx) interface. This required the use of a MM-to-streaming 

DMA in order to write data from sequential locations in the incoming memory block, to a stream to the red 

transmit interface. 

5. Encryption. This required the use of a MM-to-MM DMA in order to read-encrypt-and-write, sequential data 

located in the outgoing memory block. 



    21 

6. Decryption. This required the use of a MM-to-MM DMA in order to read-encrypt-and-write, sequential data 

located in the incoming memory block. 

 
Figure 5-13: DMA members 

5.3.3.3 Internal Structure. 

Figure 5-13 shows the life of a packet as it is received on the black receive interface.  Specifically, our design uses the 

streaming-to-MM DMA in order to move the data to one of sixteen, 2048 byte blocks of memory that are allotted by a 

linked list structure. While it is stored in the linked list structure, the packet processor software function will inspect the 

packet, and determine if it is coming from a paired location protected by another TED and must be decrypted, or a 

packet that is simply actively ignored. Once the packet processor makes the determination of a decryptable packet, it will 

trigger the decryption MM-MM DMA, and then the red transmit MM-to-streaming DMA. If the packet is to be actively 

ignored, it is simply sent to the red transmit interface by its MM-to-streaming DMA. 

 
Figure 5-14: Typical DMA Transfer of Control (Incoming) 

Figure 5-14 shows the life of a packet as it is received on the red receive interface.  The design uses the streaming-to-

MM DMA in order to move the data to one of sixteen, 2048 byte blocks of memory that are allotted by a linked list 

structure. While it is stored in the linked list structure, the packet processor software function will inspect the packet, 

and determine if it is and administration packet from the administration graphical user interface (GUI), coming from a 
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paired location protected by another TED and must be decrypted, or a packet that is simply actively ignored. Once the 

packet processor makes the determination of a decryptable packet, it will trigger the decryption MM-MM DMA, and 

then the red transmit MM-to-streaming DMA. If the packet is to be actively ignored, it is sent to the red transmit 

interface by its MM-to-streaming DMA. If the packet is an administration packet, the packet processor will use deep 

packet inspection to read the configuration data, set its registers appropriately, and then return the block of memory to 

the pool available for packet reception on the red receive interface. 

 
Figure 5-15: Typical DMA Transfer of Control (Outgoing) 

Figure 5-15 shows the linked list structure that controls the organization and allotment of the sixteen 2048-byte packet 

buffers in both the incoming and outgoing memory blocks. Nodes on the below linked lists that maintain packet 

information and pointers to the specific bufferare moved from list to list when buffers are: allocated for frame reception, 

received a frame, inspected, encrypted/decrypted, prepared for transmission, transmitted, and then made available again.  

 
Figure 5-16: Packet Buffer Linked Lists 

5.3.3.4 Operation. 

Several approaches were assessed in order to control the operation of the DMAs and flow of packets in two directions at 

once. Initially, attempts were made to use a zero-size main loop, and rely on interrupts to trigger specific code blocks in 

the event of frame reception, encryption, and frame transmission, etc. Early design efforts failed in that due to the sheer 

number of interrupts generated, the processor was overwhelmed with the amount of context-switching that must take 

place on each interrupt, and was unable to operate in a meaningful way. The ultimate design uses a super-loop in the 
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main function that polls each linked list in turn, performs specific operations on that linked list buffer, and then moves 

the node to another linked list in order that it is acted on appropriately by that list. In turn, each of the linked lists’ 

operations and node transitions is as follows. 

1. The available linked list is inspected. All nodes (which point to a specific 2048-byte block) are moved to the 

receive linked list. 

2. The receive linked list is inspected. All nodes that have received packets are moved to the inspect linked list. 

3. The inspect link list is inspected. All nodes are run through the packet processor which determines if the packet 

is an administration packet, if it is supposed to be encrypted/decrypted (based on deep packet inspection if it is 

communication between two paired TEDs), or whether it is to be actively ignored. It is then moved to the 

control linked list, the crypt linked list, or the transmit linked list respectively. 

4. The control linked list is inspected. All nodes that contain configuration information/cryptographic keys, are 

loaded onto the TED. The nodes is then moved to the available linked list. 

5. The crypt linked list is inspected. The layer four payload data of all nodes are encrypted/decrypted (depend 

which interface the packet was received from). The node is then moved to the transmit linked list for 

transmission. 

6. The transmit linked list is inspected. All nodes that have been transmitted are moved to the available linked list. 

It is important to note that these lists are duplicated for each of the outgoing memory and incoming memory, in order 

that packets are moved in different directions through the TED simultaneously, achieving duplexivity through the TED. 

5.3.3.5 Error Handling. 

Error handling of all DMAs is permitted to trickle down to the transmission of packets through the opposing interface. 

The IEEE 802.3 standard provides for robust handling of errors during transmission through the use of checksums in 

different layers of a packet. This robust handling of errors does not interfere with operation of the TED and allows it to 

degrade gracefully and remain operational if errors happen during packet inspection or encryption. In short, if a packet 

fails checksum verification during any link of transmission it is simply dropped and it is left to the individual protocol on 

the secure endpoints to proceed. 

5.3.4 Parallel I/O Module. 

5.3.4.1 Parallel I/O Design Specification. 

The parallel I/O was required to assist in development.  The various mechanisms available on the DE-115 board 

allowed us to troubleshoot outside of the software.  This reduced the amount of configuration needed within the code 

and also provided instantaneous feedback in terms of the interface states.   

Specific functions and register settings were bound to switches, LEDs and displays: 
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1. PHY Chip Settings: 

a. Control link speed (10/100/1000/Auto). 

b. Control duplexity. 

c. Crossover enabled or disabled 

d. Alert when a packet is received or transmitted on any interface. 

2. Enable Cryptographic module 

3. Cryptographic filtering modes 

4. Reset the TED 

5.3.4.2 Parallel I/O Design. 

The design elements of this module were connecting the appropriate signals to the IO elements that will display the data. 

We also didn’t want to slow down the primary operations of the TED, so the operations were placed on a completely 

separate bus.  To further separate the primary operations of the TED, we are using an asynchronous reset button to 

drive any setting changes.  The reset button also acts as a way to test a multitude of settings rapidly from the TEDs 

initial state. 

The code development behind each switch and LED varies considerably, and can be referenced in the source code. 

5.3.4.3 Internal Structure. 

Each I/O element is a memory mapped interface to the CPU as shown in figures 5-11, 5-12, and 5-13.  On initialization 

the TED will cycle through each switch and appropriately trigger each of the settings.  To make initialization occur more 

rapidly, a reset switch was used to force the board to re-initialize.  The reasons for this were two-fold.  The first is to 

have a quick way to power cycle the board without removing the power, and the second was to remove the requirement 

to loop through and constantly check for any I/O changes.  

5.4 Interface Descriptions. 

Following in this section is a brief description of all physical interfaces we used on the DE2 115 development board, as 

detailed in figure 5-10. 
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Figure 5-17: Terasic DE2-115 Development Board Interfaces 

5.4.1 All FPGA Internal Interfaces. 

All internal FPGA interfaces will be of the signal type “STD_LOGIC” or “STD_LOGIC_VECTOR (# DOWNTO 

#)” specified by the IEEE VHDL libraries included in the Quartus II software, and they will conform to the Avalon 

open source interface specification that is primarily used by Altera.  This interface specification allows the Qsys software 

to map and create the proper module interconnection logic and relieve the overhead from the programming team. 

5.4.2 Ethernet. 

The external Ethernet interfaces in figure 4-7 are identical and are copper Ethernet RJ-45 connections communicating 

over twisted pair CAT-5 wiring.  The internal interface between the FPGA and Marvell 88e1111 PHY are of the type 

“STD_LOGIC” or “STD_LOGIC_VECTOR (3 DOWNTO 0)”, as well as an on board oscillator used by the PHY. 

 

Figure 5-18: Ethernet Interfaces 

5.4.3 LCD. 
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The external LCD interface will be controlled by FPGA signals of the type “STD_LOGIC” and are wired directly to 

certain pins on the FPGA as described in figure 4-8. 

 

Figure 5-19: LCD Interface 

5.4.4 Parallel I/O. 

The parallel interface has two function controlled by the memory-mapped interface to the CPU.  It reads information 

from switches and displays discrete information on LEDs.  All signals are of the type “STD_LOGIC”, whether they are 

to or from the FPGA as shown in figures 4-9, and 4-10. 

 

Figure 5-20: DE-115 Switches Interface 
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Figure 2-21: DE-115 LEDs Interface 

 

 

Figure 5-22: DE-115 Switches Interface 

5.4.5 SDRAM. 

The SDRAM interface in figure 4-10 provides access to 128MB of external RAM in the form of two external 64MB 

chips that are wired to a 32bit high-low half word configuration.  All signals communicating to the SDRAM are of the 

type STD_LOGIC” or “STD_LOGIC_VECTOR (# DOWNTO #)”. 

 
Figure 5-23: SDRAM Interface 
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6 Equipment. 

The equipment that was used for testing and development is categorized in Table 6-1. 

Table 6-1: Final Project Equipment List 

Quant.  Name Function 

2 Terasic DE2-115 Development Board  TED 

2 Raspberry Pi Model B Red Server (User 3) & 

Black Sensor 

2 Cisco 2960G Catalyst Switch Network Distribution 

1 Cisco 2600 Router Network Routing 
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7 Results. 

7.1 Testing. 

7.1.1 Bandwidth Test. 

To measure the bandwidth of the TED and demonstrate PR-01 (100Mbps throughput) we used the SCP protocol in 

verbose mode.  This method would have consistent overheads for both configurations and provide a detailed report 

once the file was transferred.  The smaller file sizes showed no significant difference in throughput, however as the file 

size increased, the throughput settled at approximately 20 Mbps.  We believe this is due to an interrupt running on the 

FGPA.  The FPGA must be connected via USB at all times to the Quartus software.  This is a restriction enforced with 

the particular license we are using.  Since we are showing no lag times in latency and smaller packet transfers, we believe 

this assumption is well founded. 

 

Figure 7-1: Comparison of Bandwidth with and without TED 

7.1.2 Latency Test. 

The latency was measured using the ping command.   Sample sizes were between 200 and 300 pings with the average 

ping time shown in figure 7-2.  Even the largest packet size only delays the latency by 1ms, well below the timing 

requirement of PR-02 of a 10ms delay traversing through the ted. 
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Figure 7-2: Latency of Variable Packet Size 

7.1.3 Duplexity Test. 

As part of IEEE 802.3 standard, auto-negotiation of the end stations are successfully connecting with a full-duplex 

connection at 100 Mbps satisfying IR-01 (Duplexity).   

7.1.4 NAT Test. 

Requirement IR-02 (NAT Transversal) outlined that the TED must survive static NAT transversal.  The NAT function 

of the TED was built into the target design.  This means that NAT configuration on the TED is a function of how the 

targets are applied to each packet.  When NAT is enabled, the trigger for the decrypt is now a result of the source and 

destination IP addresses.  If a packet is received on a TED, and the source IP address was the public IP address of the 

sending TED, and the destination is for the private IP address.   The major difference between NAT operation and 

normal operation is to know that static NAT is being used, and to know the public IP addresses of each network. 

7.1.5 Administration Panel Test. 

Requirement IR-03 Administration Interface outlined a secure user that was able to change the key and target settings of 

the TED.  Section 5.3.3.6 outlined the structure of how the TED would process this data.  It would require the key, 

followed by the 4-tuple of the source and destination IP/port pairings.  This configuration was completed as a java 

swing GUI.  The information was sent to the TED as a UDP datagram, with the payload being a character buffer of all 

the configuration changes being sent to the device.  Figure 7-2 shows the GUI configuration and figure 7-3 shows the 

resultant  
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Figure 3-3: TED Administration GUI 

 

 

Figure 7-4: TED UDP Administration Packet 
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8 Summary. 

The purpose of this project was to develop a hardware based symmetric encryptor that would abstract the security of 

network data away from the operating system towards a dedicated device.  Security software that runs on an operating 

system, inherits the security vulnerabilities of all other programs running on that operating system.  To remove that 

attack vector will greatly increase the overall security of the system. 

We placed the device inline of network communications and in doing so we can intercept data and modify the contents 

without obstructing the flow of network communications.  This means, we do not have to transverse the protocol stack 

in order to process the data.  This allows our device to encrypt data without leaving a signature or changing the header 

data in the packet.  This also makes our device a layer two device, but it is fully aware of the entire contents of the 

packet. 

This paper introduces 3 common use cases.  These are the three use cases that we used to validate our design; however, 

there is no restriction to how this device may be used.  It can operate WAN to WAN and even function as a data diode.  

These use cases are beyond the scope of this paper, but demonstrate that many possibilities for deployment exist; bound 

only to the interpretation of the user. 
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9 Conclusion. 

The final state of the project demonstrates that the DE-115 FGPA development board is capable of conducting secure 

network communications over Ethernet with a custom cryptographic module.  In addition, when the network was 

properly configured to operate in a NAT environment, the TED was able to survive two instances of NAT transversal. 

Through a comparison of network operations with and without the TED placed inline network communications we 

have shown that there are negligible performance losses when using the TED.  The final results of our testing showed a 

0.5% decrease in bandwidth, and less than 0.1% decrease in latency, approximately 1/100 millisecond.  The 

demonstration of duplexity was demonstrated by conducting synchronous communication between User 1 and User 3 

and observing that no blocking waits were being initiated within the Quartus console. 

We have established the security against some of the more vulnerable aspects to block ciphers such as rainbow tables, 

however since the data is wrapped in 32-bit blocks leaving the cipher open to brute force techniques.  While the cipher 

successfully obscures the data, without a proper peer review it is impossible to verify that it is a secured algorithm.  Its 

implementation must be viewed as an academic pursuit. 
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10 Discussion. 

10.1 PR-04 Requirement Removal. 

One major change we made from our preliminary design specification was the removal of performance requirement 04: 

The TED will insert a custom layer 4 header to mask any usage signatures from the device.  This requirement was 

removed because we felt it conflicted too much with the idea of a transparent network device.  We were trading a usage 

characteristic (ie: Traffic over port 23 can be characterized as telnet traffic) for an absolute signature.  For this reason, we 

only encrypt the entire transport layer payload, and leave the transport layer as is. 

10.2 Major Challenge and Lessons Learned. 

Hardware implementation was the major challenge of this project.  There were specific ways that the board allowed us to 

interface with the data.  We required precise control over the bits that were entering the FPGA.  We used a relative bit 

offset mechanism to perform deep packet inspection, and knowing the exact address of each bit was crucial.  This piece 

alone accounted for the majority of all the work hours on this project.  The lesson learned from this challenge was to 

give more respect to the proprietary software that is packaged with FPGA boards.  We invested many hours to 

determine the raw specs of the FGPA that would meet our design requirements; instead we should have researched the 

tools and software that fit our project.   
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11 Future Work. 

11.1 Cryptographic Cipher Iterations. 

Additional iterations of our designed cipher are needed.  There is a currently weakness in our implementation that can 

exploit the fact that the blocks are processed in the same way each time.  If data is known to occur in the first 4 bytes of 

the packet, the key and salt pairing can be easily extracted against a brute force attack. 

11.2 Packet Processing Depth. 

The packet processor is programmed to only consider Ethernet, IPv4, TCP and UDP.  Additional functionality can be 

built into the board to include IPv6, ICMP, ARP, VLAN and any other desired protocol.  
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Annexes  

Annex A – Additional Diagrams and Figures 

 

Figure A-1: Block Cipher Decryption Model 
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Figure A-2: Block Cipher Encryption Model 


