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Chapter 1

Introduction

1.1 What is GTIVE

Generic Tool for Important Variable Extraction (GT IVE) is a software package for per-
forming global sensitivity analysis on user-provided data. In the [13] sensitivity analysis is
defined as the study of how the variation (uncertainty) in the output of a statistical model
can be attributed to different variations in the inputs of the model. In other words it is a
technique for systematically changing variables (features) in a model to determine the effects
of such changes.

1.2 Documentation structure

Documentation for GTIVE includes:

• User manual (this document) which contains:

– A general overview of the tool’s functionality;

– Short descriptions of the algorithms;

– Recommendations on the tool’s usage;

– Examples of applications to model problems.

• Technical reference [3] for C++ and Python API which includes:

– Description of system requirements;

– Installation steps;

– Quick start guide;

– C++ and Python API reference.

The present document has the following structure:

• Chapter 2 is an introduction to the tool’s functionality. It contains an overview of
relevant sensitivity analysis concepts, and explains the way the tool is applied and
what results it produces.

• Chapter 3 describes the internal workflow of the tool.
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CHAPTER 1. INTRODUCTION

• Chapter 4 describes specific sensitivity analysis techniques implemented in the tool.

• Chapter 5 describes limitations on the sample size for different techniques.

• Chapter 6 describes how the sensitivity analysis technique is selected automatically in
a particular problem.

• Chapter 7 gives some examples of GTIVE tool use for some model and real world
problems.
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Chapter 2

Overview

The main goal of GT IVE is to estimate feature scores for the user-provided dependency 1

which can be represented as data sample 2 or interface to some black box 3. So it solves the
problem of global sensitivity analysis.

As an illustration we give the following simple example. Consider the Newton’s law of
universal gravitation. Say we know that every point mass attract every other point mass,
but don’t know what features affect that.

And say, that for some reason we think that following features may affect the force of
attraction:

• m1, m2 - the masses of the bodies

• r - distance between bodies

• T - environment temperature

• p - atmospheric pressure

• L1, L2 - bodies luminosity

Figure 2.1: The Newton’s law of universal gravitation

Also we did 30 experiments and measured all the features considered and the correspond-
ing force of attraction. Applying GT IVE to this task give us the following feature ranks,
see 2.1

In general the tool helps to answer the following questions:

1also known as function or model
2also known as training data (or samples)
3some device, system or object that provides output for a given input

3



CHAPTER 2. OVERVIEW

m1 m2 r T p L1 L2

0.19 0.20 0.61 0.0 0.0 0.0 0.0

Table 2.1: Illustration. Scores for the Newton’s law of universal gravitation problem

1. What features have no influence on the dependency and thus can be dropped in the
further study?

2. If we want to reduce the number of features considered in the problem which features
should we drop?

3. What features are the most influential so that they should be measured with the highest
accuracy or have the highest variability in the Design of Experiments?

GTIVE calculates sensitivity indices (features scores) for each input variable (feature).
That are the numbers that show relative importance of each feature in some sense. Looking
at the scores one can say if one feature is more important than the others and guess to what
extent. This information may be useful in the following tasks:

• In the Surrogate Model (SM) construction it may be beneficial to remove the least
important features, because less features mean more dense sample and denser sample
may provide more accurate approximation. Also many SM construction techniques
may work better in smaller dimensions in terms of time/memory requirements.

• In the Design of Experiment knowing what features influence dependency the most
one can plan the sample generation in a way that most important features have the
highest variability. Also, if data is obtained as some physical measurements, knowing
feature scores may tell what input variables should be measured with the highest
accuracy.

• In the Optimization, when the number of allowed function calls (budget) is limited,
knowing what features are less important allows for not changing them in the opti-
mization process. Reducing number of variables by not considering features that have
little effect on the dependency, one can do more optimization iterations with the same
budget possibly acquiring better solution.

Examples of GTIVE applications to the mentioned above tasks are presented in the
Chapter 7.

In this chapter the sensitivity analysis problem statement is given and short review of
the state of the art methods, used in the tool, is provided.

2.1 Problem statement

The problem of the global sensitivity analysis is to estimate how variations in the output of
the model can be attributed to the variations in the model inputs on all design space.

Let Y = f(X), X ∈ Rp, Y ∈ Rq be some considered dependency. f(X) may be some
physical experiment or a solver code. Without loss of generality only the case of q = 1
will be considered below. If q > 1 (the model has many outputs) each output is treated

4



CHAPTER 2. OVERVIEW

independently. GTIVE procedure calculates score wi for each feature xi from a feature set
X = (x1, . . . , xp) also known as input vector such that higher score reveals more sensitivity
(higher variations) of the output Y with respect to the variations of the corresponding input.
The scores are positive numbers generally between 0 and 1, higher score indicates that the
variable is ”more important”. There are several different techniques implemented in the tool;
the precise meaning of the score is technique-dependent. For a sensitivity analysis technique
we wish it to share the following properties:

◦ If one variable is more important than the other in a technique defined way, we want
it’s score to be higher

◦ We want feature scores to be proportional to the corresponding variables influence, so
that comparing scores one would get the idea of relative importance of variables

These properties allow to rank features in the order of importance and give the idea of
approximately to what extent one feature is more important than other features.

2.2 Quality metrics

To compare techniques performance the following measures could be introduced. These are
intuitive straightforward ways to check the variable importance, however huge amount of
data or time is required to evaluate them, so these measures are not very suited for practical
use and are mostly useful as reference in the benchmarking of different sensitivity analysis
methods.

• Index of variability may be used to compare importance of the features or even
feature subsets if we can calculate dependency value in a given point.

Let features in the vector X be split into two subsets X = (Z(X), U(X)), where
the subvector Z(X) contains all important features (features with high scores) and
U(X) contains all unimportant features (features with low scores). Let us define by
X̂(X) = (Z(X), U0) some vector, where all unimportant features are fixed to some
average values.

Then the Index of Variability can be computed as follows:

I(Z) =

√
< (f(X)− f(X̂(X)))2 >

max(f(X))−min(f(X))
· 100%, (2.1)

where < .. >, max, min are some test sample mean, maximum and minimum. The
higher index of variability the less important features are chosen in Z and the more
important are fixed in U .

• Approximation error ratio. Another way to estimate i-th feature importance is to
build an approximation (surrogate model) fSMi

(Zi(X)) where Zi(X) = (x1, . . . , xi−1, xi+1, . . . , xp)),
i.e. input formed from X using all features except i-th, and compare it’s accuracy with
approximation fSM(X), built using all features. So the error measure can be defined
as:

Err(i) =

√
< (f(X)− fSMi

(Zi(X)))2 >√
< (f(X)− fSM(X))2 >

, (2.2)

where < .. > is the sample mean. Higher approximation error ratio means that i-th
feature is more important.

5



CHAPTER 2. OVERVIEW

2.3 Input Definition Domain Importance

It’s important to note that the scores returned by GTIVE depend on the variation intervals
of the factors. If a factor is restricted to a very narrow interval, then its score might be low
even if factor is important. Moreover, the scores returned by GTIVE are invariant under
changes of units of measurement for individual factors (as long as changes are linear). In
such cases the effects of rescaled intervals are compensated by the corresponding changes in
the response function.

For example, consider the case when we have a function f(x1, x2) = x1 + x2, with x1 ∈
[−1, 1] and x2 ∈ [−1, 1]. It’s obvious to expect x1 and x2 to have equal scores in these
conditions. Now, let us expand x1 to region [−2, 2], while keeping f(x1, x2) the same. In
this case though in each point local importance of x1 and x2 remains similar, on the global
scale x2 would provide 4 times more variation to the output, thus rising it’s feature score.
It’s equivalent to the case when we leave x1 at [−1, 1] and change function to f(x1, x2) =
2 ∗ x1 + x2. On the contrary, consider the case when we change the measurement units of
the feature. For example, x1 and x2 were defined in kilograms and we want to change the
measurement units of x1 to grams. In this case, though new values of rescaled x1 would
become 1000 times larger but it’s feature score would remain the same.

2.4 State of the art methods

There are lots of approaches to the problem of global sensitivity analysis [5, 13, 12, 7,
14, 8]. Technique appropriate for each task depends on the problem conditions and user
requirements. We’ve designed the GTIVE tool to include the most effective state of the art
methods, covering different problem settings. In this section brief overview of the techniques
used in the GTIVE is provided.

We may group sensitivity analysis techniques in two big groups:

◦ Methods that can work with any sample.

◦ Methods that require sample of a particular structure to work.

Generally, the methods of the second group are more precise, but due to the sample form
requirements one usually needs to have an interface to the considered function to be able to
generate required specific sample.

For each situation different techniques are implemented in the GTIVE and we refer to
them as sample based and black box based correspondingly.

2.4.1 Sample based techniques

These techniques require some data sample (X,Y) given, where X = {X i, i = 1, . . . , K},
Y = {Y i, i = 1, . . . , K}, components of input vector X i = (xi1, . . . , x

i
p), Y

i = f(X i), K is
the total number of samples.

In the GTIVE the following sample based techniques are implemented:

• RidgeFS

In case the sample is small and so there is no benefit in using complex approaches
feature scores may be estimated with linear model.

6



CHAPTER 2. OVERVIEW

It is assumed that Y = Xb + ε, b = (b1, . . . , bp) are some coefficients and ε =

{εi, i = 1, . . . , K} is zero mean white noise. Coefficients b are estimated as b̂ =(
XTX + λI

)
XTY, where I ∈ Rp×p and λ is tuned using LOO CV approach, see

[5].

Then feature score for i-th variable is estimated as

wi =
b̂i

2
/var(xi)

var(Y)
, i = 1, . . . , p, (2.3)

where var(xi) is a variance of the i-th feature, estimated using sample.

Pros:

� Works fast

� Can handle very large data sets

� Best possible choice if the true model is linear

Cons:

� Not suitable for strongly non linear models

• Mutual Information

A group of techniques that estimate feature score by computing Mutual Information
of considered feature and the output:

I (xi, Y ) =

∫
p (xi, Y ) log

p (xi, Y )

p (xi) p (Y )
dxidY. (2.4)

The idea is to measure how far the joint distribution p (xi, Y ) of the feature and the
output is from the case of two independent random values where p (xi, Y ) = p (xi) p (Y ).
The greater the difference the more relevant feature is. Feature score for i-th variable
is estimated as:

wi = I(xi, Y ), i = 1, . . . , p. (2.5)

In the GTIVE we adopted two techniques to estimate Mutual Information (kraskov
and histogram estimates). Kraskov estimate gives more accurate results, but becomes
computationally expensive and so can’t be used for large data samples. Histogram
based estimate may be crude on small samples, but is very cheap in terms of memory
and computation time, so it can be applied to a very large data sets.

In more details:

– Kraskov estimate is an estimation of Mutual Information technique based on
nearest neighbor approach. The technique provides good accuracy for small and
moderate sample sizes, but becomes very computationally expensive in case of
large samples. Define a metric in space Z = (X, Y ) as ρz(Z,Z

∗) = max(ρx(X,X
∗),

ρy(Y, Y
∗)), where ρx(X,X

∗) is the Euclidean norm in the X space and ρy(Y, Y
∗)

is the Euclidean norm in the Y space.

Let k be the algorithm parameter setting number of nearest neighbors in the Z
space, then let

ε(j) = ρz(Z
j,k-th neighbor of Zj) (2.6)

7



CHAPTER 2. OVERVIEW

. We set njx and njy as number of points in the X and Y spaces correspondingly
whos distance to Xj and Y j is smaller than ε(j).

In [8] it’s shown that

Ik (xi, y) ≈ ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉 − ψ(K), (2.7)

where 〈...〉 is the sample mean, k is the number of nearest neighbors (algorithm
parameter), ψ(z) is Euler digamma function.

– Histogram based estimate is an estimate of Mutual Information technique
using histogram based pdf estimation. Method may be less accurate than previous
one in case of small and moderate samples, but can handle very large data sets.
In this approach pdf of xi, Y and pdf of (xi, Y ) are estimated using histograms.
For example pdf of xi is estimated as

p̂i(x) =

∑K
j=1 I(xji ∈ (xi − h/2, xi + h/2))

Kh
, (2.8)

where h is a bin size, I(·) is an indicator function. In the GTIVE implementation
the cross validation approach is used to estimate optimal histogram bin size h,
see [5]. If the sample size is at least 20000 points, then accelerated optimization
procedure for the bin size selection is used.

Pros:

� Works fast

� Can handle small as well as large data sets. Sample of few dozens points is suffi-
cient to catch the most important features. As the sample size increase resolution
grows.

� Robust to noise and outliers

Cons:

� Cant handle feature interdependencies

• SMBFAST (Surrogate Model-Based FAST)

Surrogate Model-Based FAST is a complex approach combining the surrogate model-
ing paradigm and the idea of black box analysis with the extended FAST method (see
2.4.2). Currently all GTApprox techniques except the Mixture of Approximators and
Geostatistical Gaussian Processes are available in SMBFAST for training the inter-
nal surrogate model, and same features and restrictions apply (see the GT Approx
manual [2] for details).

Due to the model training overhead, SMBFAST may be time consuming but it is the
most accurate of all currently implemented sample-based techniques.

Pros:

� The most accurate of all currently implemented sample-based techniques

� Incorporates approximation capabilities of GT Approx

Cons:

� May take a long time (as building of GT Approx model inside is required)

8



CHAPTER 2. OVERVIEW

2.4.2 Black box based techniques

These techniques generate new sample points during their work so they require connection
to some black box function Y = f(X). In case of black box based method term budget4 is
used instead of sample size.

Note that in these methods one has to specify the region (some hypercube) where points
are generated.

In the GTIVE the following black box based techniques are implemented:

• Elementary Effects is a screening technique able to work with relatively small sam-
ples.

The idea of Elementary Effects approach is to generate uniform (in terms of space-
filling properties) set of trajectories in the design space. On each step of trajectory
only one component xi of input vector X is changed, and the following function is
estimated:

di(X) =
Y (x1, . . . , xi + δi, . . . , xp)− Y (x1, . . . , xi, . . . , xp)

δi
, (2.9)

where δi is a step size. Score for i-th feature is computed as

wi =
∆2
i µi

π2 var(Y)
, i = 1, . . . , p, (2.10)

where µi = 1
r

∑r
j=1 d

2
i (X

j), r is a number of steps changing i-th feature value on all

trajectories, Xj is the input value at these steps; ∆i is a range of possible values for i-th
feature; var(Y) is a sample variance of black box values on generated sample points.
Actually the method gives normalized estimate of average squared partial derivatives.

Pros:

� Can provide reliable estimates even for very small budgets. Minimal number of
black box function calls equals few times number of features which is sufficient to
get estimation for not very complex cases

Cons:

� Generates trajectories randomly

� Not robust to outliers

• Extended FAST (Fourier Amplitude Sensitivity Testing) is a technique suited
for the case when cheap black box is available (like surrogate model, see 2.4.1). It
requires quite many samples to estimate score.

The idea here is to measure what portion of output variance is described by the
variance of the feature. To do so for each feature main indices are estimated as

Si =
Vxi [E∼xi(Y |xi)]

V (Y )
, (2.11)

4number of function calls allowed for method

9
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where Vxi [·] is a variance with respect to xi, E∼xi(·|xi) is a conditional mean with
respect to all features except xi. Instead of computing multivariate Monte Carlo esti-
mates, method uses space filling one-dimensional curves of the form

xi(s) =
1

2
+

1

π
arcsin(sin(vis+ φi)) (2.12)

to generate sample points. Here each feature have some frequency vi assigned from
some incommensurate set vi, s is the coordinate on one-dimensional curve and φi is a
some random constant phase shift. Using Fourier decomposition in case of (2.12) we
may say that

f(X) =
∞∑

j=−∞

(Aj cos(js) +Bj sin(js)),

Aj =
1

2π

∫ π

−π
f(s)cos(js)ds,

Bj =
1

2π

∫ π

−π
f(s)sin(js)ds.

These integrals can be estimated using points generated on the curve (2.12). In this
case, e.g. conditional variance can be estimated as

Vxi [E∼xi(Y |xi)] = 2
K∑
j=1

(A2
jvi

+B2
jvi

), jvi is an integer, (2.13)

where K is some predefined number.

Another appealing property of this approach is it’s ability to accurately estimate
total indices. In this case all cross-variable interactions that include i-th feature are
taken into account in the corresponding scores, i.e. the score is estimated as follows:

Si = 1− V∼xi [Exi(Y |x1, . . . , xi−1, xi+1, . . . , xp)]

V (Y )
. (2.14)

To do this estimation unique frequency vi is given to xi and the same frequency v is
given to all other features, then the same procedure as above is performed.

The score for i-th feature is
wi = Si, i = 1, . . . , p. (2.15)

Pros:

� Can give main effect as well as total effect estimations

� Needs less samples than for most of other variance based approaches (about 72
points per feature is recommended)

Cons:

� Still requires relatively large samples

What technique to choose in each case is decided by the initial problem conditions (we
have sample or black box) and best practice. For details see Chapter 6.
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2.5 Scores variance estimation

It’s possible to compute score estimation variances to check how reliable obtained scores
values are.
When one obtains score and estimation of variance one may expect that there is high prob-
ability (usually estimated at 99.99966%) of the true score value lying inside the

[score− 3·
√
variance, score+ 3·

√
variance]

range. So if zero is outside of this range one may decide that score is significantly larger than
zero. It means that corresponding feature has significant influence on the function value,
and this feature can be treated as important.

Actually, estimation of true confidence intervals for scores is quite a complicated problem.
However, we consider that our approximation for confidence intervals is sufficiently accurate
to help in selection of the important features.

2.6 Remark on other sensitivity analysis methods

In this section we will discuss GTIVE methods with respect to well-known Pearson’s and
Spearman’s correlation coefficients.

Let us consider the limitations of these correlation coefficients:

• Pearson’s correlation coefficient is suitable only for using with linear functional depen-
dencies. There is an analog of such a technique in GTIVE, namely RidgeFS.

• Spearman’s correlation coefficient is suitable only for monotonic functions. In GTIVE
we do not make such assumptions for nonlinear techniques (i.e. for all except RidgeFS).

To clarify these points, we will give an example. Let us consider the sensitivity analysis
problem for a function f = x2+2y2, x, y ∈ [−1, 1]. In this case, nonlinear GTIVE techniques
are supposed to identify correctly the presence of dependency and the influence of each
variable on the output. The results are summarized in the table 2.2 (for uniformity, GTIVE
scores are given after taking the square root). As expected, since the function is not linear
and monotonic, the first three techniques gave inaccurate results.

2.7 Remark on the selection of techniques for GTIVE

The selection of techniques for GTIVE was associated with different factors.

1. The need to provide basic modes of operation:

• reliable linear solution on a small sample: RidgeFS

• medium-size sample, from 50 to 500 points: Mutual Information (kraskov)

• large sample, from 200 to several hundred thousand points: Mutual Information
(histogram)

• black box with small budget, from 2 · (inputDimension + 1) to ≈ 2000: Elemen-
tary Effects
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Technique X Y

Pearson 59% 41%

Spearman 78% 22%

RidgeFS 74% 26%

Mutual Inf (kraskov) 33% 67%

Mutual Inf (hist) 34% 66%

Elementary Effects 35% 65%

FAST 34% 66%

Table 2.2: Pearson’s and Spearman’s correlation coefficients and GTIVE techniques.

• black box with large budget, from 65 · inputDimension to hundreds of thousands:
FAST

2. The popularity of techniques:

• RidgeFS is a standard linear estimate.

• Mutual Information is a widely used technique for feature selection in biology,
medicine, image processing (e.g. see [17], [11], [10], [16]).

• Elementary Effects is a standard screening technique based on computation of
average partial derivatives and recommended in [13].

• FAST is a common way to calculate so-called global sensitivity indexes. The effi-
cient calculation of such indexes with FAST is described in [13] and [9]. Examples
of usage of this approach are given in [15] and [19].
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Chapter 3

Internal workflow

3.1 General workflow

As described in Section 2.4, GTIVE includes two types of techniques: blackbox- and sample-
based. Main difference, regarding the tool’s internal workflow, is that there is no prepro-
cessing step in the blackbox-based mode since in this mode GTIVE generates the sample
itself and ensures it has a correct structure and does not contain any degenerate data. Con-
versely, in sample-based mode the sample analysis is essential because in general there are
no guarantees for the sample quality.

Thus GTIVE internal workflow generally consists of the following steps:

1. Preprocessing. Only in sample-based mode. In this step, redundant data is removed
from the training set and the sample is normalized — see Section 3.2.

2. Analyzing training data and options, selecting technique. In this step, training
sample properties and options specified by user are analyzed for compatibility, and the
most appropriate estimation technique is selected — see Chapter 6.

3. Estimating feature scores and scores standard deviation. In this step, feature
scores are estimated using the technique selected in the previous step.

If the VarianceEstimateRequired option is on, the result also includes score stan-
dard deviation (std calculation is off by default). For vector functions (functions with
multidimensional output), feature scores and scores standard deviation are estimated
for each component independently — see Section 3.3 for the results description.

For individual technique descriptions, see Chapter 4 and Section 2.4.

3.2 Preprocessing

As we work with initial training dataset some reasonable preprocessing must be applied to it
in order to remove possible degeneracies in the data. Let

(
X,Y

)
be the N × (p+ q) matrix

of the training data, where the rows are (p+q)-dimensional training points, and the columns
are individual scalar components of the input or output. The matrix

(
X,Y

)
consists of the

sub-matrices X and Y. We perform the following operations with the matrix
(
X,Y

)
:

1. Remove all exact duplicates: search for rows in
(
X,Y

)
containing the same data and,

if two or more matches are found, delete every row except one (since repeated data

13
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points do not add any information). A warning is sent to log if there were any rows
removed.

2. Remove all constant columns in sub-matrices X and Y. A constant column means
that all the training vectors have the same value of one of the input components. In
particular for X, this means that the training DoE is degenerate and covers only a
certain section of the original design space. Column removals also produce a warning
to log.

As a result, we obtain a reduced matrix
(
X̃, Ỹ

)
consisting of the submatrices X̃ and

Ỹ. Accordingly, we define effective input dimension (p̃) as the number of columns in

X̃, and effective sample size (Ñ) as the number of rows in
(
X̃, Ỹ

)
.

3. Next, sample values in the X̃ and Ỹ matrices are normalized so that for each component
of the input and output its mean equals 0 and standard deviation equals 1:

xi =
xi − xi
σ(xi)

, yi =
yi − yi
σ(yi)

(3.1)

This is the last sample preprocessing step if not using the Mutual Information tech-
nique. This means that for RidgeFS and SMBFAST techniques the scores are estimated
using the normalized reduced matrix rather than the original matrix

(
X,Y

)
. Mutual

Information technique includes one more preprocessing step below.

4. The Mutual Information technique is known to possibly show some performance degra-
dation when feature values are distributed over a uniform grid (which is the case
after the normalization). Due to this, in case of using the Mutual Information tech-
nique (whether Kraskov or histogram estimate), a small scale uniform noise in range
[−10−10, 10−10] is applied to all input and output components. If rank transform is
on (see option RankTransform), the noise is applied after the transform. Thanks
to its small scale, it does not have any significant effect on the final results, while the
robustness of the Mutual Information technique is notably improved.

3.3 Results

The resulting output of GTIVE contains a feature score matrix S and, if std calculation
is on (see option VarianceEstimateRequired), a score standard deviation matrix D.
The size of both matrices is q × p: the number of rows is equal to the output dimension q,
the number of columns is equal to the number of features, or the input dimension p (the
original input dimension, not the effective input dimension p̃).

3.3.1 Feature scores

Each element sij of the S matrix is the sensitivity of the i -th output component to the j -th
feature. In general, sij is a positive real number, except some special cases:

• In the sample-based mode, if the value of the j -th feature in the sample is constant
(the X matrix contains a constant column), all scores of this feature (j -th column in
S) are set to NaN (special not-a-number value) since there is no way to estimate the
sensitivity of the output to a constant component.

14
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• In the sample-based mode, if the value of the i -th response component in the sample is
constant (the Y matrix contains a constant column), the scores of all features vs this
output (i -th row in S) are set to 0.0 — it is assumed that this output is insensitive to
all features since its value is constant.

• The first of the above rules has priority: if the sample contains both a constant feature
xj and a constant output yi, the sij score is NaN.

• In the blackbox-based mode, if the generation region (see 2.4.2) is defined in such a way
that the lower and upper bounds of some feature are equal, this feature is interpreted
as a constant input, so its resulting score will be NaN, similarly to the sample-based
mode with a constant column.

Note that GTIVE can’t handle features collinearity. For instance, if the values of two
features are always equal, they are assigned equal scores, while in reality it is possible that
the output is totally insensitive to the first feature and changes its value only due to the
change of the second feature. This is one of the examples of a degenerate data sample, and
such features have to be filtered out before passing data to GTIVE.

3.3.2 Standard deviation

Standard deviation matrix D is structurally similar to the score matrix: each element σij is
the standard deviation of the sij score. In general, σij is a non-negative real number, except
the case than sij score is NaN. In this case, σij is also set to NaN.

Note that standard deviation is calculated only when VarianceEstimateRequired
is on, else the D matrix is empty.
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Chapter 4

User configurable options

GTIVE combines a number of scores estimation techniques of different types. By default,
the tool selects the optimal technique compatible with the user–specified options and in
agreement with the best practice experience. Alternatively, the user can directly specify
the technique through advanced options of the tool. This section describes the available
techniques and it’s options; selection of the technique in a particular problem is described
in Chapter 6.

4.1 RidgeFS

Short name: LR

General description: Estimation of feature scores as normalized coefficients of regular-
ized linear regression. Regularization coefficient is estimated by minimization of generalized
cross-validation criterion [5]. Also, see Section 2.4.1.

Variance estimation: Yes

Restrictions: Can be applied to data sample only.

Strengths and weaknesses: A very robust and fast technique with a wide applicability
in terms of the input space dimensions and amount of the training data. It is, however,
usually rather crude, and the estimation can hardly be significantly improved by adding new
training data.

Options: No options.

4.2 Mutual Information (Kraskov estimate)

Short name: Kraskov

General description: Mutual information estimate of feature scores based on the nearest
neighbors information [8]. Also, see Section 2.4.1.
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Variance estimation: Yes

Strengths and weaknesses: Is a robust nonlinear estimation technique, however can
be applied only to small moderate samples due to memory limitations. Method tends to
underscore features in case of heavy cross-feature interactions.

Restrictions: Can be applied to data sample only.

Options:

• NumberOfNeighbors

Values: integer in range [1, 0.8 · (effective sample size)− 1].

Default: 0 (auto).

Short description: number of nearest neighbors used to estimate mutual information

Description: Option specifies number of nearest neighbors used in estimation of mu-
tual information if ’kraskov’ technique is selected (manually or automatically).
Increasing this value gives smaller variance of score estimation at the cost of
higher systematic errors and vice versa. Best practice recommend to set it as a
small integer value of around 5 in most cases.

• RankTransform

Values: on, off

Default: on

Short description: Apply rank transform (copula transform) before computing mu-
tual information.

Description: If this option is on (True), rank transform is applied to the input sample
before computing mutual information. In most cases, it allows for a more accurate
mutual information estimate.

4.3 Mutual Information (Histogram based estimate)

Short name: Hist

General description: Mutual information estimate of feature scores based on the his-
togram construction. Also, see Section 2.4.1.

Strengths and weaknesses: Too crude for small samples, but have very low memory
requirements so can be applied in the case of very large data sets. If the sample size is
at least 20000, then accelerated optimization of histogram parameters is used. Tends to
underscore features in case of heavy cross-feature interactions.

Variance estimation: Yes

Restrictions: Can be applied to data sample only.
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Options:

• RankTransform

Values: on, off

Default: on

Short description: Apply rank transform (copula transform) before computing mu-
tual information.

Description: If this option is on (True), rank transform is applied to the input sample
before computing mutual information. In most cases, it allows for a more accurate
mutual information estimate.

4.4 SMBFAST (Surrogate Model-Based FAST)

Short name: SMBFAST

General description: Surrogate Model-Based FAST combines the surrogate modelling
and usage of extended FAST method. Also, see Section 2.4.1.

Strengths and weaknesses: SMBFAST may be time consuming but it is the most ac-
curate of all currently implemented sample-based techniques.

Variance estimation: Yes

Restrictions: Can be applied to data sample only.

Options:

• Accelerator

Values: integer in range [1, 5], or 0 (auto)

Default: 0 (automatically set by the approximator)

Short description: Five-position switch to control trade-off between speed and ac-
curacy for the internal approximator used in SMBFAST.

Description: Since SMBFAST builds a surrogate model (to be used as a FAST black-
box), it actually uses GT Approx internally and makes certain options of this
internal approximator available as GTIVE options. This option is essentially the
same as GTApprox/Accelerator, except that 0 is also a valid value, meaning
that the setting will be automatically selected by the internal approximator.

• NumberOfCVFold

Values: integer in range [2, 231-2], or 0 (auto)

Default: 0 (auto select)

Short description: The number of cross-validation subsamples to estimate the vari-
ance of scores.
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Description: In order to estimate the variance of scores, the principle of cross valida-
tion is used. Cross validation involves dividing the input sample into a number of
subsamples (cross-validation subsets). This option sets the number of subsamples
to divide in.

• SensitivityIndexesType

Values: enumeration: total, main

Default: total

Short description: Select the type of score index to be computed.

Description: This option is a switch selecting the type of index computed by the
FAST procedure used internally in SMBFAST. Main index estimate is usually
more reliable, but this index takes into account only the influence of the considered
feature on the output, ignoring the influence of cross-feature interactions. Total
index estimates total influence of the variable on the output, taking into account
all possible interactions between the considered feature and other input features,
but its estimate is generally less reliable.

• SurrogateModelType

Values: enumeration: LR, SPLT, HDA, GP, HDAGP, SGP, GeoGP, TA, iTA, RSM,
or Auto

Default: Auto

Short description: Specify the algorithm for the internal approximator used in SMB-
FAST.

Description: Since SMBFAST builds a surrogate model (to be used as a FAST black-
box), it actually uses GT Approx internally and makes certain options of this
internal approximator available as GTIVE options. This option is essentially the
same as GTApprox/Technique. Default (Auto) selects a technique according
to the GTApprox decision tree, with a single difference: HDAGP is never selected
automatically, and where GTApprox would select HDAGP, the GP technique is
used instead.

4.5 Elementary Effects

Short name: EE

General description: A screening technique estimating feature scores as an average of
the function partial derivatives [13]. Also, see Section 2.4.2.

Strengths and weaknesses: Can work with very small budgets and still give reliable
estimates in most cases, however may take time if the budget is big, due to complex prob-
lem of selecting appropriate set of trajectories. Note that method actually allows some
randomization, so one can get different estimates by varying global Seed parameter.

Variance estimation: Yes
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Restrictions: Can be applied to the black box only.

Options:

• Deterministic

Values: boolean.

Default: on.

Short description: require IVE process to be deterministic.

Description: If this switch is turned on, then all random processes in all algorithms
are started with some fixed seed ensuring result to be the same on every run. In
the current version the switch affects only black-box based techniques (FAST and
Elementaty Effects).

• Seed

Values: integer [1, 2147483647].

Default: 100.

Short description: change fixed seed when Deterministic is on.

Description: Enables user to use different fixed seeds for IVE process. In the current
version the switch affects only black-box based techniques (FAST and Elementaty
Effects).

• MinCurveNum

Values: integer [1, 2147483647].

Default: 200.

Short description: number of space filling curves tested to compute elementary ef-
fects. Also, see Section 2.4.2.

Description: Option specifies number of curves to be used in estimation of elementary
effects. The more curves is used the better parameter space is explored, resulting
in more accurate scores estimation, however it takes additional time.

4.6 Extended FAST (Fourier Amplitude Sensitivity Test-

ing)

Short name: FAST

General description: Variance based estimation of feature scores. Methods can estimate
cross variable interactions as well as isolated (main) variable indices (which can be useful to
some additional manual dependency analysis) [12]. Also, see Section 2.4.2.

Strengths and weaknesses: Needs large enough computational budget (number of func-
tion calls): at least 65 calls per feature to get stable estimate, — however is very precise
(if the budget is enough) even in the case of strong variables inter-dependencies. Note that
method actually allows some randomization, so one can get different estimates by varying
global Seed parameter.
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Variance estimation: Yes

Restrictions: Can be applied to the black box only.

Options:

• Deterministic

Values: boolean.

Default: on.

Short description: require IVE process to be deterministic.

Description: If this switch is turned on, then all random processes in all algorithms
are started with some fixed seed ensuring result to be the same on every run. In
the current version the switch affects only black-box based techniques (FAST and
Elementaty Effects).

• Seed

Values: integer [1, 2147483647].

Default: 100.

Short description: change fixed seed when Deterministic is on.

Description: Enables user to use different fixed seeds for IVE process. In the current
version the switch affects only black-box based techniques (FAST and Elementaty
Effects).

• SensitivityIndexesType

Values: enum: total, main .

Default: total.

Short description: selects type of score index to be computed

Description: Switch selects if the FAST procedure should compute ’main’ or ’total’
score index. ’Main’ index takes into account only isolated influence of the con-
sidered feature on the output ignoring the influence of cross-features interactions.
’total’ index estimates total influence of the variable on the output, taking into
account all possible interactions between the considered feature and other input
features, but it’s estimate is generally less reliable.

• NumberOfSearchCurves

Values: integer [0, 2147483647].

Default: 0 (“0” means auto selection: 4, if the budget is sufficient, and less otherwise).

Short description: adds random multistart to FAST curves used for estimation of
sensitivity indexes

Description: Option allows performing multistart when building FAST space filling
curves. It can potentially increase accuracy at the cost of increasing the bud-
get requirements NumberOfSearchCurves times. Minimal allowable budget is
equal to 65 · p̃ · NumberOfSearchCurves, where p̃ is the effective dimension of
input vector (the number of not-constant input factors).
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Limitations

The maximum size of the training sample, which can be processed by GTIVE, is primarily
determined by the user’s hardware. Necessary hardware resources depend significantly on
the specific technique — see descriptions of individual techniques. Accuracy of estimation
tends to improve as the sample size increases.

Technique Input type Performance on huge Other restrictions
training sets

RidgeFS sample linear dependencies only

Kraskov sample limited by
available RAM

Histogram sample

SMBFAST sample potentially
long runtime

EE blackbox potentially
long runtime

FAST blackbox

Table 5.1: Technique summary

Contrary to the maximum size, there is a certain minimum for the size of the training
set (or for the available number of blackbox calls), which depends on the technique used. As
explained in Section 3.2, this condition refers to the effective values, i.e. the ones obtained
after preprocessing. An error with the corresponding error code will be returned if this
condition is violated.

The requirements on minimum sample size (budget) are summarized in Table 5.2. For
most techniques there are two different limits, depending on whether the calculation of scores
standard deviation is required by user or not (see option VarianceEstimateRequired).

Table 5.2 denotes the following:
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• p̃: the effective input dimension after the sample preprocessing.

• s: the GTIVE/SMBFAST/NumberOfCVFold option value.

• NN : the GTIVE/MutualInformation/NumberOfNeighbors option value. Cor-
responding limit is in effect only if the option is set by user.

• NR: the GTIVE/FAST/NumberOfSearchCurves option value. Corresponding
limit is in effect only if the option is set by user.

• dxe is the value of x rounded up (to the next integer).

Technique Minimum size (bugdet)

std calculation on std calculation off

RidgeFS p̃+ 2 p̃+ 1

SMBFAST
⌈
2p̃+3
s−1

⌉
· s 2p̃+ 3

Mutual Information (Kraskov) 20, or
⌈
NN+1
0.8

⌉
20, or NN + 1

Mutual Information (histogram) 3 3

EE 2(p̃+ 1) p̃+ 1

FAST 65p̃ · 3, or 65p̃, or 65p̃ ·NR
65p̃ ·NR, NR ≥ 3

Table 5.2: Minimum sample size (blackbox budget) for GTIVE techniques
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Selection of technique

This section details manual and automatic selection of one of the techniques described in
Chapter 4.

6.1 Selection of the technique by the user

The user may specify the technique by setting the option Technique, which may have the
following values:

• Auto — best technique will be determined automatically (default)

• RidgeFS

• Mutual Information — to select specific estimation type additional parameter
/MutualInformation/Algorithmmay be specified having possible values ’kraskov’
for Kraskov estimation or ’hist’ for histogram based approach. If none is specified than
’kraskov’ estimate is used if there is < 500 sample points and ’hist’ estimate is used oth-
erwise. If ’hist’ estimate is used and the sample size is at least 20000, then accelerated
optimization of ’hist’ parameters is used.

• SMBFAST

• ElementaryEffects

• FAST

6.2 Default automatic selection

The decision tree, describing the default selection of the estimation technique is shown in
Figure 6.1. The factors influencing the choice are:

• Input type, i.e. sample or blackbox.

• Sample size (for blackbox, budget) K and effective input dimension p̃ of the training
sample.

The result is the estimated feature scores. The selection is performed in agreement with
properties of individual technique as described in Chapter 4. In particular for the sample
input:
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Figure 6.1: The GTIVE internal decision tree for the choice of default estimation method
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• If p̃ ≤ 10, K < 300, and 2p̃+ 2 ≤ K < 2 · (2p̃+ 3), RidgeFS is selected.

• If p̃ ≤ 10, K < 300, but K ≥ 2 · (2p̃+ 3), SMBFAST is selected.

• In other cases, Mutual Information is selected, which uses the Histogram technique if
K > 500 (and accelerated histogram estimate if K > 20000), and Kraskov if 20 ≤
K ≤ 500.

For the black box input:

• If K ≥ 4 · (72p̃+ 1) then the FAST technique is chosen.

• If 2 · (p̃+ 1) ≤ K < 4 · (72p̃+ 1) then the Elementary Effects is used.

• If p̃ + 1 ≤ K < 2 · (p̃ + 1), the tool will start only if score variance estimation is not
required by user (see option VarianceEstimateRequired). Otherwise, if variance
estimation is required or K < p̃+ 1, the tool will not start.
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Usage Examples

In this section we will apply GTIVE to some artificial model functions and some real world
data sets to demonstrate method properties.

7.1 Artificial Examples

In this section we will demonstrate performance of various techniques implemented in the
GTIVE on some known artificial functions.

7.1.1 Example 1: simple function, no cross-feature interaction

In this example we will consider the function:

f(x1, x2, x3, x4, x5) = x21 + 2x22 + 3x23 + 4x24 + 5x25, xi ∈ [−1, 1], i = 1, . . . , 5 (7.1)

.
In this case we have no cross-feature interactions. So we can approximately estimate that

true scores should have ratio 1 : 4 : 9 : 16 : 25. In this example, we will refer to these scores
as True.

We’ve calculated feature scores with all methods for different sample sizes and presented
comparison with our expectations of what true features might be in this problem in the
tables below.

Results for RidgeFS are presented in the Table 7.1. As expected, RidgeFS assumes linear
dependency, so methods fails to estimate correct scores.

Sample size x1 x2 x3 x4 x5

True 0,0181 0,0727 0,1636 0,2909 0,4545

30 0,1847 0,1628 0,1113 0,2425 0,2983

100 0,2164 0,2074 0,1687 0,2128 0,1944

500 0,1449 0,1876 0,2312 0,1505 0,2855

Table 7.1: Example 1. RidgeFS scores
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Results for Elementary Effects are presented in the Table 7.2. Elementary Effects gives
satisfactory close to True results on 30 points sample already and very close results on 100
points.

Sample size x1 x2 x3 x4 x5

True 0,0181 0,0727 0,1636 0,2909 0,4545

30 0.0152 0,0754 0,1782 0,2811 0,4213

100 0,0193 0,0721 0,1691 0,2952 0,4415

Table 7.2: Example 1. Elementary Effects scores

Results for Mutual Information (Kraskov estimate) are presented in the Table 7.3. Kraskov
estimate gives satisfactory results on 30 points and quite close to True on 500 points.

Sample size x1 x2 x3 x4 x5

True 0,0181 0,0727 0,1636 0,2909 0,4545

30 0,1058 0,1051 0,0963 0,26478 0,4279

100 0,0867 0,0785 0,1220 0,2562 0,4563

500 0,0366 0,0774 0,1375 0,2772 0,4711

Table 7.3: Example 1. Mutual Information (Kraskov estimate) scores

Results for Mutual Information (histogram estimate) are presented in the Table 7.4. As
expected, Histogram based estimation of Mutual Information is inferior to Kraskov estimate
on small samples, but still manages to do close to True estimation.

Sample size x1 x2 x3 x4 x5

True 0,0181 0,0727 0,1636 0,2909 0,4545

30 0,0622 0 0,0656 0,2988 0,5733

100 0 0,0856 0,1486 0,2513 0,5142

500 0,0059 0,0315 0,1287 0,2914 0,5422

750 0,0084 0,0585 0,1501 0,2958 0,4868

1000 0 0,0513 0,1725 0,3020 0,4740

2000 0,0039 0,0609 0,1791 0,2967 0,4591

Table 7.4: Example 1. Mutual Information (histogram estimate) scores

Results for FAST are presented in the Table 7.5. FAST needs at least 65×6 = 390 points
to work on this sample. It gives satisfactory results on 500 points, and good on 1000 points.
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Sample size x1 x2 x3 x4 x5

True 0,0181 0,0727 0,1636 0,2909 0,4545

500 0,0339 0,0963 0,2589 0,2744 0,3362

750 0,0442 0,0824 0,1638 0,2370 0,4723

1000 0,0273 0,0808 0,1681 0,2697 0,4538

Table 7.5: Example 1. FAST scores
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7.1.2 Example 2: usage of confidence intervals to determine re-
dundant variables

In this example we will demonstrate how knowing confidence intervals can tell us whether
the function depends on the feature or not.

For simplicity let us consider the function:

f(x1, x2, x3, x4, x5) = x21 + x1x
2
2 + 0.01x23, xi ∈ [−1, 1], i = 1, 2, 3. (7.2)

Here the function depends very weakly on x3.
We generate 200 points random sample for this function and apply GTIVE (in this case

Mutual Information kraskov algorithm will be used). Results for scores and the standard
deviation of scores (the square root of estimated variance of scores) are provided in the table
7.6.

Sample size x1 x2 x3

Scores 0,7494 0,2506 0,0

stdScores 0,1019 0,0745 0,0516

Table 7.6: Example 2. GT IVE scores and the standard deviation of scores

Using confidence intervals one may additionally check whether we can trust obtained
score values. Score value for third feature is zero so it’s contribution was not detected on
this sample size. To check if scores for the first and the second features are significantly
larger than zero one should check if for i-th feature zero belongs to the interval (Scorei− 3 ·
stdScorei, Scorei + 3 · stdScorei). For the first feature:

Score1 − 3 · stdScore1 = 0.4437 > 0

For the second feature:

Score2 − 3 · stdScore2 = 0.0272 > 0

which means that both scores with very high probability are significantly larger than zero.
And obviously this value is negative for the third feature.
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7.1.3 Example 3: difference between ’main’ and ’total’ scores in
FAST

In this example we will consider FAST performance for the function:

f(x1, x2, x3) = x21 + 2x1x2 + x23, xi ∈ [−1, 1], i = 1, 2, 3, (7.3)

that on the one hand is still simple enough to form some expectations of what true scores
should be, but on the other hand it already has some feature interactions.

So in this example one may expect to see x1 having the largest score, x2 be on the second
place and x3 be the least important feature.

We will use this example to demonstrate the difference between main and total FAST
scores. Main scores take into account only isolated variable contribution to the variance of
output, meaning that main scores would ignore influence of the x1 ·x2 term. Total scores on
the other side should account all feature interactions. In the manual dependency analysis
comparison of these two indices allows for some investigation of the dependency nature.
We’ve estimated these scores using 500 and 1000 points samples to show the difference in
the results.

Total scores are presented in the Table 7.7.

Sample size x1 x2 x3

500 0,4449 0,3985 0,1503

1000 0,4965 0,4125 0,0869

Table 7.7: Example 2. FAST (total) scores

Main scores are presented in the Table 7.8.

Sample size x1 x2 x3

500 0,3353 0,0019 0,6604

1000 0,5016 0,0033 0,4910

Table 7.8: Example 2. FAST (main) scores

Let ST1, ST2, ST3 be total indexes of variables and SM1, SM2, SM3 be main indices.
One may see that SM2 ≈ 0, ST2 � SM2, it gives one a hint that x2 feature appears only

in interaction with some other. Also one may remember that ST i = SMi+interaction terms,
i.e. say ST1 = SM1 + S12 + S13, where for the example S12 - is a term accounting for x1 and
x2 interaction. Notice also that SM1 ≈ SM3, SM2 ≈ 0 and ST1 ≈ ST2 + ST3 ⇒ S12 + S13 ≈
S12+S23+S13+S23 ⇒ S23 ≈ 0. As a result we can make an educated guess that our function
has the following form f(x1, x2, x3) = f1(x1) + f2(x3) + f3(x1, x2) + f4(x1, x3).
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7.2 Real world data examples

In this section we will show application of GTIVE to some real world data problems.

7.2.1 T-AXI problem

• Problem description:
In this problem we consider The T-C DES (Turbomachinery Compressor DESign)
code (meanline axial flow compressor design tool), which is the first step of T-AXI (an
axisymmetric method for a complete turbomachinery geometry design [18]).

Program tcdes.e3c-des.exe is used for calculation of outputs f(X) for new generated
inputs X. Program can be downloaded from the link:
http://gtsl.ase.uc.edu/T-AXI/.

Program uses a 163 dimensional feature vector describing geometry and the working
condition as an input.

The task is to determine subset of the most important features for the Compressor
Pressure Ratio (With IGV) output. The dependency is considered only for X ∈
V (X0) = {X : xi ∈ [(1 − α)x0i , (1 + α)x0i ]}, i = 1, . . . , 163 where α = 0.1, X0 =
(x01, . . . , x

0
163) is given in Tables 7.9 – 7.11.

Stage

Parameter 1 2 3 4 5 6 7 8 9 10

Stage rotor inlet angle [deg] 10,3 13,5 15,8 18 19,2 19,3 16,3 15 13,6 13,4
Stage rotor inlet Mach no. 0,59 0,51 0,475 0,46 0,443 0,418 0,402 0,383 0,35 0,313
Total Temperature Rise [K] 52,696 52,301 51,117 49,736 49,144 43,617 45,69 47,269 48,255 47,565

Rotor loss coef. 0,053 0,0684 0,0684 0,0689 0,069 0,069 0,069 0,069 0,069 0,07
Stator loss coef. 0,07 0,065 0,065 0,06 0,06 0,065 0,065 0,065 0,065 0,1
Rotor Solidity 1,666 1,486 1,447 1,38 1,274 1,257 1,31 1,317 1,326 1,391
Stator Solidity 1,353 1,277 1,308 1,281 1,374 1,474 1,379 1,276 1,346 1,453

Stage Exit Blockage 0,963 0,956 0,949 0,942 0,935 0,928 0,921 0,914 0,907 0,9
Stage bleed [%] 0 0 0 0 1,3 0 2,3 0 0 0

Rotor Aspect Ratio 2,354 2,517 2,33 2,145 2,061 2,028 1,62 1,417 1,338 1,361
Stator Aspect Ratio 3,024 2,98 2,53 2,21 2,005 1,638 1,355 1,16 1,142 1,106

Rotor Axial Velocity Ratio 0,863 0,876 0,909 0,917 0,932 0,947 0,971 0,967 0,98 0,99
Rotor Row Space Coef. 0,296 0,4 0,41 0,476 0,39 0,482 0,515 0,58 0,64 0,72
Stator Row Space Coef. 0,3 0,336 0,438 0,441 0,892 0,455 0,886 0,512 0,583 0,549
Stage Tip radius [m] 0,3507 0,3358 0,3283 0,3212 0,3151 0,3084 0,3042 0,2995 0,297 0,2946

Table 7.9: Stage data for 10 stage design (stage.e3c-des)

Mass Flow Rate [kg/s] 54,4
Rotor Angular Velocity [rpm] 12299,5

Inlet Total Pressure [Pa] 101325
Inlet Total Temperature [K] 288,15

Mach 3 - Last Stage 0,272
Clearance Ratio 0,0015

Table 7.10: Initial data for 10 stage design (init.e3c-des)

• Solution workflow:
We perform the following steps to make the analysis:
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Soldity 0,6776
Aspect ratio 5,133

Phi Loss Coef. 0,039
Inlet Mach 0,47

Lambda 0,97
IGV Row Space Coef. 0,4

Table 7.11: IGV data for 10 stage design (igv.e3c-des)

1. We generate data sample of 104 points. One may use available code as a black
box as well, but we didn’t do it because code fails to compute outputs in many
points.

2. On a given sample, feature scores are estimated using GTIVE with default set-
tings. By default, in this case histogram based estimate is used, see 4.3.

3. Estimated feature scores are plotted on the picture 7.1. Looking at the picture
one may see that there are clearly 12 most influential features. So it’s natural
to perform preliminary optimization of compressor varying only this 12 features
instead of all 163.

4. To validate the results of the GTIVE we estimated the Index of Variability (2.1)
of different important feature subsets Z adding features one by one starting from
the ones with higher GTIVE scores and from the lower scores. Results are
presented on the Figure 7.2.

• Results:
In the Tables 7.12 – 7.13 the most important feature is filled with dark green, next 11
important ones are filled with light green color.

Figure 7.1: T-AXI. Feature scores estimated by GTIVE. Note: This image was obtained
using an older MACROS version. Actual results in the current version may differ.
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Figure 7.2: T-AXI. Index of Variance. Note: This image was obtained using an older
MACROS version. Actual results in the current version may differ.

Stage

Parameter 1 2 3 4 5 6 7 8 9 10

Stage rotor inlet angle [deg] 10,3 13,5 15,8 18 19,2 19,3 16,3 15 13,6 13,4
Stage rotor inlet Mach no. 0,59 0,51 0,475 0,46 0,443 0,418 0,402 0,383 0,35 0,313
Total Temperature Rise [K] 52,696 52,301 51,117 49,736 49,144 43,617 45,69 47,269 48,255 47,565

Rotor loss coef. 0,053 0,0684 0,0684 0,0689 0,069 0,069 0,069 0,069 0,069 0,07
Stator loss coef. 0,07 0,065 0,065 0,06 0,06 0,065 0,065 0,065 0,065 0,1
Rotor Solidity 1,666 1,486 1,447 1,38 1,274 1,257 1,31 1,317 1,326 1,391
Stator Solidity 1,353 1,277 1,308 1,281 1,374 1,474 1,379 1,276 1,346 1,453

Stage Exit Blockage 0,963 0,956 0,949 0,942 0,935 0,928 0,921 0,914 0,907 0,9
Stage bleed [%] 0 0 0 0 1,3 0 2,3 0 0 0

Rotor Aspect Ratio 2,354 2,517 2,33 2,145 2,061 2,028 1,62 1,417 1,338 1,361
Stator Aspect Ratio 3,024 2,98 2,53 2,21 2,005 1,638 1,355 1,16 1,142 1,106

Rotor Axial Velocity Ratio 0,863 0,876 0,909 0,917 0,932 0,947 0,971 0,967 0,98 0,99
Rotor Row Space Coef. 0,296 0,4 0,41 0,476 0,39 0,482 0,515 0,58 0,64 0,72
Stator Row Space Coef. 0,3 0,336 0,438 0,441 0,892 0,455 0,886 0,512 0,583 0,549
Stage Tip radius [m] 0,3507 0,3358 0,3283 0,3212 0,3151 0,3084 0,3042 0,2995 0,297 0,2946

Table 7.12: T-AXI. Features that influence Compressor Pressure Ratio the most (a)

Mass Flow Rate [kg/s] 54,4
Rotor Angular Velocity [rpm] 12299,5

Inlet Total Pressure [Pa] 101325
Inlet Total Temperature [K] 288,15

Mach 3 - Last Stage 0,272
Clearance Ratio 0,0015

Table 7.13: T-AXI. Features that influence Compressor Pressure Ratio the most (b)
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7.2.2 Stringer (Super-Stiffener) Stress Analysis problem

• Problem description
Special tool for Stress Analysis build upon a physical model computes Reserve Factors
(RFs) constraints for a side panel (of an airplane) defined by its geometry (Gj, j =
1, . . . , 5) and applied forces (Fi, i = 1, 2, 3) [1, 4].

Our task here is to check whether all inputs equally influence the output RFs. In
particular, the case of stringer RF (RF STR) is considered.

• Solution workflow

1. We have a code that can compute RFs for the given point, so we may use black
box technique.

2. We estimate feature scores with default settings and various budget and Seeds
(see 4.5 for details) to check what size of budget for GTIVE gives reliable esti-
mates and how stable the estimates are (Elementary Effects technique was taken
by default, see Section 4.5).

3. Results for different budget sizes are presented in the Table 7.14. For each budget
size 10 runs with different seeds were made to estimate standard deviation of
results. One can see that mean estimates are already quite reliable on 50 points
and variance of the results reduces as sample size increase. Also one may notice
that RF STR is independent from feature F1.

4. To validate the results of the GTIVE we used approximation error ratio measure
(2.2) of RF STR. Results of this experiment are presented in Table 7.15 and show
that error of approximation are in agreement with the values of feature scores,
estimated by GTIVE.

GT IVE
F1 F2 F3 G1

mean std mean std mean std mean std

50 pnts 0 0 0,0477 0,0207 0,2713 0,0704 0,0732 0,0377
300 pnts 0 0 0,0602 0,0107 0,2889 0,0216 0,0703 0,008

1000 pnts 0 0 0,0624 0,0041 0,286 0,0129 0,0715 0,0049

GT IVE
G2 G3 G4 G5

mean std mean std mean std mean std

50 pnts 0,062 0,0197 0,1056 0,0354 0,3323 0,0836 0,1079 0,0233
300 pnts 0,0673 0,0074 0,1001 0,0123 0,3135 0,0296 0,0998 0,0157

1000 pnts 0,0674 0,0037 0,1043 0,0062 0,3089 0,0136 0,0996 0,0058

Table 7.14: Stringer stress analysis. Feature scores estimated by GTIVE

• Results

– GTIVE showed that RF STR value is independent of the feature F1

– GTIVE using as few points as possible was able to estimate reliably relative
importance of each feature
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F1 F2 F3 G1

GT IVE Score 0 0,0624 0,286 0,0715
Approx error if fixing

0,98 22,83 126,04 29,85
feature / full model error

G2 G3 G4 G5

GT IVE Score 0,0674 0,1043 0,3089 0,0996
Approx error if fixing

29,83 45,72 142,46 43,63
feature / full model error

Table 7.15: Stringer stress analysis. Approximation error ratio
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7.2.3 Fuel System Analysis problem

• Problem description
The objective of the Research into Fuel Systems project is to deliver application that
can predict pressures and mass flows for gravity feed aircraft fuel systems [6]. The
desktop application comprises a two phase flow (air and fuel) analysis engine that is
derived from experimental observations.

One of the task the MACROS models are used for in this project is to approximate
pressure loss coefficient and volume flow quality of the fuel flow on the diaphragm
section of the pipe using experimental data.

Experimental data is a 244 points sample with 6 features describing fuel flow (flow
velocity (V), pressure after the diaphragm (P), temperature (T), densities of fuel
(ρfuel) and air (ρair), ratio of diaphragm diameters (ri)) and two outputs pressure loss
coefficient (Cp) and volume flow quality (Q).

We will use GTIVE to determine which features should be measured with the most
accuracy. This is very important for experimental design: if the feature is unimportant
then we shouldn’t do additional expensive experiments in order to explore the depen-
dence of the outputs (Cp and Q) on this feature, and we can measure this feature with
less precision in the experiments.

• Solution workflow

1. We have a sample of experimental data, so sample based technique is going to be
used.

2. GTIVE scores were computed with the default settings (Mutual information
Kraskov estimate was used in this case, see Section 4.2).

3. To validate results we’ve calculated the Approximation error ratio measure 2.2
for both outputs. Table shows that GTIVE scores are in good agreement with
feature scores, see Table 7.16.

Q V P T ρair ρfuel ri

GT IVE Score 0.7204 0.925 0.2697 0.0688 0.1731 0.6628
Approximation error

1.37 3.09 1,07 1.04 1.07 1,26
if fixing feature / full model error

Cp V P T ρair ρfuel ri
GT IVE Score 0.1888 0.1166 0.0843 0.0773 0.0944 0.4383

Approximation error
1.04 1.19 1.12 1.12 1.03 4.45

if fixing feature / full model error

Table 7.16: Fuel System Analysis. Features scores and Approximation error ratio

• Results

– It can be seen that values of scores are in good correspondence with errors of
approximation.
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