
ilable at ScienceDirect

Digital Investigation 11 (2014) S77–S86
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
BitTorrent Sync: First Impressions and Digital Forensic
Implications

Jason Farina*, Mark Scanlon, M-Tahar Kechadi
UCD School of Computer Science and Informatics, University College Dublin, Dublin 4, Ireland
Keywords:
BitTorrent
Sync
Peer-to-Peer
Synchronisation
Privacy
Digital forensics
* Corresponding author.
E-mail addresses: jason.farina@ucdconnect.ie

scanlon@ucd.ie (M. Scanlon), tahar.kechadi@ucd.ie (

http://dx.doi.org/10.1016/j.diin.2014.03.010
1742-2876/ª 2014 The Authors. Published by Elsev
creativecommons.org/licenses/by-nc-nd/3.0/).
a b s t r a c t

With professional and home Internet users becoming increasingly concerned with data
protection and privacy, the privacy afforded by popular cloud file synchronisation services,
such as Dropbox, OneDrive and Google Drive, is coming under scrutiny in the press. A
number of these services have recently been reported as sharing information with
governmental security agencies without warrants. BitTorrent Sync is seen as an alternative
by many and has gathered over two million users by December 2013 (doubling since the
previous month). The service is completely decentralised, offers much of the same syn-
chronisation functionality of cloud powered services and utilises encryption for data
transmission (and optionally for remote storage). The importance of understanding Bit-
Torrent Sync and its resulting digital investigative implications for law enforcement and
forensic investigators will be paramount to future investigations. This paper outlines the
client application, its detected network traffic and identifies artefacts that may be of value
as evidence for future digital investigations.
ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

With home user bandwidth rising and the growth in
professional and non-professional computer power, the
volume of data created by each individual computer user is
constantly growing. For mobile users, access to this data
has long been an issue. With greater connectivity and
greater availability of access to the Internet the concepts of
“high availability”, “off-site backup” and “resilient storage”
have moved away from the domain solely inhabited by
large corporations and has started to become increasingly
popular with computer users and everyday data con-
sumers. Applications such as Evernote and Dropbox
leverage the decreasing cost of hard disk storage seen in
Storage as a Service (SaaS) providers, e.g., Amazon S3, to
provide data storage on the cloud to home users and
(J. Farina), mark.
M-T. Kechadi).

ier Ltd on behalf of DFRWS
businesses alike. The main advantage of services such as
Dropbox, Google Drive, Microsoft OneDrive (formerly
SkyDrive) and Apple iCloud to the end user is that their
data is stored in a virtual extension of their local machine
with no direct user interaction required after installation. It
is also backed up by a full distributed data-centre archi-
tecture that would be completely outside the financial
reach of the average consumer. Their data is available
anywhere with Internet access and is usually machine
agnostic so the same data can be accessed on multiple
devices without any need to re-format partitions or
wasting space by creating multiple copies of the same file
for each device. Some services such as Dropbox, also have
offline client applications that allow for synchronisation of
data to a local folder for offline access.

Each of the aforementioned services can be categorised
as cloud synchronisation services. This means that while
the data is synchronised between user machines, a copy of
the data is also stored remotely in the cloud. In recent
headline news, much of this data is freely available to
. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:jason.farina@ucdconnect.ie
mailto:mark.scanlon@ucd.ie
mailto:mark.scanlon@ucd.ie
mailto:tahar.kechadi@ucd.ie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.03.010&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.03.010
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.diin.2014.03.010

J. Farina et al. / Digital Investigation 11 (2014) S77–S86S78
governmental agencies without the need of a warrant or
even just cause. As a result, BitTorrent Sync (also referred to
as BTSync, BitSync or BSync), which provides much of the
same functionality without the cloud storage aspect is seen
by many as a real alternative. The service has numerous
desirable attributes for any Internet user (BitTorrent Inc,
2013a):

� Compatibility and Availability – Clients are built for
most common desktop and mobile operating systems,
e.g., Windows, Mac OS, Linux, BSD, Android and iOS.

� Synchronisation Options – Users can choose whether to
sync their content over a local network or over the
Internet to remote machines.

� No Limitations or Cost – Most cloud synchronisation
services provide a free tier offering a small amount of
storage and subsequently charge when the user out-
grows the available space. BTSync eliminates these
limitations and costs. The only limitation to the volume
of storage and speed of the service is down to the lim-
itations of the synchronised users machines.

� Automated Backup – Like most competing products,
once the initial install and configuration is complete, the
data contained within specified folders is automatically
synchronised between machines.

� Decentralised Technology – All data transmission and
synchronisation takes place solely in a Peer-to-Peer
(P2P) fashion, based on the BitTorrent file sharing
protocol.

� Encrypted Data Transmission – While synchronising
data between computers on different LANs (the option
exists to apply encryption for internal LAN trans-
mission), the data is encrypted using RSA encryption.
Under the BTSync API (BitTorrent Inc, 2013b), de-
velopers can also enable remote file storage encryption.
This could result in users storing their data on untrusted
remote locations for the purposes of redundancy and
secure remote backup.

� Proprietary Technology – The precise protocol and
operation of the technology is not openly documented
by the developer resulting in an element of perceived
“security through obscurity”. Of course, this requires a
significant degree trust on behalf of users that the de-
velopers’ security has been implemented and tested
correctly.

As a result of the above, the BTSync application has
become a very popular choice for file replication and syn-
chronisation. The technology had grown to over one
million users by November 2013 and doubled to over two
million users by December 2013 (BitTorrent Inc, 2013c). The
service will be of interest to both law enforcement and
digital forensics investigators in future investigations. Like
any other file distribution technology, this interest may be
centred around recovering evidence of the data itself, of the
modification of the data or of where the data is synchron-
ised to. While the legitimate usage of the system, e.g.,
backup and synchronisation, teamwork, data transfer be-
tween systems, etc., may be of interest to an investigation,
the technology may also be a desirable one for a number of
potential crimes including industrial espionage, copyright
infringement, sharing of child exploitation material, mali-
cious software distribution, etc.

Contribution of this work

The contribution of this work includes a forensic anal-
ysis of the BTSync client application, its behaviour, artefacts
created during installation and use, and remnants left
behind after uninstallation. An analysis of the sequence of
network traffic and file I/O interactions used as part of the
synchronisation process are also provided. This informa-
tion should prove useful to digital forensic investigators
when BTSync is found to be installed on a machine under
investigation. Gaining an understanding of how BTSync
operates could aid in directing the focus of a digital inves-
tigation to additional remote machines where any perti-
nent data is replicated. Depending on the crime under
investigation, these remote machines may be owned and
operated by a single suspect or by a group sharing a com-
mon goal. While an initial analysis of the network protocol
and its operation is included below, comprehensive
network analysis is beyond the scope of this paper.

Background

In order to understand how BTSync operates, its
important to first understand the technologies its based
upon and how a number of similar technologies operate.
This section provides some of the required background
information.

BitTorrent file sharing protocol

The BitTorrent protocol was designed with the aim of
facilitating one-to-many and many-to-many file transfers
as efficiently as possible. The protocol is described in Bit-
Torrent Enhancement Proposal (BEP) No. 3 (Cohen,
February 2014). The main strength of the protocol is the
usage of file parts, each of which can be manipulated and
managed separately. While one part of a file downloads,
another, already downloaded part can be uploaded to a
different peer. In this way, peers can start trading parts
even before they have downloaded the entire file them-
selves. This has the benefit of not only speeding up distri-
bution as each peer can find useful information on a broad
range of potential peers but it also helps alleviate the issues
of “churn” (Stutzbach and Rejaie, 2006) “Data Leeching”
and “free riding” (Karakaya et al., 2009) experienced with
older protocols such as Gnutella and eDonkey. Data leech-
ing is where a user downloads an entire file in one go and
then removes the share to avoid uploading. Data churn is
the natural expansion and retraction of the network hori-
zon as peers leave and join the “swarm” freely resulting in a
large variance in the availability of full versions of a file
being available from individual sources.

The overall BitTorrent network can be seen as being sub-
divided into BitTorrent “swarms”. Each swarm consists of a
collection of peers involved in the sharing of the same file.
The central commonality of a swarm is a unique identifier
created from a SHA-1 hash of the file(s) references in the
metadata. A peer can be a member of multiple swarms as

J. Farina et al. / Digital Investigation 11 (2014) S77–S86 S79
multiple files are uploaded and downloaded simulta-
neously. In order to initiate download of content from a
particular swarm the user must first download a metadata
.torrent file (or corresponding magnet URI) from an
indexing website. The BitTorrent client application running
on the users machine then interprets the metadata and
uses it to locate other peers actively participating in that
swarm using one or more of the following methods
(Scanlon et al., 2010):

1. Tracker Server – Tracker servers are Internet accessible
servers that maintain a list of seeders (those peers
with 100% of a file available and as such are only
uploading data) and leechers (peers that are
beginning the process or are in the middle of the
process of downloading information from the swarm)
(Cohen, 2003). While the data transfer is in progress,
the client application will periodically report to the
tracker to update its status and to update its list of
active peers.

2. Distributed Hash Table (DHT) – While the original Bit-
Torrent protocol was designed with central repositories
of peers stored on servers, clients were developed such
as Vuze and mTorrent that also stored a list of active
clients on the local machine. This common DHT allows
peers to identify peers through requesting information
from other BitTorrent clients without the requirement
for a central server (these clients serving information
from the DHT are likely not involved in the requested
swarm). Each peer record in the DHT is associated with
the swarms in which it is actively participating. The
Mainline DHT, as outlined in BEP No. 5 (Cohen, February
2014), that is used by BitTorrent and BTSync is based on
the Kademlia protocol and allows for completely
decentralised discovery of peers associated with sharing
a particular piece of content (identified by the SHA-1
hash of the content).

3. Peer Exchange (PEX) – Originally, the BitTorrent protocol
did not allow for any direct communication between
peers beyond the transmission of data, but various ex-
tensions of the protocol have resulted in the removal of
this restriction. As DHT participation became commonly
supported in the major BitTorrent clients, peers started
to exchange the local peer caches. Peer Exchange is a BEP
outlined a method for when two peers are communi-
cating (sharing the data referenced by a torrent file), a
subset of their respective peer lists are shared back and
forth as part of the communication. Coupled with DHT,
PEX removes a potential vulnerability from the BitTor-
rent network by allowing for fully distributed boot-
strapping, tracking and peer discovery.

Any metadata or network control requests/responses
are transmitted using “bencoding”, as explained in BEP
No. 3 (Cohen, February 2014). Bencoded data consists of
dictionaries and lists consisting of key:value pairs. Each
key name and corresponding value is prepended by the
length (in bytes) followed by a colon. For example the
get_peers request message can be bencoded as
1:m9:get_peers (with the ‘m’ representing the key
name “message”).
BitTorrent Sync

BTSync is a file replication utility created by BitTorrent
Inc. and released as a private alpha in April 2013 (BitTorrent
Inc, 2013a). It is not a cloud backup solution, nor necessarily
intended as any form of offsite storage. Any data trans-
ferred using BTSync resides in whole files on at least one of
the synchronised devices. This makes the detection of data
much simpler for digital forensic purposes as there is no
distributed file system, redundant data block algorithms or
need to contact a cloud storage provider to get a list of all
traffic to or from a container using discovered credentials.
The investigation remains an examination of the local
suspect machine. However, because BTSync optionally uses
a DHT to transfer data there is also no central authority to
manage authentication or log data access attempts. A sus-
pect file found on a system may have been downloaded
from one or many sources and may have been uploaded to
many recipients.

While the paid cloud synchronisation services offer up to
1 TB of storage (Amazon S3 paid storage plan) the free ver-
sionswhich aremuchmore popular with home users cap at
approximately 10 GB. The BTSync storage is limited only by
the size of the folder being set as a share (most likely limited
by the available disk space). Unless the system under
investigation is the creator of the shared folder, it is possible
that any files contained thereinmay have been downloaded
without the user’s prior knowledge of the folder’s contents.
The BTSync application does not feature a built in content
preview utitily. As a result, it blindly and completely syn-
chronises all content within the shared folder without any
file selection process available to the user.

Related work

At the time of publication, there are no academic pub-
lications focussing on BTSync. However, due to BTSync
sharing a number of attributes and functionalities with
cloud synchronisation services, e.g., Dropbox, Google Drive,
etc., and it is largely based on the BitTorrent protocol, there
are a number of relevant related topics of interest. This
section outlines a number of related case studies and
investigative techniques for these shared technologies.
While the specific attributes of a number of popular cloud
synchronisation services are outlined below, there is a
common generalised architecture employed by these ser-
vices. There are two main stages to this synchronisation
process, as shown in Fig. 1:

� Stage 1 – The local client with the source file (the seeder
in P2P terms) and the remote replication target (leecher)
both contact the server of authority belonging to the
service being used to confirm their credentials.

� Stage 2 – Both seeder and leecher contact the remote
storage location, usually cloud based for high availabil-
ity. The seeder uploads a full copy of each file to be
replicated and the leecher downloads a full version of
the files it finds in the cloud storage container.

At no point in the process do the clients have to talk
directly to one another. An important feature of these

Table 1
Hardware used in the analysis of the BitTorrent sync application.

Name Host 1: Guest 1:

OS Windows 7 PC (64 bit) Windows XP SP3
Ram 8 GB ram 512 mb RAM

Vmware Workstation 8 Bridged network adapter

Name Host 2: Guest 2:
OS Linux Debian laptop Widows XP SP3
Ram 4 GB ram 512 mb RAM

VirtualBox 4.2 Bridged network Adapter

Fig. 1. Operation of cloud file synchronisation services.

J. Farina et al. / Digital Investigation 11 (2014) S77–S86S80
services is the fact that there is a full copy of the data being
stored on a remote third party server outside the control of
either client.

Forensic analysis of cloud synchronisation clients

Forensic investigation of these utilities can be chal-
lenging, as presented by Chung et al. in their 2012 paper
(Chung et al., 2012). Unless local synchronisation is
completely up to date, the full picture of the data may
reside across temporary files, volatile storage (such as the
system’s RAM) and across multiple data-centres of the
service provider’s cloud storage facilities. Any digital
forensic examination of these systems must pay particular
attention to the method of access, e.g., usually the Internet
browser connecting to the service provider’s access page.
This temporary access serves to highlight the importance of
live forensic techniques when investigating a suspect ma-
chine. Cutting power to the suspect machine may not only
lose access to any currently opened documents, but would
also lose any currently stored passwords or other authen-
tication tokens that are stored in RAM. Chung et al. describe
three main forms of online storage in use by consumers:

1. Data Storage for Large Data – Examples would include
the services provided by Amazon S3, Dropbox, Google
drive, etc.

2. Online Only Office Applications – This includes services
whereby an entire productivity suite of tools is accessed
in a completely self contained online environment, e.g.,
Google Docs, Office 365 or Sage Online.

3. Personal Data – Examples would include Evernote,
which allows users to save notes to a central store, and
Spotify, which allows playlists to be stored in the cloud
when users build their online music catalogue.

Cloud file synchronisation services

In various complementary papers on data remnants
(Quick et al., 2013a, 2013b, 2013c), Quick et al. offers an
additional approach to forensics when dealing with cloud
storage investigation. This involves access using the full
client applicationwhether or not it has been tamperedwith
by the end user, e.g., perhaps an anti-forensics attempt was
made to hide data by uninstalling the application and de-
leting the synchronised folders. Each of the applications
examined stored their authentication credentials on the
local system while the client was actively connected to the
service, again highlighting the importance of live forensic
recovery techniques. It should be noted that while Dropbox
and Microsoft OneDrive appear to be very similar utilities,
there are distinct differences in the way they are intended
to be used. Dropbox (when used with the client applica-
tion) creates a local folder that synchronises any contents
stored in it with an online duplicate of that folder. By
default, Dropbox gives 2 GB of storage for free with an
option to buy additional storage. OneDrive on the other
hand is intended as a predominantly online storage facility
with an option to synchronise a copy of the files to a client
machine folder. However, this is not the default behaviour
and has to be specifically enabled if used as part of the
Windows 8.1 operating system. For non-Windows 8 based
computers, the user is required to download and install the
OneDrive desktop application to enable file synchronisa-
tion across devices.

Many Cloud storage utilities provide a method of syn-
chronisation of files which involves some form of periodic
checking to determine if changes have been made to any
version being viewed locally or to compare offline copies
with their online counterparts as soon as communication
can be re-established (network connectivity re-enabled or
the application or service restarted). For Dropbox, Drago
et al. (Drago et al., 2012) identified two sets of servers, the
control servers ownedandoperatedbyDropbox themselves
and the storage management and cloud storage servers
hosted by Amazon’s EC2 and S3 services. This identification
is also verified by Wang et al. (Wang et al., 2012).

BTSync application & protocol analysis

Table 1 shows the hardware and virtual machines used
to perform an analysis on the BTSync application. The tool
was installed on all machines outlined using the default
installation parameters. A complete list of the files created
during the install process is outlined in Table 2.

Default installation includes the creation of a BTSync
folder (the location on Windows based machines is $Vol-
ume$\DocumentsandSettings\[User]\BTSync). This
folder is automatically populated with three files:

1. .SyncID – Stores a 20 byte unique share ID
2. .SyncIgnore – A list of files in the folder or subfolder to

ignore when synchronising with remote machines.

Table 2
BitTorrent sync default application files.

File Purpose

$Volume$\Program Files\BitTorrent
Sync\BTSync.exe

Main Executable

$Volume$\Documents and
Settings\[User]\Application
Data\Microsoft\Crypto\<user SID>

Private Key

$Volume$\Documents and
Settings\[User]\Application
Data\Bittorrent Sync

Application folder

$Volume$\Documents and
Settings\[User]\Application
Data\Bittorrent Sync\settings.dat

Configuration Settings

$Volume$\Documents and
Settings\[User]\Application
Data\Bittorrent Sync\sync.log

Log of Synchronisation
Activity

$Volume$\Documents and
Settings\[User]\Application
Data\Bittorrent Sync\sync.lng

Language File

$Volume$\Documents and Settings\All
Users\Desktop\BitTorrent Sync.lnk

Application Shortcut

$Volume$\Documents and Settings\All
Users\Start Menu\BitTorrent
Sync.lnk

Application Shortcut

$Volume$\Documents and Settings\All
Users\Quick Start\BitTorrent
Sync.lnk

Application Shortcut

J. Farina et al. / Digital Investigation 11 (2014) S77–S86 S81
3. .SyncArchive (Folder) – An archive to store files that
were deleted on a remote synchronised system.

These three files are created whenever any new BTSync
share is set up and are used to aid in the control of data
exchange between the nodes.

On Linux based machines, the installation directory is
wherever theuser chooses tounpack the applicationpackage.
All of the samefiles are created included thehidden folders. In
addition theuser interface is awebGUIonlocalhost:8888

and the application can generate a configuration file by
running the command “./btsync ––dump-sample-config”

from the terminal. If this plain textfile is edited it can be used
to overwrite the username and password for the web GUI to
allow the investigator access without changing any other
settings.

BTSync client activity

The options for synchronisation and replication are set
for each share on the local machine. As shown in Fig. 2,
Fig. 2. BTSync synchronisation options.
there are three main distinct settings determining the re-
sources used for peer discovery and the paths available for
traffic transmission. BTSync uses similar peer discovery
methods to the regular BitTorrent protocol. These methods
are outlined below:

1. LAN Discovery – If the option ‘‘Search LAN’’ is
enabled the client application will start sending peer
discovery packets across the LAN utilising the multicast
address IP 239.192.0.0 Port: 3838. These packets,
as displayed in Fig. 3, are sent at a frequency of one every
10 seconds for each share utilising this method.

The local peer discovery packet has a BSYNC header and
a message type of “ping” and includes the sending host’s IP
address, port and the 20 byte ShareID of the share being
advertised. Hosts on the LAN receiving the packet will drop
it if the ShareID is not of interest to them. Any host that has
an interest will respond with a UDP packet to the port
advertised. The response does not have a BSYNC header
present and the data field only contains the PeerID of the
responding peer. This discovery is restricted to Path ‘A’ in
Fig. 2.

2. Tracker – The option “Use Tracker” causes the client
to search for peers by requesting a peer list from the
tracker located at t.usyncapp.comwhich was resolves
to three IP addresses:
� 54.225.100.8
� 54.225.92.50
� 54.225.196.38

These three IP addresses are each hosted on Amazon’s
EC2 cloud service. The client sends a get_peers request to
the tracker server (as can be seen in Fig. 4). When this
request is received, the client’s IP addresses gets added to
the list of active peers available for that particular ShareID
on the tracker. The path to the tracker server taken by the
peers is displayed as Path ‘B’ of Fig. 2. The information keys
contained in the get_peersmessage are shown in Table 3.
The peer discovery response, as displayed in Fig. 5 consists
of a list of bencoded IP:Port:PeerID:ShareID entries
identifying the known peers with the same secret. Due to
the fact that the client only requests this list for a secret it
already possesses, the response from the server will always
contain at least one active peer, i.e., the requesting client’s
information.

3. Distributed Hash Table (DHT) – The client can be set to
perform peer discovery using a DHT. Using this option,
Fig. 3. BTSync multicast “Seeker” packet.

Fig. 5. BTSync tracker response packet.

Fig. 4. BTSync tracker request packet.

J. Farina et al. / Digital Investigation 11 (2014) S77–S86S82
any peer will register its details in the form of SHA-

1(Secret):IP:Portwith other peers, even those that
do not participate in the swarm. Using this option a user
can avoid using any form of tracking server but theymay
find that peer discovery is slower or less complete.

4. Known Peers – The final, and least detectable, method of
peer discovery is the option to ‘‘Use Predefined

Hosts’’. The user can add a list of IP address:Port
combinations to the share preferences. This list of peers
will be contacted directly without any lookup with a
BSYNC packet containing a ping message type.

Data transfer

Similar to peer discovery methods, BTSync allows the
user to configure a number of options that affect how data
is transferred between peers:

1. No options set (Path ‘A’ in Fig. 2). The seeding host will
attempt to communicate directly with the replication
target (the leecher). This traffic is encrypted by default if
it travels outside the local LAN. There is an option in the
application preferences to enable or disable encryption
of LAN traffic as well if the user prefers.

2. If the communication between the hosts is blocked for
some reason, usually if the hosts are on different net-
works protected by firewalls or in segments or subnets
of the same LAN locked down by inbound Access Control
Lists, the option ‘‘Use Relay Server when

required’’ will allow the traffic to bypass these re-
strictions if possible (this is represented by Path ‘C’ in
Fig. 2). The relay server, located at r.usyncapp.com

resolves to:
� relay-01.utorrent.com (67.215.229.106)
� relay-02.utorrent.com (67.215.231.242)

These packets are sent via UDP to port 3000 and contain
“ping” messages, as can be seen in Fig. 6. These ping mes-
sages contain a 20 byte PeerID and a 32 byte ShareID
Table 3
Component fields for request packet.

Key Explanation

d: [The Entire Dictionary]
la: [IP:Port in Network-Byte Order]
m: [Message Type Header, e.g., get_peers]
peer: [Local Peer ID]
share: [Local Share ID]
e: [End]
derived from the secret key. After the initial handshake
with the relay server the relay negotiates the data trans-
mission session with the remote peer. This negotiation in-
volves exchange of the 16 byte “nonce” (a one off value
used for encryption purposes) and a map of the availability
of the file parts, as can be seen in Fig. 7. Once the handshake
is complete, the next packet contains the 160 bit public key
and the encrypted transfer of data begins. The re-
sponsibility for the actual data transfer is retained by the
individual clients and only metadata and ping packets are
sent unencrypted.

BTSync keys

When a share is created by a seeder, a master key is
generated. This is the “all access”, or read/write (RW), key
that allows the owner of the share to add, remove or
modify the contents of the share. The only scenario when
this key should be distributed to another peer is when that
peer is a trusted collaborator or when that peer is meant as
a secondary source of content as opposed to a backup or
repository. Read/write Keys can be recognised by the initial
character ‘A’ at the beginning of the 33 character “secret”
string. All keys are stored in plaintext in the bencoded block
describing the corresponding share in the sync.dat file.
From the master key, three other types of keys can be
derived:

1. Read Only – The read-only (RO) key allows the receiving
user to read the data being synchronised but not to
modify or change the content on the source in any way.
If, for some reason, a file in the share is modified or
deleted on the local read-only host, its invalidate flag
in the<shareID>.db-wal file is switched from a value
of 0 to a value of 1. The result of this is that the file will no
longer be synchronised from the source, even if the
Fig. 6. BTSync relay request packet.

Fig. 7. BTSync relay nonce exchange packet.

J. Farina et al. / Digital Investigation 11 (2014) S77–S86 S83
version on the source is updated or the local copy is
deleted. RO keys are recognisable by the starting char-
acter ‘B’ prepended to the 32 character secret string. It
should be noted that this was originally the character ‘R’
but it was changed with post alpha releases.

2. 24 Hour – The 24h key can be either a RO or RW key that
has a time limit of 24h before it expires and cannot be
used. The 24h time limit refers to the time during which
the remote peer must use the key to gain access to the
share. Once used successfully the peer will have
continued access until the share is deleted or the source
changes the authentication key. 24h keys start with the
character ‘C’. These key types are useful for security as
they are only vulnerable to a third party interception for
a limited period of time. The key stored in sync.dat is
not the 24h key, it is the corresponding, non-expiring
RW or RO equivalent.

3. Encrypted – There is an encrypted key that can be
generated that creates an encrypted repository on the
remote peer. The files synchronised are stored in their
encrypted state remotely and cannot be read by the
operator of the remote machine unless they are given
the decryption key as well. This type of key is only
possible to produce if the developer API has been
installed and further analysis is outside the scope of this
paper. Investigators should be aware that an encryption
key is recognisable by the character ‘D’ at the start of the
33 character sequence.

In addition to the key strings, BTSync gives users the
option of creating a RW or RO QR code that they can scan
into a mobile application if preferred. Seeders must be very
careful about what keys they distribute and to whom they
are distributed. A RW key sent to the wrong person could
subvert the assurance of file integrity and negate many of
the benefits of BTSync over a shared folder hosted at a
neutral location.

Sample keys taken from the same BTSync Share:
RW: ACHY3VFJZ3RJ3DE2CHPUGE6W7EZSRA3OR
RO: BY6G6B7KIBGELLXE2RL65C34CAGPV7LUJ
24h RW: CBJIK32CLMWF2P7JLFYRGC3JRTEZ6JLPU
24h RO: CCYGZN6R67O67QB7HGLL4F5BAVA3AJ5LC
Sources of interest to forensic investigation

To determine what can be found without resorting to
specialist forensic utilities the BTSync application was
installed and three folders were synchronised. The default
settings were chosen at installation which include:

� BTSync runs at startup.
� BTSync service icon in the system tray (right click to

hide).
� BTSync shortcut placed on the desktop of the All Users

profile.
� BTSync added to the “All Users” profile quick launch.

In order to gather sample network data, three separate
synchronisations were set up and monitored:

1. To $Volume$\Documents and Settings\[User]

\Desktop\sharedfolder from a separate Linux
laptop on the same LAN.

2. From $Volume$\Documents and Settings\[User]

\Desktop\sf2 on localhost to a separate Linux laptop
on the same LAN.

3. Performed using a secret key posted on Reddit (Reddit,
February 2014). The folder advertised itself as contain-
ing Gameboy ROMs with the read-only shared key of
“RUAM2ED5ISKYR7LVELNVX56LLHQ47GBOZ”. The
application does not provide an indication as to what
size the remote folder is or what files it contains before
commencing the download.

Aseach folderwas sharedandassigneda secret key (either
generated locally or copied from another source) a file was
created in the folder: $Volume$\Documents and Set-

tings\[User]\Application Data\BitTorrent Sync\

with the ShareID of the folder created. This is the same share
ID found in thefile.SyncID created in the share folder itself.

The name of the db files created when the shared folder
was added to BTSync consisted of the contents of the
.SyncID file (35F762999B1275C0F894F3D5FBAC7059-
F76783ED). This is the 20 byte share code that gets adver-
tised to t.usyncapp.com when BTSync sends out its
get_peer message, as can be seen in Fig. 4.

As each synchronisation was run, the BTSync logfile
located at $Volume$\Documents and Settings\[U-

ser]\Application Data\Bittorrent Sync\syn-

c.log is updated to record events. A sample of what this
log filed contains is outlined in Table 4. The behaviour seen
in the sync.log file corresponds with that observed in the
captured network activity and the system activity recorded.

Table 5 presents the system activity logged during the
synchronisation process. This was performed in a monitored
session whereby a text file named “sample3.txt”was created
on the sourcehost (seeder) and then the read/write secretwas
shared to the prepared receiving folder on the repository
(leecher). The synchronization process is shown from the
point where apply was clicked on the repository. In the table
AppData is shorthand for wUser\Application Data\-

Bittorrent Sync and Share represents the path to the
folder that has been allocated to receive the data. In this
particular instance it is C:\Documents and Settings\

User\Desktop\sharedfolder.
The shared folder is populated with the application

control files and the 20 byte shareID is written to the

Table 6
Created BTSync registry keys during installation.

HKCR \Applications BTSync.exe \shell \open \command
HKCU \Software \Classes \Applications \BTSync.exe \shell \open

\command
HKCU \Software Microsoft \Windows \CurrentVersion \Run
HKCU \Software \Microsoft Windows \ShellNoRoam \MUICache
HKLM \SOFTWARE \Microsoft \ESENT \Process \BTSync \DEBUG

<––if debug log enabled
HKLM SOFTWARE \Microsoft \Windows \CurrentVersion \Uninstall

BitTorrent Sync
HKLM \SYSTEM \ControlSet001 Services \SharedAccess \Parameters

\FirewallPolicy \StandardProfile \AuthorizedApplications \List
value: (C: \Program Files \BitTorrent Sync

\BTSync.exe:*:Enabled:BitTorrent Sync)
HKU S-1-5-21.-1003 \Software Classes \Applications \BTSync.exe
HKU \S-1-5-21.-1003 \Software \Classes \Applications \BTSync.exe

shell \open \command
HKU \S-1-5-21.-1003 \Software \Microsoft Windows \Current

Version \Run
HKU \S-1-5-21.-1003 \Software \Microsoft \Windows \ShellNo

Roam \MUICache
HKU \S-1-5-21.-1003_Classes \Applications \BTSync.exe \shell \

open \command
C: \Program Files \BitTorrent Sync \BTSync.exe
C: \Documents and Settings \All Users \Desktop \BTSync.lnk

Table 4
Sample contents of BitSync log file.

[2013-12-01 12:41:33] Loading config file version 1.1.82
[2013-12-01 12:41:33] Loaded folder \\?\wUser\BTSync
[2013-12-01 12:41:33] Loaded folder \\?\wUser\Desktop\sharefolder
[2013-12-01 12:41:33] Loaded folder \\?\wUser\Desktop\sf2
[2013-12-01 12:43:44] Got ping (broadcast: 1) from peer

192.168.0.11:27900
(00DC0AC2F0F91921AE29FC5E8F2273828BBAC747) for share
35F762999B1275C0F894F3D5FBAC7059F76783ED

[2013-12-01 12:43:44] Found peer for folder
\\?\wUser\Desktop\sharefolder
00DC0AC2F0F91921AE29FC5E8F2273828BBAC747
192.168.0.11:27900 direct:1

[2013-12-01 12:43:45] Sending broadcast ping for share
55045F90CA4C1A42DDB78DCD132F3ACC33E946EC

[2013-12-01 12:43:45] Requesting peers from server
[2013-12-01 12:43:45] Sending broadcast ping for share

35F762999B1275C0F894F3D5FBAC7059F76783ED

J. Farina et al. / Digital Investigation 11 (2014) S77–S86S84
.SyncID file.The database files are created in the User
application data folder. The filenames used for these data-
base files are the same as the ShareID stored in the
.SyncID file. .SyncIgnore is created in the share folder
and 822bytes are written to it. The data written are the
explanation of the file’s purpose and usage as well as a
short list of files usually generated by an Operating System.

Next the synchronization process starts with the crea-
tion of sync.dat.new which will be renamed to
sync.dat and eventually sync.dat.old as subsequent
synchronisations take place. The <ShareID>.db-wal file
is created to act as a holding area for data to be written to
the SQLite database file of the same name. Next the data is
received and written to a synchronisation delta file in
preparation for merging into a fully synchronized text file.
File data waiting merger can be identified by the extension
!sync and !sync(X).

The registry keys outlined in Table 6 were found after
installation.

Next a file was deleted from the remote host and 10 min
were given to ensure the local host had synchronised
Table 5
Example file I/O during the Client’s synchronisation procedure.

Action File I/o Path

Create .SyncID 20B Share

Create <ShareID>.db AppData

Create <ShareID>.db-journal AppData

Write <ShareID>.db-journal 512B AppData

Write <ShareID>.db 3KB AppData

Delete <ShareID>.db-journal AppData

Create .SyncIgnore 822B Share

Create sync.dat.new 822B AppData

Rename sync.dat to

sync.dat.old

450B AppData

Rename sync.dat.new to

sync.dat

822B AppData

Create <ShareID>.db-wal AppData

Create sample3.txt.!sinc 33B Share

Rename sample3.txt.!sinc to

sample3.txt.!sinc.

33B Share

Write sample3.txt.sync.sync1 33B Share

Rename sample3.txt.sync.sync1

to:sample3.txt
Share
completely. While the file had been removed completely
from the original host, on the local host it was instead
moved from the main folder to a hidden subfolder
(.SyncArchive) and not moved to the recycle bin. It is
unknown at this time if there is any trigger or flag set that
would result in this hidden file being deleted completely off
the system. If not, then a remote host could theoretically
constantly add and remove files to a synchronisation folder
in order to deliberately occupy space on the local host with
hidden files and so perform a form of low-tech denial of
service attack by filling local storage.

BTSync does not come with any uninstaller of its own
and must be removed from the Control panel. After unin-
stall the systemwas rebooted to ensure that the service had
stopped running and any post uninstall clean-up had been
performed, file locks cleared etc. A number of associated
registry keys were still present, as outlined in Table 7.

In addition to this, all shared file folders used in syn-
chronisations were still present as well as the default
BTSync share created at install. The application folder was
also still present in the $Volume$\Documents and Set-

tings\[User]\Application Data folder but the syn-
c.log file had been emptied.

As well as registry keys BTSync creates several other
files that may be of interest to the forensic investigator.
These files are located in the directory $Volume$\Docu-

ments and Settings\[User]\Application Data\-

Bittorrent Sync\. The contents of each file is outlined
below:

� <40 character share ID number>[.db, .db-shm,

.db-wal] – These files contribute to a SQLite3 data-
base. The database describes the contents of the share
directory corresponding to the share ID. It contains fil-
enames, transfer piece registers and hash values for
each individual file and its constituent pieces. While the
.db file stores information on the schema of the database

Table 7
Registry keys Remaining after uninstallation.

HKCR \Applications BTSync.exe \shell \open \command
HKCU \Software \Classes \Applications \BTSync.exe \shell \open

\command
HKCU \Software Microsoft \Windows \CurrentVersion \Run
(“C: \Program Files \BitTorrent Sync \BTSync.exe”/MINIMIZED)
HKCU \Software Microsoft \Windows \ShellNoRoam \MUICache
HKLM \SOFTWARE \Microsoft ESENT \Process \BTSync \DEBUG
(BTSync Rot 13 encoded¼OGflap)
HKCU \Software \Microsoft Windows \CurrentVersion \Explorer

\UserAssist \75048700-EF1F-11D0-9888-006097DEACF9 \Count
Key¼HRZR_EHACNGU:P: \Qbphzragf naq Frggvatf \BFv \Qrfxgbc
\OGFlap.rkr

HKU \S-1-5-21.-1003 \Software \Microsoft Windows \Current
Version \Explorer \UserAssist \75048700-EF1F-11D0-9888-
006097DEACF9 \Count Key¼HRZR_EHACNGU:P: \Qbphzragf naq
Frggvatf \BFv \Qrfxgbc \OGFlap.rkr

J. Farina et al. / Digital Investigation 11 (2014) S77–S86 S85
the db-wal file contains bencoded entries for each file
within the share in the format:

<Filename>:invalidated1:main.
hash:<20 byte hash>:mtime:

<timestamp of modification time>:npieces1:

owner20:<20 byte PeerID of the Seeder>:

path < path to file within share>

perm:420:size<bytes>:state1:timestamp:type1.
pvtime0:sig:<32 byte signature><filename>

� settings.dat – This is a bencoded file with a fileguard
key (this key is a salted hash value ensuring that the file
has not been edited by another tool besides the BTSync
application itself). This file contains a log of settings for
the application including the settings used to generate
the Cryptographic keys and the registered URLs for peer
searches.

� sync.dat – This is a bencoded file with a fileguard key.
This file lists what files have been synchronised across
the network. The directory paths and the shared secret
used can be recovered from this file. This file is perhaps
of most interest to the investigator due ot the large
amount of timestamped and option recording it con-
tains. Each share has an entry that is laid out in the
following style:

path:<full path to share folder>:

secret:<33 character Key>:

pub_key:<32 byte ShareID used in Relay

messages>:

stopped_by_user[0j1]:
use_dht[0j1]:use_lan_broadcast[0j1]:
use_relay[0j1]:use_tracker[0j1]:
use_known_hosts[0j1]:
known_hosts:<contents of known hosts

option>:

peers:<list of peerIDs involved in sync>:

last_sync_completed<timestamp>:

invites<list of swarm invites received>:

folder_type0:

delete_to_trash[0j1]:
mutex_file_initialized[0j1]:
directTotal<IO direct to/from peer>:

relayTotal<IO total between peer and relay>

� settings.dat.old – This is the previous settings file.
BTSync rotates through two settings generations delet-
ing the old file when it is time to update with new data.

Recovering destroyed evidence

A number of the above artefacts prove that BTSync was
installed on a client machine. It is possible that some or all
of the incriminating files themselves may prove unrecov-
erable from the local hard disk due to anti-forensic mea-
sures. Should the secret be recovered for a given share, it is
possible that a synchronisation of the suspect secret will
enable the forensic investigator to recover this lost infor-
mation from any other nodes still active in the share.
Regular file system forensic analysis identifying synchro-
nisation artefacts left behind from a particular share com-
bined with this subsequent data synchronisation can prove
that the suspect machine was involved in the sharing of
incriminating material. Like any other digital investigation,
the evidence gathered from the synchronisation process
should be collected into a suitable digital evidence bag. Due
to the value of BTSync metadata in the recovery of files
stored remotely, a suitable P2P oriented evidence bag
should be selected, such as that proposed by Scanlon and
Kechadi (Scanlon and Kechadi, 2014). The after-the-fact
recovery of data from remote machines is beyond the
scope of this paper.

Conclusion

This paper gave a first look at a new use for a popular
and widespread file synchronisation protocol. BTSync is
not intended to replace BitTorrent as a file dissemination
utility. However, it is still being used for this purpose. This
is facilitated though websites publicly providing shared
secrets, e.g., Reddit (Reddit, February 2014), as a form of
dead-drop. The developers of the application describe it as
an end-to-end encrypted method of transferring files
without the use of a third party staging area. The reason
for this is to try and ensure that the content and personal
details remain hidden from unauthorised access. Initial
analysis of the installation procedure identified files most
likely to be of use to a forensic examiner confronted with a
suspect live system or image running BTSync. However
while the presence of a SyncID hidden folder can explain
how a file was transferred to a system there is currently no
way known outside of the application itself to determine
the file’s origin or any further synchronisation points.
From an investigative perspective, the decentralised na-
ture of BTSync will always leave an avenue of gathering
information identifying nodes sharing particular content
(while providing many desirable redundancy and resil-
ience against attack).

For the digital investigator working on a case involving
BTSync, the description of the registry keys and files out-
lined can aid in identifying the content that may have been
present on the local machine. Seeing as though BTSync

J. Farina et al. / Digital Investigation 11 (2014) S77–S86S86
merely requires any user wishing to join a particular
synchronised folder to have the key, an investigator could
also join the shared folder to download the data having
recovered the corresponding files through hard drive
analysis. Subsequent monitoring of the network commu-
nications using common tools, e.g., WireShark, tcpdump or
libpcap, can aid in the identification of other nodes syncing
the same content. In a number of investigative scenarios,
this may focus the investigation in a beneficial direction
resulting in the discovery of additional pertinent evidence
or additional suspects.

Future work

From this initial analysis of the BTSync system, much
further work needs to be done. The following list amounts
to the list of areas for future investigation:

� Network Analysis – Identification of BTSync traffic and
subsequent analysis to determine differentiation from
standard BitTorrent traffic.

� Investigation Utility – A standalone application to
extract relevant information from a suspect live or
imaged machine running BTSync.

� Automated Share Detection – Identifying BTSync shares
advertised by BTSync clients and detecting network
activity to or from known locations.

� Crawling – To systematically follow connections to or
from a share and identify new connections as they are
discovered.

� Enumeration – Identifying individual shares and all
active swarmmembers by the participating IP addresses
and peer identifiers.

� Geolocation – Geolocating identified IP addresses may
prove pertinent to recovering additional evidence
regarding the suspect or may aid in the identification of
others involved.

� API Analysis – Testing the provisioned API to determine
what features can be leveraged to assist in forensic
investigations.

� Recovery of Deleted Shares – In the scenario where a
suspect has securely deleted any incriminating evidence
from the local machine, the identification of trace in-
formation on the machine may result in the evidence
being recoverable from other remote hosts. Due to Bit-
Torrent’s reliance on regular hashing for file distribu-
tion, the resultant hashes of remotely gathered files may
be resolvable to the suspect’s machine.
References

BitTorrent Inc. BitTorrent Sync User Manual [Online; accessed February
2014], http://www.bittorrent.com/help/manual/; 2013a.

BitTorrent Inc. BitTorrent Sync Developer API [Online; accessed February
2014], http://www.bittorrent.com/sync/developers/api; 2013b.

BitTorrent Inc. BitTorrent Sync Article [Online; accessed February 2014],
http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-
million-user-mark/; 2013c.

Chung H, Park J, Lee S, Kang C. Digital forensic investigation of cloud
storage services. Digit Investig 2012;9(2):81–95.

Cohen B. Incentives build robustness in bittorrent. In Proceedings of the
Workshop on Economics of Peer-to-Peer systems, Vol. 6; 2003.
pp. 68–72.

Cohen B. The BitTorrent Protocol Specification and Enhancement Pro-
posals [Online; accessed February 2014], http://www.bittorrent.org/
beps/bep_0000.html; 2014.

Drago I, Mellia M, Munafo MM, Sperotto A, Sadre R, Pras A. Inside
dropbox: understanding personal cloud storage services. In: Pro-
ceedings of the 2012 ACM Conference on Internet Measurement
Conference. IMC ’12. New York, NY, USA: ACM; 2012, ISBN 978-1-
4503-1705-4. pp. 481–94.

Karakaya M, Korpeoglu I, Ulusoy O. Free riding in peer-to-peer networks.
Internet Comput IEEE 2009;13(2):92–8. http://dx.doi.org/10.1109/
MIC.2009.33.

Quick D, Choo KKR. Forensic collection of cloud storage data: does the act
of collection result in changes to the data or its metadata? Digital
Investigation 2013a;10(3):266–77.

Quick D, Choo KKR. Google drive: forensic analysis of data remnants.
Journal of Network and Computer Applications 2013b;40:179–93.

Quick D, Choo KKR. Digital Droplets: microsoft SkyDrive forensic data
remnants. Future Generation Computer Systems 2013c;29(6):1378–
94.

Reddit. BTSecrets [Online; accessed February 2014], http://www.reddit.
com/r/btsecrets; 2013.

Scanlon M, Kechadi MT. Digital evidence bag selection for P2P network
investigation. In: Future information technology. Springer; 2014.
pp. 307–14.

Scanlon M, Hannaway A, Kechadi MT. A week in the life of the Most
Popular BitTorrent Swarms. In: 5th Annual Symposium on Informa-
tion Assurance (ASIA’10); 2010.

Stutzbach D, Rejaie R. Understanding churn in peer-to-peer networks. In:
Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement. IMC 06. New York, NY, USA: ACM; 2006, ISBN 1-
59593-561-4. pp. 189–202. http://dx.doi.org/10.1145/1177080.
1177105.

Wang H, Shea R, Wang F, Liu J. On the impact of virtualization on
dropbox-like cloud file storage/synchronization services. In: Pro-
ceedings of the 2012 IEEE 20th international workshop on quality of
service, vol. 11. IEEE Press; 2012. pp. 1–9.

http://www.bittorrent.com/help/manual/
http://www.bittorrent.com/sync/developers/api
mailto:http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
mailto:http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref4
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref4
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref5
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref5
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref5
mailto:http://www.bittorrent.org/beps/bep_0000.html
mailto:http://www.bittorrent.org/beps/bep_0000.html
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref7
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref7
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref7
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref7
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref7
http://dx.doi.org/10.1109/MIC.2009.33
http://dx.doi.org/10.1109/MIC.2009.33
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref9
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref9
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref9
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref10
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref10
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref11
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref11
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref11
mailto:http://www.reddit.com/r/btsecrets
mailto:http://www.reddit.com/r/btsecrets
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref13
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref13
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref13
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref14
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref14
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref14
http://dx.doi.org/10.1145/1177080.1177105
http://dx.doi.org/10.1145/1177080.1177105
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref16
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref16
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref16
http://refhub.elsevier.com/S1742-2876(14)00015-2/sref16

	BitTorrent Sync: First Impressions and Digital Forensic Implications
	Introduction
	Contribution of this work

	Background
	BitTorrent file sharing protocol
	BitTorrent Sync

	Related work
	Forensic analysis of cloud synchronisation clients
	Cloud file synchronisation services

	BTSync application & protocol analysis
	BTSync client activity
	Data transfer
	BTSync keys

	Sources of interest to forensic investigation
	Recovering destroyed evidence

	Conclusion
	Future work

	References

