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Abstract

The work described in this report can be broadly divided into two
sections.

The first section considers two export features. We describe how
the export for stochastic Petri nets to SBML level 1 has been added
to the Petri net modelling and simulation tool Snoopy. This task was
accomplished by making appropriate changes to the existing export
code to generate SBML level 2. Also we demonstrate in detail, how
the direct export for coloured Petri nets to both levels (i.e. 1 and 2)
of SBML was realised.

The next section summarises the performed comparison of differ-
ent stochastic simulation tools for biochemical reaction networks. We
first compare BioNetGen and SSC with each other by performing sim-
ulations on non-coloured Petri nets. Then, we compare the remaining
four tools, i.e. Cain, Marcie, Snoopy and Stochkit with each other by
performing simulation on coloured Petri nets.

This work builds on results by Aman Sinha [19].
Keywords: Petri Nets, coloured Petri nets, stochastic Petri nets,

SBML, stochastic simulation, biochemical reaction networks, export,
MathML.
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Task

In this era, SBML is the de facto standard for representing computational
models in systems biology. It therefore becomes increasingly important for
one’s software or tool to support export to and import from SBML. Other-
wise, that software or tool is deemed to be outdated.

Hence my first task was to add the export feature to Snoopy so that it
can export non-coloured as well as coloured Petri nets to SBML level 1 and
2. (We already had export for non-coloured Petri nets to SBML level 2; so
this was not performed).

Also, stochastic modelling and simulation is gaining increasing attention
in systems biology. There are many software tools available which are used
for stochastic simulation in the domain of biochemical reaction networks.
Each tool was developed with a specific objective in mind, and most tools
announce themselves to be highly efficient.

So my next task was to compare performance results of some of these
tools (BioNetGen and SSC). Also, I was asked to extend the work, done by
Aman Sinha [19]. Just for the record, he was specifically working on the
comparison of stochastic simulation tools.
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1 Introduction

So here we are. Let’s see from where to start. Okay, I will give you a brief
background of this project, then I will tell you about its motivation and then
the outline. Sounds good. So sit back tight, because this report will surely
surprise you with amazing results.

Background : There are numerous stochastic simulation tools developed
for performing simulation on biochemical reaction networks. A large variety
of modeling techniques are used to model the biochemical reaction networks
such as Boolean networks, Differential equations (ordinary or partial), Petri
nets, etc. Petri nets are found to be a particularly suitable representation
of these biochemical reaction networks. For basic understanding about Petri
net models please refer [14].

And then, we have SBML. The Systems Biology Markup Language (SBML)
is a representation format, based on XML, for communicating and storing
computational models of biological processes. It is a free and open standard
with widespread software support and a community of users and develop-
ers. SBML can represent many different classes of biological phenomena,
including metabolic networks, cell signaling pathways, regulatory networks,
infectious diseases, and many others.

Motivation : As said earlier, there are a number of stochastic simulation
tools available on the market. And each one claims to be at the top of the
tree. So it becomes important for us to compare these tools.

Outline : Having realised the exports, we make a performance compar-
ison of tools based on certain comparison criteria (which is explained later
in this report). We perform simulation on some benchmark models. Simu-
lations are carried out on each of the selected tool. The results obtained by
each tool are compared. The latter portion of this report is an extension of
work which was carried out by Aman Sinha [19].

Note : In this report you will find the use of blue colour. Like the one
which I just used. This colour is for my readers, if anything is so important
that I don’t want you to miss it, I will paint that text in blue.
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2 Exports

Two types of SBML [11] exports have been considered: export of (plain,
i.e., non-coloured) Petri nets, and the export of coloured Petri nets, which
require an unfolding first. Both exports will be discussed in the following
two sections.

2.1 Export for Stochastic Petri Nets to SBML Level 1

We already have export from stochastic Petri nets to SBML level 2. So before
we start, lets understand what are the differences between SBML level 1 and
SBML level 2

This will help us not only in making the necessary changes to SBML level
2 codes, but with this we will also save huge amount of time in performing
export to SBML level 1.

SBML Level 1 SBML Level 2

Text-string math notation MathML subset

predefined math functions user-defined functions

reserved namespaces for annotations no reserved namespaces for annotations

no controlled annotation scheme RDF-based controlled annotation scheme

no discrete events discrete events

Table 1: Differences between SBML levels 1 and 2

If you want to learn more, please visit :- http://sbml.org/Documents/
FAQ#What_are_the_differences_between_Levels_1_and_2.3F.

In the following we will discuss each point in Table 1 in detail. So let’s
start with our first point of differences.

2.1.1 Text-string math notation v/s MathML subset

Formulas are used in the definitions of kinetic laws and in rules. When
a species name occurs in a formula, it represents the concentration (i.e.,
substance/volume) of the species. When a compartment name occurs in a
formula, it represents the volume of the compartment. The formula strings
may contain operators, function calls, symbols, and white space characters.
The allowed white space characters are tab and space.
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Formulas in SBML Level 1 are expressed in text string form. Mathemat-
ical formulas in SBML Level 1 are not expressed using MathML (Maths
Markup Language), an XML-based mathematical formula language as it
would require simulation software to use fairly complex parsers to read and
write the resulting SBML.

Level 1: Example in Rule Use

<model>
. . .
<listOfRules>

<parameterRule name=”k” formula=”k2/k3” >
<speciesConcentrationRule species=”s2” formula=”k∗z/(1+k)” >
<compartmentVolumeRule compartment=”A” formula=”0.10∗k4” >

< /listOfRules>
. . .

< /model>

Level 1: Example in Kinetic Law Use

<model>
. . .
<listOfReaction>

<reaction name=”J1”>
<listOfReactants >

<speciesReference species=”X”>
< /listOfReactants >
<listOfProducts >

<speciesReference species=”Y”>
< /listOfProducts >
<kineticLaw formula=”k1∗X0” >

</reaction>
</listOfReaction>

</model>

Mathematical expressions in SBML Level 2 are represented using MathML
2.0. The XML namespace URI for all MathML elements is

http://www.w3.org/1998/Math/MathML. Note that MathML elements
for representing partial differential calculus are not included. The Table 2
describes the subset or the elements used in MathML.

4



token cn, ci, csymbol, sep

general apply, piecewise, piece, otherwise, lambda

relational operators eq, neq, gt, lt, geq, leq

arithmetic operators plus, minus, times, divide, power, root, abs, exp, ln, log, floor

logical operators and, or, xor, not

qualifiers degree, bvar, logbase

trigonometric operators sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech etc...

constants true, false, notanumber, pi, infinity, exponentiale

annotation semantics, annotation, annotation-xml

Table 2: Subset for MathML

Numbers and cn elements
Within MathML expressions contained in SBML (and only within such

MathML expressions), numbers in scientific notation must take the form
<cn type = ”e-notation”> 2 </sep> -5 </cn>,

and everywhere else they must take the form

2e− 5

Literal numbers appearing within MathML content in SBML have no
declared units.

Boolean values
In XML Schema, the value space of type boolean includes true, false, 1,

and 0, whereas in MathML, only true and false count as boolean values.

Csymbol elements
MathML csymbol element is used to denote certain built-in mathematical

entities without introducing reserved names into the component identifier
namespace such as simulation time and delay function.

The XML fragment below encodes the formula x + t, where t stands for
time.

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<apply>

<plus/>
<ci>x </ci>
<csymbol encoding=”text”
definitionURL=”http://www.sbml.org/sbml/symbols/time”>

5



t
</csymbol>

</apply>
</math>

And, the following XML fragment encodes the equation k + delay(x, 0.1).

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<apply>

<plus/>
<ci>k </ci>
<apply>

<csymbol encoding=”text”
definitionURL=”http://www.sbml.org/sbml/symbols/delay”>
delay
</csymbol>
<ci>x </ci>
<cn>0.1 </cn>

</apply>
</apply>

</math>

Level 2: Example in Rule Use

s1 =
T

1 + k

<model>
. . .
<listOfRules>

<assignmentRule variable=”s1” >
< math xmlns=”http://www.w3.org/1998/Math/MathML”>

<apply>
<divide/>
<ci>T </ci>
<apply>

<plus/>
<cn>1 </cn>
<ci>k </ci>

</apply>
</apply>

</math>

6



</assignmentRule >
< /listOfRules>
. . .

< /model>

And, similarily we have to use MathML for kinetic laws.

2.1.2 Pre-defined maths function v/s user-defined function

The basic mathematical functions that are defined in SBML Level 1 at this
time are given in Table 3.

Function definitions in SBML level 2 (also informally known as user-
defined functions) are derived from SBase and contain a math element called
Lambda.

Function Definition consists of id and name attribute. The id and name
attributes have types SId and String respectively.

The math element is a container for MathML content that defines the
function. The content of this element can only be a MathML lambda element
or a MathML semantics element containing a lambda element. The lambda
element must begin with zero or more bvar elements, followed by any other of
the elements in the MathML subset, except lambda (i.e., a lambda element
cannot contain another lambda element). This is the only place in SBML
where a lambda element can be used.

The number of arguments is equal to the number of bvar elements inside
the lambda element of the function definition.

An example showing the definition of cube power in Level 2.

<model>
. . .
<listOfFunctionDefinition>

< function Definition id = pow3>
< math xmlns=”http://www.w3.org/1998/Math/MathML”>

< lambda>
<bvar><ci>x </ci> </bvar>
<apply>

<power/>
<ci> x </ci>
<ci> 3 </ci>

</apply>

7



< lambda>
</math>

</functionDefinition>
</listOfFunctionDefinition>
. . .
<listOfReactions>

< reaction id=”reaction 1”>
. . .
< kineticLaw>

< math xmlns=”http://www.w3.org/1998/Math/MathML”>
<apply>

<ci> pow3 </ci>
<ci> S1 </ci>

</apply>
</math>

< /kineticLaw>
. . .

</reacton>
< /listOfReaction >
. . .

< /model>

2.1.3 Reserved v/s non-reserved namespace for annotations

Annotation element is a container for optional software-generated content
not meant to be shown to humans. Every object derived from SBase can
have its own value for annotation.The use of XML Namespaces permits mul-
tiple applications to place annotations on XML elements of a model without
risking interference or element name collisions.

The application developers should choose a URI (Universal Resource
Identifier; Harold and Means 2001; W3C 2000a) reference that uniquely iden-
tifies the vocabulary that the application will use for such annotations, and
a prefix string to be used in the annotations.

Although XML Namespace names (http://www.sbml.org/2001/ns/basis/
for example) must be URIs references, an XML Namespace name is not
required to be directly usable in the sense of identifying an actual, retrieval
document or resource on the Internet [2]. The name is simply intended to
enable unique identification of constructs, and using URIs is a common and
simple way of creating a unique name string.
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Name Meaning or Function

abs absolute value of x

acos arc cosine of x in radians

asin arc sine of x in radians

atan arc tangent of x in radians

ceil smallest number not less than x whose value is an exact integer

cos cosine of x

exp ex where e is the base of the natural logarithm

floor the largest number not greater than x whose value is an exact integer

log natural logarithm of x

log10 base 10 logarithm of x

pow xy

sqr x2

sqrt
√
x

sin sine of x

tan tangent of x

Table 3: Predefined functions in SBML level 1

However, SBML Level 2 Version 4 places the following restrictions on
annotations:

• Within a given SBML annotation element, there can only be one top-
level element using a given namespace. An annotation element can
contain multiple top-level elements but each must be in a different
namespace.

• No top-level element in an annotation may use an SBML XML names-
pace, either explicitly by refer- encing one of the SBML XML names-
pace URIs or implicitly by failing to specify any namespace on the
annotation. As of SBML Level 2 Version 4, the defined SBML names-
paces are the following URIs:

– http://www.sbml.org/sbml/level1

– http://www.sbml.org/sbml/level2

– http://www.sbml.org/sbml/level2/version2

9



http://www.sbml.org/2001/ns/basis http://www.sbml.org/2001/ns/jigcell

http://www.sbml.org/2001/ns/biocharon http://www.sbml.org/2001/ns/jsim

http://www.sbml.org/2001/ns/bioreactor http://www.sbml.org/2001/ns/libsbml

http://www.sbml.org/2001/ns/biosketchpad http://www.sbml.org/2001/ns/mathsbml

http://www.sbml.org/2001/ns/biospice http://www.sbml.org/2001/ns/mcell

http://www.sbml.org/2001/ns/cellerator http://www.sbml.org/2001/ns/netbuilder

http://www.sbml.org/2001/ns/copasi http://www.sbml.org/2001/ns/pathdb

http://www.sbml.org/2001/ns/cytoscape http://www.sbml.org/2001/ns/promot

http://www.sbml.org/2001/ns/dbsolve http://www.sbml.org/2001/ns/sbedit

http://www.sbml.org/2001/ns/ecell http://www.sbml.org/2001/ns/sigpath

http://www.sbml.org/2001/ns/gepasi http://www.sbml.org/2001/ns/stochsim

http://www.sbml.org/2001/ns/isys http://www.sbml.org/2001/ns/vcell

http://www.sbml.org/2001/ns/jarnac http://www.sbml.org/2001/ns/jdesigner

Table 4: Reserved XML Namespace names in SBML Level 1 Version 2.

– http://www.sbml.org/sbml/level2/version3

– http://www.sbml.org/sbml/level2/version4

• The ordering of top-level elements within a given annotation element
is not significant.

2.1.4 Non-controlled v/s RDF-based-controlled annotation scheme

SBML Level 1 does not provide this feature, whereas SBML Level 2 provides
us with the RDF feature.

This format described in Level 2 is intended to be the form of one of the
top-level elements that could reside in an annotation element attached to
an SBML object derived from Sbase. The element is named rdf:RDF. The
SBML structures described elsewhere in this document do not have any bio-
chemical or biological semantics. The format described in this SBML Level 2
provides a scheme for linking SBML structures to external resources so that
those structures can have such semantics.
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2.1.5 No discrete v/s discrete events

There are no discrete events in SBML Level 1, whereas SBML Level 2 has
discrete events.

2.1.6 Code changes

So after looking at the differences, we are ready to perform the export to
SBML level 1. This has been done by applying the required changes to the
already existing export for SBML level 2.

• What we actually want is, that we have a GUI dialog box which asks
the user to choose between the SBML levels i.e. 1 and 2. And based
on his/her choice the export to either of the level is performed.

To incorporate this feature we added two fuctions AddToDialog() and
OnDialogOk(), respectively. The first function generates radio buttons
one for level 1 and another for level 2. And based upon, which radio
button is checked, the export is performed.

OnDialogOk() function assigns the value of 1 or 2 to the variable level.

• In the DoWrite() function we made two major changes.

First, based on the value of variable level we added appropiate level
and version value to the XML file.

And second, Unit Definition component was added. This component
in the XML file is a convenient way of defining new units. And under
this component, a unit named substance was created.

Note: However this component is not necessary as such, I mean both
levels will work fine without this, but Dizzy (a tool, which supports only
SBML Level 1) requires this component in the XML file. Therefore,
this component was added to both SBML Levels.

• After going through the differences between the two levels, we know
that SBML Level 1 does not support MathML. So in WriteTransition()
function changes were made in the kineticLaw code. A code snippet
below gives an idea of the changes made.

if(level==1)

{

KineticLaw* l_pcKineticLaw =

l_pcReaction->createKineticLaw();

l_pcKineticLaw->setFormula(l_sEquation.utf8_str().data());

11



}

else //for level 2 by default

{

KineticLaw* l_pcKineticLaw =

l_pcReaction->createKineticLaw();

l_pcKineticLaw->setMath(SBML_parseFormula(

l_sEquation.utf8_str().data()));

}

For level 1, directly the Kinetic formula in text string format is used,
while in Level 2, the kinetic formula is parsed and set to MathML form.

• Then in ValidateSBML() function, based on the value of variable level
we check the SBML Document compatibility. If no errors are found,
the export to SBML is made.

• No changes were made in WritePlaces(), WriteConstants(), WritePa-
rameters() and AcceptsDoc() functions.

2.2 Export for Coloured Petri Nets

This export has been done for both SBML levels. We will discuss all the
functions in detail, which were written in order to perform the export. So
let’s start.

• AddToDialog() function provides us with the radio buttons so that we
can select appropriate Level.

• OnDialog() function assigns the appropriate value to variable level,
depending upon which radio button is selected.

• AcceptDoc() function checks if the right graphs are given and will only
accept graphs which are coloured Petri nets, coloured extended Petri
nets, coloured stochastic Petri nets, coloured continuous petri nets, and
coloured hybrid Petri nets.

• DoWrite() function first performs the unfolding of coloured Petri nets.
Then, based on the value of variable level it writes down the appropriate
level and version in the XML file and then the components, namely
UnitDefinition and Compartment is added in the XML file.

• WriteConstants() function are only called for coloured stochastic, coloured
hybrid and coloured continuous Petri nets. This function iterates through
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all the constants in the graph and writes them in the XML file. These
constants are written in the Parameter component of the XML file and
its attributes, namely Constant, Id and Value, are set accordingly.

• WritePlaces() and WritePlaceClass() function unfold all the places in
the graph, and then they add the Species component in the XML file
with its attribute namely, Compartment, HasOnlySubstance, Id and
InitialAmount which are set accordingly.

• WriteTransition() and WriteTransitionClass() function unfolds all the
transitions in the graph and then, it adds the Reaction component
for each transition in the XML file. Based on the Level of export,
KineticLaw is added.

Note- This Program will write Kinetic Law in the XML file in the form
of Mass-Action. So use the explicit version while doing the export.

• WriteTransitionClass() function calls the WriteArc() function which
then adds Reactant and Product sub-component under Reaction sec-
tion. WriteArc() function also adds Modifier component in case it
encounters special arcs (like inhibitor, equal arcs etc..).

• WriteParameters() function iterates through all the parameters in the
graph and create Parameter component in the XML file.

• Then in ValidateSBML() function, based on the value of variable level
we check the SBML Document compatibility. If no errors are found,
Export to SBML is made.
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3 Tools

In this chapter we summarise the tools which are used for simulating the
benchmark models and which are used in the actual performance comparison.
The following tools (namely : Cain, Marcie, Snoopy, Stochkit) had already
been used in [19]. To be self-contained, we repeat their description in this
report as well. The new tools additionally considered here are: BioNetGen
and SSC . We start with the new tools first in lexical order and then we will
go through the remaining tools (in lexical order).

3.1 BioNetGen

• The BioNetGen software package was initially developed by the Cell
Signaling Team at Los Alamos National Laboratory. The current de-
velopment team is based in the Department of Computational and
Systems Biology at the University of Pittsburgh School of Medicine,
with contributions from collaborators at the Theoretical Division and
Center for Nonlinear Studies at Los Alamos National Laboratory, the
Departments of Biology and Computer Science at the University of
New Mexico, the Center for Cell Analysis and Modeling at the Univer-
sity of Connecticut Health Center, and the Department of Biological
Chemistry at the Johns Hopkins University School of Medicine. This
tool can be downloaded from

http://bionetgen.org/index.php/BioNetGen_Distributions .
And in order to perform the simulation the following link was used

http://bionetgen.org/index.php/BNGManual:Simulating_a_Network

• Modelling Paradigm:

1. Simulate reaction networks as a set of ODEs.

2. Simulate reaction network using Gillespies ”stochastic simulation
algorithm”.

3. Simulate reaction network using the partitioned-leaping algorithm
(tau-leaping variant).

4. Simulate rule-based model using network-free stochastic simulator
NFsim

• Model class: This discussion is beyond the scope of this report.

• Data exchange formats: Imports and Exports
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Import file formats - .bngl, .net

Export file formats -

– Write rule-based model in BNGL format.

– Write rule-based model in BNG-XML format (read by NFsim).

– Write reaction network in NET format.

– Write reaction network in SBML format.

– Write reaction network in MatLab format.

– Write network-specific CVode integrator with Matlab interface.

– Write reaction network in MDL format for CellBlender/MCell.

• Tool features and handling: The tool was found to be easy in handling.
All the necessary commands which are used while performing simula-
tions and running the BioNetGen tool are given in the link https://

docs.google.com/spreadsheet/ccc?key=0Avcdx-KzjXH4dGhLZWlZZ1VGSmYzb0ZvRG0za3RYaWc#

gid=0

http://bionetgen.org/index.php/Installation_Guide

respectively.

One main feature of this tool, or rather I should say a major draw-
back of BioNetGen is that it can only perform a single simulation run.
Unfortunately, there’s not a simple argument that you can pass for
running multiple simulations. But if we use ’parameter scan’ action,
for multiple simulation then each simulation run will generate namely
.cdat, .gdat and .net files respectively for each run. Therefore if a sim-
ulation is performed for a million runs, then it would generate three
million files which requires a huge amount of disk space.

• Interface: It is a command line tool.

• Evaluation of results: Whenever any simulation (like ssa) is performed,
Trajectory data are written into two multicolumn output files for each
simulation: a .gdat file that reports the value of each defined observable
at each sample time and a .cdat file that reports the population level
of every species in the network at each sample time. Both data file
types are in ASCII format, so they can be viewed in a text editor
or imported into any number of different plotting and data analysis
programs. The BioNetGen distribution includes the PhiBPlot plotting
utility, which is a Java program that can be run by double-clicking on
the file PhiBPlot.jar in the PhiBPlot subdirectory of the distribution
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or by typing ”java -jar path/PhiBPlot.jar [datafile]” on the command
line.

• Implementation Language: BioNetGen-2.x.x is written in the Perl lan-
guage. The simulation back end, run network, is written in C++. The
PhiBPlot plotting utility, which is included in the PhiBPlot subdirec-
tory of the distribution, is written in Java.

• Platforms :Running BioNetGen requires-

– Perl version 5.8 or above. This is usually installed on Mac OS
X and Linux machines and under Windows if you are running
Cygwin.

– Mac OS/X, Linux, Windows, or a platform with appropriate tools
for compiling the simulation backend.

• License: This is available free of cost for non-commercial use.

• Tool version: 2.2.5

• Ease of installation: The installation for this tool was found to be
easy. And the steps for installing the tool can be found on http:

//bionetgen.org/index.php/Installation_Guide
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3.2 SSC

• This tool was developed at MIT and can be downloaded from

http://web.mit.edu/irc/ssc/

Inorder to perform simulation following video was found helpful which
is given in the SSC website

http://web.mit.edu/irc/ssc/downloads/ssc-viewer-screencast.

mov.
However the video as well as Installation manual say that they sup-
port Mac OS X, but unfortunately they no longer provide a Mac OS X
release.

• Modelling Paradigm: As the name suggest the Stochastic Simulation
Compiler (SSC) is a tool for creating exact stochastic simulations of
biochemical reaction networks.SSC compiles the model into fast sim-
ulators. Part of the speedup comes from algorithmic improvements
to the original Gillespie algorithm, while the rest comes from directly
generating efficient native code.

• Model class: This discussion is beyond the scope of this report.

• Data exchange formats:

1. Imports: .rxn (reaction file) and .cfg (configuration file)

2. Exports: .trj (trajectory file), matlab (.txt format but for this ssc-
trj-reader-0.01.jar is required which has to be downloaded seper-
ately ( click on SSC trajectory reader for downloading on te given
page http://web.mit.edu/irc/ssc/) )

• Tool features and handling: The tool was not easy to handle, but it
was not difficult also. It was somewhere in between easy and difficult.
SSC also has the same drawback as BioNetGen i.e. it can only perform
a single simulation run and if we write a script for multiple simulation
run, then each run would generate its own file, and which requires a
large amount of disk space.

• Interface: It is a command-line tool.

• Evaluation of results: The .trj files can be directly plotted using SSC 3D
Viewer( this can be downloaded by clicking start direcly link under the
SSC 3D viewer section on ths page http://web.mit.edu/irc/ssc/)

Also we have ssc-trj-reader-0.01 (a jar file) which allows converting
SSC-generated .trj files to Matlab-readable format.
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• Implementation Language: No information was given on the website.

• Platforms: It supports only Linux. However, the installation manual
say that they support Mac OS X, but unfortunately they no longer
provide a Mac OS X release.

• Hardware architecture: 64 bit version was downloaded and installed.

• License: Copyright 2008 MIT

• Tool version: The version downloaded was ssc-0.6-Linux-x86 64.tar.bz2.
It was downloaded from http://web.mit.edu/irc/ssc/

• Ease of installation: The installation of SSC was easy. However in
order to run SSC 3D Viewer, one has to change the security of java. If
the java security is high it won’t run on your machine.

18

http://web.mit.edu/irc/ssc/


3.3 CAIN

• This tool was developed at California Institute of Technology, Pasadena,
California, United States. In order to perform simulation the doc-
umentation of CAIN was referred which can be found on http://

cain.sourceforge.net/. The tool is available for download on http:

//cain.sourceforge.net/.

• Modelling Paradigm: It supports stochastic, deterministic as well as
hybrid models. Its simulation method include

1. Discrete Stochastic Simulations

2. Direct Method

3. First Reaction Method

4. Next Reaction Method

5. Tau-Leaping

6. SAL Tau-Leaping

7. Direct Method with Time-Dependent Propensities

8. Hybrid Direct/Tau-Leaping

9. ODE Integration

• Model class: This discussion is beyond the scope of this report.

• Data exchange formats: Imports and Exports

– It stores models, simulation parameters, and simulation results in
an XML format. It supports XML import as well as export.

– In addition, it also supports SBML imports and exports. The
level and versions are not explicitly mentioned in the manual.

– The results generated can be exported in gnu plot files and it also
exports the script for gnu plot to plot the result file.

– There is a csv export of the simulation result which exports result
in the csv format.

• The handling of the tool was easy. There are separate panels which
make simulation analysis easy. The complete model is described in
a single window within their respective panels. E.g. Model Panel,
Method Panel, Reaction Panel, Species Panel etc.

• Interface: It is a GUI tool.

19

http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/


Figure 1: CAIN Screenshot

• Evaluation of results: CAIN can plot its result by plotting Time Se-
ries Data, plotting histograms and tables. It does not support model
checking.

• Parallel Computing: Yes, implementation principle unknown.

• Implementation Language: The GUI is written in Python and uses the
wxPython toolkit. However the solvers are written in C++ and are
implemented as command line executables.

• Platforms: It supports all the three platforms namely Linux, Windows
and Mac/OS.

• Hardware architecture: 64 bit version was downloaded and installed.
The type of architecture is nowhere mentioned exclusively.

• License: Copyright (c) 1999 to the present, California Institute of Tech-
nology

• Tool version: The version downloaded was version 1.10. It was down-
loaded from http://sourceforge.net/projects/cain/files/cain/

which was made available on sourceforge on 2 July 2012. The website
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of cain is not updated, it says the latest release is version 1.9 on 27
September 2011. The tool was downloaded on 02 April 2014.

• Ease of installation: The link for CAIN can be found at the SBML
website:
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary#cat_

9

The above link directs to the CAIN website on
http://cain.sourceforge.net/

The download button on the last link will re-direct to
http://sourceforge.net/projects/cain/

from where CAIN can be downloaded. The zip file is downloaded and
extracted. The documentation on the cain website was read and steps
to install CAIN on REDHAT 6.0/CENTOS 6.0 were followed.
CAIN requires C++ compiler which was already installed on my sys-
tem. CAIN requires Python, wxPython, matplotlib, numpy and sympy.
The easiest way to install the above mentioned package is to install the
Enthought Python Distribution. It includes all the packages which
CAIN requires. The Enthought Canopy can be downloaded from
https://www.enthought.com/downloads/

The installation guide for Canopy was also read which can be found on
http://docs.enthought.com/canopy/quick-start/install_linux.

html

After performing these steps we have sufficient packages installed on
the system for CAIN. The CAIN package which was downloaded from
http://sourceforge.net/projects/cain/

was unzipped. The installation instruction for CAIN is available at
http://www.cacr.caltech.edu/~sean/cain/InstallationLinux.htm

The overall installation was easy.
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3.4 MARCIE

• MARCIE stands for (M)odel checking (A)nd (R)eachability analysis
done effi(CIE)ntly. MARCIE is a tool for qualitative and quantita-
tive analysis of generalized stochastic petri nets with extended arcs.
MARCIE is the successor of IDDMC.

• This tool was developed at Brandenburg Technical University, Cottbus,
Germany http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/

Marcie. In order to perform simulation the user manual was referred.
For user manual please refer [18]. The tool is available for download on
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie#

downloads

• Modelling paradigm: It is an analysis tool for stochastic petri nets.
The engines available are :

1. Exact Numerical Engine which includes:

– Jacobi method

– Gauss-Seidel method

– Pseudo-Gauss-Seidel method

– Immediate Transitions

– Markovian approximation

– Computation of probability distributions

2. Approximate Numerical Engine

3. Simulative Engine

• Model class: This discussion is beyond the scope of this report.

• Data exchange formats: Imports and Exports

– Input file formats - .apnn, .andl, .pnml

– The file can be created using the ANDL- export feature of Snoopy.

– It writes simulation result in CSV format.

• Tool features and handling: The tool was found to be easy in handling.
The tool is a command line tool and the all the necessary commands
which are used while performing simulations are mentioned in the user
manual. The results can be exported to a .csv file.
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• Interface: It is a command line tool. While simulation, it displays
the progress of the simulation (i.e. how much of the simulation is
complete).The total processing time includes the simulation run time
as well as the time for writing the file. We are concerned with the total
elapsed time because it is the simulation run time. The simulation
runtime is expressed in the format of 0m0sec.

• Evaluation of results: The simulation results can be exported to a .csv
file which can be processed by gnuplot in order to plot the graph. It
does not support any plotting function. It support model checking.

• Parallel computing: Yes, implementation principle unknown.

• Implementation language: MARCIE is written in C++.

• Platforms: It is supported in Linux and Mac/OS. Hardware architec-
ture: Only 64 bit for Linux was downloaded and installed. The current
version is available for MAC OS 10.5/6 , Linux32 and Linux64.

• License: This is available free of cost for non-commercial use.

• Tool version: MARCIE was first released on 23 December 2010. The
latest release of MARCIE was on 19 July 2012. The latest release of
MARCIE was downloaded and used for performing simulation. The
tool was downloaded on 17 April 2014.

• Ease of installation: MARCIE can be downloaded from the link :
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie#

download

The downloaded file can be extracted and MARCIE can be run directly
by going into the sub-folder.
However MARCIE requires GLIBC version 2.14 and GLIBCXX 3.4.15
for its execution.
The installation for this tool was found to be easy.
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3.5 SNOOPY

• This tool was developed at Brandenburg Technical University, Cottbus,
Germany http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/

Snoopy. In order to perform simulation please refer [14] and [15]. The
user manual was also referred. For user manual please refer [10]. For
the graph based data structure used in Snoopy and modeling and simu-
lation in Snoopy refer [9]. The tool is available for download on http://

www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy#downloads

• Modelling paradigm: The available simulators are stochastic, deter-
ministic and hybrid. The algorithms available are :

1. Stochastic Simulators:

– Gillespie

– FAU

2. Continuos Simulators:

– BDF

– Rosenbrock-Method of Shampine

– Rosenbrock-Method GRK4T of Kaps-Rentrop

– Rosenbrock-Method GRK4A of Kaps-Rentrop

– Rosenbrock-Method of Van Veldhuizen [gamma = 1/2]

– Rosenbrock-Method of Van Veldhuizen [D-stable]

– an L-stable Rosenbrock-Method

3. Hybrid Simulators:

– Explicit RK

– Implicit RK

– BDF

– ADAMS

• model class: This is beyond the scope of this report.

• Data exchange formats: Imports and Exports

– It can import as well as export SBML level 2 version 3.

– It supports several other imports and exports. For more imports
and exports visit the web page http://www-dssz.informatik.

tu-cottbus.de/DSSZ/Software/Snoopy#imexport
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Figure 2: Snoopy Screenshot

• Tool features and handling: The tool was found to be easy in handling.
The tool provides a special animation mode where you can play the
token game, which helps in better understanding of the model. The
simulation window is very easy to handle. The graphs are plotted auto-
matically. The simulation control panel contains the different functions
sets, parameters, simulators etc.

• Interface: It is a GUI tool.

• Evaluation of results: The default is the graphical plot which appears
on the simulation window. The results can be exported in csv format
as well as image can also be exported (e.g. gif, bmp etc). The viewer
view panel has three options xy plot, histogram, and tabular. The xy
plot shows the graphical lines in the simulation window, the histogram
shows the graphical histogram representation in the simulation window
and the tabular view shows the result in the tabular format in the
simulation window. It does not support model checking.

• Parallel computing: Yes, implementation principle unknown.

• Implementation language: Snoopy is implemented in C++, wxWid-
gets, Xerces.
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• Platforms: It supports all the three platforms namely Linux,Windows
and Mac/OS.

• Hardware architecture: Only 64 bit for linux was downloaded and in-
stalled. 32 bit version is available for Linux, however the architecture
is not explicitly mentioned for Mac and Windows.

• License: This is available free of cost for academic purpose and for non
commercial use.

• Tool version: The version downloaded was version 1.13. Snoopy was
first released on 9 October 2008. Its latest release was on 01 April 2014.
The tool was downloaded on 14 April 2014.

• Ease of installation:

The installation was found to be easy.
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3.6 StochKit

• This tool wass developed at UC Santa Barbara University of Califor-
nia, United States. http://sourceforge.net/projects/stochkit/.
In order to perform simulation the user manual was referred which is
provided with the installation file. The tool is available for download
on http://sourceforge.net/projects/stochkit/

• Modelling paradigm: StochKit2 provides commandline executables for
running stochastic simulations using variants of Gillespies Stochastic
Simulation Algorithm and Tauleaping. Improved solvers including ef-
ficient implementations of :

1. SSA Direct Method

2. Optimized Direct Method

3. Logarithmic Direct Method

4. ConstantTime Algorithm

5. Adaptive Explicit Tauleaping method

• Model class: This discussion is beyond the scope of this report.

• Data exchange formats: Imports and Exports

– The source file is stored in a .cpp format.

– Uses a Java Converter to convert the SBML input file to make it
compatible with StochKit.

– The converter accepts the standard version 1 (level 1 and level 2)
of SBML and version 2 SBML files.

• Tool features and handling: The tool was found to be easy in handling.
The tool is a command line tool and the all the necessary commands
which are used while performing simulations are mentioned in the user
manual. The results can be exported to a .txt file. It exports means as
well as variance of the species in the reaction. It has a special feature
of determining the simulation method based on the model that will
achieve best performance while simulation.

• Interface: It is a command line tool. It displays the drivers which it
uses while performing simulation. The simulation runtime is displayed
at the end.
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• Evaluation of results: The simulation results can be exported to a .txt
file which can be processed by gnuplot in order to plot the graph. It
supports plotting function. The plotting tools are available in MAT-
LAB. It does not support model checking.

• Parallel computing: Yes, implementation principle unknown.

• Implementation language: Stochkit is written in C++.

• Platforms: It supports all the three platforms namely Linux, Windows
and Mac/OS.

• Hardware architecture: Only 64 bit for Linux was downloaded and
installed. There is no explicit mention of the architecture.

• License: StochKit2 (version 2.0.5 and later) is distributed under the
BSD 3Clause License (BSD New or BSD Simplified).

• Tool version: The latest release of StochKit is StochKit 2.0.10 on 20
November 2013. The latest release of StochKit was downloaded and
used for performing simulation. The tool was downloaded on 02 April
2014.

• Ease of installation: The link for StochKit can be found at the SBML
website:
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary#cat_

9

The above link directs to the StochKit website on:
http://www.engineering.ucsb.edu/~cse/StochKit/

The above link will be directed to sourceforge for the download option:
http://sourceforge.net/projects/stochkit/

StochKit2 was downloaded and extracted. In the extracted folder there
is a StochKit2 manual. The installation steps written in the manual
were followed. StochKit was installed successfully.
However for importing SBML files we need SBML converter. The
SBML converter was found in the tools sub-folder. The documentation
was read and the steps to install the SBML converter were followed. It
needs an additional library libSBML which needs to be installed.After
performing the steps written int the documentation file, the SBML con-
verter was installed successfully.
The installation was found to be difficult.
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4 The Benchmark Suite

Model form. The following sections summarise all benchmark examples.
The information is structured into:

• Description. a brief description of the example including a figure show-
ing the Petri net model, and some references where it has been pub-
lished.

• Scaling parameter. List of parameters and their meaning for model
scaling.

• Model size. Size of the Petri net model in terms of number of places,
transitions and arcs. These numbers have been found by importing the
SBML file in Snoopy and viewing the net information.

• Simulation parameters. Chosen setting for the simulations, such as
interval start time, interval end time, interval steps, value of scalable
parameter, number of runs, number of experiments per run and number
of threads.

Non-Coloured Petri Nets

• Angiogenesis

• Erk

• Levchenko

Coloured Petri Nets

• Gradient

• Repressilator

To be self-contained, we provide here a description of all benchmarks used.
The descriptions for Angiogenesis, Erk and Levchenko have been taken from
[19].
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4.1 ANGIOGENESIS

Description. Angiogenesis, defined as the formation of new vessels from
existing ones, is a topic of great interest in all areas of human biology, par-
ticularly to scientists studying vascular development, vascular malformation
and cancer biology. Angiogenesis is a complex process involving the activ-
ities of many growth factors and relative receptors, which trigger several
signaling pathways resulting in different cellular responses. The Petri net
was introduced in [16] and refined in [3], see Figure 3.

Scaling parameter

• N – initial number of tokens on places Akt, Enz, Gab1, KdStar, P3k,
Pg, Pip2 and Pten

Model size

• number of places: 39

• number of transitions: 64

• number of arcs: 185

Although the model is parameterized, the size of its structure does not
depend on parameter values.

Simulation parameters

• interval start time: 0

• interval end time: 100

• interval steps: 100

• value of N: 1, 5, 10, 50

• no of runs: 1, 100, 10,000, 1,000,000
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Transition k3, k4, k5, k6, k7 are dead 

Compound Symbols:
KDR = Kd = n1
Gab1 = G = n3
Pi3k = P3k = n2
PlcGamma = Pg = n4
Pip3 = P3
Pip2 = P2 = n5
Pten = Pt = n6
Enz = E = n7
Akt = n8
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Figure 3: Petri net representation of the ANGIOGENESIS model.
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4.2 ERK

Description. The RKIP inhibited ERK pathway was originally published
in [12], and discussed as qualitative and continuous Petri nets in [4], and
as three related Petri net models comprising the qualitative, stochastic and
continuous paradigms in [7], see Figure 4.

Scaling parameter

• N – the initial number of tokens on the places ERK, MEKPP, Raf1Star,
RKIP and RP;

Model size

• number of places: 11

• number of transitions: 11

• number of arcs: 34

Although the model is parameterized, the size of its structure does not
depend on the parameter values.

Simulation parameters

• interval start time: 0

• interval end time: 100

• interval steps: 100

• value of N: 1, 100, 10,000, 1,000,000

• no of runs: 1, 100, 10,000, 1,000,000
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Figure 4: Petri net representation of the ERK model.
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4.3 LEVCHENKO

Description. The mitogen-activated protein kinase (MAPK) cascade was
published in [13]. This is the core of the ubiquitous ERK/MAPK pathway
that can, for example, convey cell division and differentiation signals from
the cell membrane to the nucleus. It has been used in [5] and [8] as running
example to discuss three related Petri net models comprising the qualitative,
stochastic and continuous paradigm, see Figure 5.

Scaling parameter

• N – the multiplier of the initial number of tokens on the places Raf,
RasGTP, RafP Phase1, MEKP Phase2, ERk, ERKP Phase3

Model size

• number of places: 22

• number of transitions: 30

• number of arcs: 90

Although the model is parameterised, the size of its structure does not
depend on parameter values.

Simulation parameters

• interval start time: 0

• interval end time: 100

• interval steps: 100

• value of N: 1, 10, 100, 1,000

• no of runs: 1, 100, 10,000, 1,000,000
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Figure 5: Petri net representation of the LEVCHENKO model.
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4.4 GRADIENT

Description. Diffusion in space is a basic process underlying many spatial
(bio-) chemical processes, however typically considered either in the stochas-
tic or continuous setting. The Petri net given here comes from [6], where it
has been used to illustrate the generic modelling of space by use of coloured
Petri nets. We discretise the space by a D X D rectangular grid, D being
a model parameter, and deploy the 8-neighbourhood relation with reflecting
boundary condition. The process starts with N tokens in the centre position.
This model is easily scalable with well-known size of the model growth and
its state space; see Figure 6 for an unfolded model version, and see Figure 7
for the scalable coloured gradient model.

N

Figure 6: Petri net representation of the GRADIENT model, generated out
of Figure 7 with D = 5 by help of Snoopy.

Scaling parameter

• D – grid size; i.e. there are D ×D grid positions,
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simulation options:
sim end: 10
output: 10,000Grid2D

N`(x=MIDDLE) & (y=MIDDLE)

10,000 cAMP[neighbour2D8(x,y,a,b)]
t1

0.1

k(a,b)

(x,y)

Figure 7: A colored Petri net model for the Gradient.

• N – there are initially N = 1000 ∗D tokens in the centre position see
Figure 6.

Model size

• parameter : D

• number of places : D2

• number of transitions : 8D2 - 12D +4

• number of arcs : 2 - |T |

The model is parametrized and the size of its structure depends on the
parameter D.

Simulation parameters

• interval start time: 0

• interval end time: 100

• interval steps: 100

• value of D: 10, 50

• no of runs: 1, 100, 1000, 10,000

• no of experiments per run: 10 (No Simulations for Snoopy and Cain
due to limited time)

• no of threads: 1, 4, 8, 16
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4.5 REPRESSILATOR

Description. The Petri net given here comes from [1], where it has been
used to illustrate a modular and stepwise construction of a Petri net model.
When genes repress each other in a circular manner, we obtain a gene regula-
tory cycle, see Figure 8 which is composed of three gene gates with identical
structure. For the coloured repressilator model see Figure 9.

to see oscillation, 
set sim.end = 100,000 for main parameter set

Decreasing degradation rate k_deg
increases the amount of accumulating proteins, 
and thus increasingly suggests the use of HPN.

gene_c

protein_c

blocked_cgene_b protein_b

blocked_b

gene_a

protein_a

blocked_a

block_c
block_b

generate_c

unblock_c

degrade_c

generate_b

unblock_b degrade_b

generate_a

unblock_a

degrade_a

block_a

Figure 8: The repressilator Petri net for three genes in a regulatory cycle.

Scaling parameter

• N - initial number of tokens on the coloured place Gene, in the Figure 9
we have N = 3 as you can see in the gene place we have three black
tokens (dots)

Model size
The model is parameterized and the size of its structure depends on the

parameter value, see Table 5.

Simulation parameters

• interval start time: 0

• interval end time: 10000

• interval steps: 100
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Figure 9: A colored Petri net model for the repressilator

N Place Number Transition Number Standard Arc
3 9 12 30
30 90 120 300
100 300 400 1000
300 900 1200 3000
3000 9000 12000 30000
N 3N 4N 10N

Table 5: Model Size for Repressilator

• value of N: 3, 30, 100, 300, 3000

• no of runs: 1, 100, 1000, 10,000

• no of experiments per run: 10 (3 for Cain due to limited time)

• no of threads: 1, 4, 8, 16
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5 Performance Comparision

System configuration details:

• Hardware:

– Workstation : Apple MacPro

– RAM : 8GB 1066 MHz DDR3

– Processor : 2 x 2.26 GHz Quad Core Intel Xeon

– Total no. of cores : 8

– L2 Cache per core : 256 KB

– L3 Cache per processor : 8 MB

• Software:

– Operating System : CentOS release 6.5 (64bit) and Mac OS X
version 10.6.8
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5.1 Results 1 - BioNetGen vs SSC for the uncoloured
benchmarks

Before we compare these two tools with each other, we will quickly go through
the criteria and assumptions made for comparison.

Comparison Criteria
The comparison criteria are based on the following parameters:

1. Time taken by a tool for performing simulation.

2. Disk consumption of the result files.

The assumptions and constraints while performing simulation are:

• We are interested in the mean value of the species.

• The interval start will be at 0 time units and the interval end will be
100 time units.

• The simulation algorithm used is Direct/ Gillespie.

• We define an experiment as simulation carried out for a particular value
of N and number of Runs.

• Linux command du -sh is used for calculating disk consumption .

• The threshold simulation time for a particular model is 3,600 seconds
(1 hour). If the simulation time for a particular model is more than
3,600 seconds (1 hour) then we terminate the simulation.

• No process is running when simulation is being performed.

• For BioNetGen simulation time is displayed by the tool itself at the
end, and for SSC date command is used for calculating the time.

• The simulation time for the tools are interpreted in Table 6.

Tools Read Simulate Plot Write
BioNetGen Yes Yes No Yes
SSC Yes Yes No Yes
Snoopy No Yes Yes No

Table 6: CPU time interpretation of tools

This Table 6 lets us determine the simulation time of a particular tool.
e.g. simulation time for BioNetGen includes the reading of the .bngl
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file, simulating that .bngl file using the direct/gillespie algorithm as
well as writing the result file (ie .cdat, .gdat, net). It does not include
the plotting of the curve.

Note- However if you go through the results of each benchmarks in the
following pages you may wonder, if this section was about the comparision
of BioNetGen and SSC then, why we have Snoopy results lying here. Dear
readers, this is because Snoopy is our favourite tool or I should say its my
favourite tool. So I just want to see how my tool performs with respect to
other two tools. The simulation time (thread 1 is taken into account) taken
by Snoopy for each benchmarks are taken directly from [19]. And the size
of the result file of Snoopy (i.e. .csv file) is calculated using linux command
(du -sh ).

Though Snoopy is not the appropiate tool for comparison because these
tools are entirely different from each other see Table 6. Also Snoopy has the
ability of performing more than one simulation runs and it can give output as
the average of it, whereas both BioNetGen and SSC can only perform single
simulation run. There is no support for averaging over multiple simulation
runs. Also, there’s not a simple argument for running multiple SSA simula-
tions. So for example say, if we need to perform simulation 100 times (i.e.
run =100) then we have to write a script or think of some other strategy.
Now the catch is, if 100 runs are performed the tool will output 100 result
files, and not the average of those 100 files. So this requires a large disk space
if simulation run is a million times, because it will output a million files. And
its we who have to do the averaging.

But, anyways as I said we will still compare Snoopy with these tools, just
because I want to know how Snoopy performs and to keep Snoopy in the
game.
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5.1.1 Benchmark Angiogenesis

Simulation in BioNetGen
The average simulation time and the disk consumption recorded for BioNet-

Gen for this model is given in Table 7 and Table 8 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.4 5.0 494.7 > 1hr
5 0.4 5.4 525.7 > 1hr
10 0.4 5.7 541.4 > 1hr
50 0.5 8.1 785 > 1hr

Table 7: BioNetGen, Simulation time (in sec) for Angiogenesis

N Run 1 Run 100 Run 10000 Run 1000000
1 181 Kb 17.2 Mb 1.72 Gb > 1hr
5 181 Kb 17.2 Mb 1.72 Gb > 1hr
10 181 Kb 17.2 Mb 1.72 Gb > 1hr
50 181 Kb 17.2 Mb 1.72 Gb > 1hr

Table 8: BioNetGen, Disk Consumption for Angiogenesis

Simulation in SSC
The average simulation time and the disk consumption recorded for SSC

for this model is given in Table 9 and Table 10 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.003 0.2365 23.6842 2366.5412*
5 0.0047 0.3187 32.0567 3218.6714*
10 0.0059 0.428 43.762 > 1hr
50 0.0150 1.413 142.892 > 1hr

Table 9: SSC,Simulation time (in sec) for Angiogenesis

Note for * - The problem with SSC is that, if we perform simulation
more than once then for each run a .trj file will be created. So if we have
100 runs then 100 .trj files are created. Then for plotting the graph we need
a file which is the average of those 100 files. Since .trj is some sort of binary
file therefore we need to convert those files to readable format so that we can
take the average of those 100 files. But, converting a file from .trj to .txt
format (using ssc-trj-reader-0.01.jar ) requires huge amount of time. Just to
give you an idea converting 1 angiogenesis .trj file to .txt requires 2 sec, 100
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files require 135 sec and 10000 files require 13500 sec. So you can just figure
out converting a million .trj file would need (100 x 13500) sec or approx 375
hr which is very large. So for 1 million run simulation was performed, but
graph was never plotted.

N Run 1 Run 100 Run 10000 Run 1000000
1 48 Kb 4.4 Mb 314 Mb 33.2 Gb
5 36 Kb 3.2 Mb 314 Mb 33.2 Gb
10 36 Kb 3.2 Mb 314 Mb > 1hr
50 36 Kb 3.2 Mb 314 Mb > 1hr

Table 10: SSC, Disk Consumption for Angiogenesis

Simulation in Snoopy
The average simulation time and the disk consumption recorded for Snoopy

for this model is given in Table 11 and Table 12 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.0004 0.0317 3.2265 319.9296
5 0.0035 0.3289 31.6073 3169.8615
10 0.0078 0.7567 74.1686 > 1hr
50 0.0476 4.6802 461.9907 > 1hr

Table 11: Snoopy,Simulation time (in sec) for Angiogenesis

N Run 1 Run 100 Run 10000 Run 1000000
1 8.4 Kb 30.3 Kb 35.9 Kb 34.4 Kb
5 8.4 Kb 32 Kb 33.9 Kb 33 Kb
10 8.5 Kb 31.4 Kb 32.6 Kb > 1hr
50 9.2 Kb 30.3 Kb 31.3 Kb > 1hr

Table 12: Snoopy, Disk Consumption for Angiogenesis

Performance comparison
For runtime comparison of the tools refer Figure 10 which is plotted using

Table 7 , Table 9 and Table 11
For disk comparison of the tools refer Figure 11 which is plotted using Ta-
ble 8, Table 10 and Table 12
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Figure 10: ANGIOGENESIS, Simulation time comparison.
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Figure 11: ANGIOGENESIS, Disk Consumption comparison.
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5.1.2 Benchmark Erk

Simulation in BioNetGen
The average simulation time and the disk consumption recorded for BioNet-

Gen for this model is given in Table 13 and Table 14 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.1 1.9 211.1 > 1hr
100 0.1 3.8 385.6 > 1hr
10000 0.1 6.1 635.7 > 1hr
1000000 4.4 426.7 > 1hr > 1hr

Table 13: BioNetGen, Simulation time (in sec) for Erk

N Run 1 Run 100 Run 10000 Run 1000000
1 14 Kb 1.2 Mb 124.9 Mb > 1hr
100 55 Kb 5.3 Mb 534.5 Mb > 1hr
10000 55 Kb 5.3 Mb 534.5 Mb > 1hr
1000000 55 Kb 5.3 Mb > 1hr > 1hr

Table 14: BioNetGen, Disk Consumption for Erk

Simulation in SSC
The average simulation time and the disk consumption recorded for SSC

for this model is given in Table 15 and Table 16 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.003 0.209 20.863 2088.1034*
100 0.003 0.223 22.549 2243.1789*
10000 0.035 3.309 329.206 3304.9832*
1000000 3.037 304.194 > 1hr > 1hr

Table 15: SSC, Simulation time (in sec) for Erk

Note for * - The problem with SSC is that, if we perform simulation
more than once then for each run a .trj file will be created. So if we have
100 runs then 100 .trj files are created. Then for plotting the graph we need
a file which is the average of those 100 files. Since .trj is some sort of binary
file therefore we need to convert those files to readable format so that we can
take the average of those 100 files. But, converting a file from .trj to .txt
format (using ssc-trj-reader-0.01.jar ) requires huge amount of time. Just
to give you an idea converting 1 erk .trj file to .txt requires 1 sec, 100 files
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require 122 sec and 10000 files require 12235 sec. So you can just figure out
converting a million .trj file would need (100 x 12235) sec or approx 340 hrs
which is very large. So for 1 million run simulation was performed, but graph
was never plotted.

N Run 1 Run 100 Run 10000 Run 1000000
1 8 Kb 420 Kb 41 Mb 4 Gb
100 16 Kb 1.2 Mb 118 Mb 11.52 Gb
10000 16 Kb 1.2 Mb 118 Mb 11.52 Gb
1000000 16 Kb 1.2 Mb > 1hr > 1h

Table 16: SSC, disk Consumption for Erk

Simulation in Snoopy
The average simulation time and the disk consumption recorded for Snoopy

for this model is given in Table 17 and Table 18 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.0002 0.0018 0.1658 16.8030
100 0.0009 0.0989 8.9830 884.4062
10000 0.0898 8.8005 875.7929 > 1hr
1000000 9.0178 889.899 > 1hr > 1hr

Table 17: Snoopy,Simulation time (in sec) for Erk

N Run 1 Run 100 Run 10000 Run 1000000
1 2.6 Kb 9.7 Kb 10.6 Kb 10.3 Kb
100 3.2 Kb 9.0 Kb 9.0 Kb 9.0 Kb
10000 5.3 Kb 8.9 Kb 8.9 Kb > 1hr
1000000 7.4 Kb 8.3 Kb > 1hr > 1hr

Table 18: Snoopy, Disk Consumption for Erk

Performance comparison
For runtime comparison of the tools refer Figure 12 which is plotted using

Table 13 , Table 15 and Table 17
For disk comparison of the tools refer Figure 13 which is plotted using Ta-
ble 14, Table 16 and Table 18
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Figure 12: ERK, Simulation time comparison.
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Figure 13: ERK, Disk Consumption comparison.
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5.1.3 Benchmark Levchenko

Simulation in BioNetGen
The average simulation time and the disk consumption recorded for BioNet-

Gen for this model is given in Table 19 and Table 20 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.2 2.7 278.7 > 1hr
10 0.2 3.2 309.2 > 1hr
100 0.2 3.6 362.3 > 1hr
1000 0.2 9.0 910.2 > 1hr

Table 19: BioNetGen, simulation time (in sec) for Levchenko

N Run 1 Run 100 Run 10000 Run 1000000
1 107 Kb 10.2 Mb 1.02 Gb > 1hr
10 111 Kb 10.6 Mb 1.06 Gb > 1hr
100 111 Kb 10.6 Mb 1.06 Gb > 1hr
1000 111 Kb 10.6 Mb 1.06 Gb > 1hr

Table 20: BioNetGen, disk Consumption for Levchenko

Simulation in SSC
The average simulation time and the disk consumption recorded for SSC

for this model is given in Table 21 and Table 22 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0.003 0.222 21.888 2213.1464*
10 0.003 0.223 23.666 2298.6547*
100 0.006 0.464 46.874 > 1hr
1000 0.029 2.777 280.324 > 1hr

Table 21: SSC, simulation time (in sec) for Levchenko

Note for * - The problem with SSC is that, if we perform simulation
more than once then for each run a .trj file will be created. So if we have
100 runs then 100 .trj files are created. Then for plotting the graph we need
a file which is the average of those 100 files. Since .trj is some sort of binary
file therefore we need to convert those files to readable format so that we can
take the average of those 100 files. But, converting a file from .trj to .txt
format (using ssc-trj-reader-0.01.jar ) requires huge amount of time. Just to
give you an idea converting 1 levchenko .trj file to .txt requires 2 sec, 100

49



files require 127 sec and 10000 files require 12826 sec. So you can just figure
out converting a million .trj file would need (100 x 12826) sec or approx 356
hrs which is very large.So for 1 million run simulation was performed, but
graph was never plotted.

N Run 1 Run 100 Run 10000 Run 1000000
1 24 Kb 1.9 Mb 188 Mb 18.35 Gb
10 24 Kb 1.9 Mb 188 Mb 18.3 Gb
100 24 Kb 2.0 Mb 196 Mb > 1hr
1000 24 Kb 2.0 Mb 196 Mb > 1hr

Table 22: SSC, disk Consumption for Levchenko

Simulation in Snoopy
The average simulation time and the disk consumption recorded for Snoopy

for this model is given in Table 23 and Table 24 respectively.

N Run 1 Run 100 Run 10000 Run 1000000
1 0 0.0105 1.0379 104.4715
10 0.0011 0.1114 11.3115 1066.5433
100 0.0115 1.1429 112.4734 > 1hr
1000 0.1166 11.3270 1152.1005 > 1hr

Table 23: Snoopy,Simulation time (in sec) for Levchenko

N Run 1 Run 100 Run 10000 Run 1000000
1 4.8 Kb 17.6 Kb 19.6 Kb 19.3 Kb
10 5.4 Kb 17.2 Kb 18.3 Kb 18.4 Kb
100 6.7 Kb 17.0 Kb 17.9 Kb > 1hr
1000 8.3 Kb 17.0 Kb 17.5 Kb > 1hr

Table 24: Snoopy, Disk Consumption for Levchenko

Performance comparison
For runtime comparison of the tools refer Figure 14 which is plotted using

Table 19 , Table 21 and Table 23
For disk comparison of the tools refer Figure 15 which is plotted using Ta-
ble 20, Table 22 and Table 24
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Figure 14: Levchenko, Simulation time comparison.
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Figure 15: LEVCHENKO, Disk Consumption comparison.
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5.1.4 Conclusion

So if look all the previous graphs, we can say that, for

Simulation time

• If we compare BioNetGen and SSC, then SSC is always a clear winner
i.e. SSC takes less time in doing simulation.

• Snoopy turns out to be the fastest if, N is small.

• However, it loses to SSC as the value of N increases, but then also it
performs better than BioNetGen.

Disk Consumption
For this we always have a clear picture i.e. Snoopy consumes least amount of
disk space whereas, BioNetGen consumes the most. Therefore the ranking
are as follows -

• Snoopy

• SSC

• BioNetGen

However the results are as expected, because both BioNetGen and SSC out-
put the result file for each run rather than giving one averaged result file.
Hence the ranking.
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5.2 Results 2 - Cain, Marcie, Snoopy and Stochkit for
the coloured benchmarks

In this section, the remaining tools, i.e. CAIN, Marcie, Snoopy and StochKit
are compared with each other.

So the first thing that strikes your mind is why I am being so biased.
Why we have two results section one for BioNetGen and SSC and another
for the remaining tools? Why ?

• This is because, I was asked to extend the work done by Aman Sinha
[19]. And if you go through his report he didn’t have BioNetGen and
SSC.

• BioNetGen and SSC are very different from these four tools. You can-
not compare a donkey with a horse or a goat with a sheep. I mean
if you want you can, but my point is, they are entirely different from
each other. BioNetGen and SSC have no averaging facility. They will
output 100 result files for each run (if runs =100) whereas, these four
tools will give you one final averaged file.

• Also, there is no scheme of threads available in BioNetGen and SSC.

• Further, you can refer the table Table 6 and Table 25. So now you can
see they lie on opposite poles. Hence the two sections.

The comparison criteria are based on the following parameters:

1. Simulation Run-time comparision

2. Memory consumption comparison

The assumptions and constraints while performing simulation are:

• We are interested in the mean value of the species.

• When simulations are being performed no other processes should be
running.

• For benchmark Repressilator the interval start will be at 0 time units
and the interval end will be 10000 time units.

• The simulation algorithm used is Direct/ Gillespie.

• Threads used will be 1, 4, 8 and 16 which will be mentioned explicitly.
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• We define an experiment as simulation carried out for a particular value
of N, number of runs and threads.

• A total of 10 trials is performed for each experiment and for each bench-
mark model.

• After performing 10 trials, the mean value of the simulation runtime
and the corresponding peak memory consumption is calculated.

• The threshold simulation runtime for a particular model is 3,600 sec-
onds (1 hour). If the simulation runtime for a particular model is more
than 3,600 seconds (1 hour) then we terminate the simulation.

• The memory is calculated using a shell script. It calculates memory
consumption in KB and has a sampling time of 0.1 seconds.

• For a GUI tool in-order to calculate the memory consumption the tool
has to be reopened before each experiment.

• For unfolding the coloured petri net, thread 8 is used.

• 10 trials are carried out keeping the scaling parameter, no of runs and
no of threads constant.

• Simulation runtime for each trial is noted.

• The memory consumption for each trial is also recorded and the max-
imum/peak memory consumption is taken into account.

• The runtime of each trial is recorded. Such 10 trails are recorded and
the average runtime is calculated. The average runtime calculated is
the runtime of a particular experiment.

• This average runtime and the peak memory consumption is the simula-
tion runtime and memory consumption of an experiment respectively.

• While performing simulation on CAIN the granularity and priority slid-
ers are kept to their default value.

• While performing simulation on Marcie only the total elapsed time is
noted. The total elapsed time is the runtime of the simulation.

• Stochkit uses a SSA driver for performing stochastic simulation. It
selects appropriate simulation method to achieve the best performance.
For more details see [17] and refer StochKit manual.
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Tools Read Simulate Plot Write
Cain No Yes No No
Marcie Yes Yes No Yes
Snoopy No Yes Yes No
Stochkit No Yes No No

Table 25: CPU time interpretation of tools

The runtime of the tools are interpreted in the Table 25:
The above table means that the simulation runtime of a particular tool is

determined by the above steps. e.g. simulation runtime for snoopy includes
the simulation time of the direct/gillespie algorithm as well as plotting of
the curve. It doesn’t include the reading time of the SBML file and the time
spend in writing the result into a file (in this case .csv file).

In case of Marcie the total processing time includes time for reading,
simulation and writing. However we are only interested in the time for sim-
ulation. The simulation time displayed in Marcie is the total elapsed time.
We record the total elapsed time for the experiments.
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5.2.1 Benchmark Gradient

Note- Before we start with Gradient, I have a confession to make. I had very
limited time, and thats the reason why, I could not complete the simulations
with Cain and Snoopy. So for gradient you will not find the results of simu-
lation time and peak memory comparision with Cain and Snoopy. However,
we have tried to compare Marcie and StochKit with each other.

Simulation in Marcie
The average runtime and the peak memory consumption recorded for

Marcie for this model is given in Table 26 and Table 27 respectively.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
10 1 0 19.5 194.6 1948.8

4 0 4.5 49.4 498.7
8 0 3 26.7 271.3
16 0 3 24.2 232

50 1 2 143.3 1415.5 > 1 hr
4 2 36.3 360.8 3574.8
8 2 24 188.4 1871.4
16 2 20.3 162.2 1537.3

Table 26: MARCIE, average runtime (in sec) for Gradient.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
10 1 5060 5092 5096 5096

4 5060 8520 8548 8560
8 5060 10428 10452 10472
16 5060 14236 14264 16312

50 1 58000 58912 60036 > 1 hr
4 58000 95580 97688 97600
8 58000 142980 147048 144540
16 58000 237692 237748 239496

Table 27: MARCIE peak memory consumption (in KB) for Gradient.

Simulation in StochKit
The average runtime and the peak memory consumption recorded for

StochKit for this model is given in Table 28 and Table 29 respectively.
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N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
10 1 0.2615667 18.92915 186.5257 1866.994

4 0.2477467 5.00963 47.58659 474.4301
8 0.2542659 2.969362 25.00652 247.0285
16 0.263761 2.610484 20.83053 203.4524

50 1 4.812265 302.601 3011.427 > 1 hr
4 4.926437 78.95675 764.2567 > 1 hr
8 4.861952 43.61127 404.6536 > 1 hr
16 4.842285 33.26937 288.1078 2834.773

Table 28: STOCHKIT, average runtime (in sec) for Gradient.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
10 1 4668 4672 4692 4696

4 4668 4868 6556 6556
8 4664 6932 6936 6936
16 4668 9080 9080 9080

50 1 56004 56004 56004 > 1 hr
4 56004 56196 56004 > 1 hr
8 56004 56240 56004 > 1 hr
16 56004 62468 58384 58384

Table 29: STOCHKIT peak memory consumption (in KB) for Gradient.
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Performance comparison
For runtime comparison of the tools refer Figure 16, Figure 17, Figure 18
and Figure 19 which is plotted using Table 26 , Table 28
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Figure 16: Gradient, Simulation time comparison for Thread=1.
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Figure 17: Gradient, Simulation time comparison for Thread=4.
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Figure 18: Gradient, Simulation time comparison for Thread=8.
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Figure 19: Gradient, Simulation time comparison for Thread=16.
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And, for peak memory consumption of the tools refer Figure 20, Fig-
ure 21, Figure 22 and Figure 23 which is plotted using Table 27 and Table 29
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Figure 20: Gradient, Peak Memory comparison for Thread=1.
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Figure 21: Gradient, Peak Memory comparison for Thread=4.

 1000

 10000

 100000

 10  100

P
e

a
k
 M

e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

in
 K

b
)

N

Threads=8 Runs=1

Marcie
StochKit

 1000

 10000

 100000

 1e+06

 10  100

P
e

a
k
 M

e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

in
 K

b
)

N

Threads=8 Runs=100

Marcie
StochKit

 1000

 10000

 100000

 1e+06

 10  100

P
e

a
k
 M

e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

in
 K

b
)

N

Threads=8 Runs=1000

Marcie
StochKit

Figure 22: Gradient, Peak Memory comparison for Thread=8.
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Figure 23: Gradient, Peak Memory comparison for Thread=16.
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5.2.2 Benchmark Repressilator

Simulation in Cain
The average runtime and the peak memory consumption recorded for

Cain for this model is given in Table 30 and Table 31 respectively.

Note -For Table 30 and Table 31, * signifies that either Cain crashes
during simulation or it crashes while exporting data to .csv format.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 0.0227811 0.1029339 0.7970706 7.4205718

4 0.0231064 0.0870712 0.4392889 3.675791
8 0.0233402 0.1232316 0.473155 3.787557
16 0.0227331 0.210041667 0.589227 4.0476

30 1 0.027182 0.751430333 7.127259 69.606281
4 0.026804333 0.374263333 2.852957667 27.68598067
8 0.027535333 0.390929333 2.952203 28.14462533
16 0.028904333 0.529854667 3.132413 28.87133467

100 1 0.06481 2.598667 25.10264333 248.4859203
4 0.065613333 1.112333667 9.663518 94.14641733
8 0.064176333 1.169748 9.772885667 95.089383
16 0.064053333 1.460976333 10.089256 96.282014

300 1 0.231117333 8.604342667 82.39522033 821.9003437
4 0.240179 4.161969 37.11558467 *
8 0.230506333 4.299662333 35.51482167 *
16 0.234675 4.944599333 35.70754067 *

3000 1 11.19500667 262.6925763 * *
4 11.46225467 107.7790243 * *
8 11.25181633 124.2901567 * *
16 11.18200933 167.562019 * *

Table 30: CAIN, average runtime (in sec) for Repressilator.
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N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 108832 110528 118368 185900

4 110872 115700 122168 188196
8 109000 120076 128124 196812
16 114752 121948 142768 211036

30 1 111872 118232 180704 818036
4 111892 123496 187264 820320
8 109804 131952 196384 828104
16 111800 145132 213224 842352

100 1 113200 139316 349136 2463932
4 114680 147084 355168 2471004
8 114680 159860 370076 2477624
16 114704 252748 396852 2496256

300 1 125620 197292 832008 35572996
4 121984 221352 847688 *
8 124044 243052 864436 *
16 126964 287344 924780 *

3000 1 276732 1031784 * *
4 276668 1200552 * *
8 276828 1407192 * *
16 276832 1668128 * *

Table 31: CAIN peak memory consumption (in KB) for Repressilator.
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Simulation in Marcie

The average runtime and the peak memory consumption recorded for
Marcie for this model is given in Table 32 and Table 33 respectively.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 0 0 0 4

4 0 0 0 1
8 0 0 0 0
16 0 0 0 0

30 1 0 0 6 60.4
4 0 0 1 15
8 0 0 0 7.1
16 0 0 0 6.4

100 1 0 2 22 225.6
4 0 0 6 66.3
8 0 0 3 31.2
16 0 0 2 22

300 1 0 7.1 77.2 764.9
4 0 2 19.2 194.5
8 0 1 9 97.1
16 0 1 8 75.2

3000 1 2 126.2 1207.4 > 1hr
4 2 33.4 312.7 3032.3
8 2 21.7 155.4 1529.1
16 2 17.1 123.3 1117.8

Table 32: Marcie, average runtime (in sec) for Repressilator.
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N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 3284 3284 3284 3280

4 3284 5344 9424 5340
8 3284 5552 5552 5548
16 3284 5952 5960 5956

30 1 4172 4172 4172 4196
4 4172 6884 6884 6908
8 4168 7948 7956 7976
16 4172 10092 10096 10161.5

100 1 6312 6316 8352 6344
4 6312 10852 10832 10868
8 6312 14124 14132 14248
16 6312 20720 22764 20768

300 1 12832 12836 14868 12872
4 12832 22124 22148 22152
8 12832 31788 31820 31832
16 12832 51128 51152 51180

3000 1 100636 101844 102524 > 1hr
4 100636 174384 176340 176364
8 100636 270036 270092 272016
16 100636 461372 461384 462944

Table 33: Marcie peak memory consumption (in KB) for Repressilator.
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Simulation in Snoopy

The average runtime and the peak memory consumption recorded for
Snoopy for this model is given in Table 34 and Table 35 respectively.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 0.0007 0.0584 0.5725 5.5719

4 1.0016 1.0064 1.0067 2.0066
8 1.0015 1.0135 1.0126 1.2132
16 1.0017 1.0254 1.025 7.4262

30 1 0.0073 0.7119 7.0995 70.8236
4 1.002 1.006 2.0064 18.00878
8 1.0018 1.0146 1.4131 10.0137
16 1.0017 1.0257 1.0258 7.4262

100 1 0.0268 2.6495 26.4528 264.1104
4 1.002 1.0074 7.5076 69.5144
8 1.0016 1.0141 4.1147 36.7179
16 1.0019 1.0268 3.1278 27.6283

300 1 0.0935 9.1666 89.3235 881.4462
4 1.0024 3.0074 22.9105 230.7623
8 1.0021 2.0158 13.7156 119.8251
16 1.0024 2.0292 10.0295 90.3363

3000 1 1.506 146.8005 1359.6467 > 1hr
4 2.0038 38.219 367.358 3341.7593
8 2.0038 25.8315 202.1269 1806.2736
16 2.004 19.656 152.8652 1331.4382

Table 34: Snoopy, average runtime (in sec) for Repressilator.
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N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 37336 39020 39132 37156

4 38236 38316 38464 38404
8 37248 37560 40672 40688
16 37212 39096 43176 43268

30 1 40820 40008 39504 39000
4 38960 40896 40532 41008
8 39160 43712 43580 42222
16 38916 45712 48072 48488

100 1 44988 45800 43792 45852
4 44028 46620 48236 49320
8 45188 51992 51964 53580
16 45856 61008 60920 62414

300 1 61364 60324 58232 60256
4 59532 63716 68324 68540
8 58532 75580 80336 80312
16 61768 97088 100056 100020

3000 1 284300 252656 256192 > 1hr
4 252408 341496 340196 340164
8 252704 439116 438988 440604
16 255688 633172 633260 635688

Table 35: Snoopy peak memory consumption (in KB) for Repressilator.
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Simulation in Stochkit

The average runtime and the peak memory consumption recorded for
StochKit for this model is given in Table 36 and Table 37 respectively.

N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 0.009098244 0.05042284 0.4172069 4.080088

4 0.00940475 0.02780769 0.1202634 1.044103
8 0.009073304 0.03137051 0.08045206 0.5418112
16 0.009230327 0.0476595 0.08379927 0.4242532

30 1 0.03096062 0.7450247 7.214039 71.0286
4 0.03173159 0.2252811 1.846212 18.03295
8 0.03026337 0.1527049 1.001117 9.130265
16 0.03125842 0.1593174 0.8036006 7.165044

100 1 0.1058777 3.973354 38.17591 380.8624
4 0.1062088 1.117741 10.010083 98.28253
8 0.1113469 0.678797 5.073894 49.23492
16 0.1113071 0.689728 4.343678 41.51228

300 1 0.5148289 24.13415 236.8992 2370.306
4 0.5194753 6.748251 61.57599 608.1067
8 0.5177906 3.730049 31.2567 304.4749
16 0.5128759 3.934516 28.75998 277.4131

3000 1 9.992275 170.4117 1572.279 > 1hr
4 9.969124 50.35427 418.8726 > 1hr
8 9.974653 31.85645 234.1409 2153.288
16 9.999077 34.01938 222.2411 2036.905

Table 36: Stochkit, average runtime (in sec) for Repressilator.
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N Threads Runs 1 Runs 100 Runs 1000 Runs 10000
3 1 3020 3020 3020 3020

4 3020 4936 4936 4936
8 3020 7020 4984 7024
16 3020 5076 9172 9184

30 1 3612 3612 3616 3648
4 3612 4996 4996 5592
8 3648 7080 9124 7676
16 3648 9236 9792 9236

100 1 5432 5436 5440 5464
4 5436 7280 7280 7280
8 5436 9368 9364 7328
16 5436 11484 11488 13528

300 1 10588 10592 10612 10612
4 10588 12172 12172 16248
8 10588 14260 12220 14260
16 10588 16408 18448 16404

3000 1 81564 81564 81560 > 1hr
4 81564 89108 91060 > 1hr
8 81564 89052 88936 89052
16 81564 89160 89088 89144

Table 37: Stochkit peak memory consumption (in KB) for Repressilator.
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Performance comparison
For runtime comparison of the tools refer Figure 24, Figure 25, Figure 26
and Figure 27 which is plotted using Table 30 , Table 32, Table 34 , Table 36
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Figure 24: REPRESSILATOR, Simulation time comparison for Thread=1.
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Figure 25: REPRESSILATOR, Simulation time comparison for Thread=4.
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Figure 26: REPRESSILATOR, Simulation time comparison for Thread=8.
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Figure 27: REPRESSILATOR, Simulation time comparison for Thread=16.
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And, for peak memory consumption of the tools refer Figure 28, Figure 29,
Figure 30 and Figure 31 which is plotted using Table 31, Table 33, Table 35
and Table 37
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Figure 28: Repressilator, Peak Memory comparison for Thread=1.
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Figure 29: Repressilator, Peak Memory comparison for Thread=4.
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Figure 30: Repressilator, Peak Memory comparison for Thread=8.
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Figure 31: Repressilator, Peak Memory comparison for Thread=16.
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5.2.3 Conclusion

Gradient Benchmark
For Simulation time, though marcie gives a bad start at first, but at the later
stages it turns out to be the clear champion i.e. Marcie takes less time than
StochKit in performing simulation. However it has to compromise memory
for it.

For memory comparison, for run =1 theres no much difference between
the two tools, however for run >1 we see that Stochkit consumes less memory
than Marcie.

Repressilator Benchmark

For Simulation time, its very difficult to decide, but in general we can say
that for greater value of N, the order is
Marcie < Snoopy < StochKit < Cain.

For less value of N, its very difficult to decide.
For memory comparison, the order is,

StochKit < Marcie < Snoopy < Cain
which means cain requires the highest amount of memory and StochKit the
least.
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6 Summary

6.1 Achievements

• Before the start of this project we did not had an export from stochastic
Petri nets to SBML Level 1. Also there was no export for coloured Petri
nets to SBML level 1 and level 2. We successfully added these features
to Snoopy.

• We performed comparision between BioNetGen and SSC with three
benchmarks, i.e. Angiogenesis, Erk and Levchenko.

• We also extended the work done by Aman Sinha [19]. In this very
limited time, we added two benchmarks to it, i.e. Gradient and Re-
pressilator, which from my point of view is highly appreciable.

• The report is written in LaTeX which was completely new to me. So
yes, I learned a few basics about LaTeX, too.

6.2 Open Problems

There are a few potential areas where this work can be extended. Some of
them are:

• As the size of benchmark increases, it becomes increasingly important
that we carry out simulations on more powerful machines.

• Instead of relying upon third party app for conversion from SBML to
bngl, we can try writing our own export.

• We can add more benchmarks for comparing SSC and BioNetGen.

• In a similar fashion, more benchmarks could be added for Cain, Marcie,
Snoopy and Stochkit.
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Appendices

A Accuracy

A.1 Correctness of exports.

In order to perform an export we must be sure about its correctness. We have
incorporated two exports in our report. So how do we know that our exports
are actually right or wrong. This is a question which could and always will
be raised. So, here’s a proof for correctness.

Export for Stochastic Petri Nets. In this export we exported the
stochastic Petri nets to SBML level 1 and, not the level 2 (we already had
the export to SBML level 2). So we were only concerned about the cor-
rectness of SBML level 1 file. There’s a tool on the market called Dizzy, a
stochastic simulation tool, which has a feature of importing SBML Level 1
file. We already know the results that the Snoopy will produce if we simu-
late our given Petri net. So what we did, we performed our export to Level
1 using Snoopy, and then we imported those files in Dizzy. If Dizzy could
simulate those files (SBML leve 1 )and could produce the same results and
plots (as Snoopy ), then we could be damn sure that our export for stochastic
Petri nets is correct. And guess what! They did match, and we got the same
results as expected. So our export for stochastic Petri nets was correct.

So now, lets move to our second export.

Export for Coloured Petri Nets. For this what we did was, we first
performed our export from coloured net to SBML (either level 1 or 2) directly.
Then in second case, we performed the export of coloured net to stochastic
nets and from stochastic Petri nets to SBML i.e. in two steps. Then, we
comapared both the SBML files. We found them to be exactly the same. By
same, I mean the exact carbon copy of each other. So this proves that our
export for coloured Petri nets are correct.

So I guess now, no one in the world will ever raise the question on the
correctness issues of my exports.
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B How to reproduce the results ?

In this section we will talk and discuss in detail what one needs to know in
order to reproduce the results reported. First thing first, use a system which
has the same configuration which I used. Do not jump onto any system,
otherwise results may vary. Refer Section 5 for system configuration details.

B.1 BioNetGen

• Inorder, to replicate the results of BioNetGen you should first have
bngl file with you. There are two ways of getting that bngl file, first,
you can write your own bngl file or second, you can produce bngl file
from SBML file(.xml). We used the second approach.

• We used an experimental SBML-to-BNGL translator that you can try
at http://ratomizer.appspot.com/translate. Note that SBML is
a ”flat” language, i.e., the molecules don’t have internal structure. A
basic SBML-to-BNGL translation will therefore give you a flat model.
There is a feature in this translator, however, that attempts to infer
structure out of an SBML model. You can try this by clicking the
”Atomize” box . Try it both ways and see which one works best for
you. However, we did not use the atomize option.

• After you have bngl file with you. You can start your simulation. But,
I don’t know why when I started the simulation I got some errors.
Therefore, I did some editing in the original bngl file. So open your
bngl file with any texteditor and make these changes. The changes
done by me in the original bngl file was -

– Compartment section in the .bngl file was removed.

– In reaction rule section, rate constants for all reaction were changed
from none to appropiate values.

– Then those rate-constants were added up in the parameter section.

– And, the string ”@compartment:” was removed from the seed
species section.

• Now, inorder to perform simulation you need to write certain com-
mands in action section of bngl file. But, since we are dealing with
multiple simulation runs you will find that we do not have any specfic
command for it.
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Note -Unfortunately, there’s not a simple argument that you can pass
for running multiple SSA simulations. What many people do is write a
shell script (bash, python, etc.) to call BioNetGen on a model file many
times. This has a number of drawbacks, however, including having to
call the expensive generate network command over and over. Probably
the best approach is to append your model file with multiple ’simulate’
commands, each followed by a ’resetConcentrations’ command, i.e.,

generate_network({overwrite=>1})

simulate_ssa({suffix=>"ssa",t_end=>100,n_steps=>1000})

resetConcentrations()

simulate_ssa({suffix=>"ssa",t_end=>100,n_steps=>1000})

resetConcentrations()

...etc.,

You can have as many of these as you like, there’s no limit.

There’s also a way to do this in BioNetGen using the ’parameter scan’
action. ’parameter scan’ takes all of the same arguments that the ’sim-
ulate’ action does, plus four additional: parameter, par min,par max,
and n scan pts. If you set par min = par max then BioNetGen will
run the same system as many times as n scan pts. For example, you
can run 100 SSA simulations using,

generate_network({overwrite=>1})

parameter_scan({method=>"ssa",t_end=>100,n_steps=>1000,parameter=>"k",

par_min=>1,par_max=>1,n_scan_pts=>100})

Here, k is just a dummy parameter. You could add it to your model or
you could just specify a parameter that already exists in your model
and set par min and par max equal to the value of that parameter.

• After making the appropiate changes in bngl file and writing the specific
actions which you want to perform. Now you have the real bngl file
with you. Save that bngl file with appropaite name.

• Open the terminal. And move into the directory where you have saved
your bngl file (model file). Then write the following command.

perl <BNGroot>/BNG2.pl <modelfile>.bngl
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BNGroot is the complete path where you have saved your BioNetGen
package.

• If everything goes well you’ll get your output. Note the simulation
time.

Now the catch is, if 100 runs are performed the tool will output 100
result files, and not the average of those 100 files. So this requires a large
disk space if simulation run is a million times, because it will output a
million files.However for plotting the graphs (not the comparision one)
we have considered the average of those 100 files (in case if runs=100).
And for taking the average of those 100 files a JAVA code was written.

• After the simulation, its time for computing the average. For averaging
as told earlier, a JAVA code was written.

• Now we can proceed for plotting the cuve. This can also be done in
two ways.

– First way is, when you do the averaging of files you can save your
averaged file in .cdat format. then, you can use the ”PhiBPlot”
which comes with BioNetGen package. PhiBPlot is basically a jar
file. You can open your .cdat file with it and look the curves.

– Or the second way is, you can save your averaged file in .txt for-
mat. And then you can use the ”gnuplot” for plotting the curves.

I used both ways. But, it doesnot matter, you can use either of the two
ways. Save your plots if required.

B.2 SSC

• For SSC one needs a rxn and cfg file for simulation. This can be
generated in two ways -

– Either you can write your own rxn file. Or ,

– You can generate rxn file from bngl file. BioNetGen to SSC trans-
lator provides a SSC equivalent model to your BNG model. The
translator outputs two files, one with the translated rules, as mod-
elName.rxn, and the other containing the definition of variables in
them, as modelName.cfg.The commands used to generate .rxn and
.cfg files are ”writeSSC()” and ”writeSSCcfg()” respectively.These
commands are written in the action block of .bngl file. We used
this second method.
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• After writing those commands. Start the simualtion of bngl file. After
successful completion of bngl file you could see that two more files are
generated namely, rxn and cfg file.

• Now change the floating values of ”Initial molecules and their concen-
trations” in rxn file to integer values. After this you are good to perform
simulation with SSC.

• Simulation of rxn files

Simulating models written in SSC consists of two steps: compiling the
model, which expands the pattern-based description into all possible
species and reactions, and running the resulting simulator executable,
which actually carries out the simulation.

– Compiling and debugging

Once the model has been written to a file (say, model.rxn), it’s
compiled by running ssc model.rxn

which produces output resembling
reading: model.rxn...
expanding reactions...
expansion complete after 2240 steps: 135 compounds and 1120
reactions
simulator executable: model

and a simulator executable, in this case called model.

– Simulating

The easiest (and fastest) way to run the simulator is to specify the
-e flag followed by simulation end time (in seconds). When the
simulation finishes, it will output the final time together with the
counts recorded by the various record statements, separated by
TAB characters. The simulation may finish before the specified
end time if no more reactions are possible; this generally does
not happen in spatially resolved simulations because, although all
reactions may have run out of reactants, diffusion can still take
place.

We can also produce a trajectory sampled at regular intervals by
adding the -t flag. When some constants (reaction rates or counts)
were specified as variables in the model file, the simulator must be
provided with a configuration file containing the variable values
with the -c flag.

86



• So open your terminal and move to the location where you have your
rxn file. Then as explained above for compiling write

<SSCpath>/ssc modelFile.rxn

the following command. This will create an executable.

• And finally for simulation write the following command.

./modelName -T 1 -e 100 -c modelName.cfg -o outputFile.trj

So this command will perform only one simulation run. Inorder to
perform more than one simulation run a script was written. But, we
can use this script for performing one simulation run also. The script
automatically computes the time taken in performing simulation, which
is displayed in the terminal. Note this time.

Note -However ,the problem with SSC is that, if we perform simulation
more than once then for each run a .trj file will be created. So if we
have 100 runs then 100 .trj files are created. Then for plotting the
graph we need a file which is the average of those 100 files. Since .trj
is some sort of binary file therefore we need to convert those files to
readable format so that we can take the average of those 100 files. But,
converting a file from .trj to .txt format (using ssc-trj-reader-0.01.jar
) requires huge amount of time. So for million runs simulation was
performed however the averaging was not done.

• Now, the next step is to convert trj (trajectory) file to txt file. If we have
one trj file then we can directly plot it using SSC 3D Viewer( this can
be downloaded by clicking start direcly link under the SSC 3D viewer
section on ths page http://web.mit.edu/irc/ssc/). However for 100
files (in case if runs=100) we need ssc-trj-reader-0.01 (a jar file) which
allows converting SSC-generated trj files to Matlab-readable format.

We created one script which calls this jar file again and again and
produces txt file.

• Now when we have 100 txt file (in case runs=100) then we can do the
averaging in the same way as we did for BioNetGen.

• After you have averaged file. Plot the graph by using gnuplot.
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B.3 Cain

• Open the tool in the terminal along with memory usage script. e.g.

/home/chiru/Desktop/Repressilator/memusg python Cain.py

The memory script memusg calculates the peak memory usage by any
application.

• Open the coloured petri net. By selecting File->open from the menu
bar. And then, selecting the appropiate cain file.xml

• Select the appropiate method in method editor (i.e. Time homogenous,
Time series uniform, Direct, 2-D search) .Also make sure you have
appropiate start and end time.

• Launch the simulation by clicking on the ”launch action solver by mass
action button”.This is termed as one experiment. Perform 10 trials of
each experiment. Note the simulation run-time displayed by the tool
on paper, export the traces.

Note-However we limited ourselves to 3 trails, due to lack of time.

• Close the tool and record its peak memory usage.

• If simulation runtime > 3,600 seconds. Terminate the simulation.

• A spreadsheet is created manually and the memory consumption and
simulation runtime are entered manually. The average runtime and
peak memory comsumption can be calculated using the functions avail-
able in the spreadsheet.

Note-It may also be possible that Cain may quit unexpectedly, or it
may kill the process or it may give segmentation error. If it does this
for more than twice, continously, we will term this as ”Cain crash”.
This can happen while doing simulation or when you are exporting the
data. One more thing which I would like to state is that, Cain takes
huge amount of time in exporting data. This is just for the record.
Even if exporting takes more than 3600 sec we have to continue with
the simulation, because the constraint is on the simulation time and
not in the exporting time.
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B.4 Snoopy

• Open the tool in the terminal along with memory usage script. e.g.

/home/chiru/Desktop/benchmarks/memusg ./snoopy2.sh.

The memory script memusg calculates the peak memory usage by any
application.

• Open the coloured petri net. By selecting File->open from the menu
bar.

• Then select the appropiate ”constant” value for the benchmark under
the declaration section in Snoopy.

• Start the simulation, by clicking View->Start Simulation-Mode in the
menu bar.

• Since it is a coloured Petri net a a dialog box will appear which will
ask you to unfold the given net. Select thread count = 8 and then click
the start button. If the net is very large, then it may take some time
to unfold.

• Go to Current view->edit of the recently opened window. Move all the
elements from the ”Overall place” to the ”Selected Place” by clicking
>> this button. Then, hit save button.

• Perform simulation on a particular benchmark for a particular value of
scaling parameter, thread and run. This is termed as one experiment.
Perform 10 trials of each experiment. Note the simulation run-time
displayed by the tool on paper, export the traces.

• Close the tool and record its peak memory usage.

• If simulation runtime > 3,600 seconds. Terminate the simulation.

• Perform 10 trials for each experiment.

• A spreadsheet is created manually and the memory consumption and
simulation runtime are entered manually. The average runtime and
peak memory comsumption can be calculated using the functions avail-
able in the spreadsheet.
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B.5 Marcie and StochKit

• Shell script for benchmark is created. The benchmark shell script stops
the simulation once the simulation runtime is > 3,600 seconds. The
shell script stores the output of the terminal for a particular experiment
in a .out file. This shell script calls the memory usage script in order to
compute the peak memory consumption. A .csv is created where the
memory consumption and .out is creates where the runtime of the tool
is written.

• Once the .csv file containing the memory consumption and .out file
containing the runtime is created, we parse all these files and note
down all these data in spreadsheet.

• Shell script for StochKit and Marcie is created which calls the bench-
mark shell script along with the command line syntax for Marcie and
StochKit.

Command line syntax for:

Marcie

<marcie_path> --simulative --net-file= <net_file_path>

--sim-stop= <sim_stop_time> --sim-out-steps= <no_of_interval_steps>

--const <value_of_scalableParameter> --threads= <value_of_thread>

--sim-result-file= <output_file_path/output_file_name>

Note: The net file provided to Marcie is in apnn format. For more
information on using marcie commands please refer [18].

StochKit

<stochkit_driver_name> -m <model_name> -t <end_time_interval>

-r <no_of_runs> -i <interval_ step_count> -p <thread_value> --label

--out-dir <output_file_path/output_file_name>

For more information about the StochKit commands please refer the
user manual for StochKit.
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C Everything you need to know about Plots.

C.1 Runtime, Memory Consumption and Disk Con-
sumption Plots

• Runtime graphs are plotted for a specific value of thread and specific
value of runs. The x axis denotes the scaling parameter and the y axis
denotes the simulation runtime (in sec).

• For graphs which donot have a specific value of thread (like the BioNet-
Gen and SSC), they are plotted for a specific value runs. The x axis
denotes the scaling parameter and the y axis denotes the simulation
runtime (in sec).

• Memory consumption graphs are plotted for a specific value of thread
and specific value of runs. The x axis denotes the scaling parameter
and the y axis denotes the memory consumption (in KB).

• Disk Consumption graphs which donot have a specific value of thread
(like the BioNetGen and SSC), they are plotted for a specific value of
runs. The x axis denotes the scaling parameter and the y axis denotes
the disk consumption (in KB).

• You may find certain graphs which contains less number of points than
the others. for example, consider the Figure 26, you can clearly see that
for thread value =8 and runs =10000 the cain contains only 3 points,
whereas its companion tool contains more points. This is because, here
cain had less datapoints to be plotted as it lost its data points because
of Cain crash.

• The graphs are log scaled.

• Graphs are plotted using gnuplot.

• We have some figures which donot contain the plots for run = 10000,
this is because they did not had enough datapoints with them. Some
data points represent either the tool crash and the others represent
that they take took more than 3600 sec for simulation. Hence we are
left with very few datapoints. And, hence no plots for them.

91


	Introduction
	Exports
	Export for Stochastic Petri Nets to SBML Level 1
	Text-string math notation v/s MathML subset
	Pre-defined maths function v/s user-defined function
	Reserved v/s non-reserved namespace for annotations
	Non-controlled v/s RDF-based-controlled annotation scheme
	No discrete v/s discrete events
	Code changes

	Export for Coloured Petri Nets

	Tools
	BioNetGen
	SSC
	CAIN
	MARCIE
	SNOOPY
	StochKit

	The Benchmark Suite
	ANGIOGENESIS
	ERK
	LEVCHENKO
	GRADIENT
	REPRESSILATOR

	Performance Comparision
	Results 1 - BioNetGen vs SSC for the uncoloured benchmarks
	Benchmark Angiogenesis
	Benchmark Erk
	Benchmark Levchenko
	Conclusion

	Results 2 - Cain, Marcie, Snoopy and Stochkit for the coloured benchmarks
	Benchmark Gradient
	Benchmark Repressilator
	Conclusion


	Summary
	Achievements
	Open Problems

	References
	Appendices
	Accuracy
	Correctness of exports.

	How to reproduce the results ?
	BioNetGen
	SSC
	Cain
	Snoopy
	Marcie and StochKit

	Everything you need to know about Plots.
	Runtime, Memory Consumption and Disk Consumption Plots


