NEMO

release 2.3

version 2.3.44

User Manual

August 3, 2015

authors

Frédéric Guillaume
guillaum@zoology.ubc.ca

Jacques Rougemont (MPI version)
Jjacques.rougemont@isb-sib.ch

contributors

Samuel Neuenschwander
Alistair Blachford

Sam Yeaman

availability
http://sourceforge.net/projects/nemo?2

http://sourceforge.net/projects/nemo2

(©) 2006 — 2015 Frédéric Guillaume

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies. Permission
is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the sections entitled Copying and GNU General
Public License are included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the Free Software Foundation.

Contents

1 INTRODUCTION

1.1 Overview o o
1.2 Main Features
1.2.1 Population models o0
1.2.2 The Individual oo
1.2.3 Geneticso
1.2.4 Statistics and outputs

1.3 Using Nemo o o
1.3.1 Launching Nemo from the command line
1.3.1.1 For Linux and Mac OS X users

1.3.1.2 For Windows users

1.3.2 Batchmode o

2 THE INIT FILE

2.1 Parameter types.
2.2 Special characters
2.3 Matrix parameterso
2.4 Sequential parameterso
2.5 External argument files
2.6 Temporal arguments Lo L
2.7 Output files and naming conventions

3 SIMULATION COMPONENTS

3.1 Simulation

10

12
12
13
14
14
17
18
19

21

CONTENTS

3.2 Population
3.2.1 Loading a population from afile.

4 LIFE CYCLE EVENTS

4.1 Aging . ..
4.2 Breeding
4.3 Breeding with Wolbachia
4.4 Dispersal
4.5 Seed dispersalo
4.6 Evolving Dispersal 0 L
4.7 Selection

4.7.1 Multi-trait selectiono

4.7.2 Fixed selection model parameters

4.7.3 Gaussian and quadratic model parameters
4.8 Extinction and Harvesting
4.9 Trait initializationo

4.9.1 Initialization of trait quant

4.9.2 Initialization of trait ntrlo

4.9.3 Initialization of traitdmi
4.10 Resize Population L
411 Cross Design (NCI)o o o oo
4.12 Population Regulation 0.
4.13 Save Stats
4.14 Saving Files Lo
4.15 Store Data in Binary Files
4.16 Composite LCE
4.17 Breed with selection oo
4.18 Breed-disperse (gametic migration)
4.19 Breed with selection and backward migration

5 TRAITS

5.1 The Geneticmap

i

23
25

30
32
32
34
35
38
38
39
40
41
41
43
44
44
45
45
47
50
o1
o1
53
53
54
95
o6
58

60

CONTENTS

5.2 Neutral markers oo
5.3 Quantitative traits
5.4 Deleterious mutations oL
5.5 Dobzhansky-Muller Incompatibility loci
5.6 Dispersal genes
5.7 Wolbachia
6 EXAMPLES

6.1 Lifecycles

6.1.1 A basiclifecycle L

6.1.2 Adding outputs
6.2 Traits
6.3 A complete example L

7 OUTPUT STATISTICS

7.1 Stat Output Files
7.2 Stat Options
7.3 Population
7.4 Neutral markers oo
7.5 Quantitative traits
7.6 Deleterious mutations Lo
7.7 Dobzhansky-Muller Incompatibilities (DMI)
7.8 Selection
7.9 Dispersal
7.10 Wolbachia

il

63
67
71
74
76
7

78
78
78
79
79
80

Chapter 1

Introduction

1.1 Overview

Nemo is a forward-time, individual-based, genetically explicit, and stochastic simu-
lation program designed to study the evolution of life history/phenotypic traits and
population genetics in a flexible (meta-)population framework. Nemo implements a
recombination map on which loci coding for different types of traits can be placed
together, The evolving traits provided are sex-specific dispersal rates, universally
deleterious mutations, quantitative traits, Dobzhansky-Muller incompatibilities, and
neutral markers (e.g., SNP, microsatellites). It also allows for the simulation of the
dynamics of an endosymbiotic parasite vertically transmitted causing cytoplasmic
incompatibility; Wolbachia. The number of populations, individuals per population
or loci per trait to simulate are only restricted by hardware capacities. Nemo is
highly optimized to run in batch mode and a parallel computing version is part
of the release thus making it a very flexible and powerful simulation tool. Nemo’s
framework is coded in C++ and has been designed to be easily extended and include
new evolving traits or population features.

Availability: Nemo comes free of charges and is distributed under the GNU Gen-
eral Public License (GPL2). Binaries and source code are provided for the Linux,
MacOSX, and Windows platforms. Nemo is coded in C++ and runs on any platform
supporting a console-like environment and allowing it to be compiled with standard
C/C++ compilers (GNU gcc being the default).

Installing: Installing Nemo is straightforward, you just need to copy the binary
file corresponding to your operating system from the hosting web site (http://
nemo?2.sourceforge.net/) and use it at once or, in the case your operating system
is not supported, copy the source code, compile it and use the executable. See

http://nemo2.sourceforge.net/
http://nemo2.sourceforge.net/

CHAPTER 1. INTRODUCTION 2

the documentation provided with the source package for instructions concerning the
compiling process.

Using: The basic users’ interface is a text file (a.k.a the ‘init file’) containing
the input parameters and their argument in a key/value scheme. Nemo is then
launched from the console with that init file as an argument. Some runtime infor-
mation (current running simulation, current generation/replicate, etc.) is written
to the standard output (terminal window). Nemo also gives the possibility to save
the simulation data to a variety of files in text or binary format, depending on the
options chosen in input. The user may save the traits’ complete genotypic informa-
tion, the simulation’s summary statistics, or the complete state of the population,
periodically. See chapter 2 for input directions and chapter 3 for parameters de-
scription.

Extending: Nemo is designed as a flexible and extensible coding framework. It is
aimed at facilitating the implementation of new components such as new evolving
traits with their specific genetic architecture and new life cycle events, while taking
advantage of the simulation management features offered by the framework (i.e.
input/output management, interaction with existing components, etc.). The basic
coding procedures are described on the coding documentation web site: http://
nemo?2.sourceforge.net.

Acknowledgments: The parallel computing version (Nemo_MPI) has been de-
veloped in collaboration with Dr. Jacques Rougemont at the Swiss Institute of
Bioinformatics using the Message Passing Interface (MPI) standard (http://www.
mpi-forum.org) allowing to run simulations on cluster environments such as the
Vital-IT cluster at SIB (http://www.vital-it.ch). That parallel version uses the
Scalable Parallel Random Number Generators library (SPRNG; http://sprng.cs.
fsu.edu) as a source of random numbers. The regular Nemo version implements
a random number generator (i.e. the Mersene Twister) provided by the GNU Sci-
entific Library (GSL; http://www.gnu.org/software/gsl) as well as several other
mathematical routines defined in that library. Nemo was initially developed as part
of the main author’s PhD work at the Department of Ecology and Evolution at the
University of Lausanne (http://www.unil.ch/dee). Alistair Blachford provided
a first version of the bitwise recombination algorithm. Sam Yeaman helped with
proofreading and debugging.

http://nemo2.sourceforge.net
http://nemo2.sourceforge.net
http://www . mpi-forum . org
http://www . mpi-forum . org
http://www.vital-it.ch
http://sprng.cs.fsu.edu
http://sprng.cs.fsu.edu
http://www.gnu.org/software/gsl
http://www.unil.ch/dee

CHAPTER 1. INTRODUCTION 3

1.2 Main Features

Nemo is a forward-time simulation program. This means that the population state
is evolved forward in time from generation 0 to generation T through successive
(generational) iterations of the life cycle. The life cycle is also composed of a suc-
cession of events, chosen by the user. The individuals in the simulated population
are run through this life cycle. They will do so only once during their lifetime as
the kind of organism modeled so far is semelparous (i.e. reproduce only once and
then die like pacific salmons for e.g.). The fate of an individual may depend on its
traits value or phenotype. For instance, during viability selection, an individual will
survive only if its viability trait (e.g., deleterious mutations) gives it a chance to win
the viability lottery.

Nemo allows the updating of parameter values during a simulation by using temporal
parameter arguments (see section 2.6). The population state (i.e. number and size of
the patches) or any other model component can be changed through time. Patches
can also be merged or split (see the resize life cycle event) to model population
fusions /fissions.

Nemo offers many different kind of life cycle events (see below) that allow the user
to set up many different population/evolution models or simply interact with the
simulation data. For instance, Nemo can load simulation data in various format
(see subsection 3.2.1) to start a new simulation or just perform some extra genetic
analysis. Nemo can also use genetic markers data to seed a simulation. It is thus
possible to run simulations based on real field/experimental data. The number of
traits an individual can carry is also up to the user. Individuals without any trait
can be used to simulate simple demographic models. The number of Life Cycle
Events (LCE) composing the life cycle are only limited by their availability. These
simulation components are added following the needs of the users/developers of the
Nemo framework and we hope their number will increase with future versions. So
far, the currently available components are as listed below:

e Life Cycle Events (LCE):

— breeding (reproduction of dioecious or monoecious individuals)

— viability selection (trait- and environment-dependent fitness values)
— dispersal (forward and backward migration)

— combinations of those LCEs (see section 4.16)

— ageing (non-overlapping generation)

— population regulation (ceiling model)

— population growth (logistic, exponential, etc.) (section 4.18)

— population extinction and harvesting (can be patch specific)

CHAPTER 1. INTRODUCTION 4

— population modification (fission, fusion, addition of patches)
— crossing design with half-sif/full-sib design (NCI)

— and more...
e Mating systems: the breeding LCE allows for the following mating systems:

— random mating (promiscuity)

— polygyny (number of mating males can vary)
— monogamy

— hermaphroditism (monoecious organisms)

— selfing (fusion of self-gametes)

— cloning (no meiosis, suppresses recombination)

e Dispersal models: forward (zygotic) and backward (gametic) migration can
be modelled with the following dispersal models:

— sex-specific dispersal matrices fully describing any complex dispersal pat-
terns as defined by the user

— separate seed and pollen dispersal matrices (for monoecious organisms)

— large migration matrices for simulations on large geographical grids can
be simplified and passed as reduced dispersal and connectivity matrices

or pre-defined dispersal models with:

— Island Model with migrant- or propagule-pool migration
— Stepping Stone Model (nearest-neighbour migration on a string of patches)

— 2D lattice model on a grid, set as a torus or with reflective or absorbing
borders

e Traits:

— Universally deleterious mutations (di-allelelic mutations affecting fitness)
— Neutral markers (from SNPs to microsatellites)

— Pleiotropic quantitative trait loci (multiple correlated phenotypic traits)
— Bateson-Dobzhansky-Muller incompatibility loci (pairs of epistatic loci)
— Dispersal quantitative loci (male and female specific dispersal genes)

— Wolbachia (endosymbiotic parasite causing cytoplasmic incompatibility)

CHAPTER 1. INTRODUCTION 3

1.2.1 Population models

Besides its flexibility in the types and number of components included in a simula-
tion, Nemo provides a highly versatile population model. It ranges from the classical
island model with evenly distributed patch sizes and dispersal rates to a spatially
explicit population model with different sex-specific and patch-specific sizes and dis-
persal rates. This flexibility is achieved thanks to the matrix parameters that the
user can pass to Nemo and which allow to design any kind of population model (see
chapter 3 for more details). Extrinsic population extinction rate can also be added
to model extinction/recolonization dynamics as well as stochastic variation of pop-
ulation sizes (i.e., harvesting). Furthermore, as the model is fully stochastic, patch
sizes may vary during a simulation as a result of pure demographic stochasticity, up
to the point of population extinction. Here, the mean female fecundity is key to set
the level of population saturation and demographic stochasticity. The population
regulation mechanism uses a ceiling model when migration is forward (as in the dis-
perse LCE). That is, the total number of individuals present in a population at time
of regulation is reduced to its carrying capacity for each sex. Specific growth rates
can be used when backward migration is modeled with the breed disperse. Popula-
tion bottlenecks and other variation of the population model may also be modeled
with temporal parameter values or the use of the resize LCE. In summary, Nemo
allows for the following population features:

e patch-specific and sex-specific population sizes (patch sizes matrix)

e explicit pairwise dispersal rates, also sex-specific (dispersal matrix)

e demographic stochasticity (built-in)

e extrinsic extinction rate or patch size variation (harvesting)

e temporal change of the population parameters and/or dispersal rates

e pure Wright-Fisher population model with constant population sizes (with the
breed_disperse LCE)

1.2.2 The Individual

An individual in Nemo is basically defined as a trait container. That means that
the phenotypes of the individuals depend on which traits are modeled based on the
parameters in the input file. By default, individuals don’t carry any genetic informa-
tion in absence of traits. The only pre-defined phenotypes are the individual’s age
and sex. Individuals also store information about their ancestry and demographics
and have a unique ID and a pedigree class (informs if the two parents were a single in-
dividual, full-sib, half-sib, or unrelated individuals). Each individual also stores the

CHAPTER 1. INTRODUCTION 6

number of babies it had and the ID number of its mum, dad, and natal patch. These
information tags are used to compute pedigree-based or age-/sex-specific statistics
and are sometimes saved to file by the different simulation components.

1.2.3 Genetics

The genetic models implemented depend on the type of traits, but all types of loci
can be placed on the same genetic map. That map is a recombination map, and
not a physical map, in that it specifies the locus positions in units of recombination,
the centimorgan [cM]. This means that bi-allelic neutral sites can be placed on the
same map as QTL and sites under background selection (the deleterious mutations),
where loci with the same map position will be physically linked. The traits available
in Nemo are distinguished by the interpretation of their phenotypic value and their
genetic architecture. At the coding level, this means that different data structures
can be mixed together making trait implementation highly flexible and dependent
on the specific need for the different traits. For instance, the neutral (ntrl) trait has
no phenotypic value and is coded on one byte per locus, the deleterious (delet) trait
has fitness as its phenotype and is coded on one bit per locus along with a single
table relating mutation to their fitness value, while the quantitative (quant) trait has
a continuous value as its phenotype coded on one double precision number (8 bytes)
per locus per trait (all loci are pleiotropic when more than one trait is modeled).
The data structure chosen obviously conditions the number of alleles available per
locus, hence the use of bits for a bi-allelic trait like deleterious mutations, and the
use of a single byte for neutral markers that can have from two (SNP), to four
(nucleotide), to many alleles but not an indefinite number of alleles (maximum is
256 allelic states).

Simulation of large DNA sequences

Nemo has not been developed to model evolution of genetic polymorphisms of DNA
sequences on large chromosomal regions spanning several million base pairs at the
nucleotide level. The reason is that Nemo uses an explicit representation of each
locus in each individual. This straightforward implementation is fine when mod-
elling limited number of loci in the range of 100 to 10,000 loci, especially for neutral
markers. The implementation capitalises on position-ordered arrays of loci, which
makes access to locus values an efficient, constant-time operation. This is of par-
ticular interest for non-neutral traits which individual values must be read in each
individual at each generation to determine fitness. The approach, however, has a
huge computational cost when modeling large sequences of over 10° loci (in large
populations) because of the intense memory usage it entails.

CHAPTER 1. INTRODUCTION 7

1.2.4 Statistics and outputs

Nemo provides several ways to record the ancestral population states. Summary
statistics can be computed at different time periods during a simulation. The statis-
tics recorded depend on the simulation components used. Each simulation compo-
nent can define its set of statistics that the user can choose among to monitor during
a simulation. Here are examples of the summary statistics:

e Neutral trait stats: Heterozygosities, F-stats (Fst (Gsr and), Fig, Fir),
allele numbers, number of fixed alleles per locus, coancestries, Nei’s D genetic
distance, etc.

e Deleterious mutations stats: mutation frequency, heterozygosity, homozy-
gosity, genetic load, heterosis, number of lethal equivalents, viability by pedi-
gree classes, etc.

e Dispersal trait stats: mean male and female dispersal rates

e Population stats: patch saturation, female and male number per patch,
sex-ratio, mean fecundity, variance of reproductive output, count of migrants,
effective extinction rate, etc.

The summary statistics are then dumped to a text file at the end of a simulation.
This file is easily handled by classical statistical packages (such as the excellent R)
for further analysis and graphical representation.

Alternatively, you can save the raw data of the ancestral population in either binary
or text file formats. The various traits usually provide a way of saving the popula-
tion genotypes in text files. A special binary file format is used to save the whole
population information containing all the traits and individuals data and the simu-
lation parameters. Binary files can then be used by Nemo to load a saved population
and run a new simulation from it or use it as a source of individuals that have, for
instance, reached a certain level of genetic stability (i.e. burn-in population).

1.3 Using Nemo

Let’s assume you have copied the executable file corresponding to your operating
system on your disc and that you have launched a terminal window. The following
guidelines will show you how to launch a simulation on your desktop computer on
both *nix flavored operating systems and Windows. Guidelines to launch a parallel
job on a computer grid or cluster environment are not provided here. These will
vary according to the type of infrastructure you have access to.

CHAPTER 1. INTRODUCTION 8

1.3.1 Launching Nemo from the command line
1.3.1.1 For Linux and Mac OS X users

On Mac OS X, the terminal application, called Terminal.app, is located in the
/Applications/Utilities directory on your hard drive. Simply double click to
launch it. Then, whatever your operating system is, we assume you have installed
the executable file nemo2.x.y in a folder somewhere on your file system and that
you set your working directory to that place (using the cd command). The following
commands will allow you to run a simulation.

First, lets have a glance at what is in the directory using the 1s command:

> 1s
nemo2.x.y* Nemo2.ini

So, we have the executable file, nemo2.x.y and a configuration file, Nemo2.ini.
Now, if we type the following command, Nemo will automatically search for the
Nemo2.ini file in the local directory and try to initiate a simulation from it.

> ./nemo2.x.y

The './' characters in front of the executable filename simply means the program
file is to be searched in the local directory rather than in one of the directories
specified by the PATH environment variable. This command will produce the fol-
lowing output to your terminal window (or something approaching depending on
the program’s version):

> ./nemo2.1.0
NEMO2.1.0 [22 Jan 2009]

Copyright (C) 2006-2009 Frederic Guillaume
This is free software; see the source for copying
conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
http://nemo2.sourceforge.net

reading "Nemo2.ini"

setting random seed from input value: 213145234

--— SIMULATION 1/8 ---- [POLY_dcost01_ISM]

CHAPTER 1. INTRODUCTION 9

start: 23-01-2009 11:33:27

mode: overwrite

traits: delet, fdisp, mdisp, ntrl

LCEs: breed_selection(l), store(2), save_stats(3), save_files(4)
, disperse_evoldisp(5), aging(6), extinction(7),

outputs: test/{*.log, delet/*.del, fstat/*.dat, fstat/*.fsti, \
binary/#*.bin, data/*.txt}

replicate 10/10 [11:34:32] 3000/3000
end: 23-01-2009 11:34:40
--- done (CPU time: 00:01:11s)
setting random seed from input value: 213145234

-—- SIMULATION 2/8 ---- [MONO_dcostO1_ISM]

start: 23-01-2009 11:34:40
[...]

This output shows the progress of the simulation with the replicate and generation
counters and prints the time when the current replicate started (in format hh:mm:ss)
and ended, and the elapsed computing time (hh:mm:ss). This simulation was run
on a MacBook 2.4 GHz Intel Core 2 Duo. The parameter file used in this example
is the one present in the example directory of the distribution package.

1.3.1.2 For Windows users

You have two options to run Nemo under Windows. You may install CygWin (from
http://www.cygwin.com), as Nemo has been compiled using this environment, this
is the better option. Or, you can simply use the MS-DOS terminal (i.e. the command
prompt). The latest option is explained here as using CygWin is like using any *nix
environment (see previous section). So, launch the command prompt (cmd.exe) and
cd to where you have installed Nemo. Assuming you have the following files in your
current working directory after downloading the right archive (i.e. Nemo-z.y.z-Win-
binaries.zip):

nemo2.x.y.exe cygwinl.dll Nemo2.ini

The cygwinl.dll file is required to run Nemo outside of CygWin and must be sitting
in the same directory as the nemo executable. To launch Nemo, simply type the
command:

http://www . cygwin . com

CHAPTER 1. INTRODUCTION 10

> nemo2.x.y.exe

You should have the same output as previously under MacOS X / Linux.

Note about CygWin: when installing CygWin, check that you also install the
GSL library by checking the gsl:Runtime option under the Libs section of the
installer.

1.3.2 Batch mode

Nemo accepts only one type of argument on the command line, the name(s) of the
init file(s) to run simulations from. For instance, if three init files are passed to
Nemo, the program will initiate three simulations from those files, considering they
don’t incorporate any sequential parameters. Sequential parameters are parameters
with more than one argument value (see section 2.4 below).

Let’s illustrate this by first running Nemo with more than one argument:

> ./nemo2.0 siml.ini sim2.txt sim3

Here we have three init files called sim1.ini, sim2.txt and sim3, they are all text
files, the extensions do not matter much here. Their parameters are the same as in
the previous example. This command will produce the following output:

NEMO2.0.0 [25 Apr 2006]

reading "siml.ini"
reading "sim2.txt"
reading "sim3"

——— SIMULATION 1/3 ———-=-——————mm—m—mmmmmmmmm o

replicate 10/10 [10:04:54] 100/100
--- done (CPU time: 00:01:26s)

——— SIMULATION 2/3 ———-=-———————————mmmm—mmmo o

replicate 10/10 [10:06:36] 100/100
--- done (CPU time: 00:01:26s)

CHAPTER 1. INTRODUCTION 11

——— SIMULATION 3/3 —---—-——-————————mmmmmmmmm

replicate 10/10 [10:08:13] 100/100
--- done (CPU time: 00:01:26s)

Sequential parameters As an example of sequential parameters, let’s assume
the first file, sim1.1ini has the following parameter with several arguments:

patch_capacity 5 10 20

This will add two more simulations to the three previous ones:

> ./nemo2.0 siml.ini sim2.txt sim3
...]

reading "siml.ini"

reading "sim2.txt"

reading "sim3"

—-— SIMULATION 1/5 -—--—-——-————m———mmmmmmmmmm

replicate 1/10 [10:19:22] 88/100 -> Pop extinction
replicate 3/10 [10:19:25] 74/100 -> Pop extinction
replicate 4/10 [10:19:26] 84/100 -> Pop extinction
replicate 7/10 [10:19:29] 97/100 -> Pop extinction
replicate 10/10 [10:19:33] 100/100

--- done (CPU time: 00:00:11s)

——— SIMULATION 2/5 ——--—-—=-—————————mmm—mmmm—

replicate 10/10 [10:21:00] 100/100
--- done (CPU time: 00:01:26s)

——— SIMULATION 3/5 ——--—-——-————————mmmm—mm—m—

replicate 10/10 [10:24:00] 100/100
--- done (CPU time: 00:02:55s)

——— SIMULATION 4/5 ——--—-——-————————mmmm—mmmm—
[...]

Chapter 2

The input parameters file

The configuration file (or init file) presented previously, is a text file with one pa-
rameter per line in a key/value scheme where the key is the parameter name, and
the value its argument value. Each line or string in a line that begins with a ‘#’
is treated as a comment and is ignored. Parameters are character strings (with no
whitespace character) that may be followed by one to several argument values sep-
arated by at least one white space character. A particular parameter must appear
only once in the init file, this is the only restriction for now. The order of appearance
of the parameters in the file does not matter.

2.1 Parameter types

Here is a list of the different types of argument a parameter can take:

e boolean (bool) : works on a presence (=true) / absence (=false) basis
when no argument is passed. Also accepts '1' as true (or set) and '0' as
false (or unset); this is especially useful for temporal arguments (see below).

e integer : argument is a dot-less number value; a limit to the number of
available values a parameter can take may be specified from case to case.

e decimal : argument may be a floating-point value. The following forms are
equivalent: 0.0001, .0001 or le-4.

e string : argument is a character string that may contain white-spaces.

e matrix : special argument that is enclosed by '{ }’, inside these brackets, each
row of the matrix is also enclosed by two brackets, see section 2.3 for details
and examples.

12

CHAPTER 2. THE INIT FILE 13
2.2 Special characters

Here is a list of the reserved characters and their meaning during the process of
reading and parsing the input parameters file.

e comment : # : any character that follows the comment character is removed
until the end of the line is found. If a starting block comment string (#/) is
found within a commented line, it is treated as such (see below).

e block comment : #/.../#: any line of text enclosed by those two-characters
strings is recursively removed from the init file. A block comment can also be
specified on a single line.

e line continuation : \ : the line that immediately follows that character is
appended to the current line and the two lines are treated as one. This is
particularly useful to split a sequence of argument values over several lines
(see the matrix example below).

e matrix : {{row?}{...}} : any argument value starting and ending by two
enclosing curly braces is considered as a matrix argument (see next section).

e name expansion : % : used in the character string of an argument to insert
the value of another parameter when that parameter has multiple argument
values (see sequential parameters in section 2.4).

e external parameter file : @filename : used to pass an argument value to a
parameter when that argument value (e.g., a large matrix) is contained in a
separate file. The character string filename contains the path to that separate
file containing the argument value(s) (see section 2.5).

e specifiers : @g : this short character string is used to specify the generation at
which a temporal argument value applies. For instance, “©gl00” designates a
temporal argument value that will be used at generation 100 (see section 2.6).
Specifiers must be found within a block argument (see below).

e block argument : (argl, arg2, ...) : argument values enclosed with two
parentheses are treated in a special way. Parentheses are used when several
arguments and their specifiers must be passed to a parameter without being
interpreted as a sequence. Such a case appears when specifying temporal
argument values (see section 2.6). Argument values are separated by commas
within a block argument (e.g., (@g0 0.02, @g5 0.5)).

CHAPTER 2. THE INIT FILE 14
2.3 Matrix parameters

A matrix argument may be passed to a parameter in the init file. This type of
argument contains integer or floating-point values separated by commas and curled
brackets. Here is an example:

patch_capacity {{20, 20, 5, 10, 5}}

dispersal_matrix { {0.2, 0.0, 0.0, 0.4, 0.4}
{0.4, 0.2, 0.0, 0.0, 0.4}
{0.4, 0.4, 0.2, 0.0, 0.0}
{0.0, 0.4, 0.4, 0.2, 0.0}
{0.0, 0.0, 0.4, 0.4, 0.2} } \ #<- \ is mandatory!

\

{ {0.4, 0.0, 0.0, 0.3, 0.3}

{0.3, 0.4, 0.0, 0.0, 0.3}
{0.3, 0.3, 0.4, 0.0, 0.0}
{0.0, 0.3, 0.3, 0.4, 0.0}
{0.0, 0.0, 0.3, 0.3, 0.4} }

The matrix is enclosed by two external brackets ‘{ }’ within which each row is
specified by two internal enclosing brackets ‘{ }’. Inside a row, the column values
are separated by commas ‘,” or semi-colons ‘;’. The rows can be separated by any
kind of characters but a backslash ‘\’. A matrix argument can as well be used to

pass only an array of values as in the first example above or a complete matrix.

Several matrices may be passed as arguments to a parameter. That parameter will
then become a sequential parameter (see below). The different matrices must start
on the same line to be sequential arguments. The line continuation character ‘\’
is mandatory if one wants to split matrices over several lines (see example above).
Note that the lines within a matrix do not count; the rows can be written over
several lines without using the line continuation character .

2.4 Sequential parameters

A parameter with several argument values on a single line is called a “sequential
parameter” in the sense that it will initiate a sequence of simulations. There will
be as many simulations as the number of combinations of the sequential argument
values present in the configuration file. Each simulation receives a different output
filename that might be explicitly defined in the configuration file or automatically
generated. This section explains how to specify specific simulation output filenames

CHAPTER 2. THE INIT FILE 15

based on the sequential parameter values. This mechanism also works throughout
the whole set of string parameter arguments (e.g. the output directory or input
binary file arguments).

Basic filename/argument string expansion: If your configuration file com-
prises sequential parameters, you may add the special expansion character % followed
by a number (%1 for e.g.) in the base filename argument string to build specific file-
names for each simulation initiated by the sequential parameters (see description of
the filename parameter in section 3.1). This expansion character can also be used in
any string argument of any simulation parameter throughout the init file and will
be expanded in the exact same way as for the base filename. The number after the
expansion character refers to a specific sequential parameter present in the init file,
starting with 1 for the first. The sequential parameters are alphabetically sorted so
that the number one is not the first in the file but the first in alphabetical order. You
cannot use more expansion characters than the number of sequential parameters but
if you use less or none at all, a number will be added to the simulation filename
to prevent overwriting the same file(s) several times (does not apply to other string
arguments). The simulation base filename will get an extra extension of the form
-# at its very end, where # stands for the number of the simulation in the sequence.

ex: if we have these two sequential parameters:

patch_number 10 50
patch_capacity 5 10

Setting the base filename this way:

filename %2pop_%lind
source_pop %2pop/mysource_%lind

will give the following basenames, one for each simulation:

10pop_bind
50pop_5ind
10pop_10ind
50pop_10ind

Here %2 refers to patch_number and %1 refers to patch_capacity, in alphabetical order.

If the filename parameter is specified without expansion character:

CHAPTER 2. THE INIT FILE 16

filename mysim
the simulation basenames will be:

mysim-1, mysim-2, mysim-3, and mysim-4

Advanced filename expansion: The system presented above works fine when
the sequential arguments are numbers (even floating-point numbers) that can easily
fit into a filename string. However, when for instance the sequential argument is a
matrix, or is too long to fit in, we also want to have a way to get a specific filename
that we can refer to more explicitly than by a number. This is done by adding a
format string within the expansion string. That string helps setting the format
of the argument value (number of digits to use) or provides an alternative set of
argument value identifiers as a character string.

The format string is enclosed with two single quotes ‘' '’ and is composed first of
an optional dot ‘.” followed by a mandatory integer number, and finally followed by
an optional character string enclosed with two square brackets ‘[]’. The optional dot
and character strings are mutually exclusive. Here is an example of each possible
option: ‘'4'’ ‘'.3'" or ‘'2[AaAbAcBaBbBc]'’. The format string is placed in-
between the expansion character and the sequential parameter number, like this:
hrar1’ % .3'27 or ‘Y%'2[AaAbAcBaBbBc] '3’ supposing we have three sequential
parameters in an input file.

The mandatory integer value of the format string is the width of the argument name
string. For instance, ‘%'4"'1” means that the values of sequential parameter no.1 will
be written on 4 characters with leading zeros. A value of 10 for that parameter will
thus be added to the filename string as 0010. The dot preceding the width specifier
simply indicates that only the decimal part of the argument value must be taken
with trailing zeros. In the example above, a value 0.1 for sequential parameter no.2
will be added as 100 to the filename string. Finally, a set of character strings can
be specified as in the last example above. These characters will be used sequentially
as replacement values for the actual parameter values found in the input file. The
width specifier tells how much characters must be read within the format string and
added to the filename. For instance, for value no.4 of sequential parameter no.3
above, the string Ba will be added to the filename string.

A last option is to replace the character string by a + to replace the argument
value by its position value: ‘%'1[+]'3". As here the third sequential parameter is
supposed to have 6 argument values, the + stands for the integer values 1 to 6 and
the width specifier is 1 (no leading 0).

Here is the full example:

filename a%'4'1_b%'.3'2_Y%'2[AaAbAcBaBbBc]'3
my_seq_param_1 1 10 1500

CHAPTER 2. THE INIT FILE 17

my_seq_param_2 0.001 0.01 0.1
my_seq_param_3 {{matrix no.1}} {{matrix no.2}} ... {{matrix no.6}}

These settings will give the following simulation filenames (54 total):

a0001_b001_Aa
a0001_b001_Ab

al1500_b100_Bc

The number of simulations initiated by sequential parameters is equal to the product
of the number of arguments of each sequential parameter. All the parameters value
combinations are performed. There is currently no way to restrict the number of
combinations.

2.5 External argument files

It is sometimes convenient to write large matrices, or large numbers of sequential
parameter arguments in a separate text file and only specify the path to such file(s)
in the init file. This is done by providing the path to the file with the ‘@filename’
syntax, where filename is a character string that contains the path to the external
file relative to the directory from which Nemo is run. More than one external file
can be provided in argument to a parameter, in which case the parameter becomes a
sequential parameter. The expansion character ‘%’ can also be used in the filename
character string.

NOTE: the external file must be terminated by an empty line. Otherwise, it just
needs to hold the argument(s) of a given parameter in exactly the same way as it
would be written in the init file (i.e., without new lines between multiple arguments).

Example:

paramO0 1 2 3
paraml @filenamel.txt @filename2.txt @filename3.txt
param2 @path-%1/to/filename-%'1[abc]'2.txt

Here, param1 and param?2 have argument values stored in external files. The filename
and the directory path to param2 depend on the argument value of paramQ and
paraml (i.e., path-1/to/filename-a.txt; path-1/to/filename-b.txt; etc.)

CHAPTER 2. THE INIT FILE 18
2.6 Temporal arguments

Nemo offers the possibility to change the value of a parameter during the course
of a simulation and thus to modify the state of the population or of any particular
component during a simulation. Temporal arguments are limited to the non-trait
components for now. They are specified in the init file by using the temporal
argument specifier “Og#” within the argument string, where the # stands for the
generation at which the argument value has to be used. The state of the compo-
nents that have temporal arguments is updated before the first event in the life
cycle. Temporal argument string must always start with the initial argument value,
specified as “@g0” and arguments are separated by commas:

paraml (Q@g0 valuel, @gl00 value2, @g10000 value3)

This example specifies three different parameter values that will be used throughout
the simulation; ‘valuel’ is used at initialization of the simulation (and beginning
of each replicate), ‘value2’ and ‘value3’ are used at generation 100 and 10 000,
respectively. The component that declares and uses ‘paraml’ will update itself at
the specified generations. Temporal parameters can thus be used to dynamically
modify the state of the population through time to model population fragmentation
or bottlenecks, for instance.

The following example shows how to progressively fragment a population while
keeping its total size and number of migrants constant at 10 000 and 1, respectively.

patch_number (@g0 10, ©@g5000 15, @g10000 20)
patch_capacity (@g0 1000, @g5000 666, @g10000 500)
dispersal_rate (@g0 0.001, ©@g5000 0.0015, @g10000 0.002)

Important Note: Changing the number of patches during a simulation can lead
to various problems at runtime as many features depend on it. For instance, the
number of patch-specific stats cannot be updated (this would cause a lot of mess in
the stat output files) and thus data will not be recorded for the added patches (they
will be set to 0 or NaN otherwise). The size of the dispersal matrix also depends
on the number of patches and cannot be automatically updated when specified in
input. In that case, an error message is issued and the simulation is aborted. The
best workaround is to set the number of patches constant from the start but set
the initial carrying capacity of unwanted patch to 0 before adding them at a latter
generation by increasing their carrying capacity.

CHAPTER 2. THE INIT FILE 19
2.7 Output files and naming conventions

As briefly explained in the previous section, the output files of a simulation have
a common base name. That name is taken from the argument of the parameter
filename (see section 3.1) in the init file and any expansion strings are substituted
with their corresponding parameter value. Several extension strings are then added
to that base name.

Counter extensions: A first kind of extension is the generation or replicate num-
ber, or both depending on the periodicity of the output. That extension start with
an underscore “_” and is followed by a number “002”. The number of digit depends
on the maximum number of generations or replicates in the simulation. For instance,
if a file is written every replicate and the simulation has 100 replicates, the counter
will be made of three digits as above. The same is true for the generation counter.
When both counters are added to the filename, the generation counter precedes the

replicate counter and each start with an underscore like this:

mysim_1000_01
mysim_2000_01

mysim_5000_10

This way, the simulation can save each generation for each replicate in a different file.
The behavior of the various output files (i.e. their periodicity) depends on the kind of
data the simulation will generate, which depends on the user’s defined parameters.
Typically, trait genotype files are written per generation and per replicate, while
binary output files are per replicate only.

Type extension: The second kind of extension string is the file type (e.g. ‘.txt")
and is a classical extension starting with a dot followed by a few characters added
to the end of the file name. Nemo generates a few basic output files with different
types. These are the:

“.log”: these files are automatically generated in every folder a simulation will cre-
ate and contain all the input parameters of that simulation. One extra log-file
is also created in the working directory but with a different base filename that
can be specified by the “logfile” parameter (called “nemo.log” by default, see
section 3.1) and that will store some runtime information about the simula-
tions done. No replicate or generation counter is added to these files.

“.txt”: these files contain the statistics computed by a simulation and are created

CHAPTER 2. THE INIT FILE 20

only when the simulation is asked to (see section 4.13). These files don’t add
any counter string to their filenames.

“.bin”: these files contain the complete set of individual data for each replicate of a
simulation. Their filename thus contain the replicate counter appended after
the base filename. See section 4.15 for more details about the binary output
files and how they are handled.

“freq”, “.quanti”, “.delet”, etc. : each component (especially traits) define their
own output files and extensions, making it clearer what data is recorded in
which file. See the next chapters for details.

Important Note: To make sure the file manager of Nemo notifies the different
simulation components at time of saving, you must include the save files life
cycle event (see section 4.14) in the life cycle, otherwise no files will be written for
a simulation. See chapter 4 to understand how this is done. In absence of this life
cycle event, only one type of file is automatically written during a simulation, this
is the “.log” simulation file holding the simulation parameters and some info about
the simulation (value of the seed of the random generation, elapsed time and CPU
time used).

Chapter 3

Simulation Components

This chapter presents the various simulation components and their parameters. It
is through these parameters that you can select which components are part of a
simulation or not. Two components are mandatory, the simulation and population
components. Besides these two, it would make sense to select at least a basic
sequence of life cycle events to run a basic simulation. Note that you can also
use Nemo to simply load a previously saved population from a binary file (see the
source_pop population parameter below) and compute statistics on it or extract
genotypes and save them in a human-understandable format (usually text...).

Each component and its list of parameters are presented here. Some parameters are
mandatory; they must be present in the init file in order to include a component
to a simulation. Each component has at least one mandatory parameter. Optional
parameters are marked as (opt) below and are used to add extra features needed
to build a particular model. Nemo will not complain if a mandatory parameter
is missing for a non-mandatory component (i.e., others than the simulation and
population components) so you have to be careful while building the init file. The
parameter type is given between two enclosing square-brackets ‘[17, see chapter 2
for details about the different types of parameters.

There are two main types of simulation components; the Traits (chapter 5) and
the Life Cycle Events (chapter 4). The traits are carried by the individuals in the
population while the LCEs act as modifiers of the population state, and hence act on
the individuals state as well, as defined by their traits’ state. The action of an LCE
may depend on the values of the individual’s traits or not. For instance, selection
will remove individuals by checking the phenotype of their fitness trait against a
fitness function, or aging will remove all adult individuals independently of their
traits’ value to make room for the new generation.

The simulation components can also declare different output files and statistics. The
file extensions and stat outputs are indicated for each component. For a discussion
and a complete list of output statistics, have a look at chapter 7.

21

CHAPTER 3. SIMULATION COMPONENTS 29
3.1 Simulation

name: simulation
files: .log
stats: NA

replicates [integer]

Number of replicates to perform per simulation.

generations [integer]

Number of generations performed per replicate.

filename [string]

This name will be used as the base filename of all output files of a simulation.
The output file extensions are added to this base filename by the different
simulation components that write data to files. If a file is written on a replicate-
periodic basis, the replicate number will be added between the basename and
the extension, so that the same file is not overwritten periodically. The same
is true concerning generation-periodic files (see section 2.7).

The base name may include the special expansion character ‘%’ used to build
filenames when sequential parameters are present in the input parameter file.
See the discussion on sequential parameters in chapter 2.

root_dir [string] (opt)

The path specified by this parameter will be used as the root directory path for
all output files and directories declared by the simulation components. This
path will thus be added in the front of any other paths defined subsequently
(e.g., by param stat_dir).

run_mode [string] (opt)

This sets the simulation behavior, with the following options:

overwrite : previously saved files with the same base filename as the current
one are overwritten. A warning is issued on the standard output (i.e.
terminal window).

dryrun : does not run the simulation but just sets the parameters and checks
for the files and statistics. The output paths and log files are created.

create_init : similar to ‘dryrun’, but writes the parameters of each possible
simulation in a separate init file in the working directory. This is handy
when wishing to create many init files from a single one containing many
sequential parameters.

CHAPTER 3. SIMULATION COMPONENTS 23

skip : automatically skips simulations whose base filename already exists on
disk.

run : (default) the default running mode.

silent_run: turns off all regular and warning messages, only the error mes-
sages are issued.

logfile [string] (opt)

This is the file in which the simulation logs are recorded. The simulation
basename and each directory paths are recorded as well as the mean elapsed
times for the simulation and the replicates and the dates of beginning and end
of a simulation. By default, Nemo will save all this information in a file named
“nemo.log” in its working directory.

random seed [integer| (opt)

The seed of the random generator can be specified with this parameter. The
upper value is system-dependent but should not be more than 4,294,967,295
on a Mac. By default, the random seed is set by the clock time of the computer
(i.e. number of seconds since an arbitrary date in the past, usually around the
1970’s).

postexec_script [string] (opt)

This parameter is used to specify the path to a shell script that will be executed
once all the simulations have been processed. The script will be executed using
a system call with the following command:

sh my_script.sh

postexec_args [string] (opt) This parameter is used to add an argument to the
above script when executing it. Be aware that the expansion character ‘%’ will
not be expanded if present in the argument string and should thus be avoided.

3.2 Population

name: population
files: NA
stats: pop, demography, migrants, kinship, and more (see chapter 7)

patch_number [integer| (opt)

Number of patches in the population.

CHAPTER 3. SIMULATION COMPONENTS 24

patch_capacity [integer/matrix] (opt)

Carrying capacity of each patch (K), this is the number of males and females. If
given as a unique value, all the patches have the same size with equal numbers
of males and females. May also be given as a matrix parameter containing the
vector of the patches size. In that case, the length of the vector will give the
number of patches in the population.

patch_nbfem /patch nbmal [integer/matrix] (opt)

The number of males or females per patch can be given separately with these
two optional parameters. Each or both of them can be a matrix parameter
giving the sex-specific sizes of each patches. If one of the two sex-specific size
parameters is missing, population initialization will abort.

Examples : The following setting will build a population of 5 patches of different
sizes but with equal sex-ratio in each patch:

patch_capacity {{10, 4, 18, 20, 24}}

This parameter is sufficient to build a population as the size of the vector will
tell the number of patches present. In this other example however, the number
of patches must be given explicitly as no matrix arguments are present:

patch_number 5
patch_nbfem 8
patch_nbmal 4

This other example will also work fine:

patch_nbfem 5
patch_nbmal {{4, 4, 3, 3, 1}}

Note however that the following will issue a fatal error:

patch_capacity 10
patch_nbmal {{4, 4, 3, 3, 1}}

Indeed, patch_capacity has precedence over patch_nbmal and in that case,
patch_number is missing. The correct form would be:

patch_nbfem {{6, 6, 7, 7, 9}}
patch_nbmal {{4, 4, 3, 3, 1}}

CHAPTER 3. SIMULATION COMPONENTS 25

This also means that including both patch_capacity and the sex-specific size
parameters will cause Nemo to ignore the later and use the first one only to
build the population.

3.2.1 Loading a population from a file

This section describes the set of parameters needed to load/read a population from
a file. The type of data that can be loaded depends on the file format. The binary
files, written by the store component (see 4.15), store the whole population state,
that is, all individuals in the population are saved with their attributes and traits
data (i.e. genetic data). Other simulation components may define an input function
for the type of data they handle. Typically, the neutral markers trait (section 5.2)
saves and loads its data in the FSTAT format (text) and the deleterious mutation
trait (section 5.4) saves and loads from a text file (see respective trait’s description
for details about those files).

Filling the population: The population loaded is used to set the starting gener-
ation of a replicate. Each replicate may start from a different source replicate file,
or from a single source file (see below). The default loading mode randomly draws
individuals from that source population without replacement to fill the current pop-
ulation. The two populations may thus have different sizes but it is a good idea to
have a source population that is at least as big as the receiving one to completely
fill the first generation. Unless the source population is loaded in preserve mode
(see below), the structure of the source population is not preserved, all individuals
in the different patches are pooled together.

Filling age class: The age class (offspring or adults, or both) that is used when
loading a population depends on the one available in the source file and the one that
is required by the life cycle events of the current simulation. The class to load is
determined by finding the first event in the current life cycle that requires a specific
age class (see chapter 4 on life cycle events). Nemo then tries to load that class from
the source file. Independently of the loading mode, if that required age class is not
available in the source population, the alternate one is used instead (i.e. offspring
for adults, and vice versa). A warning message is displayed if that case happens.

Using compressed binary files: Finally, when loading populations from binary
files, Nemo will automatically check whether the binary fill is compressed. If so,
Nemo will decompress the file, read it, and recompress it. Files saved in an archive
will however not be extracted. This feature is only possible if one of the two default
compress formats is used (.gz and .bz2) and the corresponding programs are available
on the system.

Parameters description:

CHAPTER 3. SIMULATION COMPONENTS 26

source_pop [string] (opt)

The path to the population file is given by this parameter. The path/filename
of the source population may contain the special expansion character and
format string (see chapter 2) to match the sequential parameter arguments
values defined in the current configuration file. The replicate counter string
may be automatically added when multiple replicate sources are used (see
below). The file extension may also be specified below in the case the file
format differs from the default binary one (i.e. “.bin”). Only one file can be
used for a given simulation or replicate.

If every replicate of the current simulation is going to use the same binary
source file as specified here, the full name of the file must be specified, i.e.
including counters and extension strings. If the source population is to change
during a simulation, the parameter source_replicates must be specified (see
below). In this case, the path given here must not be terminated by the usual
replicate counter string and any file extension.

source_file_type [string] (opt)

The argument here is the file extension string of the source file, including the
dot (e.g. “.bin”, “.dat”, etc.). This will determine the file format of the source
data. The default value is “.bin”.

source_preserve [bool] (opt)

With this parameter, the deme structure of the source population is preserved.
This means that Nemo will copy individuals from the source population into
the current population deme by deme. If the source population has less demes
than the receiving population, then the receiving population will have empty
demes. Similarly, in ‘preserve’ mode, the receiving population will not be full
if the source population does not contain enough individuals within demes to
fill the receiving demes to their carrying capacity. The receiving population is
filled sequentially, starting from the first patch to the last. No extra demes are
added to match the number of demes in the source population. The population
structure will be perfectly preserved if the source and the target population
have same deme structure and sizes.

If not present, then, the individuals are randomly sampled from the source
population, without replacement. In that case, the individuals of the source
population are gathered together in a single container from which they are
sampled until the whole receiving population is full or the source population
is empty.

source _fill_age _class [adults, offspring| (opt)

This sets the age class to load from the source population. It overrides the
rule described above using the required age class of the life cycle events of the
current life cycle.

CHAPTER 3. SIMULATION COMPONENTS 27

source_generation [integer| (opt)

The generation to load from the binary source file. The population initializa-
tion will fail if that generation is not present in the binary file. The binary
files may indeed store more than one generation (see section 4.15).

source_replicates [integer] (opt)

By specifying this parameter, you can tell Nemo how many replicates of the
source population have to be used throughout the simulation to load the pop-
ulation from. If the value given here matches the number of replicates of
the current simulation (see replicates above), each replicate will use a differ-
ent source file as a source population. In the case this value is smaller than
the current number of replicates, the source population will be changed every
[replicates / source_replicates] replicates. The source filename is built using the
value of the source_pop parameter to which the replicate counter and the file
extension are added. Therefore, the source_pop parameter string value must
not include these character strings. The replicate counter is built using the
digit information given below by the source_replicate_digit parameter.

source_replicate_digit [integer| (opt)

This parameter is needed build the replicate counter of the binary source file-
name when the parameter source replicates is specified. Its value must
match the number of digits used in the replicate counter of the source file-
names. For instance, it is 3 if one of the source filenames ends with, say,
¢_032.bin’.

source_start_at_replicate [integer| (opt)

The first replicate to load data from can be set using that parameter. The
rules described above to set the replicate number applies but start at the value
set here rather than 1.

Examples : The first example shows how to load a population from the last
generation saved in a single source file in preserve mode:

replicates 10
source_pop binarydir/mysourcepop_001.bin
source_preserve

Here, the same population from the file named mysourcepop_001.bin is copied by
each replicate of that simulation.

Now, if we want to change that behavior and use a different source population for
each replicate, we must specify the following set of parameters:

CHAPTER 3. SIMULATION COMPONENTS 28

replicates 10

source_pop binarydir/mysourcepop
source_preserve
source_replicates 10
source_replicate_digit 3

In that second example, each replicate loads a different population: mysourcepop_001.bin
for replicate 1, mysourcepop_002.bin for replicate 2, etc.

If the simulation to run has a hundred replicates and we keep the same set of
parameters for the source, the source population will be changed every four replicates
only, starting from replicate 25. Replicates 1 to 4 will use data from the population
in mysourcepop_025.bin, replicates 5 to 9 will use mysourcepop_026.bin, and so
on until file mysourcepop_049.bin.

replicates 100

source_pop binarydir/mysourcepop
source_preserve
source_replicates 256
source_replicate_digit 3
source_start_at_replicate 25

Finally, loading a population from a trait file is also possible. This can be done from
a single or different files, depending on the type of data. The simulation parameters
should match the data structure in the source file for optimality. The following
example loads neutral markers data (e.g. from a field study) from a single FSTAT
file (see section 5.2 for more details) and use it to compute the F-statistics available
in Nemo:

replicates 1
generations 1

patch_number 5
patch_capacity 50

source_pop source/path/srce-fstat-file.dat
source_preserve

source_file_type .dat
source_fill_age_class adults

LIFE CYCLE
save_stats 1

CHAPTER 3. SIMULATION COMPONENTS

save_files 2

stat adlt.fstat adlt.fstWC adlt.weighted.fst
stat_log_time 1
stat_dir stat

NEUTRAL MARKERS

ntrl_loci 20 #must match the number of loci in the file
ntrl_all 10 #same for the number of alleles
ntrl_mutation_rate O #useless here, but mandatory parameter

29

Chapter 4

Life Cycle Events

The life cycle events (hereafter LCE) are operators used to modify the state of the
population and interact with the different components of a simulation. Each LCE
is executed only once during the course of a generation, at the rank it has been
assigned in the stack of LCEs that constitutes the life cycle. This rank is given by
the user in the init file. The life cycle is thus an ordered list of LCEs selected by the
user. Most LCEs act on a per generation basis. Some may however have a different
periodicity set by the parameters they declare.

The ranks should start with value one for the first LCE and be incremented for each
successive LCE. As the LCEs are placed in ascending order in the life cycle, their
exact rank value does not matter so much as long as the order is conserved (i.e. the
rank increment may be different from one). If two LCEs have same rank, one of
these two is replaced by the other (usually following an alphabetical order). As each
parameter may appear only once in the init file, each LCE must be given only one
rank value. Giving several values to a LCE will make it a sequential parameter.

The way to build the life cycle in the init file is to write the LCEs names (given
below) followed by their rank number. Here is an example (see chapter 6 for more
details):

breed 1
save_stats 2
save_files 3
disperse 4
selection 5
aging 6

This very simple life cycle starts with mating and breeding within the population
that will generate a new offspring generation provided adults are present within
patches. The statistics are then recorded and the simulation data is saved, at the

30

CHAPTER 4. LIFE CYCLE EVENTS 31

right generation. Because the save_stats LCE is placed after breed, the data on both
the offspring and adult individuals can be recorded. This wouldn’t be the case if
it was placed after aging where only the stats on the adults would be recorded,
for instance. The disperse LCE then moves the offspring around according to the
migration model chosen. The offspring then experience a round of viability selection
within their patches where their survival probability is determined by the phenotypic
value of the viability trait they carry. They are then moved to the adult age class,
previously emptied of its previous occupants from the previous generation by the
aging LCE. And the cycle starts again.

The Life Cycle Events described here are:

aging: increase the age of the individuals, perform patch regulation
breed: mate and breed, create new offspring generation
breed_wolbachia: breed and Wolbachia transmission/infection
breed_disperse: breed with backward migration (Wright-Fisher model)
breed_selection: breed with selection (faster)
breed_selection_disperse: all in one (Wright-Fisher with selection)
cross: perform a half-sib, full-sib mating design (NCI)

disperse: offspring dispersal

disperse_evoldisp: offspring dispersal with evolving dispersal rates
extinction: random patch extinction or harvesting

regulation: patch regulation (to carrying capacity)

resize: modify population size (patch number and/or size)
save_files: write output files to disk

save_stats: record statistics

selection: perform viability selection on the offspring generation

store: save simulation data to binary files

The LCEs often act as modifiers of the population state. Most of the time, this
simply consists of changing the content of various individual containers either by
moving individuals between them or by adding/removing individuals to/from them.
Individual containers are ordered by age class and by sex and are aggregated within
patches. The two main age classes are the adult and the offspring age classes.
A particular LCE will in general be associated with one or more age class. This
information is given below by the age flag values associated with each LCE (see
Table 4.1). These age flags tell which individual container will actually contain
individuals after having executed the corresponding LCE during the life cycle and
which age class is needed by an LCE. This will help you design a proper life cycle.

CHAPTER 4. LIFE CYCLE EVENTS 32

Table 4.1 Modification of the population age state caused by the LCEs in the basic

life cycle. (4) means that age class is added to the population by the LCE while

(—) means the LCE will remove all individuals of that age from the population. (x)

means the LCE will modify the state of that age class. required means that age

class is the required age class for the LCE, and will be loaded first whenever that
LCE begins the life cycle.

LCE Offspring Adults
aging move to adults —
breed + required
cross + required
disperse x (required)
extinction X X
regulation X X
resize X X
selection x (required)

4.1 Aging

name: aging [integer]
age flags: removes the offspring flag
files: NA

aging moves all individuals from their age class to the next and performs patch
regulation at the same time. For now, only two age classes are present, the offspring
and the adults. Therefore, aging moves the offspring to the adults age class and
all the adults are removed, they die. No other LCE removes the adults from the
population. It is thus very important to add this LCE to the life cycle. For each
patch, the offspring individuals are randomly chosen to fill the adult containers until
the patch carrying capacity is reached. Note: since the behaviour of this LCE has
changed in version 2.0.7, be careful about its position in the life cycle. If placed
before disperse, no offspring will be able to migrate in the population as they
already aged. The regulation event is not useful anymore after aging but is still
proposed, in a slightly different flavour (see below).

4.2 Breeding

name: breed [integer]
age flags: adults (required) and offspring (added)

CHAPTER 4. LIFE CYCLE EVENTS 33

files: NA
derived components: breed wolbachia, breed _disperse, breed_selection, breed_selection_disperse

Performs mating and breeding of the new offspring generation following the mating
system chosen. Adults are not removed here (see aging above). The number of
offspring per female depends on the mean fecundity set by mean fecundity below
and may be a fixed number or a number drawn from different random distributions.
The default distribution is Poisson.

mating system [1 to 6]

Six mating systems are implemented in Nemo. The options are:

1 : promiscuity /random mating. One male is randomly chosen for each
new offspring a female does.

2 : polygyny. One male only mates with all females in the patch. This can
be changed by setting mating_proportion to a value < 1 in which case
one male will monopolise a proportion equal to mating_proportion of the
matings within a patch while the remaining matings are shared by all
other males. The number of mating males may also be changed below
with the mating_males parameter in which case the mating male for a
given female is randomly chosen within the mating_-males first males of
a patch.

3 : monogamy. Each female mates with one male only and vice versa. If the
number of males is less than that of females, some males will mate with
more than one female. In the reverse case however, if there are more males
than females, some males will not reproduce at all. A given proportion of
random mating can be achieved by setting the mating_proportion param-
eter to a value < 1. Each female will then have on average a proportion
of 1 — mating_proportion of its offspring descended from a random male
in the population.

4 : selfing/hermaphrodite. Only females are used in that case. If mat-
ing_proportion = 1 all offspring are produced by self-fertilisation, other-
wise, a proportion of 1 —mating_proportion of the offspring are produced
by randomly crossing two “females” together.

5 : cloning. Equivalent to selfing but without recombination. Individuals
are produced by first copying the “mother’s” genes and then computing
mutations. The mating_proportion parameter is used in the same way as
under selfing.

6 : random mating with selfing This corresponds to what is called the
Wright-Fisher model where individuals may self with probability 1/N
(N = patch size). The individuals are considered hermaphrodites here,
that is only the females are used (watch the patch size parameters!).

CHAPTER 4. LIFE CYCLE EVENTS 34

mating_proportion [decimal] (opt)

This parameter is used to set the proportion of random mating in the polygyny
and monogamy mating systems, and the selfing rate for the selfing case. See
the mating systems description above for more details. The actual proportion
of random mating will be 1 — mating_proportion on average. This can be
used to set the degree of extra-pair mating when monogamy is modelled, for
instance.

mean _fecundity [integer]

Mean of the distribution used to set the females fecundity. It is used whatever
the mating system selected.

fecundity_distribution [fixed, poisson, normal] (opt)

The distribution used to set the females fecundity. Is Poisson by default.
The “fixed” option sets the fecundity of each female equal to the mean (see
mean _fecundity above).

fecundity_dist_stdev [decimal] (opt)

Standard deviation used in case the fecundity distribution is set to “normal”.

mating males [integer| (opt)

This parameter sets the number of males that will be available for mating
within each patch (under polygyny only!). The value given in argument should
be equal to or smaller than the male’s carrying capacity. Setting it to the
carrying capacity is equivalent to setting the mating system to monogamy.

sex_ratio_mode [fixed, random] (opt)

By default, the sex of an offspring is randomly set (unless the individuals
are considered hermaphrodites) and thus the offspring sex-ratio usually varies
from one generation to another. The “fixed” option proposed here sets the
sex-ratio to exactly 1:1.

4.3 Breeding with Wolbachia

name: breed_wolbachia [integer|
age flags: adults (required) and offspring (added)
files: NA

inherits from: breed

This is also a derivative of the first breeding LCE, it thus inherits the previous
parameters and defines several parameters for the simulation of Wolbachia infections.
See the Wolbachia trait for more details.

CHAPTER 4. LIFE CYCLE EVENTS 35

wolbachia_fecundity_cost [decimall]

The fecundity of an infected female (as specified by parameter mean_fecundity)
is reduced by an amount of 1 — sy, sy being the cost to pay when infected by
Wolbachia.

wolbachia_incompatibility cost [decimal]

A zygote issued from a infected male gamete and an uninfected female gamete
must pay the cost of cytoplasmic incompatibility caused by the parasite. This
cost is the amount of reduction in the survival probability of the offspring.

wolbachia_inoculum size [integer]

Wolbachia can be inoculated to a specified number of adults specified by this
parameter. This number represents the number of females and the same num-
ber of males that will be inoculated in one deme of the population, randomly.

wolbachia_inoculum_time [integer]

Generation at which the population will be infected with Wolbachia.

4.4 Dispersal

name: disperse [integer]|

age flags: offspring (required)

files: NA

derived components: disperse_evoldisp, breed disperse, breed_selection_disperse

Moves offspring among patches according to the migration scheme chosen. Dispersal
rates are taken as forward migration rates, that is they represent the probability of
an individual to move from patch ¢ to patch j. These rates will be equivalent to
immigration rates under the classical models of island model migration and stepping
stone migration. Forward migration is equivalent to zygotic (diploid) migration,
as opposed to backward migration modelled by the breed_disperse LCE as gametic
(haploid) migration.

There are three mutually exclusive ways of specifying the migration rates in Nemo:
i) by specifying a (sex-specific) dispersal rate and migration model (e.g., Island
Model, Stepping Stone model, etc.) 4z) by specifying the full migration matrix,
allowing for more flexibility in the type of migration modelled (e.g., allowing for long-
distance dispersal on a landscape), #t) (new in 2.3) by specifying the reduced
migration matrices, which holds the non-zero migration rates only, and allows
the modelling of large landscapes with sparse dispersal matrices. This last option is
an optimisation for modelling large grids with limited dispersal among patches, and
brings a large speed-up compared to the previous implementations. All migration
matrices are now reduced internally.

CHAPTER 4. LIFE CYCLE EVENTS 36

dispersal _model [1,2,3,4] (opt)

The dispersal models implemented so far are:

1:

Migrant-pool Island model. If the migration rate is m, the probability
to disperse to any n, — 1 non-natal patch is % while the probability to
stay at home is 1 — m.

: Propagule-pool Island model. In that modified version of the Island

Model, each offspring in a patch has a probability my to move to the
same (assigned) patch. With probability %, they will move to any
patch but their home or propagule—assignedp patches. With probability
1 — m they will stay home. The propagule patches are reassigned every
generation.

: Stepping-Stone model. This is the one dimension Stepping Stone model.

By default, the patches are placed on a circle (ring population) and the
dispersers can only move to one of the two adjacent patches. This model
can be changed by using different border models (see below).

: Lattice model. Patches are placed on a squared grid (or lattice) and

dispersers can move to at least four adjacent patches (set by the disper-
sal_lattice_range parameter below). This option must be followed by the
dispersal_lattice_model and dispersal_lattice_range parameters. The number
of patches in the population must be a square number.

The dispersal_model parameter may be omitted when providing the dispersal
matrix (or reduced matrix).

dispersal_lattice_range [1,2] (opt)

Sets the number of neighbouring patches used for dispersal in the lattice dis-
persal model. The dispersal probabilities to these adjacent cells are m/4 in
the first case and m/8 in the second.

1:
2.

4 adjacent patches (up, down, left, and right)
8 adjacent patches (as 1 plus the diagonals)

dispersal _border_model [1,2,3] (opt)

In the stepping stone and lattice models (i.e. 1D and 2D lattices), three dif-
ferent ways of dealing with the world edges exist:

1:

2.

Torus. This is the doughnut world, edges are connected together. It has
thus no boundaries, eliminating any edge effects.

Reflective boundaries. The borders of the lattice (1D or 2D) are reflec-
tive. Dispersers from the border cells cannot move beyond the border.
Border cells have thus less cells connected to them and their dispersal

CHAPTER 4. LIFE CYCLE EVENTS 37

probabilities to the adjacent cells are higher (e.g. m, m/3, or m/5 de-
pending on the dimension and range of the lattice). No dispersers are
lost outside the lattice.

3 : Absorbing boundaries. Dispersers from the border cells of the lattice
are lost if they choose to move beyond the border. The dispersal proba-
bilities of a border cell are not modified.

dispersal_propagule_prob [decimal] (opt)

Sets the probability that a disperser will move to the propagule-assigned patch
in the dispersal model 2.

dispersal matrix [matrix] (opt)

This matrix parameter is used to specify the dispersal matrix of the model. It
must be patch_number x patch_number in dimensions. Each d;; element of this
matrix is the dispersal probability from patch i to patch j. This parameter
has precedence over the dispersal rate and model parameters. If too big, and
especially when containing a large number of zeros, can be replaced by the
dispersal_reduced_matrix and dispersal_connectivity_matrix below.

dispersal matrix fem / _mal [matrix] (opt)

The dispersal matrices are in fact sex-specific and this parameter can thus
be used to specify sex-specific dispersal patterns. Same comment about the
precedence as above.

dispersal rate [decimal] (opt)

This parameter sets both the male and female dispersal rates (identical value
for both). Nemo will build the dispersal matrices according to the dispersal
model chosen.

dispersal rate_fem / mal [decimal] (opt)

Replaces the previous parameter for the case of different males and females
dispersal capabilities.

dispersal reduced _matrix [matrix] (opt)

This matrix holds the non-zero dispersal rates from patch ¢ (row-wise) to patch
J (column-wise) where the identity of the connected patch j is provided by the
dispersal_connectivity_matrix parameter (see below). Because not all patches
may be similarly connected to other patches, the number of elements per row
may vary. For each row (= focal patch), the number of elements must exactly
be the same as in the dispersal_connectivity_matrix. The sum of each row must
be one.

CHAPTER 4. LIFE CYCLE EVENTS 38

dispersal_connectivity_matrix [matrix]| (opt)

This matrix specifies to which patch each focal patch (row-wise) is connected
through migration. The number of elements per row can vary among rows but
must be exactly the same as in the dispersal_reduced_matrix. It is advised to
sort the connected patches in descending order of the migration probability.

Note: At least one of the optional dispersal rate/matrix parameters above must be
present in order to correctly set the disperse LCE.

4.5 Seed dispersal

name: seed_disperse [integer]|
age flags: offspring (required)
files: NA

This LCE is an alias for the disperse LCE, as just described above. It is used when
two types of dispersal events are part of the life cycle, as, for instance, when pollen
dispersal (i.e. backward gametic migration) is modelled using the breed disperse LCE.
The seed _disperse LCE is thus adequate to model zygotic, forward migration.

All parameters are identical to the disperse LCE, to the exception that the ‘dispersal’
prefix must be replaced with ‘seed_disp’ (e.g. ‘dispersal_rate’ becomes ‘seed _disp_rate’).

4.6 Evolving Dispersal

name: disperse_evoldisp [integer]
age flags: offspring (required)

files: NA

inherits from: disperse

This is a specialization of the previous LCE and thus inherits its parameters, though
the rate parameters have no meaning here. In addition, it defines a couple more
parameters used by the evolving dispersal models.

dispersal_cost [decimall]

This is the probability that a dispersing offspring dies during dispersal. The
female and male costs are identical.

dispersal_cost_fem /_mal [decimal] (opt)

CHAPTER 4. LIFE CYCLE EVENTS 39

These two parameters set the dispersal costs affecting male or female dispersers
separately. They will be overridden if the previous parameter is also present
and they must be set together to set this LCE correctly.

dispersal_fixed_trait [female, male] (opt)

One of the sex dispersal gene can be turned off with this parameter. The
individuals of the selected sex will then migrate following the dispersal rate
given below.

dispersal_fixed_rate [decimal] (opt)

This is the dispersal rate of the non-evolving sex.

4.7 Selection

name: viability_selection [integer]

age flags: offspring (required)

files: NA

derived components: breed_selection, breed_selection_disperse

Viability selection selectively removes individuals from a patch based on their sur-
vival probability given by their fitness trait. Currently, the fitness determining traits
are delet (deleterious mutations), quant (quantitative traits), and dmi (Dobzhansky-
Muller incompatibility loci), although any other trait may be used as long as the
trait’s phenotype is compatible with the fitness models implemented. Fitness can be
either absolute (i.e., directly set from the individual’s phenotype) or relative to the
mean fitness value of the patch or of the whole population. For now, it only acts on
the offspring age-class but can be placed anywhere in the life cycle. Future releases
will extend this behaviour to selection on other age classes. This LCE also declares
a set of fitness statistics that can be recorded during the simulation (see section 7.2).
The parameters described here are the same as those used with the breed_selection
and breed_selection_disperse composite LCEs (which inherit those parameters).

New n 2.3: selection can now act on multiple traits simultaneously. That is, the
fitness of an individual is given by the multiplication of the fitness values provided
by each trait under selection. See section 4.7.1 below.

selection_trait [string]

The argument to this parameter must be the name of the trait under selec-
tion. Only one trait can be specified (would become a sequential parameter
otherwise). The traits’ name are found in the next section. Currently, the
delet, quant, and dmi traits are the only traits under viability selection (i.e.,
their trait value is used to set the individual fitness).

CHAPTER 4. LIFE CYCLE EVENTS 40

selection_model [fix, direct, gaussian] (opt)

The selection models are:

fix : The fitness of the individual is set according to its pedigree and the
number of lethal equivalents. The model used here is the following: Wg =
Woxe > where W is the fitness of an individual with pedigree inbreeding
coefficient F'; Wy is the base fitness of the population (set below), and A
is the number of lethal equivalents present in the population.

direct (default) : The fitness of the individual is directly given by the phe-
notype of the trait, as for the deleterious mutations trait. This is the
default model.

gaussian : Stabilising selection on a set of quantitative traits. The fitness
of an individual with phenotypic values z is:

W(z) = exp|—3(z — 0)"w (z — 6)],
where 0 is a vector of local optimal trait values, and w is the variance-
covariance matrix of selection describing the individual fitness surface.

quadratic : A quadratic model of stabilising selection on a single quantita-
tive trait. Individual fitness is given as:

(Zz’,k - 9k)2

2
Wi

W(Zzyk) =1- s
where z;; is the phenotypic value of individual ¢ in patch k, 6 is the
phenotypic optimum in patch k£ and wy is the inverse of the strength of
selection on the trait in patch k. Parameter selection_local_optima specifies
the values for the 6;’s, and parameter selection_variance the values for w?.

selection_fitness_model [absolute, relative_local, relative_global] (opt)

This sets how the fitness of the individual is interpreted. By default, the
fitness of the trait is taken as absolute; it does not depend on the fitness
of the other individuals in the population. Alternatively, the fitness of an
individual (or its survival probability) can be interpreted relative to the mean
fitness of other individuals in its patch (option relative_local) or in the whole
metapopulation (option relative_global).

4.7.1 Multi-trait selection

The traits under selection must be passed to the selection_trait parameter enclosed
within parentheses and coma-separated (i.e., (traitl, trait2)), and likewise for the
selection models associated with each trait, in the same order (i.e., (model_traitl,
model_trait2)). To specify a model with selection on the delet and quant traits, the
following set of parameters would be necessary:

CHAPTER 4. LIFE CYCLE EVENTS 41

selection_trait (delet, quant)

selection_model (direct, gaussian)

#parameters specific to the Gaussian selection model:
selection_trait_dimension 1

selection_variance 4

selection_local_optima {{5}}

The fitness value of an individual is then given by the product of the fitness values
of each trait.

4.7.2 Fixed selection model parameters

selection_base_fitness [decimal] (opt)

Base fitness of the population ().

selection_lethal equivalents [decimal] (opt)

Number of lethal equivalents present in the population (\).

selection_pedigree F [matrix]| (opt)

The values of F' for each of the 5 pedigree classes present in Nemo. Must be an
array of size 5. The 5 classes are: outbred between patches (might experience
heterosis), outbred within patches, half-sib, full-sib, and selfed individuals.

4.7.3 Gaussian and quadratic model parameters

selection_matrix [matrix] (opt)

This is the selection matrix w used to set the strength stabilizing selection
on a set of quantitative traits within a patch. The w matrix is a square,
symmetrical, positive semi-definite covariance matrix. The diagonal elements
set the strength of selection on each trait (selection variance), while the off-
diagonal elements set the strength of correlated selection on pairs of traits
(selection covariance). These values will be applied to all patches equally as
only one selection matrix can be specified per simulation.

selection_variance [decimal/matrix] (opt)

This sets the variance or diagonal elements of the selection matrix w. A single
value will be interpreted as an identical selection parameter for all traits in
all patches. A matrix argument can also be passed to change the selection
variance among demes and traits. This matrix has at most as many rows as

CHAPTER 4. LIFE CYCLE EVENTS 42

the number of patches in the population and as many columns as the number
of traits modeled. When a smaller number of patch values are provided, the
values will be recycled to fill the patch-specific selection matrices. Similarly
for the trait values, although here only a single value is accepted (will copy
the value to all traits).

selection_correlation [decimal/matrix] (opt)

This specifies the correlated effect of selection on the different traits. This is
NOT the same value as you would use in the selection matrix (i.e. covariances).
A matrix argument can also be provided to set the patch and trait specific
values, with as many columns as the number of trait pairs, or just one value
if the correlation is meant to be identical for all trait pairs.

selection_trait_dimension [integer| (opt)

Sets how many dimensions or quantitative traits are modeled.

selection_local optima [matrix] (opt)

A single array of local phenotypic optima for each quantitative trait, or a
matrix with at most as many rows as the number of patches to set the patch-
specific optimum values for each trait. The spatially-explicit matrix is dealt
with in the same way as for the selection variances and correlations.

selection_rate_environmental change [decimal/array] (opt)

A single decimal number interpreted as the rate of change of the optimum
phenotypic values in all patches and for all traits, or an array of trait-specific
rates of change of the phenotypic optima in all patches. The array may contain
less values than the number of traits, in which cases the values are recycled
among traits. The rates are here absolute rates. For instance, a rate of 0.1
will change the local phenotypic optima by 0.1 units per generation (e.g.,
3 - 31 — 3.2 — 33 — 3.4, etc.) This rate is thus independent of the
amount of genetic variation in a population. This can be changed by using
the set of parameters below.

selection_std_rate_environmental _change [decimal/array] (opt)

Same as above to the difference that the rates are interpreted as unit of phe-
notypic standard-deviation. The exact rate of change of the local phenotypic
optima will thus be set depending on the amount of phenotypic variation in
the population. To set the actual rates, the two next parameters are necessary
to measure the phenotypic standard-deviation.

selection_std rate_set_at_generation [integer| (opt)

This is the generation at which the phenotypic standard-deviation must be
measured to set the relative rate of change of the phenotypic local optima.

CHAPTER 4. LIFE CYCLE EVENTS 43

selection_std_rate_reference_patch [integer| (opt)

The phenotypic standard-deviation of the traits under shifting environmental
conditions can either be the average over all patches or set from a single
reference patch. This parameter is used to specify that reference patch. The
population average of patch-specific phenotypic standard-deviations will be
used if the parameter is not present in the init file (not set).

4.8 Extinction and Harvesting

name: extinction [integer]
age flags: unchanged
files: NA

This LCE is used to either cause the random extinction of patches in the population
following the extinction rate or reduce their size by a given amount or proportion
(i.e. harvesting). If a patch goes extinct, it is completely emptied of all the individ-
uals present. This LCE only acts on the content of the patches, it never modifies
their capacities (see resize for that). An extinction threshold can also be set as a
percentage of the patch capacity and is used to control for patch extinction. The
extinction rate is used as the probability of an event to occur, for each patch, be it
total extinction or harvesting. The rate, harvesting size and harvesting proportion
parameters can be set differently for each patch by using a matrix argument. They
will affect all age classes equally unless the harvesting size is drawn from a random
distribution. The sex of the individuals that are removed is set randomly.

extinction rate [decimal/matrix] (opt)
Probability, per generation, that a patch undergoes extinction or harvesting.
Defaults to 1. The default behavior (if none other parameters are given) is
to completely empty the patch of all its individuals when an extinction event
occurs.
extinction_size [decimal/matrix] (opt)
The number of individuals to be removed from a patch when the event occurs.
Alternatively, the mean of the distribution of harvesting sizes (see bellow).
extinction_proportion [decimal/matrix] (opt)
The proportion of individuals to be removed from the patches in case of har-

vesting. The size parameter has precedence over this one.

extinction_threshold [decimal] (opt)

CHAPTER 4. LIFE CYCLE EVENTS 44

The threshold is set as the minimum density of individuals relative to the
patch carrying capacity that must be present in the patch to consider it as
non-extinct, including all individuals in the patch (offspring and adults). If
the patch density is below that threshold, the patch is emptied.

extinction_size _distribution [uniform, poisson, normal, exponential, log-
normal] (opt)

The distribution used to randomly draw the harvesting size of a patch. The
mean of the distribution is taken from the extinction_size parameter. In case
of the normal and lognormal distributions, the standard deviation of the dis-
tribution must be specified with the parameter below. The harvesting size is
drawn from the distribution for each age class separately (i.e. offspring and
adults).

extinction_size_dist_stdev [decimal] (opt)

The standard deviation of the normal and lognormal random distributions for
harvesting sizes.

4.9 Trait initialization

Patch-specific trait or allelic values cannot be specified with the trait parameters.
Instead, we need to use an LCE to perform this task. Such LCEs are implemented
for the quant, dmi, and ntrl traits.

4.9.1 Initialization of trait quant

name: quanti_init
age flags: unchanged
files: NA

There are two possibilities to initiate the quantitative trait, one by specifying the
mean trait value in each patch, and the other by specifying the mean allele fre-
quencies per locus. The allele frequency initialisation is performed for bi-allelic loci
only.

quanti_init_trait_values [matrix| (opt)

The matrix must hold patch-specific trait values in each row. If the number of
rows is lower than the number of patches, values will be recycled. The number
of values per row must either the same number of traits modelled or one. If
only one initial trait value is specified per patch, that same value will be used
for all traits.

CHAPTER 4. LIFE CYCLE EVENTS 45

quanti_init_freq [matrix] (opt)

Similarly, the matrix must hold the patch-specific allele frequencies row-wise,
and locus-specific frequencies column-wise. The frequency of the first allele
only needs to be specified. As said above, the initialiser assumes there are
only two alleles per locus (see quanti trait parameters quanti_allele_model and
quanti_allele_value). The same remarks hold concerning value recycling.

4.9.2 Initialization of trait ntrl

name: ntrl_init

age flags: unchanged
files: NA

This LCE can be used to set initial allele frequencies in each patch differentially. It
assumes loci carry only two alleles.

ntrl_init_patch_freq [matrix| (opt)

This is the same as for quanti_init_freq above, although for the ntrl trait instead.

4.9.3 Initialization of trait dmi

name: dmi_init
age flags: unchanged
files: NA

This Life Cycle Event is used to set the frequencies of the mutant alleles at first
generation. It allows setting the frequencies in a patch-wise manner. The frequencies
at first generations will match those specified here on average because they are used
as probabilities to sample mutations within a deme. In absence of an initializer, all
individuals are monomorphic for the wild-type allele at all loci.

dmi_init_freq [matrix]

A matrix with one row per patch and one column per locus specifying the
initial allele frequency at each locus in each patch. Both the number of rows
and the number of columns can be smaller than the actual number of patches
and loci, respectively. If so, the pattern present in the matrix will be repeated
over all patches/loci.

Examples with 6 demes and 8 loci:

CHAPTER 4. LIFE CYCLE EVENTS 46

#to set all loci in all demes to allele 1
dmi_init_freq {{1}}

#to set the allele frequency to 0.25 in every second deme
dmi_init_freq {{0.25} {0}}

#to set loci 1,2,5,6 to allele 1 in demes 1,3,5,
#and to allele O at the other loci in the other demes
dmi_inti_freq {{1,1,0,0} {0,0,1,1}}

#same as above but with explicit repetition
#of the pattern of frequencies over loci
dmi_inti_freq {{1,1,0,0,1,1,0,0} {0,0,1,1,0,0,1,1}}

dmi_init_patch [matrix] (opt)

This optional parameter allows to restrict the settings given above to a speci-
fied set of demes. This is usefull to set allele frequencies is some demes only.
Will have an effect on gene dynamics under stepping-stone/lattice dispersal
only.

Example with 6 demes and 8 loci:

- to set one patch with all loci to allele 1:

dmi_init_freq {{1}}
dmi_init_patch {{6}} # this is patch no. 6

- to set three first patches to allele 1 at all loci:

dmi_init_freq {{1}}
dmi_init_patch {{1,2,3}}
#etc.

Note that this would be equivalent to setting the frequencies in each deme
explicitly. This option is a shortcut when the number of demes is large, e.g.,
this would be equivalent to the two examples above:

dmi_init_freq {{0}{0}{0}{0}{0}{1}} #set in patch 6 only
dmi_init_freq {{1}{1}{1}{0}{0}{0}} #set in patch 1, 2, and 3

CHAPTER 4. LIFE CYCLE EVENTS A7
4.10 Resize Population

name: resize [integer]
age flags: unchanged
files: NA

The resize LCE modifies the state of the meta-population during a simulation but
with more control than by using temporal arguments within the population param-
eters. In particular, it allows the user to merge or split existing patches without
losing individuals or adding empty patches, which is what would happen when us-
ing temporal parameters.

resize_at_generation [integer/matrix]
This is the generation at which the population will be modified. Mandatory.

This parameter also accepts a matrix argument with all the generation num-
bers specified on a row. Temporal arguments at the other resize parameters
then allows the modification of the population state at different points during
a simulation (see examples below).

resize_patch_number [integer| (opt)

Specifies the new number of patches in the population.

resize_patch_capacity [integer| (opt)
Specifies the new patch carrying capacity, also accepts a matrix argument as
the population parameter (see 3.2).

resize_female_capacity [integer]| (opt)

Changes the patch carrying capacity for the females only (similar to pop_nbfem).

resize_male_capacity [integer| (opt)

Changes the patch carrying capacity for the males only (similar to pop_nbmal).

resize_age_class [offspring, adults, all] (opt)

Sets the age class of the individuals to use when filling up new or empty
patches. If no individuals of the required age class are present in the popula-
tion, the LCE does not modify the population. It defaults to ’all’.

resize_do_flush [bool] (opt)

This parameter tells what to do with supernumerary individuals that are pro-
duced when patches are removed from the population. It also conditions the
way patches are filled.

CHAPTER 4. LIFE CYCLE EVENTS 48

When set (present), any supernumerary individuals will be flushed (removed)
and patches may subsequently be filled using individuals created de novo; i.e.
they are similar to first generation individuals and have no parents.

When not set (absent), supernumerary individuals are backed up and may
then be used to fill the remaining patches. This option is necessary when
simulating patch fusion (e.g. bring the individuals from two patches into one)
or fission (e.g. create two patches from one).

resize_do_fill [bool] (opt)

If set, the patches will be filled after the patch number and/or the patch
carrying capacities have been modified. The individuals used to fill the patches
are either backed-up individuals (i.e. do_flush is not set) or first-generation
individuals (i.e. do_flush is set, see comment above). Patches will be filled
sequentially (starting from the first) until they reach their carrying capacity.
If do_flush is not set and the backed-up individuals are not in sufficient number,
the filling procedure will stop before all patches are filled (which will happen
if the total population size is increased).

If not set, new patches will be empty and undersaturated patches will remain
as such and be filled by breeding and immigration in subsequent generations.

resize_do_regulate [bool] (opt)

If set, the patches will be regulated to their carrying capacities. This will
affect the offspring and adults similarly. The patch sizes will be at most equal
to their carrying capacities. Regulation is random.

If not set, patches may still have individuals above carrying capacity after
modifying the population. Note that if do_flush is not set but do_fill is set,
patches are automatically regulated to be able to fill the empty /undersaturated
patches with any supernumerary individuals available in the population.

resize_keep_patch [matrix| (opt)

This array parameter (1D matrix) specifies which patches must be kept when
resizing a population. Its length will set the number of patches in the popu-
lation after resizing. The patches are numbered from 1 to patch_number and
they are ordered as specified by the patch_capacity parameter. The order of
IDs specified here is kept; patches may thus be reordered with this option as
shown is the next example:

patch_capacity {{5, 10, 5, 10, 100}}
resize_at_generation 1000
resize_keep_patch {{1, 5, 4, 2, 3}}.

Note that this reordering will not have any consequence on the evolution of
the population unless the migration scheme is different from the island model.

CHAPTER 4. LIFE CYCLE EVENTS 49

Examples: Here is an example of the fusion of two patches into one:

patch_number 2

patch_capacity 100

resize 1 #rank in the life cycle
resize_at_generation 1000
resize_patch_number 1
resize_patch_capacity 200
resize_do_fill

Using the population parameters only would not lead to the fusion of the two patches,
as shown in this next example. Instead, one patch (the first one) will be destroyed
along with the individuals it contains while the carrying capacity of the remaining
patch is increased to 200.

patch_number (@g0 2, ©@g1000 1)
patch_capacity (@g0 100, ©g1000 200)

Temporal argument values can be used to model more complex demographic
scenario as in this next example:

patch_number 6

patch_capacity 200

resize_at_generation {{100, 1000, 2000, 3000}}

resize_patch_number (@g0 1, @gl000 2, ©g2000 4, ©g3000 6)
resize_patch_capacity (@g0 200, ©g1000 100, ©g2000 150, ©@g3000 200)
resize_do_fill (@g0 1, ©@g2000 0)

Here, the population starts with 6 patches of size 200. A massive extinction occurs
at generation 100 reducing the population to one patch of size 200. The population
then starts growing again from generation 1000 to 3000 with the fission of its unique
patch into two smaller ones first (i.e. do_fill is true). Two empty patches are added
at generations 2000 and 3000 (do_fill = 0) while the patch capacity increases from
100 to 200 over 2000 generations bringing the population to its original state.

Note that the temporal specifiers all start with 0 (as expected by default) which sets
the argument values for the first time resize will run, that is at generation 100 in
the above example. The next temporal values must be set at times corresponding
to those within the resize_at_generation array argument. That parameter can also be
a temporal argument, however the array form is preferred for its compactness. The
following example illustrate this point; both statements are equivalent:

resize_at_generation {{100, 1000, 2000, 3000}}
resize_at_generation (@g0O 100, ©g1000 1000, ©g2000 2000, ©g3000 3000).

CHAPTER 4. LIFE CYCLE EVENTS 50

4.11 Cross Design (NCI)

name: cross [integer|
age flags: adults (required); offspring (add)
files: NA

The cross LCE lets you perform a North Carolina I crossing design (or half-sib,
full-sib design) of the population at a given time point during a simulation. The
LCE creates sire x dam x offspring offspring in each patch of the population. It
is thus advised not to set the numbers of sires or dams higher than the number
of males or females present in the patches. This will also replace any offspring
previously present in the patches (a warning is issued). Sires and dams are randomly
selected with or without replacement within each patch, depending on the value of
the cross_with_replacement parameter.

cross_num sire [integer]
Number of sampled males per patch. Each male will be mated with num_dam
females as many times as num_offspring.

cross_ num_dam [integer]
Number of sampled females per sire. Each female produces num_offspring with
one given male.

cross_num _offspring [integer]

Number of offspring produced per dam.

cross_at_generation [integer]

Generation at which crossing is performed.

cross_do_within pop [bool] (opt)

If set (the default), dams and sires will be sampled within populations.

cross_do_among_pop [bool] (opt)

If set, the crossings will be performed by sampling a sire and a dam from two
different populations. Sampling proceeds by first randomly selecting num_sire
males within each patch and randomly assigning num_dam females to each
sire taken from patches different from the sire’s one. This insures that the sire
and the dam of each cross are from a different patches.

Both within and among patch crosses can be performed if both options are
set.

CHAPTER 4. LIFE CYCLE EVENTS o1

cross_with_replacement [bool] (opt)

If set to 1 (true), this option allows to sample individuals with replacement,
that is, to sample several times the same individual when selecting dams or
sires for the crossings. If not present (or set to 0), the sampling is done without
replacement, which is the default.

4.12 Population Regulation

name: regulation [integer]
age flags: adults (required)
files: NA

Population regulation is used to remove all individuals in excess of the (sex-specific)
carrying capacity of each patch. The mode of regulation is therefore called “ceiling”
regulation. Regulation is performed on each age class present in the population, that
is on the offspring and adult individuals for now. The supernumerary individuals
that are removed are chosen at random. It is not necessary to place regulation after
aging in the stack of life-cycle events as the aging LCE also performs regulation.
The patches will be at their carrying capacity only if there was enough individuals
present prior to regulation.

4.13 Save Stats

name: save_stats [integer]
age flags: unchanged
files: ".txt", " _bygen.txt"

This LCE is used to tell the stat-services of the simulation to record the summary
statistics specified with the stat parameters (see below). The statistics recorded
depend on the age state of the population. The position of this LCE in the life
cycle is thus important. Putting it after breeding will allow you to record stats on
both offspring and adults while putting it after aging will allow you to record the
stats on the adults only. The recorded stats are dumped to a text file at the end
of each replicates and at the end of a simulation for the averaged stats, but only
if the save_files LCE is present in the life cycle. See chapter 7 for a description of
the different output files declared by this LCE. Note that no results will be saved if
none of save_ stats or save_files are present in the life cycle.

stat [string]

CHAPTER 4. LIFE CYCLE EVENTS 52

The string passed to this parameter must contain the stat options defined by
the various simulation components. A list of these options is given in chapter 7.

Note: This is the only non-sequential parameter, the list of arguments is
considered as one complete character string.
stat_log_time [integer]
This is the generation recording time of the summary statistics defined by the
previous parameter.
stat_dir [string] (opt)
This optional parameter is used to specify a path to a directory where to save
the stat files. It shall not end by a slash character ('/’).
stat_output_compact [bool] (opt)
Changes the format of the output stat files by suppressing the pretty printing of
each column with lots of space between them. Instead, each value is separated
by a single space character. The value-separator can be changed to a comma
with the next option below. Use this to save space on disk.
stat_output_CSV [bool] (opt)
Changes the column separator from a white space * ' to a comma *,". Implies
compact output format.
stat_output_width [integer] (opt)
Sets the column with in the output stat files. Is 12 characters by default.

stat_output_precision [integer] (opt)

Sets the decimal precision in the output stat files. Is 6 by default.

stat_output_no_means [bool] (opt)
Suppresses the writing of the output file containing the stat means, ending
with ‘_bygen.txt’.

Output stats: alive.rpl

This stat appears in the "_bygen.txt" files only and is the number of alive
replicateat each generation recorded. This is an automatic statistic, no addi-
tional token is needed to the stat parameter.

CHAPTER 4. LIFE CYCLE EVENTS 93

4.14 Saving Files

name: save_files [integer]
age flags: unchanged
files: varies

This LCE tells the program when during the life cycle the simulation data must be
saved on disk by the different simulation components. This excludes binary data that
is saved by the store LCE (see below). The save_files LCE is mandatory if you want
to have any output data saved by your simulation. Each simulation component (trait
or LCE) may define different output files to save specific information (e.g. specific
stats or genotypes/phenotypes of a specific trait, etc.). The program file manager
is notified by save_files that is must initiate the file handlers’ output process at the
point it has been inserted in the life cycle. The type/composition of the data that
is saved will thus depend on the rank of this LCE in the life cycle because the age
composition and the state of the population is changed by other LCEs. It is not
possible, for now, to use save_files more than once in the life cycle. This prevents,
for instance, saving some data before and after a specific LCE (e.g. sequence data
before and after disperse). This will probably change in future releases.

Some simulation components automatically upload their different file handlers to the
file manager. For instance, the save_stat LCE defines two types of automatic output
files, one ending with the ".txt" and the other with the "_bygen.txt" extensions
(see above and chapter 7) to save the statistics recorded during the simulation.
Other component let the user chose what and when data must be saved on disk (see
the trait components for e.g.).

4.15 Store Data in Binary Files

name: store [integer]
age flags: unchanged
files: ".bin" (".tar", ".bz2")

This LCE provides a way to dump all the traits and individual’s data to a binary file.
That file can then be used to initiate a new simulation using the source_pop option
in the population parameters. Binary files contain all the genetic and individual data
plus the whole set of parameters that allowed to generate these data. More than one
generation of one replicate can be saved in one binary file but there always is one
file per replicate. By default, binary files are compressed (with bzip2 by default)
and put in a “tar” archive. This behaviour can be changed with the parameters
described below.

CHAPTER 4. LIFE CYCLE EVENTS o4

store_dir [string] (opt)
Used to specify the directory where to save the binary files.

store_generation [integer]
The generation to save in the binary files. The last generation will always be
saved whatever the value given here.
store_recursive [bool] (opt)
This option will tell the program to use the store generation value as a
generation logging time. The binary files will thus contain several generations.
store_noarchive [bool] (opt)

This option suppresses the archiving of the binary files.

store_nocompress [bool] (opt)

This option will suppress the compression of the binary files.

store_compress_cmde [string] (opt)

The program used to compress the binary files is by default bzip2. You can
change this default behavior by specifying a alternative program (or path to
that program) to use here.

store_compress_extension [string] (opt)

The alternative used with the previous parameter will probability use a differ-
ent file extension than ".bz2". Use this parameter to specify that alternative
extension.

store_archive_cmde [string] (opt)
Similarly to the compression process, an alternative archiver program can be
specified here to avoid the use of tar.

store_archive_extension [string] (opt)

The file extension used by the alternative archive program can be specified
here.

4.16 Composite LCE

Composite life cycle events are LCEs that inherit the properties (parameters) of
other LCEs (the base LCEs) and extend, or sometimes, redefine their function-
alities. For instance, breed_selection inherits the parameters of the breed and
viability selection LCEs and performs both breeding and viability selection in

CHAPTER 4. LIFE CYCLE EVENTS 95

one but doesn’t add any new parameters. Other composite LCEs may also add new
parameters (see below). Because the init file cannot have more than one copy of a
parameter, the composite LCE and its base LCEs cannot have different parameters
values; they share the exact same parameters. That behavior will change in future
releases.

breed_selection
breed_disperse
breed_selection_disperse

4.17 Breed with selection

name: breed_selection [integer]

age flags: adults (required) and offspring (added)
files: NA

inherits from: breed, selection

This composite LCE performs breeding and viability selection on the offspring gen-
eration. It inherits the parameters from the breed and the viability_selection
LCE’s parameters as described before. No additional parameters are required. The
following features differ from the base LCE’s:

e Fitness is always absolute.

e The realised fecundity of a female or male is set accordingly to the sur-
vival of their offspring (allowing the correct computation of the values of the
heterosis, load, and females/males realised fecundities and fecundity vari-
ances).

e This LCE may be faster than having breed followed by viability selection
in the life cycle when more than one trait are simulated, because mutation and
recombination are performed on the selected trait before checking for survival.
Therefore, mutation and recombination of the traits not under selection are
performed on the surviving offspring only.

breed _selection_fecundity fitness [bool]

If this parameter is set (present in the init file), the selection mode is changed
from acting on offspring survival to act on the number of offspring produced by
each female. In other words, with this mode, it is the fitness of the female that
matters rather than that of the offspring. The mean value of the fecundity
distribution is multiplied by each female’s fitness when drawing its number of
offspring produced. This works best when the mean fecundity is large because

CHAPTER 4. LIFE CYCLE EVENTS 96

only integer numbers of offspring can be produced, which is problematic when
the mean of the Poisson distribution is too low (e.g. a fitness of 0.25 and a
mean fecundity of < 4 will cause many more females to have no offspring than
if the mean fecundity is 10). By having a too low mean fecundity, one looses
precision in the selective process, and selection will be stronger.

4.18 Breed-disperse (gametic migration)

name: breed _disperse [integer]
age flags: adults (required) and offspring (added)
files: NA

inherits from: breed, disperse

Note: since version 2.3, the dispersal parameters that are inherited from the
disperse LCE must now be pre-pended with breed disperse instead of dispersal as
in the original LCE. For instance, dispersal_rate becomes breed_disperse_rate, disper-
sal_matrix becomes breed_disperse_matrix, etc.

This LCE performs breeding and dispersal in a single step. It inherits the param-
eters of the breed and disperse LCEs. For an offspring, each parent is randomly
taken from the local patch with probability 1 — m or from a different patch with
probability m, where m is the dispersal rate. The dispersal rates are thus taken as
backward migration or immigration rates in opposition to the forward emigration
rates of the disperse LCE. This corresponds to the classical Wright-Fisher model if
the mating system is hermaphroditism (mating_system 6). By default, exactly K off-
spring are produced per patch, if K is the patch capacity, unless the patch is extinct
and the parameter breed_disperse_colonizers is specified, which limits the number of
individuals grown locally from two immigrant gametes. The number of offspring
produced locally can also be density-dependent and set following different growth
models using parameters breed_disperse_growth_model and breed_disperse_growth _rate.
The following features differ from the two base LCE’s:

e backward migration, the columns of the dispersal matrix must sum to 1
instead of the rows, because Nemo reads the immigration rates column-wise
(element d;; is the probability to get a migrant gamete from deme ¢ into deme
J, @ being the row number and j the column number).

e There can be no demographic stochasticity (demes always at carrying
capacity) if the growth model is set to 1 (instant growth, default value), and
breed_disperse_colonizers is unset.

e Deme extinctions may cause the program to hang indefinitely if im-
migration into an extinct deme is impossible (e.g., because of source patch
extinction or zero immigration set in the dispersal matrix).

CHAPTER 4. LIFE CYCLE EVENTS o7

e An extinct deme will be instantly recolonised (in a single generation) unless
the number of immigrants is capped with breed_disperse_colonizers or a growth
model is specified.

e Two dispersal matrices can be used for hermaphrodites to model pollen
migration (i.e., fecundation of local ovules with immigrant pollen, without
ovule migration), see breed_disperse_dispersing_sex.

e Mating systems 2 (polygyny) and 3 (monogamy) can not be used here.

e This LCE can be used to mimic the Wright-Fisher model when the mating

system is set to 6 (random mating with selfing rate = %)

e This LCE is much faster than having breed followed by disperse in life cycle be-
cause exactly N offspring are produced and not % f, f being the females mean
fecundity. Usually, f should be greater than 2 to avoid too much demographic
stochasticity, especially with small patch sizes.

breed_disperse_colonizers [integer| (opt)

This parameter is used to restrict or set the number of individuals that will
re-colonise an empty patch to a different value than the carrying capacity of
that patch. That number is sex-specific, the actual number of colonisers will
be twice the value for dioecious individuals (biparental reproduction).

breed_disperse_dispersing sex [“female”, “male”| (opt)

Specifies the sex of the dispersing gamete, used when only females (monoe-
cious individuals) are present in demes as for hermaphroditic or self-fertilising
mating systems (models 6 and 4, respectively). Should be set to male to
model pollen dispersal (i.e. male gamete dispersal) to indicate which dis-
persal matrix must be used to select the right “father” (which, in this case,
is another female hermaphrodite individual, possibly in another patch). If
hermaphrodites are sessile individuals (plants) and the ovules do not disperse,
then the breed_disperse_matrix_fem must be set to the identity matrix (complete
philopatry).

breed_disperse_growth_model [1-7] (opt)

1 — instant growth: patches are filled to their carrying capacity within
one generation. This is the default model.

2 — logistic growth: the number of offspring produced in patch 7 is given
by the classical logistic growth model with N; = Np + rNp * ((K; —
Ng)/K;), with r the growth rate given by breed_disperse_growth_rate, Np
the number of breeding individuals, and N; the numbers of juveniles
produced, in patch i.

CHAPTER 4. LIFE CYCLE EVENTS o8

3 — logistic stochastic: the number of offspring is drawn from a Poisson
distribution with mean set by the logistic model as above.

4 — logistic conditional: if the number of breeding adults is below K/2,
use model 6, else use model 2.

5 — logistic conditional stochastic: if the number of breeding adults is
below K/2, use model 7, else use model 3.

6 — fixed fecundity: the number of offspring produced in patch ¢ is N1 =
N; % f, f the mean fecundity set by mean_fecundity.

7 — stochastic fecundity: as in 6 but with the total number of offspring
drawn from a Poisson distribution of mean equal to Ny,;.

breed_disperse_growth rate [decimal] (opt)
The patch growth rate used in the logistic growth model.

4.19 Breed with selection and backward migra-
tion

name: breed_selection_disperse [integer]
age flags: adults (required) and offspring (added)

files: NA
inherits from: breed_disperse, selection

This LCE aggregates the features of both previous composite LCEs. However, to
perform selection and backward migration with populations of constant sizes, there
must be some adjustments in the way selection is performed in the case where the
mean fitness is too low to allow the patches to be filled with surviving offspring. The
basic idea is therefore to define a minimum fitness threshold for the individuals. If
the mean fitness of the adult (breeders) generation is below that threshold before
mating, the offspring fitness is rescaled so that the mean patch fitness matches that
threshold. In other word, the threshold is the minimum survival probability offspring
in a patch can reach and the scaling factor is %. As soon as the mean
patch fitness is above that threshold, the scaling factor is reset to 1. This trick helps
boost the simulations when the starting conditions for the traits under selection are
very far from their optimum.

breed_selection_disperse_fitness_threshold [decimal] (opt)

The minimum fitness value used to rescale the individuals fitness when the
mean patch fitness is too low to allow for the patch to be filled (see above). It
is 0.05 by default (5% surviving probability).

CHAPTER 4. LIFE CYCLE EVENTS 99

Note: for version 2.3, since breed_selection_disperse inherits parameter definitions
from breed_disperse, the dispersal parameters must also use the breed_disperse prefix
instead of dispersal, see section 4.18 above.

Chapter 5

Traits

The traits described here are:

e ntrl (neutral markers, including microsatellites, SNPs, etc.)

quant (quantitative traits)

delet (deleterious mutations)

dmi (Dobzhansky-Muller Incompatibility loci)

fdisp/mdisp (sex-specific dispersal)

wolb (Wolbachia endosymbiotic parasites)

Each trait has an identifying name or type and may define different output files and
stat options. For a complete description of the stat options, have a look at chapter 7.

5.1 The Genetic map

[New in version 2.3] The three sequence-based traits (ntrl, quant, and delet) share
a common genetic map on which the loci of the different traits are placed. The
genetic map in Nemo is a recombination map where the locus positions are specified
in centi Morgan (cM), in opposition to the base-pair unit (bp) of physical maps.
The genetic map may be composed of more than one chromosome, each with a
different number of loci (although not always, see options below). The recombination
distances between loci can be specified explicitly or set randomly. This way, for
instance, neutral markers (SNPs) can be located more or less closely to loci under
selection. This is done thanks to a set of parameters that are common to the three
traits and are described in this section.

60

CHAPTER 5. TRAITS 61

The naming convention for the genetic map parameters is: prefiz_parameter_name,
where ‘prefiz’ stands for ‘ntrl’; ‘quanti’, ‘dmi’, or ‘delet’.

The unit of the map is the centi-Morgan [cM] by default but can be changed if
needed with parameter prefix_genetic_.map_resolution.

The map parameters are optional by default and unlinked maps for each traits
will be built if no parameters are specified in input (that is, all loci are unlinked).
There are four types of maps: fixed maps (prefiz_genetic.map), which specify
the exact map position of each locus on each chromosome, random maps (pre-
fix_random_genetic_map), which randomly set map positions according to the map
length of each chromosome, fixed maps with equally spaced loci (prefiz_recombination_rate),
which set locus positions according to specified recombination rates specific to each
chromosome and trait, and unlinked maps (by default, or if prefiz_recombination_rate
= 0.5), which correspond to completely unlinked loci. The map resolution, that is,
the minimum distance at which crossing-over will be placed, depends on the mini-
mum resolution specified by the map parameters of the different traits and can be
explicitly set by prefiz_genetic_map_resolution.

Limitations are that the number of chromosomes can not differ among traits (i.e.
chromosomes without loci are not accepted), and the number of loci per chromosome
on fixed map must be constant (see below).

prefir_genetic_map [matrix| (opt)

This corresponds to a fixed map and is used to specify the map position of
each locus of a trait. The matrix argument provides the locus positions using
one line per chromosome (in [¢cM] by default). The number of chromosomes is
then deduced from the number of lines.

Note: because matrices in input must carry the same number of elements per
line, this parameter does not allow for different number of loci per chromosome.
This is not true for the other types of map.

prefiz_random_genetic_map [array] (opt)

Loci position can be set randomly on the map. Here, the array holds the map
size of each chromosome (in [cM] by default). The number of chromosomes
is deduced from the length of the array and the loci positions are drawn ran-
domly from a uniform distribution on the range [0, map_size[. By chance,
two loci may land on the same map position. The number of loci per chro-
mosome is either equal among chromosomes and set by dividing the number
of loci of the trait by the number of chromosomes or set by the parameter
prefix_chromosome_num_locus below.

The random positions are saved in the .log output file of the simulation (and
in the binary file as well).

CHAPTER 5. TRAITS 62

prefiz_recombination _rate [decimal / array] (opt)

This option lets one set the positions at equal distance between loci on a
given chromosome. A recombination rate of 0.01 corresponds to a map dis-
tance of 1 ¢cM. Therefore, if smaller recombination rates are specified, the map
resolution will be reset accordingly. The number of chromosomes is deduced
from the number of elements of the array and the number of loci per chro-
mosome is either equal among chromosomes and set by dividing the number
of loci of the trait by the number of chromosomes or set by the parameter
prefiz_chromosome_num_locus below.

If a single value is given, without using a matrix argument, a single chromo-
some is constructed.

If a single value is given and that value is 0.5, the loci are considered as unlinked
and recombination is handled independently of the genetic map. Therefore,
if two traits have a recombination rate of 0.5, their loci will be considered as
unlinked, altogether. This would however not happen if an array argument is
passed (e.g. with ntrl_recombination_rate {{0.5}} and delet_recombination_rate
{{0.5}}), in which case the loci of the traits will have same map positions,
although they are unlinked to the next loci.

prefiz_chromosome_num_locus [array| (opt)

The number of loci per chromosome can be varied using this option, giv-
ing locus numbers in an array. The sum of the array must then be equal
to the total number of loci of the trait. The array must have as many ele-
ments as the number of chromosomes specified by one of the map options pre-
fix_random _genetic_map or prefix_recombination_rate. This option is not used
when fixed maps are specified with prefiz_genetic_map (see note above).

prefir_genetic_map resolution [decimal] (opt)

The map resolution is, by default, the centimorgan (cM). The map positions
specified by prefiz_genetic_map or prefix_random_genetic_map thus refer to that
scale. The scale can be changed here by specifying the corresponding reduction
of scale. Thus, prefiz_genetic_map_resolution must be smaller than 1, and, for
instance, a value of 0.1 means the resolution is changed to the mili-Morgan
(i.e., a distance of 1 then corresponds to a recombination rate of 0.1% instead
of 1% between two loci). The interpretation of the distances between loci thus
depends on this scale. The map resolution applies to all chromosomes and
all traits equally. If a trait changes the map resolution, all trait’s maps are
rescaled to the smallest scale.

CHAPTER 5. TRAITS 63
5.2 Neutral markers

name: ntrl
files: ".dat" (input/output)
phenotype: none

Neutral markers are genetic markers such as microsatellites or SNPs, which are not
affected by selection. The markers implemented here are all diploid, nuclear markers.
Two models of mutation are implemented, the SSM (Single Step Mutation) and the
KAM (K-Allele Model) models (see below for details). The probability of crossing-
over occurrences between two adjacent loci can be set by the parameters of the
genetic map. The number of alleles, and the allelic mutation rate are constant
across loci. New populations can be initiated by assigning random allelic values
within the range [1, ntrl all] to each locus thus assuring a very large initial
variance, or by assigning the same value to all loci. Other initialisation options are
given by the source_pop option above (see population parameters 3.2) which allows
you to load a population’s genotypes from an FSTAT input file (see below for a
description of that file format), or with the ntrl_init LCE to specify patch-specific
allele frequencies for di-allelic loci (see section 4.9.2).

ntrl loci [integer]

Number of (diploid) neutral markers per individual.

ntrl_all [1 to 256]

Number of alleles per neutral locus (same number for each locus).

ntrl_mutation rate [decimal]
Mutation rate of the neutral alleles, identical across loci. The mutation model
is specified with the next parameter.

ntrl_mutation_model [0,1,2]

Available mutation models are:

0 : no mutations
1 : SSM (Single Step Mutation)
2 : KAM (K-Allele Model)

The no-mutation model (#0) is simply a void model used for the case of a null
mutation rate. The SSM model (#1) changes the existing allele number (k)
to the k41 or k — 1 value randomly. The boundaries are reflexives, the allelic
value can not exceed the ntrl_all value or be less than 1. The KAM model
(#2) modifies the existing allele by assigning it a new random value within
the [0, ntrl_all[range.

CHAPTER 5. TRAITS 64

ntrl_init_model [0,1] (opt)

This option sets the way marker genes are initialised. The mode #0 means “no
variance”; all alleles have same value (i.e. 0) at the start of a replicate. Mode
#1 means “maximum variance”; the allele values are set randomly within the
range [1, ntrl all]. Mode #1 is the default mode. See section 4.9.2 for a
different way of initialising allele frequencies within patches.

ntrl_recombination_rate, ntrl_genetic_map, ntrl random_genetic_map (opt)

Recombination is handled by the genetic map. All genetic map parameters
apply. See section 5.1.

ntrl_save_genotype [string] (opt)

If this parameter is present, the population genotypes will be saved in a text
file with the ".dat" extension. Three file formats are proposed, depending
on the argument passed to this parameter (capital or non-capital letters are
accepted):

e TAB (tab)

The allelic values are saved on one line per individual and two columns
per locus. This format is ideal for the R software and analysis with the

HIERFSTAT R package by J. Goudet.

o FSTAT (fstat)

The file format is (almost) the same as that used by the FSTAT program
(Goudet 1995) as it adds some information about each individuals (age,
sex , pedigree, and natal patch). An example of an output file is given
below.

e GENEPOP (genepop)

Same as for the FSTAT option, although it saves the data in GENEPOP
format (Reymond & Rousset 1995).

ntrl_save_fsti [bool] (opt)

This tells nemo to save the within patch Fgr values per-locus using the Weir
& Hill (2002) estimates (see note below). Each line of the output text file
contains the values of a specific locus and each column is for a different patch.
The first line takes the column labels. The file extension is ".fsti".

ntrl_save_freq [allfreq, vcomp] (opt)

This saves the per-patch and per-locus allele frequencies (default option allfreq)
or, with option vcomp, the per-locus variance components used to compute the
Fsr(WC84) (i.e. the a, b, and ¢ components as described in Weir & Cockerham
(1984)). In the first case, the file has as many lines as the number of loci and
as many columns as the number of alleles per-patch (denoted ayp; for allele k

CHAPTER 5. TRAITS 65

in patch 7). In the case of the variance components, the file has 4 columns, one
for each variance component and one for the locus specific Fst. Each line also
contains the information for one locus at a time. The file extension is " .freq".
NOTE: if the population contains both adult and offspring individuals at the
time of writing the file, only the offspring are used.

ntrl_output_dir [string] (opt) This parameter specifies a specific path used to
save the genotype and ‘fsti’ output files. Should not end with a slash (‘/7).

ntrl_output_logtime [integer] (opt)

This is the generation periodicity of the output files, or the generations at
which the files should be saved if provided as multiple values in an array.

Note about reading an FSTAT file: as discussed in section 3.2.1, it is possible
to load a population from genetic data saved in an FSTAT file. That file can use
the original or the extended file format as described here. The original file format
does not include the age, sex, ped, and origin “loci”. Here is an example of a
neutral genotype output file, the file format is inherited from the FSTAT file format
(Goudet 1995):

59 20 2

locl

loc2

loc3

loc4d

loch

age

sex

ped

origin

1 1414 1019 2002 0820 0307
1 0814 0219 2002 2020 0307
1 0808 0217 1902 0820 0907
1 0820 0209 1902 0805 0918
[...]

4 0307 1308 0220 0401 0115
4

[

5

5

— I N
_ O - - -
N O N = =
N D I e

0905 1213 0302 0312 0506 4

-
2017 1010 2013 1812 1505 4 0 1 5
2017 1008 2013 1811 1505 4 1 2 3

The first line contains the population number (5 pops here), the number of locus
(544), which corresponds to the number of columns saved (minus the first one), the

CHAPTER 5. TRAITS 66

maximum number of alleles per locus (20) and the number of digits used to write
each genotype.

The five next lines are the locus names plus the “locus names” for the four last
values; the age, sex, pedigree class and population of origin of each individual.
This extra information is not processed by the FSTAT program and should thus
be removed to be used with that program. It is however extremely useful when
using this file format to load a new population from a saved simulation file. The
individuals information will thus be used to assign the individuals to their respective
sex and age classes.

The following lines contain the individual’s info, one individual per line. The first
number is the population number in which the individual finds itself at the time of
the recording. The 5 next numbers/columns are the genotype values of each of the
5 loci. As, in this example, we are using two digit per allele, the first two digits of a
locus genotype number are the first allelic value (e.g. allele #14 for the first allele of
the first locus of the first individual) while the two next digits are the second allelic
value as individuals are diploids here (e.g. allele #14 for the second allele of the
first locus of the first individual). Each line ends with four numbers. The first is
the age class (1 = offspring, 4 = adult), the second is the sex tag (1 = female, 0 =
male), the third is the individual’s pedigree class, that is the pedigree relationship
of its parents (0 = parents from different demes, 1 = parents from same deme but
unrelated, 2 = parents are half-sib, 3 = parents are full-sib, and 4 = selfed mating),
and the last one is the identifier of the population where that individual was born.

This file format is close to the FSTAT input file format (see Jérome Goudet’s soft-
ware http://www2.unil.ch/popgen/softwares/fstat.htm) with the addition of
the four last columns of the individual data. The HIERFSTAT R package (see:
http://www2.unil.ch/popgen/softwares/hierfstat.html), by the same author,
provides R routines (called read.fstat.data) to extract data from an FSTAT file
within the R software (http://www.r-project.org).

Note about the statistics: Nemo lets the user choose between various estimates
of gene diversity and genetic differentiation both within and between populations.
The classical F-statistics are available by using the 'fstat' stat option (see sec-
tion 7.2 for more details). This option will give the estimates of heterozygosities
(Ho, Hs and Hrt) and of F-statistics (Fis, Fst and Fjr) using the weighting method
of Nei and Chesser (1983) for unbiased estimates when population sizes vary.

Another set of F-statistics is given by the 'weighted.fst' stat options that use
the Weir and Hill (2002) unbiased estimates of within and between populations
Fs1’s for varying sample sizes. These stat options may be used to output the whole
population matrix of pairwise Fgr values (within and between populations). The
mean total population weighted Fgr is also given (and may be different from the
previous estimate using Nei and Chesser (1983)). That last value will be similar to

http://www2.unil.ch/popgen/softwares/fstat.htm
http://www2.unil.ch/popgen/softwares/hierfstat.html
http://www.r-project.org

CHAPTER 5. TRAITS 67

Weir and Cockerham (1984) estimate when sample sizes are equal. Note that since
version 2.0.8, the Weir and Cockerham (1984) Fyr estimate (0) is also available (stat
option: 'fstWC'.

Finally, the within (#) and between (a) population coancestry coefficients can also be
directly computed using the 'coa' stat options. These stats are sometimes referred
as “kinship” or “allele sharing” coefficients. They use the explicit pairwise com-
parisons of individual sequences to compute the mean population #’s and between
populations a’s. This method will give exactly the same estimates of the within
and between demes Fgr values using the Weir and Hill (2002) estimates but is more
demanding of computer time. On the other hand, coancestries are given for smaller
groups of individuals such as within and between sex or within pedigree classes (e.g.
full-sib or half-sib coancestries, etc.). The Fgr estimates can be computed from the
coancestries as follows:

9“'704

_ 0—«a _
For = =5, Fsri = 5=,

— J
) FSTij - 1—a

with ¢ and j are population indices with ¢ # j. These estimates will be equivalents
to the Weir and Hill (2002) estimates.

References: Goudet, J. 1995. "FSTAT (Version 1.2): A computer program to
calculate F- statistics.” Journal of Heredity 86: 485-486.

Nei, M., and R. K. Chesser. 1983. Estimation of fixation indices and gene diversity.
Ann. Hum. Genet. 47:253-259.

Raymond, M., and F. Rousset. 1995. GENEPOP (version 1.2): population genetics
software for exact tests and ecumenicism. J. Heredity 86:248-249.

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-Statistics for the analysis of
population structure. Evolution 38:1358-1370.

Weir, B. S., and W. G. Hill. 2002. Estimating F-Statistics. Annu. Rev. Genet.
36:721-750.

5.3 Quantitative traits

name: quant
files: ".quanti" (output only)
phenotype: continuous value on R.

Quantitative traits are traits that show a continuous distribution of values, also
sometimes called metric traits. A classic example is body weight, a trait that varies
continuously both among and within individuals. The trait implementation models

CHAPTER 5. TRAITS 68

these aspects of trait variation by using a continuum-of-allele model of mutation
where each mutational effects are drawn from a Normal distribution (see parameters
below). In addition, a di-allelic model is also implemented where mutations can
only take two values (£a). This model is provided for comparisons with classical
quantitative genetics models.

The trait architecture is kept simple, with additive action of the loci (no domi-
nance, no interactions). When muiltiple traits are modeled, the loci are completely
pleiotropic, meaning that each locus has an effect on each trait and the mutation
effects, drawn from a multivariate Normal distribution, can be correlated. In this
way, the evolution of correlated traits and genetic constraints on adaptation can
be modeled. Environmental variance can also be modeled, as well as spatially and
temporally varying selection pressures (see the selection LCE).

The statistics implemented return the additive genetic variation within populations
(V.), the among populations genetic variance (V;), the Qgr index of trait differenti-
ation among populations (Qst = ﬁ), and the traits’ genetic correlation, along
with the eigenvalues and eigenvectors of the G-matrix within demes or the D-matrix
among demes, when two or more traits are modelled.

quanti_traits [integer]

The number of traits to model. The number of traits is not limited. If two
or more traits are modelled, the mutational covariance can be set and the
statistics returned include the genetic correlation of the traits, and the eigen
decomposition of the genetic covariance matrix both within (G-matrix) and
among (D-matrix) demes.

quanti_loci [integer]

Number of additive loci that determine the trait(s). Loci are diploid. The
trait value is set by summing the allelic values at all loci. When two or more
traits are modelled, they share the same loci and each locus has an effect on
each trait (i.e., fully pleiotropic loci). The mutation effects on the traits can
be more of less correlated depending on the mutational covariance (see below).

quanti_mutation_rate [double]

The mutation rate, identical for all loci. The mutation effect(s) depends on
the allelic model, set below.

quanti_allele_model [“diallelic”, “diallelic HC”, “continuous”, “continu-
ous_HC”] (opt)

Two ways to model the mutational effects: “diallelic” if mutations can only
take + a given value (or two different values, see below), or “continuous” if mu-
tations are drawn from a Normal distribution, with variance (and correlation
for the multiple traits) set below. The default model is “continuous”.

CHAPTER 5. TRAITS 69

The two Hous-of-Cards (HC) variants specify a different way of modelling
mutations. In the non-HC models, a new mutation effect is added to the
existing allelic value, whereas in the HC models, the new effect replaces the
existing allele.

quanti_allele_value [double/matrix] (opt)

The effect size of the mutation(s) or allelic values at a loci in the di-allelic
mutation model. If a single value is given, that value is used for all loci. A
matrix can be used to pass locus-specific values. If the matrix has a single row
(an array), the mutational effects are + the given values at each locus. Two
different values per locus can be specified if two rows are provided instead of
one. The number of columns of the matrix must match the number of loci.

quanti_mutation_variance [double] (opt)

The variance of the Normal distribution of the mutational effects (the mutation
effect size) in the “continuous” mutation model. The same variance is used for
all traits unless the full mutation covariance matrix is specified (see below).

quanti_mutation_correlation [double] (opt)

The correlation of the effects of pleiotropic mutations, when two or more traits
are modelled. It applies to both the di-allelic (two traits only) and the con-
tinuous models. For the di-allelic case, the correlation is interpreted as the
probability of having the same sign of the mutation effect. For the continu-
ous model, the correlation is transformed into a covariance (using the value of
quanti_mutation_variance) to build the mutation matrix.

quanti_mutation_matrix [matrix] (opt)

The covariance matrix of the multivariate Normal distribution used to draw
the mutation effects in the continuous allelic model. Can be used to set dif-
ferent mutational variances for the different traits. This must be a square
symmetrical and semi-definite positive matrix (with trait mutational variance
on the diagonal and the mutational covariance off the diagonal). This matrix
is often referred to as the M-matrix.

quanti_recombination rate [double / matrix] (opt)

The recombination parameters are now (v2.3) managed by the genetic map.
See section 5.1 for the details.

quanti_init_value [matrix] (opt)

The initial genotypic value of the trait can be set here. It is 0 by default. This
parameter is valid for the whole metapopulation. The LCE quanti_init can be
used to set patch-specific initial values. The value at each locus is set by di-
viding the initial value by two times the number of loci. The initial population
will then be monomorphic for this trait value, unless specified otherwise

CHAPTER 5. TRAITS 70

quanti_init_model [0,1] (opt)

If the initialisation model is set to “0”, the initial population will be monomor-
phic for the initial trait values specified previously. If set to “1”7, a random
mutational effect is added to each locus, on top of the initial value. Model “1”
is the default.

quanti_environmental _variance [double] (opt)

Variance of the environmental deviation of the trait’s phenotype. Is zero by
default (no environmental variance). A random Gaussian value with mean
zero is added to the genotypic value otherwise.

quanti_output [bool, “genotypes”] (opt)

If present, the phenotypes of the whole population are saved in a text file, with
one individual per row. The genotypic values are added if the environmental
variance is not null.

The data saved is:
pop P1 Gl age sex home ped isMigrant father mother ID

with “pop” the patch identifier, “P1” the phenotypic and “G1” the genotypic
values (only if environmental variance is set) of the trait, “age” the age class
(“0” offspring, “2” adults), “sex” gender (“0” male, “1” female), “home” the
patch the individual was born in, “ped” the pedigree class (check the manual
p. 53), “isMigrant” a number telling how many parents of the individual
are immigrant (from same or different source patch), “father”, “mother”, and
“ID” are individual id’s, unique numbers assigned to individuals that can be
used to check for pedigree. The columns “P2” and “G2” are added when two
traits are modelled.

If the option “genotypes” is passed, the allelic values are also saved and

2x (number of loci) x (number of traits) columns are added to the file.
quanti_logtime [integer|

The timing at which phenotypes should be saved, or the generations at which

the files should be saved if provided as multiple values in an array.
quanti_dir [string]

The file directory (relative to the root_dir directory).

CHAPTER 5. TRAITS 71
5.4 Deleterious mutations

name: delet
files: ".del" (input/output)
phenotype: a real value in [0, 1], interpreted as the fitness value of the individual

Deleterious mutations are mutations that reduce the fitness of their carrier. This
translates into a lower survival probability of the offspring bearing more mutations
when applying viability selection on them (see section 4.7). Deleterious mutations
are coded by bi-allelic loci, with value of 0 for the wild-type, healthy form, and 1
for the deleterious form. The strength of the deleterious effect of each mutation
(i.e. strength of selection) and its dominance can be set using two different models:
constant over loci, or following a given distribution over loci. The selection and
dominance coefficients are set for a given locus and apply to all individuals within the
species. The total fitness of an individual depends on the way the mutations interact
and two fitness models are available; a multiplicative fitness model (independent
action of the different mutations, the default) and an additive fitness model (non-
independence among loci).

delet_loci [integer]

Number of deleterious loci per individual. The initial mutation frequency can

be set below. By default, the initial genotype is all wild-type.
delet_mutation_rate [decimal]

Deleterious mutation rate (allelic mutation rate), from the wild-type to the

deleterious form only. There is no reverse mutation rate for now.
delet_mutation_model [1,2] (opt)

There are two different models of mutation.

1 (default) : the location of each new mutation is randomly drawn irrespec-

tive of the presence of a mutation at that location.
2 : the location of a new mutation is redrawn each time it appears at a ho-

mozygous deleterious locus.

delet_recombination _rate, delet_genetic_map, delet_random _genetic_map
Recombination is handled by the genetic map. All genetic map parameters
apply. See section 5.1.

delet_init_freq [decimal] (opt)

Initial allele frequency of the deleterious allele. If the parameter is absent, the
initial number of mutations of each individual is null. The initial mutations
are randomly placed (number = initial frequency times the number of locus).

CHAPTER 5. TRAITS 72

delet_effects_distribution [constant, exponential, gamma, lognormal] (opt)

The mutational effects can either be a constant value across all loci (default
option) or follow a distribution as set by this parameter. Possible distributions
of effects are the exponential, gamma, and log-normal distributions. The mean
effect size and the shape of the distribution are set by the parameter below.
The dominance coefficient also follows a distribution and is scaled to the mu-
tational effects using the following relationship: h; = exp(—ks;)/2, where k is
a scaling factor chosen so that the average dominance coefficient of all mutants
is equal to h, i.e. k = —log(2h)/5, and 5 is the mean effect size.

constant (default): all loci have same selection and dominance coefficients.
This is the default, if not specified.

exponential: mutational effects follow a reverse exponential distribution. The
mean of the distribution is taken from parameter delet_effects_mean.

gamma: the gamma distribution takes two extra parameters beside the mean
effect. The first is the shape (delet_effects_dist_param1) and the second is
the scale (delet_effects_dist_param?2) of the distribution. Only the shape is
mandatory. The scale can be deduced from the mean and shape param-
eter values (mean = scale % shape).

lognormal: the log-normal distribution is another leptokurtic distribution
with two mandatory extra parameters, p and o, the mean and standard
deviation of the mutational effect’s logarithm. These two parameters
are specified by delet_effects_dist_param1 and delet_effects_dist_param2, re-
spectively. Note that the distribution is truncated to the right, no value
greater than 1 is allowed.

delet_effects_mean [decimal]
Mean effect of the deleterious mutations. Also known as the selection coeffi-
cient of the mutations. Is used to parameterize the effect sizes distribution.
delet_effects_dist_paraml [decimal] (opt)

Extra parameter used for the description of the distribution of mutational
effects. This is the shape of the gamma distribution or the logarithmic mean
effect in case of the log-normal distribution.

delet_effects_dist_param2 [decimal] (opt)

Second extra parameter used for the description of the distribution of muta-
tional effects. This is the scale of the gamma distribution or the logarithmic
standard-deviation in case of the log-normal distribution.

delet_dominance mean [decimal]

Dominance coefficient, alternatively the mean of the distribution of dominance
coefficients of the deleterious mutations.

CHAPTER 5. TRAITS 73

delet_dom _coef [decimal]

Equivalent to delet_dominance mean, kept for backward compatibility.

delet_sel_coef [decimal]

Equivalent to delet_effects_mean, kept for backward compatibility.

delet_continuous_effects [bool] (opt)

Deprecated since version 2.0.7.

delet_fitness_model [1,2]

Sets the fitness model used to compute the individual viability from the dele-
terious genome (the trait phenotype):

1 : Multiplicative model. The individual fitness (or viability) is computed
as the product of the fitness of each locus: W =1— (1 —s)™ — (1 —
hs)™ where n; is the number of homozygote loci and ng, the number
of heterozygote loci. s is the selection coefficient and h the dominance
coefficient.

2 : Additive model. Here, mutations act non-independently on fitness, this
may be viewed as an epistatic model. The individual fitness is: W =
1 —n18—nghs. Symbols has same meaning as previously. W is truncated
at 0, fitness can never be negative here.

delet_fitness_scaling_factor [integer| (opt)

This parameter’s value is used as a scaling factor for the individual’s pheno-
type, i.e. its viability is multiplied by this value.

delet_save_genotype [bool] (opt)

Parameter used to save the population genotypes in a text file with the " .del"
extension. The first line holds the column labels. Each line starts with the
population identifier followed by one column per locus plus the age, sex, pedi-
gree class, and patch of origin of each individual. The allelic values are 0
for the wild type allele and 1 for the deleterious allele. For the cases where
mutational effects are continuously distributed, the second row holds the se-
lection coefficient (homozygous effect) of each locus, and the third one holds
the heterozygous effects of each locus.

delet_genot_dir [string] (opt) This parameter specifies a specific path used to
save the genotype output files. Should not end with a slash (*/").
delet_genot_logtime [integer] (opt)

This is the generation periodicity of the genotype files or the generations at
which the files should be saved if provided as multiple values in an array. If

CHAPTER 5. TRAITS 74

the number is greater than the total number of generations, no data will be
saved.

5.5 Dobzhansky-Muller Incompatibility loci

name: dmi
files: “.dmi”
phenotype: a real value in [0, 1], interpreted as the fitness value of the individual

The DMI trait codes for so-called (Bateson-)Dobzhansky-Muller Incompatibilities
that occur between pairs of loci when both loci are heterozygotes for diploids or
for “heterozygous” pairs for haploids. In the latter case, loci in repulsion usually
decrease fitness (i.e. aB or Ab have lower fitness than AB or ab). The trait is
bi-allelic, with allele 0 representing the wild-type (A, B, C, ...) and 1 the 'mutant’
(a, b, ¢, ...).

The fitness effects of each incompatible pair must be set using a matrix argument
(see dmi_genot_table below). The fitness values of all possible genotypes must be
specified. The fitness model used is multiplicative:

W = H(l + w(pair;)),

where w(pair;) is the fitness value of the locus pair i.

A specific initializer has also been added to set patch-specific initial frequencies (see
dmi_init).

dmi_loci [integer]
Number of incompatible locus. The trait is haploid by default. Incompatibil-
ities come by pair, and pairs of locus are contiguous on the chromosome(s).
The recombination rate between each *locus™ is set below.

dmi_is_haploid [bool] (opt)
Can be used to change the ploidy of the trait. Is set to 'true’ by default. The
trait will be diploid is this is set to 0 ('false’).

dmi_mutation_rate [decimall]

Per-locus mutation rate. Mutations are both-way (0 — 1 & 1 — 0).

dmi _recombination _rate, dmi_genetic_map, dmi random_genetic_map (opt)

Recombination is handled by the genetic map. All genetic map parameters
apply. See section 5.1.

CHAPTER 5. TRAITS I6)

dmi_genot_table [matrix]

This table sets the fitness of each pair of locus relative to the wild type. It
must be set for each pair explicitly (no repetition of patterns, for now). The
structure is: one row per incompatible pair and one column per genotype.
There is here a slight difference for the haploid and diploid versions. In the
haploid case, the fitness of all 4 genotypes must be given. There are two
incompatible pairs, aB and Ab. The fitness associated with each genotype is
written in the following order:

- for haploids (and one pair)

{{AB, aB, Ab, ab}}

- for diploids (and one pair):

{{AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, aabb}}.

For the diploids, 9 genotypic values must be given. We do not distinguish
between single- locus heterozygotes (i.e. Aa == aA). The incompatible pair
is the middle one, AaBb (element number five in the genotype array). The
table below shows the ordering of the genotypes in the array:

BB Bb bb

AA 1 2 3
Aa 4 5 6
aa 7 8 9

The values should be given relative to maximum fitness (= 1). Wild-type geno-

types should thus get value 0 and incompatible genotypes should get negative

values. Otherwise, be sure to set the fitness model of the selection LCE to rel-

ative_local to get relative fitness values (see parameter selection_fitness_model).
dmi_save_genotype [bool] (opt)

Used to tell Nemo to write the genotypes to file.
dmi_logtime [integer| (opt)

Tells every what generation the genotypes should be saved to a text file.
dmi_output_dir [string] (opt)

Tells where (relative to root_dir) to save the genotype files.

CHAPTER 5. TRAITS 76

STATS

adlt./off.dmi Records the average frequency of allele 1’ (the mutant) and the
average frequency of incompatibility over all loci/pairs. The output (in the
stat files) include patch-specific averages and overall means for both quantities
(adlt./off.dmi.freq, adlt./off.dmi.p#)

The incompatible genotype is AaBb in the diploid case (or 01 01 as in the
output genotype file) and Ab or aB in the haploid case. The frequency of
these genotypes is recorded in the output stat file as adlt. /off.dmi.icmp for the
overall average, or adlt./off.icmp.p# for the per-deme frequencies.

5.6 Dispersal genes

name: fdisp, mdisp
files: NA
phenotype: a real value in [0, 1]

If the following parameters are added to the init file, two quantitative traits will be
added to the individuals. One codes for the female dispersal rate and is expressed in
females. The second codes for the male dispersal rate and is expressed in males only.
Both traits are continuous quantitative traits coded by a single diploid locus whose
allele values are real numbers ranging from 0 to 1. The two loci are co-inherited.
The dispersal probability of an individual (i.e. the trait’s phenotype) is the mean of
the two allele values at the corresponding locus.

disp_mutation_rate [decimal]
Mutation rate of the dispersal alleles. This is the probability to change the
allele value by an amount drawn from an inverse-exponential distribution with
the mean set below.

disp_mutation_mean [integer]
This parameter is the mean of the exponential distribution used to draw the
mutation step added to the genotype value.

disp_init_rate_fem [decimal] (opt)
Initial genotype (both alleles) of the female dispersal locus.

disp_init_rate_mal [decimal]| (opt)
Initial genotype (both alleles) of the male dispersal locus.
disp_init_rate [decimal] (opt)

Initial genotype of both the male and female dispersal locus.

CHAPTER 5. TRAITS 7

5.7 Wolbachia

name: wolb
files: NA
phenotype: a boolean representing the infection status of the individual

The Wolbachia trait is used to simulate the dynamics of an endosymbiotic parasite
causing cytoplasmic incompatibility. Its transmission is vertical, through females
only and is not perfect, the zygote may loose its parasite (“mutation” process rep-
resented by the transmission rate presented below). Zygotes issued from the mating
between an infected male and an uninfected female must pay the cost of incompati-
bility that decreased their chance of survival at birth by a given amount (parameter
incompatibility cost of the breed wolbachia LCE). Being infected by Wolbachia
also induces a cost that translates into a reduced fecundity of the infected females
(parameter fecundity cost of the breed wolbachia LCE). See the breed_wolbachia
LCE for details on the breeding and infection parameters.

wolbachia_transmission_rate [decimal]

This is the rate of transmission of Wolbachia from a mother to its offspring.
If different from one, the parasite may be lost during gamete formation.

Chapter 6

Examples

6.1 Life cycles

6.1.1 A basic life cycle

To start with, lets exemplify what a basic life cycle looks like:

breed 1
disperse 2
aging 3

It starts with the reproduction of the population (breed), thus adding offspring
individuals to it. Then the offspring migrate within the population (disperse)
before getting older and replacing the previous adult generation that will die because
of aging (non overlapping generations). The new adult generation is also regulated
to not exceed the patches carrying capacities.

Writing this life cycle in a different order would produce exactly the same result,
given the sequence of LCEs is conserved (see the following examples). The only
change is the population state at the beginning and the end of the cycle.

aging 1 disperse 1
breed 2 aging 2
disperse 3 breed 3

Writing the life cycle as above does not ensure that these LCEs will all be loaded
into the life cycle as some of them define additional mandatory parameters that
must be present in the init file as well. The breed and disperse LCEs define such

78

CHAPTER 6. EXAMPLES 79

mandatory parameters. The following example will allow to completely build the
life cycle.

breed 1
disperse 2
aging 3

mating_system 3 # monogamy
mean_fecundity 3
mating_proportion 0.8 # 20% of extra-pair matings

dispersal_model 2 # Island Model with propagule pool migration
dispersal_propagule_prob 0.3 # 30% of propagule dispersers
dispersal_rate 0.125

6.1.2 Adding outputs

The previous basic life cycle misses two important features. It does not record
statistics and does either not write any output files. To do so, you have to add the
following LCEs, save_stats and save _files.

breed 1
save_stats 2
save_files 3
disperse 4
aging 5

This way, both the adults and offspring statistics are computed and the various
files declared by the simulation components are saved to disc. Which age classes
are present in the population at the time of statistics recording and file writing will
determine the content of output files (especially the stats output files), the ranks of
these LCEs are thus important in that perspective. A third output LCE could have
been added here, it is the store LCE. Its rank in the life cycle will also determine
the age-class content of the binary files.

6.2 Traits

To add a trait to a simulation, it is sufficient to add the mandatory parameters
of that trait to the init file. Here is an example with three of the traits currently
implemented in Nemo.

CHAPTER 6. EXAMPLES 80

NEUTRAL MARKERS

ntrl_loci 20

ntrl_all 20

ntrl_mutation_rate 0.0001
ntrl_mutation_model 1 # SSM model

GENETIC LOAD

delet_loci 1000

delet_mutation_rate 0.0001

delet_effects_mean 0.05

delet_dominance_mean 0.36

delet_fitness_model 1 # multiplicative model

DISPERSAL GENES
disp_mutation_rate 0.001
disp_mutation_mean 0.2

Each individuals in the simulation will thus carry four sets of genes. One coding for
neutral markers with 20 loci, one with 1000 loci carrying deleterious mutations and
two coding for female and male dispersal. The genotypes can be saved in binary
files using the store LCE or by adding the trait-specific output parameters and the
save_files LCE somewhere in the life cycle.

6.3 A complete example

The next example shows a complete init files with all the mandatory parameters
and all the trait output parameters.

SIMULATION
filename example
logfile logfile.log
root_dir test
random_seed 988889
run_mode overwrite

replicates 10
generations 1000

POPULATION
patch_number 50

CHAPTER 6. EXAMPLES 81

patch_capacity 20

LIFE CYCLE
breed_selection 1
save_stats 2
save_files 3
disperse_evoldisp 4
aging 5

store 6

extinction 7

breed and selection parameters

selection_trait delet

selection_model direct

mating_system 3 #monogamy

mean_fecundity 15 #high enough to resist inbreeding depression
mating_proportion 0.8 #20% of extra-pair mating

extinction parameter
extinction_rate 0.05

disperse parameters
dispersal_model 2
dispersal_propagule_prob 0.3
dispersal_rate 0.125

save_stats parameters

stat off.fstat off.delet viability disp demography extrate
stat_log_time 10

stat_dir stat

store parameters
store_dir binary
store_generation 1000
store_noarchive

NEUTRAL MARKERS
ntrl_loci 20

ntrl_all 256
ntrl_mutation_rate 0.0001
ntrl_mutation_model 1

ouput
ntrl_save_genotype

CHAPTER 6. EXAMPLES 82

ntrl_output_dir ntrl
ntrl_output_logtime 1000

GENETIC LOAD
delet_loci 100
delet_init_freq O
delet_mutation_rate 0.0001
delet_effects_distribution exponential
delet_effects_mean 0.05
delet_dominance_mean 0.36
delet_fitness_model 1

ouput
delet_save_genotype
delet_genot_dir delet
delet_genot_logtime 1000

DISPERSAL GENES
disp_mutation_rate 0.001
disp_mutation_mean 0.2
dispersal_cost 0.2

This example will produce the following files (with # representing the replicate
number from 01 to 10).

logfile.log

test/example.log
test/stat/example_bygen.txt
test/stat/example.txt
test/ntrl/example_#.dat
test/delet/example_#.del
test/binary/example_#.bin.bz2

More elaborate examples can be found in the example/ folder of the installation
package.

Chapter 7

Output Statistics

The summary statistics computed during the course of a simulation depends on the
options given to the stat parameter of the save_stats LCE (see section 4.13). The
options available are declared by the various simulation components, the traits and
the life cycle events. The complete list of these options are given below for each
component.

A typical stat option string as found in the init file builds like this:

stat fstat off.delet viability disp demography

which will result in the computation of the F-statistics for the offspring and adults,
the statistics for deleterious mutations on the offspring age class, the mean viabilities,
the mean dispersal rates and additional statistics describing the population state. All
these options are described below in section 7.2. Note that if one of the component
stat option is present in the stat parameter argument but the component itself
is missing, this will end the initialisation process of the simulation and abort the
program. An example is given here, assuming the dispersal trait is missing but the
“disp” stat option is given:

*xxERROR*** the string "disp" is not a valid stat option
*x*ERROR*** could not run the sim !

7.1 Stat Output Files

The save_stats LCE declares two output files, the ".txt" and "_bygen.txt" files.
The first filetype contains the stat records of each recorded generation (set with the
stat_log_time parameter) for each replicate. By default, the first and last generations

33

CHAPTER 7. OUTPUT STATISTICS 84

are automatically recorded. This file may be huge depending on the number of
stats you are monitoring! It adds two columns, the replicate and the generation
columns, containing the replicate number and the generation number, respectively.
The " _bygen.txt" file only contains the generation column as each line contains
the stats averages taken over all replicates. One extra stat is added (alive.repl); it
counts the number of extant replicates at each generation.

The replicate stats are dumped to the ".txt" file at the end of each replicate,
whereas the stat average values are saved to the "_bygen.txt" file at the end of a
simulation.

7.2 Stat Options

The following tables present the different summary statistics of the simulation com-
ponents that can be monitored during a simulation run.

Output names beginning with off are computed on the offspring age class while
those starting with adlt are computed on the adults. When a stat is described as
being the mean of a particular value, this stat is the average of the patch means of
the value.

Some stat options may take a prefix tag specifying on which age class they are
computed. The naming convention is as follows. A stat argument specified as
[adlt./off.] name has three possible forms, adlt.name, off .name, or name, mean-
ing the statistics can be restricted to one of the two age classes or computed for
both. Alternatively, a stat option described as adlt./off.name has only two forms,
adlt.name, or off.name. Likewise, a stat option without any age-class prefix does
not accept any such option and likely apply to all age classes, unless specified oth-
erwise.

Table comment:
Stat option: the argument of the stat parameter in the input file.
Output name: the name of the stats as written in the output files.

CHAPTER 7. OUTPUT STATISTICS

85

7.3 Population

Table 7.1 Population stat options

Stat option

Output name

Description

off .demography off .nbr total number of offspring in the
metapopulation
off .nbfem mean number of female offspring per
extant patch
off .nbmal mean number of male offspring per

extant patch

off.density

average offspring density

off.dvar variance of the offspring density of
extant patches
adlt.demography adlt.nbr total number of adults in the
metapopulation
adlt.nbfem mean number of females per extant
patch
adlt.nbmal mean number of males per extant

patch

adlt.density

average adult density

adlt.dvar

variance of the adult density of extant
patches

demography

the above demographic stats for
offspring and adults

extrate

extrate

proportion of extinct patches in the
population

fecundity

adlt.femfec

mean assigned females fecundity

adlt.femrealfec

mean effective females fecundity,
discounting offspring that do not
survive, different from the previous
one only when viability selection
occurs with breeding

adlt.femvarfec

mean variance in effective fecundity of
females

adlt.malrealfec

mean effective males fecundity

adlt.malvarfec

mean variance in effective fecundity of
males

kinship

off.fsib

mean proportion of full-sib

Table 7.1 continued on next page

CHAPTER 7. OUTPUT STATISTICS 86
Stat option Output name Description
off .phsib mean proportion of paternal half-sib
off .mhsib mean proportion of maternal half-sib
off.nsib mean proportion of non-sib
off.self mean proportion of selfed offspring
pedigree ped.outb mean proportion of offspring born
from an outbred mating between
(unrelated) parents born in different
patches
ped.outw mean proportion of offspring born
from an outbred mating between
parents born in the same patch but
unrelated (both parents’ parents are
different)
ped.hsib mean proportion of offspring born
from parents with at least one
identical parent (half-sib parents)
ped.fsib mean proportion of offspring born
from an inbred mating between
full-sib (brother-sister) individuals
ped.self mean proportion of offspring born
from the mating of selfed parents
migrants emigrants mean number of emigrants per patch
immigrants mean number of immigrants per patch
residents mean number of residents per patch
immigrate effective immigration rate computed
immigrants
as (immigrants+residents)
colonisers mean number of immigrants per
extinct patch
colonrate effective colonisation rate of extinct
patches
migrants.patch emigr.pi number of emigrants from patch ¢
resid.p: number of residents in patch ¢
imrate.pt effective immigration rate into patch i
Computed as (immilg:‘na::fzr—&i‘zzdents>
colo.p? number of colonizers of patch 7; is -1 if
patch wasn’t extinct. A value of 0
means the patch was extinct but not
recolonized.

Table 7.1 continued on next page

CHAPTER 7. OUTPUT STATISTICS

87

Stat option

Output name

Description

pop same as “demography”,
off /adlt.sexratio, and ”extrate”
together

pop.patch off./adlt.fem.p: number of females in patch

off./adlt.mal.p?

number of males in patch 7

age.patchs

time since last extinction of patch ¢

patch.avrg.age

mean time (generation) since last
extinction of a patch

extrate

proportion of extinct patches in the
population

off/adlt.fem.patch

off./adlt.fem.p:

number of females in patch

off/adlt.mal.patch

off./adlt.mal.p:

number of males in patch i

adlt.sexratio

adlt.sexratio

see above

off.sexratio

off.sexratio

offspring sex ratio

Table 7.1: Population stat options continued

7.4 Neutral markers

Table 7.2 Neutral markers stat options.

Stat option

‘ Output name

\ Description

Note: More details about the stats are given in section 5.2.

[adlt./off.] coa

age.theta

mean within deme coancestry

age.alpha

mean between demes coancestry

adlt.coa.persex

adlt.thetaFF

mean within deme, within females
coancestry

adlt.thetaMM

mean within deme, within males

coancestry
adlt.thetaFM mean within deme, between sexes
coancestry
adlt./off. adlt./off.theta as above
coa.within
adlt./off. adlt./off.alpha as above
coa.between
[adlt./off.] age.theta as above
coa.matrix
age.alpha as above

age.coat.1t

deme specific mean coancestry within
deme i, for all demes.

Table 7.2: Neutral markers continued on next page

CHAPTER 7. OUTPUT STATISTICS

88

Stat option

Output name

Description

age.coat.j deme specific mean coancestry
between demes 7 and j, for all pairwise
comparisons.
[adlt./off.] age.theta as above
coa.matrix.within
age.coat. 1t deme specific mean coancestry within
deme i, for all demes.
sibcoa prop.fsib mean proportion of full-sib
prop.phsib mean proportion of paternal half-sib
prop.mhsib mean proportion of maternal half-sib
prop.nsib mean proportion of non-sib
coa.fsib mean coancestry within full-sib
coa.phsib mean coancestry within paternal
half-sib
coa.mhsib mean coancestry within maternal
half-sibs
coa.nsib mean coancestry within non-sib
[adlt./off.] age.ntrl.li.aj frequency of allele 5 at locus ¢ in the
ntrl.freq whole population
age.ntrl.l;.Het mean heterozygosity of locus ¢ in each
patch
[adlt./off.] age.allnb mean number of alleles per locus in
fstat the whole population
age.allnbp mean number of alleles per locus
within demes
age.fixloc mean number of fixed loci in the
whole population
age.fixlocp mean within demes number of fixed
loci
age.ho observed heterozygosity
age.hsnei expected demic heterozygosity (Nei &
Chesser 1983)
age.htnei expected total heterozygosity
age.fis Fis (Nei & Chesser 1983)
age.fst Fsr (Gst; Nei & Chesser 1983)
age.fit Fir (Nei & Chesser 1983)
[adlt./off.] age.fst.WH the Weir&Hill (2002) Fsr estimate

weighted.fst

Table 7.2: Neutral markers continued on next page

CHAPTER 7. OUTPUT STATISTICS

89

Stat option Output name

Description

[adlt./off.]
weighted.fst.matrix

age.fst.WH

the Weir&Hill (2002) Fsr estimate

age.fsti.1

deme specific Fgr within deme i, for
all demes.

age.fsti.j deme specific Fgp between demes ¢
and j, for all pairwise comparisons.
[adlt./off.] age.fst.WH the Weir&Hill (2002) Fgr estimate

weighted.fst.within

age.fsti.1c

deme specific Fgr within deme i, for
all demes.

[adlt./off.]fstWC age.fis.WC

the Weir&Cockerham (1984) Fig
estimate (f)

age.fst.WC the Weir&Cockerham (1984) Fgr
estimate (0)
age.fit.WC the Weir&Cockerham (1984) Fir
estimate (F)
[adlt./off.] age.D mean b/n demes Nei’s genetic distance
mean.NeiDistance (D).
[adlt./off.] age.D%. j pairwise Nei’s genetic distance b/n
NeiDistance demes ¢ and 7, for all pairs.

[adlt./off.] Dxy age.Dxy

average pairwise sequence divergence
between all pairs of patches

[adlt./off.] age.Dxy.pipj
Dxy.patch

average pairwise sequence divergence
between patch ¢ and patch j

Table 7.2: Neutral markers stat options continued

7.5 Quantitative traits

Table 7.3 Quantitative traits stat options

Stat option Output name

Description

[adlt./off.] age.qt
quanti

mean phenotypic value of the trait in
the whole population (equal to the
average breeding value in case no
environmental variance is set)

age.q:.Va

average of the within patch additive
genetic variance (Va) of the trait

age.qi.Vb

among patch genetic variance (Vb) of
the trait (variance of the patch means)

Table 7.3: Quantitative traits continued on next page

CHAPTER 7. OUTPUT STATISTICS

90

Stat option

Output name

Description

age

.q¢.Vp

average of the within patch
phenotypic variance (Vp) (present
only if the environmental variance is
different from zero)

age.

qt.Qst

index of population genetic
differenciation for the quantitative
trait, calculated from Va and Vb as

Qst = yihy,
ST — Vip+2V,

age

.qtj.cov

average genetic covariance within
patch between trait ¢ and trait 7,
present only if more than 2 traits are
modelled

[adlt./off.]
quanti.eigen

age.

q.eval:

eigenvalues of the D-matrix, the
covariance matrix of population means

age.

q.evectij

loadings of the i-th eigenvector of the
D-matrix

[adlt./off.]

quanti.eigenvalues

age.

q.evals

eigenvalues of the D-matrix, the
covariance matrix of population means

[adlt./off.]
quanti.eigenvectl

age.

q.evectl:

loadings of the first eigenvector of the
D-matrix

[adlt./off.]
quanti.mean.patch

age.

qi-pJ

mean phenotypic value of trait ¢ in
patch j

[adlt./off.]
quanti.var.patch

age.

Va.qi.pJ

additive genetic variance of trait ¢ in
patch j

age

.Vp.qi.pJ

phenotypic variance of trait ¢ in patch
j (only if the environmental variance
is not zero)

[adlt./off.]

quanti.covar.patch

age.

cov.qij.pk

genetic covariance between trait ¢ and
J in patch k

[adlt./off.]

quanti.eigen.patch

age.

gevali.pj

eigenvalues of the G-matrix in patch j
(genetic covariance matrix)

age

.qevecti).pk

loadings of trait 7 on eigenvector i of
the G-matrix in patch k

[adlt./off.] age.qevali.pj eigenvalues of the G-matrix patch j
quanti.eigenvalues.patch
[adlt./off.] age.qevectli.pj loadings of trait ¢ on the first

quanti.eigenvectl.pi

atch

eigenvector of the G-matrix in patch j

Table 7.3: Quantitative traits continued on next page

CHAPTER 7. OUTPUT STATISTICS

91

Stat option

Output name

Description

[adlt./off.]

quanti.skew.patch

age.

Sk.qt.pJ

skew of the phenotypic distribution of
trait ¢ in patch j

[adlt./off.]
quanti.patch

adds the stats from
quanti.mean.patch, quanti.var.patch,
quanti.covar.patch, and
quanti.eigen.patch

Table 7.3: Quantitative traits stat options continued

7.6 Deleterious mutations

Table 7.4 Deleterious mutations stat options

Stat option Output name Description
[adlt./off.] age.delfreq mean deleterious mutation frequency
delet
age.delhmz mean deleterious mutation
homozygosity
age.delhtz mean deleterious mutation
heterozygosity
age.delfix mean number of fixed mutation in the
whole population
age.delfixp mean demic number of fixed mutation
age.delsegr mean number of segregating mutation
in the whole population
age.delsegrp mean demic number of segregating
mutation
age.delfst F'st of the deleterious mutations
age.lethequ mean number of lethal equivalents
age.heterosis heterosis computed as: H =1 — Z—g
b, : the effective fecundity of within
deme matings (mating partners are
from the same patch)
b, : the effective fecundity of between
deme matings (mating partners are
from different patches)

Table 7.4: Deleterious mutations continued on next page

CHAPTER 7. OUTPUT STATISTICS

92

Stat option

Output name

Description

age.load

mean demic mutational load
computed as: L =1 — W‘;Vaz where
W ez 18 the maximum number of
surviving offspring produced by a

female in a patch

Note: heterosis and load are
computed from the female fecundities
which are updated according to the
offspring survival in the
breed_selection LCE only, and are
thus null when viability selection is
performed differently. In that case,
they can be inferred from the fitness
stats.

[adlt./off.]
viability

age.viab

mean patch viability (= mean trait
value)

age.viab.outb

mean viability of outbred individuals
between demes

age.viab.outw

mean viability of outbred individuals
within demes

age.viab.hsibs

mean viability of inbred individuals
between half-sib parents

age.viab.fsibs

mean viability of inbred individuals
between full-sib parents

age.viab.self

mean viability of inbred individuals
descended from selfed parent

age.prop.outb

proportion of between demes
outcrosses

age.prop.outw

proportion of within demes outcrosses

age.prop.hsibs

proportion of within demes half-sib
matings

age.prop.fsibs

proportion of within demes full-sib
matings

age.prop.self

proportion of within demes selfed
matings

meanviab

off.viab

see above

adlt.viab

same for adults

Table 7.4: Deleterious mutations continued on next page

CHAPTER 7. OUTPUT STATISTICS

93

Stat option

Output name

Description

survival

now part of the selection LCE’s stats.

Table 7.4: Deleterious mutations stat options continued

7.7 Dobzhansky-Muller Incompatibilities (DMI)

Table 7.5 DMI stat options

Stat option

Output name

Description

[adlt./off.]

dmi

age. dmi.freq

overall average frequency of mutant
alleles, across loci

age. dmi.p?

patch-specific frequency of mutant
alleles, across loci

age. dmi.icmp

overall average frequency of the
incompatible genotype(s) (AaBb for
diploids, Ab and aB for haploids)

age. dmi.icmp.pi

patch-specific frequency of the
incompatible genotype(s), across loci

Table 7.5: DMI stat options continued

7.8 Selection

Table 7.6 Selection stat options

Stat option

Output name

Description

fitness

age. fitness.mean

mean of the within patch offspring
fitness before viability selection, i.e.,
including all offspring

fitness.outb

fitness of b/n demes outbred offspring

fitness.outw

fitness of w/n demes outbred offspring

fitness.hsib

fitness of half-sib crosses

fitness.fsib

fitness of full-sib crosses

fitness.self

fitness of selfed crosses

fitness.prop

prop.outb

proportion of b/n demes outbred
offspring

Table 7.6: Selection stats continued on next page

CHAPTER 7. OUTPUT STATISTICS

94

Stat option

Output name

Description

prop.outw

proportion of w/n demes outbreds

prop.hsib proportion of half-sib crossings
prop.fsib proportion of full-sib crossings
prop.self proportion of selfed progeny

survival

survival.outb

mean proportion of surviving
offspring after viability selection, for
each pedigree class

survival.outw

survival.hsib

survival.fsib

survival.self

[off./adlt.]
fitness.patch

age.W.avg.pt

mean offspring/adult fitness of patch i

[off./adlt.]
fitness.var.patch

age.W.var.p1%

mean offspring/adult variance in
fitness of patch i

Table 7.6: Selection stat options continued

7.9 Dispersal

Table 7.7 Dispersal stat options

Stat option

Output name Description

[adlt./off.] disp | age.disp

mean dispersal rate

age.fdisp

mean female dispersal rate

age.mdisp

mean male dispersal rate

Table 7.7: Dispersal stat options continued

7.10 Wolbachia

Table 7.8 Wolbachia stat options

Stat option

Output name Description

wolbachia

off.fwoinf

females

mean infection frequency of offspring

Table 7.8 continued on next page

CHAPTER 7. OUTPUT STATISTICS

95

Stat option

Output name

Description

off .mwoinf

mean infection frequency of offspring
males

off.incmating

mean number of incompatible matings

adlt.fwoinf

mean demic infection in extant demes
for adult females

adlt.mwoinf

mean infection frequency of adults
males in the whole population

wolb.infvar

inter-demic variance in adult female
infection

wolb.extrate

proportion of demes having lost
infection in adult females

wolbachia
_perpatch

off .pifwoinf

mean infection frequency of offspring
females in patch i

off .pimwoinf

mean infection frequency of offspring
males in patch ¢

Table 7.8: Wolbachia stat options continued

	INTRODUCTION
	Overview
	Main Features
	Population models
	The Individual
	Genetics
	Statistics and outputs

	Using Nemo
	Launching Nemo from the command line
	For Linux and Mac OS X users
	For Windows users

	Batch mode

	THE INIT FILE
	Parameter types
	Special characters
	Matrix parameters
	Sequential parameters
	External argument files
	Temporal arguments
	Output files and naming conventions

	SIMULATION COMPONENTS
	Simulation
	Population
	Loading a population from a file

	LIFE CYCLE EVENTS
	Aging
	Breeding
	Breeding with Wolbachia
	Dispersal
	Seed dispersal
	Evolving Dispersal
	Selection
	Multi-trait selection
	Fixed selection model parameters
	Gaussian and quadratic model parameters

	Extinction and Harvesting
	Trait initialization
	Initialization of trait quant
	Initialization of trait ntrl
	Initialization of trait dmi

	Resize Population
	Cross Design (NCI)
	Population Regulation
	Save Stats
	Saving Files
	Store Data in Binary Files
	Composite LCE
	Breed with selection
	Breed-disperse (gametic migration)
	Breed with selection and backward migration

	TRAITS
	The Genetic map
	Neutral markers
	Quantitative traits
	Deleterious mutations
	Dobzhansky-Muller Incompatibility loci
	Dispersal genes
	Wolbachia

	EXAMPLES
	Life cycles
	A basic life cycle
	Adding outputs

	Traits
	A complete example

	OUTPUT STATISTICS
	Stat Output Files
	Stat Options
	Population
	Neutral markers
	Quantitative traits
	Deleterious mutations
	Dobzhansky-Muller Incompatibilities (DMI)
	Selection
	Dispersal
	Wolbachia

