Agilent Technologies
Signal Generators

E4428C/38C ESG RF
E8663B/E8663D PSG RF Analog
N5161A/62A/81A/82A MXG RF
E8257D/67D PSG Microwave
N5183A MXG Microwave

Programming Guide

(With Remote Operation
and File Downloads)

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2006 - 2013

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation

into a foreign language) without prior agree-

ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.
Manual Part Number

E8251-90355

Edition
October 2013
Printed in USA

Agilent Technologies, Inc.
3501 Stevens Creek Blvd.
Santa Clara, CA 95052 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Soft-
ware and technical data rights granted to
the federal government include only those
rights customarily provided to end user cus-
tomers. Agilent provides this customary
commercial license in Software and techni-
cal data pursuant to FAR 12.211 (Technical
Data) and 12.212 (Computer Software) and,
for the Department of Defense, DFARS
252.227-7015 (Technical Data - Commercial
Items) and DFARS 227.7202-3 (Rights in
Commercial Computer Software or Com-
puter Software Documentation).

Safety Notices

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.

Programming Guide

Contents

Getting Started with Remote Operation

Programming and Software/Hardware Layers. i 2
Interfaces e 3
10 Libraries and Programming Languages. it 4
Agilent 10 Libraries Suite 5
Windows XP, 2000 Professional and Vista Business Agilent 10 Libraries 15.0 (and Newer). .6
Windows NT and Agilent 10 Libraries M (and Earlier) 8
Selecting 10 Libraries for GPIB. e 10
Selecting 10 Libraries for LAN e 10
Programming Languages. e e e e 11
Using the Web Browser. 11
Modifying the Signal Generator Configuration 13
Enabling the Signal Generator Web Server 14
Preferences L 19
Configuring the Display for Remote Command Setups (Agilent MXG). 19
Configuring the Display for Remote Command Setups (ESG/PSG) 20
Getting Help (Agilent MXG) e e e 20
Getting Help (ESG/PSG). o e e 20
Setting the Help Mode (ESG/PSG) e e e e e 21
Troubleshooting 22
Error Messages o e e 23
Error Message File e 23
Error Message Types. o o o o i i i e e e e e 24

Using 10 Interfaces

Using GPIB e 25
Installing the GPIB Interface e 25
Set Up the GPIB Interface e 27
Verify GPIB Functionality. e 28
GPIB Interface Terms e e e 29
GPIB Programming Interface Examples e 29
Before Using the GPIB Examples. e 29
Interface Check using HP Basic and GPIB. 29
Interface Check Using NI-488.2 and C++. 30
Using LANo e e 31
Setting Up the LAN Interface e 32
Setting up Private LAN e e 36
Verifying LAN Functionality e 36
Using VXI-11 e e 42
Using Sockets LAN 43

Contents

Using Telnet LAN e e e e e e e e e 44
Using FTP e 48
Using LXI. o e 50
Using RS-232 (ESG and PSG Only). e e e e 61
Selecting 10 Libraries for RS-232 62
Setting Up the RS-232 Interface. 63
Verifying RS-232 Functionality e 65
Character Format Parameters. e 66
If You Have Problems e 66
RS-232 Programming Interface Examples. L 66
Before Using the Examples e 66
Interface Check Using HP BASIC it 67
Interface Check Using VISA and C i, 67
Queries Using HP Basic and RS-232 e 68
Queries for RS-232 Using VISA and C. it 68
Using USB (Agilent MXG) o e e e 69
Selecting I/O Libraries for USB e 70
Setting Up the USB Interface. 70

Programming Examples

Using the Programming Interface Examples 73
Programming Examples Development Environment. 74
Running C++ Programs e e e 74
Running C# Examples. e 75
Running Basic Examples e 75
Running Java Examples. e 76
Running MATLAB Examples. e e e e e e 77
Running Perl Examples e 77

Using GPIB e 77
Installing the GPIB Interface Card 77

GPIB Programming Interface Examples 78
Before Using the GPIB Examples e, 78
GPIB Function Statements (Command Messages) o v v v i v i i i ittt e oo 78
Interface Check using HP Basic and GPIB 82
Interface Check Using NI-488.2 and C++ it 83
Interface Check for GPIB Using VISA and C., 84
Local Lockout Using HP Basic and GPIB, 85
Local Lockout Using NI-488.2 and C++. i 86
Queries Using HP Basic and GPIB. 88
Queries Using NI-488.2 and Visual C++ 89

Contents

Queries for GPIB Using VISA and C ittt 91
Generating a CW Signal Using VISA and C. 93
Generating an Externally Applied AC-Coupled FM Signal Using VISA and C. 95
Generating an Internal FM Signal Using VISA and C. 97
Generating a Step-Swept Signal Using VISA and C++ 99
Generating a Swept Signal Using VISA and Visual C++ 100
Saving and Recalling States Using VISA and C. 102
Reading the Data Questionable Status Register Using VISA and C. 105
Reading the Service Request Interrupt (SRQ) Using VISAand C. 109
Using 8757D Pass-Thru Commands (PSG with Option 007 Only). 113
LAN Programming Interface Examples e 116
VXI-11 Programming. 00ttt e e e e e e e e e e e e 116
VXI-11 Programming Using SICL and C++. 117
VXI-11 Programming Using VISA and C++. 118
Sockets LAN Programming and C 120
Queries for Lan Using Sockets e 123
Sockets LAN Programming Using Java, 143
Sockets LAN Programming Using Perl 145
TCP-IP (LAN) Programming Using Matlab. 146
RS-232 Programming Interface Examples (ESG/PSG Only). 152
Before Using the Examples. e 152
Interface Check Using HP BASIC i 152
Interface Check Using VISA and C 153
Queries Using HP Basic and RS-232 155
Queries for RS-232 Using VISA and C 157

Programming the Status Register System

OVEIVIEW . . . o i e e e e e e e e e 159
Overall Status Byte Register Systems 161
Status Register Bit Values e 168
Example: Enable a Register e 168
Example: Query a Register. 168
Accessing Status Register Information L L 169
Determining What to Monitor. 169
Deciding How to Monitor. e e 169
Status Register SCPI Commands i, 171
Status Byte Group 175
Status Byte Register e e e 176
Service Request Enable Register 176
Status GroUPS o v o e e e e e 177

Contents

5

Standard Event Status Group. e 178
Standard Operation Status Group it e 180
Baseband Operation Status Group. i e 183
Data Questionable Status Group e 185
Data Questionable Power Status Group e 189
Data Questionable Frequency Status Group. 192
Data Questionable Modulation Status Group, 195
Data Questionable Calibration Status Group, 198
Data Questionable BERT Status Group. i 201

Creating and Downloading Waveform Files

Overview of Downloading and Extracting Waveform Files 206
Waveform Data Requirements. e 207
Understanding Waveform Data 207
Bits and Bytes. e 207
LSB and MSB (Bit Order) e e 208
Little Endian and Big Endian (Byte Order). 208
Byte Swapping e 210
DAC Input Values. e 210
2’s Complement Data Format. e 213
ITand Q Interleaving. e 213
Waveform Structure e e e 215
File Header. e e e 215
Marker File. e 215
I/Q File e 217
Waveform e e e 217
Waveform Phase Continuity 217
Phase Discontinuity, Distortion, and Spectral Regrowth. 217
Avoiding Phase Discontinuities 218
Waveform Memory e e e e e e 220
Memory Allocation. e e e 222
Memory SizZe. o e e e 224
Commands for Downloading and Extracting Waveform Data. 226
Waveform Data Encryption e 226
File Transfer Methods. e 227
SCPI Command Line Structure. it ittt e e 228
Commands and File Paths for Downloading and Extracting Waveform Data 228
FTP Procedures e e 232
Creating Waveform Data e 235
Code Algorithm 235

vi

Contents

Downloading Waveform Data e 241
Using Simulation Software e 242
Using Advanced Programming Languages 244

Loading, Playing, and Verifying a Downloaded Waveform. 247
Loading a File from Non-Volatile Memory. 247
Playing the Waveform e 248
Verifying the Waveform e 249
Building and Playing Waveform Sequences 249

Using the Download Utilities 250

Downloading E443xB Signal Generator Files 251
E443xB Data Format. e e 252
Storage Locations for E443xB ARB files. L 252
SCPI Commands.t e e e e e e e e e e 254

Programming Examples. e e e e 254
C++ Programming Examples e e e 255
MATLAB Programming Examples. e e 277
Visual Basic Programming Examples 292
HP Basic Programming Examples e 297

Troubleshooting Waveform Files 304
Configuring the Pulse/RF Blank (Agilent MXG) 305
Configuring the Pulse/RF Blank (ESG/PSG). i 305

Creating and Downloading User-Data Files

OVEIVIEW . . o . o i i e e e e e e e e e e e e e e 308
Signal Generator MemOTY o i i e e e e e e e 309
Memory Allocation e e 311
Memory Size e e e e e e 312
Checking Available Memory e e e e e e 313
User File Data (Bit/Binary) Downloads (E4438C and E8267D) 315
User File Bit Order (LSB and MSB). e 316
Bit File Type Data 316
Binary File Type Data. 319
User File Size e e 320
Determining Memory Usage for Custom and TDMA User File Data 321
Downloading User Files. 324
Command for Bit File Downloads e 327
Commands for Binary File Downloads, 328
Selecting a Downloaded User File as the Data Source. 329
Modulating and Activating the Carrier 330
Modifying User File Data. 330

vii

Contents

Understanding Framed Transmission For Real-Time TDMA 333
Real-Time Custom High Data Rates. 337
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) 338
Understanding PRAM Files e 339
PRAM File Size e e 342
SCPI Command for a List Format Download. 344
SCPI Command for a Block Data Download 344
Selecting a Downloaded PRAM File as the Data Source. 347
Modulating and Activating the Carrier. 348
Storing a PRAM File to Non-Volatile Memory and Restoring to Volatile Memory 348
Extracting a PRAM File. e 349
Modifying PRAM Files. e 351
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D). 352
Data Requirements. e 352
Data Limitations e 353
Downloading FIR Filter Coefficient Data 354
Selecting a Downloaded User FIR Filter as the Active Filter 354
Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only) 356
Save and Recall Instrument State Files 357
Save and Recall SCPI Commandsttt 357
Save and Recall Programming Example Using VISA and C#. 358
User Flatness Correction Downloads Using C++ and VISA. 368
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only) 372
User File Download Problems. e 372
PRAM Download Problems. e e 373
User FIR Filter Coefficient File Download Problems. 375

viii

1 Getting Started with Remote Operation

CAUTION Agilent does not recommend going backwards in firmware versions (loading older
firmware versions into newer instruments) as hardware/firmware conflicts can result.

NOTE For the N5161A/62A, the softkey menus and features mentioned in this chapter are only
available through the Web-Enabled MXG or through SCPI commands. Refer to “Using the Web
Browser” on page 11 and to the SCPI Command Reference.

The MXG ATE blank front panel models, N5161A and N5162A signal generators, are part of
the MXG instrument family and unless otherwise indicated, all references to the MXG are
inclusive of the MXG ATE instruments.

Full LXI-B feature implementation is only available on instruments with firmware >A.01.50.
A license may be required to enable this feature and to download firmware versions
>A.01.50. For information on new firmware releases, go to
http.//www.agilent.com/find/upgradeassistant.

* Programming and Software/Hardware Layers on page 2
* Interfaces on page 3

e IO Libraries and Programming Languages on page 4

e Using the Web Browser on page 11

e Preferences on page 19

* Error Messages on page 23

Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Programming and Software/Hardware Layers

Programming and Software/Hardware Layers
Agilent MXG, ESG, PSG signal generators support the following

interfaces:
Instrument Interfaces Supported
Agilent MXG GPIB, LAN, and USB 2.0

Agilent PSG?

GPIB, LAN, and ANSI/EIA232 (RS-232) serial connection

Agilent ESG

GPIB, LAN, and ANSI/EIA232 (RS-232) serial connection

a.The PSG's AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial
connection but GPIB and LAN are recommended for making faster measurements and when
downloading files. Refer to “Using RS—232 (ESG and PSG Only)” on page 61 and the User’s Guide.

Use these interfaces, in combination with IO libraries and programming languages, to remotely
control a signal generator. Figure 1-1 uses GPIB as an example of the relationships between the
interface, IO libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView, VEE, etc.

VISA
) National Instruments
Agilent VISA VISA
. National Instruments
Agilent SICL NI-488.2 Library
Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Interfaces

Interfaces

GPIB GPIB is used extensively when a dedicated computer is available for remote control of
each instrument or system. Data transfer is fast because GPIB handles information in
bytes with data transfer rates of up to 8 MBps. GPIB is physically restricted by the
location and distance between the instrument/system and the computer; cables are
limited to an average length of two meters per device with a total length of 20 meters.

For more information on configuring the signal generator to communicate over the
GPIB, refer to “Using GPIB” on page 25.

LAN Data transfer using the LAN is fast as the LAN handles packets of data. The single
cable distance between a computer and the signal generator is limited to 100 meters
(100Base-T and 10Base-T).

The Agilent MXG is capable of 100Base-T LAN communication. The ESG, PSG and
E8663B are designed to connect with a 10Base-T LAN. Where auto- negotiation is
present, the ESG and PSG’s can connect to a 100Base-T LAN, but communicate at
10Base-T speeds. For more information on LAN communication refer to
http://www.ieee.org.

The following protocols can be used to communicate with the signal generator over the

LAN:

e VXI-11 (recommended)
* Sockets

¢ TELNET

¢ FTP

The Agilent MXG supports LXI Class B? functionality. For more information on the LXI
standards, refer to http.;//www.lxistandard.org/home.

For more information on configuring the signal generator to communicate over the LAN,
refer to “Using LAN” on page 31.

Agilent Signal Generators Programming Guide 3

Getting Started with Remote Operation
10 Libraries and Programming Languages

RS- 232P RS-232 is an older method used to communicate with a single instrument; its primary
(ESG/PSG/E8663B use is to control printers and external disk drives, and connect to a modem.
Only) Communication over RS-232 is much slower than with GPIB, USB, or LAN because data

is sent and received one bit at a time. It also requires that certain parameters, such as
baud rate, be matched on both the computer and signal generator.

CAUTION For long strings of commands and waveform downloads, upgrading to
Agilent 10 Libraries 15.0 and above can decrease RS-232 performance,
potentially resulting in an Error -310.

NOTE Because GPIB, LAN, and USB offer better communication performance, Agilent
recommends that RS-232 only be used for interactive sessions or short
commands.

For more information on configuring the signal generator to communicate over the
RS-232, refer to “Using RS-232 (ESG and PSG Only)” on page 61.

USB * The rear panel Mini-B 5 pin connector is a device USB and can be used to connect
(Agilent MXG a controller for remote operation.
Only) ¢ The Type-A front panel connector is a host USB and can be used to connect a

mouse, a keyboard, or a USB 1.1/2.0 flash drive.

USB 2.0’s 64 MBps communication speed is faster than GPIB (for data transfers, >1 KB)
or RS-232. (For additional information, refer to the Agilent SICL or VISA User’s Guide.)
But, the latency for small transfers is longer.

For more information on connecting the signal generator to the USB, refer to the
“Agilent I0 Libraries Suite” on page 5 and the Agilent Connection Expert in the Agilent
10 Libraries Help.

For more information on configuring the signal generator to communicate over the USB,
refer to “Using USB (Agilent MXG)” on page 69.

a.LXI Class B Compliance testing using IEEE 1588-2008 not available at release.

b.The ESG and PSG's AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial connection but GPIB and LAN are
recommended for making faster measurements and when downloading files. Refer to “Using RS—232 (ESG and PSG Only)” on page 61 and
the User’s Guide.

10 Libraries and Programming Languages

The IO libraries is a collection of functions used by a programming language to send instrument
commands and receive instrument data. Before you can communicate and control the signal
generator, you must have an IO library installed on your computer. The Agilent IO libraries are
included on an Automation-Ready CD with your signal generator and Agilent GPIB interface board,
or they can be downloaded from the Agilent website: http.//www.agilent.com.

4 Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

CAUTION For long strings of commands and waveform downloads, upgrading to Agilent 10
Libraries 15.0 and above can decrease RS-232 performance, potentially resulting in an
Error -310.

NOTE To learn about using IO libraries with Windows XP or newer operating systems, refer to the
Agilent 10 Libraries Suite’s help located on the Automation-Ready CD that ships with your
signal generator. Other sources of this information, can be found with the Agilent GPIB
interface board’s CD, or downloaded from the Agilent website: http:/www.agilent.com.

To better understand setting up Windows XP operating systems and newer, using PC LAN
port settings, refer to Chapter 2.

Agilent 10 Libraries Suite

The Agilent 10 Libraries Suite replaces earlier versions of the Agilent I0 Libraries. Agilent 10
Libraries Suite does not support Windows NT. If you are using the Windows NT platform, you must
use Agilent 10 Libraries version M or earlier.

Windows 98 and Windows ME are not supported in the Agilent I0 Libraries Suite version 14.1 and
higher.

CAUTION The Agilent MXG’s USB interface requires Agilent 10 Libraries Suite 14.1 or newer. For
more information on connecting instruments to the USB, refer to the Agilent Connection
Expert in the Agilent I0 Libraries Help.

For long strings of commands and waveform downloads, upgrading to Agilent 10
Libraries 15.0 and above can decrease RS-232 performance, potentially resulting in an
Error -310.

NOTE The signal generator ships with an Automation-Ready CD that contains the Agilent 10
Libraries Suite 14.0 for users who use Windows 98 and Windows ME. These older systems
are no longer supported.

Once the libraries are loaded, you can use the Agilent Connection Expert, Interactive 10, or VISA
Assistant to configure and communicate with the signal generator over different I0 interfaces. Follow

Windows NT and XP are registered trademarks of Microsoft Corporation.

Agilent Signal Generators Programming Guide 5

Getting Started with Remote Operation
10 Libraries and Programming Languages

instructions in the setup wizard to install the libraries.

NOTE Before setting the LAN interface, the signal generator must be configured for VXI-11 SCPI.
Refer to “Configuring the VXI-11 for LAN (Agilent MXG)” on page 32 or “Configuring the
VXI-11 for LAN (ESG/PSG)” on page 33.

Refer to the Agilent 10 Libraries Suite Help documentation for details about this software.

Windows XP, 2000 Professional and Vista Business Agilent 10 Libraries 15.0 (and Newer)

NOTE Windows NT is not supported on Agilent 10 Libraries 14.0 and newer.

For additional information on older versions of Agilent IO libraries, refer to the Agilent
Connection Expert in the Agilent I0 Libraries Help. The Agilent IO libraries are included
with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: hitp.//www.agilent.com.

VISA Assistant

VISA is an industry standard IO library APIL It allows the user to send SCPI commands to
instruments and to read instrument data in a variety of formats. Refer to the VISA Assistant Help
menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more information.

VISA Configuration (Automatic)
1. Run the VISA Assistant program:

Start > All Programs > Agilent 10 Libraries Suite > Agilent Connection Expert > Tools > Visa Assistant >.
2. Click on the interface you want to use for sending commands to the signal generator.
3. Click the Formatted 1/0 tab.
4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the viPrintf button.

6 Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

Using VISA Configuration (Manual)

Use the Agilent 10 Libraries Suite 15.0, to perform the following steps to use the Connection Expert
and VISA to manually configure an interface.

1. Run the Agilent Connection Expert program: Start > All Programs > Agilent 10 Libraries Suite > Agilent
Connection Expert >.

2. On the tool bar select the Add Interface button.

3. Click LAN Interface in the Available interface types text box.

4. Click the ADD button.

5. Verify that the Auto (automatically detect protocol) bubble is checked. Click 0.K. to use the default
settings.

6. Click LAN(TCPIPO) in the Instrument1/0 on this PC text box.

7. On the tool bar select the Add Instrument button.

8. Click the Add Address button in the Add LAN Instruments window.

9. Enter the hostname of the instrument or select the Use IP Address check box and enter the IP
address.

10. Click OK.

Agilent Signal Generators Programming Guide 7

Getting Started with Remote Operation
10 Libraries and Programming Languages

Windows NT and Agilent 10 Libraries M (and Earlier)

NOTE Windows NT is not supported on Agilent 10 Libraries 14.0 and newer.

The following sections are specific to Agilent I0 Libraries versions M and earlier and apply
only to the Windows NT platform.

For additional information on older versions of Agilent IO libraries, refer to the Agilent
Connection Expert in the Agilent I0 Libraries Help. The Agilent IO libraries are included
with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: http;//www.agilent.com.

Using 10 Config for Computer-to-Instrument Communication with VISA (Automatic or Manually)

After installing the Agilent I0 Libraries version M or earlier, you can configure the interfaces
available on your computer by using the I0 Config program. This program can setup the interfaces
that you want to use to control the signal generator. The following steps set up the interfaces.

1. Install GPIB interface boards before running I0 Config.

NOTE You can also connect GPIB instruments using the Agilent 82357A USB/GPIB Interface
Converter, which eliminates the need for a GPIB card. For more information, go to
hitp://www.agilent.com/find/gpib.

2. Run the IO Config program. The program automatically identifies available interfaces.

3. Click on the interface type you want to configure, such as GPIB, in the Available Interface Types
text box.

4. Click the Configure button. Set the Default Protocol to AUTO.
Click OK to use the default settings.
Click OK to exit the I0 Config program.

VISA Assistant

VISA is an industry standard IO library APIL It allows the user to send SCPI commands to
instruments and to read instrument data in a variety of formats. You can use the VISA Assistant,
available with the Agilent 10 Libraries versions M and earlier, to send commands to the signal
generator. If the interface you want to use does not appear in the VISA Assistant then you must
manually configure the interface. See the Manual VISA Configuration section below. Refer to the VISA
Assistant Help menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more
information.

8 Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

VISA Configuration (Automatic)

1.
2.
3.
4.

Run the VISA Assistant program.

Click on the interface you want to use for sending commands to the signal generator.
Click the Formatted 1/0 tab.

Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the viPrintf button.

VISA Configuration (Manual)

Perform the following steps to use I0 Config and VISA to manually configure an interface.

1.
2.

© ® N o o ok

Run the 10 Config Program.
Click on GPIB in the Available Interface Types text box.

Click the Configure button. Set the Default Protocol to AUTO and then click OK to use the default
settings.

Click on GPIBO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the GPIB address of the signal generator.

Click the OK button in this form and all other forms to exit the IO Config program.

Agilent Signal Generators Programming Guide 9

Getting Started with Remote Operation
10 Libraries and Programming Languages

Selecting 10 Libraries for GPIB

The IO libraries are included with the GPIB interface card, and can be downloaded from the National
Instruments website or the Agilent website. See also, “IO Libraries and Programming Languages” on
page 4 for information on IO libraries. The following is a discussion on these libraries.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

VISA VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used

for programming the signal generator. The NI-VISA™ and Agilent VISA libraries
are similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level IO libraries; NI-488.2 and SICL
respectively. It is best to use the Agilent VISA library with the Agilent GPIB
interface card or NI-VISA with the NI PCI-GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using SICL
functions will not run on a computer with NI libraries (PCI- GPIB interface card).

NI-488.2 NI-488.2 can be used without the VISA overlay. The NI-488.2 functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using
NI-488.2 functions will not run on a computer with Agilent SICL (Agilent GPIB
interface card).

Selecting 10 Libraries for LAN

The TELNET and FTP protocols do not require IO libraries to be installed on your computer.
However, to write programs to control your signal generator, an IO library must be installed on your
computer and the computer configured for instrument control using the LAN interface.

The Agilent IO libraries Suite is available on the Automation-Ready CD, which was shipped with your
signal generator. The libraries can also be downloaded from the Agilent website. The following is a
discussion on these libraries.

Agilent VISA VISA is an 10 library used to develop IO applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent VISA.

NI-VISA is a registered trademark of National Instruments Corporation.

10 Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

Programming Languages

Along with Standard Commands for Programming Instructions (SCPI) and IO library functions, you
use a programming language to remotely control the signal generator. Common programming
languages include:

o (C/C++

o C#

« MATLAB® (MATLAB is a registered trademark of The MathWorks.)
* HP Basic

¢ LabView

e Java™ (Java is a U.S. trademark of Sun Microsystems, Inc.)

 Visual Basic’ (Visual Basic is a registered trademark of Microsoft Corporation.)
* PERL

e Agilent VEE

For examples, using some of these languages, refer to Chapter 3.

Using the Web Browser

NOTE

The following example for accessing the MXG instrument’s Web-Enabled uses the
instrument’s predetermined default hostname that the MXG ships with (e.g. a-<tnstrument
model number>-<last 5 digits of the instrument serial number>).

The procedure that follows assumes the signal generator is running firmware A.01.20 or
later.

MXG Web-Enabled SCPI command capability is not available for versions of Internet
Explorer >7.0. (The SCPI Telnet softkey is inactive for these versions.) To use the Telnet
SCPI, refer to Figure on page 12.

The Web-Enabled MXG ATE web page is titled: “Web- Enabled MXG”, since the MXG ATE is
part of the MXG signal generator family.

For MXG ATEs, press the front panel LAN Preset key and wait for the front panel green
LAN indicator light to stop blinking. It is possible the hostname may have been changed
from its default value. The MXG ATE hostname is not changed by pressing the LAN Reset
key. For information on using the MXG's USB port to query its IP address, refer to the
Agilent Connectivity Guide (E2094-90009) or to the LAN Connectivity FAQs for details on
using the instrument over LAN.

For more information on LAN Connectivity, refer to the Agilent Connectivity Guide
(E2094-90009) or to the LAN Connectivity FAQs for details on using the instrument over
LAN.

Agilent Signal Generators Programming Guide "

Getting Started with Remote Operation
Using the Web Browser

The instrument can be accessed through a
standard web browser, when it is
connected to the LAN. To access through
the web browser, enter the instrument IP
address or the hostname as the URL in
your browser.

The signal generator web page, shown at
right and page 16, provides general
information on the signal generator, FTP
access to files stored on the signal
generator, and a means to control the
instrument using either a remote

front- panel interface or SCPI commands.
The web page also has links to Agilent’s
products, support, manuals, and website.
For additional information on memory
catalog access (file storing), and FTP, refer
to the User’s Guide and “Waveform
Memory” on page 220 and for FTP, see
“Using FTP” on page 48 and “FTP
Procedures” on page 232.

The Web Server service is compatible with

the Microsoft© Internet Explorer (6.0 and
newer) web browser and operating systems
Windows 2000, Windows XP, and newer.
For more information on using the Web
Server, refer to “Enabling the Signal
Generator Web Server” on page 14.

MG Sigrial Generatar

Welcome by yuor

Woeh-Enabled MXG

Welcame to yeur

Web-Enabled MXG

Information sbout this Wes-Enabled Mo

08 D1 1EL B IRR 11,127, 178330,
TP AT IIRATIATR T 473500
RS LT IR NI

S patvmpat intutmatin dhas this Wee-mablnd 1S

0B) W pabon

gt Technatgies, i EE

T hiadrsA1 121, 52100 - Enter .. [2[F

The Agilent MXG supports LXI Class B*
functionality. For more information on the LXI
standards, refer to http://www.Ixistandard.org/home.

*LXI Class B Compliance testing using IEEE
1588-2008 not available at release.

Entes Password
(Pazawont i curently dafat “agvest”)

Fuent | [Carcal

To operate the signal generator, click the

keys.
o [sie T File J Ence Pracac)
v.uuy wuu wou uo = | ~144.00 WM Seve | Lty | Togger | Lue
ive | Fecali| Heip | Mod On | RF Os§
Froa: H. Tner: 100 000G |

Escioca] 4 P

Seect
I S N

Eglin

A

i | Ehp

Note:

If you do not see this window, check to see if the window is hidden behind
your browser window or your web browser settings are set to block pop-ups.
To use this feature, you need to set your web browser to allow pop-ups for
your instrument’s IP address.

Remote SCPI commands requires the Telnet feature on the computer. The
Telnet feature is available from a variety of sources. Some software updates
can block (break) this Telnet connection (e.g. Internet Explorer 7). When
using Internet Explorer as a browser, only versions <Internet Explorer 7
enable the Web-Enabled MXG SCPI feature.

If the “SCPI Telnet” softkey is not active, to display the SCPI Telnet box:

1) On the PC, click Start > Run

2) In the dialogue box type: Telnet [IP address of MXG] 5024 [This
is the port number for connecting to the MXG.

Note: Telnet port 5023 is available for backwards compatibility (i.e. for
firmware versions <A.01.50).

Agilent Signal Generators Programming Guide

Getting Started with Remote Operation

Modifying the Signal Generator Configuration

Using the Web Browser

NOTE

Use Help with this Page for assistance with the Web-Enabled interface.

1. From the welcome page of the Web-Enabled interface, click View & Modify Configuration to
show the instrument’s currently assigned IP address and other parameters.

Enter the new settings and click Save.

3. Click Renew LAN Settings to cause the new settings to take effect.

Figure 1-2 View & Modify Configuration

WG LIS00000001
Tods W

Micrusstt Insesnet Explores

Fle Edt Vew Fovotes
Q- O 43

doddenss |] hitpe e ris1 62000001

D s om0 (- Ly & ot

Jd 4

B TS RSN [1KG Signal Generator

Current Configuration of MXG

Wadly Cangpisian

Cusrandty In use

Config Type:

Holfa0S Hostapeme:

RS Servicn Name:

eSS Maming:

TP Keep Alive:
TCP Keep Allve Timesst:
DHCP Timesat
SACL Intnrfacn Kame:

H||||H|%EHH|H|HH|%H|g

okl Canfgumian

Microsoft is a registered trademark of Microsoft.

Fle Ed Vew Fooiis

Qo -

Toks e

=
o H@
= |] bt fa-ri12e-00001

nerator

Configuring your MXG

anterich) alsa requine £

vou cick “Renew LAN sa

Mt Vou must cick *Save® before changes f0 parsmeters become effective. Farameters marked with an
Hore changes tabe effect,

EC oo

The lollowing ONS

configuied DNS Ser #eTling
=
R TRt
| MemOs Hosmame: | ANE1E2A O
| miHS Hosiname: | ANSTE2ADO0
TS 5152415 sz
I

oN

o8

oN
o

[ndo Edrs Fiaboot WG Feacicry Defadt
Staeiatoatty | [SiopLanicendty |
Paramater Currantly in use Edit Configuration

(EAUTD CIDHCR CILAUTOHP CIMANUAL

o zsa77
T
wazsars

(CUSE STATIC (3UEE DHCP

Rgiard 1928 KR UEEOOCEEDT

Rgiark 13928 W1 U EEOOCE0T

COFF Eon
DOFF @oN
COFF G0N
DOFF @on

Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

Enabling the Signal Generator Web Server

NOTE Javascript or Active Scripts must be enabled to use the web front panel controls.

1. Turn on the Web server as shown below.

Agilent MXG Web Server On

Utility
’ If necessary, toggle Web Server to

i on.
- . Confirm
i1i I/0 Confi
Utility ___1/0 Config > Eon\f%r“mtthangg
NSLrUmen
1/0 Confios GPIE Setups i Will Feboot)
Aaoenmenty LAN Setups Web Ser‘@ NI

Displagy) '——»» L] SBPEQESS

= SCRI Servicesk

For details on each key, use the key help.

R T =TS (EpENER LHI-E Egnled Refer to “Getting Help (Agilent MXG)” on
page 20 and the User’s Guide. For additional
Inet LI Proceed Hith, SCPI command information, refer to the SCPI
nstrument. Infom Reconf igurat ion Command Reference.
— [N
ESG/PSG Web Server On

Utility If necessary toggle Web Server On
Off to On. ‘

FTP Serwer
0Off

Confirm Chanoe
(Instrument
Will Reboot)

GPIB nddreig Web S
OfFF
Remote Lanouoge, Sockets SCPI
(LRI ofF
RS-232 Setuph VHI-11 SCPI
OFF

LAN Setupk

] For details on each key, use the Key and Data Field
LAN Sergégﬁg- > Reference. For additional SCPI command information,
refer to the SCPI Command Reference.

Natnt,

Proceed With,
Reconf iourat ion

2. Launch the PC or workstation web browser.

14 Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

In the web browser address field, enter the signal generator’s IP address. For example,
hitp://101.101.101.101 (where 101.101.101.101 is the signal generator’s IP address).

The IP (internet protocol) address can change depending on the LAN configuration (see “Using
LAN” on page 31).

On the computer’s keyboard, press Enter. The web browser displays the signal generator’s
homepage.

Click the Signal Generator Web Control menu button on the left of the page. The LXI password
box is displayed on the computer. Refer to the Web- Enabled MXG Help.

Click Submit.
The front panel web page displays.

NOTE If you are experiencing problems with opening the signal generator’s remote front panel
web page, verify that the pop-up blocker is turned off on your web browser.

In some cases the Web-Enabled front panel may appear behind the main browser
window, so you must move the browser window to see the Web-Enabled front panel.

To control the signal generator, either click the front panel keys or enter SCPI commands.

Agilent Signal Generators Programming Guide 15

Getting Started with Remote Operation
Using the Web Browser

FTP enables the transfer of files between
the instrument and a computer. The FTP
access button provides drag-and-drop file
capability.

* gilest Technologies [P RST|

-.-.-,...-«. Welcame to youn

Wehb-Enabled MXG
i e

IntarmEten sbeut This Web-Ensbed MIG

NSl = >
eerm [E Ll > i
= _ =
T e
—
=] e

M &stvanond ntemation sout tes Wah-Enavied KiG:

@ aggers Tesharty e, e 1008

The FTP access softkey opens to show the folders containing the
signal generator’s memory catalog files.

\) \

2 ftp://141.121.91.244/ - Microsoft Internet Explorer provi\led by Agilent Technologies , Inc

File Edit View Favortes Tools Help
ek - @ - (F | O search [rolders | [~
Address (S Fpiff141.121.91,2447 !
OtherBLaEs = AREI ARBG BEGL BEG BIN F
@8 Internet Explorer
S e = =2 = (=
&3 My Metwork Places =] =] =] =] =]
MARKERS NVAREL NYARBD SECUREWAVE SEQ
=)
WAVEFORM

Use the FTP window to drag and drop files from the FTP page to your
computer.

Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

LAN Configuration System Defaults (Agilent MXG)

NOTE The instrument’s LAN configuration system information can be found on the signal
generator’s homepage and on the signal generator. Refer to “Enabling the Signal Generator
Web Server” on page 14 and to “Displaying the LAN Configuration Summary (Agilent MXG)”
on page 18.

If the instrument has been restored to the factory defaults from the LAN Setup menu the signal
generator will revert to the values displayed in Table 1-1 on page 17. Refer to “Displaying the LAN
Configuration Summary (Agilent MXG)” on page 18.

To reset the instrument LXI password to “agilent” and the LAN settings to their factory default
values, press the following key sequence on the signal generator:

Utility > 1/0 Config > LAN Setup > Advanced Settings > More 2 of 2 > Restore LAN Settings to Default Values >
Confirm Restore LAN Settings to Default Values

NOTE There are no SCPI commands associated with this LXI password factory reset.

For more information, refer to the signal generator’s Web Server Interface Help.

Table 1-1 LAN Configuration Summary Values

Parameter Default

Signal Generator LAN Configuration Summary
Hostname: Agilent-<model number>—<last_5_chars_of_serial_number>
Config Type: AUTO

IP Address: 127.0.0.1
Connection Monitoring: On

Subnet : 255.255.255.0
DNS Server Override: Off

Gateway: 0.0.0.0
Dynamic DNS Naming: On

RFC NETBIOS Naming: On

DNS Server: 0.0.0.0

Agilent Signal Generators Programming Guide 17

Getting Started with Remote Operation
Using the Web Browser

Table 1-1 LAN Configuration Summary Values

Parameter Default

TCP Keep Alive: On

Domain Name:? <empty>
TCP Keep Alive Timeout: 1800.0 sec

Signal Generator Web Server Interface

Description: Agilent <model_number> (<serial_number>)
SICL Interface NameP: gpib0
Web Password: agilent

a.The Domain Name defaults to a null field.
b.This information is part of the “Advanced Information about this Web-Enabled <signal generator model number>"

Displaying the LAN Configuration Summary (Agilent MXG)

Confirm Restore Settings to Factory Defaults: Confirming this action configures the
signal generator to its original factory default settings. For informatiqn regarding
those default settings, refer to Table 1-1 on page 17.

Adv Settings ~

Domain Mame

T/0 Config [_Lan Setup 7| Adv_Settings
i Restore LAN
GPIB Setupk Hostname FounEEL fon Settings tok
0Ff .mi Default Walues
- Confio Tupe Duramic Hostname
- . LG ST (fanual)® Seriices”
Utility > 10 Config
LAM Services | Manual Config, TCP Keep Alive,
Setup Settings Setup
Remote Language Advanced OHCP _Timeout
(SCPTYY) — Settings'f > 120.0 sec
- Hore 1 of 2 = |
SCPI command: foceedi it
) Reconf igurat ion
Not applicable |_Tore 2 of 2

For details on each key, use the key help (described in the User’s Guide).

18 Agilent Signal Generators Programming Guide

Preferences

Getting Started with Remote Operation
Preferences

The following commonly-used manual command sections are included here:

“Configuring the Display for Remote Command Setups (Agilent MXG)” on page 19

“Configuring the Display for Remote Command Setups (ESG/PSG)” on page 20

“Getting Help (Agilent MXG)” on page 20

“Setting the Help Mode (ESG/PSG)” on page 21
“Setting the Help Mode (ESG/PSG)” on page 21

Configuring the Display for Remote Command Setups (Agilent MXG)

[UIMIV :

Utility F
I/0 ConfigM

Instrument
Adjustments®

Display &

Erightness
100

Display &
Select Color

Falettey
(Bright Color)

Contrast
L5

Update in Remote
| OF]

Screen Saver

Displaus

Power On/
Freset™

Instrument Infom

PN

\l

TN On

Activate
Secure Display

Screen Saver
ode
(Light Onlu)

Screen Saver
Delau: 1 hr

fore 1 of 2

A\../\-f

For details on each key, use the key help (described in User’s Guide).

Select Update in Remote until On is
-«—highlighted.

SCPI commands:
:DISPlay:REMote ON|OFF|1|0
:DISPlay:REMote?

Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Preferences

Configuring the Display for Remote Command Setups (ESG/PSG)

Errar, | Erightness
Info [=in]
e SCPI commands:
LAN® Scraﬁﬁr :DISPlay:REMote ON|OFF|1]|0
:DISPlay:REMote?
Instrument., Screen Saver Mode
Adjustments (Light Onlu?

Utility
[: > Displaue Sggﬁgz . S?Uﬁ;

Poner 0n/, Inverse Video
Preset. an

Update in Remote Select Update in Remote until On is highlighted.
Memory Cataloge|f '——— OfF -—

Instrument. Info/ Hare Using the Update in Remote softkey updates the display but not the
] HeIp Mode® (1 of 23 softkeys on each SCPI command.

In general, the softkeys are not updated until the SCPI command
SYST:DISP:GTL is sent.

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command
Reference.

Getting Help (Agilent MXG)

When you press Help:

Help displays for the next key you press. Use the cursor keys, Page Up, Page
-
Down, and the RPG knob to scroll the help text. Then press Cancel to close the

help window or press any other key to close the help window and execute that key.

For details on each key, use the key help (described in User's Guide).

Getting Help (ESG/PSG)

When you press Help:

| Help displays for the next key you press or you see help for the next key or for
HELP every key, depending on the Help mode.

For details on each key, use the key help (described in User’s Guide).

20 Agilent Signal Generators Programming Guide

Setting the Help Mode (ESG/PSG)

Errar, |
Info

GFIB/RS-232)
LAk

Instrument.,
Adjustments

Displau

Fower 0n/|
Freset

Memory Catalog

Instrument Info/|
Help Mode

Dimgnostic InfoM
Options Infow

Self Teste

Mod Status Info
0ff Il

Helr Modd™
IBTESEN Cont

Installed

Board Info”

Getting Started with Remote Operation
Preferences

SCPI commands:
:SYSTem:HELP:MODE SINGle|CONTinuous
:SYSTem:HELP :MODE?

When you press Help:
Single: Help displays only for the next key you press.

Cont: Help displays for each key you press and that key’s function activates.
To turn off the function, press Help.

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command Reference.

Agilent Signal Generators Programming Guide

21

Getting Started with Remote Operation
Troubleshooting

Troubleshooting

In each section of this document, there is information that is related to troubleshooting that topic, if
applicable. Refer to those corresponding sections in this document as well as to the User’s Guide,
before using the diagnostics mode referred to in the Service Guide and in the caution below.

CAUTION All MXGs have a fail-safe and diagnostic mode that should only be used if all other
troubleshooting mentioned in this document has been attempted and failed. If the
diagnostic mode is determined to be needed, refer to the Service Guide.

The fail-safe and diagnostic mode can be enabled on the N5161A/62A signal generators
by pressing a combination of the front panel hardkeys: LAN Reset and the power switch
during boot-up. This fail-safe and diagnostic mode should rarely be used as the
wnstrument’s data could be permanently damaged.

e If the diagnostic mode fails to function, refer to the Service Guide.

NOTE If the LAN Reset hardkey has been pressed and then the power is cycled on the instrument,
the web-server will be enabled after reboot.

22 Agilent Signal Generators Programming Guide

Getting Started with Remote Operation
Error Messages

Error Messages

If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface)
error queue and the front panel display error queue. These two queues are viewed and managed
separately; for information on the front panel display error queue, refer to the User’s Guide.

NOTE For additional general information on troubleshooting problems with your connections, refer
to the Help in the Agilent IO Libraries and documentation.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and
the <error_description> portions of the error query response are displayed on the host terminal.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Linear, first-in/first- out.

Overflow Handling Replaces newest error with: -350, Queue overflow

Viewing Entries? Use SCPI query SYSTem:ERRor [:NEXT] ?
Power up
Clearing the Queue Send a *CLS command

Read last item in the queue

Unresolved Errors® Re-reported after queue is cleared.

When the queue is empty (every error in the queue has been read, or the queue is cleared), the
No Errors following message appears in the queue:
+0, "No error"

a.0n the Agilent MXG, using this SCPI command to read out the error messages clears the display of the ERR annunciator and the error
message at the bottom of the screen.

b.0n the Agilent MXG, executing the SCPI command *CLS clears the display of the ERR annunciator and the error message at the bottom
of the screen.

c.Errors that still exist after clearing the error queue. For example, unlock.

Error Message File

A complete list of error messages is provided in the file errormessages.pdf, on the CD-ROM supplied
with your instrument. In the error message list, an explanation is generally included with each error
to further clarify its meaning. The error messages are listed numerically. In cases where there are
multiple listings for the same error number, the messages are in alphabetical order.

Agilent Signal Generators Programming Guide 23

Getting Started with Remote Operation
Error Messages

Error Message Types

Events generate only one type of error. For example, an event that generates a query error will not
generate a device-specific, execution, or command error.

Query Errors (-499 to -400) indicate that the instrument’s output queue control has detected a
problem with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class
set the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors
correspond to message exchange protocol errors described in IEEE 488.2, 6.5. In this case:

¢ Either an attempt is being made to read data from the output queue when no output is either
present or pending, or

* data in the output queue has been lost.

Device Specific Errors (-399 to -300, 201 to 703, and 800 to 810) indicate that a device operation
did not properly complete, possibly due to an abnormal hardware or firmware condition. These codes
are also used for self-test response errors. Errors in this class set the device-specific error bit (bit 3)
in the event status register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that
the instrument detected an error within the GPIB system, within the instrument’s firmware or
hardware, during the transfer of block data, or during calibration.

Execution Errors (-299 to -200) indicate that an error has been detected by the instrument’s
execution control block. Errors in this class set the execution error bit (bit 4) in the event status
register (IEEE 488.2, section 11.5.1). In this case:

¢ Either a <PROGRAM DATA> element following a header was evaluated by the device as outside of
its legal input range or is otherwise inconsistent with the device’s capabilities, or

e a valid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed.
Rounding a numeric data element, for example, is not reported as an execution error.

Command Errors (-199 to -100) indicate that the instrument’s parser detected an IEEE 488.2
syntax error. Errors in this class set the command error bit (bit 5) in the event status register (IEEE
488.2, section 11.5.1). In this case:

¢ Either an IEEE 488.2 syntax error has been detected by the parser (a control-to-device message
was received that is in violation of the IEEE 488.2 standard. Possible violations include a data
element that violates device listening formats or whose type is unacceptable to the device.), or

¢ an unrecognized header was received. These include incorrect device-specific headers and
incorrect or unimplemented IEEE 488.2 common commands.

24 Agilent Signal Generators Programming Guide

2 Using 10 Interfaces

NOTE For the N5161A/62A the softkey menus and features mentioned in this chapter are only
available through the Web-Enabled MXG or through SCPI commands. Refer to “Using the
Web Browser” on page 11 and to the SCPI Command Reference.

Using the programming examples with GPIB, LAN, RS-232, and USB interfaces:
e Using GPIB on page 25

¢ Using LAN on page 31

¢ Using RS-232 (ESG and PSG Only) on page 61

* Using USB (Agilent MXG) on page 69

Using GPIB

GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, hitp;/www.teee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI-GPIB interface
card for your PC or UNIX-based system.

¢ ‘“Installing the GPIB Interface” on page 25
e “Set Up the GPIB Interface” on page 27
e “Verify GPIB Functionality” on page 28

Installing the GPIB Interface

NOTE You can also connect GPIB instruments to a PC USB port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more
information, refer to the table on page 26 or go to hittp./www.agilent.com/find/gpib.

A GPIB interface card can be installed in a computer. Two common GPIB interface cards are the
Agilent GPIB interface card and the National Instruments (NI) PCI-GPIB card. Follow the interface
card instructions for installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Agilent website, http://www.agilent.com for details on
GPIB interface cards.

Agilent Signal Generators Programming Guide 25

Using 10 Interfaces

Using GPIB
Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Type System BUS (kB/sec)
Agilent USB/GPIB Interface Converter for PC-Based Systems
Agilent 82357A Windows?® VISA / SICL | C/C++, Visual USB 2.0 850 Built-in
Converter 98(SE)/ME/ Basic, Agilent (1.1 compatible)
2000%/XP VEE, HP Basic for
Windows, NI
Labview
Agilent GPIB Interface Card for PC-Based Systems
Agilent 82341C Windows? VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
for ISA bus 95/98/NT Basic, Agilent 16 bit
computers ® VEE, HP Basic for
/2000 Windows
Agilent 82341D Windows VISA / SICL C/C++, Visual ISA/EISA, 750 Built-in
Plug&Play for 95 Basic, Agilent 16 bit
PC VEE, HP Basic for
Windows
Agilent 82350A Windows VISA / SICL C/C++, Visual PCI 32 bit 750 Built-in
for PCI bus 95/98/NT Basic, Agilent
computers /2000 VEE, HP Basic for
Windows
Agilent 82350B Windows VISA / SICL | C/C++, Visual PCI 32 bit > 900 Built-in
for PCI bus 98(SE)/ME/2000 Basic, Agilent
computers /XP VEE, HP Basic for
Windows
NI-GPIB Interface Card for PC-Based Systems
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments 95/98/2000/ NI-488.21¢ Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments NT NI-488.2 Visual BASIC,
PCI-GPIB+ LabView
Agilent-GPIB Interface Card for HP-UX Workstations
Agilent E2071C HP-UX 9.x, VISA/SICL ANSI C, EISA 750 Built-in
HP-UX 10.01 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2071D | HP-UX 10.20 VISA/SICL ANSI C, EISA 750 Built-in

Agilent VEE,
Agilent BASIC,
HP-UX

26

Agilent Signal Generators Programming Guide

Using 10 Interfaces

Using GPIB
Interface Operating I0 Library Languages Backplane/ Max IO Buffering
Type System BUS (kB/sec)

Agilent USB/GPIB Interface Converter for PC-Based Systems
Agilent E2078A HP-UX 10.20 VISA/SICL ANSI C, PCI 750 Built-in

Agilent VEE,

Agilent BASIC,

HP-UX

a.Windows 95, 98(SE), NT, 2000, and XP are registered trademarks of Microsoft Corporation.
b.Windows 98 and ME are registered trademarks of Microsoft Corporation.
¢.NI-488.2 is a trademark of National Instruments Corporation.

Set Up the GPIB Interface
For the Agilent MXG refer to the Figure 2-1 and for the ESG and PSG, Figure 2-2 on page 28.

Figure 2-1 Setting the GPIB Address on the Agilent MXG

Utility SCPI commands:
:SYSTem: COMMunicate:GPIB:ADDRess <number>
, ‘ :SYSTem: COMMunicate:GPIB:ADDRess?
Utility I/0 Config G Enter
. — »
1/0 Configef— GPIB Setupk EPIIS (ENREES > Enter
S La Setupy
- Default address: 19 ,«-/ —
Displau LN Serylces, Range: 0-30
Fouer an’ Femote Language
Preset (SCPIIY
Instrument. Infos W

For details on each key, use the key help. Refer to “Getting Help (Agilent MXG)” on page 20 and the User’s Guide. For additional SCPI
command information, refer to the SCPI Command Reference.

Agilent Signal Generators Programming Guide 27

Using 10 Interfaces
Using GPIB

Figure 2-2 Setting the GPIB Address on the ESG/PSG

Utility SCPI commands:
:SYSTem:COMMunicate:GPIB:ADDRess <number>
¢ :SYSTem:COMMunicate:GPIB:ADDRess?
GPIB Address »
e l - —

GPIE/RS-232 Femote Language

T (SCPT)"

Instrument -

adjustments® R5-232 Setupk I

Default address: 19

: LAK Setupk
Displauk Range: 0-30

Power On/ LAM Services
Freset? Setup®

Natnt,

Memory Catalog

Instrument Info/|
Help Mode

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command Reference.

Connect a GPIB interface cable between the signal generator and the computer. (The following table
lists cable part numbers.)

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

Verify GPIB Functionality

To verify GPIB functionality, use the VISA Assistant, available with the Agilent 10 Library or the
Getting Started Wizard available with the National Instrument IO Library. These utility programs
enable you to communicate with the signal generator and verify its operation over GPIB. For
information and instructions on running these programs, refer to the Help menu available in each
utility.

If You Have Problems

1. Verify that the signal generator’s address matches the address declared in the program (example
programs in Chapter 3).

2. Remove all other instruments connected through GPIB and rerun the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured
for your PC.

28 Agilent Signal Generators Programming Guide

Using 10 Interfaces
GPIB Programming Interface Examples

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners
simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB
system allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including
itself) for an information transfer. Only one device at a time can be an active
controller.

GPIB Programming Interface Examples

NOTE The portions of the programming examples discussed in this section are taken from the full
text of these programs that can be found in Chapter 3, “Programming Examples.”

¢ “Interface Check using HP Basic and GPIB” on page 29
¢ “Interface Check Using NI-488.2 and C++” on page 30

Before Using the GPIB Examples

If the Agilent GPIB interface card is used, the Agilent VISA library should be installed along with
Agilent SICL. If the National Instruments PCI-GPIB interface card is used, the NI-VISA library along
with the NI-488.2 library should be installed. Refer to “Selecting 10 Libraries for GPIB” on page 10
and the documentation for your GPIB interface card for details.

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIBO or GPIBI.

The following sections contain HP Basic and C++ lines of programming removed from the
programming interface examples in Chapter 3, “Programming Examples.” these portions of
programming demonstrate the important features to consider when developing programming for use
with the GPIB interface.

Interface Check using HP Basic and GPIB

This portion of the example program “Interface Check using HP Basic and GPIB” on page 29, causes
the signal generator to perform an instrument reset. The SCPI command *RST places the signal
generator into a pre-defined state and the remote annunciator (R) appears on the front panel
display.

The following program example is available on the signal generator Documentation CD-ROM as
basicex1.txt. For the full text of this program, refer to “Interface Check using HP Basic and GPIB” on
page 82 or to the signal generator’s documentation CD-ROM.

160 Sig_gen=719 ! Declares a variable to hold the signal generator's address

Agilent Signal Generators Programming Guide 29

Using 10 Interfaces
GPIB Programming Interface Examples

170 LOCAL Sig_gen ! Places the signal generator into Local mode
180 CLEAR Sig_gen ! Clears any pending data I/0 and resets the parser
190 REMOTE 719

Puts the signal generator into remote mode
200 CLEAR SCREEN ! Clears the controllers display
210 REMOTE 719

220 OUTPUT Sig_gen; "*RST" ! Places the signal generator into a defined state

Interface Check Using N1-488.2 and C++

This portion of the example program “Interface Check Using NI-488.2 and C++” on page 30, uses the
NI-488.2 library to verify that the GPIB connections and interface are functional.

The following program example is available on the signal generator Documentation CD-ROM as
niexl.cpp. For the full text of this program, refer to “Interface Check Using NI-488.2 and C++” on
page 83 or to the signal generator’s documentation CD-ROM.

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIBO= 0; // Board handle

Addr4882_t Address([31l]; // Declares an array of type Addr4882_t

int main(void)

int sig; // Declares a device descriptor variable
sig = ibdev (0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); // Sends device clear message to signal generator

ibwrt (sig, "*RST", 4); // Places the signal generator into a defined state

30 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Using LAN

The Agilent MXG is capable of 100Base-T LAN communication. The ESG, PSG, and E8663B are
designed to connect with a 10Base-T LAN. Where auto-negotiation is present, the ESG, PSG, and
E8663B can connect to a 100Base-T LAN, but communicate at 10Base-T speeds. For more
information refer to http;//www.ieee.org.

The signal generator can be remotely programmed through a 100Base-T LAN interface or 10Base-T
LAN interface and LAN-connected computer using one of several LAN interface protocols. The LAN
allows instruments to be connected together and controlled by a LAN-based computer. LAN and its
associated interface operations are defined in the IEEE 802.2 standard. For more information refer to
http://www.ieee.org.

NOTE For more information on configuring your signal generator for LAN, refer to the User’s Guide
for your signal generator. Also, for the Agilent MXG, refer to www.agilent.com and search on
the FAQs: Hardware Configurations and Installation.

The signal generator supports the following LAN interface protocols:

e VXI-11 (See page 42)

* Sockets LAN (See page 43)

¢ Telephone Network (TELNET) (See page 44)
¢ File Transfer Protocol (FTP) (See page 48)
* LXI (See page 50)

VXI-11 and sockets LAN are used for general programming using the LAN interface, TELNET is used
for interactive, one command at a time instrument control, and FTP is for file transfer. LXI is used
to communicate with multiple instruments through LAN events using precision time protocols.

For more information on the LXI standards, refer to www.agilent.com/find).

NOTE For more information on configuring the signal generator to communicate over the LAN,
refer to “Using VXI-11" on page 42.

The following sections contain information on selecting and connecting IO libraries and LAN interface
hardware that are required to remotely program the signal generator through LAN to a LAN-based
computer and combining those choices with one of several possible LAN interface protocols.

e “Setting Up the LAN Interface” on page 32
¢ “Verifying LAN Functionality” on page 36

Agilent Signal Generators Programming Guide 31

Using 10 Interfaces
Using LAN

Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an IP address must be
assigned to the signal generator either manually or by using DHCP client service. Your system
administrator can tell you which method to use. (Most modern LAN networks use DHCP.)

NOTE Verify that the signal generator is connected to the LAN using a 100Base-T LAN or
10Base-T LAN cable.

Configuring the VXI-11 for LAN (Agilent MXG)

1/0 Config LAH Services # SCPI Services /| Confirm
Utili 10 Confi FTP Server Eon\g%rmtchangg
tility > onti GPIB SetupM & Sockets SCRI DSLrUmen
Yy g @ Off Off Will Reboot)
LAN Setups Heb Servicesk Q}{I—ll SCPT S|
Off
o
LAN SeryiceS,l ! SCPT Services
——-—_p g p
Remote Language, L¥I-E Enabled .
(5CRID Of f Mgl
Proceed Hith
Reconf igurat ion’

NOTE

To communicate with the signal generator over the LAN, you must enable the VXI-11 SCPI service. Select
VXI-11 until On is highlighted. (Default condition is On.)

For optimum performance, use a 100Base—T LAN cable to connect the signal generator to the LAN.

For details on each key, use the key help. For information describing the key help, refer to “Getting Help (Agilent MXG)” on page 20 and
the User’s Guide. For additional SCPI command information, refer to the SCPI Command Reference.

32 Agilent Signal Generators Programming Guide

Configuring the VXI-11 for LAN (ESG/PSG)

GPIB Address
13
Utility > GPIB/RS-232
Femote Language
LAN (SCPT)"
RS-232 Setupk
LAN Setupk
LAN Services,|
Setup
NOTE

FTP Serwer

OfFF

Heb Serwer
oOff

Sockets

SCPT

f Il

HI-11 SCPI

0OFF

Proceed
Reconf igur

Hith
ft. ion

M

Using 10 Interfaces
Using LAN

Confirm Chanoe
(Instrument
Will Reboot)

For details on each key, use the Key and Data Field
Reference. For additional SCPI command
information, refer to the SCPI Command Reference.

To communicate with the signal generator over the LAN, you must enable the VXI-11 SCPI service. Select VXI-11 until On is highlighted.

(Default condition is On.)

Use a 10Base—T LAN cable to connect the signal generator to the LAN.Where auto—negotiation is present, the ESG or PSG can connect to
100Base—T LAN, but will communicate at 10Base—T speeds. For more information refer to http://www.ieee.org.

Manual Configuration

The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

To remotely access the signal generator from a different LAN subnet, you must also enter the subnet
mask and default gateway. See your system administrator for more information.

For more information on the manual configuration, refer to “Manually Configuring the Agilent MXG
LAN” on page 34 or to “Manually Configuring the ESG/PSG LAN” on page 34.

Agilent Signal Generators Programming Guide

33

Using 10 Interfaces
Using LAN

Manually Configuring the Agilent MXG LAN

LAH Setu LAN Config 7
1/0 Config Hostname Auto
(OHCP /Auto-IP)
GPIB SetupM
Congda Tupe
.) ///%ﬁ;nual)' > AP
Utility > 10 Config LAN Setupsf——m
> anual Config
q » Auto-IF
LAM Services ///A{/ SSEEIES
Setup®
Advanced
i » Manual
Femote Language SSEEITES
(SCPIIY W V.
Proceed Hith Confirm
. iy . _ T
Reconf iourat ion Confirm Change
(Instrument
Will Reboot)

AN

Your hostname can be up to 20 characters long.

SCPI commands:
: SYSTem:COMMunicate:LAN: CONFig MANual
:SYSTem:COMMunicate: LAN: CONFig?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

Manually Configuring the ESG/PSG LAN
I'he Hostname sottkey Is avallable only when LAN Contig Manual DHCP Is set to
Utility > 10 Config Manual. Your hostname can be up to 20 characters long.

SCPI commands:
: SYSTem:COMMunicate:LAN: CONFig MANual
:SYSTem:COMMunicate: LAN: CONFig?

Confirm Chanoe
(Instrument”
Will Hebogk)

/

Hostname
COBRALP1L

GPIB Address —
19

IP Address |
=TS (EpENEEEA 141.121.50.53

/

RS-232 Setups EEE (S

Default Gatewad

LAN Setupk
LAN Services,
Setup

Nttty o | ten coriof |
OHCP |
For details on each key, use the Key and Data Field

Proceed Hith | iti i
. 1L 1L Reference. For additional SCPI command information, refer
Heceniounation to the SCPI Command Reference.

34 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

DHCP Configuration

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

For more information on the DHCP configuration, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 35 or “Configuring the DHCP LAN (ESG/PSG)” on page 36.

AUTO (DHCP/Auto—IP) Configuration (Agilent MXG)

DHCP and Auto-IP are used together to make automatic (AUTO) mode for IP configuration.
Automatic mode attempts DHCP first and then if that fails Auto-IP is used to detect a private
network. If neither is found, Manual is the final choice.

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

Auto-IP provides automatic TCP/IP set-up for instruments on any manually configured networks.

For more information on the AUTO (DHCP/Auto-IP) configuration, refer to “Configuring the DHCP
LAN (Agilent MXG)” on page 35.

Configuring the DHCP LAN (Agilent MXG)

AUTO (DHCP/Auto—IP): Request a new IP address in the following sequence: 1) from the DHCP (server—based
LAN), 2) Auto-IP (private network without a network administrator) or if neither is available, 3) Manual setting is
selected.

DHCP: Request a new IP address from the DHCP server each power cycle.

Confirming this action configures the signal generator as a DHCP client. In DHCP mode, the signal generator
will request a new IP address from the DHCP server upon rebooting to determine the assigned IP address.

1/0 Config LAH Setu LAH Confi
Auto
GPIE Setup Hastrams (DHCP /AULO-IF)
Confis—tude > OHCP
LAN Setupm (m) >
Utility > 10 Config
i Manual Config -
LAN Sergégﬁg’ Settings Auto-IP
Remote Language Advanced Manual
(SCPIOM Settinos
Proceed With W -
W Reconfiguration®} — — — — — T — Confirm
Confirm Chanoe
(Instrument
SCPI commands : Will Reboot)
:SYSTem:COMMunicate:LAN:CONFig DHCP \ AUTO M\

:SYSTem:COMMunicate:LAN:CONFig?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI

Command Reference.

Agilent Signal Generators Programming Guide

35

Using 10 Interfaces
Using LAN

Configuring the DHCP LAN (ESG/PSG)

Utility

Erraor GPIB Address Hostname Confirm Change
Info® (Instrument
dd COBRALPL will Rebodt)
GFIB/RS-232,]l o IP Address
Cafmre| Femote Languzge, 141.121.60.63
Instrument
AdjLstrents RS-232 Setup| S [
NOTE
Displauy LAN Setupr Default Gateway Use a 10Base—T LAN cable to connect the signal
generator to the LAN.
Power On/ i
Preset? Lo seryices, . .
For details on each key, refer to the Key and Data Field
\MA\M_ - L Reference. For additional SCPI command information,
Memory Catalogh > refer to the SCPI Command Reference.
| Instrument Info/, Procesd Lith
Help Mode Feconf igdrat ion SCPT commands :

:SYSTem:COMMunicate:LAN: CONFig DHCP

DHCP: Request a new IP address from the DHCP server each po%er cycle. . SYSTem:COMMunicate : LAN: CONFig?

Confirming this action configures the signal generator as a DHCP client. In
DHCP mode, the signal generator will request a new IP address from the
DHCP server upon rebooting to determine the assigned IP address.

Setting up Private LAN

You can connect the Agilent MXG, ESG, or PSG directly to a PC using a crossover cable. To do this,
you should either choose to set IP addresses of the PC and signal generator to differ only in the last
digit (example: PC’s IP: 1.1.1.1 and Signal generator’s IP: 1.1.1.2); or you can use the DHCP feature or
Auto-IP feature if your PC supports them. For more information go to www.agilent.com, and search
on the Connectivity Guide (E2094-90009) or use the Agilent Connection Expert’s Help to see the
Connection Guide.

Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server
using the ping utility. Compare your ping response to those described in “LAN Ping Responses” on
page 38.

For additional information on troubleshooting your LAN connection, refer to “If You Have
Problems” on page 37 and to the Help in the Agilent 10 Libraries and documentation for
LAN connections and problems.

NOTE

36 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

From a UNIX® workstation, type (UNIX is a registered trademark of the Open Group):
ping <hostname or IP address> 64 10

where <hostname or IP address> is your instrument’s name or IP address, 64 is the packet size,
and 10 is the number of packets transmitted. Type man ping at the UNIX prompt for details on the
ping command.

From the MS-DOS® Command Prompt or Windows environment, type:
ping -n 10 <hostname or IP address>

where <hostname or IP address> is your instrument’s name or IP address and 10 is the number of
echo requests. Type ping at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned IP address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the IP address to communicate with the signal
generator over the LAN.

If You Have Problems

If you are experiencing problems with the LAN connection on the signal generator, verify the rear
panel LAN connector green LED is on.

For additional information on troubleshooting your LAN connection, refer to the Help in the Agilent
10 Libraries and documentation for LAN connections and problems.

NOTE The N5161A/62A signal generators have a LAN Reset hardkey on the front panel that can be
pressed to reset the instrument to either the factory default address conditions or to the
manually set address conditions.

Press and release the LAN Reset hardkey once to reset the instrument to the factory default
conditions, with a default IP address of 169.254.9.16. If there is a DHCP server on the
network, the N5161A/62A will get an IP address from it first. If there is no DHCP server on
the network, the the instrument will switch to Auto-IP mode and assign the default IP
address of 169.254.9.16.

This is equivalent to sending the following SCPI commands:

:SYSTem:COMMunicate:LAN: DEFaults
:SYSTem: COMMunicate: LAN:RESTart

Press the LAN Reset hardkey for five seconds (until the LAN LED blinks) to reset the
instrument to the manually set conditions.

If there are multiple N5161A/62A instruments operating on the same network, one

MS-DOS, and Visual Basic are registered trademarks of Microsoft.

Agilent Signal Generators Programming Guide 37

Using 10 Interfaces
Using LAN

instrument will use the default IP address value and the others will have randomly chosen
IP address values. If you have not manually set the IP addresses of your N5161A/62A
instruments (and you need to know the addresses), turn each N5161A/62A instrument on
one at a time to set the default IP address. Then manually configure the IP address of each
instrument using the Web-Enabled interface as described in “Using the Web Browser” on
page 11. Repeat this process for each N5161A/62A instrument on the same network.

LAN Ping Responses

Normal Response for UNIX A normal response to the ping command will be a total of 9 or 10 packets received with a
minimal average round-trip time. The minimal average will be different from network to
network. LAN traffic will cause the round-trip time to vary widely.

Normal Response for DOS or A normal response to the ping command will be a total of 9 or 10 packets received if 10 echo
Windows requests were specified.
Error Messages If error messages appear, then check the command syntax before continuing with

troubleshooting. If the syntax is correct, resolve the error messages using your network
documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of the hostname.
Also, verify that the host name and IP address for the signal generator have been registered
by your IT administrator.

Check that the hostname and IP address are correctly entered in the node names database. To
do this, enter the nslookup <hostname> command from the command prompt.

No Response If there is no response from a ping, no packets were received. Check that the typed address
or hostname matches the IP address or hostname assigned to the signal generator in the
System LAN Setup menu. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 35 or “Configuring the DHCP LAN (ESG/PSG)” on page 36.

Ping each node along the route between your workstation and the signal generator, starting
with your workstation. If a node doesn’t respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should suspect a hardware problem.

® Check the signal generator LAN connector lights
® Verify the hostname is not being used with DHCP addressing

Intermittent Response If you received 1 to 8 packets back, there maybe a problem with the network. In networks
with switches and bridges, the first few pings may be lost until these devices ‘learn’ the
location of hosts. Also, because the number of packets received depends on your network
traffic and integrity, the number might be different for your network. Problems of this nature
are best resolved by your IT department.

Using Interactive 10

Use the VISA Assistant utility available in the Agilent IO Libraries Suite to verify instrument
communication over the LAN interface. Refer to the section on the “IO Libraries and Programming
Languages” on page 4 for more information.

The Agilent 10 Libraries Suite is supported on all platforms except Windows NT. If you are using
Windows NT, refer to the section below on using the VISA Assistant to verify LAN communication.
See the section on “Windows NT and Agilent 10 Libraries M (and Earlier)” on page 8 for more
information.

38 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

NOTE The following sections are specific to Agilent 10 Libraries versions M and earlier and apply
only to the Windows NT platform.

Agilent Signal Generators Programming Guide 39

Using 10 Interfaces
Using LAN

Using VISA Assistant

Use the VISA Assistant, available with the Agilent IO Library versions M and earlier, to communicate
with the signal generator over the LAN interface. However, you must manually configure the VISA
LAN client. Refer to the Help menu for instructions on configuring and running the VISA Assistant
program.

Run the I0 Config program.

Click on TCPIPO in the Available Interface Types text box.

Click the Configure button. Then Click OK to use the default settings.

Click on TCPIPO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the TCPIP address of the signal generator. Leave the Device text box empty.

© ® NS ok w0

Click the OK button in this form and all subsequent forms to exit the I0 Config program.

If You Have Problems
1. Verify the signal generator’s IP address is valid and that no other instrument is using the IP
address.

2. Switch between manual LAN configuration and DHCP using the front panel LAN Config softkey and
run the ping program using the different IP addresses.

NOTE For Agilent 10 Libraries versions M and earlier, you must manually configure the VISA LAN
client in the I0 Config program if you want to use the VISA Assistant to verify LAN
configuration. Refer to the 10 Libraries Installation Guide for information on configuring 10
interfaces. The I0 Config program interface is shown in Figure 2-4 on page 43.

40 Agilent Signal Generators Programming Guide

Figure 2-3

Check to see that the Default Protocol is set to Automatic.
1.
2.

10 Config Form (Windows NT)

*R5-232 COM Ports

YISA LAN Client (e.g. EG210)
*82350 PCI GPIB Card

82341 154 GPIB Card

82357 USE to GPIB

WISA LaN Client (2.0, ESS10)
GPIB %<l Command Module
“LAMN Client [LAM Instruments
*USE Instruments

WISA LaN Client for USE
*E8491 [EEE-1394 to il
LAM Server [PC as Server]

Run the I0 Config program.
Click on TCPIP in the Configured Interfaces text box. If there is no TCPIPO in the box, follow the

steps shown in the section “Using VISA Assistant” on page 40.

Click the Edit button.

Click the radio button for AUTO (automatically detect protocol).
Click 0K, OK to end the IO Config program.

Using 10 Interfaces
Using LAN

Agilent Signal Generators Programming Guide

4

Using 10 Interfaces
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard. VXI-11
is an instrument control protocol based on Open Network Computing/Remote Procedure Call
(ONC/RPC) interfaces running over TCP/IP. It is intended to provide GPIB capabilities such as SRQ
(Service Request), status byte reading, and DCAS (Device Clear State) over a LAN interface. This
protocol is a good choice for migrating from GPIB to LAN as it has full Agilent VISA/SICL support.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

Configuring for VXI-11

The Agilent 10 library has a program, I0 Config, that is used to setup the computer/signal generator
interface for the VXI-11 protocol. Download the latest version of the Agilent 10 library from the
Agilent website. Refer to the Agilent 10 library user manual, documentation, and Help menu for
information on running the I0 Config program and configuring the VXI-11 interface.

Use the 10 Config program to configure the LAN client. Once the computer is configured for a LAN
client, you can use the VXI-11 protocol and the VISA library to send SCPI commands to the signal
generator over the LAN interface. Example programs for this protocol are included in “LAN
Programming Interface Examples” on page 116 of this programming guide.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 35 and “Configuring the DHCP LAN (ESG/PSG)” on page 36.

If you are using the Windows NT platform, refer to “Windows NT and Agilent I0 Libraries M
(and Earlier)” on page 8 for information on using Agilent 10 Libraries versions M or earlier
to configure the interface.

For Agilent 10 library version J.01.0100, the “Identify devices at run-time” check box must
be unchecked. Refer to Figure 2-4.

42 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-4 Show Devices Form (Agilent 10 Library version J.01.0100)

Show Devices E3 |
B .) . H D K
[~ ddentify devices at run-time:
) ; Cancel
Devices present on interface GPIBT:
Add device

Remove device

Auto Add devices

Using Sockets LAN

NOTE Users with Windows XP operating systems and newer can use this section to better
understand how to use the signal generator with port settings. For more information, refer to
the help software of the IO libraries being used.

Sockets LAN is a method used to communicate with the signal generator over the LAN interface
using the Transmission Control Protocol/Internet Protocol (TCP/IP). A socket is a fundamental
technology used for computer networking and allows applications to communicate using standard
mechanisms built into network hardware and operating systems. The method accesses a port on the
signal generator from which bidirectional communication with a network computer can be
established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a
device port number and represents a single connection between two pieces of software. The socket
can be accessed using code libraries packaged with the computer operating system. Two common
versions of socket libraries are the Berkeley Sockets Library for UNIX systems and Winsock for
Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley socket for UNIX systems, and Winsock for Microsoft systems. The signal
generator is also compatible with other standard sockets APIs. The signal generator can be controlled
using SCPI commands that are output to a socket connection established in your program.

Agilent Signal Generators Programming Guide 43

Using 10 Interfaces
Using LAN

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

¢ Standard mode. Available on port 5025. Use this port for simple programming.
e TELNET mode. The telnet SCPI service is available on port 5023.

NOTE For backward compatibility, on the E8663B, ESG, and PSG, the signal generator also accepts
references to the Telnet SCPI service at port 7777 and sockets SCPI service at port 7778.

Ports 7777 and 7778 are disabled on the Agilent MXG.

For the MXG, beginning with firmware versions A.01.51 and greater, the default telnet port
is 5024. Telnet port 5023 is still available for backwards compatibility. Refer to the SCPI
Command Reference.

An example using sockets LAN is given in “LAN Programming Interface Examples” on page 116 of
this programming guide.

Using Telnet LAN

Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client,
run on a LAN connected computer, will create a login session on the signal generator. A connection,
established between computer and signal generator, generates a user interface display screen with
SCPI> prompts on the command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with
the signal generator over GPIB. You establish a connection with the signal generator and then send
or receive information using SCPI commands. Communication is interactive: one command at a time.

NOTE The Windows 2000 operating systems use a command prompt style interface for the Telnet
client. Refer to the Figure 2-7 on page 47 for an example of this interface.

Windows XP operating systems and newer can use this section to better understand how to
use the signal generator with port settings. For more information, refer to the help software
of the IO libraries being used.

The following telnet LAN connections are discussed:

e “Using Telnet and MS-DOS Command Prompt” on page 44

¢ “Using Telnet On a PC With a Host/Port Setting Menu GUI” on page 45
¢ “Using Telnet On Windows 2000” on page 46

¢ “The Standard UNIX Telnet Command” on page 47

A Telnet example is provided in “Unix Telnet Example” on page 48.

Using Telnet and MS—D0S Command Prompt
1. On your PC, click Start > Programs > Command Prompt.

44 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

At the command prompt, type in telnet.
Press the Enter key. The Telnet display screen will be displayed.

Click on the Connect menu then select Remote System. A connection form (Figure 2-5) is displayed.

Figure 2-5 Connect Form (Agilent 10 Library version J.01.0100)

Host Name: IInstrument name El
Port: 5023 =

TermType: [¥IIT] -]
Connect | Cancel |

Enter the hostname, port number, and TermType then click Connect.

¢ Host Name-IP address or hostname
e Port-5023
e Term Type—vt100

At the SCPI> prompt, enter SCPI commands. Refer to Figure 2-6 on page 46.
To signal device clear, press Ctrl-C on your keyboard.

Select Exit from the Connect menu and type exit at the command prompt to end the Telnet
session.

Using Telnet On a PC With a Host/Port Setting Menu GUI

1.
2.
3.

On your PC, click Start > Run.
Type telnet then click the OK button. The Telnet connection screen will be displayed.

Click on the Connect menu then select Remote System. A connection form is displayed. See Figure
2-5.

Enter the hostname, port number, and TermType then click Connect.

* Host Name-signal generator’s IP address or hostname
* Port-5023
¢ Term Type—vt100

At the SCPI> prompt, enter SCPI commands. Refer to Figure 2-6 on page 46.
To signal device clear, press Ctrl-C.

Select Exit from the Connect menu to end the Telnet session.

Agilent Signal Generators Programming Guide 45

Using 10 Interfaces
Using LAN

Figure 2-6 Telnet Window (Windows 2000)

M Telnet - fpvipt HEE
Connect Edt Teimnal Hep

Agilent Technologies, ES25MA SH-USO000B00D0N

Firmware: Har 28 2001 11:23:18

Hostname: B081p1

IP : B0 .Aa0 .60 . 000

SCPI>» =IDNHT

Agilent Technologies, ES25hA, USBOOOOO0L, C.071.00
SCPI> =RET

SCPI> POW:AMPL -10 dbm

SCPI> POW?

-1.00000A00E+001

scr1> i

Using Telnet On Windows 2000
1. On your PC, click Start > Run.

2. Type telnet in the run text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 2-7 on page 47 (Windows 2000).

Type open at the prompt and then press the Enter key. The prompt will change to (to).

4. At the (to) prompt, enter the signal generator’s IP address followed by a space and 5023, which
is the Telnet port associated with the signal generator.

5. At the SCPI> prompt, enter SCPI commands. Refer to commands shown in Figure 2-6 on
page 46.

To escape from the SCPI> session type Ctrl-].
Type quit at the prompt to end the Telnet session.

46 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-7 Telnet 2000 Window

;’ C:\WINNT \system32'\telnet.exe

Microsoft (R> Windows 2888 (TI"I) Uersion 5.88 (Build 2195>
Welcome to Microsoft Telnet Client
Telnet Client Build 5.88.99286.1

Ezcape Character iz ‘CTRL+1’
Microsoft Telnet>

The Standard UNIX Telnet Command

Synopsis
telnet [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the
command telnet is invoked with host or port arguments, a connection is opened to the host, and
input is sent from the user to the host.

Options and Parameters

The command telnet operates in character-at-a-time or line-by-line mode. In line-by-line mode,
typed text is echoed to the screen. When the line is completed (by pressing the Enter key), the text
line is sent to host. In character-at-a-time mode, text is echoed to the screen and sent to host as
it is typed. At the UNIX prompt, type man telnet to view the options and parameters available with
the telnet command.

NOTE If your Telnet connection is in line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
the telnet> prompt, type mode char. If this does not work, consult your Telnet program's
documentation.

Agilent Signal Generators Programming Guide 47

Using 10 Interfaces
Using LAN

Unix Telnet Example

To connect to the instrument with host name myInstrument and port number 5023, enter the
following command on the command line: telnet myInstrument 5023.

When you connect to the signal generator, the UNIX window will display a welcome message and a
SCPI command prompt. The instrument is now ready to accept your SCPI commands. As you type
SCPI commands, query results appear on the next line. When you are done, break the Telnet
connection using an escape character. For example, Ctrl-],where the control key and the] are
pressed at the same time. The following example shows Telnet commands:

S telnet myinstrument 5023

Trying....

Connected to signal generator

Escape character is ‘~]'.

Agilent Technologies, E44xx SN-US00000001
Firmware:

Hostname: your instrument

IP :1XXX.XX.XXX.XXX

SCPI>

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected to the
LAN. For example, you can use FTP to download instrument screen images to a computer. When
logged onto the signal generator with the FTP command, the signal generator’s file structure can be
accessed. Figure 2-8 shows the FTP interface and lists the directories in the signal generator’s user
level directory.

NOTE File access is limited to the signal generator’s /user directory.

48 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-8 FTP Screen

% Command Prompt - ftp 000.000.00.000
=C> Copyrights 1985-1996 Microsoft Corp.

C:\=fip 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-LIS00000004
220- Firmware: Mar.28.2001 11:23:18

220- Hostname: 0001p1

220- 1P : 000.000.00.000

220- FTP server =Version 1.0> readyw.

User <000.000.00.000:<none=>>:

331 Password required

Password:

230 Successful login

ftp= Is

200 Port command successful.

150 Opening data connection.

USER

226 Transfer complete.

35 bytes received in 0.00 seconds <35000.00 Kbytes/sec>
ftp> _

ce917a

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1.
2.

On the PC click Start > Programs > Command Prompt.
At the command prompt enter:

ftp < IP address > or < hostname >

At the user name prompt, press enter.

At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt will
show you the FTP commands that are available on your system.

Type quit or bye to end your FTP session.

Type exit to end the command prompt session.

Agilent Signal Generators Programming Guide

49

Using 10 Interfaces
Using LAN

Using LXI

NOTE Full LXI-B feature implementation is only available on instruments with firmware >A.01.50.
A license may be required to enable this feature and to download firmware versions
>A.01.50. For information on new firmware releases, go to
http://www.agilent.com/find/upgradeassistant.

This section assumes general familiarity with the LXI-C class of instruments and aims to clarify a
number of general use cases for measurement synchronization between an MXA signal analyzer and a
MXG signal generator using a LAN connection. Refer to http:;/www.lxistandard.org/home and to
www.agilent.com/find/lxt.

This LXI section contains the following:

e “IEEE 1588” on page 50

¢ “Peer to Peer Messaging” on page 52

¢ “Configuring LXI Triggers” on page 53

e “Using the LXI Event Log” on page 55

¢ “Setting up and executing a list sweep measurement” on page 55

* “Synchronize a List Sweep Measurement Between an MXA and an MXG using Peer to Peer
Messages” on page 56

¢ “For More Information” on page 61

IEEE 1588

The IEEE 1588 standard defines a Precision Time Protocol (PTP) for synchronizing various clocks
connected by Ethernet. This will give your measurement instrumentation a common sense of time. To
ensure that the MXA and MXG are operating with synchronized PTP clocks, follow the procedure
outlined in the table below.

Time Synchronization using an MXA Signal Analyzer and a MXG Signal Generator

To ensure that the MXA and MXG are operating with synchronized PTP clocks, follow this procedure:

1. Connect the MXA and MXG to the same Ethernet switch and the ensure that both instruments
are configured for LAN operation.

2. Power on the MXA and MXG.
Send the following SCPI command to both the MXA and MXG:
:LXI:CLOCKk:PTP:DOMain 1

This parameter may be any integer between 0 to 127. The default value is 0.

50 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Verifying Time Synchronization

To verify that both instruments are running PTP, open the Interactive LXI tool from a PC which is
connected to the same switch as the MXA and MXG. This program is bundled with the Agilent 10
Libraries Suite.

1. Open Interactive LXI.

From a PC connected to the same subnet as the instrument go to: Start > All Programs > Agilent 10
Libraries Suite > Utilities > Interactive LXI.

2. Open the Timing menu.
Click on the tab labeled Timing.
3. Choose an active domain.
From the Active Domain pull down menu select the PTP domain entered in step 3.
4. Update the clocks.
Click Update Clock List.
5. Check that the MXA and MXG are located in the expected domain.

Click on the Clock Names listed in the Clock List, then examine the Clock Information panel for the
IP Addresses of the MXA and MXG.

6. View the PTP LAN traffic.
Click the PTP Messages tab and select the Timing Messages checkbox.

Agilent Signal Generators Programming Guide 51

Using 10 Interfaces
Using LAN

Peer to Peer Messaging

The MXA and MXG are capable of sending and receiving LXI specific LAN packets. The packets are
configurable, and may be sent when various instrument events occur during a measurement or state
recall. Each instrument event has an associated sense of 0 or 1 to indicate whether or not the event
is active. The instrument events that can cause an MXG to send an LXI LAN packet are summarized

in the table below.
Table 2-1 LXI LAN Packets

Instrument Event

Description

OperationComplete

Indicates whether or not an operation is
underway.

* For example, a single sweep will result in:
e OperationComplete = 1 before the sweep.
¢ OperationComplete = 0 during the sweep.

e OperationComplete = 1 after the sweep.

Settling

Indicates the instrument is settling.

Sweeping

Indicates whether or not the instrument is
currently performing a sweep.

Waiting For Trigger

Indicates whether or not the instrument is
waiting for a trigger event before a measurement
begins.

Enabling the LXI Event Subsystem

Due to the high priority response time demands of handling events, enabling the LXI event subsystem
can adversely impact certain specifications such as frequency and power switching speed. This
becomes more noticeable at higher rates of LXI event traffic. By default, the subsystem is disabled.

To enable the LXI event subsystem from the front panel:
¢ Press Utility > More > LXI-B > LXI-B Enabled

To enable or disable the LXI event subsystem from SCPI:

e :LXI:STATe ON|OFF

NOTE The LXI Event subsystem state is a persistent instrument state; it is not affected by normal

preset operations.

52

Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Using the Front Panel to Configure LXI Events

The MXG can be configured to send output LAN events for the pre-defined LXI events through the
front panel softkeys.

1. Press Utility > More > LXI-B > Configure LXI Events > Configure LXI Output Events
2. From the Output Events menu:

Press Select Source. Choose the instrument status event to be used as a source for the output LAN
event.

3. Press Toggle Event State to enable the highlighted output LAN event.

Using SCPI to configure an LXI Output Events

More configuration options and the ability to configure custom events are available to the system
integrator through SCPI commands. The following procedure provides a minimum set of commands to
configure an output LAN event. Refer to the SCPI Command Reference.

1. Reset the MXG:
Send the following SCPI command:
*RST
2. Set the LXI Output LAN Event’s source:
Send the following SCPI command:
:LXTI:EVENt : LAN: SOURce "LANO", "Sweeping"
3. Enable the LXI Output Event:
Send the following SCPI command:
:LXT:EVENt:LAN:ENABled "LANO", 1

Verifying LXI Output LAN Events using LXI Interactive

Peer to peer message transmission can be verified by running LXI Interactive from a PC on the same
subnet as the MXA.

1. From a PC connected to the same subnet as the instrument, go to Start> All Programs > Agilent 10
Libraries Suite > Utilities > Interactive LXI.

Click the Startbutton in the LXI Event Receive box.
Incoming LAN Events will be displayed in the text box.

If the initial setup had been configured using the front panel as on page 52 or SCPI commands
(page 53), two LAN Events are expected per sweep: the rising and falling edges of the LAN Event
IILANO l|'

Configuring LXI Triggers

The MXA and MXG are capable of reacting to incoming LXI LAN Events. Both instruments may be
triggered by the receipt of a peer to peer message.

Agilent Signal Generators Programming Guide 53

Using 10 Interfaces
Using LAN

Using the front panel to configure an LXI Trigger on the MXG

The MXG is capable of reacting to an incoming LXI LAN Event by treating it as a trigger. The
following procedure describes how to set up the MXG sweep trigger to use an LXI event through the
front panel soft keys.

1. Select the LXI LAN trigger as the source for sweep triggers.

Press Sweep > More > Sweep Trigger > More > LXI LAN
2. Select a Trigger LAN Event.

Press Utility > More > LXI-B > Configure LXI Events > Configure LXI Trigger Events
3. Enable the Trigger LAN Event.

Press the Toggle Event State softkey.

Using SCPI to configure an LXI Trigger on the MXG

The MXG is capable of reacting to an incoming LXI LAN Event by treating it as a trigger. The
following procedure describes how to set up the MXG sweep trigger to use an LXI event through SCPI
commands.

1. Reset the MXG
Send the following SCPI command:
*RST

2. Select the LXI LAN trigger as the source for sweep triggers.
Send the following SCPI command:
: TRIGger : SOURce LAN3

3. Enable a Trigger LAN Event.
Send the following SCPI command:
:TRIGger:LXTI:LAN:ENABled "LANO",1

Verifying an LXI Trigger using LXI Interactive

Peer to peer message transmission can be verified by running LXI Interactive from a PC on the same
subnet as the MXG.

1. Open Interactive LXI.

From a PC connected to the same subnet as the instrument, go to Start > All Programs > Agilent 10
Libraries Suite > Utilities > Interactive LXI.

2. Choose LAN Event.

Select the desired LAN trigger from the EventID dropdown menu.
3. Send LAN Event.

Press the Send button. This puts the trigger out on the line.

54 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

4. Monitor Response as on page 53.

This may be done assuming that the Output LAN event had been configured from the front panel
(page 52) or SCPI commands (page 53).

Using the LXI Event Log

The LXI subsystem also provides an Event Log. The event log records all of the enabled LXI Event
and Instrument Event activity and associates each action with an IEEE 1588 timestamp. Instrument
Events are enabled by default, and will therefore appear in the log. Since many instrument events
occur during every sweep, logging all of them may flood the event log. They may be disabled by
sending the SCPI command:

:LXI:EVENt:STATus:ENABled “instrumentEvent”, 0

where the parameter “instrumentEvent” may be any event listed in Table 2-1. Note that the event
must be re-enabled before being used as the source of an LXI Output LAN Event.

To view the LXI Event Log from the front panel, press the hard key System and then the softkeys
Show, LXI, LXI Event Log. Once the Event Log is displayed, the arrow keys may be used to scroll
through the list. The Event Log may also be queried through SCPI command.

Setting up and executing a list sweep measurement

The following examples will illustrate procedures for setting up and executing a list sweep
measurement using an MXA and an MXG synchronized with LXI.

Before launching into the procedure, it is important to understand the theory behind the method.
The MXA and MXG use their LXI Output LAN Events to communicate internal state changes to each
other. In the following synchronization, the rising edge of the Waiting For Trigger instrument event
will be used to communicate to the other device that the next step may be executed.

For clarity, the MXG's Waiting For Trigger instrument event is mapped to the LANO output event.
Likewise, the MXA's Waiting For Trigger instrument event is mapped to the LAN1 output event.
The MXA is configured to trigger when it receives the LANO event with a rising edge. The MXG is
configured to trigger when it receives the LAN1 event with a rising edge. Also, the
OperationComplete output event is enabled, which has the OperationComplete instrument event
mapped to it by default.

The MXG's list sweep is started first, causing it to source the first signal in its list. We then start the
MXA's list sweep. The OperationComplete instrument event transitions low, causing an
OperationComplete output event to go out on the LAN with a falling edge. The MXA takes a
measurement at the first frequency in its list. When the MXA has finished its measurement, it moves
on to the next entry in its list. The Waiting For Trigger instrument event transitions high, causing
a LAN1 output event to go out onto the LAN with a rising edge, and the MXA waits for its next
trigger.

The MXG receives the LAN1 event and triggers. The MXG's Waiting For Trigger instrument event
transitions low, and a LANO output event goes onto the LAN with a falling edge. The MXA takes no
action, since it is configured to trigger only on rising edges. The MXG is now sourcing the next signal
in its list. Once that signal has settled, it prepares to move on to its list's next entry. The MXG's
Waiting For Trigger instrument event transitions high, and a LANO output event goes onto the LAN
with a rising edge. The MXG waits for its next trigger.

Agilent Signal Generators Programming Guide 55

Using 10 Interfaces
Using LAN

The MXA receives the LANO event and triggers. The MXA's Waiting For Trigger instrument event
transitions low, and a LAN1 output event goes onto the LAN with a falling edge. The MXG takes no
action, since it is configured to trigger only on rising edges. The MXA completes its measurement and
prepares to move on to the next frequency in its list. The MXA's Waiting For Trigger instrument
event transitions high, and a LAN1 output event goes onto the LAN with a rising edge. The MXA
waits for its next trigger.

The two instruments continue to step through their lists until the MXA has completed measurements
at every frequency in its list. Once the final measurement has completed, the OperationComplete
instrument event transitions high, causing the OperationComplete output event to go out onto the
LAN with a rising edge. This event may be caught by a controller to signal the end of the
measurement. The controller may then retrieve the list sweep measurement results from the MXA.

Synchronize a List Sweep Measurement Between an MXA and an MXG using Peer to Peer Messages
1. Disable LXI Output LAN Events on the MXG:

Send the following SCPI command:
:LXT:EVENt : OUTPut : LAN:DISable:ALL
2. Reset the MXG:
Send the following SCPI command:
*RST
3. Choose the MXG's PTP domain:
Send the following SCPI command:
:LXTI:CLOCk:PTP:DOMain 0
The parameter may be any integer between 0 to 127.
4. Choose the MXG's LXI domain:
Send the following SCPI command:
:LXI:EVENt:DOMain 0
The parameter may be any integer between 0 to 127.
5. Preset the MXG's list sweep:
Send the following SCPI command:
:LIST:TYPE:LIST:INIT:PRES
6. Sets the MXG to expect a list of frequencies:
Send the following SCPI command:
:FREQ:MODE LIST
7. Sets the MXG to expect a list of powers:
Send the following SCPI command:
:POW:MODE LIST

56 Agilent Signal Generators Programming Guide

10.

11.

12.

13.

14.

15.

16.

Using 10 Interfaces
Using LAN

Sets the MXG how the lists will be entered:

Send the following SCPI command:

:LIST:TYPE LIST

An arbitrary list will be used instead of range and step size arguments.
Send the MXG a list of frequencies:

Send the following SCPI command:

:LIST:FREQ 100MHz,200MHz, 300MHz, 400MHz, 500MHzZ

The MXG will put out signals at these frequencies and in this order.
Send the MXG a list of powers:

Send the following SCPI command:

:LIST:POW 0dBm, -1dBm, -2dBm, -3dBm, -4dBm

The MXG will put out signals at these powers and in this order.
Turn off MXG signal modulation:

Send the following SCPI command:

:OUTP:MOD OFF

Turn MXG signal output on:

Send the following SCPI command:

:OUTP ON

Configure the MXG's LXI Output LAN Event:

Send the following SCPI commands:
:LXT:EVENt : OUTPut : LAN:DRIVe "LANO",NORMal
:LXTI:EVENt :OUTPut : LAN: SLOPe "LANO", POS

:LXTI :EVENt : OUTPut : LAN: SOURce "LANO", "Waiting For Trigger"

Together, these commands will cause the MXG to send a "LANO" peer to peer message every time
the “Waiting For Trigger” instrument event changes state.

Set the MXG's trigger source:

Send the following SCPI command:
:LIST:TRIG:SOUR LAN

Enable the MXG's LXI LAN Event trigger:
Send the following SCPI command:
:TRIG:LXI:LAN:ENABled "LAN1",1

Enable the MXG's LXI Output LAN Event:
Send the following SCPI command:
:LXTI:EVENt :OUTPut : LAN:ENABled "LANO",1

Agilent Signal Generators Programming Guide 57

Using 10 Interfaces
Using LAN

17.

18.

19.

20.

21.

22.

23.

24.

Disable LXI Output LAN Events on the MXA:
Send the following SCPI command:
:LXTI:EVENt :OUTPut : LAN:DISable:ALL

Put the MXA into SA mode:

Send the following SCPI command:
:INST:
Put the MXA into single sweep mode:
Send the following SCPI command:

:INIT:
Choose the MXA's PTP domain:

Send the following SCPI command:

SEL SA

CONT OFF

:LXI:CLOCk:PTP:DOMain 0

The parameter value should match the one used in step 3.
Choose the MXA's LXI domain:
Send the following SCPI command:

:LXI:EVENt:DOMain 0O

The parameter value should match the one used in step 4.
Move the MXA into the list sweep measurement:

Send the following SCPI command:

:CONF :
Send the MXA a list of frequencies:

Send the following SCPI command:

:LIST:FREQ 100MHz,200MHz,300MHz, 400MHZ, 500MHzZ

LIST

The MXA will put out signals at these frequencies and in this order.

Configure the MXA's list sweep parameters:
Send the following SCPI commands:

:LIST:
:LIST:
:LIST:
:LIST:
:LIST:
:LIST:

ATT 10dB
BAND:RES
BAND:RES
BAND:VID
SWE : TIME
TRIG:DEL

:LIST:DET RMS

:TYPE FLAT
300kHz
3MHz

le-6 s

58

Agilent Signal Generators Programming Guide

25.

26.

27.

28.

29.

30.

31.

32.

Using 10 Interfaces
Using LAN

Make sure the MXA's LXI LAN triggers are disabled:
Send the following SCPI command:
:TRIG:LXI:LAN:DISable:ALL

Set the MXA's trigger source to LXI LAN:

Send the following SCPI command:
:LIST:TRIG:SOUR LAN

Configure the MXA's LXI Output LAN Event:

Send the following SCPI commands:
:LXT:EVENt :OUTPut : LAN:DRIVe "LAN1",NORMal
:LXTI:EVENt :OUTPut : LAN: SLOPe "LAN1", POS

:LXTI :EVENt : OUTPut : LAN: SOURce "LAN1", "WaitingForTrigger"

This will cause the MXA to take a measurement at the first frequency in its list. It will also begin
waiting for the "LANO" peer to peer message before moving on to the next measurement.

Enable the MXA's LXI LAN Event trigger:

Send the following SCPI commands:

:TRIG:LXI:LAN:ENABled "LANO",1

Enable the MXA's "OperationComplete" LXI Output LAN Event:
Send the following SCPI commands:

:LXI:EVENt :OUTPut : LAN:ENABled "OperationComplete",1

The MXA will send an "OperationComplete" peer to peer message when the
"OperationComplete" instrument event changes state.

Begin the MXG's list sweep:
Send the following SCPI commands:
:INIT:CONT ON

This will cause the MXG to put out a signal at the first frequency in its list. It will also begin
waiting for the "LAN1" peer to peer message before moving on to the next signal.

Begin the MXA's list sweep:
Send the following SCPI commands:
:INIT:LIST

This will cause the MXA to take a measurement at the first frequency in its list. It will also begin
waiting for the "LANO" peer to peer message before moving on to the next measurement.

Enable the MXA's “LaN1” LXI Output LAN Event:
Send the following SCPI commands:
:LXT:EVENt :OUTPut : LAN:ENABled "LAN1",1

The "LAN1" peer to peer message is now enabled.

Agilent Signal Generators Programming Guide 59

Using 10 Interfaces
Using LAN

33. Send the MXG a "LAN1" peer to peer message:

Using Interactive LXI or the Agilent 10 Libraries TMFramework LXI library: send a "LAN1" peer
to peer message to the MXG.

This will start the synchronization sequence.
34. The MXA waits for the "OperationComplete" instrument event:

Detect the peer to peer traffic using Interactive LXI. To programmatically listen for LXI peer to
peer messages, use the Agilent 10 Libraries TMFramework LXI library.

When the MXA has completed its list, it will send the peer to peer message
"OperationComplete" with a rising edge to MXG.

35. Send query to MXA for the measurement results:

:FETCh:LIST?

Figure 2-9 lllustration of a List Sweep Measurement Between an MXA and an MXG using Peer to Peer Messages.

Instrument Events MXA
Operation Complete
‘WaitingForTrigger | |_| I | | | |
S | | | | °
] B
tHte Fro e s r
| 1§ I T R | Y I T I
Peer to peer ||] | = El E E| K El | %
messages Z o 2 b I = = n g
Y T TS B T B P R
s e s S1 Iz sl Iss 1ggl
% = % = % = = = % = =
a <
53 4.,¢| 55y G % 5 85 +
Instrument Events | | | | | MXGl | | | | |
|| | [|| [| | |
WaitingForTrigger | | | | | | | |
| |
i
| | |
FPeer to peer | g |
messages | z |
| 7 |
v | v
Controller

60 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using RS-232 (ESG and PSG Only)

For More Information

For more information on using LXI see the Agilent website dedicated to LXI instrumentation:
www.agilent.com/find/lxt.

Agilent LXI Application Notes:

e Using LXI to go beyond GPIB, PXI and VXI (AN 1465-20)

¢ 10 Good Reasons to Switch to LXI (AN 1465-21)

* Transitioning from GPIB to LXI (AN 1465-22)

¢ How to Use VXI and PXI in Your New LXI Test System (AN 1465-23)
¢ Using Synthetic Instruments in Your Test System (AN 1465-24)

e Migrating system software from GPIB to LAN/LXI (AN 1465-25)

* Modifying a GPIB System to Include LAN/LXI (AN 1465-26)

Using RS-232 (ESG and PSG Only)

CAUTION For long strings of commands and waveform downloads, upgrading to Agilent 10
Libraries 15.0 and above decreases RS-232 performance, resulting in an Error -310.

NOTE Because GPIB, LAN, and USB offer better communication performance, Agilent recommends
that RS-232 only be used for interactive sessions or short commands.

The RS-232 serial interface is available on the ESG signal generators.

The PSG AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial
connection but GPIB and LAN are recommended for making faster measurements and when
downloading files. Refer to the User’s Guide.

The RS-232 serial interface can be used to communicate with the signal generator. The RS-232
connection was once standard on most PCs but has now been replaced by USB. RS-232 can be
connected to the signal generator’s rear panel connector using the cable described in Table 2-2 on
page 64. Many functions provided by GPIB, with the exception of indefinite blocks, parallel polling,
serial polling, GET, non-SCPI remote languages, SRQ, and remote mode are available using the
RS-232 interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is slow.
The data transmitted and received is usually in ASCII format with SCPI commands being sent to the
signal generator and ASCII data returned.

Agilent Signal Generators Programming Guide 61

Using 10 Interfaces
Using RS—-232 (ESG and PSG Only)

The following sections contain information on selecting and connecting IO libraries and RS-232
interface hardware on the signal generator to a computer’s RS-232 connector.

¢ “Selecting 10 Libraries for RS-232" on page 62
o “Setting Up the RS-232 Interface” on page 63
o “Verifying RS-232 Functionality” on page 65

Selecting 10 Libraries for RS-232

The IO libraries can be downloaded from the National Instrument website, http./www.ni.com, or
Agilent’s website, http.;//www.agilent.com. The following is a discussion on these libraries.

CAUTION For long strings of commands and waveform downloads, upgrading to Agilent 10
Libraries 15.0 and above decreases RS-232 performance, resulting in an Error -310.

Because of the potential for portability problems, running Agilent SICL without the VISA
overlay is not recommended by Agilent Technologies.

HP Basic The HP Basic language has an extensive IO library that can be used to control the
signal generator over the RS-232 interface. This library has many low level
functions that can be used in BASIC applications to control the signal generator
over the RS-232 interface.

VISA VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used
for programming the signal generator. The NI-VISA and Agilent VISA libraries are
similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level IO libraries used to communicate
over the RS-232; NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 IO libraries can be used to develop applications for the RS-232 interface.
See National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the RS-232 interface. See
Agilent’s website for information on SICL.

62 Agilent Signal Generators Programming Guide

Setting Up the RS-232 Interface
1. Setting the RS-232 Interface Baud Rate (ESG/PSG/E8663B)

Error
Info
GPIBKHS—ESE

Instrument
Adjustments

Freset

elp Mode

Displau

Fower 0n/|

Memory Catalog

| Instrument Info/,|
Hell

M

Al

M

SCPI commands:

Using 10 Interfaces

Using RS-232 (ESG and PSG Only)

GPIB Address

19

Remote Language,
(5CPI

RS-232 Setupk

LAN Setupk
LAN Services,
Setup

Natnt,

:SYSTem:COMMunicate: SERial:BAUD <number>
:SYSTem:COMMunicate: SERial: BAUD?

R5-232 Baud_Rate,
(57600

Reset RS5-232

RS=232 FEcho
N On

RS-232 Timeout
25 sec

““““ﬁﬁN\d.—--h“‘

—

27600
38400
19200

Laao

2400

More

(1 of 2)

Select a baud

—rate of 9600.

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

NOTE

Configure your computer to use baud rates 57600 or lower only. Select the signal

generator’s baud rate to match the baud rate of your computer or UNIX workstation or

adjust the baud rate settings on your computer to match the baud rate setting of the
signal generator.

The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

Agilent Signal Generators Programming Guide

63

Using 10 Interfaces
Using RS—-232 (ESG and PSG Only)

2. Setting the RS-232 Echo Softkey

Utility
GPIB Address RS-232 Baud_Rate
Borer, 19 {575007"
- Femote Language
GPIB/RS-232, e Reset. RS-232
e ’—> RS-232 Setuptf—m- Pt Toggle RS-232 Echo Off On until Off is
highlighted. Selecting On echoes or returns
g characters sent to the signal generator and
RS-232 Timeout N
Displaup LR Sty T sec prints them to the display.
LAM Services
Power On/ »
Freset? Setup
Memory Catalog
SCPI commands:
Instrument Info/ :SYSTem:COMMunicate: SERial:ECHO ON|OFF
1 Aelp Mode” : SYSTem:COMMunicate: SERial : ECHO?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

3. Connect an RS-232 cable from the computer’s serial connector to the ESG signal generator’s
RS-232 connector or the PSG’s AUXILIARY INTERFACE connector. Refer to Table 2-2 for RS-232 cable
information.

Table 2-2 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number

1 Serial RS-232 cable 9-pin (male) to 9-pin (female) 8120-6188

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires pins 2, 3, 5, 7,
and 8 may be used.

64 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using RS-232 (ESG and PSG Only)

Verifying RS—232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer
and the signal generator and perform the following steps:

1. On the PC click Start > Programs > Accessories > Communications > HyperTerminal.
2. Select HyperTerminal.

3. Enter a name for the session in the text box and select an icon.

4. Select COM1 (COM2 can be used if COM1 is unavailable).

5. In the COM1 (or COM2, if selected) properties, set the following parameters:

e Bits per second: 9600 must match signal generator’s baud rate; for more information, refer to
“Setting Up the RS-232 Interface” on page 63.

e Data bits: 8
* Parity: None
e Stop bits: 1

o Flow Control: None

NOTE Flow control, through the RTS line, is driven by the signal generator. For the purposes of
this verification, the controller (PC) can ignore this if flow control is set to None.
However, to control the signal generator programmatically or download files to the signal
generator, you must enable RTS-CTS (hardware) flow control on the controller. Note that
only the RTS line is currently used.

Software Flow Control using XON and XOFF is not supported. Only RTS-CTS hardware
flow is supported.

6. Go to the HyperTerminal window and select File > Properties.

7. Go to Settings > Emulation and select VT100.

8. Leave the Backscroll buffer lines set to the default value.

9. Go to Settings > ASCII Setup.

10. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *IDN? followed by <Ctrl j> in the
HyperTerminal window. The <Ctrl j> is the new line character (on the keyboard press the Cntrl key
and the j key simultaneously).

The signal generator should return a string similar to the following, depending on model:

Agilent Technologies <instrument model name and number>, US40000001,C.02.00

Agilent Signal Generators Programming Guide 65

Using 10 Interfaces
RS—232 Programming Interface Examples

Character Format Parameters

The signal generator uses the following character format parameters when communicating through
RS-232:

¢ Character Length: Eight data bits are used for each character, excluding start, stop, and parity
bits.

e Parity Enable: Parity is disabled (absent) for each character.

e Stop Bits: One stop bit is included with each character.

If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal
generator.

2. Verify that the RS-232 cable is identical to the cable specified in Table 2-2.

Verify that the application is using the correct computer COM port and that the RS-232 cable is
properly connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.

RS-232 Programming Interface Examples

NOTE The portions of the programming examples discussed in this section are taken from the full
text of these programs that can be found in Chapter 3, “Programming Examples.”

¢ “Interface Check Using HP BASIC” on page 67

¢ “Interface Check Using VISA and C” on page 67

* “Queries Using HP Basic and RS-232” on page 68

¢ “Queries for RS-232 Using VISA and C” on page 68

Before Using the Examples

Before using the examples: On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
* RS-232 Echo - Off

The following sections contain HP Basic and C lines of programming removed from the programming
interface examples in Chapter 3, Programming Examples,, these portions of programming demonstrate
the important features to consider when developing programming for use with the RS-232 interface.

NOTE For RS-232 programming examples, refer to “RS-232 Programming Interface Examples
(ESG/PSG Only)” on page 152.

66 Agilent Signal Generators Programming Guide

Using 10 Interfaces
RS—232 Programming Interface Examples

Interface Check Using HP BASIC

This portion of the example program “Interface Check Using HP BASIC” on page 67, causes the signal
generator to perform an instrument reset. The SCPI command *RST will place the signal generator
into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COM1 (Serial A on some computers). Refer to “Using RS-232 (ESG and PSG Only)” on page 61 for
more information.

The following program example is available on the signal generator’s Documentation CD-ROM as
rs232ex1.txt. For the full text of this program, refer to “Interface Check Using HP BASIC” on
page 152 or to the signal generator’s documentation CD-ROM.

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9,3;9600 ! Sets the baud rate to match the sig gen
190 STATUS 9,4;Stat ! Reads the value of register 4

200 Num=BINAND (Stat,7) ! Gets the AND value

210 CONTROL 9, 4;Num ! Sets parity to NONE

220 OUTPUT 9; "*RST" ! Outputs reset to the sig gen

Interface Check Using VISA and C

This portion of the example program “Interface Check Using VISA and C” on page 67, uses VISA
library functions to communicate with the signal generator. The program verifies that the RS-232
connections and interface are functional. In this example the COM2 port is used. The serial port is
referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the computer serial port you are
using.

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex1.cpp. For the full text of this program, refer to “Interface Check Using VISA and C” on
page 153 or to the signal generator’s documentation CD-ROM.

int baud=9600;// Set baud rate to 9600

ViSession defaultRM, vi;// Declares a variable of type ViSession
// for instrument communication on COM 2 port
ViStatus viStatus = 0;
// Opens session to RS-232 device at serial port 2
viStatus=viOpenDefaultRM(&defaultRM) ;
viStatus=viOpen (defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &vi);

viStatus=viEnableEvent (vi, VI_EVENT_IO_COMPLETION, VI_QUEUE,VI_NULL) ;

viClear (vi);// Sends device clear command

// Set attributes for the session
viSetAttribute (vi, VI_ATTR_ASRL_BAUD, baud) ;
viSetAttribute (vi,VI_ATTR_ASRL_DATA_BITS,8) ;

Agilent Signal Generators Programming Guide 67

Using 10 Interfaces
RS—232 Programming Interface Examples

Queries Using HP Basic and RS-232

This portion of the example program “Queries Using HP Basic and RS-232" on page 68, example
program demonstrates signal generator query commands over RS-232. Query commands are of the
type *IDN? and are identified by the question mark that follows the mnemonic.

Start HP Basic, type in the following commands, and then RUN the program:

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex?2.txt. For the full text of this program, refer to “Queries Using HP Basic and RS-232” on
page 155 or to the signal generator’s documentation CD-ROM.

190 OUTPUT 9;"*IDN?"

200 ENTER 9;Str$

210 WAIT 2

220 PRINT "ID =", Str$

230 OUTPUT 9; "POW:AMPL -5 dbm"
240 OUTPUT 9; "POW?"

1

Querys the sig gen ID
Reads the ID

Waits 2 seconds

! Prints ID to the screen

Sets the the power level to -5 dbm

Querys the power level of the sig gen

Queries for RS-232 Using VISA and C

This portion of the example program “Queries for RS-232 Using VISA and C” on page 68, uses VISA
library functions to communicate with the signal generator. The program verifies that the RS-232
connections and interface are functional.

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2.cpp. For the full text of this program, refer to “Queries for RS-232 Using VISA and C” on
page 157 or to the signal generator’s documentation CD-ROM.

status = viOpenDefaultRM(&defaultRM);// Initializes the system

// Open communication with Serial Port 2

status = viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &instr);

68

Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using USB (Agilent MXG)

Using USB (Agilent MXG)

CAUTION USB cables are not industrial graded and potentially allows data loss in noisy
environments.

USB cables do not have a latching mechanism and the cables can be pulled out of the
PC or instrument relatively easily.

The maximum length for USB cables is 30 m, including the use of inline repeaters.

NOTE The USB interface is available only on the Agilent MXG signal generator.
The Agilent MXG’s USB 2.0 interface supports USBTMC or USBTMC-USB488 specifications.

For more information on connecting instruments to the USB, refer to the Agilent Connection
Expert in the Agilent I0 Libraries Help.

USB 2.0 connectors can be used to communicate with the signal generator. The
Nb5161A/62A/81A/82A is equipped with a Mini-B 5 pin rear panel connector (device USB). Use a
Type-A to Mini-USB 5 pin cable to connect the signal generator to the computer (Refer to “Setting
Up the USB Interface” on page 70). Connect the Type-A front panel connector (host USB) can be
used to connect a mouse, a keyboard, or a USB 1.1/2.0 flash drive (USB media). (Refer to the User’s
Guide.) ARB waveform encryption of proprietary information is supported. Many functions provided
by GPIB, including GET, non-SCPI remote languages, and remote mode are available using the USB
interface.

NOTE For a list of compatible flash drives to use with the USB external interface. Refer to
http://www.agilent.com/find/mxqg.

Do not use the Type A front panel USB to connect to a computer.

The following sections contain information on selecting and connecting I/O libraries and the USB
interface that are required to remotely program the signal generator through the computer and
combining those choices with one of several possible USB interface protocols.

e “Selecting I/O Libraries for USB” on page 70
¢ “Setting Up the USB Interface” on page 70
e “Verifying USB Functionality” on page 71

Agilent Signal Generators Programming Guide 69

Using 10 Interfaces
Using USB (Agilent MXG)

Selecting 1/0 Libraries for USB

CAUTION The Agilent MXG’s USB interface requires Agilent 10 Libraries Suite 14.1 or newer to
run properly. For more information on connecting instruments to the USB, refer to the
Agilent Connection Expert in the Agilent 10 Libraries Help.

The I/O libraries can be downloaded from the National Instrument website, http:/www.ni.com, or
Agilent’s website, http.//www.agilent.com. The following is a discussion on these libraries.

NOTE I/O applications such as IVI-COM or VXIplug&play can be used in place of VISA.

VISA VISA is an I/O library used to develop I/O applications and instrument drivers
that comply with industry standards. It is recommended that the VISA library be
used for programming the signal generator. The NI-VISA and Agilent VISA
libraries are similar implementations of VISA and have the same commands,
syntax, and functions. The differences are in the lower level 1/O libraries used to
communicate over the USB; NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 I/0 libraries can be used to develop applications for the USB interface.
See National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the USB interface. See
Agilent’s website for information on SICL.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

Setting Up the USB Interface

Rear Panel Interface (Mini—B 5 pin)

To use USB, connect the USB cable (Refer to Table 2-3, “USB Interface Cable,” on page 70, for USB
cable information.) between the computer and the signal generator’s rear panel Mini-B 5-pin USB
connector.

Table 2-3 USB Interface Cable

Quantity Description Agilent Part Number

1 USB cable Mini-B 5 pin to Type-A 82357-61601

70 Agilent Signal Generators Programming Guide

Using 10 Interfaces
Using USB (Agilent MXG)

Front Panel USB (Type-A)

For details on using the front panel USB (Type-A) and the front panel USB Media operation, refer to
the User’s Guide.

Verifying USB Functionality

Mini—B 5 Pin Rear Panel Connector

NOTE For information on verifying your Mini-B 5 pin USB (rear panel) functionality, refer to the
Agilent Connection Expert in the Agilent 10 Libraries Help. The Agilent 10 libraries are
included with your signal generator or Agilent GPIB interface board, or they can be
downloaded from the Agilent website: http.//www.agilent.com.

Type—A Front Panel USB Connector

For details on using the front panel USB (Type-A) and the front panel USB Media operation, refer to
the User’s Guide.

Agilent Signal Generators Programming Guide n

Using 10 Interfaces
Using USB (Agilent MXG)

72

Agilent Signal Generators Programming Guide

3 Programming Examples

NOTE For the N5161A/62A the softkey menus and features mentioned in this chapter are only
available through the Web-Enabled MXG or through SCPI commands. Refer to “Using the Web
Browser” on page 11 and to the SCPI Command Reference.

* Using the Programming Interface Examples on page 73

¢ GPIB Programming Interface Examples on page 78

¢ LAN Programming Interface Examples on page 116

¢ RS-232 Programming Interface Examples (ESG/PSG Only) on page 152

Using the Programming Interface Examples

The programming examples for remote control of the signal generator use the GPIB, LAN, and
RS-232 interfaces and demonstrate instrument control using different 10 libraries and programming
languages. Many of the example programs in this chapter are interactive; the user will be prompted
to perform certain actions or verify signal generator operation or functionality. Example programs are
written in the following languages:

HP Basic C#

C/C++ Microsoft Visual Basic 6.0
Java MATLAB

Perl

These example programs are also available on the signal generator Documentation CD- ROM, enabling
you to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Agilent MXG Local/Esc/Cancel or the ESG, and PSG Local key, are disabled. Press the
Agilent MXG Local/Esc/Cancel or the ESG, PSG Lecal key to revert to manual operation.

To have the signal generator’s front panel update with changes caused by remote operations, enable
the signal generator’s Update in Remote function.

NOTE The Update in Remote function will slow test execution. For faster test execution, disable the

Agilent Signal Generators Programming Guide 73

Programming Examples
Using the Programming Interface Examples

Update in Remote function. (For more information, refer to or “Configuring the Display for
Remote Command Setups (Agilent MXG)” on page 19.) or “Configuring the Display for
Remote Command Setups (ESG/PSG)” on page 20.

Programming Examples Development Environment

The C/C++ examples were written using an IBM-compatible personal computer (PC), configured as
follows:

« Pentium’ processor (Pentium is a registered trademark of Intel Corporation.)
e Windows NT 4.0 operating system or later

¢ (C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

¢ National Instruments PCI- GPIB interface card or Agilent GPIB interface card
* National Instruments VISA Library or Agilent VISA library

¢ (COMI1 or COM2 serial port available

* LAN interface card

The HP Basic examples were run on a UNIX 700 series workstation.

Running C++ Programs

When using Microsoft Visual C++ 6.0 to run the example programs, include the following files in your
project.

When using the VISA library:

¢ add the visa32.lib file to the Resource Files
¢ add the visa.h file to the Header Files

When using the NI-488.2 library:

¢ add the GPIB-32.0BJ file to the Resource Files
e add the windows.h file to the Header Files
¢ add the Deci-32.h file to the Header Files

For information on the NI-488.2 library and file requirements refer to the National Instrument
website. For information on the VISA library see the Agilent website or National Instrument’s
website.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 35 and “Configuring the VXI-11 for LAN (ESG/PSG)” on page 33.

74 Agilent Signal Generators Programming Guide

Programming Examples
Using the Programming Interface Examples

C/C++ Examples

“Interface Check for GPIB Using VISA and C” on page 84

“Queries for RS-232 Using VISA and C” on page 157

“Local Lockout Using NI-488.2 and C++” on page 86

“Queries Using NI-488.2 and Visual C++” on page 89

“Queries for GPIB Using VISA and C” on page 91

“Generating a CW Signal Using VISA and C” on page 93

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 95
“Generating an Internal FM Signal Using VISA and C” on page 97

“Generating a Step-Swept Signal Using VISA and C++” on page 99

“Reading the Data Questionable Status Register Using VISA and C” on page 105
“Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 109
“VXI-11 Programming Using SICL and C++” on page 117

“VXI-11 Programming Using VISA and C++” on page 118

“Sockets LAN Programming and C” on page 120

“Interface Check Using VISA and C” on page 153

“Queries for RS-232 Using VISA and C” on page 157

Running C# Examples

To run the example program State_Files.cs on page 358, you must have the .NET framework installed
on your computer. You must also have the Agilent IO Libraries installed on your computer. The .NET
framework can be downloaded from the Microsoft website. For more information on running C#
programs using .NET framework, see Chapter 6.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN
(Agilent MXG)” on page 32 and “Configuring the VXI-11 for LAN (ESG/PSG)” on page 33.

Running Basic Examples

The BASIC programming interface examples provided in this chapter use either HP Basic or Visual
Basic 6.0 languages.

Visual Basic 6.0 Programming Examples

To run the example programs written in Visual Basic 6.0 you must include references to the 10
Libraries. For more information on VISA and IO libraries, refer to the Agilent VISA User’s Manual,
available on Agilent’'s website: http:/www.agilent.com. In the Visual Basic IDE (Integrated
Development Environment) go to Project-References and place a check mark on the following
references:

e Agilent VISA COM Resource Manager 1.0
e VISA COM 1.0 Type Library

Agilent Signal Generators Programming Guide 75

Programming Examples
Using the Programming Interface Examples

NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas module
to your Visual Basic project.

The signal generator’s VXI-11 SCPI service must be on before you can run the Download Visual Basic
6.0 programming example.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN
(Agilent MXG)” on page 32 and “Configuring the VXI-11 for LAN (ESG/PSG)” on page 33.

You can start a new Standard EXE project and add the required references. Once the required
references are included, you can copy the example programs into your project and add a command
button to Forml that will call the program.

The example Visual Basic 6.0 programs are available on the signal generator Documentation
CD- ROM, enabling you to cut and paste the examples into your project.

Visual Basic Examples
The Visual Basic examples enable the use of waveform files and are located in Chapter 5.

e “Creating I/Q Data—Little Endian Order” on page 292
¢ “Downloading I/Q Data” on page 294

HP Basic Examples

¢ “Interface Check using HP Basic and GPIB” on page 82

* “Local Lockout Using HP Basic and GPIB” on page 85

* “Queries Using HP Basic and GPIB” on page 88

¢ “Queries Using HP Basic and RS-232” on page 155

e “Using 8757D Pass-Thru Commands (PSG with Option 007 Only)” on page 113

Running Java Examples

The Java program “Sockets LAN Programming Using Java” on page 143, connects to the signal
generator through sockets LAN. This program requires Java version 1.1 or later be installed on your
PC. For more information on sockets LAN programming with Java, refer to “Sockets LAN
Programming Using Java” on page 143.

76 Agilent Signal Generators Programming Guide

Programming Examples
Using GPIB

Running MATLAB Examples

For information regarding programming examples and files required to create and play waveform
files, refer to Chapter 5.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN
(Agilent MXG)” on page 32 and “Configuring the VXI-11 for LAN (ESG/PSG)” on page 33.

Running Perl Examples

The Perl example “Sockets LAN Programming Using Perl” on page 145, uses PERL script to control
the signal generator over the sockets LAN interface.

Using GPIB

GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI-GPIB interface
card for your PC or UNIX-based system.

¢ “Installing the GPIB Interface Card” on page 77

For more information on setting up a GPIB interface card or NI-GPIB interface card, refer to:
¢ “Set Up the GPIB Interface” on page 27

¢ “Verify GPIB Functionality” on page 28

NOTE You can also connect GPIB instruments to a PC USB port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more
information, go to http.//www.agilent.com/find/gpib.

Installing the GPIB Interface Card

Refer to “Installing the GPIB Interface” on page 25.

Agilent Signal Generators Programming Guide 77

Programming Examples
GPIB Programming Interface Examples

GPIB Programming Interface Examples

¢ “Interface Check using HP Basic and GPIB” on page 82

¢ “Interface Check Using NI-488.2 and C++” on page 83

¢ “Interface Check for GPIB Using VISA and C” on page 84

¢ “Local Lockout Using HP Basic and GPIB” on page 85

¢ “Local Lockout Using NI-488.2 and C++” on page 86

* “Queries Using HP Basic and GPIB” on page 88

¢ “Queries Using NI-488.2 and Visual C++” on page 89

¢ “Queries for GPIB Using VISA and C” on page 91

* “Generating a CW Signal Using VISA and C” on page 93

¢ “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 95
¢ “Generating an Internal FM Signal Using VISA and C” on page 97

* “Generating a Step-Swept Signal Using VISA and C++” on page 99

¢ “Generating a Swept Signal Using VISA and Visual C++” on page 100

¢ “Saving and Recalling States Using VISA and C” on page 102

¢ “Reading the Data Questionable Status Register Using VISA and C” on page 105
¢ “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 109
e “Using 8757D Pass-Thru Commands (PSG with Option 007 Only)” on page 113

Before Using the GPIB Examples

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIBO or GPIBI.

GPIB Function Statements (Command Messages)

Function statements are the basis for GPIB programming and instrument control. These function
statements, combined with SCPI, provide management and data communication for the GPIB interface
and the signal generator.

This section describes functions used by different 10 libraries. For more information, refer to the
NI-488.2 Function Reference Manual for Windows, Agilent Standard Instrument Control Library
reference manual, and Microsoft Visual C++ 6.0 documentation.

Abort Function

The HP Basic function ABORT and the other listed IO library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Library Function Statement Initialization Command

HP Basic The ABORT function stops all GPIB activity. 10 ABORT 7

VISA Library In VISA, the viTerminate command requests a VISA session viTerminate (parameter list)
to terminate normal execution of an asynchronous operation.
The parameter list describes the session and job id.

NI-488.2 The NI-488.2 library function aborts any asynchronous read, ibstop (int ud)
write, or command operation that is in progress. The
parameter ud is the interface or device descriptor.

78 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Library

Function Statement

Initialization Command

SICL

The Agilent SICL function aborts any command currently
executing with the session id. This function is supported
with C/C++ on Windows 3.1 and Series 700 HP-UX.

iabort (id)

Remote Function

The HP Basic function REMOTE and the other listed IO library functions change the signal generator
from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key restores manual operation.

Library

Function Statement

Initialization Command

HP Basic

The REMOTE 719 function disables the front panel operation
of all keys with the exception of the Local key.

10 REMOTE 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

NI-488.2 The NI-488.2 library function asserts the Remote Enable EnableRemote (parameter
(REN) GPIB line. All devices listed in the parameter list are list)
put into a listen-active state although no indication is
generated by the signal generator. The parameter list
describes the interface or device descriptor.
SICL The Agilent SICL function puts an instrument, identified by iremote (id)

the id parameter, into remote mode and disables the front
panel keys. Pressing the Local key on the signal generator
front panel restores manual operation. The parameter id is
the session identifier.

Local Lockout Function

The HP Basic function LOCAL LOCKOUT and the other listed IO library functions disable the front
panel keys including the Local key. With the Local key disabled, only the controller (or a hard reset of
line power) can restore local control.

Library

Function Statement

Initialization Command

HP Basic

The LOCAL LOCKOUT function disables all front-panel signal
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

10 LOCAL LOCKOUT 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

Agilent Signal Generators Programming Guide

79

Programming Examples
GPIB Programming Interface Examples

access to front panel keys operation. The function puts an
instrument, identified by the id parameter, into remote
mode with local lockout. The parameter id is the session
identifier and instrument address list.

Library Function Statement Initialization Command
NI-488.2 The LOCAL LOCKOUT function disables all front-panel signal SetRWLS (parameter list)
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.
SICL The Agilent SICL igpibllo prevents function prevents user igpibllo (id)

Local Function

The HP Basic function LOCAL and the other listed functions return the signal generator to local
control with a fully enabled front panel.

Library

Function Statement

Initialization Command

HP Basic

The LOCAL 719 function returns the signal generator to
manual operation, allowing access to the signal generator’s
front panel keys.

10 LOCAL 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

NI-488.2

The NI-488.2 library function places the interface in local
mode and allows operation of the signal generator’s front
panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

ibloc (int ud)

SICL

The Agilent SICL function puts the signal generator into
Local operation; enabling front panel key operation. The id
parameter identifies the session.

iloc (id)

Clear Function

The HP Basic function CLEAR and the other listed IO library functions clear the signal generator.

Library

Function Statement

Initialization Command

HP Basic

The CLEAR 719 function halts all pending output- parameter
operations, resets the parser (interpreter of programming
codes) and prepares for a new programming code, stops any
sweep in progress, and turns off continuous sweep.

10 CLEAR 719

VISA Library

The VISA library uses the viClear function. This function
performs an IEEE 488.1 clear of the signal generator.

viClear (ViSession vi)

80

Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Library Function Statement Initialization Command

NI-488.2 The NI-488.2 library function sends the GPIB Selected ibclr (int ud)
Device Clear (SDC) message to the device described by ud.

SICL The Agilent SICL function clears a device or interface. The iclear (id)
function also discards data in both the read and write
formatted 10 buffers. The id parameter identifies the
session.

QOutput Function

The HP Basic 10 function OUTPUT and the other listed IO library functions put the signal generator
into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Library Function Statement Initialization Command
HP Basic The function OUTPUT 719 puts the signal generator into 10 OUTPUT 719

remote mode, makes it a listener, and prepares it to receive

data.
VISA Library The VISA library uses the above function and associated viPrintf(parameter list)

parameter list to output data. This function formats
according to the format string and sends data to the device.
The parameter list describes the session id and data to send.

NI-488.2 The NI-488.2 library function addresses the GPIB and writes ibwrt (parameter list)
data to the signal generator. The parameter list includes the
instrument address, session id, and the data to send.

SICL The Agilent SICL function converts data using the format iprintf (parameter
string. The format string specifies how the argument is list)

converted before it is output. The function sends the
characters in the format string directly to the instrument.
The parameter list includes the instrument address, data
buffer to write, and so forth.

Agilent Signal Generators Programming Guide 81

Programming Examples
GPIB Programming Interface Examples

Enter Function

The HP Basic function ENTER reads formatted data from the signal generator. Other IO libraries use
similar functions to read data from the signal generator.

Library Function Statement Initialization Command

HP Basic The function ENTER 719 puts the signal generator into 10 ENTER 719;
remote mode, makes it a talker, and assigns data or status
information to a designated variable.

VISA Library The VISA library uses the viScanf function and an viScanf (parameter list)
associated parameter list to receive data. This function
receives data from the instrument, formats it using the
format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

NI-488.2 The NI-488.2 library function addresses the GPIB, reads ibrd (parameter list)
data bytes from the signal generator, and stores the data
into a specified buffer. The parameter list includes the
instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, iscanf (parameter list)
and stores the results into the argument list. The conversion
is done using conversion rules for the format string. The
parameter list includes the instrument address, formatted
data to read, and so forth.

Interface Check using HP Basic and GPIB

This simple program causes the signal generator to perform an instrument reset. The SCPI command
*RST places the signal generator into a pre-defined state and the remote annunciator (R) appears on
the front panel display.

The following program example is available on the signal generator Documentation CD-ROM as
basicexl.txt.

10 !**
20 !

30 ! PROGRAM NAME: basicexl.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB connections and
60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the following commands and then
120 ! RUN the program:

130 !

82 Agilent Signal Generators Programming Guide

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

!**
!

Sig_gen=719 ! Declares a variable to hold the signal generator's address
LOCAL Sig_gen ! Places the signal generator into Local mode

CLEAR Sig_gen ! Clears any pending data I/0 and resets the parser

REMOTE 719 ! Puts the signal generator into remote mode

CLEAR SCREEN ! Clears the controllers display

REMOTE 719

OUTPUT Sig_gen; "*RST" ! Places the signal generator into a defined state
PRINT "The signal generator should now be in REMOTE."

PRINT

PRINT "Verify that the remote [R] annunciator is on. Press the ‘Local' key,
PRINT "on the front panel to return the signal generator to local control."
PRINT

PRINT "Press RUN to start again."

END ! Program ends

Programming Examples

GPIB Programming Interface Examples

Interface Check Using NI-488.2 and C++

This example uses the NI-488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the signal generator Documentation CD-ROM as

niexl.cpp.

//
//
//
//
//
//
//
//
//
//
//

#include
#include
#include

#include

Kok kkkkkkkkkkkkkkkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkk k% k% %

PROGRAM NAME: niexl.cpp

PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

interface are functional.

Connect a GPIB cable from the PC GPIB card to the signal generator

Enter the following code into the source .cpp file and execute the program

Kok kkkkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkhkhkhkkk k% k% %

"stdafx.h"
<iostream>
"windows.h"

"Decl-32.h"

using namespace std;

int GPIBO=

0; // Board handle

Agilent Signal Generators Programming Guide

83

Programming Examples
GPIB Programming Interface Examples

Addr4882_

t Address[31];

int main(void)

int

sig

sig;

= ibdev (0, 19,

ibclr(sig) ;

ibwrt (sig, "*RST",

cout <<

// Declares an array of type Addr4882_t

0,

4);

13,

// Declares a device descriptor variable
// Aquires a device descriptor
// Sends device clear message to signal generator

// Places the signal generator into a defined state

// Print data to the output window

"The signal generator should now be in REMOTE. The remote indicator"<<endl;

cout <<"annunciator R should appear on the signal generator display"<<endl;

return

0;

Interface Check for GPIB Using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. visaexl.cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional
* switches the signal generator into remote operation mode

The following program example is available on the signal generator Documentation CD-ROM as
visaexl.cpp.

] ok ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ko ok ok ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

// PROGRAM NAME:visaexl.cpp

//

// PROGRAM DESCRIPTION:This example program verifies that the GPIB connections and

// and interface are functional.

// Turn signal generator power off then on and then run the program

//

] ok ko ok ok Sk ok ok ok ok K ok ok ok ok K ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ko ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

#include
#include
#include

#include

void main

<visa.h>
<stdio.h>
"Stdafx.h"
<stdlib.h>

(

84

Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

{
ViSession defaultRM, vi; // Declares a variable of type ViSession
// for instrument communication

ViStatus viStatus = 0;
// Opens a session to the GPIB device
// at address 19

viStatus=viOpenDefaultRM (&defaultRM) ;

viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if (viStatus) {

printf ("Could not open ViSession!\n");

printf ("Check instruments and connections\n");

printf ("\n");

exit (0);}
viPrintf (vi, "*RST\n"); // initializes signal generator
// prints to the output window
printf ("The signal generator should now be in REMOTE. The remote indicator\n") ;

printf ("annunciator R should appear on the signal generator display\n");

printf ("\n");

viClose (vi) ; // closes session
viClose (defaultRM) ; // closes default session

}

Local Lockout Using HP Basic and GPIB

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys. basicex2.txt performs the following functions:

* resets instrument
* places signal generator into local
* places signal generator into remote

The following program example is available on the signal generator Documentation CD- ROM as
basicex2.txt.

10 !***4(***4(****~k4(*4(4(***4(~k4(*4(~k4(*4(~k4(****4(*4(~k4(***4(***4(***k**k*k*k*k*k*k********

20 !

30 ! PROGRAM NAME: basicex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal generators

60 ! functional front panel keys are disabled except for

70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command will disable the Local key.

90 ! The LOCAL command, executed from the controller, is then
100 ! the only way to return the signal generator to front panel,

Agilent Signal Generators Programming Guide 85

Programming Examples
GPIB Programming Interface Examples

110 ! Local, control.

120 !***
130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Sig_gen ! Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in local mode

160 REMOTE Sig_gen ! Places the signal generator in remote mode

170 CLEAR SCREEN ! Clears the controllers display

180 OUTPUT Sig_gen; "*RST" ! Places the signal generator in a defined state
190 ! The following print statements are user prompts

200 PRINT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R' and 'L' annunciators are visable"

220 PRINT ".......... Press Continue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT mode
250 PRINT ! Prints user prompt messages

260 PRINT "Signal generator should now be in LOCAL LOCKOUT mode."

270 PRINT

280 PRINT "Verify that all keys including ‘Local' (except Contrast keys) have no effect."
290 PRINT

300 PRINT ".......... Press Continue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control

340 ! The following print statements are user prompts

350 PRINT "Signal generator should now be in Local mode."

360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."
380 PRINT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. niex2.cpp performs the following functions:

¢ all front panel keys, except the contrast key

* places the signal generator into remote

¢ prompts the user to verify the signal generator is in remote
* places the signal generator into local

The following program example is available on the signal generator Documentation CD-ROM as
niex2.cpp.

[] KRk Kk ok ok sk ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok kK ok K ok ok K ok ok K o ok K ok ok K ok kK ok K ok ok K ok kK K ok K ok ok K ok kK

86 Agilent Signal Generators Programming Guide

//
//
//
//
//
//
//

Programming Examples
GPIB Programming Interface Examples

PROGRAM NAME: niex2.cpp

PROGRAM DESCRIPTION: This program will place the signal generator into
LOCAL LOCKOUT mode. All front panel keys, except the Contrast key, will be disabled.
The local command, 'ibloc(sig)' executed via program code, is the only way to

return the signal generator to front panel, Local, control.

L R

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIBO= 0; // Board handle

Addr4882_t Address([31]; // Declares a variable of type Addr4882_t

int main()

{
int sig; // Declares variable to hold interface descriptor
sig = ibdev(0, 19, 0, 13, 1, 0); // Opens and initialize a device descriptor
ibclr(sig); // Sends GPIB Selected Device Clear (SDC) message
ibwrt (sig, "*RST", 4); // Places signal generator in a defined state

cout << "The signal generator should now be in REMOTE. The remote mode R "<<endl;
cout <<"annunciator should appear on the signal generator display."<<endl;
cout <<"Press Enter to continue"<<endl;

cin.ignore (10000, '\n"');

SendIFC (GPIBO) ; // Resets the GPIB interface
Address[0]1=19; // Signal generator's address
Address [1]=NOADDR; // Signifies end element in array. Defined in

// DECL-32.H
SetRWLS (GPIB0, Address); // Places device in Remote with Lockout State.

cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
keys"<<endl;

cout<< "including the 'Local' key are disabled (Contrast keys are not
affected) "<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore (10000, '\n"');

ibloc(sig) ; // Returns signal generator to local control
cout<<endl;

cout <<"The signal generator should now be in local mode\n";

return 0;}

}

Agilent Signal Generators Programming Guide 87

Programming Examples
GPIB Programming Interface Examples

Queries Using HP Basic and GPIB

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the
identify command *IDN? basicex3.txt performs the following functions:

clears the signal generator

queries the signal generator’s settings

The following program example is available on the signal generator Documentation CD-ROM as
basicex3.txt.

10 Ik k ok ok ok ok ok Kk ok k ok k k k o ok ok kK K K K K K K K K
20 !

30 ! PROGRAM NAME: basicex3.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used with response
60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the following program:

90 !

100 Ik k ok ok ok ok ok Kk Kk ok k k kok o ok o ok ok kK K K K K K K K K
110 !

120 DIM A$[10],CS$[100],DS$S[10] ! Declares variables to hold string response data
130 INTEGER B ! Declares variable to hold integer response data
140 Sig_gen=719 ! Declares variable to hold signal generator address
150 LOCAL Sig_gen ! Puts signal generator in Local mode

160 CLEAR Sig_gen ! Resets parser and clears any pending output

170 CLEAR SCREEN ! Clears the controller’s display

180 OUTPUT Sig_gen; "*RST" ! Puts signal generator into a defined state

190 OUTPUT Sig_gen; "FREQ:CW?" ! Querys the signal generator CW frequency setting
200 ENTER Sig_gen;F ! Enter the CW frequency setting

210 ! Print frequency setting to the controller display

220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

230 PRINT

240 OUTPUT Sig_gen; "POW:AMPL?" ! Querys the signal generator power level

250 ENTER Sig_gen;W ! Enter the power level

260 ! Print power level to the controller display

270 PRINT "Current power setting is: ";W;"dBM"

280 PRINT

290 OUTPUT Sig_gen; "FREQ:MODE?" ! Querys the signal generator for frequency mode

300 ENTER Sig_gen;AS ! Enter in the mode: CW, Fixed or List

310 ! Print frequency mode to the controller display

320 PRINT "Source's frequency mode is: ";A$

330 PRINT

88 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

340 OUTPUT Sig_gen; "OUTP OFF" ! Turns signal generator RF state off

350 OUTPUT Sig_gen; "OUTP?" ! Querys the operating state of the signal generator
360 ENTER Sig_gen;B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display

380 IF B>0 THEN

390 PRINT "Signal Generator output is: on"
400 ELSE
410 PRINT "Signal Generator output is: off"

420 END IF

430 OUTPUT Sig_gen; "*IDN?" ! Querys for signal generator ID
440 ENTER Sig_gen;C$! Enter in the signal generator ID
450 ! Print the signal generator ID to the controller display

460 PRINT

470 PRINT "This signal generator is a ";C$

480 PRINT

490 ! The next command is a query for the signal generator's GPIB address
500 OUTPUT Sig_gen; "SYST:COMM:GPIB:ADDR?"

510 ENTER Sig_gen;D$! Enter in the signal generator's address
520 ! Print the signal generator's GPIB address to the controllers display
530 PRINT "The GPIB address is ";D$

540 PRINT

550 ! Print user prompts to the controller's display

560 PRINT "The signal generator is now under local control"

570 PRINT "or Press RUN to start again."

580 END

Queries Using NI-488.2 and Visual C++

This example uses the NI-488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. niex3.cpp performs the following functions:

* resets the signal generator
* queries the signal generator for various settings
* reads the various settings

The following program example is available on the signal generator Documentation CD-ROM as
niex3.cpp.

[KRk kK ko ko ko Kk Kk kR Kk Kk Kk Kk Kk ko ko ko ko ko ko Kk Kk Kk Kk kK ok Kk kK kK ko ko ko kR Kok Kok ko kR Kk X

// PROGRAM NAME: niex3.cpp

/7

// PROGRAM DESCRIPTION: This example demonstrates the use of query commands.

/7

// The signal generator can be queried for conditions and instrument states.

// These commands are of the type "*IDN?" where the question mark indicates

Agilent Signal Generators Programming Guide 89

Programming Examples
GPIB Programming Interface Examples

// a query.
//

[K kK Kk ok Kk ok K ok ok K ok K K ok K ok ok ok ok ok K ok ok K ok ok K ok kK ok K ok ok K ok ok K o ok K ok ok K ok kK ok K ok ok K ok ok K ok K ok ok K ok ok K ok K ok ok K ok kK K ok K ok ok K ok kK

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"
using namespace std;
int GPIBO= 0;
Addr4882_t Address|[31];

int main()

{
int sig; //
int num;
char rdval([100]; //

sig = ibdev (0, 19, 0, 13, 1, 0); //

// Board handle
// Declare a variable of type Addr4882_t

Declares variable to hold interface descriptor

Declares variable to read instrument responses

Open and initialize a device descriptor

ibloc(sig) ; // Places the signal generator in local mode
ibclr(sig); // Sends Selected Device Clear (SDC) message
ibwrt (sig, "*RST", 4); // Places signal generator in a defined state
ibwrt (sig, ":FREQuency:CW?",14); // Querys the CW frequency

ibrd(sig, rdval,100); // Reads in the response into rdval

rdval [ibcntl] = '\0'; // Null character indicating end of array
cout<<"Source CW frequency is "<<rdval; // Print frequency of signal generator

cout<<"Press any key to continue"<<endl;

cin.ignore (10000, '\n"');

ibwrt (sig, "POW:AMPL?",10); //
ibrd(sig, rdval,100); //
rdval [ibentl] = '\0'; //

Querys the signal generator
Reads the signal generator power level

Null character indicating end of array

// Prints signal generator power level

cout<<"Source power (dBm) is : "<<rdval;

cout<<"Press any key to continue"<<endl;

cin.ignore (10000, '\n"');

ibwrt (sig, ":FREQ:MODE?",11); // Querys source frequency mode
ibrd(sig, rdval,100); // Enters in the source frequency mode
rdval [ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source frequency mode is "<<rdval; // Print source frequency mode

cout<<"Press any key to continue"<<endl;

cin.ignore (10000, '\n"');

ibwrt (sig, "OUTP OFF",12); // Turns off RF source

90

Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

ibwrt (sig, "OUTP?",5); // Querys the on/off state of the instrument
ibrd(sig,rdval,?2); // Enter in the source state

rdval [ibcntl] = '\0';

num = (int (rdval[O0]) -('0'));

if (num > 0){

cout<<"Source RF state is : On"<<endl;
}else({
cout<<"Source RF state is : Off"<<endl;}
cout<<endl;
ibwrt (sig, "*IDN?",5); // Querys the instrument ID
ibrd(sig, rdval,100); // Reads the source ID
rdval [ibcntl] = '\0'; // Null character indicating end of array
cout<<"Source ID is : "<<rdVal; // Prints the source ID

cout<<"Press any key to continue"<<endl;

cin.ignore (10000, '\n"');

ibwrt (sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address

ibrd(sig, rdval,100); // Reads the source address

rdval [ibcntl] = '\0'; // Null character indicates end of array

// Prints the signal generator address

cout<<"Source GPIB address is : "<<rdval;

cout<<endl;

cout<<"Press the 'Local' key to return the signal generator to LOCAL control”<<endl; cout<<endl;
return 0;

}

Queries for GPIB Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. visaex3.cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional

* resets the signal generator

¢ queries the instrument (CW frequency, power level, frequency mode, and RF state)
* reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
* turns signal generator RF state off

¢ verifies RF state off

The following program example is available on the signal generator Documentation CD-ROM as
visaex3.cpp.

//~k******~k4(~k4(~k4(~k4(~k4(*4(~k4(4(***4(~k4(~k4(~k4(~k4(~k4(*4(~k~k4(*4(~k4(*4(~k4(*4(~kk~kk**k~kk**~kk*k*k*k*k*k**k***********
// PROGRAM FILE NAME:visaex3.cpp

/7

// PROGRAM DESCRIPTION:This example demonstrates the use of query commands. The signal

// generator can be queried for conditions and instrument states. These commands are of

// the type "*IDN?"; the question mark indicates a query.

Agilent Signal Generators Programming Guide 91

Programming Examples
GPIB Programming Interface Examples

//

[] K ko ok ok ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok kK ok K

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <conio.h>
#include <stdlib.h>

using namespace std;

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus
// for GPIB verifications

char rdBuffer [256]; // Declares variable to hold string data

int num; // Declares variable to hold integer data

// Initialize the VISA system
viStatus=viOpenDefaultRM (&defaultRM) ;
// Open session to GPIB device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");

printf ("\n");

exit (0);}
viPrintf (vi, "*RST\n"); // Resets signal generator
viPrintf (vi, "FREQ:CW?\n"); // Querys the CW frequency
viScanf (vi, "%t", rdBuffer); // Reads response into rdBuffer
// Prints the source frequency
printf ("Source CW frequency is : %s\n", rdBuffer);

printf ("Press any key to continue\n");

printf ("\n"); // Prints new line character to the display
getch() ;

viPrintf (vi, "POW:AMPL?\n"); // Querys the power level

viScanf (vi, "%t", rdBuffer); // Reads the response into rdBuffer

// Prints the source power level
printf ("Source power (dBm) is : %s\n", rdBuffer);
printf ("Press any key to continue\n");

printf ("\n"); // Prints new line character to the display

92 Agilent Signal Generators Programming Guide

getch() ;

viPrintf (vi, "FREQ:MODE?\n");

viScanf (vi, "%t", rdBuffer);

printf ("Source frequency mode is

Programming Examples
GPIB Programming Interface Examples

// Querys the freqguency mode
// Reads the response into rdBuffer
// Prints the source freqg mode

%$s\n", rdBuffer);

printf ("Press any key to continue\n");

printf ("\n");

getch() ;

viPrintf (vi, "OUTP OFF\n");

viPrintf (vi, "OUTP?\n");

// Prints new line character to the display

// Turns source RF state off

// Querys the signal generator's RF state

viScanf (vi, "%1i", &num); // Reads the response (integer value)
// Prints the on/off RF state
if (num > 0) {
printf ("Source RF state is on\n") ;
}else({
printf ("Source RF state is off\n");

}

viClose (vi) ;

viClose (defaultRM) ;

}

// Close the sessions

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set
for a CW frequency of 500 kHz and a power level of —2.3 dBm. Launch

Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
visaex4.cpp performs the following functions:

verifies the GPIB connections and interface are functional

resets the signal generator

queries the instrument (CW frequency, power level, frequency mode, and RF state)
reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
turns signal generator RF state off

verifies RF state off

The following program example is available on the signal generator Documentation CD-ROM as
visaex4 . cpp.

[] K kK ok ok ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok kK ok K ok ok K ok ok K o ok K ok ok K ok kK ok Kk

//
//
//
//
//
//
//

PROGRAM FILE NAME: visaex4.cpp

PROGRAM DESCRIPTION: This example demonstrates query commands. The signal generator

frequency and power level.

The RF state of the signal generator is turn on and then the state is queried. The

response will indicate that the RF state is on. The RF state is then turned off and

queried. The response should indicate that the RF state is off. The query results are

Agilent Signal Generators Programming Guide 93

Programming Examples
GPIB Programming Interface Examples

// printed to the to the display window.
//

[] K kK ok ok Kk ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok kK ok K ok ok K ok ok K ok K ok ok K ok K K ok Kk

#include "StdAfx.h"
#include <visa.h>

#include <iostream>
#include <stdlib.h>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus
// for GPIB verifications

char rdBuffer [256]; // Declare variable to hold string data

int num; // Declare variable to hold integer data

viStatus=viOpenDefaul tRM(&defaultRM) ; // Initialize VISA system

// Open session to GPIB device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");

printf ("\n");

exit (0);}

viPrintf (vi, "*RST\n"); // Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CW frequency for 500 kHz
viPrintf (vi, "FREQ:CW?\n"); // Query the CW frequency

viScanf (vi, "%t", rdBuffer); // Read signal generator response

printf ("Source CW frequency is : %s\n", rdBuffer); // Print the frequency
viPrintf (vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to -2.3 dBm
viPrintf (vi, "POW:AMPL?\n"); // Query the power level

viScanf (vi, "%t", rdBuffer); // Read the response into rdBuffer

printf ("Source power (dBm) is : %s\n", rdBuffer); // Print the power level
viPrintf (vi, "OUTP:STAT ON\n"); // Turn source RF state on

viPrintf (vi, "OUTP?\n"); // Query the signal generator's RF state
viScanf (vi, "%1i", &num) ; // Read the response (integer value)

// Print the on/off RF state

if (num > 0)

94 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf ("Source RF state is : on\n");
}else({
printf ("Source RF state is : off\n");

}

printf ("\n");

printf ("Verify RF state then press continue\n");
printf ("\n");

getch() ;

viClear (vi) ;

viPrintf (vi, "OUTP: STAT OFF\n"); // Turn source RF state off
viPrintf (vi, "OUTP?\n"); // Query the signal generator's RF state
viScanf (vi, "%1i", &num); // Read the response

// Print the on/off RF state
if (num > 0) {
printf ("Source RF state is now: on\n");
telse({
printf ("Source RF state is now: off\n");
}
// Close the sessions
printf ("\n");
viClear (vi) ;
viClose (vi) ;
viClose (defaultRM) ;
}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency
of 700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running the program:

* Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
* Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
visaex5.cpp performs the following functions:

* error checking

* resets the signal generator

e sets up the EXT 2 connector on the signal generator for FM
* sets up FM path 2 coupling to AC

e sets up FM path 2 deviation to 20 kHz

e sets carrier frequency to 700 MHz

* sets the power level to -2.5 dBm

¢ turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD- ROM as
visaex5.cpp.

[/ ok ok ko ok ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

Agilent Signal Generators Programming Guide 95

Programming Examples
GPIB Programming Interface Examples

// PROGRAM FILE NAME:visaex5.cpp

//

// PROGRAM DESCRIPTION:This example sets the signal generator FM source to External 2,
// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power level
// to -2.5 dBm. The RF state is set to on.

//

[K kK ok ok ok ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok kK ok Kk

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <stdlib.h>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

// for GPIB verifications
// Initialize VISA session
viStatus=viOpenDefaultRM (&defaultRM) ;
// open session to gpib device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}

printf ("Example program to set up the signal generator\n");
printf ("for an AC-coupled FM signal\n");

printf ("Press any key to continue\n");

printf ("\n");

getch() ;

printf ("\n");

viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf (vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM

viPrintf (vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling to AC
viPrintf (vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation to 20 kHz
viPrintf (vi, "FREQ 700 MHz\n"); // Sets carrier frequency to 700 MHz

96 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

viPrintf (vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to -2.5 dBm
viPrintf (vi, "FM:STAT ON\n"); // Turns on frequency modulation
viPrintf (vi, "OUTP:STAT ON\n"); // Turns on RF output

// Print user information
printf ("Power level : -2.5 dBm\n");
printf ("FM state : on\n");
printf ("RF output : on\n");
printf ("Carrier Frequency : 700 MHZ\n");
printf ("Deviation : 20 kHZ\n");
printf ("EXT2 and AC coupling are selected\n");
printf ("\n"); // Prints a carrage return
// Close the sessions
viClose (vi) ;
viClose (defaultRM) ;
}

Generating an Internal FM Signal Using VISA and C

In this example the VISA library is used to generate an internal FM signal at a carrier frequency of
900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and the peak deviation will be
100 kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file. visaex6.cpp performs the following functions:

* error checking

* resets the signal generator

* sets up the signal generator for FM path 2 and internal FM rate of 5 kHz
e sets up FM path 2 deviation to 100 kHz

e sets carrier frequency to 900 MHz

* sets the power level to -15 dBm

* turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD-ROM as
visaex6 .cpp.

//~k**************~k4(~k4(~k4(4(*4(~k4(~k4(~k4(~k4(~k4(~k4(~k4(~k~k4(~k4(~k4(~k4(~k4(~kk~kk~kk~kkk~kk~kk~kk*k*k********************
// PROGRAM FILE NAME:visaex6.cpp

/7

// PROGRAM DESCRIPION:This example generates an internal FM signal at a 900

// MHz carrier frequency and a power level of -15 dBm. The FM rate is 5 kHz and the peak
// deviation 100 kHz

/7

] ok ok ko ok ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ko ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

#include <visa.h>
#include "Stdafx.h"
#include <iostream>

#include <stdlib.h>

Agilent Signal Generators Programming Guide 97

Programming Examples
GPIB Programming Interface Examples

#include <conio.h>

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

// for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session
// open session to gpib device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}

printf ("Example program to set up the signal generator\n");
printf ("for an AC-coupled FM signal\n");
printf ("\n") ;

printf ("Press any key to continue\n");

getch() ;
viClear (vi) ; // Clears the signal generator
viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "FM2:INT:FREQ 5 kHz\n"); // Sets FM path 2 to internal at a modulation rate of 5 kHz
viPrintf (vi, "FM2:DEV 100 kHz\n"); // Sets FM path 2 modulation deviation rate of 100 kHz
viPrintf (vi, "FREQ 900 MHz\n"); // Sets carrier frequency to 900 MHz
viPrintf(vi, "POW -15 dBm\n"); // Sets the power level to -15 dBm
viPrintf (vi, "FM2:STAT ON\n"); // Turns on frequency modulation
viPrintf (vi, "OUTP:STAT ON\n"); // Turns on RF output
printf ("\n"); // Prints a carriage return
// Print user information
printf ("Power level : -15 dBm\n");

printf ("FM state : on\n");

printf ("RF output : on\n");

printf ("Carrier Frequency : 900 MHZ\n");

printf ("Deviation : 100 kHZ\n");

printf ("Internal modulation : 5 kHz\n");

printf ("\n") ; // Print a carrage return
// Close the sessions

viClose (vi) ;

98 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

viClose (defaultRM) ;
}

Generating a Step-Swept Signal Using VISA and C++

In this example the VISA library is used to set the signal generator for a continuous step sweep on
a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell
time at each step is set to 500 ms. The signal generator will then be set to local mode which allows
the user to make adjustments from the front panel. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. visaex7.cpp performs the following
functions:

* clears and resets the signal generator

¢ sets up the instrument for continuous step sweep
¢ sets up the start and stop sweep frequencies

e sets up the number of steps

* sets the power level

¢ turns on the RF output

The following program example is available on the signal generator Documentation CD-ROM as
visaex7.cpp.

//~k************************4(~k*~k*~k*~k4(~k4(~k4(~k~k******k*k*k*************************************
// PROGRAM FILE NAME:visaex7.cpp

/7

// PROGRAM DESCRIPTION:This example will program the signal generator to perform a step

// sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

/7

[/ ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ko ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

#include <visa.h>
#include "Stdafx.h"

#include <iostream>

void main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession
// vi establishes instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

// for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

// Open session to GPIB device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus) {// If problems, then prompt user
printf ("Could not open ViSession!\n");

printf ("Check instruments and connections\n") ;

Agilent Signal Generators Programming Guide 99

Programming Examples
GPIB Programming Interface Examples

printf ("\n");

exit (0);}
viClear (vi) ; // Clears the signal generator
viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf (vi, "*CLS\n"); // Clears the status byte register
viPrintf (vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq mode to list
viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type to step
viPrintf (vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency
viPrintf (vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency
viPrintf (vi, "SWE:POIN 10\n"); // Sets number of steps (30 mHz/step)
viPrintf (vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500 ms/step
viPrintf (vi, "POW:AMPL -5 dBm\n"); // Sets the power level for -5 dBm
viPrintf (vi, "OUTP:STAT ON\n") ; // Turns RF output on
viPrintf (vi, "INIT:CONT ON\n"); // Begins the step sweep operation
// Print user information

printf ("The signal generator is in step sweep mode. The frequency range is\n");
printf ("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz step.\n");
printf ("\n"); // Prints a carriage return/line feed

viPrintf (vi, "OUTP:STAT OFF\n"); // Turns the RF output off

printf ("Press the front panel Local key to return the\n");
printf ("signal generator to manual operation.\n");

// Closes the sessions
printf ("\n");
viClose (vi) ;
viClose (defaultRM) ;
}

Generating a Swept Signal Using VISA and Visual C++

This example sets up the signal generator for a frequency sweep from 1 to 2 GHz with 101 points
and a .01 second dwell period for each point. A loop is used to generator 5 sweep operations. The
signal generator triggers each sweep with the : INIT command. There is a wait introduced in the loop
to allow the signal generator to complete all operations such as set up and retrace before the next
sweep is generated. visaexll.cpp performs the following functions:

¢ sets up the signal generator for a 1 to 2 GHz frequency sweep
* sets up the signal generator to have a dwell time of .01 seconds and 101 points in the sweep
¢ sleep function is used to allow the instrument to complete its sweep operation

The following program example is available on the signal generator Documentation CD- ROM as
visaexll.cpp.

//~k4(~k~k4(*4(*4(~k4(*4(*4(*4(*4(~k4(4(*4(*4(*4(*4(~k4(~k4(~k4(~k4(****4(*4(*4(~k***********k*k*k*k*k*k*k

// PROGRAM FILE NAME: visaexll.cpp

//

// PROGRAM DESCRIPTION: This program sets up the signal generator to

100 Agilent Signal Generators Programming Guide

//
//
//
//
//
//
//
//
//
//
//

Programming Examples
GPIB Programming Interface Examples

sweep from 1-2 GHz. A loop and counter are used to generate 5 sweeps.

Each sweep consists of 101 points with a .01 second dwell at each point.

The program uses a Sleep function to allow the signal generator to
complete it's sweep operation before the INIT command is sent.
The Sleep function is available with the windows.h header file which is

included in the project.

NOTE: Change the TCPIPO address in the instOpenString declaration to

match the IP address of your signal generator.

[] K Kk ok ok ok ok K ok kK ok Kk ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok kK ok ok K ok ok K ok Kk ok Kk kK ok ok

#include "stdafx.h"

#include "visa.h"

#include <iostream>

#include <windows.h>

void main ()

{

ViStatus stat;

ViSession defaultRM, inst;

int npoints = 101;
double dwell = 0.01;

int intCounter=5;

char* instOpenString = "TCPIP0::141.121.93.101::INSTR";

stat = viOpenDefaultRM (&defaultRM) ;
stat = viOpen (defaultRM, instOpenString, VI_NULL,VI_NULL, &inst);

// preset to start clean

stat = viPrintf(inst, "*RST\n");

// set power level for -10dBm

stat = viPrintf (inst, "POW -10DBM\n") ;

// set the start and stop frequency for the sweep
stat = viPrintf (inst, "FREQ:START 1GHZ\n");

stat = viPrintf (inst, "FREQ:STOP 2GHZ\n");

// setup dwell per point

stat = viPrintf (inst, "SWEEP:DWELL %e\n", dwell);

// setup number of points

Agilent Signal Generators Programming Guide 101

Programming Examples
GPIB Programming Interface Examples

stat = viPrintf (inst, "SWEEP:POINTS %d\n", npoints);

// set interface timeout to double the expected sweep time

// sweep takes (~15ms + dwell) per point * number of points
// the timeout should not be shorter then the sweep, set it
// longer

long timeoutMS = long(2*npoints* (.015+dwell)*1000) ;

// set the VISA timeout

stat = viSetAttribute(inst, VI_ATTR_TMO_VALUE, timeoutMS) ;

// set continuous trigger mode off
stat = viPrintf (inst, "INIT:CONT OFF\n");
// turn list sweep on

stat = viPrintf (inst, "FREQ:MODE LIST\n");

int sweepNo = 0;
while (intCounter>0)
{
// start the sweep (initialize)
stat = viPrintf (inst, "INIT\n");
printf ("Sweep %d started\n", ++sweepNo) ;
// wait for the sweep completion with *OPC?
int res ;
stat = viPrintf (inst, "*OPC?\n");
stat = viScanf(inst, "%d", &res);
// handle possible errors here (most likely a timeout)
// err_handler(inst, stat);
puts ("Sweep ended") ;
// delay before sending next INIT since instrument
// may not be ready to receive it yet

Sleep(15);
intCounter = intCounter-1;

}
printf ("End of Program\n\n") ;

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings
can then be recalled separately; either from the keyboard or from the signal generator’s front panel.

102 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. visaex8.cpp performs the following functions:

* error checking

¢ clears the signal generator

* resets the status byte register

* resets the signal generator

* sets up the signal generator frequency, ALC off, power level, RF output on

¢ checks for operation complete

e saves to settings to instrument register number one

¢ recalls information from register number one

¢ prompts user input to put instrument into Local and checks for operation complete

The following program example is available on the signal generator Documentation CD-ROM as
visaex8.cpp.

//****************4(****4(***4(***4(~k4(*4(~k***~k~k4(*4(****~k****k***kk*k~kk***k**********************
// PROGRAM FILE NAME:visaex8.cpp

/7

// PROGRAM DESCRIPTION:In this example, instrument settings are saved in the signal

// generator's registers and then recalled.

// Instrument settings can be recalled from the keyboard or, when the signal generator
// is put into Local control, from the front panel.

// This program will initialize the signal generator for an instrument state, store the
// state to register #1. An *RST command will reset the signal generator and a *RCL

// command will return it to the stored state. Following this remote operation the user
// will be instructed to place the signal generator in Local mode.

//

[/ ok ok ko ok ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ko ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ko

#include <visa.h>
#include "StdAfx.h"
#include <iostream>

#include <conio.h>

void main ()
{
ViSession defaultRM, vi;// Declares variables of type ViSession
// for instrument communication
ViStatus viStatus = 0;// Declares a variable of type ViStatus
// for GPIB verifications

long lngDone = 0; // Operation complete flag

viStatus=viOpenDefaul tRM (&defaultRM) ; // Initialize VISA session
// Open session to gpib device at address 19

viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

Agilent Signal Generators Programming Guide 103

Programming Examples
GPIB Programming Interface Examples

if (viStatus){// If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}
printf ("\n");
viClear (vi) ; // Clears the signal generator
viPrintf (vi, "*CLS\n"); // Resets the status byte register
// Print user information
printf ("Programming example using the *SAV, *RCL SCPI commands\n") ;
printf ("used to save and recall an instrument's state\n");

printf ("\n");

viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,

viPrintf (vi,

"*RST\n") ;

"FREQ 5 MHz\n");
"POW:ALC OFF\n") ;
"POW:AMPL -3.2 dBm\n");
"OUTP:STAT ON\n") ;

//
//
//
//
//

Resets the signal generator
Sets sig gen frequency
Turns ALC Off

Sets power for -3.2 dBm
Turns RF output On

viPrintf (vi, "*OPC?\n"); // Checks for operation complete
while (!lngDone)
viScanf (vi ,"%d",&lngDone) ; // Waits for setup to complete
viPrintf (vi, "*SAV 1\n"); // Saves sig gen state to register #1
// Print user information
printf ("The current signal generator operating state will be saved\n");

printf ("to Register #1. Observe the state then press Enter\n");

printf ("\n"); // Prints new line character
getch(); // Wait for user input
1ngDone=0; // Resets the operation complete flag
viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf (vi, "*OPC?\n"); // Checks for operation complete
while (!lngDone)

viScanf (vi ,"%d",&lngDone) ; // Waits for setup to complete

// Print user infromation

printf ("The instrument is now in it's Reset operating state. Press the\n");

printf ("Enter key to return the signal generator to the Register #1 state\n") ;
printf ("\n"); // Prints new line character

getch(); // Waits for user input

1ngDone=0; // Reset the operation complete flag

viPrintf (vi, "*RCL 1\n"); // Recalls stored register #1 state

viPrintf (vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)
viScanf (vi ,"%d",&lngDone) ; // Waits for setup to complete

// Print user information

104 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf ("The signal generator has been returned to it's Register #1 state\n");

printf ("Press Enter to continue\n");

printf ("\n"); // Prints new line character
getch(); // Waits for user input

1ngDone=0; // Reset the operation complete flag
viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf (vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)
viScanf (vi ,"%d",&lngDone) ; // Waits for setup to complete
// Print user information
printf ("Press Local on instrument front panel to return to manual mode\n") ;
printf ("\n"); // Prints new line character
// Close the sessions
viClose (vi) ;
viClose (defaultRM) ;
}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be asked to
set up the signal generator for error generating conditions. The data questionable status register will
be read and the program will notify the user of the error condition that the setup caused. Follow the
user prompts presented when the program runs. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. visaex9.cpp performs the following
functions:

e error checking

¢ clears the signal generator

* resets the signal generator

* the data questionable status register is enabled to read an unleveled condition

e prompts user to manually set up the signal generator for an unleveled condition

¢ queries the data questionable status register for any set bits and converts the string data to
numeric

* based on the numeric value, program checks for a corresponding status check value

¢ similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD-ROM as
visaex9.cpp.

//****************************~k4(~k4(~k4(~k4(~k4(~k~k4(~k4(~k4(~kk~kk~kk*k~kk~kk**k********************‘k*‘k****
// PROGRAM NAME:visaex9.cpp

/7

// PROGRAM DESCRIPTION:In this example, the data questionable status register is read.

// The data questionable status register is enabled to read an unleveled condition.

// The signal generator is then set up for an unleveled condition and the data

// questionable status register read. The results are then displayed to the user.

// The status questionable register is then setup to monitor a modulation error condition.

// The signal generator is set up for a modulation error condition and the data

Agilent Signal Generators Programming Guide 105

Programming Examples
GPIB Programming Interface Examples

// questionable status register is read.
// The results are displayed to the active window.

//

[] K kK Kk ok Kk ok K ok ok K ok kK ok K ok ok ok ok ok K ok K ok ok K ok kK ok K ok ok K K ok K o ok K ok ok K ok ok K ok K ok ok K ok ok K K ok K ok ok K ok ok K ok Kk ok Kk ok K K ok Kk ok Kk ok Kk k

#include <visa.h>
#include "StdAfx.h"
#include <iostream>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi;// Declares a variables of type ViSession
// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

// for GPIB verifications

int num=0;// Declares a variable for switch statements

char rdBuffer[256]={0}; // Declare a variable for response data

viStatus=viOpenDefaul tRM(&defaultRM) ; // Initialize VISA session

// Open session to GPIB device at address 19

viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");

printf ("Check instruments and connections\n");

printf ("\n");

exit (0);}

printf ("\n");

viClear (vi);// Clears the signal generator

// Prints user information

printf ("Programming example to demonstrate reading the signal generator's
Status Byte\n");

printf ("\n");

printf ("Manually set up the sig gen for an unleveled output condition:\n");
printf ("* Set signal generator output amplitude to +20 dBm\n");

printf ("* Set frequency to maximum value\n");

printf("* Turn On signal generator's RF Output\n");

printf ("* Check signal generator's display for the UNLEVEL annunciator\n") ;
printf ("\n") ;

printf ("Press Enter when ready\n");

printf ("\n");

106 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

getch() ; // Waits for keyboard user input
viPrintf (vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data Questionable
// Power Condition Register Bits

// Bits '0' and '1'

viPrintf (vi, "STAT:QUES:POW:COND?\n") ; // Querys the register for any
// set bits

viScanf (vi, "%s", rdBuffer); // Reads the decimal sum of the
// set bits

num= (int (rdBuffer[1l]) -('0")); // Converts string data to

// numeric

switch (num) // Based on the decimal value
{
case 1:
printf ("Signal Generator Reverse Power Protection Tripped\n") ;

printf("/n");
break;
case 2:
printf ("Signal Generator Power is Unleveled\n");
printf ("\n");
break;
default:
printf ("No Power Unleveled condition detected\n") ;

printf ("\n");

}
viClear (vi) ; // Clears the signal generator

// Prints user information
Printf (M= \n") ;

printf ("\n");

printf ("Manually set up the sig gen for an unleveled output condition:\n");
printf ("\n");

printf("* Select AM modulation\n") ;

printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

printf ("* Turn On the modulation.\n");

printf ("* Do not connect any source to the input\n");

printf ("* Check signal generator's display for the EXT1 LO annunciator\n");
printf ("\n");

printf ("Press Enter when ready\n");

printf ("\n");

getch() ; // Waits for keyboard user input
viPrintf (vi, "STAT:QUES:MOD:ENAB 16\n"); // Enables the Data Questionable

// Modulation Condition Register

Agilent Signal Generators Programming Guide 107

Programming Examples
GPIB Programming Interface Examples

// bits '0','1','2','3' and '4°'

viPrintf(vi, "STAT:QUES:MOD:COND?\n") ; // Querys the register for any
// set bits

viScanf (vi, "%s", rdBuffer); // Reads the decimal sum of the

// set bits

num= (int (rdBuffer([1l]) -('0')); // Converts string data to numeric
switch (num) // Based on the decimal value
{

case 1:

printf ("Signal Generator Modulation 1 Undermod\n") ;
printf ("\n");
break;
case 2:
printf ("Signal Generator Modulation 1 Overmod\n") ;
printf ("\n");
break;
case 4:
printf ("Signal Generator Modulation 2 Undermod\n") ;
printf ("\n");
break;
case 8:
printf ("Signal Generator Modulation 2 Overmod\n") ;
printf ("\n");
break;
case 16:
printf ("Signal Generator Modulation Uncalibrated\n") ;
printf ("\n");
break;
default:
printf ("No Problems with Modulation\n") ;
printf ("\n");
}
// Close the sessions
viClose (vi) ;

viClose (defaultRM) ;

108 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the
computer can attend to other tasks while the signal generator is busy performing a function or
operation. When the signal generator finishes its operation, or detects a failure, then a Service
Request can be generated. The computer will respond to the SRQ and, depending on the code, can
perform some other operation or notify the user of failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in
progress, prints out a series of asterisks. When the step sweep operation is complete, an SRQ is
generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. visaex10.cpp performs the following functions:

¢ error checking

¢ clears the signal generator

* resets the signal generator

¢ prompts user to manually begin the step sweep and waits for response

* clears the status register

e sets up the operation status group to respond to an end of sweep

¢ the data questionable status register is enabled to read an unleveled condition

e prompts user to manually set up the signal generator for an unleveled condition

¢ queries the data questionable status register for any set bits and converts the string data to
numeric

* based on the numeric value, program checks for a corresponding status check value

¢ similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD- ROM as
visaex10.cpp.

] ok ok ko ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ko ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok

/7

// PROGRAM FILE NAME:visaex10.cpp

/7

// PROGRAM DESCRIPTION: This example demonstrates the use of a Service Request (SRQ)

// interrupt. The program sets up conditions to enable the SRQ and then sets the signal
// generator for a step mode sweep. The program will enter a printing loop which prints
// an * character and ends when the sweep has completed and an SRQ received.

//

[ok ko ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok kK ok

#include "visa.h"
#include <stdio.h>
#include "Stdafx.h"
#include "windows.h"

#include <conio.h>

#define MAX_CNT 1024

Agilent Signal Generators Programming Guide 109

Programming Examples
GPIB Programming Interface Examples

int sweep=1l; // End of sweep flag

/* Prototypes */

ViStatus _VI_FUNCH interupt (ViSession vi, ViEventType eventType, ViEvent event, ViAddr addr) ;

int main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus
// for GPIB verifications

char rdBuffer[MAX CNT];// Declare a block of memory data

viStatus=viOpenDefaultRM(&defaultRM);// Initialize VISA session
if (viStatus < VI_SUCCESS){// If problems, then prompt user
printf ("ERROR initializing VISA... exiting\n");
printf ("\n");
return -1;}
// Open session to gpib device at address 19

viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if (viStatus) { // If problems then prompt user

printf ("ERROR: Could not open communication with
instrument\n") ;

printf ("\n");

return -1;}

viClear (vi) ; // Clears the signal generator

viPrintf (vi, "*RST\n"); // Resets signal generator

// Print program header and information
printf ("** End of Sweep Service Request **\n");
printf ("\n");

printf ("The signal generator will be set up for a step sweep mode
operation.\n") ;

printf("An ’'*’ will be printed while the instrument is sweeping. The end of
\n");

printf ("sweep will be indicated by an SRQ on the GPIB and the program will
end.\n") ;

printf ("\n");

printf ("Press Enter to continue\n");
printf ("\n");

getch();

110 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

viPrintf (vi, "*CLS\n");// Clears signal generator status byte

viPrintf (vi, "STAT:O0PER:NTR 8\n");// Sets the Operation Status Group // Negative Transition Filter to
indicate a // negative transition in Bit 3 (Sweeping)

// which will set a corresponding event in // the Operation Event Register. This occurs // at the end
of a sweep.

viPrintf (vi, "STAT:O0PER:PTR 0\n");// Sets the Operation Status Group // Positive Transition Filter so
that no

// positive transition on Bit 3 affects the // Operation Event Register. The positive // transition
occurs at the start of a sweep.

viPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3 // to report the event to
Status Byte // Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Summary Bit 7
// The next line of code indicates the // function to call on an event
viStatus = viInstallHandler (vi, VI_EVENT_ SERVICE_REQ, interupt, rdBuffer);
// The next line of code enables the // detection of an event

viStatus = viEnableEvent (vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL) ;

viPrintf (vi, "FREQ:MODE LIST\n");// Sets frequency mode to list
viPrintf(vi, "LIST:TYPE STEP\n");// Sets sweep to step

viPrintf (vi, "LIST:TRIG:SOUR IMM\n");// Immediately trigger the sweep
viPrintf(vi, "LIST:MODE AUTO\n");// Sets mode for the list sweep
viPrintf (vi, "FREQ:STAR 40 MHZ\n"); // Start frequency set to 40 MHz
viPrintf (vi, "FREQ:STOP 900 MHZ\n");// Stop frequency set to 900 MHz
viPrintf (vi, "SWE:POIN 25\n");// Set number of points for the step sweep
viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point
viPrintf (vi, "INIT:CONT OFF\n");// Set up for single sweep

viPrintf (vi, "TRIG:SOUR IMM\n");// Triggers the sweep

viPrintf(vi, "INIT\n"); // Takes a single sweep

printf ("\n");

// While the instrument is sweeping have the

// program busy with printing to the display.

// The Sleep function, defined in the header

// file windows.h, will pause the program

// operation for .5 seconds

while (sweep==1) {

printf("*");

Sleep(500);}

printf ("\n");

// The following lines of code will stop the

// events and close down the session

viStatus = viDisableEvent (vi, VI_ALL_ENABLED_EVENTS,VI_ALL_MECH) ;

viStatus = viUninstallHandler (vi, VI_EVENT_ SERVICE_REQ, interupt,
rdBuffer) ;

viStatus = viClose(vi);

Agilent Signal Generators Programming Guide m

Programming Examples
GPIB Programming Interface Examples

viStatus = viClose (defaultRM) ;

return 0;

// The following function is called when an SRQ event occurs. Code specific to your

// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt (ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr)

{
ViStatus status;

ViuIntlé stb;

status = viReadSTB(vi, &stb);// Reads the Status Byte
sweep=0;// Sets the flag to stop the ’'*’ printing
printf("\n");// Print user information
printf ("An SRQ, indicating end of sweep has occurred\n") ;
viClose (event);// Closes the event
return VI_SUCCESS;

}

112 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Using 8757D Pass-Thru Commands (PSG with Option 007 Only)

Pass-thru commands enable you to send operating instructions to a PSG or E8257N that is connected
to a 8757D scalar analyzer system. This section provides setup information and an example program
for using pass-thru commands in a ramp sweep system.

Equipment Setup

To send pass-thru commands, set up the equipment as shown in Figure 3-1. Notice that the GPIB
cable from the computer is connected to the GPIB interface bus of the 8757D. The GPIB cable from
the PSG or E8257N is connected to the system interface bus of the 8757D.

Figure 3-1
COMPUTER
BNC Cable
(N
BNC Cable
GPIB
BNC Cable Cable
GPIB Cable sweep| Pos
Z-Axis 8757} |Istop |in z
Blank/Mkrs GPIB System Interface Sweep | 0-10v 'Blank

: =R

o €L

o 0og o

0 b=———— 88 oo

(am] o O Q0

B4
RF
SIGNAL output S%?ERR
Detect:
GENERATOR but etector NETWORK
ANALYZER
scaler netwk po

Agilent Signal Generators Programming Guide 113

Programming Examples
GPIB Programming Interface Examples

GPIB Address Assignments

Figure 3-1 describes how GPIB addresses should be assigned for sending pass-thru commands. These
are the same addresses used in Example 3-1.

Table 3-1
Instrument GPIB Key Presses/Description
Address

PSG/E8663B 19 Press Utility > GPIB/RS-232 LAN > GPIB Address > 19 > Enter.

8757D 16 Press LOCAL > 8757 > 16 > Enter.

8757D (Sweeper) 19 This address must match the PSG.

Press LOCAL > SWEEPER > 19 > Enter.

Pass Thru 17 The pass thru address is automatically selected by the 8757D by inverting
the last bit of the 8757D address. Refer to the 8757D documentation for
more information. Verify that no other instrument is using this address
on the GPIB bus.

Example Pass-Thru Program

Example 3-1 on page 114 is a sample Agilent BASIC program that switches the 8757D to pass-thru
mode, allowing you to send operating commands to the PSG. After the program runs, control is given
back to the network analyzer. The following describes the command lines used in the program.

Line 30 PT is set to equal the source address. Cl is added, but not needed, to specify the
channel.

Lines 40, 90 The END statement is required to complete the language transition.

Lines 50, 100 A WAIT statement is recommended after a language change to allow all instrument

changes to be completed before the next command.

Lines 70, 80 This is added to ensure that the instrument has completed all operations before
switching languages. Lines 70 and 80 can only be used when the signal generator
is in single sweep mode.

Line 110 This takes the network analyzer out of pass-thru command mode, and puts it back
in control. Any analyzer command can now be entered.

NOTE Verify the signal generator is in single sweep mode. Refer to the SCPI Command Reference
or the User’s Guide, as required.

Example 3-1 Pass-Thru Program
10 ABORT 7

20 CLEAR 716

30 OUTPUT 716;"PT19;C1l"

114 Agilent Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

40 OUTPUT 717;"SYST:LANG SCPI";END
50 WAIT .5

60 OUTPUT 717;"OUTP:STAT OFF"

70 OUTPUT 717;"*OPC?"

80 ENTER 717; Reply

90 OUTPUT 717;"SYST:LANG COMP"; END
100 WAIT .5

110 OUTPUT 716;"C2"

120 END

Setting the PSG Sweep Time Requirements (PSG with Firmware >4.92)

By default, the PSG sweep time is automatically adjusted to the fastest possible sweep when exiting
Pass-Thru mode. To disable this feature and retain specific time selection, set the 8757D system time
to Manual.

The front panel key sequence is:
Sweep > Sweep Type > 8757D System Sweep Time to Manual
The SCPI command sequence is:

[:SOURce] : SWEep: TIME : COMP: AUTO OFF

NOTE The changes to sweep time mode are persistent. For more information on persistent memory,
refer to the User’s Guide.

The SCPI command to set up sweep time is: :SWE:TIME <val><units>.

For more on SCPI commands, refer to the SCPI Command Reference.

Setting the PSG Sweep Time Requirements (PSG with Firmware <4.91)

By default, the PSG sweep time is automatically adjusted to the fastest possible sweep when exiting
Pass-Thru mode. To select a different sweep time, these additional steps are required:

1. Insert line 25, that saves state 1 (SV1).
25 OUTPUT 716;”SV1”

2. Insert line 55, that sets the sweep-time of the source, :SWE:TIME <val>.
55 OUTPUT 717;"”:SWE:TIME .200S”

3. Insert line 56, that saves the state into the register, sequence 0, register 1, *SAV
<reg_num>[,<seq_num>], (*SAV 1, 0).

56 OUTPUT 717;”*SAV 1,0”

Agilent Signal Generators Programming Guide 115

Programming Examples
LAN Programming Interface Examples

4. Insert line 115, that recalls state 1, (RC1).
115 OUTPUT 717;”RC1”

LAN Programming Interface Examples

NOTE The LAN programming examples in this section demonstrate the use of VXI-11 and Sockets
LAN to control the signal generator.

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.

¢ “VXI-11 Programming Using SICL and C++” on page 117
e “VXI-11 Programming Using VISA and C++” on page 118
¢ “Sockets LAN Programming and C” on page 120

e “Sockets LAN Programming Using Java” on page 143

* “Sockets LAN Programming Using Perl” on page 145

e “TCP-IP (LAN) Programming Using Matlab” on page 146

For additional LAN programming examples that work with user-data files, refer to:

¢ “Save and Recall Instrument State Files” on page 357

VXI-11 Programming

The signal generator supports the VXI-11 standard for instrument communication over the LAN
interface. Agilent IO Libraries support the VXI-11 standard and must be installed on your computer
before using the VXI-11 protocol. Refer to “Using VXI-11” on page 42 for information on configuring
and using the VXI-11 protocol.

The VXI-11 examples use TCPIPO as the board address.

Using VXI-11 with GPIB Programs

The GPIB programming examples that use the VISA library, and are listed in “GPIB Programming
Interface Examples” on page 78, can be easily changed to use the LAN VXI-11 protocol by changing
the address string. For example, change the "GPIB::19::INSTR" address string to
"TCPIP::hostname::INSTR" where hostname is the IP address or hostname of the signal generator. The
VXI- 11 protocol has the same capabilities as GPIB. See the section “Setting Up the LAN Interface” on
page 32 for more information.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN
(Agilent MXG)” on page 32 and “Configuring the VXI-11 for LAN (ESG/PSG)” on page 33.

116 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

VXI-11 Programming Using SICL and C++

The following program uses the VXI-11 protocol and SICL to control the signal generator. Before
running this code, you must set up the interface using the Agilent 10 Libraries I0 Config utility.
vxisicl.cpp performs the following functions:

* sets signal generator to 1 GHz CW frequency
* queries signal generator for an ID string
¢ error checking

The following program example is available on the signal generator Documentation CD-ROM as
vxisicl.cpp.

[] K kK ok ok ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok kK ok K ok ok K ok ok K ok K ok ok K ok kK ok Kk

//

// PROGRAM NAME:vxisicl.cpp

//

// PROGRAM DESCRIPTION:Sample test program using SICL and the VXI-11 protocol
//

// NOTE: You must have the Agilent IO Libraries installed to run this program.
//

// This example uses the VXI-11 protocol to set the signal generator for a 1 gHz CW // frequency. The
signal generator is queried for operation complete and then queried

// for its ID string. The frequency and ID string are then printed to the display.

/7

// IMPORTANT: Enter in your signal generators hostname in the instrumentName declaration
// where the "xxxxx" appears.

//

] ok ok ok ok ok Sk ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok o ok ok ok ok ko ok ok ok ok K ok ok K ok ok o ok ok ok ok K ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

#include "stdafx.h"
#include <sicl.h>
#include <stdlib.h>

#include <stdio.h>

int main(int argc, char* argvl[])

{

INST id; // Device session id
int opcResponse; // Variable for response flag
char instrumentName[] = "xxxxx"; // Put your instrument's hostname here

char instNameBuf [256];// Variable to hold instrument name
char buf[256];// Variable for id string

ionerror (I_ERROR_EXIT);// Register SICL error handler

Agilent Signal Generators Programming Guide 117

Programming Examples
LAN Programming Interface Examples

// Open SICL instrument handle using VXI-11 protocol

sprintf (instNameBuf, "lan[%s]:inst0", instrumentName) ;

id = iopen(instNameBuf);// Open instrument session
itimeout (id, 1000);// Set 1 second timeout for operations
printf ("Setting frequency to 1 Ghz...\n");

iprintf (id, "freq 1 GHz\n");// Set frequency to 1 GHz

printf ("Waiting for source to settle...\n");
iprintf (id, "*opc?\n");// Query for operation complete
iscanf (id, "%d", &opcResponse); // Operation complete flag
if (opcResponse != 1)// If operation fails, prompt user
{
printf ("Bad response to 'OPC?'\n");
iclose(id) ;
exit (1) ;
}
iprintf (id, "FREQ?\n");// Query the frequency
iscanf (id, "%t", &buf);// Read the signal generator frequency
printf("\n");// Print the frequency to the display
printf ("Frequency of signal generator is %s\n", buf);
ipromptf (id, "*IDN?\n", "%t", buf);// Query for id string
printf ("Instrument ID: %s\n", buf);// Print id string to display

iclose(id);// Close the session

return 0;

}

VXI-11 Programming Using VISA and C++

The following program uses the VXI-11 protocol and the VISA library to control the signal generator.
The signal generator is set to a -5 dBm power level and queried for its ID string. Before running this
code, you must set up the interface using the Agilent I0 Libraries 10 Config utility. vxivisa.cpp
performs the following functions:

* sets signal generator to a -5 dBm power level
e queries signal generator for an ID string
* error checking

The following program example is available on the signal generator Documentation CD-ROM as
vxivisa.cpp.
//**

// PROGRAM FILE NAME:vxivisa.cpp

// Sample test program using the VISA libraries and the VXI-11 protocol

//

118 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

// NOTE: You must have the Agilent Libraries installed on your computer to run
// this program

//

// PROGRAM DESCRIPTION:This example uses the VXI-11 protocol and VISA to query
// the signal generator for its ID string. The ID string is then printed to the
// screen. Next the signal generator is set for a -5 dBm power level and then
// queried for the power level. The power level is printed to the screen.

//

// IMPORTANT: Set up the LAN Client using the IO Config utility

//

[K kK ok ok Kk ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok kK ok Kk

#include <visa.h>
#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

#include <conio.h>

#define MAX_COUNT 200

int main (void)

ViStatus status;// Declares a type ViStatus variable

ViSession defaultRM, instr;// Declares a type ViSession variable
ViUInt32 retCount;// Return count for string I/0

ViChar buffer [MAX_ COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM) ; // Initialize the system
// Open communication with Serial
// Port 2

status = viOpen (defaultRM, "TPCIP0::19::INSTR", VI_NULL, VI_NULL, &instr);

if (status) { // If problems then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}

// Set timeout for 5 seconds
viSetAttribute (instr, VI_ATTR_TMO_VALUE, 5000);

// Ask for sig gen ID string

Agilent Signal Generators Programming Guide 119

Programming Examples
LAN Programming Interface Examples

status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Read the sig gen response

status = viRead(instr, (ViBuf)buffer, MAX_ COUNT, &retCount);

buffer[retCount]= '\0"'; // Indicate the end of the string
printf ("Signal Generator ID = "); // Print header for ID

printf (buffer) ; // Print the ID string

printf ("\n"); // Print carriage return

// Flush the read buffer

// Set sig gen power to -5dbm
status = viWrite(instr, (ViBuf) "POW:AMPL -5dbm\n", 15, &retCount);

// Query the power level
status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);

// Read the power level
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0"'; // Indicate the end of the string
printf ("Power level = "); // Print header to the screen
printf (buffer) ; // Print the queried power level

printf ("\n");

status = viClose(instr); // Close down the system
status = viClose(defaultRM) ;

return 0;

}

Sockets LAN Programming and C

The program listing shown in “Queries for Lan Using Sockets” on page 123 consists of two files;
lanio.c and getopt.c. The lanio.c file has two main functions; int main() and an int mainl ().

The int main() function allows communication with the signal generator interactively from the
command line. The program reads the signal generator's hostname from the command line, followed
by the SCPI command. It then opens a socket to the signal generator, using port 5025, and sends the
command. If the command appears to be a query, the program queries the signal generator for a
response, and prints the response.

The int mainl (), after renaming to int main(), will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the signal generator Documentation CD-ROM as lanio.c.

Sockets on UNIX

In UNIX, LAN communication through sockets is very similar to reading or writing a file. The only
difference is the openSocket () routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwrite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, /users/mydir/.

120 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

At the UNIX prompt in your home directory type: cc -Aa -0 -o lanio lanio.c

3. At the UNIX prompt in your home directory type: ./lanio xxxxx “*IDN?” where xxxxx is the
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

The int mainl () function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int mainl() to int main() and the original int main() to int mainl ().

2. In the main(), openSocket () function, change the “your hostname here” string to the hostname
of the signal generator you want to control.

3. Re-save the lanio.c program.

4. At the UNIX prompt type: cc -Aa -O -o lanio lanio.c

5. At the UNIX prompt type: ./lanio

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX

display will show a display similar to the following:

unix machine: /users/mydir
$./lanio
ID: Agilent Technologies, E4438C, US70000001, C.02.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on
sockets. The following steps outline the process for running the interactive program in the Microsoft
Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of
the Visual C++ project.

NOTE The int main() function in the lanio.cpp file will allow commands to be sent to the signal
generator in a line-by-line format; the user types in SCPI commands. The int main1(0)
function can be used to output a sequence of commands in a “program format.” See
Programming Using mainl() Function below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with
a prompt “Press any key to continue.” This indicates that the program has compiled and can be
used to send commands to the signal generator.

Click Start, click Programs, then click Command Prompt. The command prompt window will appear.

4. At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug
folder. For example C:\SocketIO\Lanio\Debug.

Agilent Signal Generators Programming Guide 121

Programming Examples
LAN Programming Interface Examples

6.

After you cd to the directory where the lanio.exe file is located, type in the following command at
the command prompt: lanio xxxxx “*IDN?”. For example:

C:\SocketIO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by
line format from the command prompt.

Type exit at the command prompt to quit the program.

Programming Using main1() Function

The int mainl () function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1.

3.

Enter the hostname of your signal generator in the openSocket function of the mainl () function
of the lanio.cpp program.

Rename the lanio.cpp int mainl () function to int main() and the original int main() function
to int mainl ().

Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display results similar to those shown in Figure 3-2.

Figure 3-2 Program Output Screen

5 "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E8663B, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

i A

122

Agilent Signal Generators Programming Guide

Programming Examples

LAN Programming Interface Examples

Queries for Lan Using Sockets

lanio.c and getopt.c perform the following functions:

establishes TCP/IP connection to port 5025

resultant file descriptor is used to “talk” to the instrument using regular socket I/O mechanisms

maps the desired hostname to an internal form

error checks

queries signal generator for ID

sets frequency on signal generator to 2.5 GHz

sets power on signal generator to -5 dBm

gets option letter from argument vector and checks for end of file (EOF)

The following programming examples are available on the signal generator Documentation CD- ROM
as lanio.c and getopt.c.

[k Kk ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok ok K ok ok ok K ok ok ok o ok ok ok ok K ok o ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok o ok K ok ok ok ok ok ok ok Rk Rk ok Kk Kk

* S$Header: lanio.c 04/24/01
* S$Revision: 1.1 $

* $Dhate: 10/24/01

* PROGRAM NAME: lanio.c

*

* $Description: Functions to talk to an Agilent signal generator

* via TCP/IP. Uses command-line arguments.

*

* A TCP/IP connection to port 5025 is established and

* the resultant file descriptor is used to "talk" to the
* instrument using regular socket I/O mechanisms. $

* Examples:

* Query the signal generator frequency:

* lanio xxX.xxxX.xx.X 'FREQ?'

*

* Query the signal generator power level:

* lanio xx.xXxx.xxX.x 'POW?'

*

* Check for errors (gets one error):

* lanio XX.XXX.XX.X 'syst:err?’

*

* Send a list of commands from a file, and number them:
* cat scpi_cmds \ lanio -n xXxX.XXX.XX.X

L R R

A

gilent Signal Generators Programming Guide

123

Programming Examples
LAN Programming Interface Examples

* This program compiles and runs under

* - HP-UX 10.20 (UNIX), using HP cc or gcc:

* + cc -Aa -0 -o lanio lanio.c

* + gcc -Wall -O -o lanio lanio.c

*

* - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

* - Windows NT 3.51, using Microsoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Compile both lanio.c and getopt.c

* + Consider re-naming the files to lanio.cpp and getopt.cpp

* Considerations:

* - On UNIX systems, file I/0O can be used on network sockets.

* This makes programming very convenient, since routines like

* getc (), fgets(), fscanf() and fprintf() can be used.

* routines typically use the lower level read() calls.

*

* - In the Windows environment, file operations such as read(), write(),
* and close() cannot be assumed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MUST be used.

K ok kK ok ok K ok kK ok K ok ok K ok ok K ok ok K ok kK ok kK ok Kk kK ok kK ok kR kK Kk kR kK ok ok Kk kK k kR kK Rk kR k kK ok Kk kK k kK k kK kk /

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */
define WINSOCK
#endif

#ifndef WINSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */
#include <string.h> /* for memcpy and memset */
#include <stdlib.h> /* for malloc(), atol() */
#include <errno.h> /* for strerror */

#ifdef WINSOCK

124

Agilent Signal Generators Programming Guide

Programming Examples

LAN Programming Interface Examples

#include <windows.h>

ifndef _WINSOCKAPI_

include <winsock.h> // BSD-style socket functions

endif

#else /* UNIX with BSD sockets */
include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */
include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)
define INVALID_SOCKET (-1)

typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK

/* Declared in getopt.c. See example programs disk. */

extern char *optarg;

extern int optind;

extern int getopt(int argc, char * const argv[], const char* optstring);
#else
include <unistd.h> /* for getopt(3C) */
#endif

#define COMMAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025
#define INPUT_BUF_SIZE (64*1024)

[kK ok kK ok ok Kk ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok kK ok K ok ok K ok ok K o ok K ok ok K ok kK ok K ok ok K Sk ok K K ok K ok kK ok kR ok Kk kK

* Display usage

Kok ok K ok ok K ok kK ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok kK ok ok K ok kR kK Rk Kk kK ok k Rk ok Kk kR kK Rk Kk kK k ok /

static void usage(char *basename)
{

fprintf (stderr, "Usage: %s [-nqu] <hostname> [<command>]\n", basename) ;

Agilent Signal Generators Programming Guide

125

Programming Examples
LAN Programming Interface Examples

fprintf (stderr, " %s [-nqu] <hostname> < stdin\n", basename) ;
fprintf (stderr," -n, number output lines\n");

fprintf (stderr," -g, quiet; do NOT echo lines\n");

fprintf (stderr," -e, show messages in error queue when done\n");

#ifdef WINSOCK

int init_winsock(void)

{
WORD wVersionRequested;
WSADATA wsaData;
int err;
wVersionRequested = MAKEWORD (1, 1);
wVersionRequested = MAKEWORD (2, 0);
err = WSAStartup (wVersionRequested, &wsaData) ;
if (err !'= 0) {
/* Tell the user that we couldn't find a useable */
/* winsock.dll. */
fprintf (stderr, "Cannot initialize Winsock 1.1.\n");
return -1;
}
return 0;
}

int close_winsock (void)

WSACleanup () ;
return 0;

}

#endif /* WINSOCK */

[/ kK ok kK ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok Kk ok K ok ok K ok

*

> $Function: openSocket$

*

* S$Description: open a TCP/IP socket connection to the instrument $

126 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

* $Parameters: $

* (const char *) hostname Network name of instrument.

* This can be in dotted decimal notation.
* (int) portNumber The TCP/IP port to talk to.

* Use 5025 for the SCPI port.

*

* $Return: (int) A file descriptor similar to open(l).$
*

* SErrors: returns -1 if anything goes wrong $

*
***/
SOCKET openSocket (const char *hostname, int portNumber)
{
struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;

SOCKET s;

memset (&peeraddr_in, 0, sizeof (struct sockaddr_in));

/K kK kK ok ok K ok ok K ok ok K ok K K ok kK ok K ok ok Kk kK ok ok Rk K Rk ok Rk Kk kK ok kK ok /

/* map the desired host name to internal form. */
/***/
hostPtr = gethostbyname (hostname) ;
if (hostPtr == NULL)
{
fprintf (stderr, "unable to resolve hostname '%s'\n", hostname) ;

return INVALID_SOCKET;

[Kk K kK Kk ok K Kk ok Kk kK kK Kk k)

/* create a socket */
R KA KA A KA KK K KR KR KK
s = socket (AF_INET, SOCK_STREAM, O0);
if (s == INVALID_SOCKET)
{
fprintf (stderr, "unable to create socket to '%s': %s\n",
hostname, strerror (errno)) ;

return INVALID_SOCKET;

Agilent Signal Generators Programming Guide 127

Programming Examples
LAN Programming Interface Examples

memcpy (&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length) ;
peeraddr_in.sin_family = AF_INET;

peeraddr_in.sin_port = htons((unsigned short)portNumber) ;

if (connect (s, (const struct sockaddr*)&peeraddr_in,
sizeof (struct sockaddr_in)) == SOCKET_ERROR)
{
fprintf (stderr, "unable to create socket to '%s': %s\n",

hostname, strerror (errno)) ;

return INVALID_SOCKET;

return s;

[/ kK ok kK ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ko ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok Kk ok K ok kK ok

*

> $Function: commandInstruments$

* $Description: send a SCPI command to the instrument.$

* $Parameters: $

* (FILE *) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* $Return: (char *) a pointer to the result string.

*

* SErrors: returns 0 if send fails $

*
***/
int commandInstrument (SOCKET sock,

const char *command)

int count;

/* fprintf (stderr, "Sending \"%s\".\n", command); */

if (strchr(command, '\n') == NULL) {

fprintf (stderr, "Warning: missing newline on command %s.\n", command) ;

count = send(sock, command, strlen(command), O0);

128 Agilent Signal Generators Programming Guide

if (count == SOCKET_ERROR) ({
return COMMAND_ERROR;

return NO_CMD_ERROR;

Programming Examples
LAN Programming Interface Examples

[/ kK ok kK ok ok Kk ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok kK ok K ok ok K ok ok K ok K ok ok K ok kK ok K ok ok K Sk ok K K ok K ok kK ok kK ok Kk kK

* recv_line(): similar to fgets(), but uses recv()

Kok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok kK ok ok K ok kR ok K Rk Kk kK ok kR ok ok Kk kR kK Rk Kk kK ok ok /

char * recv_line(SOCKET sock, char * result,

{

#ifdef WINSOCK
int cur_length = 0;
int count;
char * ptr = result;

int err = 1;

while (cur_length < maxLength) {
/* Get a byte into ptr */

count = recv(sock, ptr, 1, 0);

/* If no chars to read, stop.
if (count < 1) {

break;
}

cur_length += count;

/* If we hit a newline, stop.

if (*ptr == '\n') {
ptr++;
err = 0;
break;
}
ptr++;
}
*ptr = '\0"';

if (err) {

int maxLength)

Agilent Signal Generators Programming Guide

129

Programming Examples
LAN Programming Interface Examples

return NULL;
} else {
return result;
}
#else
/***************************************‘k*‘k*‘k*‘k*‘k***********************
* Simpler UNIX version, using file I/0. recv() version works too.
* This demonstrates how to use file I/O on sockets, in UNIX.

Kk ok ok ok ok K ok kK kK ok kK Kk K Kk Kk kK ok ok Kk kR kK Kk Kk Kk k ok Kk kK k kR kK Kk Kk kK k kKK kK kkkk kK kkkk /

FILE * instFile;

instFile = fdopen(sock, "r+");
if (instFile == NULL)
{

fprintf (stderr, "Unable to create FILE * structure : %s\n",

strerror (errno)) ;

exit(2);
}
return fgets(result, maxLength, instFile);
#endif

}

[/ kK ok kK ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok kK ok ok ok ok Kk ok K ok ok K ok

*

> $Function: queryInstrument$

* $Description: send a SCPI command to the instrument, return a response.$

* $Parameters: $

* (FILE *) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maximum size of result array in bytes.

*

* $Return: (long) The number of bytes in result buffer.

*

* SErrors: returns 0 if anything goes wrong. $

*
***/
long queryInstrument (SOCKET sock,

const char *command, char *result, size_t maxLength)

130 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

long ch;

char tmp_buf([8];

long resultBytes = 0;
int command_err;

int count;

/K kK Sk ok ok ok Kk ok K ok ok K ok K K ok ok K ok K ok ok K ok ok K ok ok K ok kK ok ok K ok ok ok ok K ok K ok kK ok kR ok K K kK

* Send command to signal generator

Kk kK ok ok K Sk kK ok Kk kK ok kK Kk Kk kK k kK k kR ok Kk kK kk Kk k kK k kK k kK kKK kkkkkkk)

command_err = commandInstrument (sock, command) ;

if (command_err) return COMMAND_ERROR;

/K kK kK ok ok Kk ok K ok ok K ok K K ok ok K ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok kR ok K K kK

* Read response from signal generator
**/
count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

ch = tmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch == '\n'))

{
result = '\0'; / null terminate result for ascii */
return 0;

}

/* use a do-while so we can break out */
do
{
if (ch == '#")
{
/* binary data encountered - figure out what it is */
long numDigits;
long numBytes = 0;

/* char length[10]; */

count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

ch = tmp_buf[0];

if ((count < 1) || (ch == EOF)) break; /* End of file */
if (ch < '0' || ch > '9') break; /* unexpected char */
numDigits = ch - '0';

Agilent Signal Generators Programming Guide 131

Programming Examples
LAN Programming Interface Examples

if

{

if

{

else

(numDigits)

/* read numDigits bytes into result string. */

count = recv(sock, result, (int)numDigits, 0);
result[count] = 0; /* null terminate */
numBytes = atol (result);

(numBytes)

resultBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */
do {
int rcount;
rcount = recv(sock, result, (int)numBytes, 0);
resultBytes += rcount;
result += rcount; /* Advance pointer */

} while (resultBytes < numBytes);

/**********************************‘k*******************‘k*****
* For LAN dumps, there is always an extra trailing newline
* Since there is no EOI line. For ASCII dumps this is

* great but for binary dumps, it is not needed.

K kK ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K K ok K ok K ok ok K ok kK ok K ok ok Kk ok Kk ok Kk kK ok ok ok kK ok kK /

if (resultBytes == numBytes)
{
char junk;
count = recv(sock, &junk, 1, 0);
}
/* indefinite block ... dump til we can an extra line feed */
do
{
if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 && *result == '\n') break;
resultBytes += strlen(result);
result += strlen(result);
} while (1);

132

Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

}

}

else

{
/* ASCII response (not a binary block) */
*result = (char)ch;
if (recv_line(sock, result+l, maxLength-1) == NULL) return O;
/* REMOVE trailing newline, if present. And terminate string. */
resultBytes = strlen(result);
if (result[resultBytes-1] == '\n') resultBytes -= 1;
result[resultBytes] = '\0';

}

} while (0);

return resultBytes;

[kK ok kK ok ok K ok ok K ok ok K ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok K ok kK ok Kk ok Kk ok Kk k

*

> $Function: showErrors$

* S$Description: Query the SCPI error queue, until empty. Print results. $

* $Return: (void)

*
***/
void showErrors (SOCKET sock)
{
const char * command = "SYST:ERR?\n";

char result_str[256];

do {

queryInstrument (sock, command, result_str, sizeof (result_str)-1);

/**
* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."

* +0, "No error"

Agilent Signal Generators Programming Guide 133

Programming Examples
LAN Programming Interface Examples

* Don't bother decoding.

****************************‘k*‘k**‘k*‘k*‘k*‘k*‘k*‘k**********************/
if (strncmp(result_str, "+0,", 3) == 0) {
/* Matched +0, "No error" */
break;
}
puts (result_str);

} while (1);

[/ kK ok ok ko ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok Kk ok K ok ok K ok

*

> $Function: isQuery$

* $Description: Test current SCPI command to see if it a query. $

* $Return: (unsigned char) . . . non-zero if command is a query. 0 if not.

*
‘k*‘k*‘k***‘k******/
unsigned char isQuery(char* cmd)
unsigned char g = 0 ;

char *query ;

/K kK kK ok ok K Sk ok K ok ok K ok K K ok kK ok K ok ok K ok ok K ok ok ok ok Kk kK R ok Kk kK ok k Kk Kk ok Kk ok ok kK k /

/* 1f the command has a '?' in it, use queryInstrument. */
/* otherwise, simply send the command. */
/* Actually, we must be a more specific so that */

/* marker value querys are treated as commands. */
/* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */

/***/
if ((query = strchr(cmd, '?')) != NULL)
{
/* Make sure we don't have a marker value query, or
* any command with a '?' followed by a ')' character.
* This kind of command is not a query from our point of view.
* The signal generator does the query internally, and uses the result.
*/
query++ ; /* bump past '?' */

while (*query)

134 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

{
if (*query == ' ') /* attempt to ignore white spc */
query++ ;
else break ;
}
if (*query != ')')
{
a=1;
}
}
return q ;

[/ kK ok kK ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok k ok ok Kk ok K ok kK ok

*

> $Function: main$

* $Description: Read command line arguments, and talk to signal generator.

Send query results to stdout. $

* $Return: (int) . . . non-zero if an error occurs

*

K ok kK ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok ok K ok kK ok K ok ok K ok ok K ok ok ok ok K K ok kK ok K ok ok K ok kK ok kR ok K Rk kR ok Kk kK ok k Kk K ok kK K/

int main(int argc, char *argvl[])

{

SOCKET instSock;

char *charBuf = (char *) malloc (INPUT_BUF_SIZE) ;
char *basename;

int chr;

char command[1024];

char *destination;

unsigned char quiet = 0;
unsigned char show_errs = 0;
int number = 0;
basename = strrchr(argv(0], '/');
if (basename != NULL)
basename++ ;
else

Agilent Signal Generators Programming Guide 135

Programming Examples
LAN Programming Interface Examples

basename = argv[0];

while ((chr = getopt(argc,argv,"qune")) != EOF)

switch (chr)

{
case 'q': quiet = 1; break;
case 'n': number = 1; break ;
case 'e': show_errs = 1; break ;
case 'u':
case '?': usage(basename); exit(l) ;
}

/* now look for hostname and optional <command>*/

if (optind < argc)

{
destination = argv([optind++] ;
strcpy (command, "");
if (optind < argc)
{
while (optind < argc) {
/* <hostname> <command> provided; only one command string */
strcat (command, argv[optind++]);
if (optind < argc) {
strcat (command, " ");
} else {
strcat (command, "\n");
}
}
}
else
{
/*0Only <hostname> provided; input on <stdin> */
strcpy (command, "");
if (optind > argc)
{
usage (basename) ;
exit(1);
}
}
}
else

136 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

{
/* no hostname! */
usage (basename) ;
exit(1);

}

/K kK kK ok ok Kk ok K ok ok K ok ok K ok ok K ok ok K ok K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok Kk ok Kk kK ok k

/* open a socket connection to the instrument

K kK kK ok ok Kk kK ok kR ok K Kk k kK kK ok ok Kk k Kk kR kK Rk ok Kk kK ok Kk kK k kK kK Kk ok /

#ifdef WINSOCK
if (init_winsock() !'= 0) {
exit(1);
}
#endif /* WINSOCK */

instSock = openSocket (destination, SCPI_PORT) ;
if (instSock == INVALID_SOCKET) {
fprintf (stderr, "Unable to open socket.\n");
return 1;
}
/* fprintf (stderr, "Socket opened.\n"); */

if (strlen(command) > 0)
{
/***
/* if the command has a '?' in it, use queryInstrument. */
/* otherwise, simply send the command. */
/***/
if (isQuery (command))
{
long bufBytes;
bufBytes = queryInstrument (instSock, command,
charBuf, INPUT_BUF_SIZE) ;

if (!quiet)

{
fwrite (charBuf, bufBytes, 1, stdout);
fwrite("\n", 1, 1, stdout) ;
fflush(stdout) ;
}
}
else

Agilent Signal Generators Programming Guide 137

Programming Examples
LAN Programming Interface Examples

{
commandInstrument (instSock, command) ;
}
}
else
{
/* read a line from <stdin> */
while (gets(charBuf) != NULL)
{
if (!strlen(charBuf))
continue ;
if (*charBuf == '#' || *charBuf == '!')
continue ;
strcat (charBuf, "\n");

if (!quiet)

{
if (number)
{
char num[10];
sprintf (num, "$d: ",number) ;
fwrite (num, strlen(num), 1, stdout);
}
fwrite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout) ;
}
if (isQuery(charBuf))
{

long bufBytes;

/* Put the query response into the same buffer as the*/

/* command string appended after the null terminator.*/

bufBytes = queryInstrument (instSock, charBuf,
charBuf + strlen(charBuf) + 1,
INPUT_BUF_SIZE -strlen(charBuf));
if (!quiet)
{
fwrite(" ", 2, 1, stdout) ;

138 Agilent Signal Generators Programming Guide

Programming Examples

LAN Programming Interface Examples

fwrite (charBuf + strlen(charBuf)+1l, bufBytes, 1, stdout);
fwrite("\n", 1, 1, stdout) ;
fflush(stdout) ;

}
}
else
{
commandInstrument (instSock, charBuf);
}

if (number) number++;

if (show_errs) {

showErrors (instSock) ;

#ifdef WINSOCK
closesocket (instSock) ;
close_winsock() ;

#else
close(instSock) ;

#endif /* WINSOCK */

return 0;

/* End of lanio.cpp *

/***********************************‘k*‘k*‘k******‘k*‘k*****************‘k*‘k*****/
/* $Function: mainl$ */

/* $Description: Output a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */
/***********************************‘k*‘k*‘k******‘k*‘k*************************/
/* Rename this int mainl () function to int main(). Re-compile and the */
/* execute the program */

[/ kK ok kK ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok ok ok Kk ok K ok kK ok ok Kk kK ok kR kK Rk Kk kR k ok Kk kK k kR kK Rk ok k kK /

Agilent Signal Generators Programming Guide

139

Programming Examples
LAN Programming Interface Examples

int mainl ()

{

SOCKET instSock;
long bufBytes;
char *charBuf = (char *) malloc (INPUT_BUF_SIZE) ;

K kK kK ok ok K ok ok K ok ok Kk ok Kk ok kK kK ok kK ok ok Kk kR k Kk kK Rk Kk ko k k /

/* open a socket connection to the instrument*/

K kK kK ok ok K ok ok K ok ok Kk ok Kk ok ok Kk ok K ok kK ok ok Kk ok ok ok Kk kK Kk Kk k ok k ok /

#ifdef WINSOCK
if (init_winsock() !'= 0) {
exit(1);
}
#endif /* WINSOCK */

instSock = openSocket ("xxxxxx", SCPI_PORT); /* Put your hostname here */
if (instSock == INVALID_SOCKET) {
fprintf (stderr, "Unable to open socket.\n");
return 1;
}
/* fprintf (stderr, "Socket opened.\n"); */

bufBytes = queryInstrument (instSock, "*IDN?\n", charBuf, INPUT_BUF_SIZE) ;
printf ("ID: %s\n",charBuf) ;

commandInstrument (instSock, "FREQ 2.5 GHz\n");

printf("\n");

bufBytes = queryInstrument (instSock, "FREQ:CW?\n", charBuf, INPUT_BUF_SIZE) ;
printf ("Frequency: %s\n",charBuf) ;

commandInstrument (instSock, "POW:AMPL -5 dBm\n");

bufBytes = queryInstrument (instSock, "POW:AMPL?\n", charBuf, INPUT_BUF_SIZE);
printf ("Power Level: %s\n",charBuf) ;

printf("\n");

#ifdef WINSOCK
closesocket (instSock) ;
close_winsock() ;

#else

140 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

close (instSock) ;

#endif /* WINSOCK */

return 0;

}

[/ kK ok kK ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok Kk ok K ok ok K ok

getopt (3C) getopt (3C)

PROGRAM FILE NAME: getopt.c

getopt - get option letter from argument vector

SYNOPSIS
int getopt (int argc, char * const argv[], const char *optstring);
extern char *optarg;

extern int optind, opterr, optopt;

PRORGAM DESCRIPTION:
getopt returns the next option letter in argv (starting from argv([1l])
that matches a letter in optstring. optstring is a string of
recognized option letters; if a letter is followed by a colon, the
option is expected to have an argument that may or may not be
separated from it by white space. optarg is set to point to the start

of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before

the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option
argument), getopt returns EOF. The special option -- can be used to

delimit the end of the options; EOF is returned, and -- is skipped.

K ok kK ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok Kk ok K K ok kK ok K ok ok K ok kK ok kR kK Rk K Rk Kk kK ok k ok kK ok kK K/

#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */
int optind = 0; /* Global argv index. */

Agilent Signal Generators Programming Guide 141

Programming Examples
LAN Programming Interface Examples

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{
char c;

char *posn;

optarg = NULL;

if (scan == NULL || *scan == '\0') {
if (optind == 0)
optind++;
if (optind >= argc || argvloptind][0] != '-' || argv[optind][1l] == '\0')

return (EOF) ;
if (strcmp(argv[optind], "--")==0) {
optind++;

return (EOF) ;

scan = argv[optind]+1;

optind++;
}
Cc = *scan++;
posn = strchr (optstring, c); /* DDP */
if (posn == NULL || ¢ == ':') {
fprintf (stderr, "%s: unknown option -%c\n", argv[0], c);
return('?');
}
posn++;
if (*posn == ':') {
if (*scan != '"\0') {
optarg = scan;
scan = NULL;
} else {
optarg = argv/[optind];
optind++;
}
}

142 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

return(c) ;

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator through sockets LAN. This
program requires Java version 1.1 or later be installed on your PC. To run the program perform the
following steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For
example, String instrumentName = (your signal generator’s hostname).

2. Copy the program as ScpiSockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\jdk1.3.0_2\bin\javac directory.

Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

4. Compile the program. At the command prompt type: javac ScpiSockTest.java.
The directory path for the Java compiler must be specified. For example:
C:\>jdk1.3.0_02\bin\javac ScpiSockTest.java

Run the program by typing java ScpiSockTest at the command prompt.

6. Type exit at the command prompt to end the program.

Generating a CW Signal Using Java
The following program example is available on the signal generator Documentation CD-ROM as
javaex. txt.

] ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok K ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok

// PROGRAM NAME: javaex.txt // Sample java
program to talk to the signal generator via SCPI-over-sockets

// This program requires Java version 1.1 or later.
// Save this code as ScpiSockTest.java

// Compile by typing: javac ScpiSockTest.java

// Run by typing: java ScpiSockTest

// The signal generator is set for 1 GHz and queried for its id string

/] ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ko ok ok ok ok K ok ok K ok

import java.io.*;

import java.net.*;

class ScpiSockTest

{
public static void main(String[] args)
{

String instrumentName = "xxXxX"; // Put instrument hostname here

Agilent Signal Generators Programming Guide 143

Programming Examples
LAN Programming Interface Examples

Socket t = new Socket (instrumentName,5025); // Connect to instrument
// Setup read/write mechanism

BufferedwWriter out =
new BufferedWriter (
new OutputStreamWriter (t.getOutputStream())) ;
BufferedReader in =
new BufferedReader (
new InputStreamReader (t.getInputStream()));
System.out.println("Setting frequency to 1 GHz...");
out.write("freq 1GHz\n"); // Sets frequency
out.flush();

System.out.println("Waiting for source to settle...");

out.write("*opc?\n") ; // Waits for completion
out.flush();
String opcResponse = in.readLine() ;
if (!opcResponse.equals("1"))
{

System.err.println("Invalid response to '*OPC?'!");
System.exit (1) ;
}

System.out.println("Retrieving instrument ID...");

out.write("*idn?\n") ; // Querys the id string
out.flush();
String idnResponse = in.readLine(); // Reads the id string

// Prints the id string
System.out.println("Instrument ID: " + idnResponse) ;
}
catch (IOException e)
{

System.out.println("Error" + e);

144 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

Sockets LAN Programming Using Perl

This example uses PERL to control the signal generator over the sockets LAN interface. The signal
generator frequency is set to 1 GHz, queried for operation complete and then queried for it’s identify
string. This example was developed using PERL version 5.6.0 and requires a PERL version with the
10::Socket library.

1. In the code below, enter your signal generator’s hostname in place of the xxxxx in the code line:
my S$instrumentName= “XxXXxX”;

2. Save the code listed below using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the signal generator Documentation CD- ROM as
perl.txt.

#!/usr/bin/perl

PROGRAM NAME: perl.txt

Example of talking to the signal generator via SCPI-over-sockets

#

use IO::Socket;

Change to your instrument's hostname

my S$instrumentName = "xXxxXxX";

Get socket

$sock = new IO::Socket::INET (PeerAddr => $instrumentName,
PeerPort => 5025,
Proto => 'tcp',
)i

die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freg
print "Setting frequency...\n";

print $sock "freqg 1 GHz\n";

Wait for completion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

my Sresponse = <S$sock>;

chomp S$Sresponse; # Removes newline from response
if (Sresponse ne "1"

{

die "Bad response to '*OPC?' from instrument!\n";

Agilent Signal Generators Programming Guide 145

Programming Examples
LAN Programming Interface Examples

Send identification query
print $sock "*IDN?\n";
Sresponse = <S$sock>;

chomp S$response;

print "Instrument ID: $response\n";

TCP-IP (LAN) Programming Using Matlab

The examples in this section are meant to be used in one of three ways:

¢ Using a PSA to directly calculate and load an Equalization filter into the MXG. (This process can
be easily automated.)

1. Set up the PSA to measure the modulation.
2. Turn on the equalization filter.

3. Call loadPsaEqFilterFreq (example 1) in Matlab to read out the equalization channel response
over LAN via SCPI and calculate the correct equalization filter.

4. Call writeMxgFir (example 3) in Matlab to write out the equalization filter over LAN via SCPI
to the MXG.

¢ Manual process using the VSA 89600 software to measure the channel response, calculate the
correction equalization filter and load that filter into the MXG:

Setup to measure the modulation.

Turn on the equalization filter.

View the equalization channel response trace, either “Eq Ch Freq Resp” or “Eq Impls Resp”.
Save the trace as ".mat" file, with the header included.

Call loadVsaEqFilter (example 2) in Matlab to read the file and calculate a correction filter.

S e

Call writeMxgFir (example 3) in Matlab to write out the equalization filter over LAN via SCPI
to the MXG.

e Takes a user created filter in Matlab—either an equalization filter or a modulation filter—and
writes it to a FIR file in the MXG.

This section contains the following examples:

1. “Example 1: Reading Out the Channel Response and Calculating Corrections for an Equalization
Filter Using Matlab”

2. “Example 2: Reading a VSA Trace and Setting up the Equalization Filter Using Matlab”
3. “Example 3: Downloading a FIR filter in Matlab to the MXG” on page 150

Example 1: Reading Out the Channel Response and Calculating Corrections for an Equalization Filter Using Matlab

This example reads out the channel response from a PSA and calculates a correction equalization
filter that can be loaded into the MXG.

The following program example is available on the signal generator Documentation CD- ROM as
loadPsaEQFilterFreq.m.

function [corrFilter] = loadPsaEqgFilter (psaDev, destRate)

146 Agilent Signal Generators Programming Guide

[corrFilter] = loadPsaEgFilter (psaDev[, destRatel])

The communication is over TCP-IP (LAN).

destRate is assumed to be 125e6 if missing

Example: [corrFilter] = loadPsaEqgFilter('psa4d')

output of corrFilter is in time domain.

NOTE: The equalization filter feature in the PSA Digital Modulation
Modulation Analysis mode must be ON for this script to work.

%
%
%
%
%
%
%
%
% It can be set to EQ Hold ON.

%

% Typically followed with something like:
%

writeMxgFir ('a-n5182a-00211', 'EQ_1GHZ_62MHZ', corrFilter);

if (nargin<l || nargin>2)

Reads out the current Equalization filter active on the PSA specified.

Programming Examples
LAN Programming Interface Examples

error (' [corrFilter] = loadPsaEgFilter (psaDev[, destRate]) -- destRate is assumed to be 125e6 if

missing');
end
if (nargin<2)
destRate=125e6;
end
% contact PSA using LAN
t=tcpip (psabDev, 5025);
t.OutputBufferSize=1*1024*1024;
t.InputBufferSize=1*1024*1024;
fopen(t) ;
fprintf(t, ':FETCh:EVM9?\n');
magDb = readArrayOfDoubles (t);
fprintf(t, ':FETCh:EVM10?\n');
phaseDeg = readArrayOfDoubles(t);
fprintf(t, ':FETCh:EVM212\n');
xSteps = readArrayOfDoubles(t);
fclose(t);
freqgqStep = xSteps(l + 9*2 + 1);
oversample = 1/xSteps(l + 8*2 +1);
% /10 compensates for issue with PSA (should be /20)
% this issue will be corrected in a future release
linmag = 10.” (magDb./10) ;
% *2 compensates for issue with PSA (should be *1)
% this issue will be corrected in a future release
phaseRad = phaseDeg./ (360/ (2*pi)).*2;

coeffs = linmag.*cos (phaseRad)+j*linmag.*sin (phaseRad) ;

rate = oversample*round(fregStep*length(coeffs)); % frequency range is also rate

% we now have a centered frequency domain version of the channel response

% invert so that we will cancel the channel response

Agilent Signal Generators Programming Guide

147

Programming Examples
LAN Programming Interface Examples

invertedFregDomain = 1./coeffs;
% convert to time domain (first placing the 0 frequency at the left edge)
timeDomain=ifft (ifftshift (invertedFregDomain)) ;
% put time domain 0 time in center
len=length (timeDomain) ;
if (mod(length(timeDomain), 2)==1) % odd
center=ceil (len/2);
centeredTime (1l: (center-1)) = timeDomain (center+l:end) ;
centeredTime (center:len) = timeDomain(l:center);

else % even

topHalf = (length(timeDomain) /2)+1;
centeredTime (1: (topHalf-1)) = timeDomain (topHalf:end) ;
centeredTime (topHalf:len) = timeDomain(l: (topHalf-1));

end
% resample to desired rate if necessary
if (abs(destRate-rate)>le-6)
% note that this resample function only works with integer rates
resampledTime = resample (centeredTime, destRate, rate, 30);
resampledTime = resampledTime.* (rate/destRate) ;
else
resampledTime = centeredTime;
end
% clip off the center 256 (if necessary)
if (length(resampledTime)>256)
% the peak point is assumed to be the center
[maxval, index] = max(abs (resampledTime)) ;
center=index;
left = center-127;
right = left+255;
clippedTime=resampledTime ((left) : (right));
else
clippedTime = resampledTime;

end

corrFilter=clippedTime;

end

function array = readArrayOfDoubles (fid)
line = fgets(£fid);
array = sscanf(line, '%g%*c');

end

148 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

Example 2: Reading a VSA Trace and Setting up the Equalization Filter Using Matlab

This example reads a VSA trace of “Eq Ch Freq Resp” or “Eq Impls Resp” and creates an equalization
filter compatible with the MXG.

The following program Matlab example is available on the signal generator Documentation CD- ROM
as loadVsaEQFilterFreq.m.
function [corrFilter] = loadVsaEgFilter (filename, destRate)

% [corrFilter] = loadVsaFilter (filename[, destRate])

o°

filename must reference an 89600 Equalization filter saved as .mat file with the header included.

o°

destRate is assumed to be 125e6 if missing

o°

output of corrFilter is in time domain.

o°

Typically followed with:

% writeMxgFir('a-n5182a-00211', 'cft', corrFilter);
if (nargin<l || nargin>2)
) grror('[corrFilter] = loadVsaEgFilter(filename[, destRate]) -- destRate is assumed to be 125e6 if
missing');
end

if (nargin<2)
destRate=125e6;
end
% load filter struct from .mat file
filterStruct=1load(filename) ;
coeffs = double(filterStruct.Y);
if (filterStruct.XDomain==1) % frequency
rate = filterStruct.XDelta*length(coeffs); % frequency range is also rate
% VSA software supplies centered frequency domain
else % time domain is 2
rate = 1/filterStruct.XDelta; % inverse of time step is frequency
% convert to frequency domain
% must center frequency domain (to match what comes from the VSA
% software)
coeffs = fftshift (fft(coeffs));
end
% invert
invertedFregDomain = 1./coeffs;
% convert to time domain (first placing the 0 frequency at the left edge)
timeDomain=ifft (ifftshift (invertedFregDomain)) ;
if (filterStruct.XDomain==1) % frequency
% put time domain 0 time in center
len=length (timeDomain) ;
if (mod(length(timeDomain), 2)==1) % odd
center=ceil (len/2);

centeredTime (1: (center-1)) = timeDomain (center+1l:end);

Agilent Signal Generators Programming Guide 149

Programming Examples
LAN Programming Interface Examples

centeredTime (center:len) = timeDomain(l:center);

else % even

topHalf = (length(timeDomain) /2)+1;

centeredTime (1: (topHalf-1)) = timeDomain (topHalf:end) ;

centeredTime (topHalf:len) = timeDomain(l: (topHalf-1));
end

else % already centered in time domain
centeredTime = timeDomain;
end
if (abs(destRate-rate)>le-6)
resampledTime = resample(centeredTime, destRate, rate, 30);
resampledTime = resampledTime.* (rate/destRate) ;
else
resampledTime = centeredTime;
end
% clip off the center 256 (if necessary)
if (length(resampledTime)>256)
[maxval, index] = max(abs (resampledTime)) ;
center=index;
left = center-127;
right = left+255;
clippedTime=resampledTime ((left) : (right));
else
clippedTime = resampledTime;
end
corrFilter=clippedTime;

end

Example 3: Downloading a FIR filter in Matlab to the MXG

This example uses Matlab to control the MXG over the TCP-IP (LAN) interface. This example takes a
filter in Matlab and writes it to a FIR file in the MXG. This example can be can be used in
combination with either the automatable loadPsaEqFilterFreq.m example (1) or the loadVsaEqFilter.m
(example 2) to manually work with the VSA 89600 software. This example can also be used to create
real modulation FIRs.

The following program example is available on the signal generator Documentation CD-ROM as
writeMxgFir.m.

function [rateAdjustedFilter]=writeMxgFir (host, instrumentFilename, timeDomainFilter, osr, rate,
destRate, maxTaps)

% writeMxgEgQFir (host, instrumentFilename, timeDomainFilter, osr, rate, destRate, maxTaps) ;
% writes filter to 'instrumentFilename' on 'host' using tcp-ip. Real or complex is

% auto-detected. osr is assumed to be 1 if it is missing. rate is assumed

% to be 125Mhz if missing. destRate is assumed to be 125Mhz if missing.

% maxTaps is the hardware limit of the MXG (256 if not specified).

150 Agilent Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

% This value should be 256 for the Equalization filter and 32*osr for the
% Arb Modulation filter. Note that the filter has a rectangular window

% applied with a width of maxTaps centered about the peak point.

% Example: writeMxgEgQFir('mxgl', 'a', [-0.1 0.1 0.4 0.1 0.4 0.1 -0.11);
if (nargin<3 || nargin>7)

error ('usage: writeMxgFir (host, instrumentFilename, timeDomainFilter[, osr[, ratel,
maxTaps]111)"');

end
if (nargin<4)
osr=1;
end
if (nargin<5)
rate=125e6;
end
if (nargin<é6)
destRate=125e6;
end
if (nargin<7)
maxTaps=1024;
end
% adjust coefficients for destination rate
if (rate ~= destRate)
timeDomainFilter = resample(double(timeDomainFilter), destRate, rate, 30);
timeDomainFilter = timeDomainFilter.* (rate/destRate);
end
if (length(timeDomainFilter)>maxTaps)
[maxval, index] = max (abs (timeDomainFilter)) ;
center=index;
left = center- (maxTaps/2-1);
if (left<l)
left=1;
end
right = left+ (maxTaps-1);
while (right > length(timeDomainFilter))
right = right-1;
end
timeDomainFilter = timeDomainFilter ((left): (right));
end
rateAdjustedFilter = timeDomainFilter;
% open tcp connection
t=tcpip (host, 5025);
t.OutputBufferSize=1024*1024; % plenty big for filters

% write file contents

destRate[,

Agilent Signal Generators Programming Guide

151

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

fopen(t) ;

%$for writing to a file instead to see what is being output

$t=fopen('test', 'w');

% send command with filename

fprintf(t, '%s', horzcat(':MEM:DATA:FIR "', instrumentFilename, '",'));

% send type

if (isreal (timeDomainFilter))
fprintf(t, '%s', 'REAL,"');

else % convert complex to a real array
fprintf(t, '%s', 'COMP,"');
temp=zeros (1, length(timeDomainFilter) *2) ;
temp (1:2:end)=real (timeDomainFilter) ;
temp (2:2:end)=imag (timeDomainFilter) ;
timeDomainFilter=temp;

end

% output osr

fprintf(t, '%d', osr);

% send coefficients

fprintf(t, ',%g', timeDomainFilter) ;

% send terminator

fprintf(t, '\n');

fclose(t);

end

RS 232 Programming Interface Examples (ESG/PSG Only)

“Interface Check Using HP BASIC” on page 152
¢ “Interface Check Using VISA and C” on page 153
* “Queries Using HP Basic and RS-232” on page 155
* “Queries for RS-232 Using VISA and C” on page 157

Before Using the Examples

Before using the examples: On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
* RS-232 Echo - Off

Use an RS-232 cable, that is compatible with Table 2-2 on page 64.

Interface Check Using HP BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command *RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COM1 (Serial A on some computers). Refer to “Using RS-232 (ESG and PSG Only)” on page 61 for
more information.

152 Agilent Signal Generators Programming Guide

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

Watch for the signal generator’s Listen annunciator (I.) and the ‘remote preset....” message on the
front panel display. If there is no indication, check that the RS-232 cable is properly connected to
the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was
typed incorrectly. Press the signal generator’s Reset R$-232 softkey and re-run the program. Refer to
“If You Have Problems” on page 66 for more help.

The following program example is available on the signal generator’s Documentation CD- ROM as
rs232exl.txt.

10 !**
20 !

30 ! PROGRAM NAME: rs232exl.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the RS-232 connections and
60 ! interface are functional.

70 !

80 ! Connect the UNIX workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run HP BASIC, type in the following commands and then RUN the program

120 !

130 !

140 !**
150 !

160 INTEGER Num

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9,3;9600 ! Sets the baud rate to match the sig gen

190 STATUS 9,4;Stat ! Reads the value of register 4

200 Num=BINAND (Stat,7) ! Gets the AND value

210 CONTROL 9, 4;Num ! Sets parity to NONE

220 OUTPUT 9; "*RST" ! Outputs reset to the sig gen

230 END ! End the program

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. In this example the COM2 port is
used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the
computer serial port you are using. Launch Microsoft Visual C++, add the required files, and enter
the following code into the .cpp source file. rs232ex1.cpp performs the following functions:

¢ prompts the user to set the power on the signal generator to 0 dBm
* error checking
* resets the signal generator to power level of —135 dBm

The following program example is available on the signal generator Documentation CD- ROM as
rs232exl.cpp.

Agilent Signal Generators Programming Guide 153

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

[K kK ok ok ok ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K K ok Kk

// PROGRAM NAME : rs232exl.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to
// control the signal generator.

//

// Connect the computer to the signal generator using an RS-232 serial cable.
// The user is asked to set the signal generator for a 0 dBm power level

// A reset command *RST is sent to the signal generator via the RS-232

// interface and the power level will reset to the -135 dBm level.The default
// attributes e.g. 9600 baud, no parity, 8 data bits,l stop bit are used.

// These attributes can be changed using VISA functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

[K kK ok ok Kk ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K o ok K ok kK ok kK ok Kk

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

#include <conio.h>

void main ()

{

int baud=9600;// Set baud rate to 9600
printf ("Manually set the signal generator power level to 0 dBm\n");
printf ("\n") ;
printf ("Press any key to continue\n");
getch() ;
printf ("\n");
ViSession defaultRM, vi;// Declares a variable of type ViSession
// for instrument communication on COM 2 port
ViStatus viStatus = 0;
// Opens session to RS-232 device at serial port 2
viStatus=viOpenDefaultRM (&defaultRM) ;
viStatus=viOpen (defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &vi);

if (viStatus){// If operation fails, prompt user

printf ("Could not open ViSession!\n");

154 Agilent Signal Generators Programming Guide

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}

// initialize device

viStatus=viEnableEvent (vi, VI_EVENT_IO_COMPLETION, VI_QUEUE,VI_NULL) ;

viClear (vi);// Sends device clear command

// Set attributes for the session
viSetAttribute (vi, VI_ATTR_ASRL_BAUD, baud) ;
viSetAttribute (vi,VI_ATTR_ASRL_DATA_ BITS,8) ;

viPrintf(vi, "*RST\n");// Resets the signal generator
printf ("The signal generator has been reset\n");

printf ("Power level should be -135 dBm\n");

printf ("\n");// Prints new line character to the display
viClose(vi);// Closes session

viClose (defaultRM);// Closes default session

}

Queries Using HP Basic and RS-232

This example program demonstrates signal generator query commands over RS-232. Query commands
are of the type *IDN? and are identified by the question mark that follows the mnemonic.
rs232ex2.txt performs the following functions:

* resets the RS-232 interface

* sets the baud rate to match the signal generator rate
¢ reads the value of register 4

* queries the signal generator 1D

* sets and queries the power level

Start HP Basic, type in the following commands, and then RUN the program:

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2.txt.

10 !**
20 !

30 ! PROGRAM NAME: rs232ex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used to read

60 ! data from the signal generator.

70 !

80 ! Start HP Basic, type in the following code and then RUN the program.

90 !

100 !**
110 !

Agilent Signal Generators Programming Guide 155

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

120 INTEGER Num

130 DIM Str$[200],Strl$([20]

140 CONTROL 9,0;1 Resets the RS-232 interface

150 CONTROL 9,3;9600 Sets the baud rate to match signal generator rate
160 STATUS 9,4;Stat Reads the value of register 4

170 Num=BINAND (Stat,7) Gets the AND value

180 CONTROL 9, 4;Num Sets the parity to NONE

190 OUTPUT 9; "*IDN?" Querys the sig gen ID

200 ENTER 9;Str$ Reads the ID

210 WAIT 2 Waits 2 seconds

220 PRINT "ID =",Str$ Prints ID to the screen

230 OUTPUT 9; "POW:AMPIL -5 dbm" Sets the the power level to -5 dbm

240 OUTPUT 9; "POW?" Querys the power level of the sig gen

250 ENTER 9;Strls Reads the queried value

260 PRINT "Power = ",Strl$ Prints the power level to the screen

270 END End the program

156 Agilent Signal Generators Programming Guide

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

Queries for RS-232 Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. Launch Microsoft Visual C++, add
the required files, and enter the following code into your .cpp source file. rs232ex2.cpp performs
the following functions:

¢ error checking

¢ reads the signal generator response

¢ flushes the read buffer

e queries the signal generator for power
* reads the signal generator power

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2.cpp.
//**
//

// PROGRAM NAME : rs232ex2.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to control

// the signal generator.

//

// Connect the computer to the signal generator using the RS-232 serial cable

// and enter the following code into the project .cpp source file.

// The program queries the signal generator ID string and sets and queries the power

// level. Query results are printed to the screen. The default attributes e.g. 9600 baud,
// parity, 8 data bits,l stop bit are used. These attributes can be changed using VISA

// functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

[K Kk ok Kk ok K ok ok K ok K Kk ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok K ok ok Kk ok K ok kK ok K K ok kK ok Kk kK

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

#include <conio.h>
#define MAX_COUNT 200

int main (void)

{

ViStatusstatus; // Declares a type ViStatus variable

Agilent Signal Generators Programming Guide 157

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG Only)

ViSessiondefaultRM, instr;// Declares type ViSession variables
ViUInt32retCount; // Return count for string I/O
ViCharbuffer [MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM);// Initializes the system
// Open communication with Serial Port 2

status = viOpen (defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &instr);

if (status){// If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}
// Set timeout for 5 seconds
viSetAttribute (instr, VI_ATTR_TMO_VALUE, 5000);
// Asks for sig gen ID string

status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Reads the sig gen response

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= '\0';// Indicates the end of the string
printf ("Signal Generator ID: "); // Prints header for ID
printf (buffer);// Prints the ID string to the screen
printf("\n");// Prints carriage return

// Flush the read buffer

// Sets sig gen power to -5dbm
status = viWrite(instr, (ViBuf) "POW:AMPL -5dbm\n", 15, &retCount);
// Querys the sig gen for power level
status = viWrite(instr, (ViBuf) "POW?\n",5,&retCount);

// Read the power level
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= '\0';// Indicates the end of the string
printf ("Power level = ");// Prints header to the screen
printf (buffer);// Prints the queried power level
printf ("\n");
status = viClose(instr);// Close down the system
status = viClose(defaultRM) ;

return 0;

}

158 Agilent Signal Generators Programming Guide

4 Programming the Status Register System

This chapter provides the following major sections:

¢ Overview on page 159

e Status Register Bit Values on page 168

e Accessing Status Register Information on page 169
e Status Byte Group on page 175

e Status Groups on page 177

Overview

NOTE Some of the status bits and register groups only apply to select signal generators with
certain options. For more specific information on each exception, refer to the following:

¢ Standard Operation Condition Register bits (see Table 4-6 on page 181)

* Baseband Operation Status Group (see page 183)

¢ Data Questionable Condition Register bits (see Table 4-8 on page 187)

¢ Data Questionable Power Condition Register bits (see Table 4-9 on page 190)

* Data Questionable Frequency Condition Register bits (see Table 4-10 on page 193)

¢ Data Questionable Modulation Condition Register bits (see Table 4-11 on page 196)
¢ Data Questionable Calibration Condition Register bit (see Table 4-12 on page 199)

* Data Questionable Bert Status Group (see page 201)

During remote operation, you may need to monitor the status of the signal generator for error
conditions or status changes. You can use the signal generator’s status register system to monitor
error conditions, or condition changes, or both. In general, the error queue is easier to use than the
status registers, but the status registers provide some additional information not found in the error
queue. For more information on using the signal generator’s SCPI commands to query the signal
generator’s error queue, refer to the SCPI Command Reference.

The signal generator’s status register system provides two major advantages:

* You can monitor the settling of the signal generator using the settling bit of the Standard
Operation Status Group’s condition register.

* You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving
a speed advantage.

The signal generator’s instrument status system provides complete SCPI compliant data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-priority status registers propagate their data to the higher- priority
registers using summary bits. The Status Byte Register is at the top of the hierarchy and contains the
status information for lower level registers. The lower level registers monitor specific events or

Agilent Signal Generators Programming Guide 159

Programming the Status Register System
Overview

conditions.

The lower level status registers are grouped according to their functionality. For example, the Data

Questionable Frequency Status Group consists of five registers. This chapter may refer to a group as
a register so that the cumbersome longer description is avoided. For example, the Standard Operation
Status Group’s Condition Register can be referred to as the Standard Operation Status register. Refer
to “Status Groups” on page 177 for more information.

Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5, and Figure 4-6 shows each signal
generator model’s signal generator’s status byte register system and hierarchy.
The status register systems use IEEE 488.2 commands (those beginning with *) to access the

higher-level summary registers (refer to the SCPI Command Reference). Access Lower-level registers
by using STATus commands.

160 Agilent Signal Generators Programming Guide

Programming the Status Register System
Overview

Overall Status Byte Register Systems

¢ “Nb161A/62A/81A/82A/83A: Overall Status Byte Register System (1 of 2)” on page 162

e “Nb5 161A/62A/81A/82A/83A: Overall Status Byte Register System (2 of 2)” on page 163

o “E4428C/38C: Overall Status Byte Register System (1 of 2)” on page 164

e “E4428C/38C: Overall Status Byte Register System (2 of 2)” on page 165

o “E8257N/57D/67D and E8663B/63D: Overall Status Byte Register System (1 of 2)” on page 166
e “E8257N/57D/67D and E8663B/63D: Overall Status Byte Register System (2 of 2)” on page 167

Agilent Signal Generators Programming Guide 161

Programming the Status Register System
Overview

Figure 4-1 N5161A/62A/81A/82A/83A: Overall Status Byte Register System (1 of 2)

Data Questionat&a Power Status Group

R.P.P. Tripped { ¢
Unleveledd 1
Unused _| 2
Unused _] 3 = .
ALC Heater o0 P O e
Detector (Cold)-| 4 G|z |s|c |
Unused— 5 gﬁ E ? |0
Unused— 6 [, [» %Bm !
Unused— 7 HEE |2 \-l_-/ To Data Questionable Status Group #3
Unused—| 8 el = =
- S [~ [—~|2 [E
Unused s SIE | I o To Data Questionable Status Group #5
Unused 410 3 Iz
Unused 411
Unused 412
Unused 413
Unused 414
Always Zero (0) 4 15]
Data Quest. Frequency Status Group To Data Questionable Status Group #8
Synth. Unlocked 4 0
10 MHz Ref Unlocked - 1
Unused 4 2
Unused 4 3
Unused o 4 sl [l 3
Unused o 5 210|028 |
Unused & E’E T -%%
Unused o 7 522§m+)—
Unused 4 8 228 W
Unused - 9 E E i o ‘g
Unused 10 8“""—“&
Unused 11
Unused 12
Unused {13
Unused -{14
Always Zero (0) {15

Data Quest. Calibration Status Group

Unused [gl
DCFM/DCOM_]
Zerg Failure
Unused -
Unused
Unused -
Unused
Unused -
Unused
Unused
Unused -
Unused -
Unused 411
Unused 412
Unused {13
Unused 414

Always Zero (0) 415

®7

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

=y
QORNOUBWN 2O

W

Condition Register

162 Agilent Signal Generators Programming Guide

Programming the Status Register System
Overview

Figure 4-2 N5161A/62A/81A/82A/83A: Overall Status Byte Register System (2 of 2)
Status Byte Register
Unused| 0
Unused] 1
From Data Questionable Power Status Group Error/Event Queue Summary Bit] 2
Data Questionable Status Summary Bit] 3
[
From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)]| 4
1
Status Group Std. Event Statuls Sum. Bit| 5 }—
[
Unused— o Req. Serv. Sum. Bit (RQS)| & =
11
Unused — 1 Std. Operation Status Sum. Bit[7 |- |
Unused—- o 1
1
(summary)— 3 |
Unused— 4 :
o of ||| +------ 4
(summary)— 5 i |8 1 :
Unused —| ST [T [E]e I
nuse 6 K % % ol '
Unused— 7 clc|c |z |8 + !
2|E |8 [|w !
Unused —| 8 ElE=|=]s 2 1
cl+ |)z |lo !
SELFtest—] 9 S [= > 1
]])
Unused— 10 |
Unused — 11 :
Unused — 12 :
Unused—{ 13 :
Unused — 14 :
Always Zero (0)— 15 |
— |
|
Standard Event Status Group !
Oper. Complete 4 0 R |
Req. Bus Control o{ 1 5 > '
Query Error 4 2 B % |
Dev. Dep. Error{ 3) :
Execution Error < 4 ilf 2)
Command Error o 5 & % :
User Request - 6 | @ 1
Power On o 7 w :
|
Standard Operation Status Group |
— |
1/Q CALibrating— 0 :
Settling— 1 |
Unused— 2 :)’
SWEeping— 3 : P §
Unused —{ 4 = . :)
" 2] [| |® I (&
Waiting for TRIGer — 5 (o8 [of o fon oA)
DEER[y 1 (
Unused - 6 SEE ol
o |w o2 f&
Unused < 7 sIslsEle
1018|812 2
Unused—{ 8 BER|ofe
Unused— 9 S|
@] h
Unused — 10 @
Sweep Calculating— 11 L)
Unused— 12 7] 6] 5] 4] 3] 2} 1] 0
Unused— 13
Unused—| 14 Service Request

Always Zero (0)— 15 | Enable Register

Agilent Signal Generators Programming Guide 163

Programming the Status Register System

Overview
Figure 4-3 E4428C/38C: Overall Status Byte Register System (1 of 2)
Data Questionable Power Status Group
R.P.P. Tripped | 0]
Unleveled— 1
1Q Mod Overdrive o 2
Lowband Detector Fault< 3 b} o
Unused - 4 2 (5[5 |2 P
Unused < 5 gﬁ E @ (o
Unused— 6 Elala @R\
Unused 7 sleleg g d-/ To Data Questionable Status Group #3
Unused—| 8 = | (= EH=
- —~1—12 [
Hﬂﬂ:zg a 18 Slefeim o To Data Questionable Status Group #5
o I
Unused 411
Hﬂﬂzzg : :I] g To Data Questionable Status Group #7
Unused 414
Always Zero (0) _E To Data Questionable Status Group #8
Data Quest. Frequency Status Group
Synth. Unlocked 4 0 To Data Questionable Status Group #12
10 MHz Ref Unlocked 4 1
1 GHz Ref Unlocked o 2
Baseband 1 Unlocked o 3
Unused - 4 el 1|13
Sampler Loop Unlocked - 5 '% sle % (14 To, Standard Operation Status Group #10
YO Loop Unlocked o 6 Ko i i > 2
oo e HEH - One
nused — 2(Z]| 8=
Unused - 9 E E i [‘g
Unused <10 ST
Unused 11
Unused E Data Quest. BERT Status Group
823:23 14 (Option UN7 & 300 only)
No Clock 4 0
Always Zero (0) {15
— No Data Change - 1
Data Quest. Modulation Status Group PRBS SchLos§ — %
Mod 1 Undermod —_0 UEE::d : 4 5 .
Mod 1 Overmod 4 1 Unused o 5 B 5| 5|8 &
Mod 2 Undermod - 2 Unused o 6 EEEER
Mod 2 Overmod 4 3 o _|o Unused - 7 gz 25
Modulation Uncalibrated -{ 4 Blo|o|e|® Unused 4 8 REEMEE
Unused 4 5 gﬁf'%ﬁ Unused o 9 :333‘5“
Unused | 6 lhlolo|2 T oA ¢l
Unused 4 7 SEEEE Unused 110 R B]
Unused 4 8 % E E ‘% % Downconv./Demod Out of Lock 11 O 1
Unused 91 9 30 I g Demod DSP Ampl Out of Range -{12
bnused 770 o it Sync. to BCHTCHPDCH 13
Unused 412 Woaiting for TCH/PDCH <14
Unused 413 Always Zero (0) q15]
Unused <14 B
Baseband Operation Status Group
Always Zero (0) 415 A
ys zero (0) 4 13] (Option 001/601 and 002/602)
Data Quest. Calibration Status Group Baseband 1 Busy -{ 0
IQ Calibration Fail - Baseband 1 Communicating o 1
alibration Failure _| _
DCFMDCIM | 9 Unused o 2 - :
Zero Failure - 1 Unused 4 3 o) _|=
Unused - 2 Unused 4 4 % |5 |5|8|E
Unused -{ 3 5 = Unused - 5 SEEIL[e
Unused - 4 (5 |5]|8|S Unused o 6 u:(,,(,,%g
Unused o 5 SEEIL e Unused - 7 gggﬂfc@—
Unused o 6 [[D Unused - 8 = = [=[E1Y
Unused o 7 B 2@7 Unused - 9 E’;"Tég
Unused | 8 = g e Unused 10 ST &
Unused -{ 9 Holokls Unused <11
Unused {10 S =" k Unused —12
Unused {11 Unused 13
Unused <12 Unused 414
Unused 413 Always Zero (0) 415
Unused 14 -
Always Zero (0) {15]

164 Agilent Signal Generators Programming Guide

Figure 4-4

From Data Questionable Power Status Group

From Data Quest Frequency Status Group

Programming the Status Register System
Overview

E4428C/38C: Overall Status Byte Register System (2 of 2)

Status Byte Register

From Data Quest Modulation Status Group

From Data Quest. Calibration Status Group

From Data Cuest BERT Status Group

From Baseband Operation Status Group —

BERT SYNChronizing—

Unused—
Unused=|

12
13
14

T1els|4]312)1]0

Service Request

Unused| o
Unused| 1
Error/Event Queue Summary Bit] 2
Data Questionable Status Summary Bit] -
Data Questionable Message Available (MAV) | 4
Status Group Std. Event StatLis Sumn. Bit] 5 |—
Unused— o Req. Serv. Sum. Bit (RQS)| s |+
i
Unused = 1 Std. Operation Statys Sum. Bit] - L
Unused— » 1
1
(summary)— 3 I
TEMPerature _| 1
(OVENCOLD) | 4 . I I I I !
(summary)— 5 G5 |o |z | |
U d - DS ST g)
nuse 8 B T !
(summary)— 7 HEHEHAE + I
= L !
(summary)— 8 B 5 ':H |
=1~ |8 [
SELFtest—| 9 o[~ = |
o |)
Unused =110 |
Unused—] 11 :
(summary)— 12 |
Unused— 13 :
Unused—] 14 :
Always Zero (0)—< 15 I
— |
I
Standard Event Status Group !
Oper. Complete 4 0 K |
Req. Bus Control o 1 5 Iy :
Query Error < 2 % % I
Dev. Dep. Error 4 3 = X
Execution Error - 4 ® 2 |
Command Error | 5§ T g :
User Request— & i o l
PowerOn— 7 w l
|
Standard Operation Status Group }
— I
G CALibrating— o [
I
Settling— 1 |
Unused - » i)F
SWEsping— 3 X p \79
MEASuUring = 4 _) :) \?i
o |2 L
Waiting for TRIGer— 5 A : P, A
= 1= i
Unused— & 7 E)% !
w | r £
Unused— 7 sIS|5ELE + —
= FE i P
Unused - g S E |G|z
DCFM/DCIM | o Sl e)i|e
Mullin Progress [0 (i}
Baseband is Busy—{ 10
Sweep Calculating— 11 L]

Always Zero (0)—

RN

Enable Register

Agilent Signal Generators Programming Guide

165

Programming the Status Register System
Overview

Figure 4-5 E8257N/57D/67D and E8663B/63D: Overall Status Byte Register System (1 of 2)

Data Questionat&a Power Status Group

R.P.P. Tripped <
Unleveled —
Unused <
Unused —
Unused —
Unused -
Unused -
Unused
Unused —
Unused +
Unused —
Unused <
Unused 412
Unused 413
Unused {14
Always Zero (0) 415

Data Quest. Frequency Status Group

Synth. Unlocked —
10 MHz Ref Unlocked —
1 GHz Ref Unlocked —

@ To Data Questionable Status Group #3

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

To Data Questionable Status Group #5

Condition Register

To Data Questionable Status Group #7

I
200N WN=2O

To Data Questionable Status Group #8

0
1
2
Baseband 1 Unlocked o 3
Unused | 4 sl | ||
Sampler Loop Unlocked o 5 % ol % 4 To, Standard Operation Status Group #10
YO Loop Unlocked < 6 & i [iC 's,%
Unused o 7 ng&g@—
Unused o 8 ggggm
Unused 4 9 g¢¢$§
Unused —{10 ST (5
Unused - 11
Unused 12
Unused 413
Unused 4 14

Always Zero (0) —1_5 A
Data Quest. Modulation Status Group (BEa852e6b7aDng&[;g;aéaqlno?tgggsoﬁlrf)up

Mod 1 Undermod 4 0 Baseband 1 Busy o| O
Mod 1 Overmod - 1 Baseband 1 Communicating - 1
Mod 2 Undermod 4 2 Unused o 2
Mod 2 Overmod o 3 sl (| by Unused - 3 9] =
Modulation Uncalibrated - 4 Blo|ls|e|w Unused - 4 AR
Unused o 5 12]e Unused o 5 ==
Unused 4 6 Z|'als g%@— Unused | 6 E‘%% %%
Unused | 7 EEEE.EUC_, Unused - 7 S%%'xg(:)
Unused o 8 El=l=(6f= Unused | 8 = = =[5 M
Unused 4 9 IO 0 L Unused | 9 HaloHE
Unused -{10 I3 I Unused 410 S (2
Unused —{11 Unused 11 ° -
Unused <12 Unused {12
Unused—:]li Unused 13
Unused Unused 14
Always Zero (0) -{ 15 Always Zero (0) {15}

Data Quest. Calibration Status Group

I/Q Calibration Failyre [0
DCFM/DCG%M 13
Zero Failure
Unused | 2
Unused 4 3 o _|®
Unused - 4 §§§3§
Unused 4 5 gﬁzﬂm
Unused - 6 |5 [+ 122
Unused o 7 S%%’xg®—
Unused | 8 =2 A I
Unused | 9 HalaHE
Unused {10 8"“"‘”@
Unused {11
Unused -12
Unused {13
Unused {14
Always Zero (0) 415

166 Agilent Signal Generators Programming Guide

Figure 4-6

From Data Questionable Power Status Group
From Data Quest. Frequency Status Group
From Data Quest. Modulation Status Group

From Data Quest. Calibration Status Group

From Baseband Operation Status Group ——

Data Questionable
Status Group

Unused —
Unused —
Unused —

(summary) —

TEMPerature _|
(OVEN COLD)

(summary)—
Unused —
(summary)—

(summary)—{
SELFtest —
Unused —
Unused —
Unused —
Unused —
Unused —
Always Zero (0)—

Standard Event.

Oper. Complete
Regq. Bus Control
Query Error
Dev. Dep. Error
Execution Error
Command Error
User Request
Power On

|\I®U'|J>(.0I\)—\O

Standard Op

1/Q CALibrating —
Settling —

Unused —
SWEeping —
MEASuring
Waiting for TRIGer —
Unused —

Unused —
Unused

DCFM/DCOM _|
Null in Progress
Baseband is Busy—

Sweep Calculating—]
Unused—
Unused—
Unused—]

0 ~N O U A WN =2 0O

©

10
11
12
13
14
15

1]
=

LOOO\I@UW-&(.OI\)—\O|

10
1"
12
13
14

Always Zero (0)—

Error/Event Queue Summary Bit
Data Questionable Status Summary Bit

(-)Trans Filter
Event Register
Event Enable Reg.

Condition Register
(+)Trans Filter

Status Group

59
Ll
By
o @
°ols
mC
5le
HE
LLI>
L

ation Status Group

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

Condition

115 |

Programming the Status Register System
Overview

E8257N/57D/67D and E8663B/63D: Overall Status Byte Register System (2 of 2)

Status Byte Register

Unused

Unused

Message Available (MAV)
1
Std. Event Status Sum. Bit
Req. Serv. Sum. Bit (RQS)
11
Std. Operation Status Su

0

m. Bit

~NjJojoldlelNn]=

[|

Service Request
Enable Register

Agilent Signal Generators Programming Guide

167

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a decimal value based on its location in the register (see
Table 4-1).

¢ To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

¢ To enable more than one bit, send the sum of all the bits that you want to enable.

¢ To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit O (1) and the decimal value of bit 6 (64) to give a decimal value of
65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example, if you want to query
the Standard Operation Status Group’s Condition Register, send the command:
STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits = 1) then the query will return the decimal value
140. The value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

Table 4-1 Status Register Bit Decimal Values

(=} < [\ © e} < o © R < [© (e} < [\ —
; . |2 |2 |2 |2 |8 |28 |2 |2|% |~
Decimal > 3 o I < =
Value 2 -
<
Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTE Bit 15 is not used and is always set to zero.

168 Agilent Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 4-1 on
page 162 through Figure 4-6 on page 167 for register location and names.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

Determining What to Monitor

You can monitor the following conditions:

e current signal generator hardware and firmware status
¢ whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These
registers represent the current state of the signal generator and are updated in real time. When the
condition monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes
false, the bit resets to O.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an
event. The transitions can be positive to negative, negative to positive, or both. To monitor a certain
condition, enable the bit associated with the condition in the associated positive and negative
registers.

Once you have enabled a bit through the transition registers, the signal generator monitors it for a
change in its condition. If this change in condition occurs, the corresponding bit in the event register
will be set to 1. When a bit becomes true (set to 1) in the event register, it stays set until the event
register is read or is cleared. You can thus query the event register for a condition even if that
condition no longer exists.

To clear the event register, query its contents or send the *CLS command, which clears all event
registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition
registers are preset to register positive transitions (a change going from 0 to 1). This can be changed
so the selected bit is detected if it goes from true to false (negative transition), or if either transition
occurs.

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

¢ The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is accomplished by
a program loop that continually sends a query.

Agilent Signal Generators Programming Guide 169

Programming the Status Register System
Accessing Status Register Information

The polling method works well if you do not need to know about changes the moment they occur.
Use polling in the following situations:

— when you use a programming language/development environment or IO interface that does not
support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added
complexity of setting up an SRQ handler

¢ The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active
role. It tells the controller when there has been a condition change without the controller asking.
Use the SRQ method to detect changes using the polling method, where the program must
repeatedly read the registers.

Use the SRQ method if you must know immediately when a condition changes. Use the SRQ
method in the following situations:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs

— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ
interrupts (for example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using this
method, you must do the following:

1. Determine which bit monitors the condition.

2. Send commands to enable the bit that monitors the condition (transition registers).

3. Send commands to enable the summary bits that report the condition (event enable registers).
4. Send commands to enable the status byte register to monitor the condition.

5. Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would
otherwise have used to monitor the condition, as in a loop method, can be used to perform other
tasks. The application determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the request service summary (RQS)
bit in the status byte register is set. In order for the controller to respond to the change, the Service
Request Enable Register needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status Byte Register that will
trigger a service request. Send the *SRE <num> command where <num> is the sum of the decimal
values of the bits you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation
Status register summary bit is set to 1, a service request is generated) send the command *SRE 128.

170 Agilent Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

Refer to Figure 4-1 on page 162 through Figure 4-6 on page 167 for bit positions and values.

The query command *SRE? returns the decimal value of the sum of the bits previously enabled with
the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum
of the bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136
(bit 7 = 128 and bit 3 = 8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when
it is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ informs
the controller that some device on the bus requires service. Setting the RQS bit allows the controller
to determine which signal generator requires service.

This process is initiated if both of the following conditions are true:
* The corresponding bit of the Service Request Enable Register is also set to 1.
* The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the
controller to perform a serial poll when SRQ is true. Each device on the bus returns the contents of
its status byte register in response to this poll. The device whose request service summary (RQS) bit
is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode set to
continuous, restarting the measurement (INIT command) can cause the measuring bit to pulse low.
This causes an SRQ when you have not actually reached the “end-of-sweep” or measurement
condition. To avoid this, do the following:

1. Send the command INITiate:CONTinuous OFF.
2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level using the IEEE 488.2
common commands listed below. You can set and query individual status registers using the
commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all
the event registers.

Agilent Signal Generators Programming Guide 17

Programming the Status Register System
Accessing Status Register Information

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register
which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part
of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the
current processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request
Enable Register, the Standard Event Status Enable Register, and device-specific event enable
registers at power on. The query returns the flag setting from the *PSC command.

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable
Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and error/event
queue enable registers. (Refer to Table 4-2.)

172 Agilent Signal Generators Programming Guide

Table 4-2 Effects of :STATus:PRESet

Programming the Status Register System
Accessing Status Register Information

Register® Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:OPERation:BASeband:ENABIle 0
:STATus:OPERation:BASeband:NTRansition 0
:STATus:OPERation:BASeband:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABle 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767
:STATus:QUEStionable:BERT:ENABIle 32767
:STATus:QUEStionable:BERT:NTRansition 32767
:STATus:QUEStionable:BERT:PTRansition 32767

a.Table reflects :STAT:PRES values for an E4438C with options 001, 002, 601, or 602 and UN7. To determine the registers that apply to your

signal generator, refer to Figure 4-1 on page 162 through Figure 4-6 on page 167 and Table 4-4 on page 176 through Table 4-13 on

page 202.

Table 4-3 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0

Agilent Signal Generators Programming Guide

173

Programming the Status Register System
Accessing Status Register Information

Table 4-3 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABle 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767

174 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Byte Group

Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

This is the named

status register for i
Sl et Status Byte Register
However, not all
signal generator 0 | Unused
models use all of
the shown events i Unused
(i.e. some use only
a subset of the ;
E4438C’s status 2 | Error/Event Queue Summary Bit
registers). 3 | Data Questionable Summary Bit
4 | Message Available (MAV)
5 | Standard Event Summary Bit
e #| 6 | Request Service (RQS)
]
E 7 | Operation Status Summary Bit
i
]
!
I 5
1
Y ;
1
(85 !
F o |
L R) !
1
A g@ J;
b ® -
A ®
Y ,
&
T
0[1]12]|3|4]|5]|6]| 7| Service Request Enable Register

ck721a

Agilent Signal Generators Programming Guide 175

Programming the Status Register System
Status Byte Group

Status Byte Register

Table 4-4

Status Byte Register Bits

Bit

Description

0,1

Unused. These bits are always set to 0.

2

Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty. The SCPI
error queue contains at least one error message.

Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable summary bit has
been set. The Data Questionable Event Register can then be read to determine the specific condition that caused this
bit to be set.

Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output queue.
There are no lower status groups that provide input to this bit.

Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit has been
set. The Standard Event Status Register can then be read to determine the specific event that caused this bit to be set.

Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least one
reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits in the Status
Byte are individually ANDed with their corresponding service request enable register, then each individual bit value is
ORed and input to this bit.

Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation Status
Group’s summary bit has been set. The Standard Operation Event Register can then be read to determine the specific
condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a
service request.

*SRE <data> <data> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 4-1 on page 162 through Figure 4-6 on
page 167.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding status group

register summary bit sets to 1, send the command *SRE 160 (128 + 32).
Query: *SRE?

Response: The decimal value of the sum of the bits previously enabled with the *SRE <data> command.

176

Agilent Signal Generators Programming Guide

Status Groups

Programming the Status Register System
Status Groups

The Standard Operation Status Group and the Data Questionable Status Group consist of the
registers listed below. The Standard Event Status Group is similar but does not have negative or
positive transition filters or a condition register.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuously monitors the hardware and firmware status of
the signal generator. There is no latching or buffering for a condition register; it is
updated in real time.

A negative transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 1 to
0.

A positive transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 0 to
1.

An event register latches transition events from the condition register as specified
by the positive and negative transition filters. Once the bits in the event register
are set, they remain set until cleared by either querying the register contents or
sending the *CLS command.

An enable register specifies the bits in the event register that generate the
summary bit. The signal generator logically ANDs corresponding bits in the event
and enable registers and ORs all the resulting bits to produce a summary bit.
Summary bits are, in turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status
summary bits. In each status group, corresponding bits in the condition register are filtered by the
negative and positive transition filters and stored in the event register. The contents of the event
register are logically ANDed with the contents of the enable register and the result is logically ORed
to produce a status summary bit in the Status Byte Register.

Agilent Signal Generators Programming Guide 177

Programming the Status Register System
Status Groups

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status
Byte Register. This group consists of the Standard Event Status Register (an event register) and the
Standard Event Status Enable Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events
(i.e. some use only
a subset of the
E4438C'’s status
registers).

Operation Complete

Request Bus Control

Query Error

Execution Error

Device Dependent Error

Command Error
User Request
Power On

Event Register

7

Do— |
w |-
n
— |
¢

6 5

o

&
A
&
E
E\rﬁgtle Register 7 6 5 4 3 210
vy To Status Byte Register Bit #5 —

178

Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 4-5 Standard Event Status Register Bits
Bit Description
0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were completed
following execution of the *OPC command.
1 Request Control. This bit is always set to 0. (The signal generator does not request control.)
2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have instrument error
numbers from —499 to —400.
3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have instrument error numbers from -399 to —300 and 1 to 32767.
4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have
instrument error numbers from —299 to —200.
5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
instrument error numbers from —199 to —100.
6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true even if
the signal generator is in local lockout mode.
7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.

Query: *ESR?
Response: The decimal sum of the bits set to 1
Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status
Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <data> <data> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1. Send the command *ESE 192 (128 +
64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the *ESE <data> command.

Agilent Signal Generators Programming Guide 179

Programming the Status Register System

Status Groups

Standard Operation Status Group

NOTE

Some of the bits in this status group do not apply to the E4428C, E8257D, E8267D, E8663B,

E8663D, E8663D, and the N5161A/62A/81A/82A/83A, and returns zero when queried. See
Table 4-6 on page 181 for more information.

The Agilent MXG SCPI command :STAT:0PER:SUPP, can suppress the managing of this
status group and save 50 us from the switching time. Refer to the SCPI Command Reference.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte
Register. This group consists of the Standard Operation Condition Register, the Standard Operation
Transition Filters (negative and positive), the Standard Operation Event Register, and the Standard
Operation Event Enable Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events
(i.e. some use only
a subset of the
E4438C’s status
registers).

@

1/Q CALibrating
Settling

Unused

SWEeping
MEASuring

Waiting for TRIGger

Unused

Unused

Unused

DCFM/DCHM Null in Progress
Baseband is busy
SWEep Calculating
BERT SYNChronizing
Unused

Unused

Always Zero (0)
1 Yy v

_ Y VY Y YYYYYYYYYY
e erato [15 14 13 12 1110 987 6 54 3 2 1 0]
_ I EEEREEEIEEEEEER
E%ﬁf?:i?n?mnl5” 1312 1110987 654321 0]
Standard Operation + + + + +++++++++++
Negatve [15 14 13 12 1110987 654 32 1 0
ransition Filter
_ Y VY VY Y YYYYYVYYVVY
Eian Aegrier " [15 14 13 2 1110987 654321 0
&
L &
&
&
&&
A &&(‘;
DYy
\.‘)&
&)))
r mie
gtandard Operation | f
Event egister |15 14 13 12 11 109876543210|

Y

I To Status Byte Register Bit #7

180

Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 4-6 Standard Operation Condition Register Bits

Bit Description

0? I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is always set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

4b Measuring. A 1 in this bit position indicates that a bit error rate test is in progress.

5¢ Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger”
state. When option 300 is enabled, a 1 in this bit position indicates that TCH/PDCH
synchronization is established and waiting for a trigger to start measurements.

6,7,8 Unused. These bits are always set to 0.

gd DCFM/DC¢M Null in Progress. A 1 in this bit position indicates that the signal generator is
currently performing a DCFM/DC®M zero calibration.

10¢ Baseband is Busy. A 1 in this bit position indicates that the baseband generator is
communicating or processing. This is a summary bit. See the “Baseband Operation Status
Group” on page 183 for more information.

11¢ Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing
the necessary pre-sweep calculations.

120 BERT Synchronizing. A 1 in this bit position is set while the BERT is synchronizing to ‘BCH’,
then ‘TCH’ and then to ‘PRBS’.

13, 14 Unused. These bits are always set to 0.
15 Always 0.

a.Inthe N5161A/81A, E4428C, E8257D, and E8663B, this bit is always set to 0.
b.Always set to 0 if Option UN7 not present (E4438C only).

c.Option 300 is only available on the E4438C.

d.This bit is always set to 0.

e.Inthe N5161A/81A and N5162A/82A this bit is always set to 0.

Query:

Response:

Example:

STATus :OPERation:CONDition?
The decimal sum of the bits set to 1

The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Agilent Signal Generators Programming Guide 181

Programming the Status Register System
Status Groups

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus :OPERation:NTRansition <value> (negative transition), or
STATus:0PERation:PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus : OPERation:NTRansition?
STATus:OPERation:PTRansition?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only. Reading data from an
event register clears the content of that register.

Query: STATus :OPERation|[:EVENt] ?

Standard Operation Event Enable Register
The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation
Event Register set the summary bit (bit 7 of the Status Byte Register) to 1.

Command: STATus:0PERation:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Standard Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT:OPER:ENAB 520
(512 + 8).

Query: STATus:OPERation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the STATus:OPERation:ENABle

<value> command.

182 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Baseband Operation Status Group

NOTE This status group does not apply to the E4428C, E8257D, E8663B, and the E8663D, and if
queried, returns zero. See Table 4-7 on page 184 for more information.

This status group does not apply to the N5161A/62A/81A/82A/83A. (If queried, the signal
generator will not respond.)

The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the
Standard Operation Status Group. This group consists of the Baseband Operation Condition Register,
the Baseband Operation Transition Filters (negative and positive), the Baseband Operation Event
Register, and the Baseband Operation Event Enable Register.

This is the named

status register for Baseband 1 Busy
the E4438C. Baseband 1 Communicating
However, not all Unused
signal generator
models use all of Unused
the shown events Unused
(i.e. some use only
a subset of the Unused
E4438C'’s status Unused
registers). Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —
Always Zero (0)
—lil r v Y Yy Y Y VY Y

ury

Baseband Operati

B raton|i5 14 13 12 1
B band Operation + + +
ﬁ?ﬁa,{;" F'Ipte [15 14 13 12 11
ransition Filter

Baseband Operation ‘ ‘ +
Negative 15 14 13 12 1

Transition Filter + + + +

BasebandOperationhs 14 13 12 1

Event Register
; %
&
{ &

la—

[

+
e -
w Sl oo |3 =
(& © (4 © (4 © |4 ©
™ © g O |l 0 | @
=) ~]~] e~
= ol ol ol o
)t O | O [O | o
=t L s =R
) w w0 e w
M 1o | N [1O e 1o

pury

&

3
(&

=) | = [=

Baseband Operation
E

vent
Enable Register

1514 13 12 11 10 8 8 7 6 5 4 3

0

Y To Operation Status Register Bit #10 ck712c

Agilent Signal Generators Programming Guide 183

Programming the Status Register System
Status Groups

Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 4-7 Baseband Operation Condition Register Bits

Bit Description
0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.
1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal generator baseband generator is

handling data IO.

2-14 Unused. This bit position is always set to 0.

15 Always 0.

Query: STATus : OPERation : BASeband: CONDi tion?
Response: The decimal sum of the bits set to 1

Example: The decimal value 2 is returned. The decimal sum = 2 (bit 1).

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus : OPERation:BASeband:NTRansition <value> (negative transition), or
STATus:OPERation:BASeband:PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus : OPERation:BASeband:NTRansition?
STATus:OPERation:BASeband:PTRansition?

184 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only. Reading data from an
event register clears the content of that register.

Query: STATus : OPERation:BASeband| : EVENt] ?

Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register lets you choose which bits in the Baseband Operation
Event Register can set the summary bit (bit 7 of the Status Byte Register).

Command: STATus:OPERation:BASeband:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 0 and bit 1 so that whenever either of those bits are set to 1, the Baseband Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT:OPER:ENAB (2 +
1.

Query: STATus :OPERation:BASeband:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the

STATus:0PERation:BASeband:ENABle <value> command.

Data Questionable Status Group

NOTE Some of the bits in this status group do not apply to the E4428C, E8257D, E8267D, E8663B,
E8663D, and the N5161A/62A/81A/82A/83A, and returns zero when queried. Other bits have
changed state content. See Table 4-8 on page 187 for more information.

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the
Status Byte Register. This group consists of the Data Questionable Condition Register, the Data
Questionable Transition Filters (negative and positive), the Data Questionable Event Register, and the
Data Questionable Event Enable Register.

Agilent Signal Generators Programming Guide 185

Programming the Status Register System
Status Groups

This is the named

status register for Unused
the E4438C. Unused
However, not all

Unused

signal generator
models use all of
the shown events
(i.e. some use only
a subset of the
E4438C’s status
registers).

POWer (summary)

TEMPerature (OVEN COLD)

FREQuency (summary)
Unused

MODulation (summary)
CALibration (summary)
SELFtest

Unused
Unused
BERT (summary)
Unused
Unused ————
Always Zero (0)
_ _lwvvvvw ' Y Y YV Y VY
Data QUEStionable| 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Data QUESHonable I EEEBEEEEEEEEEER
Posiive "~ |15 14 13 12 1110 987 65 4 3 2 1 o|
Data QUEStonable ' EEEEEEETEEEEREY
Negative ' [1514 13 12 1110987 6543 21 0|
Y VY VY VYYVYVVYVVYY
Pata GuEStionable | 15 14 13 12 1110 98 7 6 5 4 3 2 1 0|
23
&
& n
&
& &
B o
&
HOR
by
Data QUEStionable | T
Event Register |15 14 13121110 987 6543 21 0|
Y To Status Byte Register Bit #3 ck722k

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of
the signal generator. Condition registers are read only.

186 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Table 4-8 Data Questionable Condition Register Bits

Bit Description
01,2 Unused. These bits are always set to 0.
3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit position

indicates that one of the following may have happened: The ALC (Automatic Leveling Control) is unable to
maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse power protection circuit has been
tripped. See the “Data Questionable Power Status Group” on page 189 for more information.

4 N5161A/62A/81A/82A/83A: ALC Heater Detector (COLD). A 1 in this bit position indicates that the ALC
detector is cold.

E4428C/38C, E8257D/67D, and E8663B: Temperature (OVEN COLD). A 1 in this bit position indicates that
the internal reference oscillator (reference oven) is cold.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1 in this bit
position indicates that one of the following may have happened: synthesizer PLL unlocked, 10 MHz reference
VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 192.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the QUEStionable:MODulation register. A 1 in this
bit position indicates that one of the following may have happened: modulation source 1 underrange,
modulation source 1 overrange, modulation source 2 underrange, modulation source 2 overrange, or modulation
uncalibrated. See the “Data Questionable Modulation Status Group” on page 195 for more information.

gab Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A 1 in this
bit position indicates that one of the following may have happened: an error has occurred in the DCFM/DC®M
zero calibration, or an error has occurred in the I/Q calibration. See the “Data Questionable Calibration Status
Group” on page 198 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. Reset this bit by cycling
the signal generator’s line power. *CLS will not clear this bit.

10, 11 Unused. These bits are always set to 0.

12¢ BERT (summary). This is a summary bit taken from the QUEStionable:BERT register. A 1 in this bit position
indicates that one of the following occurred: no BCH/TCH synchronization, no data change, no clock input,
PRBS not synchronized, demod/DSP unlocked, or demod unleveled. See the “Data Questionable BERT Status
Group” on page 201 for more information.

13, 14 Unused. These bits are always set to 0.

15 Always 0.

a.In the N5162A/82A, this bit applies only to the 1/Q calibration. In the N5161A/81A/83A, this bit is unused and always set to 0.
b.In the E8257D, E8663B, and the E8663D, this bit applies only to the DCFM/DC®M calibration.
c.Inthe N5161A/81A, N5162A/82A, N5183A, E4428C, E8257D, E8267D, E8663B, and the E8663D, this bit is always set to 0.

Query: STATuUS : QUEStionable:CONDition?
Response: The decimal sum of the bits set to 1
Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Agilent Signal Generators Programming Guide 187

Programming the Status Register System
Status Groups

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus : QUEStionable:NTRansition <value> (negative transition), or
STATus:QUEStionable: PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition?

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus : QUEStionable[:EVENt] ?

Data Questionable Event Enable Register
The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus: QUEStionable:ENABle <value> where <value> is the sum of the decimal values of the bits
you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable Status
summary bit of the Status Byte Register is set to 1. Send the command STAT:QUES:ENAB 520 (512 +
8).

Query: STATuUs : QUEStionable:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the STATus:QUEStionable:ENABle

<value> command.

188 Agilent Signal Generators Programming Guide

Data Questionable Power Status Group

Programming the Status Register System

Status Groups

NOTE

Some of the bits in this status group do not apply to the E4428C, E8257D, E8267D, E8663B,

E8663D, and the N5161A/62A/81A/82A/83A, and returns zero when queried. See Table 4-9
on page 190 for more information.

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in
the Data Questionable Condition Register. This group consists of the Data Questionable Power
Condition Register, the Data Questionable Power Transition Filters (negative and positive), the Data
Questionable Power Event Register, and the Data Questionable Power Event Enable Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events
(i.e. some use only
a subset of the
E4438C’s status
registers).

Unleveled

Reverse Power Protection Tripped

1Q Mod Overdrive

Lowband Detector Fault

Unused
Unused

Unused

Unused

Unused

Unused

Unused

Unused
Unused
Unused
Unused

Always Zero (0) —l
Data QUEStionable Y vy Vvey

YYYVY VY ryYyy
Power o |[151413 12 M109876543210]
ondition Register
Data QUEStionable + + + + +++++++++++
Power [1514 13 12 110987654321 0]
Transition Filter + + + + + +++++++++++
D QUESH; bl
E?\Z'ﬁie s 14 13 12 110 9876543210]
TragrwsitionFi!ter + + + + + + + + + + + + + + +
Pae oM [15 14 13 12 1110 98 7 654 3 2 1 0|
Event Register

& £ Y
&
&
& £ v
& FODY 4
mOP
&
A&

Egt\ileQrUESt{onable | f
Event 1514 13 12 11098 7 654 3 2 1 0

Enable Register

\

I To Data Questionable Status Register Bit #3

ck704c¢

Agilent Signal Generators Programming Guide

189

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 4-9 Data Questionable Power Condition Register Bits

Bit Description

02 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection (RPP) circuit
has been tripped. There is no output in this state. Any conditions that may have caused the problem should be
corrected. Reset the RPP circuit by sending the remote SCPI command: OUTput:PROTection:CLEar. Resetting the RPP
circuit bit, resets this bit to 0.

1 Unleveled. A 1 in this bit position indicates that the output leveling loop is unable to set the output power.
ob IQ Mod Overdrive. A 1 in this bit position indicates that the signal level into the IQ modulator is too high.
3¢ Lowband Detector Fault. A 1 in this bit position indicates that the lowband detector heater circuit has failed.

4-14 Unused. These bits are always set to 0.

15 Always 0.

a.In the N5161A/62A/81A/82A with Option 506, the N5183A, and the E4428C/38C with Option 506, this bit is set to 0.
b.In the N5161A/62A/81A/82A/83A, E4428C, E8257D/67D, and E8663B, this bit is set to 0.

Query: STATus : QUEStionable: POWer : CONDition?

Response: The decimal sum of the bits set to 1.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus : QUEStionable: POWer :NTRansition <value> (negative transition), or
STATus:QUEStionable: POWer: PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus : QUEStionable: POWer :NTRansition? STATus:QUEStionable:POWer:PTRansition?

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus : QUEStionable:POWer [: EVENt] ?

190 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Command: STATus : QUEStionable: POWer :ENABle <value> where <value> is the sum of the decimal values of
the bits you want to enable

Example: Enable bit 3 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable Power
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES: POW: ENAB 520 (8 + 4).

Query: STATuUS : QUEStionable: POWer : ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:POWer : ENABle <value> command.

Agilent Signal Generators Programming Guide 191

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

NOTE Some bits in this status group do not apply to the N5161A/62A/81A/82A/83A, E4428C,
E8257D, E8663B, and the E8663D and returns zero when queried. See Table 4-10 on
page 193 for more information.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5
in the Data Questionable Condition Register. This group consists of the Data Questionable Frequency
Condition Register, the Data Questionable Frequency Transition Filters (negative and positive), the
Data Questionable Frequency Event Register, and the Data Questionable Frequency Event Enable
Register.

This is the named

status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events
(i.e. some use only
a subset of the

Synthesizer Unlocked

10 MHz Reference Unlocked

1 GHz Reference Unlocked

Baseband 1 Unlocked

Unused

Sampler Loop Unlocked

YO Loop Unlocked

E4438C'’s status

! Unused
registers).

Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0) —l
Data QUEStionable Y YVY VY

FREQuency [45 14 13 12 11 10

Condition Register

Data QUEStionable + * + + + +

E
EAECuency [15 14 13 12 11 10

Transition Filter
Data QUESticnable + + + + + +
FREGuency 15 14 13 12 11 10

Megative

Transition Filter * + + + + "

paaEstionable [45 14 13 12 11 10

Event Register

+
Ll
L
te © [© - O 4 O (-
) @ g D g D] O |
% ~ e~]] e
™ ol o o e o [«
et 0 | O [0] o
() PN P N P S N
o ot (R e T
w—b@ﬂimq—mi—mq—m_

)

Data QUEStionable
FREQuency

Event 15 14 13 12 11 10 9 8 7 6 5 4
| Enable Register

To Data Questionable Status Register Bit #5 ck708¢

(4]

192 Agilent Signal Generators Programming Guide

Programming the Status Register System

Data Questionable Frequency Condition Register

Status Groups

The Data Questionable Frequency Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 4-10 Data Questionable Frequency Condition Register Bits

Bit Description
0 Synth. Unlocked. A 1 in this bit position indicates that the synthesizer is unlocked.
1 10 MHz Ref Unlocked. A 1 in this bit position indicates that the 10 MHz reference signal is unlocked.
22 1 GHz Ref Unlocked. A 1 in this bit position indicates that the 1 GHz reference signal is unlocked.
gb Baseband 1 Unlocked. A 1 in this bit position indicates that the baseband generator is unlocked.
4 Unused. This bit is always set to 0.
5P Sampler Loop Unlocked. A 1 in this bit position indicates that the sampler loop is unlocked.
6 YO Loop Unlocked. A 1 in this bit position indicates that the YO loop is unlocked.
7-14 Unused. These bits are always set to 0.
15 Always 0.

a.Inthe N5161A/81A and N5162A/82A these bits are always set to 0.
b.In the N5161A/62A/81A/82A/83A, E4428C, E8257D, E8663B, and the E8663D, this bit is always set to 0.

Query: STATuS : QUEStionable: FREQuency : CONDition?

Response: The decimal sum of the bits set to 1.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUEStionable:FREQuency:NTRansition <value> (negative transition) or

STATus:QUEStionable:FREQuency:PTRansition <value> (positive transition) where <value> is the

sum of the decimal values of the bits you want to enable.

Queries: STATuUS : QUEStionable: FREQuency :NTRansition?
STATus: QUEStionable:FREQuency: PTRansition?

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event
registers are destructive read-only. Reading data from an event register clears the content of that
register.

Query: STATuUS : QUEStionable:FREQuency [: EVENt] ?

Agilent Signal Generators Programming Guide

193

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit
(bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus : QUEStionable: FREQuency:ENABle <value>, where <value> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 4 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:FREQ:ENAB 520 (16 + 8).

Query: STATuUs : QUEStionable:FREQuency: ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:FREQuency:ENABle <value> command.

194 Agilent Signal Generators Programming Guide

Data Questionable Modulation Status Group

Programming the Status Register System
Status Groups

NOTE

when queried. See Table 4-11 on page 196 for more information.

This status group does not apply to the N5161A/81A and the N5162A/82A, and returns zero

The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7
in the Data Questionable Condition Register. This group consists of the Data Questionable Modulation
Condition Register, the Data Questionable Modulation Transition Filters (negative and positive), the

Data Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable

Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events
(i.e. some use only
a subset of the
E4438C'’s status
registers).

Modulation 1 Undermod

Modulation 1 Overmod
Modulation 2 Undermod

Modulation 2 Overmod
Modulation Uncalibrated
Unused

Unused
Unused

Unused
Unused

Unused
Unused

Unused
Unused
Unused

Always Zero (0) —l
Data QUEStionable A

A

/

-
=l
-l
-

-
-

-l

-

-

-l
-+
-

-

MCDulation
Condition Register

15 14 13

12

_
(=]

Data QUEStionable

y v

fet—

MODulaticn
Positive

[15 14 13

12

—_
[=]

Transition Filter
Data QUEStionable

Y VY

-

MODulation
Negative

|15 14

13

12

-
o

Transition Filter

vy

—

-2

Data QUEStionable
MODulation

[15 14 13

12

O e © e O O
® g o g o o] o
~ [~ e N e~
D [O O
O |~ O e O O
Bl SRS o S o Y
W e W e W e W
LI VR IOV L
—= |l = e =]
O OO O

Event Register

&
&
A

&

& &
+ 251
&); Y
S
) Y
r wOP
Data QUEStionable | T
MODulation
Event 15141312111098?6543210'
Enable Register
I To Data Questionable Status Register Bit #7 ck708c

Y

Agilent Signal Generators Programming Guide

195

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 4-11 Data Questionable Modulation Condition Register Bits

Bit Description
0 Modulation 1 Undermod. A 1 in this bit position indicates that the External 1 input, ac coupling on, is less than
0.97 volts.
1 Modulation 1 Overmod. A 1 in this bit position indicates that the External 1 input, ac coupling on, is more than
1.03 volts.
2 Modulation 2 Undermod. A 1 in this bit position indicates that the External 2 input, ac coupling on, is less than
0.97 volts.
3 Modulation 2 Overmod. A 1 in this bit position indicates that the External 2 input, ac coupling on, is more than
1.03 volts.
4 Modulation Uncalibrated. A 1 in this bit position indicates that modulation is uncalibrated.
5-14 Unused. This bit is always set to 0.
15 Always 0.

Query: STATus : QUEStionable:MODulation:CONDition?

Response: The decimal sum of the bits set to 1

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUEStionable:MODulation:NTRansition <value> (negative transition), or

STATusS:QUEStionable:MODulation: PTRansition <value> (positive transition), where <value> is
the sum of the decimal values of the bits you want to enable.

Queries: STATuS : QUEStionable:MODulation:NTRansition?
STATus: QUEStionable:MODulation: PTRansition?

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus : QUEStionable:MODulation[: EVENt] ?

196 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable
Condition Register) to 1.

Command: STATus : QUEStionable:MODulation:ENABle <value> where <value> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 4 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:MOD:ENAB 520 (16 + 8).

Query: STATuUS : QUEStionable:MODulation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:MODulation:ENABle <value> command.

Agilent Signal Generators Programming Guide 197

Programming the Status Register System

Status Groups

Data Questionable Calibration Status Group

NOTE

Some bits in this status group do not apply to the N5161A/62A/81A/82A/83A, E4428C,

E8257D, E8663B, and the E8663D and return zero when queried. See Table 4-12 on page 199

for more information.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8
in the Data Questionable Condition Register. This group consists of the Data Questionable Calibration
Condition Register, the Data Questionable Calibration Transition Filters (negative and positive), the
Data Questionable Calibration Event Register, and the Data Questionable Calibration Event Enable

Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events
(i.e. some use only
a subset of the
E4438C’s status
registers).

y

I/Q Calibration Failure

DCFM/DCOM Zero Failure

Unused
Unused

Unused

Unused
Unused

Unused

Unused

Unused
Unused

Unused

Unused
Unused
Unused

Always Zero (0)
Data QUE Stionable l I V.V

<
d
<
<
d
<

<%

<
d

CALibration |15 14 13 12

Condition Register
v VY

[2 [

Data QUE Stionable
[15 14 13 12

_\
=2

N N
O[O«
N

o

CALibration
Transition Filter + + + +
Data QUE Stionable

Positive
CALibration 15 14 13 12

-
jury
=
o
-
o

Negative + + + +

Data QUE Stionable
CALibration

Transition Filter
[15 14 13 12

[
© 4 © (@ © (4 ©
© (g ®© g © | ©
~N - N N e N -
[S NON . mRON o el
O [O [O [O
NG VI Iy S N P TN
W [W W - W
N N N [N [

e

f—

N
o

1

=
-
o

Event Register

&
-t

)
)

o)

Data QUE Stionable

CALibration
Event 15 14 13 12

N

&
f
110987 6543210]

Enable Register

I To Data Questionable Status Register Bit #8 ck720a

198

Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of
the signal generator. Condition registers are read only.

Table 4-12 Data Questionable Calibration Condition Register Bits

Bit Description

02 I/Q Calibration Failure. A 1 in this bit position indicates that the I/Q modulation calibration experienced a failure.

1P DCFM/DCOM Zero Failure. A 1 in this bit position indicates that the DCFM/DC®M zero calibration routine has
failed. This is a critical error. The output of the source has no validity until the condition of this bit is 0.

2-14 Unused. These bits are always set to 0.

15 Always 0.

a.Inthe N5161A/81A, E4428C, E8257D, E8663B, and the E8663D, this bit is set to 0.
b.In the N5161A/81A and N5162A/82A, this bit is set to 0.

Query: STATus : QUEStionable:CALibration:CONDition?

Response: The decimal sum of the bits set to 1.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus : QUEStionable:CALibration:NTRansition <value> (negative transition), or

STATus:QUEStionable:CALibration:PTRansition <value> (positive transition), where <value> is
the sum of the decimal values of the bits you want to enable.

Queries: STATuS : QUEStionable:CALibration:NTRansition?
STATus: QUEStionable:CALibration:PTRansition?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus : QUEStionable:CALibration|[:EVENt] ?

Agilent Signal Generators Programming Guide 199

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable
Condition register) to 1.

Command: STATus: QUEStionable:CALibration:ENABle <value>, where <value> is the sum of the decimal
values of the bits you want to enable.

Example: Enable bit 1 and bit 0 so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:CAL:ENAB 520 (2 + 1).

Query: STATuUS : QUEStionable:CALibration:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:CALibration:ENABle <value> command.

200 Agilent Signal Generators Programming Guide

Data Questionable BERT Status Group

Programming the Status Register System

Status Groups

NOTE

This status group applies only to the E4438C with Option UN7. Refer to Table 4-13 on
page 202 for more information.

The Data Questionable BERT Status Group is used to determine the specific event that set bit 12 in
the Data Questionable Condition Register. The Data Questionable Status group consists of the Data

Questionable BERT Condition Register, the Data Questionable BERT Transition Filters (negative and
positive), the Data Questionable BERT Event Register, and the Data Questionable BERT Event Enable

Register.

@

A

Enable Register
I To Data Questionable Status Register Bit #12

No Clock

Mo Data Change
PRBS Sync Loss

Unused

Unused
Unused

Unused

Unused
Unused

Unused

Unused

Downconv/Demod
Unlocked

Demod DSP

Ampl Out of Range ™|

Sync. to BCH/TCH/FPDCH
Waiting ‘ForTCH-’PDCH

Always Zero (O)

-

-

-
-+
-
-

-

-
=

-

Data GUESuonabI
BE

y
e on Register |15 14 12 1110987 6543210]
Data QUEStionable v ¥ * Y VY YVYYVYYYVY
posiive [15 14 18 12 1110 987 654 3 2 1 0|
ransition Filter
DataQUEStionabie ¥ ¥ ¥ ¥ ¥ Y Y VY YV VYV VY
e e [15 14 13 12 1110 987 654 3 2 1 0
;ra”sgiﬁg:."e’bl I EEEEEEEEEEEEEER’
BeRT 0715 14 13 12 11 10 9 8 7 65 4 3 2 1 0|
Event Register
2 &
&
&
&
&
¥ 5 4
IF- |
&“%ﬂl
@ 2 Y
r mEles

Data QUEStionable | f
BERT
Event 1514 13 12 1110987 6543 21 0]

ck710c

Agilent Signal Generators Programming Guide

201

Programming the Status Register System
Status Groups

Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 4-13 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1 in this bit position indicates no clock input for more than 3 seconds.
1 No Data Change. A 1 in this bit position indicates no data change occurred during the last 200 clock signals.
2 PRBS Sync Loss. A 1 is set while PRBS synchronization is not established. *RST sets the bit to zero.

3-10 Unused. These bits are always set to 0.

11 Down conv. / Demod Unlocked. A 1 in this bit position indicates that either the demodulator or the down converter
is out of lock.

12 Demod DSP Ampl out of range. A 1 in this bit position indicates the demodulator amplitude is out of range. The
*RST command sets this bit to zero (0).

13 Sync. to BCH/TCH/PDCH. If the synchronization source is BCH, a 1 in this bit position indicates BCH
synchronization is not established; it does not indicate the TCH/PDCH synchronization status. If the sync source is
TCH or PDCH, a 1 in this bit position indicates that TCH or PDCH synchronization is not established. *RST sets this
bit to zero.

14 Waiting for TCH/PDCH. A 1 in this bit position indicates that a TCH or PDCH midamble has not been received. This
bit is set when bit 13 is set. The bit is also set when the TCH or PDCH synchronization was once locked and then
lost (in this case the front panel displays “WAITING FOR TCH (or PDCH)”). *RST sets this bit to zero.

15 Always 0.
Query: STATus : QUEStionable:BERT:CONDition?
Response: The decimal sum of the bits set to 1.

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus : QUEStionable:BERT:NTRansition <value> (negative transition), or
STATus:QUEStionable:BERT:PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus : QUEStionable:BERT:NTRansition? STATus:QUEStionable:BERT:PTRansition?

202 Agilent Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus : QUEStionable:BERT[:EVENt] ?

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data
Questionable BERT Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Command: STATus:QUEStionable:BERT:ENABle <value> where <value> is the sum of the decimal values of the
bits you want to enable

Example: Enable bit 11 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable BERT
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:BERT:ENAB 520 (2048 + 4).

Query: STATuUs : QUEStionable:BERT:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:BERT:ENABle <value> command.

Agilent Signal Generators Programming Guide 203

Programming the Status Register System
Status Groups

204 Agilent Signal Generators Programming Guide

B Creating and Downloading Waveform Files

NOTE The ability to play externally created waveform data in the signal generator is available only
in the N5162A/82A with Option 651, 652 or 654, E4438C ESG Vector Signal Generators with
Option 001, 002, 601, or 602, and E8267D PSG Vector Signal Generators with Option 601 or
602.

On the Agilent MXG, the internal baseband generator speed upgrade Options 670, 671, and
672 are option upgrades that require Option 651 and 652 to have been loaded at the factory
(refer to the Data Sheet for more information). Any references to 651, 652, or 654 are
inclusive of 671, 672, and 674.

For the N56161A/62A the softkey menus and features mentioned in this chapter are only
available through the Web-Enabled MXG or through SCPI commands. Refer to “Using the Web
Browser” on page 11 and to the SCPI Command Reference.

This chapter explains how to create Arb-based waveform data and download it into the signal
generator.

¢ “Overview of Downloading and Extracting Waveform Files” on page 206
¢ “Understanding Waveform Data” on page 207

¢ “Waveform Structure” on page 215

¢ “Waveform Phase Continuity” on page 217

¢ “Waveform Memory” on page 220

¢ “Commands for Downloading and Extracting Waveform Data” on page 226
¢ “Creating Waveform Data” on page 235

¢ “Downloading Waveform Data” on page 241

¢ “Loading, Playing, and Verifying a Downloaded Waveform” on page 247
e “Using the Download Utilities” on page 250

* “Downloading E443xB Signal Generator Files” on page 251

¢ “Programming Examples” on page 254

¢ “Troubleshooting Waveform Files” on page 304

Agilent Signal Generators Programming Guide 205

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Overview of Downloading and Extracting Waveform Files

The signal generator lets you download and extract waveform files. You can create these files either
external to the signal generator or by using one of the internal modulation formats (ESG/PSG only).
The signal generator also accepts waveforms files created for the earlier E443xB ESG signal generator
models. For file extractions, the signal generator encrypts the waveform file information. The
exception to encrypted file extraction is user-created I/Q data. The signal generator lets you extract
this type of file unencrypted. After extracting a waveform file, you can download it into another
Agilent signal generator that has the same option or software license required to play it. Waveform
files consist of three items:

1. I/Q data
2. Marker data
3. File header

NOTE This order of download is required, as the I/Q data downloads results in the overwriting of
all of these three parts of the file.

The signal generator automatically creates the marker file and the file header if the two items are not
part of the download. In this situation, the signal generator sets the file header information to
unspecified (no settings saved) and sets all markers to zero (off).

There are three ways to download waveform files: FTP, programmatically or using one of three
available free download utilities created by Agilent Technologies:

e NT7622A Signal Studio Toolkit 2
hitp.//www.agilent.com/find/signalstudio

e Agilent Waveform Download Assistant for use only with MATLAB
hitp://www.agilent.com/find/downloadassistant

¢ Intuilink for Agilent PSG/ESG Signal Generators
hitp.//www.agilent.com/find/intuilink

NOTE Agilent Intuilink is not available for the Agilent MXG.

206 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

Waveform Data Requirements

To be successful in downloading files, you must first create the data in the required format.
¢ Signed 2’s complement

* 2-byte integer values

¢ Input data range of —32768 to 32767

¢ Minimum of 60 samples per waveform (60 I and 60 Q data points)

¢ Interleaved I and Q data

* Big endian byte order

¢ The same name for the marker, header, and I/Q file

This is only a requirement if you create and download a marker file and or file header, otherwise
the signal generator automatically creates the marker file and or file header using the I/Q data
file name.

NOTE FTP can be used without programming commands to transfer files from the PC to the signal
generator or from the signal generator to the PC.

For more information, see “Waveform Structure” on page 215.

For more information on waveform data, see “Understanding Waveform Data” on page 207.

Understanding Waveform Data

The signal generator accepts binary data formatted into a binary I/Q file. This section explains the
necessary components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes

Binary data uses the base-two number system. The location of each bit within the data represents a
value that uses base two raised to a power (2““1). The exponent is n — 1 because the first position is

zero. The first bit position, zero, is located at the far right. To find the decimal value of the binary
data, sum the value of each location:

1101 = (1 x2%) + (1 x2%) + (0 x 2) + (1 x 29)
=1 x8)+ (1L x4)+Ox2)+(1lx1D
13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right
to left.

The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 x27) + (1 x2%) + (1 x 2%) + (0 x 2% +(1 x23) + (1 x2%) + (1 x 21) + (0 x 29
= 110 (decimal value)

Agilent Signal Generators Programming Guide 207

Creating and Downloading Waveform Files
Understanding Waveform Data

The maximum value for a single unsigned byte is 255 (11111111 or 28—1), but you can use multiple
bytes to represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings lengthen as the value
increases, it is common to show binary values using hexadecimal (hex) values (base 16), which are
shorter. The value 65535 in hex is FFFF. Hexadecimal consists of the values O, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a
single hex value.

1 = 0001 2 =0010 3 = 0011 4 = 0100 5 = 0101
6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010
B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

For I and Q data, the signal generator uses two bytes to represent an integer value.

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the
highest value and which has the lowest value by its location in the bit string. The following is an
example of this order.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.
Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of the
bit string.
Bit Position 15 14 13 12 1110 9 8 7 65 4 321 0
Data 1 01 101 11 11101001\
MSB LSB

Because we are using 2 bytes of data, the LSB appears in the second byte.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must identify their order. This
is similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little

endian and big endian. These terms are used by designers of computer processors.

Intel is a registered trademark of Intel Corporation.

208 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

Little Endian Order

The lowest order byte that contains bits 0—7 comes first.

Bit Positon 7 6 5 4 3 2 1 0 15 14 1312 1110 9 8
Data 1 1101001 101101 11 Hex values = E9 B7
LSB MSB

Big Endian Order

The highest order byte that contains bits 8—15 comes first.

Bit Position 15 14 13 12 11 10 9 8 7 6 54 32 1 0
Data 101101 11 11101001 Hex values = B7 E9

‘ N

MSB LSB

Notice in the previous figure that the LSB and MSB positioning changes with the byte order. In little
endian order, the LSB and MSB are next to each other in the bit sequence.

NOTE For I/Q data downloads, the signal generator requires big endian order. For each I/Q data
point, the signal generator uses four bytes (two integer values), two bytes for the I point and
two bytes for the Q point.

The byte order, little endian or big endian, depends on the type of processor used with your
development platform. Intel processors and its clones use little endian. (Intel© is a U.S. registered

trademark of Intel Corporation.) Sun™ and Motorola processors use big endian. The Apple PowerPC
processor, while big endian oriented, also supports the little endian order. Always refer to the
processor’s manufacturer to determine the order they use for bytes and if they support both, to
understand how to ensure that you are using the correct byte order.

Development platforms include any product that creates and saves waveform data to a file. This
includes Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary data in memory.
If you output data from a little endian system to a text file (ASCII text), the values are the same as
viewed from a big endian system. The order only becomes important when you use the data in binary
format, as is done when downloading data to the signal generator.

Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

Agilent Signal Generators Programming Guide 209

Creating and Downloading Waveform Files
Understanding Waveform Data

Byte Swapping

While the processor for the development platform determines the byte order, the recipient of the data
may require the bytes in the reverse order. In this situation, you must reverse the byte order before
downloading the data. This is commonly referred to as byte swapping. You can swap bytes either
programmatically or by using either the Agilent Technologies Intuilink for ESG/PSG/E8257N Signal
Generator software, or the Signal Studio Toolkit 2 software. For the signal generator, byte swapping
is the method to change the byte order of little endian to big endian. For more information on little
endian and big endian order, see “Little Endian and Big Endian (Byte Order)” on page 208.

The following figure shows the concept of byte swapping for the signal generator. Remember that we
can represent data in hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two
example hex values.

0 1 2 3
Little Endian | E9| B7] 53| 2A| 16-bit integer values (2 bytes = 1 integer value)

| data = bytes O and 1
Q data = bytes 2 and 3

Big Endian [B7 [E9 | 2A| 53]

Hr—/ H—/
| Q

To correctly swap bytes, you must group the data to maintain the I and Q values. One common
method is to break the two-byte integer into one-byte character values (0-255). Character values use
8 bits (1 byte) to identify a character. Remember that the maximum unsigned 8-bit value is 255 (28
— 1). Changing the data into character codes groups the data into bytes. The next step is then to
swap the bytes to align with big endian order.

NOTE The signal generator always assumes that downloaded data is in big endian order, so there is
no data order check. Downloading data in little endian order will produce an undesired
output signal.

DAC Input Values

The signal generator uses a 16-bit DAC (digital-to—analog convertor) to process each of the 2-byte
integer values for the I and Q data points. The DAC determines the range of input values required
from the I/Q data. Remember that with 16 bits we have a range of 0-65535, but the signal generator
divides this range between positive and negative values:

e 32767 = positive full scale output
e 0 =0 volts
e 32768 = negative full scale output

Because the DAC’s range uses both positive and negative values, the signal generator requires signed
input values. The following list illustrates the DAC’s input value range.

210 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

Voltage DAC Range Input Range Binary Data Hex Data
Vmax 65535 32767 01111111 11111111 7FFF

: 32768 1 00000000 00000001 0001
0 Volts 32767 0 00000000 00000000 0000

' 32766 -1 11111111 11111112 FFFF
Vmin 0 —32768 10000000 00000000 8000

Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The
MSB determines the sign of the value. This is covered in “2’s Complement Data Format” on page 213.

Using E443xB ESG DAC Input Values

In this section, the words signal generator with or without a model number refer to an N5162A/82A
Agilent MXG, E4438C ESG, E8267D PSG. The signal generator input values differ from those of the
earlier E443xB ESG models. For the E443xB models, the input values are all positive (unsigned) and
the data is contained within 14 bits plus 2 bits for markers. This means that the E443xB DAC has a
smaller range:

¢ 0 = negative full scale output
e 8192 = 0 volts
e 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned data created for the
E443xB and converts it to the proper DAC values. To download an E443xB files to the signal
generator, use the same command syntax as for the E443xB models. For more information on
downloading E443xB files, see “Downloading E443xB Signal Generator Files” on page 251.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the I/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which
may exceed the limits of the signal process path’s internal number representation, causing arithmatic
overload. This will be reported as either a data path overload error (N5162A/82A) or a DAC
over-range error condition (E4438C/E8267D). Because of the interpolation, the error condition can
occur even when all the I and Q values are within the DAC input range. To avoid the DAC over-range
problem, you must scale (reduce) the I and Q input values, so that any overshoot remains within the
DAC range.

Agilent Signal Generators Programming Guide 21

Creating and Downloading Waveform Files
Understanding Waveform Data

NOTE Whenever you interchange files between signal generator models, ensure that all scaling is
adequate for that signal generator’s waveform.

Interpolation
d Interpolation
' . .
' <4+—>,

32767 r\ T

Max inputvalue _ __ _f__

DAC over—range No over—range

-32768

There is no single scaling value that is optimal for all waveforms. To achieve the maximum dynamic
range, select the largest scaling value that does not result in a DAC over-range error. There are two
ways to scale the I/Q data:

* Reduce the input values for the DAC.
¢ Use the SCPI command :RADio:ARB:RSCaling <val> to set the waveform amplitude as a
percentage of full scale.

NOTE The signal generator factory preset for scaling is 70%. If you reduce the DAC input values,
ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an appropriate
setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust
your sample rate to accommodate the filter response.

212 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

NOTE FIR filter capability is only available on the N5162A/82A with Option 651, 652, or 654, the
E4438C with Option 001, 002, 601, or 602, and on the E8267D with Option 601 or 602.

2's Complement Data Format

The signal generator requires signed values for the input data. For binary data, two’s complement is
a way to represent positive and negative values. The most significant bit (MSB) determines the sign.

* 0 equals a positive value (01011011 = 91 decimal)
¢ 1 equals a negative value (10100101 = -91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one
difference with binary values is that you have a carry, which is ignored. The following shows how to
calculate the two’s complement using 16-bits. The process is the same for both positive and negative
values.

Convert the decimal value to binary.
23710 = 01011100 10011110

Notice that 15 bits (0-14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001
Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of the resultant is one, indicating a negative value (-23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

01011100 10011110
+ 10100011 01100010
00000000 00000000

| and Q Interleaving

When you create the waveform data, the I and Q data points typically reside in separate arrays or
files. The signal generator requires a single I/Q file for waveform data playback. The process of
interleaving creates a single array with alternating I and Q data points, with the Q data following the
I data. This array is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one I data point and one Q data
point, represents one I/Q waveform point.

Agilent Signal Generators Programming Guide 213

Creating and Downloading Waveform Files
Understanding Waveform Data

NOTE The signal generator can accept separate I and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “Downloading E443xB Signal

Generator Files” on page 251.

The following figure illustrates interleaving I and Q data. Remember that it takes two bytes (16 bits)
to represent one I or Q data point.

MSB LSB MSB LsB
| Data Binary 11001010 01110110 01110111 00111110
Hex CA 76 1 3E

QData Binary 11101001 11001010 01011110 01110010
Hex E9 CA 5E 72

Interleaved Binary Data

Waveform data point Waveform data point
A /\
s N I
11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010
AN ANE A\ iy
N ~ N ~
| Data Q Data | Data Q Data

Interleaved Hex Data

Waveform Waveform
data point data point
AL AL
e N7 N

CA 76 E9 CA 77 3E 5E 72

|Data QData |Data Q Data

214 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Structure

Waveform Structure

To play back waveforms, the signal generator uses data from the following three files:

¢ File header
* Marker file
e 1/Q file

All three files have the same name, the name of the I/Q data file, but the signal generator stores
each file in its respective directory (headers, markers, and waveform). For information on file
extractions, see “Commands for Downloading and Extracting Waveform Data” on page 226.

File Header

The file header contains settings for the ARB modulation format such as sample rate, marker polarity,
I/Q modulation attenuator setting and so forth. When you create and download I/Q data, the signal
generator automatically creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator default settings, or if a
waveform was previously played, the settings from that waveform. Ensure that you configure and save
the file header settings for each waveform.

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is a header parameter that can be inadvertently set active for a marker by a previous
waveform. To check for and turn RF blanking off manually, refer to “Configuring the
Pulse/RF Blank (Agilent MXG)” on page 305 and “Configuring the Pulse/RF Blank
(ESG/PSG)” on page 305.

Marker File

The marker file uses one byte per I/Q waveform point to set the state of the four markers either on
(1) or off (0) for each I/Q point. When a marker is active (on), it provides an output trigger signal to
the rear panel EVENT 1 connector (Marker 1 only) or and the AUX IO, event 2 connector pin
(Markers 1, 2, 3, or 4), that corresponds to the active marker number. (For more information on
active markers and their output trigger signal location, refer to your signal generator’s User’s Guide.)
Because markers are set at each waveform point, the marker file contains the same number of bytes
as there are waveform points. For example, for 200 waveform points, the marker file contains 200
bytes.

Although a marker point is one byte, the signal generator uses only bits 0-3 to configure the
markers; bits 4-7 are reserved and set to zero. The following example shows a marker byte.

Agilent Signal Generators Programming Guide 215

Creating and Downloading Waveform Files
Waveform Structure

Marker Byte

Example of Setting a Marker Byte

Sets markers 1 and 3 on for a waveform point

4 3 2 1 Marker Number Position
0000 1 0 1 1

Reserved

Binary 0000 0101
Hex 05

The following example shows a marker binary file (all values in hex) for a waveform with 200 points.
Notice the first marker point, 0f, shows all four markers on for only the first waveform point.

oooo00o00:
oooooo0io:
oooo0020:
oooo0o030:
oo000040:
00000050:
00000060:
oooooo070:
00000050:
oo000020:
000000a0:
000000hL0:
000000c0:

ot
o1
o1
o1
05
05
05
04
04
04
i}
i}
i}

oL
oL
oL
as
05
03
03
04
04
04
oo
oo
oo

a1
a1
a1
as
05
05
05
04
04
04
i}
i}
i}

0l
0l
0l
ns
03
03
03
04
04
04
a0
a0
a0

01
01
01
ns
05
05
04
04
04
04
oo
oo
oo

o1
o1
o1
o5
05
05
04
04
04
04
i}
i}
i}

oL
oL
oL
as
05
03
04
04
04
oo
oo
oo
oo

a1
a1
a1
as
05
05
04
04
04
i}
i}
i}

0l
0l
0l
ns
03
03
04
04
04
a0
a0
a0

oo

If you create your own marker file, its name must be the same as the waveform file. If you download
1I/Q data without a marker file, the signal generator automatically creates a marker file with all
points set to zero. For more information on markers, see the User’s Guide.

01
01
01
ns
05
05
04
04
04
oo
oo
oo

o1
o1
o1
o5
05
05
04
04
04
i}
i}
i}

oL
oL
oL
as
05
03
04
04
04
oo
oo
oo

a1
a1
a1
as
05
05
04
04
04
i}
i}
i}

0l
0l
0l
ns
03
03
04
04
04
a0
a0
a0

01
01
01
ns
05
05
04
04
04
oo
oo
oo

oL
oL
oL
as
05
03
04
04
04
oo
oo
oo

0£ = All markers on

01 = Marker 1 on

05 = Markers 1 and 3 on
04 = Marker 3 on

00 = No active markers

NOTE Downloading marker data using a file name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However,
downloading just the I/Q data with the same file name as an existing I/Q file also overwrites
the existing marker file setting all bits to zero.

216 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity

1/Q File

The I/Q file contains the interleaved I and Q data points (signed 16-bit integers for each I and Q
data point). Each I/Q point equals one waveform point. The signal generator stores the I/Q data in
the waveform directory.

NOTE If you download I/Q data using a file name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform

A waveform consists of samples. When you select a waveform for playback, the signal generator loads
settings from the file header. When the ARB is on, it creates the waveform samples from the data in
the marker and I/Q (waveform) files. The file header, while required, does not affect the number of
bytes that compose a waveform sample. One sample contains five bytes:

I/Q Data + Marker Data = 1 Waveform Sample
2 bytes| 2 bytes Q 1byte (8 bits) 5 bytes
(16 bits) (16 bits) Bits 4—7 reserved—Bits 0-3 set

To create a waveform, the signal generator requires a minimum of 60 samples. To help minimize
signal imperfections, use an even number of samples (for information on waveform continuity, see
“Waveform Phase Continuity” on page 217). When you store waveforms, the signal generator saves
changes to the waveform file, marker file, and file header.

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a waveform that is finite
in length and repeat it continuously. Although often overlooked, a phase discontinuity between the
end of a waveform and the beginning of the next repetition can lead to periodic spectral regrowth
and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in
software or captured off the air and sampled. It is an accurate sinewave for the time period it
occupies, however the waveform does not occupy an entire period of the sinewave or some multiple
thereof. Therefore, when repeatedly playing back the waveform by an arbitrary waveform generator, a
phase discontinuity is introduced at the transition point between the beginning and the end of the
waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of
playing back the sinewave samples, the phase discontinuity produces a noticeable increase in
distortion components in addition to the line spectra normally representative of a single sinewave.

Agilent Signal Generators Programming Guide 217

Creating and Downloading Waveform Files
Waveform Phase Continuity

Sampled Sinewave with Phase Discontinuity

s e I
.-"; \\ _!; \\. ‘_‘,';
iy
‘. Phase o Ld "\
‘. discontinuity * \
\ ! \
. A
' . ' ¢ b 4
: 5 . I N /
. b ' ¢ b ¢
' 3 : It &,
' N !né \ ;
: \ Ao 5, I
. =N . =
< >

Waveform length

Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

NOTE If there are N samples in a complete cycle, only the first N-1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and Nth
waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off
time from the end of the waveform, you can address phase discontinuity for TDMA or pulsed periodic
waveforms. Consequently, when the waveform repeats, the lack of signal present avoids the issue of
phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the
arbitrary waveform generator, a periodic phase discontinuity could be unavoidable. N5110B Baseband
Studio for Waveform Capture and Playback alleviates this concern because it does not rely on the
signal generator waveform memory. It streams data either from the PC hard drive or the installed
PCI card for N5110B enabling very large data streams. This eliminates any restrictions associated
with waveform memory to correct for repetitive phase discontinuities. Only the memory capacity of
the hard drive or the PCI card limits the waveform size.

218 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity

Sampled Sinewave with No Discontinuity

- £ . .)f\ AN
o o [
s A\ ~ \ 5
/ A 4 N 4
7
) / b\ -’_
\ / \ ;
\ ¢ | Y /
r:- 'y 5 C.
' '\\l I 'k\ /
. \ / L gy | \ /
: # o ed sample & §
Y 2 ' A -
: foo \ /
< >

Waveform length

The following figures illustrate the influence a single sample can have. The generated 3-tone test
signal requires 100 samples in the waveform to maintain periodicity for all three tones. The
measurement on the left shows the effect of using the first 99 samples rather than all 100 samples.
Notice all the distortion products (at levels up to —35 dBc) introduced in addition to the wanted
3-tone signal. The measurement on the right shows the same waveform using all 100 samples to
maintain periodicity and avoid a phase discontinuity. Maintaining periodicity removes the distortion
products.

Phase Discontinuity Phase Continuity

o Aglient

3-tone — 20 MHz Bandwidth 3—tone — 20 MHz Bandwidth
Measured distortion = 35 dBc Measured distortion = 86 dBc

Agilent Signal Generators Programming Guide 219

Creating and Downloading Waveform Files
Waveform Memory

Waveform Memory

The signal generator provides two types of memory, volatile and non-volatile. You can download files
to either memory type.

NOTE The MXG’s ARB Waveform File Cache is limited to 128 files. Consequently, once the 128 file
cache limit has been reached, the waveform switching speed will be much slower for files
loaded into the volatile waveform memory (BBG).

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or
waveform playback memory. To play back waveforms, they must reside in volatile

memory. The following file types share this memory:

Table 5-1 Signal Generators and Volatile Memory Types

Volatile Memory Type Model of Signal Generator
N5162A, E4438C with E8267D Option
N5182A with Option 001, 601 or 602
Option 651, 002, 601, or
652, or 654 602
/Q X X X
Marker X X X
File header X X X
User PRAM - b'd X

Non-volatile Storage memory where files survive cycling the signal generator power. Files
remain until overwritten or deleted. To play back waveforms after cycling the
signal generator power, you must load waveforms from non-volatile waveform
memory (NVWFM) to volatile waveform memory (WFM1). On the Agilent MXG the
non-volatile memory is referred to as internal media and external media. The

following file types share this memory:

Table 5-2 Signal Generators and Non—Volatile Memory Types

Non-Volatile Memory Type Model of Signal Generator
N5162A, E4438C with E8267D Option
N5182A with Option 001, 601 or 602
Option 651, 002, 601, or
652, or 654 602
/Q X X X
220 Agilent Signal Generators Programming Guide

Table 5-2 Signal Generators and Non—Volatile Memory Types

Creating and Downloading Waveform Files

Non-Volatile Memory Type

Model of Signal Generator

(multiple I/Q files played
together)

N5162A, E4438C with E8267D Option

N5182A with Option 001, 601 or 602

Option 651, 002, 601, or

652, or 654 602
Marker X X X
File header X X X
Sweep List b'q X X
User Data e X X
User PRAM - X X
Instrument State b'¢ X X
Waveform Sequences X X X

Waveform Memory

The following figure on Figure 5-1 on page 222 shows the locations within the signal generator for
volatile and non-volatile waveform data.

Agilent Signal Generators Programming Guide

221

Creating and Downloading Waveform Files
Waveform Memory

Figure 5-1
Root directory
_ :
. i .4
l USER - _____J <«—Agilent MXG (Only):
E443xB Volatile E443xB Non-volatile NONVOLATILE
waveform data® waveform datal

MXG (only) USB media:

—-"J ..-J _'__.J __'J File listing with extensions®: 2

ARBI ARBQ NVARBI NVARBQ
Y
Non-volatile
Waveform sequences
_'__J y Non-volatile waveform data (internal storage®' %)
J
_J - =
HEADER MARKERS WAVEFORM SECUREWAVE

\J
Volatile waveform directory

_

BBG1

Y Volatile waveform data

J o o

HEADER MARKERS WAVEFORM SECUREWAVE

1For information on using the E443xB directories, see “Downloading E443xB Signal Generator Files” on page 251.
2The Agilent MXG uses an optional “USB media” to store non—volatile waveform data.

3The Agilent MXG internal non-volatile memory is referred to as “internal storage”.

4This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a waveform file
with 60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample x 60 samples),
but the signal generator allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024 bytes. For example, the
signal generator allocates 3072 bytes of memory for a waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

222 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Memory

As shown in the examples, waveforms can cause the signal generator to allocate more memory than
what is actually used, which decreases the amount of available memory.

NOTE In the first block of data of volatile memory that is allocated for each waveform file, the file
header requires 512 bytes (N5162A/82A) or 256 bytes (E4438C/E8267D).

Non-Volatile Memory (Agilent MXG)

NOTE If the Agilent MXG’s external USB flash memory port is used, the USB flash memory can
provide actual physical storage of non-volatile data in the SECUREWAVE directory versus
the “virtual” only data.

ARB waveform encryption of proprietary information is supported on the external
non-volatile USB flash memory.

To copy unencrypted data files from an external media (as in USB Flash Drive [UFD]) for
playing on a signal generator, the full filename extension is required (i.e. .MARKER,
.HEADER, .WAVEFORM, etc.). For more information on unencrypted data, refer to
“Commands for Downloading and Extracting Waveform Data” on page 226. For more
information on how to work with files, refer to the User’s Guide.

To copy compatible licensed encrypted data files (i.e. .SECUREWAVE) from an external media,
download (copy) the files to the signal generator (refer to the User’s Guide for information
on how to work with files). When using the external media along with the signal generator’s
Use as or Copy File to Instrument softkey menus, encrypted data files can be automatically
detected by the Agilent MXG, regardless of the suffix (e.g. .wfm, .wvfm, and no suffix, etc.).
These various waveform files can be selected and played by the Agilent MXG. For more
information on encrypted data, refer to “Commands for Downloading and Extracting
Waveform Data” on page 226. When using the Copy File to Instrument, the signal generator
prompts the user to select between BBG Memory and Internal Storage memories as locations
to copy the files.

On the N5162A/82A, non-volatile files are stored on the non-volatile internal signal generator
memory (internal storage) or to an USB media, if available.

The Agilent MXG non-volatile internal memory is allocated according to a Microsoft compatible file
allocation table (FAT) file system. The Agilent MXG signal generator allocates non-volatile memory in
clusters according to the drive size (see Table 5-3 on page 224). For example, referring to Table 5-3
on page 224, if the drive size is 15 MB and if the file is less than or equal to 4K bytes, the file uses
only one 4 KB cluster of memory. For files larger than 4 KB, and with a drive size of 15 MB, the
signal generator allocates additional memory in multiples of 4KB clusters. For example, a file that
has 21,5638 bytes consumes 6 memory clusters (24,000 bytes).

Microsoft is a registered trademark of Microsoft Corporation.

Agilent Signal Generators Programming Guide 223

Creating and Downloading Waveform Files

Waveform Memory

For more information on default cluster sizes for FAT file structures, refer to Table 5-3 on page 224
and to http://support.microsoft.com/.

Table 5-3 Drive Size (logical volume)

Drive Size (logical volume)

Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB - 15 MB 4K
16 MB - 127 MB 2K
128 MB - 255 MB 4K
256 MB - 511 MB 8K
512 MB - 1023 MB 16K
1024 MB - 2048 MB 32K
2048 MB - 4096 MB 64K
4096 MB - 8192 MB 128K
8192 MB - 16384 MB 256K

Non-Volatile Memory (ESG/PSG)

The ESG/PSG signal generators allocate non-volatile memory in blocks of 512 bytes. For files less
than or equal to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes,
the signal generator allocates additional memory in multiples of 512 byte blocks. For example, a file

that has 21,5638 bytes consumes 43 memory blocks (22,016 bytes).

Memory Size

The amount of available memory, volatile and non-volatile, varies by option and the size of the other
files that share the memory. When we refer to waveform files, we state the memory size in samples
(one sample equals five bytes). The ESG and PSG baseband generator (BBG) options (001, 002, 601,
or 602) and the Agilent MXG baseband generator (BBG) Option (651, 652, and 654) contain the

waveform playback memory. Refer to Tables 5-4 on page 225 through Table 5-6 on page 226 for the
maximum available memory.

224

Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Memory

Volatile and Non—Volatile Memory (N5162A/82A)
Table 5-4 N5162A/82A Volatile (BBG) and Non—Volatile (Internal Storage and USB Media) Memory

Volatile (BBG) Memory Non-Volatile (Internal Storage and USB
Media) Memory
Option Size Option Size
N5162A/82A%
651/652/654 (BBG) 8 MSa (40 MB) Standard (N5182A) 800 MSa (4 GB)"
019 (BBG) 64 MSa (320 MB) USB Flash Drive user determined
(UFD)

a.0n the N5162A/82A, 512 bytes is reserved for each waveform’s header file (i.e. The largest waveform that could
be played with a N5162A/82A with Option 019 (320 MB) is: 320 MB — 512 bytes = 319,999,488 MB.)
b.For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value =512 MB.

Volatile Memory and Non—Volatile Memory (E4438C and E8267D Only)

NOTE When considering volatile memory, it is not necessary to keep track of marker data, as this
memory is consumed automatically and proportionally to the I/Q data created (i.e. 1 marker
byte for every 4 bytes of I/Q data).

On the E4438C and E8267D, the fixed file system overhead on the signal generator is used to store
directory information. When calculating the available volatile memory for waveform files it is
important to consider the fixed file system overhead for the volatile memory of your signal generator.

Table 5-5 Fixed File System Overhead

Volatile (WFM1) Memory and Fixed File Overhead

Option Size Maximum Memory (Bytes) Used for Memory Available
Number of Fixed File System for Waveform
Files Overhead? Samples

(MaxNumFiles) | [16 + (44 x MaxNumFiles)]

E4438C and E8267D

001, 601 (BBG) 8 MSa (40 MB) 1024 46,080 8,377,088 Samples
002 (BBG) 32 MSa (160 MB) 4096 181,248 33,509,120 Samples
602 (BBG) 64 MSa (320 MB) 8192 361,472 67,018,496 Samples

a.The expression [16 +[44 x MaxNumFiles]) has been rounded up to nearest memory block (1024 bytes). (To find the I/Q waveform sample
size, this resulting value needs to be divided by 4.)

Agilent Signal Generators Programming Guide 225

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-6 E4438C and E8267D Non—Volatile (NVWFM) Memory

Non-Volatile (NVWFM) Memory

Option Size

E4438C and E8267D

Standard 3 MSa (15 MB)

005 (Hard disk) 1.2 GSa (6 GB)

Commands for Downloading and Extracting Waveform Data

You can download I/Q data, the associated file header, and marker file information (collectively called
waveform data) into volatile or non-volatile memory. For information on waveform structure, see
“Waveform Structure” on page 215.

The signal generator provides the option of downloading waveform data either for extraction or not
for extraction. When you extract waveform data, the signal generator may require it to be read out in
encrypted form. The SCPI download commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later, you must use the
MEM: DATA : UNPRotected command. If you use FTP commands, no special command syntax is
necessary.

NOTE On the N5162A/82A, :MEM:DATA enables file extraction. On the N5162A/82A the
:MEM:DATA : UNPRotected command is not required to enable file extraction. For more
information, refer to the SCPI Command Reference.

You can download or extract waveform data created in any of the following ways:

e with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
¢ with advanced programming languages, such as C++, VB or VEE

e with Agilent Signal Studio software

e with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can also extract
encrypted waveform data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you generate a waveform from the signal generator’s internal ARB modulation format
(ESG/PSG only), the resulting waveform data is automatically stored in volatile memory and is
available for extraction as an encrypted file.

When you download an exported waveform using a Agilent Signal Studio software product, you can
use the FTP process and the securewave directory or SCPI commands, to extract the encrypted file
to the non-volatile memory on the signal generator. Refer to “File Transfer Methods” on page 227.

226 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Encrypted 1/Q Files and the Securewave Directory

The signal generator uses the securewave directory to perform file encryption (extraction) and
decryption (downloads). The securewave directory is not an actual storage directory, but rather a
portal for the encryption and decryption process. While the securewave directory contains file
names, these are actually pointers to the true files located in signal generator memory (volatile or
non-volatile). When you download an encrypted file, the securewave directory decrypts the file and
unpackages the contents into its file header, I/Q data, and marker data. When you extract a file, the
securewave directory packages the file header, I/Q data, and marker data and encrypts the waveform
data file. When you extract the waveform file (I/Q data file), it includes the other two files, so there
is no need to extract each one individually.

The signal generator uses the following securewave directory paths for file extractions and encrypted
file downloads:

Volatile /user/bbgl/securewave/file_name or swfm.file_name

Non-volatile /user/securewave or snvwfmlfile_name

NOTE To extract files (other than user-created I/Q files) and to download encrypted files, you
must use the securewave directory. If you attempt to extract previously downloaded
encrypted files (including Signal Studio downloaded files or internally created signal
generator files (ESG/PSG only)) without using the securewave directory, the signal generator
generates an error and displays:

ERROR: 221, Access Denied.

Encrypted 1/Q Files and the Securewave Directory (Agilent MXG)

NOTE Header parameters of files stored on the Agilent MXG’s internal or USB media cannot be
changed unless the file is copied to the volatile BBG memory. For more information on
modifying header parameters, refer to the User’s Guide.

When downloading encrypted files (.SECUREWAVE) from the USB media that have had the file suffix
changed to something other than .SECUREWAVE, you must use the Use As or Copy File to Instrument
menus to play an encrypted waveform file in the signal generator.

File Transfer Methods

¢ SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)
e SCPI over the GPIB or RS 232

e SCPI with sockets LAN (using port 5025)

¢ File Transfer Protocol (FTP)

Agilent Signal Generators Programming Guide 227

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files). The IEEE standard
488.2-1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

:MMEM:DATA "<file_name>", #ABC

"<file_name>" the I/Q file name and file path within the signal generator

indicates the start of the data block

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C
C the actual binary waveform data

The following example demonstrates this structure:

MMEM: DATA |'WFML:my_file”, #3 |240] 12%S!4&07#8g*Y9@7. . .

|] |
A B C

file_name
WFM1: the file path
my_file the I/Q file name as it will appear in the signal generator’s memory catalog
indicates the start of the data block
3 B has three decimal digits
240 240 bytes of data to follow in C
12%S!14&07#8g*Y9@7... the ASCII representation of some of the binary data downloaded to the

signal generator, however not all ASCII values are printable

Commands and File Paths for Downloading and Extracting Waveform Data

NOTE Filenames should not exceed 23 characters.

You can download or extract waveform data using the commands and file paths in the following
tables:

e Table 5-7, “Downloading Unencrypted Files for No Extraction (Extraction allowed on the Agilent
MXG Only),” on page 229

¢ Table 5-8, “Downloading Encrypted Files for No Extraction (Extraction allowed on the Agilent
MXG Only),” on page 229

e Table 5-9, “Downloading Unencrypted Files for Extraction,” on page 229

e Table 5-11, “Downloading Encrypted Files for Extraction,” on page 231

e Table 5-12, “Extracting Encrypted Waveform Data,” on page 231

228 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-7 Downloading Unencrypted Files for No Extraction (Extraction allowed on the Agilent MXG? Only)

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory MMEM:DATA "WFM1:<file_name>",<blockdata>
MMEM:DATA "MKR1:<file_name>", <blockdata>
MMEM:DATA "HDR1:<file_name>", <blockdata>

SCPI/volatile memory with MMEM:DATA "user/bbgl/waveform/<file_name>",<blockdata>
full directory path MMEM:DATA "user/bbgl/markers/<file_name>",<blockdata>
MMEM:DATA "user/bbgl/header/<file_name>",6<blockdata>

SCPI/non-volatile memory MMEM:DATA "NVWFM:<file_name>",<blockdata>
MMEM:DATA "NVMKR:<file_name>",<blockdata>
MMEM:DATA "NVHDR:<file_name>", <blockdata>

SCPI/non-volatile memory MMEM:DATA /user/waveform/<file_name>",<blockdata>
with full directory path MMEM:DATA /user/markers/<file_name>", <blockdata>
MMEM:DATA /user/header/<file_name>", <blockdata>

a.Refer to note on page 226.

Table 5-8 Downloading Encrypted Files for No Extraction (Extraction allowed on the Agilent MXG? Only)

Download Method Command Syntax Options
/Memory Type

SCPI/volatile memory MMEM:DATA "user/bbgl/securewave/<file_name>", <blockdata>
MMEM:DATA "SWFM1:<file_name>",<blockdata>
MMEM:DATA "file_name@SWFM1" <blockdata>

SCPI/non-volatile memory MMEM:DATA "user/securewave/<file_name>", <blockdata>
MMEM:DATA "SNVWFM:<file_name>",<blockdata>
MMEM:DATA "file_name@SNVWFM", <blockdata>

a.Refer to note on page 226.

Table 5-9 Downloading Unencrypted Files for Extraction

Download Method/ Command Syntax Options
Memory Type

SCPUVOknﬂeInenunya MEM:DATA:UNPRotected "/user/bbgl/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbgl/markers/file name",<blockdata>
MEM: DATA:UNPRotected "/user/bbgl/header/file_name", <blockdata>
MEM:DATA: UNPRotected "WFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "MKR1:file_name",<blockdata>

MEM:DATA: UNPRotected "HDR1:file_name",<blockdata>
MEM:DATA:UNPRotected "file name@WFM1",<blockdata>
MEM:DATA:UNPRotected "file name@MKR1",<blockdata>
MEM:DATA:UNPRotected "file name@HDR1", <blockdata>

Agilent Signal Generators Programming Guide 229

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-9 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/non-volatile
memory?

:DATA:
:DATA:
:DATA:

:DATA

:DATA:
:DATA:
:DATA:
:DATA:
:DATA:

UNPRotected "/user/waveform/file_name",<blockdata>
UNPRotected "/user/markers/file_name",<blockdata>
UNPRotected "/user/header/file name",<blockdata>
:UNPRotected "NVWFM:file_name",<blockdata>
UNPRotected "NVMKR:file name",<blockdata>
UNPRotected "NVHDR:file name",<blockdata>
UNPRotected "file name@NVWFM",<blockdata>
UNPRotected "file name@NVMKR",<blockdata>
UNPRotected "file name@NVHDR",<blockdata>

FTP/volatile mem01ryb

put
put
put

<file_name>
<file_name>
<file_name>

/user/bbgl/waveform/<file_name>
/user/bbgl/markers/<file_name>
/user/bbgl/header/<file_name>

FTP/non-volatile
memory®

put
put
put

<file_name>
<file_name>
<file_name>

/user/waveform/<file_name>
/user/markers/<file_name>
/user/header/<file_name>

a.0n the N5162A/82A the :MEM
more information, refer to
b. See “FTP Procedures” on page 232.

:DATA : UNPRotected command is not required to be able to extract files (i.e. use :MEM: DATA). For

the SCPI Command Reference.

Table 5-10 Extracting Unencrypted 1/Q Data

memory

MMEM: DATA?
MMEM: DATA?

Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MMEM:DATA? "/user/bbgl/waveform/<file_name>"
memory MMEM:DATA? "WFMl:<file name>"
MMEM:DATA? "<file name>@WFM1"
SCPI/non-volatile MMEM:DATA? "/user/waveform/<file_name>"

"NVWFM: <file_name>"
"<file_name>@NVWFM"

FTP/volatile
memory?

get /user/bbgl/waveform/<file_name>
get /user/bbgl/markers/<file_name>
get /user/bbgl/header/<file_name>

FTP/non-volatile
memory?

get /user/waveform/<file_name>

get /user/markers/<file_name>
get /user/header/<file_name>

a. See “"FTP Procedures” on page 232.

230

Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-11 Downloading Encrypted Files for Extraction

Download Command Syntax Options

Method/Memory

Type

SCPI/volatile* MEM:DATA:UNPRotected "/user/bbgl/securewave/file_name", <blockdata>
memory MEM:DATA:UNPRotected "SWFM1:file_name",<blockdata>

MEM:DATA:UNPRotected "file name@SWFM1 " <blockdata>

SCPI/non-volatile MEM:DATA :UNPRotected "/user/securewave/file_name", <blockdata>
memorya MEM:DATA :UNPRotected "SNVWFM:file name",<blockdata>
MEM:DATA:UNPRotected "file_name@SNVWFM",<blockdata>

FTP/volatile put <file _name> /user/bbgl/securewave/<file_name>
memory®

FTP/non-volatile put <file_name> /user/securewave/<file_name>
memory®

a.0n the N5162A/82A the :MEM: DATA : UNPRotected command is not required to be able to extract files (i.e. use :MEM:DATA). For
more information, refer to the SCPI Command Reference.
b. See “FTP Procedures” on page 232.

Table 5-12 Extracting Encrypted Waveform Data

Download Command Syntax Options

Method/Memory

Type

SCPI/volatile MMEM:DATA? "/user/bbgl/securewave/file_name"
memory MMEM:DATA? "SWFM1:file_name"

MMEM:DATA? "file name@SWFM1"

SCPI/non-volatile MMEM:DATA? "/user/securewave/file_name"
memory MMEM:DATA? "SNVWFM:file name"
MMEM:DATA? "file name@SNVWFM"

FTP/volatile get /user/bbgl/securewave/<file_name>
memory?

FTP/non-volatile get /user/securewave/<file_name>
memory?

a. See “FTP Procedures” on page 232.

Agilent Signal Generators Programming Guide 231

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has been
completed. These commands can potentially hang up due to the processing of other
SCPI parser operations. Refer to the SCPI Command Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP process, then
query the instrument by using SCPI commands such as: "MEM:DATA:', "MEM:CAT'", '*STB?',
'FREQ?', "*IDN?', 'OUTP:STAT?'. Refer to the SCPI Command Reference.

There are three ways to FTP files:

¢ use Microsoft’s® Internet Explorer FTP feature

¢ use the PC’s or UNIX command window

¢ use the signal generator’s internal web server following the firmware requirements in the table
below

Signal Generator Firmware Version (Required
for Web Server Compatibility)

N516xA?, N518xA All

E44x8C > C.03.10

E82x7D, E8663B/63D All

a.The N5161A and N5162A require firmware versions A.0140 or newer.

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

Sftp://<host name> or
ftp://<IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Command Window (PC or UNIX)

This procedure downloads to non-volatile memory. To download to volatile memory, change the file
path.

232 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

CAUTION Get and Put commands write over existing files by the same name in destination
directories. Remember to change remote and local filenames to avoid the loss of data.

NOTE If a filename has a space, quotations are required around the filename.
Always transfer the waveform file before transferring the marker file.

For additional information on FTP commands, refer to the operating system’s Window Help
and Support Center.

1. From the PC command prompt or UNIX command line, change to the destination directory for the
file you intend to download.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>. Where
instrument name is the signal generator’s hostname or IP address.

At the User: prompt in the ftp window, press Enter (no entry is required).
4. At the Password: prompt in the ftp window, press Enter (no entry is required).
At the ftp prompt, either put a file or get a file:
To put a file, type:
put <file_name> /user/waveform/<file namel>

where <file name> is the name of the file to download and <file_namel> is the name
designator for the signal generator’s /user/waveform/ directory.

If <filenamel> is unspecified, ftp uses the specified <file_name> to name <file namel>.

* If a marker file is associated with the data file, use the following command to download it to
the signal generator:
put <marker file_name> /user/markers/<file_namel>

where <marker file_name> is the name of the file to download and <file_namel> is the name
designator for the file in the signal generator’s /user/markers/ directory. Marker files and
the associated I/Q waveform data have the same name.

For more examples of put command usage refer to Table 5-13.

Table 5-13 Put Command Examples

Command Local Remote Notes
Results
Incorrect put <filename.wfm> /user/waveform/<filenamel .wfm> Produces two
separate and
put <filename.mkr> /user/marker/<filenamel .mkr> . P . .
incompatible files.

Agilent Signal Generators Programming Guide 233

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-13 Put Command Examples

Command Local Remote Notes
Results
Correct put <filename.wfm> /user/waveform/<filenamel> Creates a waveform

file and a compatible

put <filename.mkr> /user/marker/<filenamel> .
marker file.

To get a file, type:
get /user/waveform/<file namel> <file_name>

where <file_namel> is the file to download from the signal generator’s /user/waveform/
directory and <file name> is the name designator for the local PC/UNIX.

* If a marker file is associated with the data file, use the following command to download it to
the local PC/UNIX directory:

get /user/markers/<file_namel> <marker file_name>

where <marker file_namel> is the name of the marker file to download from the signal
generator’s /user/markers/ directory and <marker file_name> is the name of the file to be
downloaded to the local PC/UNIX.

For more examples of get command usage refer to Table 5-14.

Table 5-14 Get Command Examples

Command Local Remote Notes
Results
Incorrect get /user/waveform/file filel Results in filel containing only the
ker data.
get /user/marker/file filel marker data
Correct get /user/waveform/file filel.wfm Creates a waveform file and a
get Juser/marker/file fFilel .mkr compatible marker file. It is easier to

keep files associated by varying the
extenders.

6. At the ftp prompt, type: bye
7. At the command prompt, type: exit

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

hitp://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.
The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see Chapter 1.

234 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Creating Waveform Data

This section examines the C++ code algorithm for creating I/Q waveform data by breaking the
programming example into functional parts and explaining the code in generic terms. This is done to
help you understand the code algorithm in creating the I and Q data, so you can leverage the concept
into your programming environment. The SCPI Command Reference, contains information on how to
use SCPI commands to define the markers (polarity, routing, and other marker settings). If you do
not need this level of detail, you can find the complete programming examples in “Programming
Examples” on page 254.

You can use various programming environments to create ARB waveform data. Generally there are
two types:

¢ Simulation software— this includes MATLAB, Agilent Technologies EESof Advanced Design
System (ADS), Signal Processing WorkSystem (SPW), and so forth.

¢ Advanced programming languages—this includes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

No matter which programming environment you use to create the waveform data, make sure that the
data conforms to the data requirements shown on page 207. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 207.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading I and Q Data—Big and Little Endian Order” on page 270 to demonstrate how to
create and scale waveform data.

There are three steps in the process of creating an 1/Q waveform:

1. Create the I and Q data.

2. Save the I and Q data to a text file for review.

3. Interleave the I and Q data to make an I/Q file, and swap the byte order for little-endian
platforms.

For information on downloading I/Q waveform data to a signal generator, refer to “Commands and
File Paths for Downloading and Extracting Waveform Data” on page 228 and “Downloading Waveform
Data” on page 241.

1. Create | and Q data.

The following lines of code create scaled I and Q data for a sine wave. The I data consists of one
period of a sine wave and the Q data consists of one period of a cosine wave.

Agilent Signal Generators Programming Guide 235

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Create I and Q data

const int NUMSAMPLES=500;
main (int argc, char* argvl[]);
{
short idata[NUMSAMPLES] ;
short gdata[NUMSAMPLES] ;
int numsamples = NUMSAMPLES;
for (int index=0; index<numsamples; index++) ;
{
idatal[index]=23000 * sin((2*3.l4*index)/numsamples) ;
gdata[index]=23000 * cos((2*3.14*index) /numsamples) ;

— =
TR0 ®N0 0tk N~

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform points that you can set
is based on the amount of available memory in the signal generator. For more information on signal generator
memory, refer to “Waveform Memory” on page 220.

2 Define the main function in C++.

4 Create an array to hold the generated I values. The array length equals the number of the waveform points.
Note that we define the array as type short, which represents a 16-bit signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16-bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.

236 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Line

Code Description—Create I and Q data

7-11

Create a loop to do the following:

® Generate and scale the I data (DAC values). This example uses a simple sine equation, where 2*3.14
equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 I data points over one period of the
sine waveform.

— Set the scale of the DAC values in the range of —32768 to 32767, where the values —32768 and 32767
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,
resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 211.

NOTE The signal generator comes from the factory with I/Q scaling set to 70%. If you reduce the DAC
input values, ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an
appropriate setting that accounts for the reduced values.

® Generate and scale the Q data (DAC value). This example uses a simple cosine equation, where 2*3.14
equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 Q data points over one period of the
cosine waveform.

— Set the scale of the DAC values in the range of —32767 to 32768, where the values —32767 and 32768
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,
resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 211.

Agilent Signal Generators Programming Guide 237

Creating and Downloading Waveform Files
Creating Waveform Data

2. Save the 1/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation. After exporting the
data, open the file using Microsoft Excel or a similar spreadsheet program, and verify that the I and
Q data are correct.

Line Code Description—Saving the I/Q Data to a Text File
12 char *ofile = "c:\\temp\\ig.txt";
13 FILE *outfile = fopen(ofile, "w");
14 if (outfile==NULL) perror ("Error opening file to write");
15 for (index=0; index<numsamples; index++)
16 {
17 fprintf (outfile, "%d, %d\n", idatal[index], gdatalindex]) ;
18 }
19 fclose(outfile);
Line Code Description—Saving the I/Q Data to a Text File
12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file name and *ofile
is the variable name.
For the file path, some operating systems may not use the drive prefix (‘c:’ in this example), or may require
only a single forward slash (/), or both ("/temp/iq.txt")
13 Open the text file in write format.
14 If the text file does not open, print an error message.
15-18 Create a loop that prints the array of generated I and Q data samples to the text file.
19 Close the text file.

3. Interleave the | and Q data, and byte swap if using little endian order.

This step has two sets of code:

¢ Interleaving and byte swapping I and Q data for little endian order
¢ Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 208.

238

Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Interleaving and Byte Swapping for Little Endian Order
20 char igbuffer [NUMSAMPLES*4];
21 for (index=0; index<numsamples; index++)
22 {
23 short ivalue = idata[index];
24 short gvalue = gdatal[index];
25 igbuffer[index*4] = (ivalue >> 8) & OxFF;
26 igbuffer[index*4+1] = ivalue & OxFF;
27 igbuffer[index*4+2] = (gvalue >> 8) & OxFF;
28 igbuffer[index*4+3] = gvalue & OxFF;
29 }
30 return 0;
Line Code Description—Interleaving and Byte Swapping for Little Endian Order
20 Define a character array to store the interleaved I and Q data. The character array makes byte swapping

easier, since each array location accepts only 8 bits (1 byte). The array size increases by four times to
accommodate two bytes of I data and two bytes of Q data.

21-29 Create a loop to do the following:

® Save the current I data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16-bit integer.

® Save the current Q data array value to a variable.
® Swap the low bytes (bits 0-7) of the data with the high bytes of the data (done for both

Agilent Signal Generators Programming Guide 239

Creating and Downloading Waveform Files
Creating Waveform Data

Line

Code Description—Interleaving and Byte Swapping for Little Endian Order

21-29

the I and Q data), and interleave the I and Q data.

shift the data pointer right 8 bits to the beginning of the high byte ({value >> 8)

Little Endian Order

7 6 54 3 2 1 0 15 14 1312 1110 9 8 BitPosition
11101001 101101 11 Dpata
* ______ _>* Hex values = E9 B7

Data pointer Data pointer shifted 8 bits

AND (boolean) the high I byte with OxFF to make the high I byte the value to store in the IQ
array—(ivalue >> 8) & OxFF

15 14 1312 1110 9 8
101101 11 Hexvalue=B7
111111 11 Hexvalue=FF

101101 11 Hexvalue=B7

AND (boolean) the low I byte with OxFF (iwalue & OxFF) to make the low I byte the value to store
in the I/Q array location just after the high byte [index * 4 + 1]

| Data in I/Q Array after Byte Swap (Big Endian Order)

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 BitPosition

101101 11 11101001 Data
Hex value = B7 E9

Swap the Q byte order within the same loop. Notice that the I and Q data interleave with each loop

cycle. This is due to the I/Q array shifting by one location for each I and Q operation [index * 4 +
njl.

Interleaved I/Q Array in Big Endian Order

LT 8 T 0 15 8 T, o Bit Position
1011011111101001 1110010101101011 pata
N O\ /

~ ~

| Data Q Data

240

Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code—Interleaving I and Q data for Big Endian Order
20 short igbuffer [NUMSAMPLES*2] ;
21 for (index=0; index<numsamples; index++)
22 {
23 igbuffer[index*2] = idata[index];
24 igbuffer[index*2+1] = gdatal[index];
25 }
26 return 0;
Line Code Description—Interleaving I and Q data for Big Endian Order
20 Define a 16-bit integer (short) array to store the interleaved I and Q data. The array size increases by two

times to accommodate two bytes of I data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16-bit integer.

21-25 Create a loop to do the following:

® Store the I data values to the I/Q array location [index*2].
® Store the Q data values to the I/Q array location [index*2+1].

Interleaved I/Q Array in Big Endian Order

S LT 8 T 0 15 8 T, 0 Bit Position
1011011112112101001 1110010101101011 Dpata
“ O J
~ ~
| Data Q Data

To download the data created in the above example, see “Using Advanced Programming Languages”
on page 244.

Downloading Waveform Data

This section examines methods of downloading I/Q waveform data created in MATLAB (a simulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data” on page 235.

To download data from simulation software environments, it is typically easier to use one of the free
download utilities (described on page 250), because simulation software usually saves the data to a
file. In MATLAB however, you can either save data to a .mat file or create a complex array. To
facilitate downloading a MATLAB complex data array, Agilent created the Agilent Waveform
Download Assistant (one of the free download utilities), which downloads the complex data array
from within the MATLAB environment. This section shows how to use the Waveform Download
Assistant.

Agilent Signal Generators Programming Guide 241

Creating and Downloading Waveform Files
Downloading Waveform Data

For advanced programming languages, this section closely examines the code algorithm for
downloading I/Q waveform data by breaking the programming examples into functional parts and
explaining the code in generic terms. This is done to help you understand the code algorithm in
downloading the interleaved I/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to a binary file and use
one of the download utilities to download the waveform data (see “Using the Download Utilities” on
page 250).

If you do not need the level of detail this section provides, you can find complete programming
examples in “Programming Examples” on page 254. Prior to downloading the I/Q data, ensure that it
conforms to the data requirements shown on page 207. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 207. For creating waveform data, see
“Creating Waveform Data” on page 235.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFM1), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the Agilent Waveform
Download Assistant to download the data. To obtain the Agilent Waveform Download Assistant, see
“Using the Download Utilities” on page 250.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.

2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator, sends the IEEE SCPI
command *idn?, and if the connection fails, displays an error message.

Line Code—Open a Connection Session

1 io = agt_newconnection('tcpip', 'IP address');
%io = agt_newconnection('gpib',<primary address>,<secondary address>);

2 [status, status_description, query result] = agt_query(io, '*idn?');
3 if status == -1

4 display ‘fail to connect to the signal generator’;

5 end;

242 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Line

Code Description—Open a Connection Session with the Signal Generator

Sets up a structure (indicated above by i0) used by subsequent function calls to establish a LAN connection to
the signal generator.

®* agt_newconnection() is the function of Agilent Waveform Download Assistant used in MATLAB to build a
connection to the signal generator.

If you are using GPIB to connect to the signal generator, provide the board, primary address, and
secondary address: 0 = agt_newconnection('gpib’,0,19);
Change the GPIB address based on your instrument setting.

Send a query to the signal generator to verify the connection.

®* agt_query() is an Agilent Waveform Download Assistant function that sends a query to the signal

generator.

If signal generator receives the query *idn?, status returns zero and query_result returns the signal
generator’s model number, serial number, and firmware version.

3-5

If the query fails, display a message.

2. Download the 1/Q data

The following code downloads the generated waveform data to the signal generator, and if the
download fails, displays a message.

Line

6

oe]

Code—Download the I/Q data

[status, status_description] = agt_waveformload(io, IQwave,
'waveformfilel', 2000, 'no_play', 'norm scale');

if status == -1

display ‘fail to download to the signal generator’;

end;

Agilent Signal Generators Programming Guide 243

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call (agt_waveformload) from
the Agilent Waveform Download Assistant. Some of the arguments are optional as indicated below, but if one
is used, you must use all arguments previous to the one you require.

Notice that with this function, you can perform the following actions:

® download complex I/Q data

® name the file (optional argument)

® set the sample rate (optional argument)
If you do not set a value, the signal generator uses its preset value of 125 MHz (N5162A/82A) or 100 MHz
(E4438C/E8267D), or if a waveform was previously play, the value from that waveform.

® start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.

® whether to normalize and scale the I/Q data (optional argument)
If you normalize and scale the data within the body of the code, then use no_normscale, but if you need
to normalize and scale the data, use norm_scale. This normalizes the waveform data to the DAC values
and then scales the data to 70% of the DAC values.

® download marker data (optional argument)
If there is no marker data, the signal generator creates a default marker file, all marker set to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 247.

7-9 If the download fails, display an error message.

Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing, Byte Swapping,
Interleaving, and Downloading I and @ Data—Big and Little Endian Order” on page 270.

For information on creating I/Q waveform data, refer to “Creating Waveform Data” on page 235.
There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.
The following code establishes a LAN connection with the signal generator or prints an error message
if the session is not opened successfully.

Line Code Description—Open a Connection Session

1 char* instOpenString ="lan[hostname or IP address]";
//char* instOpenString ="gpib<primary addr>,<secondary addr>";
INST id=iopen (instOpenString) ;
if ('id)
{
fprintf (stderr, "iopen failed (%s)\n", instOpenString);
return -1;

N O O W

244 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Open a Connection Session
1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.

® This example uses the Agilent 10 library’s 7open() SICL function to establish a LAN connection with the
signal generator. The input argument, lan/hostname or IP address] contains the device, interface, or
commander address. Change it to your signal generator host name or just set it to the IP address used by
your signal generator. For example: “lan[999.137.240.9]"

® If you are using GPIB to connect to the signal generator, use the commented line in place of the first line.
Insert the GPIB address based on your instrument setting, for example “gpib0,19”.

® For the detailed information about the parameters of the SICL function {open(), refer to the online
“Agilent SICL User’s Guide for Windows.”

2 Open a connection session with the signal generator to download the generated I/Q data.

The SICL function ¢open() is from the Agilent IO library and creates a session that returns an identifier to

id.

® If 7open() succeeds in establishing a connection, the function returns a valid session #d. The valid session
id is not viewable, and can only be used by other SICL functions.

® If dopen() generates an error before making the connection, the session identifier is always set to zero.
This occurs if the connection fails.

® To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

3-7 If id = 0, the program prints out the error message and exits the program.

2. Download the 1/Q data.

The following code sends the SCPI command and downloads the generated waveform data to the
signal generator.

Line CodeDescription—Download the I/Q Data
8 int bytesToSend;
9 bytesToSend = numsamples*4;
10 char s[20];
11 char cmd[200] ;
12 sprintf (s, "%d", bytesToSend) ;
13 sprintf (cmd, ":MEM:DATA \"WFM1:FILEI\", #%d%d", strlen(s), bytesToSend) ;
iwrite(id, cmd, strlen(cmd), 0, 0);
14 iwrite(id, igbuffer, bytesToSend, 0, 0);
15 iwrite(id, "\n", 1, 1, 0);
16
Line Code Description—Download the I/Q data
8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal generator.

Agilent Signal Generators Programming Guide 245

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the I/Q data

9 Calculate the total number of bytes, and store the value in the integer variable defined in line 8.

In this code, numsamples contains the number of waveform points, not the number of bytes. Because it takes
four bytes of data, two I bytes and two Q bytes, to create one waveform point, we have to multiply
numsamples by four. This is shown in the following example:

numsamples = 500 waveform points
numsamples x 4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples x 4)

For information on setting the number of waveform points, see “1. Create I and Q data.” on page 235.

10 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is set to 20
bytes (20 characters—one character equals one byte)

11 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In this code,
we define the string length as 200 bytes (200 characters).

12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000”

sprintf() is a standard function in C++, which writes string data to a string variable.

13 Store the SCPI command syntax and parameters in the string ¢md. The SCPI command prepares the signal
generator to accept the data.

® strlen() is a standard function in C++, which returns length of a string.

* If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA "WFML:FILE1\” #42000.

14 Send the SCPI command stored in the string cmd to the signal generator, which is represented by the session

id.

* Jwrite() is a SICL function in Agilent 10 library, which writes the data (block data) specified in the string
cmd to the signal generator (id).

® The third argument of ‘write(), strlen(cmd), informs the signal generator of the number of bytes in the
command string. The signal generator parses the string to determine the number of I/Q data bytes it
expects to receive.

® The fourth argument of iwrite(), 0, means there is no END of file indicator for the string. This lets the
session remain open, so the program can download the I/Q data.

246 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Line Code Description—Download the I/Q data

15 Send the generated waveform data stored in the I/Q array (igbuffer) to the signal generator.
®* Jwrite() sends the data specified in igbuffer to the signal generator (session identifier specified in id).

® The third argument of iwrite(), bytesToSend, contains the length of the i¢qbuffer in bytes. In this example,
it is 2000.

® The fourth argument of ‘write(), 0, means there is no END of file indicator in the data.
In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero (END
indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in the data. This
is the method used in our program.

For your programming language, you must find and use the equivalent of method two. Otherwise you may
only achieve a partial download of the I and Q data.

16 Send the terminating carriage (\n) as the last byte of the waveform data.
® jwrite() writes the data “\n” to the signal generator (session identifier specified in id).
® The third argument of ‘write(), 1, sends one byte to the signal generator.

® The fourth argument of twrite(), 1, is the END of file indicator, which the program uses to terminate the
data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 247.

Loading, Playing, and Verifying a Downloaded Waveform

The following procedures show how to perform the steps using SCPI commands. For front panel key
commands, refer to the User’s Guide or to the Key help in the signal generator.

Loading a File from Non—Volatile Memory

Select the downloaded I/Q file in non-volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: I/Q data, marker file, and file header
information.

Send one of the following SCPI command to copy the I/Q file, marker file and file header
information:

:MEMory :COPY :NAME "<NVWFM:file name>", "<WFM1l:file_name>"
:MEMory :COPY:NAME "<NVMKR:file_name>", "<MKR1l:file_name>"
:MEMory : COPY:NAME "<NVHDR:file_name>”, "<HDR:file name>"

Agilent Signal Generators Programming Guide 247

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

NOTE When you copy a waveform file, marker file, or header file information from volatile or
non-volatile memory, the waveform and associated marker and header files are all copied.
Conversely, when you delete an 1/Q file, the associated marker and header files are deleted.
It is not necessary to send separate commands to copy or delete the marker and header
files.

Playing the Waveform

NOTE If you would like to build and play a waveform sequence, refer to “Building and Playing
Waveform Sequences” on page 249.

Play the waveform and use it to modulate the RF carrier.

1. List the waveform files from the volatile memory waveform list:
Send the following SCPI command:

:MMEMory :CATalog? "WFM1:"

2. Select the waveform from the volatile memory waveform list:
Send the following SCPI command:
:SOURce:RADio:ARB:WAVeform "WFMl:<file name>"

3. Play the waveform:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut :MODulation:STATe ON
:OUTPut:STATe ON

248 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Verifying the Waveform
Perform this procedure after completing the steps in the previous procedure, “Playing the Waveform”
on page 248.

1. Connect the signal generator to an oscilloscope as shown in the figure.

| ouT
0 OUT N\

EVENT 1 Oscilloscope

\
!

A
0000
g

AHBRAER
(00
p
0000, &
0 o oooo
OO0 00

Y/

oog@%)

4]

000@00
g0
co®y
0.0
a9

<

o0
oo
oo

O oo oo o A0 O A0 @ © @
SIGNAL GENERATOR N ch 1)
_ Ch 2
_ Trigger Input

2. Set an active marker point on the first waveform point for marker one.

NOTE Select the same waveform selected in “Playing the Waveform” on page 248.

Send the following SCPI commands:
:SOURce:RADio:ARB:MARKer:CLEar:ALL "WFMl:<file name>",1
: SOURce:RADio:ARB:MARKer:SET "WFMl:<file_name>",1,1,1,0.

3. Compare the oscilloscope display to the plot of the I and Q data from the text file you created
when you generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your code. For detailed
information on programmatically creating and downloading waveform data, see “Creating
Waveform Data” on page 235 and “Downloading Waveform Data” on page 241. For information on
the waveform data requirements, see “Waveform Data Requirements” on page 207.

Building and Playing Waveform Sequences

The signal generator can be used to build waveform sequences. This section assumes you have
created the waveform segment file(s) and have the waveform segment file(s) in volatile memory. The
following SCPI commands can be used to generate and work with a waveform sequence. For more
information refer to the signal generator’s SCPI Command Reference and User’s Guide.

NOTE If you would like to verify the waveform sequence, refer to “Verifying the Waveform” on
page 249.

Agilent Signal Generators Programming Guide 249

Creating and Downloading Waveform Files
Using the Download Utilities

1. List the waveform files from the volatile memory waveform list:
Send the following SCPI command:
:MMEMory :CATalog? "WFM1:"
2. Select the waveform segment file(s) from the volatile memory waveform list:
Send the following SCPI command:
:SOURce:RADio:ARB:WAVeform "WFMl:<file_name>"

3. Save the waveform segment(s) (“<waveforml>”, “<waveform2>”, ...), to non-volatile memory as a
waveform sequence (“<file_name>"), define the number of repetitions (<reps>), each waveform
segment plays, and enable/disable markers (M1 |M2|M3|M4]..), for each waveform segment:

Send the following SCPI command:
:SOURce:RADio: ARB: SEQuence

"<file name>", "<waveforml>", <reps>,M1|M2|M3 |M4, {"<waveform2>", <reps>,ALL}

:SOURce:RADi0:ARB:SEQuence? "<file name>"

NOTE M1 |M2|M3|M4 represent the number parameter of the marker selected (i.e. 1|2|3|4). Entering
M1 |M2|M3|M4 causes the signal generator to display an error. For more information on this
SCPI command, refer to the signal generator’s SCPI Command Reference.

4. Play the waveform sequence:
Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut :MODulation:STATe ON
:OUTPut:STATe ON

Using the Download Utilities

Agilent provides free download utilities to download waveform data into the signal generator. The
table in this section describes the capabilities of three such utilities.

For more information and to install the utilities, refer to the following URLs:
e Agilent Signal Studio Toolkit 2: http:;//www.agilent.com/find/signalstudio
This software provides a graphical interface for downloading files.

¢ Agilent IntuiLink for Agilent PSG/ESG/E8663B Signal Generators:
hitp://www.agilent.com/find/intuilink

This software places icons in the Microsoft Excel and Word toolbar. Use the icons to connect to
the signal generator and open a window for downloading files.

250 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

NOTE Agilent Intuilink is not available for the Agilent MXG.

e Agilent Waveform Download Assistant: http./www.agilent.com/find/downloadassistant

This software provides functions for the MATLAB environment to download waveform data.

Features Agilent Signal Agilent Agilent
Studio Toolkit 2 IntuiLink® Waveform

Download
Assistant

Downloads encrypted waveform files X

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16-bit I/Q files b

Interleaves and downloads earlier 14-bit E443xB I and Q files X

Swaps bytes for little endian order

Manually select big endian byte order for 14-bit and 16-bit I/Q X

files

Downloads user-created marker files X X X

Performs scaling X X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X

a. Agilent Intuilink is not available for the Agilent MXG.
b. ASCII or binary format.

Downloading E443xB Signal Generator Files

To download earlier E443xB model I and Q files, use the same SCPI commands as if downloading

files to an E443xB signal generator. The signal generator automatically converts the E443xB files to

the proper file format as described in “Waveform Structure” on page 215 and stores them in the

signal generator’s memory. This conversion process causes the signal generator to take more time to
download the earlier file format. To minimize the time to convert earlier E443xB files to the proper
file format, store E443xB file downloads to volatile memory, and then transfer them over to

non-volatile (NVWFM) memory.

NOTE You cannot extract waveform data downloaded as E443xB files.

Agilent Signal Generators Programming Guide

251

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. This file structure
can be compared with the new style file format shown in “Waveform Structure” on page 215. If you
create new waveform files for the signal generator, use the format shown in “Waveform Data
Requirements” on page 207.

E443xB ARB Data Format

Marker Data

Volatile Memory Path
14 bits DAC Data

| File MSBE Offset Binary LSB
ARBI /waveform name | 2 I 14 I
Q File
ARBQ /waveform name | 2 I 14 I
14 bits DAC Data
A .
>|N |< Offset Binary

arb date

Storage Locations for E443xB ARB files

Place waveforms in either volatile memory or non-volatile memory. The signal generator supports the
E443xB directory structure for waveform file downloads (i.e. “ARBIL:”, “ARBQ:”, “NVARBL.”, and
“NVARBQ:”, see also “SCPI Commands” on page 254).

Volatile Memory Storage Locations

e /user/arbi/
e /user/arbq/

Non-Volatile Memory Storage Locations

e /user/nvarbi/
e /user/nvarbq/

Loading files into the above directories (volatile or non-volatile memory) does not actually store them
in those directories. Instead, these directories function as “pipes” to the format translator. The signal
generator performs the following functions on the E443xB data:

* Converts the 14-bit I and Q data into 16-bit data (the format required by the signal generator).
Subtract 8192, left shifts the data, and appends two bits (zeros) before the least significant bit
(i.e. the offset binary values are converted to 2’s complement values by the signal generator).

252 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

E443xB 14-Bit Data

| data Q data

A
' N N
|11|00110110111001| OOPOlOOlllOllOOlI

Marker bits 14 data bits Reserved bits 14 data bits

Subtracts 8192, Left Shifts, and Adds Zeros—Removes Marker and Reserved Bits
(16-Bit Data Format)

16-bit | data 16—bit Q data
A AL
g N . N
11, 1001011011100100 Q‘g 10000111011001,00
Marker bits removed Bits added Reserved bits removed Bits added

Creates a marker file and places the marker information, bits 14 and 15 of the E443xB I data,
into the marker file for markers one and two. Markers three and four, within the new marker file,
are set to zero (off).

Places the | Marker Bits into the Signal Generator Marker File

0011

/l Marker 1 and 2 bits from the E443xB | data

Marker 3 and 4 bits

¢ Interleaves the 16-bit I and Q data creating one I/Q file.

Creates a file header with all parameters set to unspecified (factory default file header setting).

Agilent Signal Generators Programming Guide 253

Creating and Downloading Waveform Files
Programming Examples

SCPI Commands

Use the following commands to download E443xB waveform files into the signal generator.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFM1), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

Extraction Method/ Command Syntax Options
Memory Type

SCPI/ :MMEM:DATA "ARBI:<file name>", <I waveform block data>
volatile memory :MMEM:DATA "ARBQ:<file name>", <Q waveform data>

SCPI/ :MMEM:DATA "NVARBI:<file _name>", <I waveform block data>
non-volatile memory :MMEM:DATA "NVARBQ:<file_ name>", <Q waveform block data>

The variables <I waveform block data> and <Q waveform block data> represents data in the
E443xB file format. The string variable <file_name> is the name of the I and Q data file. After
downloading the data, the signal generator associates a file header and marker file with the I/Q data
file.

Programming Examples

NOTE The programming examples contain instrument-specific information. However, users can still
use these programming examples by substituting in the instrument-specific information for
your signal generator. Model specific exceptions for programming use, will be noted at the
top of each programming section.

The programming examples use GPIB or LAN interfaces and are written in the following languages:

e (C++ (page 255)

e MATLAB (page 277)

¢ Visual Basic (page 292)
* HP Basic (page 297)

See Chapter 2 of this programming guide for information on interfaces and IO libraries.

The example programs are also available on the signal generator Documentation CD-ROM, which
allows you to cut and paste the examples into an editor.

254 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

C++ Programming Examples

This section contains the following programming examples:

¢ “Creating and Storing Offset [/Q Data—Big and Little Endian Order” on page 255

¢ “Creating and Storing I/Q Data—Little Endian Order” on page 259

e “Creating and Downloading I/Q Data—Big and Little Endian Order” on page 260

¢ “Importing and Downloading I/Q Data—Big Endian Order” on page 264

¢ “Importing and Downloading Using VISA—Big Endian Order” on page 266

e “Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian
Order” on page 270

e “Calculating the RMS Voltage for a Waveform Programming Using C++” on page 276

Creating and Storing Offset |/Q Data—Big and Little Endian Order
On the documentation CD, this programming example’s name is “offset_iq_c++.tat.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing I/Q Data” on page 277 and
performs the following functions:

* error checking

* data creation

¢ data normalization

* data scaling

* I/Q signal offset from the carrier (single sideband suppressed carrier signal)

* byte swapping and interleaving for little endian order data

e I and Q interleaving for big endian order data

* Dbinary data file storing to a PC or workstation

¢ reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

// This C++ example shows how to
// 1.) Create a simple IQ waveform

// 2.) Save the waveform into the ESG/PSG Internal Arb format

// This format is for the E4438C, E8267C, E8267D
// This format will not work with the ESG E443xB or the Agilent MXG N518xA
// 3.) Load the internal Arb format file into an array

#include <stdio.h>
#include <string.h>

#include <math.h>

const int POINTS = 1000; // Size of waveform

const char *computer = “PCWIN”;

int main(int argc, char* argvl[])

Agilent Signal Generators Programming Guide 255

Creating and Downloading Waveform Files
Programming Examples

// l.) Create Simple IQ Signal LEEEEEEE SRR S EEEEEEEEEEEEEEEEEEEERESERESES]
// This signal is a single tone on the upper
// side of the carrier and is usually refered to as
// a Single Side Band Suppressed Carrier (SSBSC) signal.
// It is nothing more than a cosine wavefomm in I

// and a sine waveform in Q.

int points = POINTS; // Number of points in the waveform
int cycles = 101; // Determines the frequency offset from the carrier
double Iwave[POINTS]; // I waveform

double Qwave [POINTS]; // Q waveform

short int waveform[2*POINTS]; // Holds interleaved I/Q data
double maxAmp = 0; // Used to Normalize waveform data
double minAmp = 0; // Used to Normalize waveform data
double scale = 1;

char buf; // Used for byte swapping

char *pChar; // Used for byte swapping

bool PC = true; // Set flag as appropriate

double phaseInc = 2.0 * 3.141592654 * cycles / points;
double phase = 0;
int 1 = 0;
for(i=0; i<points; i++)
{
phase = i * phaselnc;
Iwave([i] = cos(phase);

Qwave[i] = sin(phase);

// 2.) Save waveform in internal format *****k*xkkkkkkkk kKKK KKK KKK KK KK KKK K X
// Convert the I and Q data into the internal arb format

// The internal arb format is a single waveform containing interleaved IQ
// data. The I/Q data is signed short integers (16 bits).

// The data has values scaled between +-32767 where

// DAC Value Description

// 32767 Maximum positive value of the DAC
// 0 Zero out of the DAC
// -32767 Maximum negative value of the DAC

// The internal arb expects the data bytes to be in Big Endian format.

// This is opposite of how short integers are saved on a PC (Little Endian).

256 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// For this reason the data bytes are swapped before being saved.

// Find the Maximum amplitude in I and Q to normalize the data between +-1
maxAmp = Iwave[0];
minAmp = Iwave[0];

for(i=0; i<points; i++)

{
if (maxAmp < Iwavel[i])
maxAmp = Iwavel[i];
else if(minAmp > Iwavel[i])
minAmp = Iwavel[i];
if (maxAmp < Qwavel[i])
maxAmp = Qwavel[i];
else if(minAmp > Qwavel[i])
minAmp = Qwavel[i];
}

maxAmp = fabs (maxAmp) ;

minAmp = fabs (minAmp) ;

if(minAmp > maxAmp)
maxAmp = minAmp;

// Convert to short integers and interleave I/Q data
scale = 32767 / maxAmp; // Watch out for divide by zero.

for(i=0; i<points; i++)

{
waveform[2*i] = (short)floor (Iwave[i]*scale + 0.5);
waveform[2*i+1] = (short)floor (Qwavel[i]*scale + 0.5);
}
// If on a PC swap the bytes to Big Endian
if(strcmp(computer, "PCWIN”) == 0)
//if(PC)
{
pChar = (char *)&waveform[O0]; // Character pointer to short int data

for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1l);
*(pChar+1) = buf;
pChar+= 2;

Agilent Signal Generators Programming Guide 257

Creating and Downloading Waveform Files
Programming Examples

// Save the data to a file
// Use FTP or one of the download assistants to download the file to the
// signal generator

char *filename = “C:\\Temp\\PSGTestFile”;
FILE *stream = NULL;
stream = fopen(filename, “w+b”);// Open the file

if (stream==NULL) perror (“Cannot Open File”);

int numwritten = fwrite((void *)waveform, sizeof(short), points*2, stream

fclose(stream);// Close the file

// 3.) Load the internal Arb format F£ile *%% %%k ks ks sk ok sk ok dok ok ok ok ok ok ok ok ok kK kK kK K K
// This process 1is just the reverse of saving the waveform
// Read in waveform as unsigned short integers.
// Swap the bytes as necessary
// Normalize between +-1
// De-interleave the I/Q Data
// Open the file and load the internal format data
stream = fopen(filename, “r+b”);// Open the file
if (stream==NULL) perror (“Cannot Open File”);
int numread = fread((void *)waveform, sizeof(short), points*2, stream);
fclose(stream);// Close the file
// If on a PC swap the bytes back to Little Endian
if(strcmp(computer, "PCWIN”) == 0)
{
pChar = (char *)&waveform[0]; // Character pointer to short int data
for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar+1) = buf;
pChar+= 2;

}

// Normalize De-Interleave the IQ data
double IwaveIn[POINTS];

double QwaveIn[POINTS] ;

for(i=0; i<points; i++)

{
IwaveIn[i] = waveform[2*1] / 32767.0;
QwaveIn[i] = waveform[2*i+1] / 32767.0;
}
return 0;

258 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing 1/Q Data—Little Endian Order
On the documentation CD, this programming example’s name is “CreateStore_Data_ct++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

* error checking

* data creation

* byte swapping and interleaving for little endian order data
* binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

#include <iostream>
#include <fstream>
#include <math.h>

#include <stdlib.h>
using namespace std;

int main (void)

{

ofstream out_stream; // write the I/Q data to a file
const unsigned int SAMPLES =200; // number of sample pairs in the waveform
const short AMPLITUDE = 32000; // amplitude between 0 and full scale dac value

const double two_pi = 6.2831853;

//allocate buffer for waveform
short* igData = new short[2*SAMPLES];// need two bytes for each integer
if (!igData)
{
cout << "Could not allocate data buffer." << endl;

return 1;

out_stream.open("IQ _data");// create a data file
if (out_stream.fail())
{
cout << "Input file opening failed" << endl;
exit (1) ;
}
//generate the sample data for I and Q. The I channel will have a sine

//wave and the Q channel will a cosine wave.

Agilent Signal Generators Programming Guide 259

Creating and Downloading Waveform Files
Programming Examples

for (int i=0; i<SAMPLES; ++1i)
{

igDhata[2*i] = AMPLITUDE * sin(two_pi*i/ (float)SAMPLES) ;
igDhata[2*i+1] = AMPLITUDE * cos(two_pi*i/ (float)SAMPLES) ;
}
// make sure bytes are in the order MSB(most significant byte) first. (PC only).
char* cptr = (char*)igData;// cast the integer values to characters

for (int 1=0; i< (4*SAMPLES); i+=2)// 4*SAMPLES

{
char temp = cptr[i];// swap LSB and MSB bytes
cptr[i]l=cptr[i+l];
cptr[i+l]l=temp;

// now write the buffer to a file

out_stream.write((char*)igData, 4*SAMPLES) ;
return 0;

}

Creating and Downloading 1/Q Data—Big and Little Endian Order
On the documentation CD, this programming example’s name is “CreateDwnLd_Data_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

¢ error checking

* data creation

¢ data scaling

* text file creation for viewing and debugging data

* byte swapping and interleaving for little endian order data
¢ interleaving for big endian order data

e data saving to an array (data block)

* data block download to the signal generator

// This C++ program is an example of creating and scaling
// I and Q data, and then downloading the data into the
// signal generator as an interleaved I/Q file.

// This example uses a sine and cosine wave as the I/Q

// data.

//

// Include the standard headers for SICL programming

#include <sicl.h>

260 Agilent Signal Generators Programming Guide

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <math.h>

// Choose a GPIB, LAN, or RS-232 connection
char* instOpenString =”lan[galgaDhcpl]”;
//char* instOpenString ="gpib0,19”;

// Pick some maximum number of samples, based on the
// amount of memory in your computer and the signal generator.

const int NUMSAMPLES=500;

int main(int argc, char* argvl[])
{
// Create a text file to view the waveform
// prior to downloading it to the signal generator.

// This verifies that the data looks correct.

char *ofile = “c:\\temp\\iqg.txt”;

// Create arrays to hold the I and Q data

int idata [NUMSAMPLES] ;
int gdata [NUMSAMPLES] ;

// save the number of sampes into numsamples

int numsamples = NUMSAMPLES;

// Fill the I and Q buffers with the sample data

for (int index=0; index<numsamples; index++)

{

// Create the I and Q data for the number of waveform

// points and Scale the data (20000 * ...) as a precentage
// of the DAC full scale (-32768 to 32767). This example
// scales to approximately 70% of full scale.
idatal[index]=23000 * sin((4*3.14*index)/numsamples) ;

gdata[index]=23000 * cos((4*3.1l4*index) /numsamples) ;

// Print the I and Q values to a text file. View the data

// to see i1f its correct and if needed, plot the data in a

Creating and Downloading Waveform Files
Programming Examples

Agilent Signal Generators Programming Guide

261

Creating and Downloading Waveform Files
Programming Examples

// spreadsheet to help spot any problems.
FILE *outfile = fopen(ofile, “w”);

if (outfile==NULL) perror (“Error opening file to write”);
for (index=0; index<numsamples; index++)
{

fprintf (outfile, “%d, %d\n”, idatal[index], qgdatal[index]) ;
}

fclose(outfile);

// Little endian order data, use the character array and for loop.
// If big endian order, comment out this character array and for loop,

// and use the next loop (Big Endian order data).

// We need a buffer to interleave the I and Q data.
// 4 bytes to account for 2 I bytes and 2 Q bytes.

char igbuffer [NUMSAMPLES*4] ;

// Interleave I and Q, and swap bytes from little
// endian order to big endian order.
for (index=0; index<numsamples; index++)
{
int ivalue = idatal[index];

int gvalue = gdatal[index];

igbuffer[index*4] = (ivalue >> 8) & OxFF; // high byte of i
igbuffer[index*4+1] = ivalue & OxFF; // low byte of 1
igbuffer[index*4+2] = (gvalue >> 8) & OxFF; // high byte of g
igbuffer[index*4+3] = gvalue & OXFF; // low byte of g

// Big Endian order data, uncomment the following lines of code.

// Interleave the I and Q data.

// short igbuffer [NUMSAMPLES*2]; // Big endian order, uncomment this line
// for(index=0; index<numsamples; index++) // Big endian order, uncomment this line
/7 A // Big endian order, uncomment this line
// igbuffer[index*2] = idata[index]; // Big endian order, uncomment this line
// igbuffer[index*2+1] = gdatalindex]; // Big endian order, uncomment this line
// '} // Big endian order, uncomment this line

// Open a connection to write to the instrument
INST id=iopen (instOpenString) ;
if (!id)

262 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

fprintf (stderr, “iopen failed (%s)\n”, instOpenString) ;

return -1;

// Declare variables to hold portions of the SCPI command
int bytesToSend;

char s[20];

char cmd[200];

bytesToSend = numsamples*4; // calculate the number of bytes
sprintf (s, “%d”, bytesToSend); // create a string s with that number of bytes

// The SCPI command has four parts.

// Part 1 = :MEM:DATA “filename”, #

// Part 2 = length of Part 3 when written to a string

// Part 3 = length of the data in bytes. This is in s from above.
// Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the I and Q data.

sprintf (cmd, “:MEM:DATA \”"WFM1:FILE1\”, #%d%d”, strlen(s), bytesToSend);
// Send parts 1, 2, and 3

iwrite(id, cmd, strlen(cmd), 0, 0);

// Send part 4. Be careful to use the correct command here. In many
// programming languages, there are two methods to send SCPI commands:
// Method 1 = stop at the first ‘0’ in the data

// Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.
// You must find and use the correct command for Method 2.

iwrite(id, igbuffer, bytesToSend, 0, 0);

// Send a terminating carriage return

iwrite(id, “\n”, 1, 1, 0);

printf (“Loaded file using the E4438C, E8267C and E8267D format\n”);

return 0;

Agilent Signal Generators Programming Guide 263

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading 1/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is “impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the data
is in big endian order and performs the following functions:

* error checking

// Descr
/7

#include
#include
#include

#include

// ATTEN

iption: Send a file in blocks of data to a signal generator

<sicl.h>
<stdlib.h>
<stdio.h>

<string.h>

TION:

binary file importing from the PC or workstation.
binary file download to the signal generator.

// - Configure these three lines appropriately for your instrument

// and use before compiling and running

//

char* in

const char* localSrcFile

const char* instDestFile

stOpenString =

"gpib7,19";

= "D:\\home\\TEST_WAVE";
= "/USER/BBG1l/WAVEFORM/TEST_WAVE";

// Size of the copy buffer

const in

int
main ()

{

t BUFFER_SIZE =

100*1024;

INST id=iopen (instOpenString) ;

if |
{

FILE
if
{

rid)

fprintf (stderr,

return -1;

"iopen failed (%s)\n",

* file = fopen(localSrcFile, "rb");

tfile)

fprintf (stderr,

return 0;

"Could not open file:

//for LAN replace with “lan[<hostname or IP address>]"
//enter file location on PC/workstation

//for non-volatile memory

//remove BBGl from file path

instOpenString) ;

%s\n",

localSrcFile) ;

264

Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

)i

if(fseek(file, 0, SEEK_END) < 0)

{
fprintf (stderr, "Cannot seek to the end of file.\n"
return 0;

}

long lenToSend = ftell(file);

printf ("File size = %d\n", lenToSend);

if (fseek(file, 0, SEEK_SET) < 0)

{
fprintf (stderr, "Cannot seek to the start of file.\n");
return 0;

}

char* buf = new char[BUFFER_SIZE];

if (buf && lenToSend)
{
// Prepare and send the SCPI command header
char s[20];
sprintf(s, "%d", lenToSend);
int lenLen = strlen(s);
char s2[256];
sprintf (s2, "mmem:data \"%s\", #%d%d", instDestFile,
iwrite(id, s2, strlen(s2), 0, 0);
// Send file in BUFFER_SIZE chunks
long numRead;
do
{
numRead = fread(buf, sizeof(char), BUFFER_SIZE,
iwrite(id, buf, numRead, 0, 0);
} while (numRead == BUFFER_SIZE) ;
// Send the terminating newline and EOM
iwrite(id, "\n", 1, 1, 0);
delete [] buf;
}
else
{

lenLen, lenToSend) ;

file);

Agilent Signal Generators Programming Guide

265

Creating and Downloading Waveform Files
Programming Examples

fprintf (stderr, "Could not allocate memory for copy buffer\n");

fclose(file);
iclose(id) ;

return 0;

Importing and Downloading Using VISA—Big Endian Order
On the documentation CD, this programming example’s name is “DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the data is in
big endian order and performs the following functions:

¢ error checking
* binary file importing from the PC or workstation
¢ binary file download to the signal generator’s non-volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile declaration to:
“USER/BBG1/WAVEFORM/”.

] %k ok K ok ko ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ok

// PROGRAM NAME:Download_Visa_c++.cpp

/7

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform data. Send a

// file in chunks of ascii data to the signal generator.

/7

// NOTE: You must have the Agilent IO Libraries installed to run this program.

/7

// This example uses the LAN/TCPIP to download a file to the signal generator's

// non-volatile memory. The program allocates a memory buffer on the PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is

// limited by the memory on your PC or workstation, so the buffer size can be

// increased or decreased to meet your system limitations.

/7

// While this program uses the LAN/TCPIP to download a waveform file into

// non-volatile memory, it can be modified to store files in volatile memory

// WFM1 using GPIB by setting the instrOpenString = "TCPIP0::XXX.XXX.XXX.XXxX::INSTR"
// declaration with "GPIB::19::INSTR"

/7

// The program also includes some error checking to alert you when problems arise

// while trying to download files. This includes checking to see if the file exists.
//*4(**4(*4(*4(*********4(*4(4(*4(*4(*4(*4(********~k~k4(*4(*4(*4(***********************************
// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the instOpenString declaration
// in the code below with the IP address of your signal generator. (or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile directory paths

266 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// as needed.

[Kk kK ok ok ok ok K ok ok K ok kK ok K ok ok ok ok ok K ok K ok ok K ok ok K ok K ok ok K K ok K K ok K ok ok K ok ok K ok K ok ok K ok ok kK ok K ok ok K ok ok K ok kR ok K R ok kK ok Kk kK

#include <stdlib.h>
#include <stdio.h>

#include <string.h>
#include “"visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling and running
char* instOpenString ="TCPIPO0: :XXX.XXX.XXX.xXXx::INSTR"; // your instrument's IP address
const char* localSrcFile = "\\Files\\IQ_DataC";
const char* instDestFile = "/USER/WAVEFORM/IQ_DataC";
const int BUFFER_SIZE = 100*1024;// Size of the copy buffer
int main(int argc, char* argvl[])
{
ViSession defaultRM, vi;
ViStatus status = 0;
status = viOpenDefaultRM(&defaultRM);// Open the default resource manager
// TO DO: Error handling here
status = viOpen (defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);
if (status)// If any errors then display the error and exit the program
{

fprintf (stderr, "viOpen failed (%s)\n", instOpenString) ;

return -1;

}

FILE* file = fopen(localSrcFile, "rb");// Open local source file for binary reading
if (!file) // If any errors display the error and exit the program

{

fprintf (stderr, "Could not open file: %s\n", localSrcFile);

Agilent Signal Generators Programming Guide 267

Creating and Downloading Waveform Files
Programming Examples

return 0;

}
if(fseek(file, 0, SEEK_END) < 0)
{

fprintf (stderr, "Cannot lseek to the end of file.\n");

return 0;
long lenToSend = ftell(file);// Number of bytes in the file
printf ("File size = %d\n", lenToSend);
if (fseek(file, 0, SEEK_SET) < 0)
{
fprintf (stderr, "Cannot lseek to the start of file.\n");
return 0;
unsigned char* buf = new unsigned char [BUFFER_SIZE]; // Allocate char buffer memory
if (buf && lenToSend)
{
// Do not send the EOI (end of instruction) terminator on any write except the
// last one
viSetAttribute(vi, VI_ATTR_SEND_END_EN, 0);

// Prepare and send the SCPI command header

char s[20];
sprintf (s, "%d", lenToSend);

int lenLen = strlen(s);

unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen represents the

// number of bytes and the actual number of bytes is the variable lenToSend

sprintf ((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend) ;

// Send the command and header to the signal generator

268 Agilent Signal Generators Programming Guide

viWrite(vi, s2, strlen((char*)s2), 0);

long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

do

{
numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);
viWrite(vi, buf, numRead, 0);

} while (numRead == BUFFER_SIZE) ;

// Send the terminating newline and EOI

viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

char* newLine = "\n";

viWrite(vi, (unsigned char*)newLine, 1, 0);

delete [] buf;

else

fprintf (stderr, "Could not allocate memory for copy buffer\n");

fclose(file);

viClose (vi) ;

viClose (defaultRM) ;

return 0;

Creating and Downloading Waveform Files
Programming Examples

Agilent Signal Generators Programming Guide

269

Creating and Downloading Waveform Files
Programming Examples

Importing, Byte Swapping, Interleaving, and Downloading | and Q Data—Big and Little Endian Order
On the documentation CD, this programming example’s name is “impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

* error checking

¢ Dbinary file importing (earlier E443xB or current model signal generators)

* byte swapping and interleaving for little endian order data

¢ data interleaving for big endian order data

* data scaling

¢ binary file download for earlier E443xB data or current signal generator formatted data

// This C++ program is an example of loading I and Q

// data into an E443xB, E4438C, E8267C, or E8267D signal
// generator.

/7

// It reads the I and Q data from a binary data file

// and then writes the data to the instrument.

// Include the standard headers for SICL programming
#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString ="gpib0,19”;

// Pick some maximum number of samples, based on the
// amount of memory in your computer and your waveforms.

const int MAXSAMPLES=50000;

int main(int argc, char* argvl[])

// These are the I and Q input files.

// Some compilers will allow '/’ in the directory

// names. Older compilers might need ‘\\’ in the

// directory names. It depends on your operating system
// and compiler.

char *ifile = “c:\\SignalGenerator\\data\\BurstAlI.bin”;

char *gfile = “c:\\SignalGenerator\\data\\BurstAlQ.bin”;

270 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// This is a text file to which we will write the
// I and Q data just for debugging purposes. It is
// a good programming practice to check your data
// in this way before attempting to write it to

// the instrument.

char *ofile = “c:\\SignalGenerator\\data\\iqg.txt”;

// Create arrays to hold the I and Q data
int idata[MAXSAMPLES] ;
int gdata[MAXSAMPLES] ;

// Often we must modify, scale, or offset the data
// before loading it into the instrument. These
// buffers are used for that purpose. Since each
// sample is 16 bits, and a character only holds
// 8 bits, we must make these arrays twice as long
// as the I and Q data arrays.

char ibuffer [MAXSAMPLES*2];

char gbuffer [MAXSAMPLES*2];

// For the E4438C or E8267C/67D, we might also need to interleave
// the I and Q data. This buffer is used for that

// purpose. In this case, this buffer must hold

// both I and Q data so it needs to be four times

// as big as the data arrays.

char igbuffer [MAXSAMPLES*4] ;

// Declare variables which will be used later
bool done;
FILE *infile;

int index, numsamples, il, 12, ivalue;

// In this example, we’ll assume the data files have

// the I and Q data in binary form as unsigned 16 bit integers.
// This next block reads those binary files. If your

// data is in some other format, then replace this block

// with appropriate code for reading your format.

// First read I values

done = false;

index = 0;

infile = fopen(ifile, “rb”);

if (infile==NULL) perror (“Error opening file to read”);

Agilent Signal Generators Programming Guide 2N

Creating and Downloading Waveform Files
Programming Examples

while (!done)

{
i1 = fgetc(infile); // read the first byte
if (1i1==EOF) break;
i2 = fgetc(infile); // read the next byte
if (12==EOF) break;
ivalue=11+12*256; // put the two bytes together
// note that the above format is for a little endian
// processor such as Intel. Reverse the order for
// a big endian processor such as Motorola, HP, or Sun
idata[index++]=ivalue;
if (index==MAXSAMPLES) break;

}

fclose(infile);

// Then read Q values
index = 0;
infile = fopen(gfile, “rb”);
if (infile==NULL) perror (“Error opening file to read”);
while (!done)
{
il = fgetc(infile); // read the first byte
if (11==EOF) break;
i2 = fgetc(infile); // read the next byte
if (12==EOF) break;
ivalue=11+1i2*256; // put the two bytes together
// note that the above format is for a little endian
// processor such as Intel. Reverse the order for
// a big endian processor such as Motorola, HP, or Sun
gdata[index++]=ivalue;
if (index==MAXSAMPLES) break;
}

fclose(infile);

// Remember the number of samples which were read from the file.

numsamples = index;

// Print the I and Q values to a text file. If you are
// having trouble, look in the file and see if your I and
// Q data looks correct. Plot the data from this file if
// that helps you to diagnose the problem.

FILE *outfile = fopen(ofile, “w”);

272 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

if (outfile==NULL) perror (“Error opening file to write”);

for (index=0; index<numsamples; index++)

{
fprintf (outfile, “%d, %d\n”, idatal[index], qgdatal[index]) ;
}

fclose(outfile);

// The E443xB, E4438C, E8267C or E8267D all use big-endian
// processors. If your software is running on a little-endian
// processor such as Intel, then you will need to swap the

// bytes in the data before sending it to the signal generator.

//
//

The arrays ibuffer and gbuffer are used to hold the data
after any byte swapping, shifting or scaling.
//
//
//
//
//
//
//
//

In this example, we’ll assume that the data is in the format

of the E443xB without markers. 1In other words, the data

is in the range 0-16383.
0 gives negative full-scale output

8192 gives 0 V output

16383 gives positive full-scale output
If this is not the scaling of your data, then you will need

to scale your data appropriately in the next two blocks.

//
//
//
//
for (index=0;

{

ibuffer and gbuffer will hold the data in the E443xB format.
No scaling is needed, however we need to swap the byte order

on a little endian computer. Remove the byte swapping

if you are using a big endian computer.

index<numsamples; index++)

int ivalue idata[index] ;

int gvalue gdata[index] ;

ibuffer[index*2] = (ivalue >> 8) & OxFF; // high byte of i
ibuffer[index*2+1] = ivalue & OxFF; // low byte of i
gbuffer[index*2] = (gvalue >> 8) & OxFF; // high byte of g

gbuffer[index*2+1] = gvalue & OXFF; // low byte of g

// igbuffer will hold the data in the

// format. In this format, the I and

// The data is in the range -32768 to

// -32768 gives negative full-scale

E4438C, EB8267C, E8267D
Q data is interleaved.
32767.

output

Agilent Signal Generators Programming Guide

273

Creating and Downloading Waveform Files
Programming Examples

// 0 gives 0 V output

// 32767 gives positive full-scale output

// From these ranges, it appears you should offset the

// data by 8192 and scale it by 4. However, due to the

// interpolators in these products, it is better to scale

// the data by a number less than four. Commonly a good

// choice is 70% of 4 which is 2.8.

// By default, the signal generator scales data to 70%

// If you scale the data here, you may want to change the

// signal generator scaling to 100%

// Also we need to swap the byte order on a little endian

// computer. This code also works for big endian order data

// since it swaps bytes based on the order.

for (index=0; index<numsamples; index++)

{
int iscaled = 2.8* (idata[index]-8192); // shift and scale
int gscaled = 2.8* (gdata[index]-8192); // shift and scale

igbuffer[index*4] = (iscaled >> 8) & O0xFF; // high byte of i
igbuffer[index*4+1] = iscaled & OXFF; // low byte of i
igbuffer[index*4+2] = (gscaled >> 8) & OxFF; // high byte of g

igbuffer[index*4+3] = gscaled & O0xFF; // low byte of g

// Open a connection to write to the instrument
INST id=iopen (instOpenString) ;
if (rid)
{
fprintf (stderr, “iopen failed (%s)\n”, instOpenString) ;

return -1;

// Declare variables which will be used later
int bytesToSend;

char s[20];

char cmd[200];

// The E4438C, E8267C and E8267D accept the E443xB format.
// so we can use this next section on any of these signal generators.

// However the E443xB format only uses 14 bits.

bytesToSend = numsamples*2; // calculate the number of bytes
sprintf (s, “%d”, bytesToSend); // create a string s with that number of bytes

274 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// The SCPI command has four parts.

// Part 1 = :MEM:DATA “filename”,

// Part 2 = length of Part 3 when written to a string

// Part 3 = length of the data in bytes. This is in s from above.
// Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the I data.

sprintf (cmd, “:MEM:DATA \”"ARBI:FILE1\”, #%d%d”, strlen(s), bytesToSend);
// Send parts 1, 2, and 3

iwrite(id, cmd, strlen(cmd), 0, 0);

// Send part 4. Be careful to use the correct command here. In many
// programming languages, there are two methods to send SCPI commands:
// Method 1 = stop at the first ‘0’ in the data

// Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.
// You must find and use the correct command for Method 2.

iwrite(id, ibuffer, bytesToSend, 0, 0);

// Send a terminating carriage return

iwrite(id, “\n”, 1, 1, 0);

// Identical to the section above, except for the Q data.

sprintf (cmd, “:MEM:DATA \”ARBQ:FILE1\”, #%d%d”, strlen(s),bytesToSend) ;
iwrite(id, cmd, strlen(cmd), 0, 0);

iwrite(id, gbuffer, bytesToSend, 0, 0);

iwrite(id, “\n”, 1, 1, 0);

printf (“*Loaded FILEl using the E443xB format\n”);

// The E4438C, E8267C and E8267D have a newer faster format which
// allows 16 bits to be used. However this format is not accepted in

// the E443xB. Therefore do not use this next section for the E443xB.

printf (“Note: Loading FILE2 on a E443xB will cause \”ERROR: 208, I/O error\”\n”);

// Identical to the I and Q sections above except

// a) The I and Q data are interleaved

// b) The buffer of I+Q is twice as long as the I buffer was.

// c) The SCPI command uses WFM1 instead of ARBI and ARBQ.
bytesToSend = numsamples*4;

sprintf (s, “%d”, bytesToSend) ;

sprintf (cmd, “:mem:data \”"WFM1:FILE2\”, #%d%d”, strlen(s),bytesToSend) ;

iwrite(id, cmd, strlen(cmd), 0, 0);

Agilent Signal Generators Programming Guide 275

Creating and Downloading Waveform Files
Programming Examples

iwrite(id, igbuffer, bytesToSend, 0, 0);
iwrite(id, “\n”, 1, 1, 0);
printf (“Loaded FILE2 using the E4438C, E8267C and E8267D format\n”);

return 0;

Calculating the RMS Voltage for a Waveform Programming Using C++

This example calculates the RMS voltage value of a waveform segment stored as 16-bit alternating I/Q
twos complement DAC values. Refer to the User’s Guide. On the Documentation CD, this example is
named: “calculate_rms_data_c++.txt.”

NOTE For a short the value must be a 16 bit quantity.
For waveforms of 4 Gsa or more, samples must be an int64.
Internally, the MXG ignores two or more zeros in a row when calculating RMS voltage values.

There is no interface version of this example in the Programming Examples chapter.

#include <math.h>

#ifndef WIN32

typedef long long int int64;
typedef long long unsigned uinté64;
#else // WIN32

typedef __int64 inté64;

typedef unsigned __int64 uinté64;
#endif // WIN32

static const int NUM_DAC_BITS=16;

static const int DAC_MAX= (1 << NUM_DAC_BITS) ;

// calculates the rms of a chunk of a waveform stored as 16-bit alternating
// I/Q twos complement DAC values.
// NOTE: short must be a 16 bit quantity.
// Also NOTE: For 4Gsa or more, samples must be an int64.
double
calcRmsWaveformSegment (const signed short* ig data, unsigned samples)
{
// a double cannot hold the full number accurately for very long waveforms
// This type can handle up to (but not including) 8Gsa.
uint64 sum_of_squares_accum = 0;
int ival;

int gval;

276 Agilent Signal Generators Programming Guide

}

Creating and Downloading Waveform Files
Programming Examples

unsigned mag_squared;
double rmsDac;

unsigned i;

for (i=0; i<samples; i++)

{

ival = (int) (ig_datal[i*2]);
gval = (int) (ig datal[i*2+1]);
mag_squared = (unsigned) (ival*ival) + (unsigned) (qval*qgval);

sum_of_squares_accum += mag_squared;
}
// the rms in DAC counts (0 - 32768)
rmsDac = sqgrt((double)sum_of_squares_accum / (double)samples);
// convert to normalized form (0 - 1.414).

return rmsDac * 2.0/ (double) (DAC_MAX) ;

MATLAB Programming Examples

This section contains the following programming examples:

“Creating and Storing I/Q Data” on page 277

“Creating and Downloading a Pulse” on page 281

“Downloading a Waveform, Markers, and Setting the Waveform Header” on page 284
“Playing Downloaded Waveforms” on page 290

Creating and Storing 1/Q Data

On the documentation CD, this programming example’s name is “offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the C++ programming
example “Creating and Storing Offset [/Q Data—Big and Little Endian Order” on page 255 and
performs the following functions:

error checking

data creation

data normalization

data scaling

I/Q signal offset from the carrier (single sideband suppressed carrier signal)

byte swapping and interleaving for little endian order data

I and Q interleaving for big endian order data

binary data file storing to a PC or workstation

reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function main

00 0e

0°

Program name: offset_iqg ml
Using MatLab this example shows how to

.) Create a simple IQ waveform

Agilent Signal Generators Programming Guide 271

Creating and Downloading Waveform Files
Programming Examples

% 2.) Save the waveform into the ESG/PSG Internal Arb format
% This format is for the N5182A, E4438C, E8267C, E8267D
% This format will not work with the ESG E443xB

% 3.) Load the internal Arb format file into a MatLab array

l.) Create Simple IQ Signal LEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERESESESES]
This signal is a single tone on the upper

side of the carrier and is usually refered to as

It is nothing more than a cosine wavefomm in I

%
%
%
% a Single Side Band Suppressed Carrier (SSBSC) signal.
%
% and a sine waveform in Q.

%

points = 1000; % Number of points in the waveform
cycles = 101; % Determines the frequency offset from the carrier
phaseInc = 2*pi*cycles/points;

phase = phaseInc * [0:points-1];

Iwave = cos (phase);

Qwave = sin(phase) ;

oe

Alternate way to calculate the waveform RMS voltage

o°

rms = sqgrt (sum(Iwave.*Iwave + Qwave*.Qwave) /points) ;

2.) Save waveform in internal Format * % &k ks k sk k ko ok k ok k ok ok ok ok k ok ok ok ok ok k ok ok ok ok
Convert the I and Q data into the internal arb format
The internal arb format is a single waveform containing interleaved IQ
data. The I/Q data is signed short integers (16 bits).
The data has values scaled between +-32767 where

DAC Value Description

32767 Maximum positive value of the DAC

0 Zero out of the DAC

-32767 Maximum negative value of the DAC

The internal arb expects the data bytes to be in Big Endian format.

This is opposite of how short integers are saved on a PC (Little Endian).

00 00 00 d° d° 0 o0 d° od° o0 P o°

For this reason the data bytes are swapped before being saved.

% Interleave the IQ data
waveform(1l:2:2*points) = Iwave;

waveform(2:2:2*points) = Qwave;

278 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

% [Iwave;Qwavel] ;

swaveform = waveform(:)';

% Normalize the data between +-1

waveform = waveform / max(abs(waveform)) ; % Watch out for divide by zero.

% Scale to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively signed short integer values
% waveform = round(waveform * (32767 / max(abs(waveform)))); % More efficient than previous two
steps!

% PRESERVE THE BIT PATTERN but convert the waveform to
% unsigned short integers so the bytes can be swapped.
% Note: Can't swap the bytes of signed short integers in MatLab.

waveform = uintl6 (mod (65536 + waveform, 65536)); %

% If on a PC swap the bytes to Big Endian
if strcmp(computer, 'PCWIN')
waveform = bitor (bitshift (waveform,-8),bitshift (waveform,8));

end

% Save the data to a file

% Note: The waveform is saved as unsigned short integers. However,

% the acual bit pattern is that of signed short integers and
% that is how the ESG/PSG interprets them.

filename = 'C:\Temp\EsgTestFile';

[FID, message] = fopen(filename, 'w');% Open a file to write data
if FID == -1 error('Cannot Open File'); end

fwrite (FID,waveform, 'unsigned short');% write to the file

fclose (FID) ; % close the file

3.) Load the internal Arb format file ****Hkxkkkkkhkkkkhhkhh Ak khhkxkkkkhkx %

This process is just the reverse of saving the waveform

Swap the bytes as necessary

%

%

% Read in waveform as unsigned short integers.

%

% Convert to signed integers then normalize between +-1
%

De-interleave the I/Q Data

% Open the file and load the internal format data

[FID, message] = fopen(filename, 'r');% Open file to read data

Agilent Signal Generators Programming Guide 279

Creating and Downloading Waveform Files
Programming Examples

if FID == -1 error('Cannot Open File'); end
[internalWave,n] = fread(FID, 'uintl6');% read the IQ file
fclose(FID) ;% close the file

internalWave = internalWave'; % Conver from column array to row array

% If on a PC swap the bytes back to Little Endian
if strcmp(computer, 'PCWIN') % Put the bytes into the correct order
internalWave= bitor (bitshift (internalWave,-8),bitshift (bitand(internalWave, 255),8));

end

% convert unsigned to signed representation
internalWave = double (internalWave) ;
tmp = (internalWave > 32767.0) * 65536;

igWave = (internalWave - tmp) ./ 32767; % and normalize the data

% De-Interleave the IQ data
IwaveIn = igWave(l:2:n);

QwaveIn = igWave(2:2:n);

280 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading a Pulse

NOTE This section applies only to the Agilent MXG and the PSG.

For the Agilent MXG, the maximum frequency is 6 GHz, and the pulsepat.m program’s
SOURce: FREQuency 20000000000 value must be changed as required in the following
programs. For more frequency information, refer to the signal generator’s Data Sheet.

On the documentation CD, this programming example’s name is “pulsepat.m.”
This MATLAB programming example performs the following functions:

e I and Q data creation for 10 pulses

* marker file creation

* data scaling

¢ downloading using Agilent Waveform Download Assistant functions (see “Using the Download
Utilities” on page 250 for more information)

% Script file: pulsepat.m

%

% Purpose:

%To calculate and download an arbitrary waveform file that simulates a
%simple antenna scan pulse pattern to the Agilent MXG/PSG vector signal generator.
%

% Define Variables:

% n -- counting variable (no units)

% t -- time (seconds)

% rise -- raised cosine pulse rise-time definition (samples)

% on -- pulse on-time definition (samples)

% fall -- raised cosine pulse fall-time definition (samples)

% 1 -- in—-phase modulation signal

% q -- quadrature modulation signal

n=4; % defines the number of points in the rise-time and fall-time
=-1:2/n:1-2/n; % number of points translated to time

rise=(1+sin(t*pi/2))/2; % defines the pulse rise-time shape

on=ones(1,120); % defines the pulse on-time characteristics
fall=(1+sin(-t*pi/2))/2; % defines the pulse fall-time shape

off=zeros(1,896); % defines the pulse off-time characteristics

Agilent Signal Generators Programming Guide 281

Creating and Downloading Waveform Files
Programming Examples

% arrange the i—samples and scale the amplitude to simulate an antenna scan
% pattern comprised of 10 pulses
i = .707*[rise on fall off...
[.9*[rise on fall off]]...

[.8*[rise on fall off]]...

[.7*[rise on fall off]]...

[.6*[rise on fall off]]...

[.5*[rise on fall off]]...

[.4*[rise on fall off]]...

[.3*[rise on fall off]]...

[.2*[rise on fall off]]...

[.1*[rise on fall off]]];

% set the q—samples to all zeroes
q = zeros(1,10240);

% define a composite iq matrix for download to the Agilent MXG/PSG using the

% Waveform Download Assistant

IQData = [i + (j * @J;

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,length(IQData)); % fill marker array with zero, i.e no markers set

Markers(1,1) = 1; % set marker to first point of playback

% make a new connection to theAgilent MXG/PSG over the GPIB interface

io = agt_newconnection('gpib',0,19);

% verify that communication with the Agilent MXG/PSG has been established
[status, status_description, query_result] = agt_query(io,'*idn?");

if (status < 0) return; end

% set the carrier frequency and power level on the Agilent MXG/PSG using the Agilent
J%Waveform Download Assistant

282 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 20000000000");

[status, status_description] = agt _sendcommand(io, 'POWer 0");

% define the ARB sample clock for playback
sampclk = 40000000;

% download the iq waveform to the PSG baseband generator for playback

[status, status_description] = agt waveformload(io, IQData, 'pulsepat', sampclk, 'play', 'no_normscale',
Markers);

% turn on RF output power

[status, status_description | = agt_sendcommand(io, 'OUTPut:STATe ON')

You can test your program by performing a simulated plot of the in—-phase modulation signal in
Matlab (see Figure 5-2 on page 283). To do this, enter plot (i) at the Matlab command prompt.

Figure 5-2 Simulated Plot of In-Phase Signal

08

0.7H

0.6 H

0.5 H o 4

0.4 4

0.3 H 1

0.2 H

0.1 H

H

0 2000 4000 6000 8000 10000 12000

The following additional Matlab M-file pulse programming examples are also available on the
Documentation CD-ROM for your Agilent MXG and PSG signal generator:

Agilent Signal Generators Programming Guide 283

Creating and Downloading Waveform Files

Programming Examples

NOTE For the Agilent MXG, the SOURce:FREQuency 20000000000 value must be changed as
required in the following programs. For more information, refer to the Data Sheet.

barker.m

chirp.m

FM.m

nchirp.m

pulse.m

pulsedroop.m

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple 7-bit barker RADAR signal to the PSG vector signal
generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using linear FM chirp to
the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a single tone FM signal with a rate of 6 KHz, deviation of

=/- 14.3 KHz, Bessel null of dev/rate=2.404 to the Agilent MXG/PSG vector signal
generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using non-linear FM
chirp to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal with pulse droop to the PSG vector signal
generator.

Downloading a Waveform, Markers, and Setting the Waveform Header

NOTE This example works on either a 32bit or 64bit system that is connected over the LAN. So,
the Waveform Download Assistant—which only works on 32bit systems—is not required, to
use this program.

Additional documentation is available on this program through Matlab, by adding your PC’s
path to the Matlab’s path and then from the Matlab command line type: “help download’.

This is example is used to download a waveform to the instrument.

On the documentation CD, this programming example’s name is “Download.m.”

This MATLAB programming example performs the following functions:

¢ downloads a waveform
e downloads the waveform’s marker information
¢ downloads the waveform’s header information

function Download(tcpipAddress, igWave, name, markers, header)

% Download(tcpipAddress, igWave, name, markers, header);

284

Agilent Signal Generators Programming Guide

00 00 00 d° d° d° d° d° d° d° 0 O d° d° J° d° d° J° J° O O 0 0 J° o 0 0 0 0 o o I o o o J° o0 o°

Creating and Downloading Waveform Files

Copyright 2009 Agilent Technologies Inc.

This function downloads a waveform and markers to an Agilent ESG-C,
PSG-C/D, or MXG Vector Signal Generator. markers is a two dimentional
array that contains 4 markers. The header contains the sample rate, the
waveform rms voltage, and the marker routings to the pulse modulator and
the ALC hold. Default values used by the header if values are not present.
header.sampleRate = 100e6; % Waveform Sample Rate
header.rms = CalculateWaveformRMS (igWave); % Waveform RMS voltage
header.peak = 1.414; % Waveform Peak voltage

header.runtimeScaling = 70; % Runtime scaling in percent

header.pulse = 'None'; % Marker routing 'Non', 'M1', 'M2', 'M3', 'M4'
header.alcHold = 'None'; % Marker routing 'Non', 'M1', 'M2', 'M3', 'M4'
header.description = 'Agilent Technologies'; % User provided description

INPUT PARAMETERS:

tcpipAddress - '141.121.148.188' What ever works for your signal Generator!
name - Waveform name - 21 characters max

igWave - Complex waveform, min length 60 points

markers - markers (4,length(igWave)) 4 possible markers

header - Structure containing waveform information.

OUTPUT PARAMETERS:

EXAMPLES :
name = 'My_Test'; % Waveform name
tcpipAddress = '141.121.151.129"'; % Signal Generator IP Address
n = 1000; % Points in waveform
phase = (102*pi/n)*(0:(n-1));
igWave= complex (cos (phase),sin(phase)); % Create single tone
markers = zeros(4,n); % Create markers
markers(1,1:2) = 1;

markers(2,1:4) = 1;
markers(3,1:8) = 1;
markers(4,1:16) = 1;
header.sampleRate = 50e6; % Set Sample Rate to 50 MHz

Download(tcpipAddress, igWave, name, markers, header);

% Range checks
if nargin<2

error ('ERROR: download() Insufficient input parmaeters.');

Programming Examples

Agilent Signal Generators Programming Guide

285

Creating and Downloading Waveform Files
Programming Examples

end
if length (igWave)<60
error ('ERROR: download() igWave must contain 60 or more points.');
end
if nargin<3 name = 'NO_NAME'; end
if nargin<4
markers = zeros(4,length(igwave));
markers(:,1:4) = 1;
end
if nargin<5
header = [];
end
if length(igWave) ~= length (markers)
error ('ERROR: download() The length of the igWave and the marker arrays must be the same.');

end

% Process waveform and marker data
[igData, rms] = FormatWaveform(igWave) ;

mkrData = FormatMarkers(markers);

% Download the Waveform
wfmCmd = CreateWaveformCommand(name, length(igWave));
mkrCmd = CreateMarkerCommand(name, length(markers));

hdrCmd = CreateHeaderCommand(name, rms, header);

bufSize = 8192;
t = tcpip(tcpipAddress, 5025);
t.OutputBufferSize = bufSize;

% Order dependency on download. l:Waveform, 2:Markers, 3:Header

fopen(t) ;

fprintf (t, '%s',wfmCmd) ;

$fwrite(t,igData, 'intl6'); % Use loop to prevent the need for a buffer as big as waveform
WriteData (t,igData,2,bufSize) ;

fprintf(t, '\n');

fprintf (t, 'syst:err?');

fgets(t)

fprintf (t, '%s',mkrCmd) ;
$fwrite(t,mkrData, 'int8');

286 Agilent Signal Generators Programming Guide

end

WriteData (t,mkrData,l,bufSize);
fprintf(t, '\n');
fprintf (t, 'syst:err?');
fgets(t)

fprintf (t, '$s\n',hdrCmd) ;
fprintf (t, 'syst:err?');

fgets(t)

fclose(t);

function WriteData (fid,data, format,bufSize)

% Write data using a loop to support large waveforms without having to

% specify a huge buffer.

o°

o°

S S -

INPUT PARAMETERS:

fid - file id

data - all the data

format - data size to output in bytes 1,2,4 etc.
bufSize - Buffer size in bytes

buf = floor (bufSize/format) ;
fullChunks = floor(length(data) /buf) ;
partialChunk = length(data)- (fullChunks*buf) ;

sfmt = 'int32';
if format==
sfmt = 'int8"';
elseif format==
sfmt = 'intlé6';

end

stop=0;
for i1=0: (fullChunks-1)
start = 1+(i*buf);
stop = (i+1)*buf;
fwrite(fid,data(start:stop),sfmt);
end
if partialChunk>0
fwrite(fid,data(stop+l:end),sfmt) ;

end

Creating and Downloading Waveform Files
Programming Examples

Agilent Signal Generators Programming Guide

287

Creating and Downloading Waveform Files
Programming Examples

end

function [data, rms] = FormatWaveform(igWave)

% Scale the waveform to DAC values

[a,b] = size(igWave) ;
if a>b

igWave = igWave';
end

maxV = max(abs([real (igWave) imag(igWave)l]));
if maxV==0 maxV=1; end % Prevent divide by zero
scale = 32767 /maxV;

igWave = round(scale*igWave) ;

% Calcurate waveform RMS

rms = sgrt(mean(abs(igWave).”2)) / 32767;
% account for pulse duty cycle

pw = sum(abs (igWave)>0) ;

dutyCycle = pw/length (igWave) ;

rms = rms/dutyCycle;

% Interlace the I & Q vectors
data = [real (igWave) ;imag (igWave)];

data = data(:)';

end

function mkr = FormatMarkers(markers)
% The markers are placed in the 4 LSBs of a byte
% in this order M4 M3 M2 M1

[c,d] = size(markers);

if c>d

markers = markers';

[c,d] = size(markers);
end
mkr = (markers(l,:)~=0);
if e>1
mkr = mkr + 2* (markers(2,:)~=0);
end
if c>2
mkr = mkr + 4* (markers(3,:)~=0);
end
if >3

288 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

mkr = mkr + 8* (markers(4,:)~=0);
end

end

function hdrCmd = CreateHeaderCommand(file_name, rms, header)

% [:SOURce] :RADio[1]|2|3|4:ARB:HEADer :WRITe
"filename", "description",<sample_rate>,<scaling>,<marker_polarity>,<alc_hold>,<alt_power>, <pulse>, <mod_
atten>, <mod_filter>, <output_filter>, <peak_power>, <rms>

% This function doesn't do any range checking
hdr.sampleRate = 100e6;
hdr.rms = rms;

hdr.peak = 1.414;

hdr.runtimeScaling = 70; % In percent
hdr.pulse = 'None';

hdr.alcHold = 'None';

hdr.description = 'Agilent Technologies';

if ~isempty (header)
if isstruct (header)

if isfield(header, 'sampleRate')
hdr.sampleRate = header.sampleRate;

end

if isfield(header, 'rms')
hdr.rms = header.rms;

end

if isfield(header, 'peak')
hdr .peak = header.peak;

end

if isfield(header, 'runtimeScaling')
hdr.runtimeScaling = header.runtimeScaling;

end

if isfield(header, 'pulse')
hdr.pulse = header.pulse;

end

if isfield(header, 'alcHold')
hdr.alcHold = header.alcHold;

end

if isfield(header, 'description')
hdr.description = header.description;

end

end

end

Agilent Signal Generators Programming Guide 289

Creating and Downloading Waveform Files
Programming Examples

hdrCmd = ['RADio:ARB:HEAD:WRIT "WFMl:' file_name '","' hdr.description '",' num2str (
hdr.sampleRate) ',' num2str (hdr.runtimeScaling) ', NONE,' hdr.alcHold ',UNSP,' hdr.pulse
' ,UNSP, UNSP,UNSP, ' num2str (hdr.peak) ',' num2str(hdr.rms)];

end

function wfmCmd = CreateWaveformCommand(file_name, points
% :MMEM:DATA "<file_name>", #ABC
% "<file_name>" the I/Q file name and file path within the signal generator
% # indicates the start of the data block
% A the number of decimal digits present in B
% B a decimal number specifying the number of data bytes to follow in C
B = num2str (4*points); % Bytes in waveform
A = num2str (length(B)) ;
wfmCmd = [':MEM:DATA:UNPR "WFMl:' file_name '",#' A B];

end

function mkrCmd = CreateMarkerCommand(file_name, points)
B = num2str (points); % Bytes in marker file
A = num2str (length(B)) ;
mkrCmd = [':MEM:DATA:UNPR "MKR1:' file_name '",#' A B];

end

Playing Downloaded Waveforms

NOTE This example works on either a 32bit or 64bit system that is connected over the LAN. So,
the Waveform Download Assistant—which only works on 32bit systems—is not required, to
use this program.

Additional documentation is available on this program through Matlab, by adding your PC’s
path to the Matlab’s path and then from the Matlab command line type: “help
PlayWaveform”.

This is a simple example to play a waveform that was downloaded to the instrument. This example
can be easily modified to send additional SCPI commands.

On the documentation CD, this programming example’s name is “PlayWaveform.m.”
This MATLAB programming example performs the following functions:

e plays a waveform that has been downloaded

function PlayWaveform(tcpipAddress, name)

% PlayWaveform(tcpipAddress, name);

290 Agilent Signal Generators Programming Guide

% Copyright 2009 Agilent Technologies Inc.

00 00 0P

o°

INPUT PARAMETERS:

Creating and Downloading Waveform Files
Programming Examples

Play the waveform in the Signal Generator

% tcpipAddress - '141.121.148.188' Whatever works for your signal Generator!
% name - Waveform name - 21 characters max

%

% EXAMPLE:

% name = 'My_Test'; % Waveform name

oe

tcpipAddress = '141.121.151.129"';

oe

PlayWaveform(tcpipAddress, name

playCmd = [':RAD:ARB:WAV "WFM1:'
t = tcpip(tcpipAddress, 5025);

fopen(t) ;
fprintf (t, '$s\n',playCmd) ;

fprintf (t, 'syst:err?');
fgets(t)

fclose(t);

)

name

% Signal Generator IP Address

% play the waveform

NP

Agilent Signal Generators Programming Guide

291

Creating and Downloading Waveform Files
Programming Examples

Visual Basic Programming Examples

Creating 1/Q Data—Little Endian Order
On the documentation CD, this programming example’s name is “Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order
data, and performs the following functions:

¢ error checking

e I an Q integer array creation

e I an Q data interleaving

* byte swapping to convert to big endian order
* binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using FTP (see “FTP
Procedures” on page 232).

I R

' Program Name: Create_IQData

Program Description: This program creates a sine and cosine wave using 200 I/Q data

samples. Each I and Q value is represented by a 2 byte integer. The sample points are

calculated, scaled using the AMPLITUDE constant of 32767, and then stored in an array

named ig_data. The AMPLITUDE scaling allows for full range I/Q modulator DAC values.

Data must be in 2's complemant, MSB/LSB big-endian format. If your PC uses LSB/MSB

format, then the integer bytes must be swapped. This program converts the integer
' array values to hex data types and then swaps the byte positions before saving the

' data to the IQ DataVB file.

R R R

Private Sub Create_IQData()
Dim index As Integer

Dim AMPLITUDE As Integer
Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

Dim loHex As String

Dim hiHex As String

Dim strSrc As String

Dim numPoints As Integer
Dim FileHandle As Integer
Dim data As Byte

Dim ig data() As Byte

Dim strFilename As String

strFilename = "C:\IQ_DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers for the waveform

292 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

AMPLITUDE = 32767 ' Scale the amplitude for full range of the signal generators
' I/Q modulator DAC
pi = 3.141592

Dim intIQ_Data(0 To 2 * SAMPLES - 1) 'Array for I and Q integers: 400
ReDim ig data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

'Create an integer array of I/Q pairs

For index = 0 To (SAMPLES - 1)
intIQ _Data(2 * index) = CInt (AMPLITUDE * Sin(2 * pi * index / SAMPLES))
intIQ_Data(2 * index + 1) = CInt (AMPLITUDE * Cos(2 * pi * index / SAMPLES))

Next index

'Convert each integer value to a hex string and then write into the ig data byte array
'MSB, LSB ordered
For index = 0 To (2 * SAMPLES - 1)

strSrc = Hex(intIQ_Data(index)) 'convert the integer to a hex value
If Len(strSrc) <> 4 Then
strSrc = String(4 - Len(strSrc), "O0") & strSrc 'Convert to hex format i.e "800F
End If 'Pad with 0's if needed to get 4
‘characters i.e '0' to "0000"

hiHex = Mid$ (strSrc, 1, 2) 'Get the first two hex values (MSB)

loHex = Mid$ (strSrc, 3, 2) 'Get the next two hex values (LSB)

loByte = CByte("&H" & loHex) 'Convert to byte data type LSB

hiByte = CByte("&H" & hiHex) 'Convert to byte data type MSB

ig _data(2 * index) = hiByte 'MSB into first byte

ig data(2 * index + 1) = loByte 'LSB into second byte

Next index

'Now write the data to the file

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iqg _data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len = numPoints + 1

Agilent Signal Generators Programming Guide 293

Creating and Downloading Waveform Files
Programming Examples

On Error GoTo file_error

For index = 0 To (numPoints)
data = ig_data(index)
Put #FileHandle, index + 1, data 'Write the I/Q data to the file

Next index
Close #FileHandle
Call MsgBox("Data written to file " & strFilename, vbOKOnly, "Download")
Exit Sub

file_error:
MsgBox Err.Description

Close #FileHandle

End Sub

Downloading I/Q Data

On the signal generator’s documentation CD, this programming example’s name is
“Download_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created
in “Creating I/Q Data—Little Endian Order” on page 292 into non-volatile memory using a LAN
connection. To use GPIB, replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

NOTE The example program listed here uses the VISA COM IO API, which includes the
WriteIEEEBlock method. This method eliminates the need to format the download command
with arbitrary block information such as defining number of bytes and byte numbers. Refer
to “SCPI Command Line Structure” on page 228 for more information.

This program also includes some error checking to alert you when problems arise while trying to
download files. This includes checking to see if the file exists.

Thxhkkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhhh kb bk bk ok bk ok hk ok hk ok hkhk kA A A A A A A A A A AR Ak Ak Ak hkdkhkdkhkdkhkdhkhkhkhhkhkdkkkk
' Program Name: Download_File
' Program Description: This program uses Microsoft Visual Basic 6.0 and the Agilent

' VISA COM I/O Library to download a waveform file to the signal generator.

' The program downloads a file (the previously created ‘'IQ_DataVB’ file) to the signal

' generator. Refer to the Programming Guide for information on binary

294 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

' data requirements for file downloads. The waveform data 'IQ_DataVB' is
' downloaded to the signal generator's non-volatile memory (NVWFM)

' " JUSER/WAVEFORM/IQ_ DataVB". For volatile memory (WFM1l) download to the
' " /USER/BBG1/WAVEFORM/IQ_DataVB" directory.

' You must reference the Agilent VISA COM Resource Manager and VISA COM 1.0 Type
' Library in your Visual Basic project in the Project/References menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the Agilent

' VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the BasicFormattedIO.dll

' Use a statement such as "Dim Instr As VisaComLib.FormattedIO488" to

' create the formatted I/O reference and use

' "Set Instr = New VisaComLib.FormattedIO488" to create the actual object.

IR SRS E R R RS RS EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEERESERESESESSESSSS
' IMPORTANT: Use the TCPIP address of your signal generator in the rm.Open

' declaraion. If you are using the GPIB interface in your project use "GPIB::19::INSTR"

' in the rm.Open declaration.

I R

Private Sub Download_File()

' The following four lines declare IO objects and instantiate them.
Dim rm As VisaComLib.ResourceManager

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedI0488

Set SigGen = New VisaComLib.FormattedIO488

' NOTE: Use the IP address of your signal generator in the rm.Open declaration

Set SigGen.IO = rm.Open("TCPIP0::000.000.000.000")

Dim data As Byte

Dim ig data() As Byte
Dim FileHandle As Integer
Dim numPoints As Integer
Dim index As Integer

Dim Header As String

Dim response As String
Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ_DataVB" ‘File Name and location on PC

'Data will be saved to the signal generator’s NVWFM
' /USER/WAVEFORM/IQ DataVB directory.

Agilent Signal Generators Programming Guide 295

Creating and Downloading Waveform Files
Programming Examples

FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a download
.I0.Timeout = 5000 'Timeout 50 seconds
.WriteString "*RST" 'Reset the signal generator.
End With
numPoints = (FileLen(strFilename)) 'Get number of bytes in the file: 800 bytes
ReDim ig data (0 To numPoints - 1) 'Dimension the ig _data array to the

'size of the IQ_DataVvB file: 800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the file for binary read

On Error GoTo file_error

For index = 0 To (numPoints - 1) 'Write the IQ_DataVB data to the ig data array
Get #FileHandle, index + 1, data ' (index+1) is the record number
ig_data(index) = data

Next index

Close #FileHandle 'Close the file

'Write the command to the Header string. NOTE: syntax
Header = "MEM:DATA ""/USER/WAVEFORM/IQ_DataVvB"","

'Now write the data to the signal generator's non-volatile memory (NVWFM)

SigGen.WriteIEEEBlock Header, iqg _data

SigGen.WriteString "*OPC?" 'Wait for the operation to complete
response = SigGen.ReadString 'Signal generator reponse to the OPC? query
Call MsgBox("Data downloaded to the signal generator", vbOKOnly, "Download")
Exit Sub
errorhandler:
MsgBox Err.Description, vbExclamation, "Error Occurred", Err.HelpFile, Err.HelpContext
Exit Sub
file_error:
Call MsgBox (Err.Description, vbOKOnly) 'Display any error message
Close #FileHandle
End Sub

296 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

HP Basic Programming Examples

This section contains the following programming examples:

¢ “Creating and Downloading Waveform Data Using HP BASIC for Windows®” on page 297

e “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on page 299

¢ “Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows” on page 301
¢ “Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 302

Creating and Downloading Waveform Data Using HP BASIC for Windows®
On the documentation CD, this programming example’s name is “hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows into volatile ARB
memory. The waveform generated by this program is the same as the default SINE_TEST WFM
waveform file available in the signal generator’s waveform memory. This code is similar to the code
shown for BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#,K";""MMEM:DATA "'NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "BASIC Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array (1l:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array (I)=INT(32767* (SIN(I*360/Num_points)))
70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array (I)=INT(32767* (COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data Generated"

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719

140 ASSIGN @PSGb TO 719;FORMAT MSB FIRST
150 Nbytes$=VALS (Nbytes)

160 Ndigits=LEN (Nbytes$)

Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.

Agilent Signal Generators Programming Guide 297

Creating and Downloading Waveform Files
Programming Examples

170
180
190
200
210
220
230
240
250
260
270
280
290

Ndigits$=VALS (Ndigits)

WAIT 1
OUTPUT
OUTPUT
OUTPUT
WAIT 1
OUTPUT
OUTPUT
ASSIGN
ASSIGN
PRINT

@PSG USING "#,K";":MMEM:DATA ""WFMl:data_file"", #"
@PSG USING "#,K";Ndigitss$
@PSG USING "#,K";Nbytess

@PSGb; Int_array (*)
@PSG; END

@PSG TO *

@PSGb TO *

PRINT "*END*"

END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This IO path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

298 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

230: Sends the binary data. Note that PSGb is the binary IO path.
240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Creating and Downloading Waveform Data Using HP BASIC for UNIX
On the documentation CD, this programming example’s name is “hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The code is
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and
line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#,K";""MMEM:DATA "'NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 ! RE-SAVE "UNIX_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array (1l:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array (I)=INT(32767* (SIN(I*360/Num_points)))
70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array (I)=INT(32767* (COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719;FORMAT ON

140 ASSIGN @PSGb TO 719;FORMAT OFF
150 Nbytes$=VALS (Nbytes)

160 Ndigits=LEN (NbytessS)

170 Ndigits$=VALS (Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFMl:data_file"", #"
200 OUTPUT @PSG USING "#,K";Ndigits$

Agilent Signal Generators Programming Guide 299

Creating and Downloading Waveform Files
Programming Examples

210
220
230
240
241
250
260
270
280
290

OUTPUT
WAIT 1
OUTPUT
WAIT 2
OUTPUT
ASSIGN
ASSIGN
PRINT

@PSG USING "#,K";Nbytess

@PSGb; Int_array (*)

@PSG; END

@PSG TO *
@PSGb TO *

PRINT "*END*"

END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This 10 path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End-of-Line to terminate the transmission.

300 Agilent Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

250 to 260: Closes the connections to the signal generator.

290: End the program.

Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows
On the documentation CD, this programming example’s name is “e443xb_hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into
volatile ARB memory. This program is similar to the following program example as well as the
previous examples. The difference between BASIC for UNIX and BASIC for Windows is the way the
formatting, for the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 160 with:
160 OUTPUT @ESG USING "#,K";:"MMEM:DATA ""NVARBI:testfile"", #"
and replace line 210 with:

210 OUTPUT @ESG USING "#,K";""MMEM:DATA "'NVARBQ:testfile", #"

First, the I waveform data is put into an array of integers called Iwfm data and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Nbytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in Iwfm data,
since an integer is 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "ARB_IQ Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1l:Num_points),Qwfm_data (1l:Num_points)
40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191* (SIN(I*360/Num_points))+8192)

70 Owfm_data (I)=INT(8191* (COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719

120 IASSIGN @Esgb TO 719;FORMAT MSB FIRST

130 Nbytes$=VALS (Nbytes)

140 Ndigits=LEN (NbytessS)

150 Ndigits$=VALS (Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",6 #"
170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytess$S

Agilent Signal Generators Programming Guide 301

Creating and Downloading Waveform Files
Programming Examples

190 OUTPUT @Esgb; Iwfm_data(*)

200 OUTPUT @Esg; END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",6 #"
220 OUTPUT @Esg USING "#,K";Ndigitss$
230 OUTPUT @Esg USING "#,K";Nbytess$
240 OUTPUT @Esgb;Qwfm_data (*)

250 OUTPUT @Esg; END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 298 for program comments.

Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX
On the documentation CD, this programming example’s name is “e443xb_hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It is similar
to the previous program example. The difference is the way the formatting for the most significant bit
(MSB) on lines is handled.

First, the I waveform data is put into an array of integers called Iwfm data and the Q waveform
data is put into an array of integers called Qwfm_ data. The variable Nbytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in Iwfm data,
since an integer is represented 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

302 Agilent Signal Generators Programming Guide

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

Creating and Downloading Waveform Files

! RE-SAVE "ARB_IQ_ file"

Num_points=200

ALLOCATE INTEGER Iwfm_data (l:Num_points),Qwfm_data (1:Num_points)

DEG

FOR I=1 TO Num_points

Iwfm_data (I)=INT(8191* (SIN(I*360/Num_points))+8192)

Qwfm_data (I)=INT(8191* (COS(I*360/Num_points))+8192)

NEXT I
PRINT
Nbytes
ASSIGN
ASSIGN

"Data Generated"

=2*Num_points

@Esg TO 719;FORMAT ON
@Esgb TO 719;FORMAT OFF

Nbytes$=VALS (Nbytes)

Ndigits=LEN (Nbytess)

Ndigits$=VALS (Ndigits)

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
ASSIGN
ASSIGN
PRINT
PRINT
END

@Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",6 #"
@Esg USING "#,K";Ndigits$

@Esg USING "#,K";Nbytess$

@Esgb; Iwfm_data(*)

@Esg; END

@Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",6 #"
@Esg USING "#,K";Ndigits$

@Esg USING "#,K";Nbytess$

@Esgb;Qwfm_data (*)

@Esg; END

@Esg TO *

@Esgb TO *

"k END* "

Program Comments

Programming Examples

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

Agilent Signal Generators Programming Guide

303

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Program Comments (Continued)

80: End of loop.

160 and 210: The I and Q waveform files have the same name
90 to 300 See the table on page 300 for program comments.

Troubleshooting Waveform Files

Symptom Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range The amplitude of the signal exceeds the DAC input range. The typical causes are

unforeseen overshoot (DAC values within range) or the input values exceed the
DAC range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 210.

On the Agilent MXG, this error can occur if an encrypted file (.SECUREWAVE) is
being downloaded to the signal generator from a PC or USB Media with a different
suffix (i.e. not .SECUREWAVE).

To solve the problem, use the Use as or Copy File to Instrument softkey menus to
download the encrypted file to the instrument. For more information, see
“Encrypted I/Q Files and the Securewave Directory (Agilent MXG)” on page 227.

ERROR 629, File format invalid The signal generator requires a minimum of 60 samples to build a waveform and

the same number of I and Q data points.

ERROR -321, Out of memory

There is not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory. Refer to “Waveform Memory” on page 220.

No RF Output

The marker RF blanking function may be active. To check for and turn RF blanking
off, refer to “Configuring the Pulse/RF Blank (Agilent MXG)” on page 305 and
“Configuring the Pulse/RF Blank (ESG/PSG)” on page 305. This problem occurs
when the file header contains unspecified settings and a previously played
waveform used the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal Check for the following:

® The data was downloaded in little endian order. See “Little Endian and Big
Endian (Byte Order)” on page 208 for more information.

® The waveform contains an odd number of samples. An odd number of samples
can cause waveform discontinuity. See “Waveform Phase Continuity” on
page 217 for more information.

304

Agilent Signal Generators Programming Guide

Configuring the Pulse/RF Blank (Agilent MXG)

Mode

v

Nodulation Hode

Real Time I/0Q
Easebande
AHGKN

»&M\\A‘

SCPI commands:

Oual ARBs]

Triooer Tupe
(Cont inuous , ¥
Free Runl

Y

Trigger Source
(ExE 1Y

Arb
ARE
an
Select —Arb
HaweformM)
Marker Polarituw
ARE SetupM

\i

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

If the default marker is used,
toggle the Pulse/RF Blank (None)
softkey to None. For more
information on markers, refer to
“Marker File” on page 215.

Harker Routing ,’

Pulse/RF Blank
(M

one)|

Marker Routingm

Set Markerss

Hore 1 of 3 % |

Samphn gt)

[:SOURce] :RADio[1] :ARB:MDEStination:PULSe NONE|MI1 [M2[M3 [M4

[: SOURce] :RADio[1] :ARB:MDEStination:PULSe?

ALC Hold
(Hone)™

A

For details on each key, use the key help. Refer to “Getting Help (Agilent MXG)” on page 20 and the User’s Guide. For additional SCPI
command information, refer to the SCPI Command Reference.

Configuring the Pulse/RF Blank (ESG/PSG)

Mode Setup
Hardkey

'

SCPI commands:

[:SOURce] :RADio:ARB:MDEStination:PULSe NONE [MI1 [M2 M3 [M4

[: SOURce] :RADio:ARB:MDEStination: PULSe?

Arb ALHGH
TN On

Eandwidth
1.000000 MHz

Haveform Length,
(5242881

Moize Seed
Random

ARE Setupk

Reference Setupd

Laveform,
Utilities

Marker,
Utilities

More
(1 of 23

Marker Polaritus

Marker RoutingM

[

Pulse/RF Blark
(Mone)

ALC Hold,
(Mone)

Alternate
Amplitudew
(Mone)

-

If the default marker is
used, toggle the
Pulse/RF Blank (None)
softkey to None. For
more information on
markers, refer to
“Marker File” on

page 215.

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command

Reference.

Agilent Signal Generators Programming Guide

305

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

306 Agilent Signal Generators Programming Guide

6 Creating and Downloading User—Data Files

NOTE

Some features apply to only the E4438C with Option 001, 002, 601, or 602 and E8267D with
Option 601 or 602. These exceptions are indicated in the sections.

On the Agilent MXG, the internal baseband generator speed upgrade Options 670, 671, and
672 are option upgrades that require Option 651 and 652 to have been loaded at the factory
(refer to the Data Sheet for more information). Any references to 651, 652, or 654 are
inclusive of 671, 672, and 674.

The following sections and procedures contain remote SCPI commands. For front panel key
commands, refer to the User’s Guide, Key and Data Field Reference (ESG and PSG), or to
the Key Help in the signal generator.

For the N5161A/62A the softkey menus and features mentioned in this chapter are only
available through the Web-Enabled MXG or through SCPI commands. Refer to “Using the
Web Browser” on page 11 and to the SCPI Command Reference.

This chapter explains the requirements and processes for creating and downloading user-data, and
contains the following sections:

e User File Data (Bit/Binary) Downloads (E4438C and E8267D) on page 315

¢ Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) on page 338

e FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D) on page 352

e Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 6564 Only) on page 356

¢ Save and Recall Instrument State Files on page 357

e User Flatness Correction Downloads Using C++ and VISA on page 368
e Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only) on page 372

Agilent Signal Generators Programming Guide 307

Creating and Downloading User—Data Files

Overview

Overview

User data is a generic term for various data types created by the user and stored in the signal
generator. This includes the following data (file) types:

Bit

Binary

PRAM

FIR Filter
State

User Flatness
Correction

This file type lets the user download payload data for use in streaming or framed
signals. It lets the user determine how many bits in the file the signal generator
uses.

This file type provides payload data for use in streaming or framed signals. It
differs from the bit file type in that you cannot specify a set number of bits.
Instead the signal generator uses all bits in the file for streaming data and all bits
that fill a frame for framed data. If there are not enough bits to fill a frame, the
signal generator truncates the data and repeats the file from the beginning.

With this file type, the user provides the payload data along with the bits to
control signal attributes such as bursting. This file type is available for only the
real-time Custom and TDMA modulation formats.

This file type stores user created custom filters.

This file type lets the user store signal generator settings, which can be recalled.
This provides a quick method for reconfiguring the signal generator when
switching between different signal setups.

This file type lets the user store amplitude corrections for frequency.

Prior to creating and downloading files, you need to take into consideration the file size and the
amount of remaining signal generator memory. For more information, see “Signal Generator Memory”

on page 309

308

Agilent Signal Generators Programming Guide

Signal Generator Memory

Creating and Downloading User—Data Files
Signal Generator Memory

The signal generator provides two types of memory, volatile and non-volatile.

NOTE User BIT, and User PRAM references are only applicable to the E4438C with Options 001,

002, 601, or 602, and E8267D with Options 601 or 602.

User FIR references are only applicable to the N5162A and N5182A with Options 651, 652,
or 654, E4438C with Options 001, 002, 601, or 602, and E8267D with Options 601 or 602.

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or

pattern RAM (PRAM). Refer to Table 6-1 for the file types that share this

memory:

Table 6-1 Signal Generators and Volatile Memory File Types

Volatile Memory Type Model of Signal Generator
N5162A N5182A | E4438C with E8267D Option | All Other
with Option Option 001, 601 or 602 models?
651, 652, or 654 | 002, 601, or
602
I/Q X b X -
Marker X X X -
File header X X X -
User PRAM - X X -
User Binary X X X -
User Bit - X X -
Waveform Sequences n/aP n/aP n/aP -
(multiple I/Q files played together)
a.N5161A, N5181A, N5183A, E8663B/63D, E4428C, and the E8257D.
b.Waveform sequences are always in non—volatile memory.
Non-volatile Storage memory where files survive cycling of the signal generator power. Files

remain until overwritten or deleted. Refer to Table 6-2 on page 310 for the file
types that share this memory:

Agilent Signal Generators Programming Guide

309

Creating and Downloading User—Data Files
Signal Generator Memory

Table 6-2 Signal Generators and Non—Volatile Memory Types

Non-Volatile Memory Type Model of Signal Generator
N5162A/N5182A | E4438C with E8267D Option | All Other
with Option Option 001, 601 or 602 models?
651, 652, or 654 | 002, 601, or

602

/Q X X X -

Marker X X X -

File header X X X -

Sweep List X X X -

User PRAM - X X -

User Binary X X X -

User Bit - X X -

User FIR X X X -

Instrument State X X X X

Waveform Sequences X X X -

(multiple I/Q files played together)

a.N5161A, N5181A, N5183A, E8663B/63D, E4428C, and the E8257D.

The following figure shows the signal generator’s directory structure for the user-—data files.

310 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Signal Generator Memory

Root directory

Agilent MXG (Only): Internal] _-'J
Storage media ¢ Volatile memory directory
(i.e. Nonvolatile memory) USER

SO0 o -

BIN FIR STATE USERFLAT WAVEFORM

'] Volatile memory data

MXG (only) USB media: .
File listing with extensions? (WFM1)
_--""

WAVEFORM/PRAM

\i

_'__J <& Agilent MXG?!

Agilent ESG and PSG (Only): NONVOLATILE
Nonvolatile memory L]
BIN BIT FIR STATE USERFLAT WAVEFORM

1This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.
2The Agilent MXG uses an optional “USB media” to store non—volatile waveform data.

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a user-data file
with 60 bytes uses 1024 bytes of memory. For a file that is too large to fit into 1024 bytes, the signal
generator allocates additional memory in multiples of 1024 bytes. For example, the signal generator
allocates 3072 bytes of memory for a file with 2500 bytes.

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, files can cause the signal generator to allocate more memory than what is
actually used, which decreases the amount of available memory.

User-data blocks consist of 1024 bytes of memory. Each user-data file has a file header that uses
512 bytes for the Agilent MXG, or 256 bytes for the ESG/PSGin the first data block for each
user—data file.

Non-Volatile Memory (Agilent MXG)

On the N5182A, non-volatile files are stored on the non-volatile internal signal generator memory
(i.e. internal storage) or to the USB media, if available. The Agilent MXG non-volatile internal
memory allocated according to a Microsoft compatible file allocation table (FAT) file system. The
Agilent MXG signal generator allocates non-volatile memory in clusters according to the drive size

Agilent Signal Generators Programming Guide an

Creating and Downloading User—Data Files
Signal Generator Memory

(see table on page 312). For example, referring to table on page 312, if the drive size is 15 MB and
if the file is less than or equal to 4k bytes, the file uses only one 4 KB cluster of memory. For files
larger than 4 KB, and with a drive size of 15 MB, the signal generator allocates additional memory in
multiples of 4KB clusters. For example, a file that has 21,5638 bytes consumes 6 memory clusters
(24,000 bytes).

On the Agilent MXG the non-volatile memory is also referred to as internal storage and USB media.
The Internal and USB media files /USERS/NONVOLATILE Directory contains file names with full
extensions (i.e. .marker, .header, etc.).

For more information on default cluster sizes for FAT file structures, refer to Table 6-3 on page 312
and to http://support.microsoft.com/.

Table 6-3
Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB - 156 MB 4K

16 MB - 127 MB 2K

128 MB - 255 MB 4K

256 MB - 511 MB 8K

512 MB - 1023 MB 16k

1024 MB - 2048 MB 32K

2048 MB - 4096 MB 64K

4096 MB - 8192 MB 128K

8192 MB - 16384 MB 256K

Non-Volatile Memory (ESG and PSG)

The signal generator allocates non-volatile memory in blocks of 512 bytes. For files less than or equal
to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes, the signal
generator allocates additional memory in multiples of 512 byte blocks. For example, a file that has
21,538 bytes consumes 43 memory blocks (22,016 bytes).

Memory Size

For the E4438C and E8267D the maximum volatile memory size for user data is less than the
maximum size for waveform files. This is because the signal generator permanently allocates a
portion of the volatile memory for waveform markers. The values in Table 6-4 is the total amount of
memory after deducting the waveform marker memory allocation.

The amount of available memory, volatile and non-volatile, varies by signal generator option and the
size of the other files that share the memory. The baseband generator (BBG) options contain the
volatile memory. Table 6-4 shows the maximum available memory assuming that there are no other
files residing in memory.

312 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Signal Generator Memory

Table 6-4 Maximum Signal Generator Memory

Volatile (WFM1/PRAM) Non-Volatile (NVWFM) Memory
Memory

Option Size Option Size

N5162A and N5182A

651, 652, 654> 40 MB Standard 4 GBP

(BBG)

019 320 MB USB Flash Drive user determined
(UFD)

E4438C and E8267D

001, 601 32 MB Standard 512 MB
(BBG)®

002 (BBG)® 128 MB 005 (Hard disk) 6 GB
602 (BBG) 256 MB

a.The internal baseband generator speed upgrade Options 670, 671, and 672 are option upgrades
that require Option 651 and 652 to have been loaded at the factory (refer to the Data Sheet for
more information). Any references to 651, 652, or 654 are inclusive of 671, 672, and 674.

b.For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value =
512 MB.

c. Options 001 and 002 apply to only the E4438C ESG.

Checking Available Memory

Whenever you download a user—data file, you must be aware of the amount of remaining signal
generator memory. Table 6-5 shows to where each user-data file type is downloaded and from which
memory type the signal generator accesses the file data. Information on downloading a user-data file
is located within each user—data file section.

NOTE The Bit, PRAM, and State user-data (file) types only apply to the E4438C with Option 001,
002, 601, or 602, and the E8267D with Option 601 or 602.

The FIR filter, (file) types only apply to the N5162A and N5182A with Option 651, 652, or
654, E4438C with Option 001, 002, 601, or 602, and the E8267D with Option 601 or 602.

Agilent Signal Generators Programming Guide 313

Creating and Downloading User—Data Files
Signal Generator Memory

Table 6-5 User—Data File Memory Location

User-Data File Download Access
Type Memory Memory

Bit Non-volatile Volatile
Binary Non-volatile Volatile
PRAM Volatile Volatile
Instrument Non-volatile Non-volatile
State

FIR Non-volatile Non-volatile
Flatness Non-volatile Non-volatile

Bit and binary files increase in size when the signal generator loads the data from non-volatile to
volatile memory. For more information, see “User File Size” on page 320.

Use the following SCPI commands to determine the amount of remaining memory:
Volatile Memory :MMEM:CAT? “WFML1”

The query returns the following information:

<memory used>,<memory remaining>,<“file names”>
Non-Volatile Memory :MEM:CAT:ALL?

The query returns the following information:

<memory used>,<memory remaining>,<“file_names”>

NOTE The signal generator calculates the memory values based on the number of bytes used by the
files residing in volatile or non-volatile memory, and not on the memory block allocation. To
accurately determine the available memory, you must calculate the number of blocks of
memory used by the files. For more information on memory block allocation, see “Memory
Allocation” on page 311.

314 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

User File Data (Bit/Binary) Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001, 002, 601, or 602, and the E8267D
with Option 601 or 602.

If you encounter problems with this section, refer to “Data Transfer Troubleshooting
(N5162A, N5182A, E4438C and E8267D Only)” on page 372.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI
command to upload files, the file’s upload should be verified using the *STB? command.
Refer to the SCPI Command Reference.

The signal generator accepts externally created and downloaded user file data for real-time
modulation formats that have user file as a data selection (shown as <“file_name”> in the data
selection SCPI command). When you select a user file, the signal generator incorporates the user file
data (payload data) into the modulation format’s data fields. You can create the data using programs
such as MATLAB or Mathcad. The following table shows the available real-time modulation formats
by signal generator model:

E4438C ESG E2867D PSG

CDMA? TDMAP Custom®

Custom® W-CDMAY GPSs®
GPS®

a. Requires Option 401.

b. Real-time TDMA modulation formats require Option 402 and include EDGE, GSM, NADC,
PDC, PHS, DECT, and TETRA.

c. For ESG, requires Option 001, 002, 601, or 602, for PSG requires Option 601 or 602.

d. Requires Option 400.

e. Requires Option 409.

The signal generator uses two file types for downloaded user file data: bit and binary. With a bit file,
the signal generator views the data up to the number of bits specified when the file was downloaded.
For example, if you specify to use 153 bits from a 160 bit (20 bytes) file, the signal generator
transmits 153 bits and ignores the remaining 7 bits. This provides a flexible means in which to
control the number of transmitted data bits. It is the preferred file type and the easiest one to use.

With a binary file, the signal generator sees all bytes (bits) in a downloaded file and attempts to use
them. This can present challenges especially when working with framed data. In this situation, your
file needs to contain enough bits to fill a frame or timeslot, or multiple frames or timeslots, to end
on the desired boundary. To accomplish this, you may have to remove or add bytes. If there are not
enough bits remaining in the file to fill a frame or timeslot, the signal generator truncates the data
causing a discontinuity in the data pattern.

Agilent Signal Generators Programming Guide 315

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

You download a user file to either the Bit or Binary memory catalog (directory). Unlike a PRAM file
(covered later in this chapter), user file data does not contain control bits, it is just data. The signal
generator adds control bits to the user file data when it generates the signal. There are two ways
that the signal generator uses the data, either in a continuous data pattern (unframed) or within
framed boundaries. Real-time Custom uses only unframed data, real-time TDMA modulation formats
use both types, and the others use only framed data.

NOTE For unframed data transmission, the signal generator requires a minimum of 60 symbols. For
more information, see “Determining Memory Usage for Custom and TDMA User File Data” on
page 321.

You create the user file to either fill a single timeslot/frame or multiple timeslots/frames. To create
multiple timeslots/frames, simply size the file with enough data to fill the number of desired
timeslots/frames

User File Bit Order (LSB and MSB)

The signal generator views the data from the most significant bit (MSB) to the least significant bit
(LSB). When you create your user file data, it is important that you organize the data in this manner.
Within groups (strings) of bits, a bit’s value (significance) is determined by its location in the string.
The following shows an example of this order using two bytes.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at
the far left of the bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at
the far right of the bit string.

Bit Position 1514 1312 11 10 98 7 6 5 4 3 21 0
Data 1 01101 1111101001

? X

MSB LSB

Bit File Type Data

The bit file is the preferred file type and the easiest to use. When you download a bit file, you
designate how many bits in the file the signal generator can modulate onto the signal. During the file
download, the signal generator adds a 10-byte file header that contains the information on the
number of bits the signal generator is to use.

Although you download the data in bytes, when the signal generator uses the data, it recognizes only
the bits of interest that you designate in the SCPI command and ignores the remaining bits. This
provides greater flexibility in designing a data pattern without the concern of using an even number
of bytes as is needed with the binary file data format. The following figure illustrates this concept.
The example in the figure shows the bit data SCPI command formatted to download three bytes of
data, but only 23 bits of the three bytes are designated as the bits of interest. (For more information

316 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

on the bit data SCPI command format, see “Downloading User Files” on page 324 and “Command for
Bit File Downloads” on page 327.)

SCPI Command :MEM:DATA:BIT <"file_name">,<bit_interest>,<datablock>
:MEM:DATA:BIT "3byte" 23/ # 13|z&x|

Start block data number of bytes

ASCII representation of the data (3 bytes)

number of decimal digits

Bits of interest
Downloaded Data: |01011010001001100111100{/0 4 Ignored bit (LSB)

MSB/W—/ T/ W_J

Byte 1 Byte 2 Byte 3
Hex Value: 5A 26 78
ASCII Representation: Z & X

The following figure shows the same downloaded data from the above example as viewed in the
signal generator’s bit file editor (see the User’s Guide for more information) and with using an
external hex editor program.

SCPI command to download the data :MEM:DATA:BIT "3byte",23,#13Z&x

As Seen in the Signal Generator’s Bit File Editor

FREQUENCY AMPLITUDE

-136.00 cen
10D Designated number of bits
ug/

Bit File Editor Pos:0 { Size:2a k 2EYTE Hex values
/

4.000 000 000 00 stz

Offset Binary Data/ Hex Data
0 Wi01 1010 0010 0110 0111 100 I \ SAZ67E)
20
Bit data

As Seen in a Hex Editor
Designated number of bits (hex value = 23 decimal)

|\Eiﬂl|tll:l 00 00 00 00 00 00 l'.l'|5.:|. 26 78 1

N Y
10 byte file header 3 bytes of data
(added by signal generator)

In the bit editor, notice that the ignored bit of the bit-data is not displayed, however the hex value
still shows all three bytes. This is because bits 1 through 7 are part of the first byte, which is shown
as ASCII character x in the SCPI command line. The view from the hex editor program confirms that
the downloaded three bytes of data remains unchanged. To view a downloaded bit file with an
external hex editor program, FTP the file to your PC/UNIX workstation. For information on how to
FTP a file, see “FTP Procedures” on page 331.

Agilent Signal Generators Programming Guide 317

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Even though the signal generator views the downloaded data on a bit basis, it groups the data into
bytes, and when the designated number of bits is not a multiple of 8 bits, the last byte into one or
more 4-bit nibbles. To make the last nibble, the signal generator adds bits with a value of zero. The
signal generator does not show the added bits in the bit editor and ignores the added bits when it
modulates the data onto the signal, but these added bits do appear in the hex value displayed in the
bit file editor. The following example, which uses the same three bytes of data, further demonstrates
how the signal generator displays the data when only two bits of the last byte are part of the bits of
interest.

SCPI command to download the data :MEM:DATA:BIT "3byte",18,#13Z&x

Designated 18 bits
DownloadedData/Jo1011010,p0100110A01|11100 0w

W_J LSB

Byte 1 Byte 2 Byte 3
Hex Value: 5A 26 78

As Seen in the Signal Generator’s Bit File Editor

FREQUEMCY L ITLDE Added bits
136 00 den as seen Iin

4.000 000 000 00 &+
00 the hex value

Designatgi number of bits HN

| ' Hex value changes to 5A264 l
Y a—

Bit File Editor Pos:0 (size:18) 3EYTE 0101101 O\O 100110,0 l
Offset | . Binary Dat@/ W—J W—A—Y—j

23 E101 1010 0010 0110 m] . \ 59.25L.), Byte 1 Byte 2 Nibble
Designated bits 5A 26 4

As Seen in a Hex Editor Designated number of bits (hex value = 18 decimal)

Sg 0l|oo 00 00 00 00 OO0 00 12fSa 26 78
N N
N4 v
10 byte file header 3 bytes of data
(added by signal generator)

Notice that the bit file editor shows only two bytes and one nibble. In addition, the signal generator
shows the nibble as hex value 4 instead of 7 (78 is byte 3—ASCII character x in the SCPI command
line). This is because the signal generator sees bits 17 and 18, and assumes bits 19 and 20 are 00. As
viewed by the signal generator, this makes the nibble 0100. Even though the signal generator
extrapolates bits 19 and 20 to complete the nibble, it ignores these bits along with bits 21 through
24. As seen with the hex editor program, the signal generator does not actually change the three
bytes of data in the downloaded file.

For information on editing a file after downloading, see “Modifying User File Data” on page 330.

318 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Binary File Type Data

With the Binary file type, the signal generator sees all of the bytes within the downloaded file and
attempts to use all of the data bits. When using this file type, the biggest challenge is creating the
data, so that the signal generator uses all of the bits (bytes) contained within the file. This is
referred to as using an even number of bytes. The method of creating the user file data pattern
depends on whether you are using unframed or framed data. The following two sections illustrate the
complexities of using the binary file format. You can eliminate these complexities by using the bit file
format (see “Bit File Type Data” on page 316).

Unframed Binary Data

When creating unframed data, you must think in terms of bits per symbol; so that your data pattern
begins and ends on the symbol boundary, with an even number of bytes. For example, to use 16QAM
modulation, the user file needs to contain 32 bytes:

¢ enough data to fill 16 states 4 times

* end on a symbol boundary

e create 64 symbols (the signal generator requires a minimum of 60 symbols for unframed data)
To do the same with 32QAM, requires a user file with 40 bytes.

When you do not use an even number of bytes, the signal generator repeats the data in the same
symbol where the data stream ends. This means that your data would not end on the symbol
boundary, but during a symbol. This makes it harder to identify the data content of a symbol. The
following figure illustrates the use of an uneven number of bytes and an even number of bytes.

Unframed Data
MSB LSB

Datapattern: 1 0 1 1 0 11011001100

Uneven Number of Bytes
: Data repeats during a symbol :
32QAM 5 bits/symbol: 10110110112,00110021011,0110110011001071

Symbol Symbol Symbol !Symbol Symbol Symbol Syfbol

Using an uneven number of bytes makes it harder to identify the data within a symbol.

Even Number of Bytes

: Data repeats at the symbol boundary

16QAM 4 bits/symbol: 1 01101101 1001100'1011011011001100 pata
| R W) |\ NS U

Symbol Symbol Symbol Symbol ' Symbol Symbol Symbol Symbol repeats

Agilent Signal Generators Programming Guide 319

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Framed Binary Data

When using framed data, ensure that you use an even number of bytes and that the bytes contain
enough bits to fill the data fields within a timeslot or frame. When there are not enough bits to fill
a single timeslot or frame, the signal generator replicates the data pattern until it fills the
timeslot/frame.

The signal generator creates successive timeslots/frames when the user file contains more bits than
what it takes to fill a single timeslot or frame. When there are not enough bits to completely fill
successive timeslots or frames, the signal generator truncates the data at the bit location where there
is not enough bits remaining and repeats the data pattern. This results in a data pattern
discontinuity. For example, a frame structure that uses 348 data bits requires a minimum file size of
44 bytes (352 bits), but uses only 43.5 bytes (348 bits). In this situation, the signal generator
truncates the data from bit 3 to bit 0 (bits in the last byte). Remember that the signal generator
views the data from MSB to LSB. For this example to have an even number of bytes and enough bits
to fill the data fields, the file needs 87 bytes (696 bits). This is enough data to fill two frames while
maintaining the integrity of the data pattern, as illustrated in the following figure.

Framed Data

Uneven Number of Bytes
(some data truncated)

Frame 1 Frame 2
|cun| 348 data bits |cn| [ou] 348 data bits Ed
352 bits (44 bytes): 110100110110...01101111 LSB Frame 1 data repeated
/ Fram\e/l data Truncated data (bits 0-3)
MSB not enough bits remaining to fill the next frame

Even Number of Bytes

(all bits used)
Frame 1 Frame 2

‘Ctrl ‘ 348 data bits | ctrl | |Ctr| | 348 data bits ‘ curl |

696 bits (87 bytes): 011101100110110101110100110110...01101111
Data fills both frames (348 bits per frame) with no truncated bits

For information on editing a file after downloading, see “Modifying User File Data” on page 330.

User File Size

You download user files into non-volatile memory. For CDMA, GPS, and W-CDMA, the signal
generator accesses the data directly from non-volatile memory, so the file size up to the maximum
file size (shown in Table 6-6) for these formats is limited only by the amount of available
non-volatile memory. As seen in the table, the baseband generator option does not affect these file
sizes.

For Custom and TDMA, however, when the signal generator creates the signal, it loads the data from
non-volatile memory into volatile memory, which is also the same memory that the signal generator
uses for Arb-based waveforms. For user data files, volatile memory is commonly referred to as
pattern ram memory (PRAM). Because the Custom and TDMA user files use volatile memory, their
maximum file size depends on the baseband generator (BBG) option and the amount of available

320 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

PRAM. (Volatile memory resides on the BBG.) Table 6-6 shows the maximum file sizes by modulation
format and baseband generator option.

Table 6-6 Maximum User File Size

Baseband Generator Option
Modulation
Format
001, 601 002 602

a
Custom 800 kB 3.2 MB 6.4 MB
TDMA?
CDMAP
GPsP 10 kB 10 kB 10 kB
W-CDMAP

a.File size with no other files residing in volatile memory.
b.File size is not affected by the BBG option.

For more information on signal generator memory, see “Signal Generator Memory” on page 309. To
determine how much memory is remaining in non-volatile and volatile memory, see “Checking
Available Memory” on page 313.

Determining Memory Usage for Custom and TDMA User File Data

For Custom and TDMA user files, the signal generator uses both non-volatile and volatile
(PRAM/waveform) memory: you download the user file to non-volatile memory. To determine if there
is enough non-volatile memory, check the available non-volatile memory and compare it to the size
of the file to be downloaded.

After you select a user file and turn the format on, the signal generator loads the file into volatile
memory for processing:

e It translates each data bit into a 32-bit word (4 bytes).
The 32-bit words are not saved to the original file that resides in non-volatile memory.

e It creates an expanded data file named AUTOGEN_PRAM_1 in volatile memory while also
maintaining a copy of the original file in volatile memory. It is the AUTOGEN_PRAM_1 file that
contains the 32-bit words and accounts for most of the user file PRAM memory space.

e If the transmission is using unframed data and there are not enough bits in the data file to create
60 symbols, the signal generator replicates the data pattern until there is enough data for 60
symbols. For example, GSM uses 1 bit per symbol. If the user file contains only 24 bits, enough
for 24 symbols, the signal generator replicates the data pattern two more times to create a file
with 72 bits. The expanded AUTOGEN_PRAM_1 file size would show 288 bytes (72 bits x 4
bytes/bit).

Use the following procedures to calculate the required amount of volatile memory for both framed
and unframed TDMA signals:

e “Calculating Volatile Memory (PRAM) Usage for Unframed Data” on page 322
e “Calculating Volatile Memory (PRAM) Usage for Framed Data” on page 322

Agilent Signal Generators Programming Guide 321

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Calculating Volatile Memory (PRAM) Usage for Unframed Data

Use this procedure to calculate the memory size for either a bit or binary file. To properly
demonstrate this process, the procedure employs a user file that contains 70 bytes (560 bits), with
the bit file using only 557 bits.

1. Determine the AUTOGEN_PRAM_1 file size:
The signal generator creates a 32-bit word for each user file bit (1 bit equals 4 bytes).
Binary file 4 bytes x (70 bytes x 8 bits) = 2240 bytes
Bit file 4 bytes x 557 bits= 2228 bytes

2. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:
Volatile memory allocates memory in blocks of 1024 bytes.
Binary file 2240 / 1024 = 2.188 blocks
Bit file 2228 / 1024 = 2.176 blocks

3. Round the memory block value to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use three blocks of memory for a total of 3072
bytes.

4. Determine the number of memory blocks that the copy of the original file occupies in volatile
memory.

For this example the bit and binary file sizes are shown in the following list:
¢ Binary file = 70 bytes < 1024 bytes = 1 memory block
* Bit file = 80 bytes < 1024 bytes = 1 memory block

Remember that a bit file includes a 10-byte file header.

5. Calculate the total volatile memory occupied by the user file data:

AUTOGEN_PRAM_1| Original File

3 blocks 1 block

1024 (3 + 1) = 4096 bytes

Calculating Volatile Memory (PRAM) Usage for Framed Data

Framed data is not a selection for Custom, but it is for TDMA formats. To frame data, the signal
generator adds framing overhead data such as tail bits, guard bits, and sync bits. These framing bits
are in addition to the user file data. For more information on framed data, see “Understanding
Framed Transmission For Real-Time TDMA” on page 333.

When using framed data, the signal generator views the data (framing and user file bits) in terms of
the number of bits per frame, even if only one timeslot within a frame is active. This means that the
signal generator creates a 32-bit word for each bit in a frame, for both active and inactive timeslots.

You can create a user file so that it fills a timeslot once or multiple times. When the user file fills a
timeslot multiple times, the signal generator creates the same number of frames as the number of
timeslots that the user file fills. For example, if a file contains enough data to fill a timeslot three
times, the signal produces three new frames before the frames repeat. Each new frame increases the

322 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

AUTOGEN_PRAM_1 file size. If you select different user files for the timeslots within a frame, the
user file that produces the largest number of frames determines the size of the AUTOGEN_PRAM_1
file.

Use this procedure to calculate the volatile memory usage for a GSM signal with two active timeslots
and two user binary files. One user file, 57 bytes, is for a normal timeslot and another, 37 bytes, is
for a custom timeslot.

1. Determine the total number of bits per timeslot.
A GSM timeslot consists of 156.25 bits (control and payload data).
2. Calculate the number of bits per frame.
A GSM frame consists of 8 timeslots: 8 x 156.25 = 1250 bits per frame
3. Determine how many bytes it takes to produce one frame in the signal generator:
The signal generator creates a 32-bit word for each bit in the frame (1 bit equals 4 bytes).
4 x 1250 = 5000 bytes
Each GSM frame uses 5000 bytes of PRAM memory.
4. Analyze how many timeslots the user file data will fill.

A normal GSM timeslot (TS) uses 114 payload data bits, and a custom timeslot uses 148 payload
data bits. The user file (payload data) for the normal timeslot contains 57 bytes (456 bits) and the
user file for the custom timeslot contains 37 bytes (296 bits).

Normal TS 456 / 114 = 4 timeslots
Custom TS 296 / 148 = 2 timeslots

NOTE Because there is an even number of bytes, either a bit or binary file works in this scenario.
If there was an uneven number of bytes, a bit file would be the best choice to avoid data
discontinuity.

5. Compute the number of frames that the signal generator will generate.

There is enough user file data for four normal timeslots and two custom timeslots, so the signal
generator will generate four frames of data.

6. Calculate the AUTOGEN_PRAM_1 file size:

Number of Frames| Bytes per Frame

4 5000

4 x 5000 = 20000 bytes

7. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:
Volatile memory allocates memory in blocks of 1024 bytes.
20000 / 1024 = 19.5 blocks

Agilent Signal Generators Programming Guide 323

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

8. Round the memory block value up to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use 20 blocks of memory for a total of 20480
bytes.

9. Determine the number of memory blocks that the original files occupy in volatile memory.

The files do not share memory blocks, so you must determine how many memory blocks each file
occupies.

Normal TS Custom TS

57 bytes = 1 block 37 bytes = 1 block

1 + 1 = 2 memory blocks

NOTE If the user file type is bit, remember to include the 10-byte file header in the file size.

10. Calculate the total volatile memory occupied by the AUTOGEN_PRAM_1 file and the user files:

AUTOGEN_PRAM_1 User Files

20 blocks 2 blocks

1024 (20 + 2) = 22528 bytes

Downloading User Files

The signal generator expects bit and binary file type data to be downloaded as block data (binary
data in bytes). The IEEE standard 488.2-1992 section 7.7.6 defines block data.

This section contains two examples to explain how to format the SCPI command for downloading
user file data. The examples use the binary user file SCPI command, however the concept is the same
for the bit file SCPI command:

¢ Command Format
¢ “Command Format in a Program Routine” on page 325

Command Format

This example conceptually describes how to format a data download command (#ABC represents the
block data):

:MEM:DATA <"file name">, #ABC

<"file_name"> the data file path and name

indicates the start of the block data
A the number of decimal digits present in B
B a decimal number specifying the number of data bytes to follow in C

324 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

C the file data in bytes
:MEM:DATA l“binzlmy_file”l, #|3|240|12%S!4&O7#8g*Y9@7 e
file location file_name A B C

bin: the location of the file within the signal generator file system

my_file the data file name as it will appear in the signal generator’s memory
catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes (1,920 bits) of data to follow in C

12%S!14&07#8g*Y9@7... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Format in a Program Routine”

Some commands are file location specific and do not require the file location as part of the file
name. An example of this is the bit file SCPI command shown in “Command for Bit File Downloads”
on page 327.

Command Format in a Program Routine

This section demonstrates the use of the download SCPI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads user file data to the
signal generator’s Binary memory catalog (directory).

Line Code—Download User File Data
1 int bytesToSend;
2 bytesToSend = numsamples;
3 char s[20];
4 char cmd[200];
5 sprintf (s, "%d", bytesToSend) ;
6 sprintf(cmd, ":MEM:DATA \"BIN:FILE1\", #%d%d", strlen(s), bytesToSend) ;
7 iwrite(id, cmd, strlen(cmd), 0, 0);
8 iwrite(id, databuffer, bytesToSend, 0, 0);
9 iwrite(id, "\n", 1, 1, 0);

Agilent Signal Generators Programming Guide 325

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Line Code Description—Download User File Data
1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.
2 Calculate the total number of bytes, and store the value in the integer variable defined in line 1.
3 Create a string large enough to hold the bytesToSend value as characters. In this code, string s

is set to 20 bytes (20 characters—one character equals one byte)

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000”.

sprintf() is a standard function in C++, which writes string data to a string variable.

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

* strlen() is a standard function in C++, which returns length of a string.

¢ If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA "BIN:FILE1\” #42000.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable 7d.

¢ qwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

* The third argument of ‘write(), strien(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

* The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the user file data.

326 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Line Code Description—Download User File Data
8 Send the user file data stored in the array (databuffer) to the signal generator.

* jwrite() sends the data specified in databuffer to the signal generator (session identifier
specified in id).

* The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 2000.

* The fourth argument of ‘write(), 0, means there is no END of file indicator in the data.
In many programming languages, there are two methods to send SCPI commands and data:
— Method 1 where the program stops the data download when it encounters the first zero

(END indicator) in the data.
— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.
For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.
9 Send the terminating carriage (\n) as the last byte of the waveform data.

* qwrite() writes the data “\n” to the signal generator (session identifier specified in id).

* The third argument of ‘write(), 1, sends one byte to the signal generator.

* The fourth argument of ‘write(), 1, is the END of file indicator, which the program uses to
terminate the data download.

To verify the user file data download, see “Command for Bit File Downloads” on page 327 and

“Commands for Binary File Downloads” on page 328.

Command for Bit File Downloads

Because the signal generator adds a 10-byte file header during a bit file download, you must use the
SCPI command shown in Table 6-7. If you FTP or copy the file for the initial download, the signal
generator does not add the 10-byte file header, and it does recognize the data in the file (no data in
the transmitted signal).

Bit files enable you to control how many bits in the file the signal generator modulates onto the
signal. Even with this file type, the signal generator requires that all data be contained within bytes.
For more information on bit files, see “Bit File Type Data” on page 316.

Table 6-7 Bit File Type SCPI Commands

Type

Command Syntax

Command

:MEM:DATA:BIT <"file_name">,<bit_count>,<block_data>

This downloads the file to the signal generator.

Agilent Signal Generators Programming Guide 327

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Table 6-7 Bit File Type SCPI Commands

Type Command Syntax

Query :MEM:DATA:BIT? <"file_name">

Within the context of a program this query extracts the user file data. Executing the query
in a command window causes it to return the following information:
<bit_count>,<block_data>.

Query :MEM:CAT:BIT?

This lists all of the files in the bit file directory and shows the remaining non-volatile
memory:

<bytes used by bit files>,<available non-volatile memory>,<"file_names">

Command Syntax Example
The following command downloads a file that contains 17 bytes:
:MEM:DATA:BIT "new_file",131,#21702%S!4&07#8g*Y9@7
Since this command is file specific (BIT), there is no need to add the file path to the file name.

After execution of this command, the signal generator creates a file in the bit directory (memory
catalog) named “new_file” that contains 27 bytes. Remember that the signal generator adds a
10-byte file header to a bit file. When the signal generator uses this file, it will recognize only
131 of the 136 bits (17 bytes) contained in the file.

For information on downloading block data, see “Downloading User Files” on page 324.

Commands for Binary File Downloads

To download a user file as a binary file type means that the signal generator, when the file is
selected for use, sees all of the data contained within the file. For more information on binary files,
see “Binary File Type Data” on page 319. There are two ways to download the file: to be able to
extract the file or not. Each method uses a different SCPI command, which is shown in Table 6-8.

Table 6-8 Binary File Type Commands

Command Command Syntax

Type

For SCPI :MEMory :DATA :UNPRotected "bin:file_name", <datablock>
Extraction

This downloads the file to the signal generator. You can extract the file within the
context of a program.

FTP? | put <file name> /user/bin/file_name

No :MEM:DATA "bin:file_name",<block data>

tracti
extraction This downloads the file to the signal generator. You cannot extract the file.

328 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Table 6-8 Binary File Type Commands

Command Command Syntax
Type
Query :MEM:DATA? "bin:file name"

This returns information on the named file: <bit_count>,<block_data>.
Within the context of a program, this query extracts the user file, provided it was
download with the proper command.

Query :MEM: CAT: BIN?

This lists all of the files in the bit file directory and shows the remaining
non-volatile memory:

<bytes used by bit files>,<available non-volatile memory>,<"file names">

a. See “FTP Procedures” on page 331.

File Name Syntax
There are three ways to format the file name, which must also include the file path:

e "BIN:file name"
e "file name@BIN"
e "/user/BIN/file_name"

Command Syntax Example
The following command downloads a file that contains 34 bytes:
:MEM:DATA "BIN:new_file", #23477%S!4&07#8g*Y9@7.? :*Ru[+@y3#_",>1

After execution of this command, the signal generator creates a file in the Binary (Bin) directory
(memory catalog) named “new_file” that contains 34 bytes.

For information on downloading block data, see “Downloading User Files” on page 324.

Selecting a Downloaded User File as the Data Source

This section describes how to format SCPI commands for selecting a user file using commands from
the GSM and Custom modulation formats. While the commands shown come from only two formats,
the concept remains the same when making the data selection for any of the other real-time
modulation formats that accept user data. To find the data selection commands for both framed and
unframed data for the different modulation formats, see the signal generator’s SCPI Command
Reference.

1. For TDMA formats, select either framed or unframed data:
:RADi0:GSM:BURSt ON|OFF|1]|0
ON(1l) = framed OFF (0) = unframed

Agilent Signal Generators Programming Guide 329

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Select the user file:
Unframed Data
:RADi10:CUSTom:DATA "BIT:file_name"
:RADi0:CUSTom:DATA "BIN:file_name"
Framed Data
:RAD10:GSM:SLOTO|1|2|3]|4|5|6|7:NORMal:ENCRyption "BIT:file name"
:RADi10:GSM:SLOTO|1|2|3]|4|5|6|7:NORMal:ENCRyption "BIN:file name"
Configure the remaining signal parameters.

Turn the modulation format on:

:RADio:CUSTom: STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

:FREQuency:FIXed 2.5GHZ
:POWer:LEVel -10.0DBM
:OUTPut :MODulation: STATe ON
:OUTPut : STATe ON

Modifying User File Data

There are two ways to modify a file after downloading it to the signal generator:

Use the signal generator’s bit file editor. This works for both bit and binary files, but it converts
a binary file to a bit file and adds a 10-byte file header. For more information on using the bit
file editor, see the signal generator’s User’s Guide. You can also access the bit editor remotely
using the signal generator’s web server. For web server information, refer to the Programming
Guide.

Use a hex editor program on your PC or UNIX workstation, as described below.

Modifying a Binary File with a Hex Editor

1. FTP the file to your PC/UNIX.
For information on using FTP, see FTP Procedures. Ensure that you use binary file transfers
during FTP operations.

2. Modify the file using a hex editor program.
FTP the file to the signal generator’s BIN memory catalog (directory).

330 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Modifying a Bit File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use binary file transfers
during FTP operations.

2. Modify the file using a hex editor program.

If you need to decrease or increase the number of bits of interest, change the file header hex
value.

80 Byte File From Signal Generator
02 80 hex = 640 bits designated as bits of interest

00000000 . ES ol|oo oo oo 0o 00 o0 02 80]S5a 25 78 Sb 2b 37
00000010: 47 37 20 23 2f 34 §1 &3 39 3f 25 2e 69 52 33 22
00000020: 40 2e 74 59 75 76 3a 3e 36 26 24 446 47 Ga 3c 7b
00000030: Sc 4b 6c 2d 2b 20 Ze 68 47 3f 22 60 7e 75 Za 39
00000040: 6b 5f 21 60 7e 2Ze 3a 37 Se e Ge Ze Ze 3f Ge T4
Q0000050 .

Modified File (80 Bytes to 88 Bytes)
02 bd hex = 701 bits designated as bits of interest

oooooooo0. 58 DllDD 00 00 00 00 00 02 deSﬂ 26 78 5b 2b 37

00000010: 47 37 20 23 2F 34 61 63 39 3F 25 Ze 59 52 33 22
00000020: 40 22 74 59 75 76 3a 3= 36 26 24 46 47 6a 3¢ 7b
00000030: Sc 4b 62 24 2b 20 2= 68 47 3f 22 60 7= 75 2a 39
00000040: 66 SF 21 60 7= 2c 3a 37 S5e Gc 6e 2Ze 2c 3f 6e 74
00000050 |23 26 3c 6b Za 75 3f 5e|_

L 1

Added bytes

3. FTP the file to the signal generator’s BIT memory catalog (directory).

FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has been
completed. These commands can potentially hang up due to the processing of other
SCPI parser operations. Refer to the SCPI Command Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP process, then
query the instrument by using SCPI commands such as: "MEM:DATA:', "MEM:CAT', "*STB?",
'FREQ?', "*IDN?', 'OUTP:STAT?'. Refer to the SCPI Command Reference.

Agilent Signal Generators Programming Guide 331

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

There are three ways to FTP a file:

¢ use Microsoft’s ® Internet Explorer FTP feature
* use the signal generator’s internal web server (ESG firmware > C.03.76)
¢ use the PC or UNIX command window

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

Stp://<host name> or <IP address>
2. Press Enter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

hitp://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.
The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, refer to the Programming Guide.

Using the Command Window (PC or UNIX)
1. From the PC command prompt or UNIX command line, change to the proper directory:

* When downloading from the signal generator, the directory in which to place the file.
¢ When downloading to the signal generator, the directory that contains the file.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>.
Where instrument name is the signal generator’s hostname or IP address.
At the User: prompt, press Enter (no entry is required).

4. At the Password: prompt, press Enter (no entry is required).

At the ftp prompt, type the desired command:
To Get a File From the Signal Generator

get /user/<directory>/<file_namel> <file_name>

To Place a File in the Signal Generator

Microsoft is a U.S registered trademark of Microsoft Corporation.

332 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

To Get a File From the Signal Generator

put <file_name> /user/<directory>/<file_namel>

¢ <file_namel> is the name of the file as it appears in the signal generator’s directory.
e <file_name> is the name of the file as it appears in the PC/UNIX current directory.
e <directory> is the signal generator’s BIT or BIN directory.

At the ftp prompt, type: bye
At the command prompt, type: exit

Understanding Framed Transmission For Real-Time TDMA

Specifying a user file as the data source for a framed transmission provides you with an easy method
to multiplex real data into internally generated TDMA framing. The user file fills the data fields of
the active timeslot in the first frame, and continue to fill the same timeslot of successive frames as
long as there is more data in the file with enough bits to fill the data field. This functionality enables
a communications system designer to download and modulate proprietary data sequences, specific PN
sequences, or simulate multiframe transmission such as those specified by some mobile
communications protocols. As the example in the following figure shows, a GSM multiframe
transmission requires 26 frames for speech.

Figure 6-1 GSM Multiframe Transmission

SuperFrame = 51 MultiFrames = [HH | | HT ‘ ‘ ” | ‘ | ‘ W Mmm
1,657,500 bits =6.12 s
Speech MultiFrame (TCH) = B
26 Frames = 32,500 bits = 120 ms J:
Frame = 8 Timeslots = Ts_?j
1250 bits = 4.615 ms e e TS4 | TS5 |TS6 | ™™

/\

Normal GSM Timeslot = ‘ 3 57 1 26 1 57 3| 8.25
156.25 bits = 576.92 us

Tail Data Steal Steal Data Tail Guard
Bits Field #1 Bit Bit Field #2 Bits Period

Midamble

When you select a user file as the data source for a framed transmission, the signal generator’s

firmware loads PRAM with the framing protocol of the active TDMA format. This creates a file named
AUTOGEN_PRAM_1 in addition to a copy of the user file. For all addresses corresponding to active
(on) timeslots, the signal generator sets the burst bit to 1 and fills the data fields with the user file

Agilent Signal Generators Programming Guide 333

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

data. Other bits are set according to the configuration selected. For inactive (off) timeslots, the signal
generator sets the burst control bit to 0, with the data being unspecified.

In the last byte that contains the last user file data bit, the signal generator sets the Pattern Reset bit
to 1. This causes the user file data pattern to repeat in the next frame.

NOTE The data in PRAM is static. Firmware writes to PRAM once for the configuration selected
and the hardware reads this data repeatedly. Firmware overwrites the volatile PRAM
memory to reflect the desired configuration only when the data source or TDMA format
changes.

For example, transmitting a 228-bit user file for timeslot #1 (TS1) in a normal GSM transmission
creates two frames. Per the standard, a GSM normal channel is 156.25 bits long, with two 57-bit data
fields (114 user data bits total per timeslot), and 42 bits for control or signalling purposes.The user
file completely fills timeslot #1 for two consecutive frames, and then repeats. The seven remaining
timeslots in the GSM frame are off, as shown in Figure 6-2

Figure 6-2 Mapping User File Data to a Single Timeslot

228 bit User File | 114bits [114 bits |

Amplitude

TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7 (TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7 |TSO TS1 TS2

Frame 1 Frame 2 Frame 1 Ti
ime

>

NOTE Compliant with the GSM standard, which specifies 156.25-bit timeslots, the signal generator
uses 156-bit timeslots and adds an extra guard bit to every fourth timeslot.

For this protocol configuration, the signal generator’s firmware loads PRAM with the bits defined in
the following table. (These bits are part of the 32-bit word per frame bit.) The Pattern Reset bit, bit
7, is 0 for frame one and 1 for the last byte of frame two.

Frame Timeslot PRAM Word Data Bits Burst Bits Pattern Reset Bit
Offset

1 0 0 -155 0/1 (don’t care) 0 (off) 0 (off)

1 1 (on) 156 - 311 set by GSM standard (42 bits) & first 1 (on) 0

114 bits of user file

1 2 312 - 467 0/1 (don’t care) 0 0

334 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Frame Timeslot PRAM Word Data Bits Burst Bits Pattern Reset Bit
Offset
1 3 468 - 624 0/1 (don’t care) 0 0
1 4 625 - 780 0/1 (don’t care) 0 0
1 5 781 - 936 0/1 (don’t care) 0 0
1 6 937 - 1092 0/1 (don’t care) 0 0
1 7 1093 - 1249 0/1 (don’t care) 0 0
2 0 1250 - 1405 0/1 (don’t care) 0 0
2 1 (on) 1406 - 1561 set by GSM standard (42 bits) & 1 (on) 0
remaining bits of user file
2 2 through 6 1562 - 2342 0/1 (don’t care) 0 0 (off)
2 7 2343 - 2499 0/1 (don’t care) 0 1 (1 in offset
2499 only)

Agilent Signal Generators Programming Guide

335

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the EVENT 1
output at either the beginning of the frame, beginning of a specific timeslot, or at all timeslots (SCPI
command, :RADio:GSM:SOUT FRAME |SLOT|ALL).

Because timeslots are configured and enabled within the signal generator, a user file can be
individually assigned to one or more timeslots. A timeslot cannot have more than one data source
(PN sequence or user file) specified for it. The amount of user file data that can be mapped into
hardware memory depends on both the amount of PRAM available on the baseband generator, and
the number and size of each frame. (See “Determining Memory Usage for Custom and TDMA User
File Data” on page 321.)

PRAM adds 31 bits to each bit in a frame, which forms 32-bit words.
The following shows how to calculate the amount of PRAM storage space required for a GSM
superframe:

Bits per superframe = normal GSM timeslot x timeslot per frame x speech multiframe(TCH) x

superframe

size of normal GSM timeslot = 156.25 timeslots per frame = 8 timeslots.
bits

speech multiframe(TCH) = 26 frames superframe = 51 speech multiframes

1. Calculate the number of bits in the superframe:
156.25 x 8 x 26 x 51 = 1,657,500 bits
2. Calculate the size of the PRAM file:
1,657,500 bits x 4 bytes (32-bit words) = 6,630,000 bytes
3. Calculate how much memory the PRAM file will occupy
6,630,000 bytes / 1,024 bytes per PRAM block = 6,474.6 memory blocks
4. Round the quotient up to the next integer value

6,475 blocks x 1,024 bytes per block = 6,630,400 bytes

NOTE For the total PRAM memory usage, be sure to add the number of PRAM blocks that the user
file occupies to the PRAM file size. For more information, see “Calculating Volatile Memory
(PRAM) Usage for Framed Data” on page 322.

336 Agilent Signal Generators Programming Guide

Real-Time Custom High Data Rates

Custom has two modes for processing data, serial and parallel. When the data bit-rate exceeds
50 Mbps, the signal generator processes data in parallel mode, which means processing the data
symbol by symbol versus bit by bit (serial). This capability exists in only the Custom format when

Creating and Downloading User—Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

using a continuous data stream. This means that it does not apply to a downloaded PRAM file type
(covered later in this chapter).

In parallel mode, for a 256QAM modulation scheme, Custom has the capability to reach a data rate
of up to 400 Mbps. The FIR filter width is what determines the data rate. The following table shows
the maximum data rate for each modulation type. Because the signal generator’s maximum symbol
rate is 50 Msps, a modulation scheme that has only 1 bit per symbol is always processed in serial

mode.

Modulation Type

Bit Rate Range for Internal Data

(bit rate =

symbol rate x bits per symbol)

16 Symbol Wide FIR
Filter

32 Symbol Wide FIR
Filter

64 Symbol Wide FIR
Filter

BPSK, 2FSK, MSK

1bps-50Mbps

1bps-25 Mbps

1bps-12.56Mbps

CAFM, OQPSK,
4FSK

I1S95 OQPSK,
QPSK

P4DQPSK,
IS95 QPSK

GRAYQPSK,
4QAM

2bps-100Mbps

2bps-50Mbps

2bps-25Mbps

D8PSK, EDGE,
8FSK, 8PSK

3bps-150Mbps

3bps-75Mbps

3bps-37.56Mbps

16FSK, 16PSK,

4bps-200Mbps

4bps-100Mbps

4bps-50Mbps

16QAM

Q32AM 5bps-250Mbps 5bps-125Mbps 5bps-62.5Mbps
64QAM 6bps-300Mbps 6bps—150Mbps 6bps-75Mbps
128QAM Tbps-350Mbps 7Tbps-175Mbps Tbps-87.5Mbps
256QAM 8bps-400Mbps 8bps—-200Mbps 8bps-100Mbps

The only external effect of the parallel mode is in the EVENT 1 output signal. In serial and parallel
mode, the signal generator outputs a narrow pulse at the EVENT 1 connector. But in parallel mode,

the output pulse width increases by a factor of bits—per-symbol wide, as shown in the following

figure.

Agilent Signal Generators Programming Guide

337

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

32QAM (5 bits per symbol)
bit rate = bits per symbol x symbol rate

20 ns 10.000001 Msps
' ' << 100ns — pu

NOTE: The pulse widths values are only for example purposes. The actual width may vary from the above values.

Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001, 002, 601, or 602, and the E8267D
with Option 601 or 602.

If you encounter problems with this section, refer to “Data Transfer Troubleshooting
(N5162A, N5182A, E4438C and E8267D Only)” on page 372.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI
command to upload files, the file’s upload should be verified using the *STB? command.
Refer to the SCPI Command Reference.

This section contains information to help you transfer user-generated PRAM data from a system
controller to the signal generator’s PRAM. It explains how to download data directly into PRAM and
modulate the carrier signal with the data.

The control bits included in the PRAM file download, control the following signal functions:

* bursting
¢ timing signal at the EVENT 1 rear panel connector
* data pattern reset

PRAM data downloads apply to only real-time Custom and TDMA modulation formats. In the TDMA
formats, PRAM files are available only while using the unframed data selection. The following table
on page 339 shows which signal generator models support these formats.

338 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

E4438C ESG E2867D PSG

Custom? TDMAP Custom?

a. For ESG, requires Option 001, 002, 601, or 602, for PSG requires Option 601 or 602.
b. Real-time TDMA modulation formats require Option 402 and include EDGE, GSM, NADC, PDC,
PHS, DECT, and TETRA.

PRAM files differ from bit and binary user files.

Bit and binary user files (see page 315) download to non-volatile memory and the signal generator
loads the user file data into PRAM (volatile/waveform memory) for use. The signal generator adds the
required control bits when it generates the signal.

A PRAM file downloads directly into PRAM, and it includes seven of the required control bits for
each data (payload) bit. The signal generator adds the remaining control bits when it generates the
signal. You download the file using either a list or block data format. Programs such as MATLAB or
MathCad can generate the data.

This type of signal control enables you to design experimental or proprietary framing schemes.

After selecting the PRAM file, the signal generator builds the modulation scheme by reading data
stored in PRAM, and constructing framing protocols according to the PRAM file data and the
modulation format. You can manipulate PRAM data by changing the standard protocols for a
modulation format such as the symbol rate, modulation type, and filter either through the front panel
interface or with SCPI commands.

Understanding PRAM Files

The term PRAM file comes from earlier Agilent products, the E443xB ESGs. PRAM is another term
for waveform memory (WFM1), which is also known as volatile memory. This means that PRAM files
and waveform files occupy the same memory location. The signal generator’s volatile memory
(waveform memory) storage path is /user/BBGl/waveform. For more information on memory, see
“Signal Generator Memory” on page 309.

The following figure shows a PRAM byte and illustrates the difference between it and a bit/binary
user file byte. Notice the control bits in the PRAM byte.

KMSB LSB\ MSB LSB
PRAM File Data Byte: 1 1 0 1 0 1 0,1, User File DataByte: 1 0 0 1 1 1 Oj
\ \ —

Control bits Payload bit Payload Bits

Only three of the seven control bits elicit a response from the signal generator. The other four bits
are reserved. Table 6-9 describes the bits for a PRAM byte.

Table 6-9 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

Agilent Signal Generators Programming Guide 339

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Table 6-9 PRAM Data Byte

Bit Function Value Comments

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non-bursted, non-TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1 0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit

Output to 1. Use this output for functions such as a triggering external hardware to indicate when

the data pattern begins and restarts, or creating a data-synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.

As seen in Table 6-9, only four bits, shown in the following list, can change state:

* bit O—data
¢ bit 2—bursting

e bit 6-EVENT 1 rear panel output
e bit 7—pattern reset

Because a PRAM byte has only four bits that can change states, there are only 15 possible byte
patterns as shown in Table 6-10. The table also shows the decimal value for each pattern, which is
needed for downloading data using the list format shown on page 344.

340

Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Table 6-10 PRAM Byte Patterns and Bit Positions

~ ~ ~ ~
P N I IS)
2 1 1 n n
5] ‘E 2| 2] = =
RSN g
Bit Function 2 Bit
“12 88| |3
s
EIE|E|E| Bl o £ Pattern
b=} E el 2| % & §| 8| Decimal
El G| | 2| &| & &| &| Value
Bit Position 7 6 5 4 3 21 0 ---
Bit Pattern 1 1 0 1 0 1 0 1 213
1 1 0 1 0 1 0 0 212
1 1 0 1 0|0 O 1 209
1 1 0 1 0|0 O 0 208
1 0 0 1 0 1 0 1 149
1 0 0 1 0O]0]| O 1 145
1 0 0 1 0O|0]| O 0 144
0 1 0 1 0 1 0 1 85
0 1 0 1 0 1 0 0 84
0 1 0 1 0|0 O 1 81
0 1 0 1 0O]0]| O 0 80
0 0 0 1 0 1 0 1 21
0 0 0 1 0 1 0 0 20
0 0 0 1 0O|0]| O 1 17
0 0 0 1 0O|0]| O 0 16

Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope.
There is approximately a 12-symbol delay between a state change in the burst bit and the
corresponding effect at the RF out. This delay varies with symbol rate and filter settings, and
requires compensation to advance the burst bit in the downloaded PRAM file.

Agilent Signal Generators Programming Guide 34

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

PRAM File Size

Because volatile memory resides on the baseband generator (BBG), the maximum PRAM file size
depends on the installed baseband generator option, as shown in Table 6-11.

Table 6-11 Maximum PRAM User File Size (Payload Bits Only)

Baseband Generator Option
Modulation
Format
001, 601 002 602
Custom a a a
TDMA 8 Mbits 32 Mbits 64 Mbits

a. File size with no other files residing in volatile memory.

The maximum PRAM user file size in the table above refers to the maximum number of payload bits.
After downloading, the signal generator translates each downloaded payload bit into a 32-bit word:

¢ 1 downloaded payload bit
e 7 downloaded control bits as shown in Table 6-9 on page 339
e 24 bits added by the signal generator

The following table shows the maximum file size after the signal generator has translated the
maximum number of payload bits into 32-bit words.

Table 6-12 Maximum File Size After Downloading

Baseband Generator Option
Modulation
Format
001, 601 002 602
Custom a a a
TDMA 32 MBytes 128 MBytes 256 MBytes

a. File size with no other files residing in volatile memory.

To properly size a PRAM file, you must determine the file size after the 32-bit translation process.
The signal generator measures a PRAM file size in units of bytes; each 32-bit word equals 4 bytes.

Determining the File Size

The following example shows how to calculate a downloaded file size using a PRAM file that contains
89 bytes (payload bits plus 7 control bits per payload bit):

89 bytes + [(89 x 24 bits) / 8] = 356 bytes

Because the file downloads one fourth of the translated 32-bit word, another method to calculate the
file size is to multiply the downloaded file size by four:

89 bytes x 4 = 356 bytes
See also “Signal Generator Memory” on page 309 and “Checking Available Memory” on page 313.

342 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files

Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Minimum File Size

A PRAM file requires a minimum of 60 bytes to create a signal. If the downloaded file contains less
than 60 bytes, the signal generator replicates the file until the file size meets the 60 byte minimum.
This replication process occurs after you select the file and turn the modulation format on. The
following example shows this process using a downloaded 14-byte file:

During the file download, the 14 bytes are translated into 56 bytes (fourteen 32-bit words).

14 bytes x 4 = 56 bytes

FREQUENCY

4.000 000 000 00 s

AMPLITUDE

136.00 den
[

File size increases
|~ by a factor of 4

Catalog of UFM1 Files 1656 butes used 13L033L0S but ree
File Hame Tupe Size Nodified

PRAME_LIST_IUBYTES WFHL (56)7 —1—-
RAMP_TEST_HFM __ LFM1 ST —— i =i

[l :

After selecting and turning the format on, the signal generator replicates the file contents to

create the 60 byte minimum file size

60 bytes / 14 bytes = 4.29 file replications

The signal generator rounds this real value up to the next highest integer. In this example, the
signal generator replicates the fourteen 32-bit words (56 bytes) by a factor of 5, which makes the

final file size 280 bytes. This equates to a 70 byte file.
14 bytes x 5 = 70 bytes

70 + [(70 x 24) / 8] = 280 bytes

Or

56 bytes x 5 = 280 bytes

FREQUENCY AMPLITUOE

1,000 00000000 &= | -10.00

File size increases
| by a factor of 5

Catalog of UFM1 Files 1830 butes used

134033408 butes
Size dified

File Hame Tupe
1 PRAMS_LIST_{LEYTES WFHL e
2 RAMP_TEST_HFM __ WFL i gy

Agilent Signal Generators Programming Guide

343

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

SCPI Command for a List Format Download

Using the list format, enter the data in the command line using comma separated decimal values.
This file type takes longer to download because the signal generator must parse the data. When
creating the data, remember that the signal generator requires a minimum of 60 bytes. For more
information on file size limits, see “PRAM File Size” on page 342.

Command Syntax
:MEMory :DATA: PRAM: FILE:LIST <"file name">,<uint8>[,<uint8>,<...>]

uint8 The decimal equivalent of an unsigned 8-bit integer value. For a list of usable
decimal values and their meaning with respect to the generated signal, see Table
6-10 on page 341.

Command Syntax Example

The following example, when executed, creates a new file in volatile (waveform) memory with the
following attributes:

e creates a file named new_file

* outputs a single pulse at the EVENT 1 connector

* bursts the data pattern 1100 seven times over 28 bytes
e transmits 32 non-bursted bytes

* resets the data pattern so it starts again

:MEMory:DATA: PRAM:FILE:LIST <"new_file">,85,21,20,20,21,21,20,20,21,21,20,20,21,21,
20,20,21,21,20,20,21,21,20,20,21,21,20,20,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
l6,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,144

The following list defines the meaning of the different bytes seen in the command line:
85 Send a pulse to the EVENT 1 output, and burst the signal with a data bit of 1.
21 Burst the signal with a data bit of 1.
20 Burst the signal with a data bit of 0.
16 Do not burst the signal (RF output off), and set the data bit to 0.

144 Reset the data pattern, do not burst the signal (RF output off), and set the data bit to 0.

SCPI Command for a Block Data Download

The IEEE standard 488.2-1992 section 7.7.6 defines block data. The signal generator is able to
download block data significantly faster than list formatted data (see page 344), because it does not
have to parse the data. When creating the data, remember that the signal generator requires a
minimum of 60 bytes. For more information on file size limits, see “PRAM File Size” on page 342.

344 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Command Syntax

:MEMory :DATA: PRAM: FILE:BLOCk <"file_name">,<blockdata>

The following sections explain how to format the SCPI command for downloading block data:
¢ Command Syntax Example

¢ Command Syntax in a Program Routine

Command Syntax Example

This example conceptually describes how to format a block data download command (#ABC represents
the block data):

:MEMory :DATA: PRAM: FILE:BLOCK <"file_name">, #ABC

<"file_name"> the file name as it will appear in the signal generator

indicates the start of the block data

the number of decimal digits present in B

a decimal number specifying the number of data bytes to follow in C
the PRAM file data in bytes

Q W > #*

:MEMory:DATA: PRAM: FILE: BLOCk l“my_file"| , #|3|240|12%S 14&07#8g*Y9@7. . .

file_name A B C

my_file the PRAM file name as it will appear in the signal generator’s WFM1
memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes of data to follow in C

12%514&07#8g*Y9@7... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are

printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size, and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Syntax in a Program Routine”

Command Syntax in a Program Routine

This section demonstrates the use of the download SPCI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads a 240 byte PRAM file
to the signal generator’s WFM1 (waveform) memory catalog. This program assumes that there is a
char array, databuffer, that contains the 240 bytes of PRAM data and that the variable numbytes
stores the length of the array.

Agilent Signal Generators Programming Guide 345

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Line Code—Download PRAM File Data

int bytesToSend;

bytesToSend = numbytes;

char s[4];

char cmd[200];

sprintf (s, "%d", bytesToSend) ;

sprintf(cmd, ":MEM:DATA:PRAM:FILE:BLOCk \"FILEI\", #%d%d", strlen(s), bytesToSend) ;
iwrite(id, cmd, strlen(cmd), 0, 0);

iwrite(id, databuffer, bytesToSend, 0, 0);

iwrite(id, "\n", 1, 1, 0);

© 00O Ok W

Line Code Description—Download PRAM File Data
1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.
2 Store the total number of PRAM bytes in the integer variable defined in line 1. numbytes

contains the length of the databuffer array referenced in line 8.

3 Create a string large enough to hold the bytesToSend value as characters plus a null character
value. In this code, string s is set to 4 bytes (3 characters for the bytesToSend value and one
null character—one character equals one byte).

4 Create a string and set its length (¢cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For this example, bytesToSend = 240; s = "240”

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

* sprintf() is a standard function in C++, which writes string data to a string variable.
* strlen() is a standard function in C++, which returns length of a string.

¢ DbytesToSend = 240, then s = “240” plus the null character, strlen(s) = 4, so
cmd = :MEM:DATA:PRAM:FILE:BLOCk "FILE1\” #3240.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable 7d.

¢ qwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

* The third argument of ‘write(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

* The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the PRAM file data.

346 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Line Code Description—Download PRAM File Data

8 Send the PRAM file data stored in the array, databuffer, to the signal generator.

* jwrite() sends the data specified in databuffer (PRAM data) to the signal generator (session
identifier specified in id).

* The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 240.

* The fourth argument of ‘write(), 0, means there is no END of file indicator in the data.
In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.
* qwrite() writes the data “\n” to the signal generator (session identifier specified in id).
* The third argument of ‘write(), 1, sends one byte to the signal generator.

* The fourth argument of ‘write(), 1, is the END of file indicator, which the program uses to
terminate the data download.

Selecting a Downloaded PRAM File as the Data Source

The following steps show the process for selecting a PRAM file using commands from the GSM
(TDMA) modulation format. While the commands shown come from only one format, the concept
remains the same when making the data selection for any of the other real-time modulation formats
that support PRAM data. To find the commands for Custom and the other TDMA formats, refer to
the SCPI Command Reference.

1. For real-time TDMA formats, select unframed data:
:RADio:GSM:BURSt : STATe OFF

2. Select the data type:
:RADio:GSM:DATA PRAM

3. Select the PRAM file:
:RADi0:GSM:DATA:PRAM <"file name">

Because the command is file specific (PRAM), there is no need to include the file path with the
file name.

4. Configure the remaining signal parameters.

Agilent Signal Generators Programming Guide 347

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

5. Turn the modulation format on:

:RADi0:GSM: STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

:FREQuency:FIXed 1.8GHZ
:POWer:LEVel -10.0DBM
:OUTPut :MODulation: STATe ON
:OUTPut : STATe ON

Storing a PRAM File to Non—Volatile Memory and Restoring to Volatile Memory

After you download the file to volatile memory (waveform memory), you can then save it to
non-volatile memory. Remember that a PRAM file downloads to waveform memory. Conversely, when
you store a PRAM file to non-volatile memory, it uses the same directory as waveform files. When
storing or restoring a file, you must include the file path as part of the file_name variable.

Command Syntax

The first file_name variable is the current location of the file and its name; the second file_name
variable is the destination to store the file and its name.

There are three ways to format the file_name variable to include the file path:

Volatile Memory to Non-Volatile Memory

:MEMory:COPY "WFMl:file_name", "NVWFM:file_name"
:MEMory:COPY "file name@WFM1", "file name@NVWFM"
:MEMory:COPY "/user/bbgl/waveform/file name", "/user/waveform/file name"

Non-Volatile Memory to Volatile Memory

:MEMory:COPY "NVWFM:file_name", "WFMl:file_name"
:MEMory:COPY "file name@NVWFM", "file_name@WFMI1"
:MEMory :COPY "/user/waveform/file_name","/user/bbgl/waveform/file name"

348 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Extracting a PRAM File

When you extract a PRAM file, you are extracting the translated 32-bit word-per-byte file. You
cannot extract just the downloaded data. Extracting a PRAM file is similar to extracting a waveform
file in that you use the same commands, and the PRAM file resides in either volatile memory
(waveform memory) or the waveform directory for non-volatile memory. After extraction, you can
download the file to the same signal generator or to another signal generator with the proper option
configuration that supports the downloaded file. There are two ways to download a file after
extraction:

* with the ability to extract later
¢ with no extraction capability

CAUTION Ensure that you do not use the :MEMory:DATA:PRAM:FILE:BLOCk command to download
an extracted file. If you use this command, the signal generator will treat the file as a
new PRAM file and translate the LSB of each byte into a 32-bit word, corrupting the file
data.

Agilent Signal Generators Programming Guide 349

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Command Syntax

This section lists the commands for extracting PRAM files and downloading extracted PRAM files. To
download an extracted file, you must use block data. For information on block data, see “SCPI
Command for a Block Data Download” on page 344. In addition, there are three ways to format the
file_name variable, which must also include the file path, as shown in the following tables.

There are two commands for file extraction:

e :MEM:DATA? <"file_name">
e :MMEM:DATA? <"filename">

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 6-13 Extracting a PRAM File

Extraction
Method/Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA? "WFM1l:file_name"

:MEM:DATA? "file_name@WFM1"

:MEM:DATA? "/user/bbgl/waveform/file_name"
SCPI/non-volatile :MEM:DATA? "NVWFM:file name"
memory :MEM:DATA? "file_name@NVWFM"

:MEM:DATA? "/user/waveform/file_name"

FTP/volatile memory?

get /user/bbgl/waveform/file_name

FTP/non-volatile

memory?

get /user/waveform/file_name

a. See “FTP Procedures” on page 331.

350

Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Table 6-14 Downloading a File for Extraction

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory :MEM: DATA:UNPRotected "WFMl:file name", <blockdata>
:MEM: DATA:UNPRotected "file_name@WFM1", <blockdata>
:MEM:DATA:UNPRotected "/user/bbgl/waveform/file name", <blockdata>

SCPI/non-volatile :MEM:DATA :UNPRotected "NVWFM:file name", <blockdata>
memory :MEM: DATA:UNPRotected "file_name@NVWFM", <blockdata>
:MEM: DATA:UNPRotected "/user/waveform/file_name",<blockdata>

FTP/volatile memory® put <file name> /user/bbgl/waveform/file name
FTP/non-volatile put <file name> /user/waveform/file_name
memory?

a. See “FTP Procedures” on page 331.

There are two commands that download a file for no extraction:

e :MEM:DATA <"file name">,<blockdata>

e :MMEM:DATA <"filename">,<blockdata>

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 6-15 Downloading a File for No Extraction

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory :MEM:DATA "WFM1l:file name",<blockdata>
:MEM:DATA "file_name@WFM1",<blockdata>
:MMEM:DATA "user/bbgl/waveform/file_name",<blockdata>

SCPI/non-volatile :MEM:DATA "NVWFM:file name",<blockdata>
memory :MEM:DATA "file name@NVWFM",<blockdata>
:MEM:DATA /user/waveform/file_name",<blockdata>

Modifying PRAM Files

The only way to change PRAM file data is to modify the original file on a computer and download it
again. The signal generator does not support viewing and editing PRAM file contents. Because the
signal generator translates the data bit into a 32-bit word, the file contents are not recognizable, and
therefore not editable using a hex editor program, as shown in the following figure.

Agilent Signal Generators Programming Guide 351

Creating and Downloading User—Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

60 byte PRAM file prior to downloading

60 byte PRAM file after downloading

Q0000000 . ES 15 15 15 15 14 15 14 15 14 14 15 15 15 14 14
00000010: 14 15 15 15 14 15 14 14 15 14 14 15 15 14 14 15
Q0000020: 15 14 14 14 14 14 15 15 14 14 15 15 14 15 15 14
oo0000030: 14 14 15 14 14 15 15 15 15 15 14 20 _
0oo0oo000: 00 01 01 40 00 01 0O 40 00 Ol 00 40 00 01 OO 40
00000010: OO0 01 OO0 40 00 OO0 0O 40 00 01 OO0 40 00 00 0O 40
00000020: OO0 01 OO0 40 00 00 00 40 00 OO0 OO0 40 00 01 0O 40
00000030: 00 01 00 40 00 01 00 40 00 00 00 40 00 00 OO 40
0o000040: OO0 00 OO 40 00 01 0O 40 00 Ol 00 40 00 01 OO 40
00000050 OO0 00 OO0 40 00 01 0O 40 00 OO0 OO0 40 00 00 OO 40
000000G0: OO0 01 OO 40 00 00 00 40 00 OO0 OO0 40 00 01 0O 40
00000070: 00 01 OO0 40 00 00 0O 40 00 00 00 40 00 01 0O 40
ooooo020: 00 01 OO0 40 00 OO0 0O 40 00 OO0 OO0 40 00 00 OO 40
000000%0: OO0 00 OO 40 00 OO0 0O 40 00 01 OO0 40 00 01 0O 40
000000a0: OO0 00 OO 40 00 00 00 40 00 01 OO0 40 00 01 00 40
oooooobo: 00 OO0 OO0 40 00 01 OO0 40 00 01 00 40 OO0 0O OO 40
0o0000c0: OO0 00 OO0 40 00 OO0 0O 40 00 Ol OO0 40 00 00 OO 40
000000d0. 00 00 00 40 00 01 00 40 00 01 00 40 OO0 01 00 40
000000=0: OO0 01 OO0 40 00 01 00 40 00 OO0 OO0 40 00 00 0O 0O
000000£0 :

FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

NOTE

If you encounter problems with this section, refer to “Data Transfer Troubleshooting

(N5162A, N5182A, E4438C and E8267D Only)” on page 372.

The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After
downloading the coefficients, these user—-defined FIR filter coefficient values can be selected as the
filtering mechanism for the active digital communications standard.

Data Requirements

There are two requirements for user-defined FIR filter coefficient files:

1. Data must be in ASCII format.
The signal generator processes FIR filter coefficients as floating point numbers.

2. Data must be in List format.
FIR filter coefficient data is processed as a list by the signal generator’s firmware. See Sample
Command Line.

352 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

Data Limitations

NOTE Modulation filters are real and have an oversample ratio (OSR) of two or greater.

On the N5162A/N5182A with Options 651, 652, 654 only, equalization filters are typically
complex and must have an OSR of one (refer to “Using the Equalization Filter (N5162A and
N5182A with Options 651, 652, 654 Only)” on page 356 and to the User’s Guide).

The MXG supports both Real and Complex filters. Complex filters can only be used with equalization
filters. Refer to Table 6-16 and to Table 6-17. For more on equalization filters, refer to “Using the
Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)” on page 356.

Table 6-16

Type of Description

Filter

Real The I and Q samples are independently filtered by a single set of real coefficients.
Complex The samples are treated as complex (I + jQ) and convolved with the filter coefficients which

are specified as (I + jQ) in the time domain.

Filter lengths of up to 1024 taps are allowed. The oversample ratio (OSR) is the number of filter taps
per symbol. Oversample ratios from 1 through 32 are possible.

The sampling period (At) is equal to the inverse of the sampling rate (FS). For modulation filters, the
sampling rate is equal to the symbol rate multiplied by the oversample ratio. For example, the GSM
symbol rate is 270.83 ksps. With an oversample ratio of 4, the sampling rate is 1083.32 kHz and At
(inverse of FS) is 923.088 nsec.

Table 6-17
Filter Type Oversampling Ratio Number of Taps Symbols/Coefficients
(OSR) (Maximum) (Maximum)
Equalization? 1 256 --
ARB Custom >2 -- 512/1024
Modulation®?
Dual ARB >2 -- 32/1024
Real-Time
Modulation®

a.When 1/Q timing skew, 1/Q delay, or the ACP internal 1/Q channel optimization features are active, the
effective number of taps for the equalization filter are reduced.

b.The filter may be sampled to a higher or lower OSR.

c.The filter will be decimated to a 16 or lower OSR depending on the symbol rate.

Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

Downloading FIR Filter Coefficient Data

The signal generator stores the FIR files in the FIR (/USER/FIR) directory, which utilizes non-volatile
memory (see also “Signal Generator Memory” on page 309). Use the following SCPI command line to
download FIR filter coefficients (file) from the PC to the signal generator’s FIR directory:

:MEMory :DATA:FIR <"file_name">, [REAL, Josr,coefficient

:MEMory :DATA:FIR
<"file_name">,COMPlex, osr,realCoefficient, imaginaryCoefficient, ...

Use the following SCPI command line to query list data from the FIR file:
:MEMory :DATA:FIR? <"file name">

Sample Command Line

The following SCPI command will download a typical set of real modulation FIR filter coefficient
values and name the file “FIR1”:

:MEMory:DATA:FIR "FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient
values (the file is then represented with this name in the FIR File catalog)

specifies the oversample ratio
1,... the FIR filter coefficients

Selecting a Downloaded User FIR Filter as the Active Filter

NOTE For information on manual key presses for the following remote procedures, refer to the
User’s Guide.

FIR Filter Data for TDMA Format

The following remote command selects user FIR filter data as the active filter for a TDMA modulation
format.

:RADio:<desired format>:FILTer <"file name">

This command selects the user FIR filter, specified by the file name, as the active filter for the TDMA
modulation format. After selecting the file, activate the TDMA format with the following command:

:RADio:<desired format>:STATe On

354 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

FIR Filter Data for Custom Modulation

The following remote command selects user FIR filter data as the active filter for a custom
modulation format.

:RADi0:CUSTom:FILTer <"file name">

This command selects the user FIR filter, specified by the file name, as the active filter for the
custom modulation format. After selecting the file, activate the TDMA format with the following
command:

:RADi0:CUSTom: STATe On

FIR Filter Data for CDMA and W-CDMA Modulation

The following remote command selects user FIR filter data as the active filter for a CDMA modulation
format. The process is very similar for W-CDMA.

:RADio:<desired format>:ARB:FILTer <"file_name">

This command selects the User FIR filter, specified by the file name, as the active filter for the CDMA
or W-CDMA modulation format. After selecting the file, activate the CDMA or W-CDMA format with
the following command:

:RADio:<desired format>:ARB:STATe On

Modulating and Activating the Carrier

The following commands set the carrier frequency and power, and turns on the modulation and the
RF output.

1. Set the carrier frequency to 2.5 GHz:
:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to -10.0 dBm:
:POWer:LEVel -10.0DBM

3. Activate the modulation:
:OUTPut :MODulation: STATe ON

4. Activate the RF output:
:OUTPut : STATe ON

Agilent Signal Generators Programming Guide 355

Creating and Downloading User—Data Files
Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)

Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)

An equalization FIR file can be created externally, uploaded via SCPI, and subsequently selected from
the file system (refer to the User’s Guide). For information related to downloading FIR file
coefficients, refer to the “FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)”
on page 352. For information regarding working with FIR file coefficients manually, refer to the
User’s Guide. For more information on equalization filters, refer to the User’s Guide.

This filter can be used to correct and/or impair the RF and External I/Q outputs for the internal 1/Q
source. This filter will be convolved with the ACP Internal I/Q Channel Optimization filter if that
filter is selected, the result of which will be truncated to the center 256 taps. The equalization filter
operates at 1256MHz, so all equalization filters must be resampled to 125MHz prior to selection, if
they are sampled at some other rate.

The MXG supports equalization filters—either Complex or Real—that are programmable FIR filters
with two inputs (I, Q) and two outputs (I, Q) per sample. This 256-tap filter has two modes of
operation:

NOTE The maximum number of taps is 256 (with 2 coefficients per tap for a complex filter) for
equalization filters. The minimum number of taps is 2.

Equalization filters can also be referred to as predistortion filters or correction filters.

Type of Description

Filter

Real The I and Q samples are independently filtered by a single set of real coefficients.
Complex The samples are treated as complex (I + jQ) and convolved with the filter coefficients which

are specified as (I + jQ) in the time domain.

The equalization filter can be turned on and off.

356 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

Save and Recall Instrument State Files

NOTE References to waveform files and some of the other data file types mentioned in the
following sections are not available for all models and options of signal generator. Refer to
the instrument’s Data Sheet for the signal generator and options being used.

The signal generator can save instrument state settings to memory. An instrument state setting
includes any instrument state that does not survive a signal generator preset or power cycle such as
frequency, amplitude, attenuation, and other user-defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10 sequences with 100
registers per sequence available for instrument state settings. These instrument state files are stored
in the USER/STATE directory. See also, “Signal Generator Memory” on page 309.

The save function does not store data such as Arb waveforms, table entries, list sweep data, and so
forth. The save function saves a reference to the waveform or data file name associated with the
instrument state. Use the store commands or store softkey functions to store these data file types to
the signal generator’s memory catalog.

Before saving an instrument state that has a data file or waveform file associated with it, store the
file. For example, if you are editing a multitone arb format, store the multitone data to a file in the
signal generator’s memory catalog (multitone files are stored in the USER/MTONE directory). Then
save the instrument state associated with that data file. The settings for the signal generator such as
frequency and amplitude and a reference to the multitone file name will be saved in the selected
sequence and register number. Refer to the signal generator’s User’s Guide, Key and Data Field
Reference, or the signal generator’s Help hardkey for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the *SAV command, in
register 01, sequence 1. A comment is then added to the instrument state.

*SAV 01,1
:MEM:STAT:COMM 01,1, "Instrument state comment"

If there is a waveform or data file associated with the instrument state, there will be a file name
reference saved along with the instrument state. However, the waveform/data file must be stored in
the signal generator’s memory catalog as the *SAV command does not save data files. For more
information on storing file data such as modulation formats, arb setups, and table entries refer to the
signal generator’s User’s Guide.

NOTE On the N5162A, N5182A, E4438C, and E8267D, if a saved instrument state contains a
reference to a waveform file, ensure that the waveform file resides in volatile memory before
recalling the instrument state. For more information, see the User’s Guide.

Agilent Signal Generators Programming Guide 357

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

The recall function recalls a saved instrument state. If there is a data file associated with the
instrument state, the file will be loaded along with the instrument state. The following command
recalls the instrument state saved in register 01, sequence 1.

*RCL 01,1

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program
prompts the user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer
in the same directory where the State_Files.exe program is located. The Restore State Files selection
downloads instrument state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console interface and the results
obtained after selecting the Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on
Agilent’s website: hitp:\\www.agilent.com for more information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is available on the CD-ROM in
the programming examples section under the same name.

1> Backup ate files

2> Restore state files

3> Quit

Enter 1.2,0r 3. Your choice: 2

Restoring sequence HB. register

R i sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence Hl. register
sequence Hl. register
sequence Hl. register
sequence Hl. register
sequence Hl. register

Restoring sequence H1l. register
1> Backup state files

2> Restore state files

3> Quit

Enter 1.2,.0r 3. Your choice:

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are
three components of the .NET Framework: the common language runtime, class libraries, and Active
Server Pages, called ASP.NET. Refer to the Microsoft website for more information on the .NET
Framework.

The .NET Framework must be installed on your computer before you can run the State_Files
program. The framework can be downloaded from the Microsoft website and then installed on your
computer.

358 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

Perform the following steps to run the State_Files program.

1.

Copy the State_Files.cs file from the CD-ROM programming examples section to the directory
where the NET Framework is installed.

Change the TCPIPO address in the program from TCPIP0::000.000.000.000 to your signal
generator’s address.

Save the file using the .cs file name extension.

Run the Command Prompt program. Start > Run > "emd.exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

Type csc.exe State_Files.cs at the command prompt and then press the Enter key on the keyboard
to run the program. The following figure shows the command prompt interface.

ommand Prompt {3)

Microsoft Windows 2888 [Ue n 5.88.21951]
{C> Copyright 1985-2888 Mi. ft Corp.

C:sWINNT~Microsoft .NET“Framework-wl.1.4322%csc.exe State_Files.cs

The State_Files.cs program is listed below. You can copy this program from the examples directory on
the signal generator’s Documentation CD-ROM.

NOTE The State_Files.cs example uses the ESG in the programming code but can be used with the

PSG or Agilent MXG.

[/ ok ok ko ok ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ko

//
//
//
//
//
//
//

FileName: State_Files.cs

This C# example code saves and recalls signal generator instrument states. The saved
instrument state files are written to the local computer directory computer where the
State_Files.exe is located. This is a console application that uses DLL importing to

allow for calls to the unmanaged Agilent IO Library VISA DLL.

Agilent Signal Generators Programming Guide 359

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

// The Agilent VISA library must be installed on your computer for this example to run.

// Important: Replace the visaOpenString with the IP address for your signal generator.

//
//*************************************‘k**‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k*‘k**************************
using System;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

using System.Collections;

using System.Text.RegularExpressions;

namespace State_Files

class MainApp
{

// Replace the visaOpenString variable with your instrument's address.

static public string visaOpenString = "TCPIP0::000.000.000.000"; //"GPIBO::19";

//"TCPIP0O::ESG3::INSTR";

public const uint DEFAULT_TIMEOUT = 30 * 1000;// Instrument timeout 30 seconds.
public const int MAX_READ_DEVICE_STRING = 1024; // Buffer for string data reads.

public const int TRANSFER_BLOCK_SIZE = 4096;// Buffer for byte data.
// The main entry point for the application.
[STAThread]

static void Main(string[] args)

{

uint defaultRM;// Open the default VISA resource manager
if (VisaInterop.OpenDefaultRM(out defaultRM) == 0) // If no errors, proceed.

uint device;
// Open the specified VISA device: the signal generator
if (VisaInterop.Open(defaultRM, visaOpenString,VisaAccessMode.NoLock,
DEFAULT_TIMEOUT, out device) == 0)
// if no errors proceed.

{

360 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

bool quit = false;
while (!quit)// Get user input

Console.Write("1l) Backup state files\n" +
"2) Restore state files\n" +
"3) Quit\nEnter 1,2,or 3. Your choice: ");

string choice = Console.ReadLine () ;
switch (choice)

{

case "l1":
BackupInstrumentState (device) ; // Write instrument state
break; // files to the computer
}
case "2":
{
RestorelInstrumentState (device); // Read instrument state

break;// files to the sig gen
}
case "3":
{
quit = true;
break;
}
default:
{
break;

}

VisaInterop.Close(device);// Close the device

}

else
{
Console.WriteLine ("Unable to open " + visaOpenString) ;
}
VisaInterop.Close (defaultRM) ; // Close the default resource manager
}
else
{
Console.WriteLine ("Unable to open the VISA resource manager") ;
}

/* This method restores all the sequence/register state files located in

Agilent Signal Generators Programming Guide 361

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

the local directory (identified by a ".STA" file name extension)

to the signal generator.*/

static public void RestoreInstrumentState(uint device)
{
DirectoryInfo di = new DirectoryInfo(".");// Instantiate object class
FileInfo[] rgFiles = di.GetFiles("*.STA"); // Get the state files
foreach(FileInfo fi in rgFiles)
{
Match m = Regex.Match(fi.Name, @"~(\d)_(\d\d)");
if (m.Success)
{
string sequence = m.Groups[1l].ToString() ;
string register = m.Groups[2].ToString() ;
Console.WriteLine ("Restoring sequence #" + sequence +
", register #" + register);
/* Save the target instrument's current state to the specified sequence/
register pair. This ensures the index file has an entry for the specified
sequence/register pair. This workaround will not be necessary in future

revisions of firmware.*/

WriteDevice (device, "*SAV " + register + ", + sequence + "\n",
true); // << on SAME line!

// Overwrite the newly created state file with the state

// file that is being restored.

WriteDevice (device, "MEM:DATA \"/USER/STATE/" + m.ToString() + "\",",
false); // << on SAME line!

WriteFileBlock (device, fi.Name) ;

WriteDevice (device, "\n", true);

}

/* This method reads out all the sequence/register state files from the signal

generator and stores them in your computer's local directory with a ".STA"

extension */

static public void BackupInstrumentState (uint device)
{

// Get the memory catalog for the state directory

WriteDevice (device, "MEM:CAT:STAT?\n", false);

362 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

string catalog = ReadDevice (device) ;
/* Match the catalog listing for state files which are named
(sequence#)_ (register#) e.g. 0_01, 1_01, 2_05*/
Match m = Regex.Match(catalog, "\"(\\d_\\d\\d),");
while (m.Success)
{
// Grab the matched filename from the regular expresssion
string nextFile = m.Groups[1l].ToString() ;
// Retrieve the file and store with a .STA extension
// in the current directory
Console.WriteLine ("Retrieving state file: " + nextFile);
WriteDevice (device, "MEM:DATA? \"/USER/STATE/" + nextFile + "\"\n", true);
ReadFileBlock (device, nextFile + ".STA");
// Clear newline
ReadDevice (device) ;
// Advance to next match in catalog string
m = m.NextMatch() ;
}

/* This method writes an ASCII text string (SCPI command) to the signal generator.
If the bool "sendEnd" is true, the END line character will be sent at the

conclusion of the write. If "sendEnd is false the END line will not be sent.*/

static public void WriteDevice (uint device, string scpiCmd, bool sendEnd)
{
byte[] buf = Encoding.ASCII.GetBytes (scpiCmd) ;
if (!sendEnd) // Do not send the END line character
{
VisalInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);
}
uint retCount;
Visalnterop.Write(device, buf, (uint)buf.Length, out retCount);
if (!sendEnd) // Set the bool sendEnd true.
{
VisalInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);
}

// This method reads an ASCII string from the specified device
static public string ReadDevice (uint device)

{

Agilent Signal Generators Programming Guide 363

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

W,
i

string retvValue =

byte[] buf = new byte[MAX_ READ_DEVICE_STRING] ;

uint retCount;
if (VisaInterop.Read (device,

{

retValue = Encoding.ASCII.GetString(buf,

}

return retValue;

// 1024 bytes maximum read

(uint)buf.Length -1, out retCount) == 0)

(int)retCount) ;

/* The following method reads a SCPI definite block from the signal generator

and writes the contents to a file on your computer.

newline character is NOT consumed by the read.*/

static public void ReadFileBlock (uint device,

{

// Create the new, empty data file.
FileStream fs = new FileStream(fileName,

// Read the definite block header: #{lengthDataLength}{dataLength}

uint retCount = 0;

byte[] buf = new byte[l1l0];

VisaInterop.Read(device, buf,

VisaInterop.Read(device, buf,

out retCount) ;

(uint) (buf[1]-'0"),

The trailing

string fileName)

FileMode.Create) ;

out retCount) ;

uint fileSize = UInt32.Parse(Encoding.ASCII.GetString(buf, 0, (int)retCount));

// Read the file block from the signal generator
byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

uint bytesRemaining = fileSize;

while (bytesRemaining != 0)
{

uint bytesToRead = (bytesRemaining < TRANSFER_BLOCK_SIZE) ?

bytesRemaining : TRANSFER_BLOCK_SIZE;

VisaInterop.Read(device,

fs.Write(readBuf, 0, (int)retCount);

bytesRemaining -= retCount;

}
// Done with file

fs.Close();

readBuf, bytesToRead,

out retCount) ;

/* The following method writes the contents of the specified file to the

specified file in the form of a SCPI definite block.

A newline is

364

Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

NOT appended to the block and END is not sent at the conclusion of the

write.*/

static public void WriteFileBlock(uint device, string fileName)

{

// Make sure that the file exists, otherwise sends a null block

if (File.Exists(fileName))

{

FileStream fs = new FileStream(fileName, FileMode.Open) ;

// Send the definite block header: #{lengthDataLength}{dataLength}

string fileSize = fs.Length.ToString() ;

string fileSizeLength = fileSize.Length.ToString() ;

WriteDevice (device, "#" + fileSizeLength + fileSize, false);

// Don't set END at the end of writes

VisalInterop.SetAttribute (device, VisaAttribute.SendEndEnable, 0);

// Write the file block to the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

int numRead = 0;

uint retCount = 0;

while ((numRead = fs.Read(readBuf, 0, TRANSFER_BLOCK_SIZE)) != 0)
{
VisaInterop.Write(device, readBuf, (uint)numRead, out retCount) ;
}

// Go ahead and set END on writes
VisalInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);
// Done with file
fs.Close();

}

else

{

// Send an empty definite block

WriteDevice (device, "#10", false);

}

// Declaration of VISA device access constants

public enum VisaAccessMode

{

NoLock = 0,
ExclusiveLock = 1,

SharedLock = 2,

Agilent Signal Generators Programming Guide 365

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

LoadConfig = 4

// Declaration of VISA attribute constants
public enum VisaAttribute
{
SendEndEnable = O0x3FFF0016,
TimeoutValue = O0x3FFF001A

// This class provides a way to call the unmanaged Agilent IO Library VISA C

// functions from the C# application

public class VisalInterop
{
[DllImport ("agvisa32.dll", EntryPoint="viClear")]

public static extern int Clear (uint session);

[DllImport ("agvisa32.dll", EntryPoint="viClose")]

public static extern int Close(uint session);

[DllImport ("agvisa32.dll", EntryPoint="viFindNext")
public static extern int FindNext (uint findList, byte[] desc);

[DllImport ("agvisa32.dll", EntryPoint="viFindRsrc")]
public static extern int FindRsrc(

uint session,

string expr,

out uint findList,

out uint retCnt,

byte[] desc);

[DllImport ("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute attribute, out uint attrState);

[DllImport ("agvisa32.dll", EntryPoint="viOpen")]
public static extern int Open(

uint session,

string rsrcName,

VisaAccessMode accessMode,

uint timeout,

out uint vi);

366 Agilent Signal Generators Programming Guide

public s

[DllImport ("agvisa32.dll", EntryPoint="viOpenDefaultRM")]

public static extern int OpenDefaultRM(out uint session);

[DllImport ("agvisa32.dll", EntryPoint="viRead")]
public static extern int Read(

uint session,

byte[] buf,

uint count,

out uint retCount) ;

[DllImport ("agvisa32.dll", EntryPoint="viSetAttribute")]

tatic extern int SetAttribute(uint vi, VisaAttribute attribute,

[DllImport ("agvisa32.dll", EntryPoint="viStatusDesc")]

public static extern int StatusDesc (uint vi, int status,

[DllImport ("agvisa32.dll", EntryPoint="viWrite")]
public static extern int Write(

uint session,

byte[] buf,

uint count,

out uint retCount) ;

Creating and Downloading User—Data Files
Save and Recall Instrument State Files

uint attrState);

byte[] desc);

Agilent Signal Generators Programming Guide

367

Creating and Downloading User—Data Files
User Flatness Correction Downloads Using C++ and VISA

User Flatness Correction Downloads Using C++ and VISA

This sample program uses C++ and the VISA libraries to download user—flatness correction values to
the signal generator. The program uses the LAN interface but can be adapted to use the GPIB
interface by changing the address string in the program.

You must include header files and resource files for library functions needed to run this program.
Refer to “Running C++ Programs” on page 74 for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency
and amplitude values are entered through the keyboard and displayed on the console interface. The
values are then downloaded to the signal generator and stored to a file named flatCal_data. The file
is then loaded into the signal generator’s memory catalog and corrections are turned on. The figure
below shows the console interface and several frequency and amplitude values. Use the same format,
shown in the figure below, for entering frequency and amplitude pairs (for example, 12ghz, 1.2db).

Figure 6-3 FlatCal Console Application

Example Program to Download User Flatness Corrections I’
Enter number of frequency and amplitude pairs: 2 .
Enter Freg 1: 12gh=

Enter Power 1: 2.3db

Enter Freg 2: 15gh=

Enter Power 2: 2.4db

Flatness Data saved to file : flatCal_data

Flatness Corrections Enabled

Press any key to continue

The program uses VISA library functions. The non-formatted viWrite VISA function is used to output
data to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http:\\www.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the Documentation
CD-ROM in the programming examples section as flatcal.cpp.

368 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User Flatness Correction Downloads Using C++ and VISA

[] K kK Kk ok ok ok ok K ok ok K ok K Kk ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok K ok ok Kk ok K ok kK ok K K ok kK ok Kk kK

// PROGRAM NAME:FlatCal.cpp

//

// PROGRAM DESCRIPTION:C++ Console application to input frequency and amplitude

// pairs and then download them to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP interface to download frequency and amplitude

// correction pairs to the signal generator. The program asks the operator to enter

// the number of pairs and allocates a pointer array listPairs[] sized to the number
// of pairs.The array is filled with frequency nextFreqg[] and amplitude nextPower[]

// values entered from the keyboard.

//
//**
// IMPORTANT: Replace the 000.000.000.000 IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator.

[K kK ok ok ok ok ok K ok ok K ok Kk ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok kK ok K K ok kK kK ok kK

#include <stdlib.h>
#include <stdio.h>
#include "visa.h"

#include <string.h>

// IMPORTANT :

// Configure the following IP address correctly before compiling and running

char* instOpenString ="TCPIP0::000.000.000.000::INSTR";//your PSG's IP address

const int MAX_STRING_LENGTH=20;//length of frequency and power strings
const int BUFFER_SIZE=256;//length of SCPI command string

int main(int argc, char* argvl[])
{
ViSession defaultRM, vi;
ViStatus status = 0;
status = viOpenDefaultRM(&defaultRM) ;//open the default resource manager

//TO DO: Error handling here

status = viOpen (defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);

Agilent Signal Generators Programming Guide 369

Creating and Downloading User—Data Files
User Flatness Correction Downloads Using C++ and VISA

if

{

(status)//if any errors then display the error and exit the program

fprintf (stderr, "viOpen failed (%s)\n", instOpenString) ;

return -1;

printf ("Example Program to Download User Flatness Corrections\n\n");

printf ("Enter number of frequency and amplitude pairs: ");

int num = 0;

scanf ("%$d", &num) ;

if

{

(num > 0)

int lenArray=num*2;//length of the pairsList[] array. This array

//will hold the frequency and amplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList array

//pairsList[n]=0;

for (int i=0; 1 < num; i++)
{
char* nextFreq = new char[MAX_STRING_LENGTH+1]; //frequency array
char* nextPower = new char [MAX_ STRING_LENGTH+1];//amplitude array
//enter frequency and amplitude pairs i.e 10ghz .1db
printf ("Enter Freqg %d: ", i+1);
scanf ("%$s", nextFreq);
printf ("Enter Power %d: ",i+1l);
scanf ("%$s", nextPower) ;
pairsList[2*i] = nextFreq;//frequency

pairsList[2*i+l]=nextPower;//power correction

unsigned char str[256];//buffer used to hold SCPI command

//initialize the signal generator's user flatness table

sprintf ((char*)str, ":corr:flat:pres\n"); //write to buffer
vilWrite (vi, str,strlen((char*str),0); //write to PSG
char ¢ = ',';//comma separator for SCPI command

for (int j=0; j< num; Jj++) //download pairs to the PSG

370

Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
User Flatness Correction Downloads Using C++ and VISA

{
sprintf ((char*)str, ":corr:flat:pair %s %c %s\n",pairsList([2*j], c,
pairsList[2*j+1]); // << on SAME line!

viWrite(vi, str,strlen((char*)str),0);
}
//store the downloaded correction pairs to PSG memory
const char* fileName = "flatCal_data";//user flatness file name
//write the SCPI command to the buffer str
sprintf ((char*)str, ":corr:flat:store \"%s\"\n", fileName);//write to buffer
viWrite(vi, str,strlen((char*)str),0);//write the command to the PSG

printf ("\nFlatness Data saved to file : %s\n\n", fileName) ;

//load corrections

sprintf ((char*)str, ":corr:flat:load \"%s\"\n", fileName); //write to buffer

viWrite(vi, str,strlen((char*)str),0); //write command to the PSG
//turn on corrections
sprintf ((char*)str, ":corr on\n");
viWrite(vi,str,strlen((char*)str),0");
printf ("\nFlatness Corrections Enabled\n\n");
for (int k=0; k< lenArray; k++)

{

delete [] pairsList[k];//free up memory

}

delete [] pairsList;//free up memory

viClose(vi);//close the sessions

viClose (defaultRM) ;

return 0;

Agilent Signal Generators Programming Guide 3an

Creating and Downloading User—Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

NOTE The section, User FIR Filter Coefficient File Download Problems, applies to the N5162A and
N5182A with Option 651, 652, or 654; the E4438C with Option 001, 002, 601, or 602; and the
E8267D with Option 601 or 602.

The remaining sections, User File Download Problems and PRAM Download Problems, apply
only to the E4438C with Option 001, 002, 601, or 602; and the E8267D with Option 601 or
602.

This section is divided by the following data transfer methods:

“User File Download Problems” on page 372

“PRAM Download Problems” on page 373

“User FIR Filter Coefficient File Download Problems” on page 375
Each section contains the following troubleshooting information:

¢ a list of symptoms and possible causes of typical problems encountered while downloading data
to the signal generator

¢ reminders regarding special considerations and file requirements

* tips on creating data, transferring data, data application and memory usage

User File Download Problems

Table 6-18 Use—File Download Trouble — Symptoms and Causes

Symptom Possible Cause

Data does not completely fill an integer number of timeslots.

At the RF output, If a user file fills the data fields of more than one timeslot in a continuously repeating framed
some data modulated, transmission, the user file will be restarted after the last timeslot containing completely filled
some data missing data fields. For example, if the user file contains enough data to fill the data fields of 3.5

timeslots, firmware will load 3 timeslots with data and restart the user file after the third
timeslot. The last 0.5 timeslot worth of data will never be modulated.

Data Requirements
* The user file selected must entirely fill the data field of each timeslot.

* The user file must be a multiple of 8 bits, so that it can be represented in ASCII characters.

¢ Available volatile memory must be large enough to support both the data field bits and the
framing bits.

372 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

Requirement for Continuous User File Data Transmission

“Integer Number of Timeslots” Requirement for Multiple-Timeslots

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file is restarted after the last timeslot containing completely filled data fields.
For example, if the user file contains enough data to fill the data fields of 3.5 timeslots, the firmware
loads 3 timeslots with data and restart the user file after the third timeslot. The last 0.5 timeslot
worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer
number of timeslots

“Multiple—of-8-Bits” Requirement

For downloads to bit and binary memory, user file data must be downloaded in multiples of 8 bits
(bytes), since SCPI specifies data in bytes. Therefore, if the original data pattern’s length is not a
multiple of 8, you need to:

* add bits to complete the ASCII character
¢ replicate the data pattern to generate a continuously repeating pattern with no discontinuity

¢ truncate the excess bits

NOTE The “multiple-of-8-bits” data length requirement is in addition to the requirement of
completely filling the data field of an integer number of timeslots.

Using Externally Generated, Real-Time Data for Large Files

When the data fields must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the front
panel DATA, DATA CLOCK, and SYMBOL SYNC connectors. This data can be continuously
transmitted, or can be framed by supplying a data-synchronous burst pulse to the EXT1 INPUT
connector on the front panel. Additionally, the external data can be multiplexed into internally
generated framing

PRAM Download Problems

Table 6-19 PRAM Download — Symptoms and Causes

Symptom Possible Cause

Pattern reset bit not set.

The transmitted pattern is interspersed

with random, unwanted data. Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your

downloaded data.

Agilent Signal Generators Programming Guide 373

Creating and Downloading User—Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

Table 6-19 PRAM Download — Symptoms and Causes

Symptom

Possible Cause

ERROR -223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Data Requirements
* The signal generator requires a file with a minimum of 60 bytes

¢ For every data bit (bit 0), you must provide 7 bits of control information (bits 1-7).

Table 6-20 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non-bursted, non-TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1 0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit

Output to 1. Use this output for functions such as a triggering external hardware to indicate when

the data pattern begins and restarts, or creating a data-synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.

374 Agilent Signal Generators Programming Guide

Creating and Downloading User—Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

User FIR Filter Coefficient File Download Problems

Table 6-21 User FIR File Download Trouble — Symptoms and Causes

Symptom Possible Cause

There is not enough memory available for the FIR coefficient file being
downloaded.

ERROR -321, Out of memory
To solve the problem, either reduce the file size of the FIR file or delete
unnecessary files from memory.

User FIR filter has too many coefficients.

ERROR -223, Too much data The filter specification cannot have more than 1024 taps (2048

coefficients for a complex filter).

Data Requirements
¢ Data must be in ASCII format.

¢ Downloads must be in list format.

¢ Filters containing more symbols than the hardware allows (32 for real-time modulation filters,
512 for Arb Custom Modulation filters, and 256 for Equalization filters) will not be selectable for
the configuration.

Agilent Signal Generators Programming Guide 375

Creating and Downloading User—Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

376 Agilent Signal Generators Programming Guide

Symbols
NET framework, 357

Numerics
2’s complement data format, 213

8757d

GPIB addresses, 114
pass-thru commands, 113
pass-thru programming, 114

abort function, 78
address

GPIB address, 27

IP address, 32

Agilent

BASIC, See HP BASIC

esg
global settings, configuring, 21, 305
memory allocation, non-volatile memory, 224, 312
memory allocation, volatile memory, 311
Pulse/RF Blank, configuring, 305
setting GPIB address, 28
volatile memory types, 309
Waveform Download Assistant, 251
web server, on, 14

10 Libraries
Suite, b
Suite, using interactive 10, 38
version 15.0, 6
version J, 42
version M, 8,42,70

mxg
global settings, configuration, 20
global settings, configuring, 305
memory allocation, non-volatile memory, 223,311, 312
memory allocation, volatile memory, 311
setting GPIB address, 27
volatile memory types, 309
Waveform Download Assistant, 251
web server, on, 14

psg
global settings, configuring, 21, 305
memory allocation, non-volatile memory, 224, 312
memory allocation, volatile memory, 311
Pulse/RF Blank, configuring, 305
setting GPIB, 28
volatile memory types, 309
Waveform Download Assistant, 251
web server, on, 14

SICL, 10, 29,78

Signal Studio, 250

| ndex

Signal Studio Toolkit, 206

VISA, 10, 29, 62, 70, 78

VISA COM Resource Manager 1.0, 75
Agilent VISA, 10
ARB waveform file downloads

data requirements

waveform, 207

download utilities, 206

waveform download utilities, 250
ASCII, data, 81
Auto-1IP, 35
AUXILIARY INTERFACE, See RS-232

baseband operation status group, registers, 183-185
Baseband Studio
for Waveform Capture and Playback, 218
BASIC
ABORT, 78
CLEAR, 80
ENTER, 82
LOCAL, 80
LOCAL LOCKOUT, 79
OUTPUT, 81
REMOTE, 79
See HP BASIC
big- endian
byte order, interleaving and byte swapping, 238
changing byte order, 210
example, programming, 292
binary
data
framed, 320
unframed, 319
file
downloads commands, 328
modifying hex editor, 330
bit
file
downloads and commands, 327
modifying hex editor, 331
order, user file, 316
status, monitoring, 169
values, 168
bits and bytes, 207
byte order
byte swapping, 210
changing byte order, 210
interleaving I/Q data, 238

c

C
AC-coupled FM signals

377

I ndex

generating externally applied, 95
CW signals, generating, 93
data questionable

status register, reading, 105

FM signals, generating internally applied, 97

reading the service request interrupt, 109
Sockets LAN, programming, 120
states, saving and recalling, 102
C and VISA
GPIB
queries, 91
GPIB, interface check, 84
C/C++, 11
C#
programming examples, 75
remote control, 11
VISA, example, 358
C++
programming examples, 74, 255
VISA, generating a step-swept signal, 99
C++ and VISA
generating a step-swept signal, 99
cable
USB, 70
carrier
activating, FIR filters, 355
modulating, FIR filters, 355
CDMA modulation
data, FIR filter, 355
Checking Available Memory, 313
clear
command, 80
function, 80
CLS command, 171
command
CLS, 171
format programming, user file data, 325
format user file, downloading, 324
prompt, 37, 143
window PC, using, 332
window UNIX, using, 332
commands
8757d
pass- thru, troubleshooting, 115
Agilent mxg, menu path, 19
downloads, binary file, 328
downloads, bit file, 327
e8257n, 20
esg, menu path, 20
GPIB, 78, 79, 80, 81, 82
pass-thru, 8757d, 113
psg, menu path, 20
computer interface, 3
computer- to- instrument communication

VISA
configuration, automatic, 8
VISA configuration, (manual), 8
condition registers, description, 177
Configuration
10 Libraries, 7
configuring, VXI-11, 42
connection wizard, 5
controller, 29
creating waveform data
C++, using, 235
saving to a text file for review, 238
creating waveform files
overview, 205
crossover cable, private LAN, 36
csc.exe, 357
custom
modulation data, FIR filter, 355
real-time, high data rates, 337
user file data, memory usage, 321

DAC input values, 210
data
binary, framed, 320
binary, unframed, 319
encryption, 227
format, e443xb signal generator, 252
requirements, waveform, 207
data questionable
See also data questionable registers
filters
BERT transition, 202
calibration transition, 199
frequency transition, 193
modulation transition, 196
power transition, 190
transition, 188
groups
BERT status, 201
calibration status, 198
frequency status, 192
modulation status, 195
power status, 189
status, 185
status register
reading, using VISA and C, 105
data questionable registers
BERT event, 203
BERT event enable, 203
BERT, condition, 202
calibration condition, 199
calibration event, 199

378

calibration event enable, 200
condition, 186
event, 188
event enable, 188
frequency condition, 193
frequency event, 193
frequency event enable, 194
modulation condition, 196
modulation event, 196
modulation event enable, 197
power condition, 190
power event, 190
power event enable, 191
data rates, high
custom, real-time, 337
data requirements, FIR filter downloads, 352
data types
binary, 308
bit, 308
defined, 308
FIR filter states, 308
PRAM, 308
user flatness correction, 308
decryption, 227
developing programs, 74
device, add, 9
DHCP, 11, 35
directory, root, 311
DNS, 37
DOS command prompt, 44
download
binary file data, 319
bit file data, 316
FIR filter coefficient data, 352
user file data
FTP procedures, 331
unencrypted files for extraction, 351
unencrypted files for no extraction, 351
user flatness, 357
utilities
Agilent Signal Studio, Toolkit, 206
IntuiLink for signal generators, 206
Waveform Download Assistant, 206
waveform data
advanced programming languages, 244
commands, 226
e443xb signal generator files, 211, 251
encrypted files for extraction, 231
encrypted files for no extraction, 229
FTP procedures, 232
memory locations, 227
overview, 205, 241
simulation software, 242
unencrypted files for extraction, 229

| ndex

unencrypted files for no extraction, 229
user-data files, using, 307
download libraries, 10
downloaded PRAM files
data sources, 347
downloading
block data
SCPI command, 344
SCPI command, programming syntax, 345
C++, using, 255
HP Basic, 297
MATLAB, 281
Visual Basic, 294
downloads, PRAM data
e4438c, 338
e8267d, 338

e443xb
files
downloading, 251, 254
formatting, 211, 252
programming examples, 270
storing, 252
programming examples, 297
e8663b
See Agilent psg
e8663d
See Agilent psg
edit VISA config, 9
EnableRemote, 79
encryption
downloading
for extraction, 231
for no extraction, 229
extracting waveform data, 230, 231
1/Q files, 227
I/Q files, agilent mxg (only), 227
securewave directory
agilent mxg (only), 227
esg, 227
psg, 227
waveform data, 226
enter function, 82
equalization
filter, 356
filter, user, 356
errors, 23, 38
ESE commands, 171
esg
See Agilent esg
even number of samples, 217
event enable register

379

I ndex

description, 177 carrier, modulating, 355
event registers data limitations, 353
description, 177 firmware
example programs See programming examples, 254 loading older versions, caution, 1
examples firmware status, monitoring, 169
pass-thru commands, 113 framed data, usage
save and recall, 358 volatile memory, PRAM, 322
Telnet, 48 front panel
external media USB
See USB media connector, Type-A, 71
external memory flash memory sticks, 71
See USB media media, 71
externally applied AC-coupled FM signals USB media, 71
generate, using VISA and C, 95 FTP
extract user file data, 351 commands for downloading and extracting files, 351
extracting downloading and extracting files, commands, 230-231
PRAM files, 349 internet explorer, using, 332
methods, 227
F procedures for downloading files, 232, 331
file size using, 48
determining web server procedure, 234, 332
PRAM, 342
minimum G
PRAM, 343 Getting Started Wizard, 28
PRAM, 342 global settings
file types Agilent mxg, 20, 305
See data types esg, 21, 305
files psg. 21, 305
decryption, 227 GPIB
encryption, 226, 227 8757d, addresses, 114
encryption, agilent mxg (only), 227 address, 27,116
error messages, 23 Agilent mxg, setting address, 27
extraction commands and file paths, 228 configuration, 27
header information, 215, 227 controller, 29
large, generating real-time data, 373 esg, setting address, 28
PRAM, modifying, 351 interface, 3, 27
transfer methods, 227 interface cards, 25, 77
transferring, 48 IO libraries, 10
waveform download utilities, 250 listener, 29
waveform structure, 215 overview, 25, 77
filter program examples, 29, 78, 84, 91
equalization, 356 SCPI commands, 29
user, equalization, 356 talker, 29
filters troubleshooting, 28
See transition filters using VISA and C, 84
FIR verifying operation, 28
filter data GPIB address
CDMA modulation, 355 psg, setting address, 28
custom modulation, 355
TDMA format, 354 H
W-CDMA modulation, 355 hardware
filters layers, remote programming, 2
carrier, activating, 355 status, monitoring, 169

380

help mode
setting
Agilent mxg, 20
esg, 21
psg, 21
hex editor
binary file, modifying, 330
bit file, modifying, 331
hexadecimal data, 292
hostname, 32, 116
hostname, setting
Agilent mxg, 34
Agilent mxg menus, 32
DHCP LAN, esg, 36
DHCP LAN, psg, 36
DHCP/Auto I/P LAN, Agilent mxg, 35
esg/psg, 34
esg/psg menus, 33
HP BASIC, 11
HP Basic
I/0 library, 62
local lockout, 85
programming examples, 297
queries, 88
RS-232
control, 62
queries, 68, 155
HyperTerminal, 65

I/0 libraries
See 10 libraries
1/Q data
creating, advanced programming languages, 235
encryption, 226, 227
encryption, agilent mxg (only), 227
interleaving
big endian and little endian, 238
byte swapping, 238
little endian, byte swapping, 238
waveform data, creating, 213
memory locations, 221, 240
saving to a text file for review, 238
scaling, 211
waveform structure, 217
iabort, 78
ibloc, 80
ibstop, 78
ibwrt, 81
iclear, 80
IEEE standard, 25, 77
igpibllo, 79
iloc, 80

input values, DAC, 210
instrument

instrument status, monitoring, 159

communication, 6, 8
state files
overview, 357

SCPI commands, recalling, 357

SCPI commands, saving, 357

interactive 10, 5, 38
interface

cards, 25, 77

GPIB, 27

LAN, 3

RS-232,3

USB (Agilent mxg only), 3

interleaving, See 1/Q data, 213
internal

web server
FTP procedure, 332

internal storage

See storage

internally applied FM signals

generate, using VISA and C, 97
IntuiLink for signal generators, 250

10 Config

Agilent IO libraries Suite, 5

computer- to- instrument communication, 8

VISA, manual, 9

10 Configure

Using VISA Assistant, 40

10 interface, 6, 8
10 libraries

GPIB interface, installing, 25

GPIB, installing interface cards, 77

GPIB, selecting for, 10
GPIB, verifying, 28
interactive 10, using, 38

program languages, overview, 4

RS-232, selecting for, 62

signal generator, remote control, 2

suite, overview, b
USB, selecting for, 70

VISA LAN, troubleshooting, 40

IP address

LAN interface, 32
LAN, assigning, 32
setting, 32, 33, 35, 36
setting Agilent mxg, 34
setting esg/psg, 34

iremote, 79
J
JAVA, 76, 143

| ndex

381

I ndex

Java list format, downloading
example, 76, 143 SCPI command, 344
list, error messages, 23
K listener, 29
kikij, 223 little- endian
byte order, interleaving and byte swapping, 238
L loading waveforms, 247
. local
LabView. 11 echo, telnet, 47
LAN . . function, 80
Auto'— IP configuration, 35 local lockout
conf}g, 40 . function, 79
confllguratlon HP Basic, using, 85
Agilent mxg, 34, 35 location user-data file type
esg/psg, 34. binary, 313
menu, Agilent mxg, 32 LSB, 208
menu, esg/psg, 33, 36 LSB and MSB, 316
summary, Agilent mxg, 18 LSB/MSB, 292
web server, 11 LXI
DHCP' cqnfiguration, 3? class B, mxg, 3, 11
establishing a connection, 242, 244 LXI-B subsystem, 50, 51, 52, 53, 54, 55, 56
hostnarme, 32 LXI-B synchronizing time, 50, 51,52, 53, 54, 55, 56
interface, 3
10 libraries, 10
LXI M

interface protocols, 31,50 manual operation, 79
manual configuration, 33 marker file, 215, 227
Matlab, 149 MATLAB, 11
Matlab, using, 146, 149, 150 download utility, 251
overview, 31 downloading data, 242
programming examples, 277

private, 36
program examples, 76, 116, 143, 145, 146, 149, 150 programming, introduction, 11
programming Matlab
using JAVA, 76, 143 ex?mple, 146, 149
queries using sockets, 123 media
sockets, 116 external
sockets LAN, 31 flash memory sticks, 71
Telnet, 44 front panel USB, 71

troubleshooting, 37 non-volatile memory, Agilent mxg, 309
verifying operation, 36 waveform memory, 220

VXI-11 internal

non-volatile memory, Agilent mxg, 309

examples, using, 116
waveform memory, 220

interface protocols, 31

perl, using, 145 USB . .
programming examples, LAN, 116 non-volatile memory, Agilent mxg, 309
sockets, programming, 76, 143 memory)
LAN Ping Responses, 38 See also media
libraries allocation, 222, 311
GPIB functionality, verifying, 28 checking, available, 313
GPIB I/O libraries, selecting, 10 defined, 220, 309
10, Agilent, 2,4 location user-data file type
RS-232, 62 available memory, checking, 313
selecting, for computer, 10 bit, 313
USB, 70 FIR, 313

382

flatness, 313
instrument state, 313
PRAM, 313
locations, 220, 309
non-volatile (NVWFM), 227
signal generator, maximum, 313
size, 224, 312
volatile (WFM1), 227
volatile and non-volatile, 309
memory usage
user file data
custom, 321
TDMA, 321
Microsoft .NET Framework
overview, 358
Mini-B (5-pin)
Rear panel connector, 71
MSB, 208
MSB and LSB, 316
MS-DOS Command Prompt, 37, 44
multiple- of- 8- bits requirement
user file data, 373
multiple- timeslots
integer number of timeslots, 373
mxg
LXI class B, 3,11
See Agilent mxg
MXG ATE
web- enabled, accessing, 13

N

nb5161a/62a/81a/82a/83a

Pulse/RF Blank configuring, 305
National Instruments

NI-488.2, 29,78

VISA, 10, 29, 62, 70, 78
negative transition filter, description, 177
NI libraries

SICL

GPIB I/0 libraries, selecting, 10

NI-488.2

EnableRemote, 79

functions, 10

GPIB I/0 libraries, selecting, 10

ibler, 80

ibloc, 80

ibrd, 82

ibstop, 78

ibwrt, 81

LAN I/0 libraries, selecting, 10

queries using C++, 89

RS-232 1/0 libraries, selecting, 62

SetRWLS, 79

| ndex

USB I/0 libraries, selecting, 70
VISA, 10, 62
non-volatile memory

available

SCPI query, 314
external media, Agilent mxg, 309
internal media, Agilent mxg, 309
internal storage, Agilent mxg, 309
memory allocation, 312

Agilent mxg, 223, 311

esg, 224

psg, 224
securewave directory, 227
USB media, 71
USB media, Agilent mxg, 309
waveform, 220

0

OPC commands, 171
output command, 81
output function, 81

P

pass-thru commands, 113
PC, 292
PCI-GPIB, 29, 78
PERL
example, 145, 150
phase discontinuity
avoiding, 218
Baseband Studio, for Waveform Capture and Playback,
218
samples, 219
waveform, 217
phase distortion, 217
ping
program, 36
playing waveforms, 247
polling method (status registers), 169
ports, 120
positive transition filter, description, 177
PRAM
as data sources, 347
bit positions, 340
byte patterns, 340
data extracting SCPI command, syntax, 350
downloads, problems, 373
e4438c, data downloads, 338
e8267d, data downloads, 338
file size, 342
minimum, 343
file size, determining, 342
files

383

I ndex

command syntax, for restoring, 348 R
command syntax, for storing, 348
extracting, 349 real-time
modifying, 351 data files, generating large, 373
non-volatile memory, storing, 348 TDMA
understanding, 339 user files, 333
volatile memory, restoring, 348 rear panel connector
volatile memory Mini- B, 71
framed data, usage, 322
unframed data, usage, 322
waveform, viewing, 341
private LAN, using, 36
problems
user
file downloads, 372
FIR filter downloads, 375
programming
8757d, using pass-thru, 114
creating waveform data, 235
downloading waveform data, 241
little endian order, byte swapping, 238
user file data
command format, 325
programming examples

ramp sweep, using pass-thru commands, 113

recall states, 357
register system overview, 159
data questionable
See also data questionable registers
registers
See also data questionable registers
See also status registers
baseband operation
condition, 184
event, 185
event enable, 185
condition, description, 177
esg overall system, 164, 165
mxg overall system, 162, 163
psg overall system, 166, 167
standard event

C#, 75, 358 bits, 179
C++, 74, 255 status, 179
e443xb

status enable, 179
standard operation
condition, 181

files, 270
e443xb files, 297
HP Basic, 297 event, 182
introduction, 254 event enable, 182
MATLAB, 277 status byte, 176
pass-thru commands, 113
RS-232, queries using VISA and C, 68, 157 remote annunciator, 153
RS-232, using VISA and C, 67, 153 remote function

using, 73 HP Basic, 79
using GPIB, 29, 78, 84, 91

status groups, register type descriptions, 177

setting

using LAN, 76, 116, 143, 145, 146, 149, 150 Agilent mxg, 19

using RS-232, 66, 152 esg, 20

Visual Basic, 292, 294 psg, 20

VXI-11,116 setting, e8257n, 20
psg ' remote interface

See Agilent psg programming, 2
Pulse/RF Blank RS-232, 61

esg, setting, 305 USB, 69

n5161a/62a/81a/82a/83a, setting, 305

tting, 305 remote programming
psg, setting,

hardware layers, 2
software layers, 2

Q RS-232

queries address, 67, 152
HP Basic, using, 88 baud rate, 63

queue, error, 23 cable, 64

configuration, 63

384

echo, setting, 63

format parameters, 66

HP Basic, using queries, 68, 155
interface, 63

interfaces, 3

10 libraries, 62

overview, 61

program examples, 66, 152

programming examples, queries using VISA and C, 68,

157
programming examples, using VISA and C, 67, 153
settings, baud rate, 67, 152
verifying operation, 65

S

samples
even number, 217
waveform, 217
save and recall, 357
scaling I/Q data, 211
SCPI
error queue, 23
file transfer methods, 227
GPIB, overview, 25
programming languages, common, 11
register model, 159
web server control, 11
SCPI command, programming syntax
block data, downloading, 345
SCPI command, syntax
PRAM files, extracting, 350
SCPI commands
block data, downloading, 344
command line structure, 228
download e443xb files, 254
encrypted files, 229, 231
extraction, 226, 228, 229, 231, 351
for status registers
IEEE 488.2 common commands, 171
GPIB function statements, 29
instrument state files, recalling, 357
instrument state files, saving, 357
list format, downloading, 344
no extraction, 228, 229
unencrypted files, 229, 351
user FIR file downloads
sample command line, 354
securewave directory
decryption, file, 227
downloading encrypted files, 231
downloads, file, 227
encryption, file, 227
extracting waveform data, 230, 231

| ndex

extraction, file, 227
sequences
waveforms, building, 249
service request
interrupt
reading, using VISA and C, 109
method
status registers, 170
using, 170
SetRWLS, 79
setting
help mode
Agilent mxg, 20
esg, 21
psg, 21
Pulse/RF Blank
esg, 305
nb161a/62a/81a/82a/83a, 305
psg, 305
SICL, 10, 62, 70
GPIB examples, 29, 78
iabort, 78
iclear, 80
igpibllo, 79
iloc, 80
iprintf, 81
iremote, 79
iscanf, 82
NI libraries, 10
USB, using, 70
VXI-11, programming, 117
signal generator
monitoring status, 159
volatile memory types, 309
Waveform Download Assistant, 251
Signal Studio Toolkit, 206, 250
simulation software, 242
sockets
example, 120, 123
Java, 76, 143
LAN, 43,116,120
Matlab, 146
PERL, 145, 150
UNIX, 120
Windows, 121
software
layers, remote programming, 2
libraries, IO, 5
SRE commands, 171
SRQ command, 170
SRQ method, status registers, 170
standard event status
enable register, 179
group, 178

385

I ndex

register, 179
standard operation
condition register, 181
event enable register, 182
event register, 182
transition filters, 182
state files, 357
states
saving and recalling, using VISA and C, 102
status byte
esg overall register system, 164, 165
group, 175
mxg overall register system, 162, 163
psg overall register system, 166, 167
register, 176
status groups
baseband operation, 183-185
data questionable
BERT, 201
calibration, 198
frequency, 192
modulation, 195
overview, 185
power, 189
registers, 177
standard
event, 178
status byte, 175
status registers
See also registers
accessing information, 169
bit values, 168
esg overall system, 165
hierarchy, 159
in status groups, 177
monitoring, 169
mxg overall system, 162, 163
overall system, 164
programming, 159
SCPI commands, 171
SCPI model, 159
setting and querying, 171
system overview, 159
using, 168
STB command, 171
storage
internal
non-volatile memory, Agilent mxg, 309
system requirements, 74

T

talker, 29
TCP/IP, 11

TCPIP, 6, 8,116
TDMA
data, FIR filter, 354
user file data, memory usage, 321
Telnet
DOS command prompt, 44
example, 48
PC, 45
UNIX, 47, 48
using, 44
Windows 2000, 46
Windows XP, 46
timeslots, integer number of
multiple- timeslots requirement, 373
Toolkit, Signal Studio, 206, 250
transition filters
baseband operation, 184
data questionable
BERT, 202
modulation, 196
negative and positive, 188
power, 190
data questionable calibration, 199
data questionable frequency, 193
description, 177
negative transition, description, 177
positive transition, description, 177
standard operation, 182
troubleshooting
8757d, pass-thru commands, 115
GPIB, 28
LAN, 37
ping
response errors, 38
PRAM downloads, 373
RS-232, 66
USB, 71
user file downloads, 372
user FIR filter downloads, 375
VISA assistant, 40
Type- A front panel USB connector, 71

U

unencrypted files
downloading for extraction, 229, 351

downloading for no extraction, 229, 351

extracting I/Q data, 350
unframed data, usage

volatile memory, PRAM, 322
USB

cable, 70

functionality, verification, 71

interface, 3

386

10 libraries, 70
setting up, 70
using, Agilent mxg, 69
verifying operation, 71
usb media
file extensions, 223
user data
file, modifying, 330
files, creating, 307
files, downloading, 307
memory, 309
root directory, 311
user file data, continuous transmission
requirements, 373
user files
bit order, 316
bit order, LSB and MSB, 316
data
binary, downloads, 315
bit, downloads, 315
multiple- of- 8-bits requirement, 373
downloading
as the data source, 347
carrier, activating, 348
carrier, modulating, 348
command format, 324
modulating and activating the carrier, 330
selecting the user file as the data source, 329
framed transmissions, understanding, 333
real-time TDMA, 333
size, 320
user FIR file downloads
non-volatile memory, 354
selecting a downloaded user FIR file, 354
user flatness, 357
user-data file type
binary, memory location, 313
bit, memory location, 313
FIR, memory location, 313
flatness, memory location, 313
instrument state, memory location, 313
memory location, 313
PRAM, memory location, 313
user-data files
See user data
Using Connection Expert
configuring and running, 7

V'

verifying waveforms, 247
Version M

10 Libraries, Agilent, 8
version M

| ndex

10 Libraries, Agilent, 5
viPrintf, 81
VISA, 7,10,62,70
C++, generating a step-swept signal, 99
COM IO Library, 75
computer- to- instrument communication, 8
configuration
automatic, 6, 9
manual, 7, 9
CW signals, generating, 93
data questionable status register, reading, 105
FM signals, generating internally applied, 97

generating externally applied AC-coupled FM signals,

95
I/0 libraries, 10
LAN client, 38
LAN, using, 10
library, 29, 78, 292
NI-488.2, 10
RS-232, using, 62
scanf, 82
service request interrupt, reading, 109
states, saving and recalling, 102
USB, using, 70
viPrintf, 81
Visual C++, generating a swept signal, 100
viTerminate, 78
VXI-11, 116
CW signals
See VISA and C
VISA and C
CW signals, generating, 93
GPIB
interface check for, 84
queries, 91
VISA Assistant
GPIB functionality, verifying, 28
10 Config, 6,8
10, Using interactive, 38
troubleshooting, 40
verifying instrument communication, 38
Visual Basic
IDE, 75
programming examples, 292
programming language, 11
references, 75
Visual C++
NI-488.2, queries using, 89
VISA, generating a swept signal, 100
Visual C++ and VISA
generating a swept signal, 100
viTerminate, 78
volatile memory
file, decryption, 227

387

I ndex

file, encryption, 227
memory allocation, 222
Agilent esg, 311
Agilent psg, 311
securewave directory, 227
memory, volatile (WFM1), 227
signal generator, 309
types, signal generators, 309
waveform, 220
volatile memory available, SCPI query, 314
VXI-11, 116
configuration, 42
programming, 116
programming interface examples, 116
SICL, using, 117
using, 42
VISA, using, 118

w

waveform data
2’s complement data format, 213
bits and bytes, 207
byte order, 210
byte swapping, 210

commands for downloading and extracting, 226-234,

324-333
creating, 235
DAC input values, 210
data requirements, 207
encrypted data, 223
encryption, 226-231
explained, 207
extracting, 226, 229-230
I and Q interleaving, 213
LSB and MSB, 208
saving to a text file for review, 238
waveform download
utilities
differences, 250
waveform downloads
advanced programming languages, using, 244
download utilities, using, 250
HP BASIC, using, 297-302
memory, 220
allocation, 222, 311
size, 224, 312
volatile and non-volatile, 220
samples, 217
simulation software, using, 242
structure, 217
troubleshooting files, 304
using advanced programming languages, 244
with Visual Basic 6.0, 294

waveform files
creating, 205
downloading, 205
waveform generation
C++, 255
HP Basic, using, 297
MATLAB, using, 277
Visual Basic 6.0, using, 292
waveforms
loading, 247
playing, 247
sequences, building, 249
verifying, 247
viewing, PRAM, 341
W-CDMA modulation data, FIR filter
See FIR
web server
Agilent
mxg, 14
communicating with, 11
esg, 14
internal, 332
Windows
2000, 46
2000 Professional, 6
98,5
ME, 5
NT, 5,8
Vista Business, 6
XP, 6, 46
WriteIEEEBlock, 294

388

	Title Page
	Notices

	Contents
	1 Getting Started with Remote Operation
	Programming and Software/Hardware Layers
	Interfaces
	IO Libraries and Programming Languages
	Agilent IO Libraries Suite
	Windows XP, 2000 Professional and Vista Business Agilent IO Libraries 15.0 (and Newer)
	Windows NT and Agilent IO Libraries M (and Earlier)
	Selecting IO Libraries for GPIB
	Selecting IO Libraries for LAN
	Programming Languages

	Using the Web Browser
	Modifying the Signal Generator Configuration
	Enabling the Signal Generator Web Server

	Preferences
	Configuring the Display for Remote Command Setups (Agilent MXG)
	Configuring the Display for Remote Command Setups (ESG/PSG)
	Getting Help (Agilent MXG)
	Getting Help (ESG/PSG)
	Setting the Help Mode (ESG/PSG)

	Troubleshooting
	Error Messages
	Error Message File
	Error Message Types

	2 Using IO Interfaces
	Using GPIB
	Installing the GPIB Interface
	Set Up the GPIB Interface
	Verify GPIB Functionality
	GPIB Interface Terms

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	Interface Check using HP Basic and GPIB
	Interface Check Using NI–488.2 and C++

	Using LAN
	Setting Up the LAN Interface
	Setting up Private LAN
	Verifying LAN Functionality
	Using VXI–11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP
	Using LXI

	Using RS–232 (ESG and PSG Only)
	Selecting IO Libraries for RS–232
	Setting Up the RS–232 Interface
	Verifying RS–232 Functionality
	Character Format Parameters
	If You Have Problems

	RS–232 Programming Interface Examples
	Before Using the Examples
	Interface Check Using HP BASIC
	Interface Check Using VISA and C
	Queries Using HP Basic and RS–232
	Queries for RS–232 Using VISA and C

	Using USB (Agilent MXG)
	Selecting I/O Libraries for USB
	Setting Up the USB Interface

	3 Programming Examples
	Using the Programming Interface Examples
	Programming Examples Development Environment
	Running C++ Programs
	Running C# Examples
	Running Basic Examples
	Running Java Examples
	Running MATLAB Examples
	Running Perl Examples

	Using GPIB
	Installing the GPIB Interface Card

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	GPIB Function Statements (Command Messages)
	Interface Check using HP Basic and GPIB
	Interface Check Using NI-488.2 and C++
	Interface Check for GPIB Using VISA and C
	Local Lockout Using HP Basic and GPIB
	Local Lockout Using NI-488.2 and C++
	Queries Using HP Basic and GPIB
	Queries Using NI-488.2 and Visual C++
	Queries for GPIB Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C++
	Generating a Swept Signal Using VISA and Visual C++
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C
	Using 8757D Pass-Thru Commands (PSG with Option 007 Only)

	LAN Programming Interface Examples
	VXI-11 Programming
	VXI-11 Programming Using SICL and C++
	VXI-11 Programming Using VISA and C++
	Sockets LAN Programming and C
	Queries for Lan Using Sockets
	Sockets LAN Programming Using Java
	Sockets LAN Programming Using Perl
	TCP-IP (LAN) Programming Using Matlab

	RS-232 Programming Interface Examples (ESG/PSG Only)
	Before Using the Examples
	Interface Check Using HP BASIC
	Interface Check Using VISA and C
	Queries Using HP Basic and RS-232
	Queries for RS-232 Using VISA and C

	4 Programming the Status Register System
	Overview
	Overall Status Byte Register Systems

	Status Register Bit Values
	Example: Enable a Register
	Example: Query a Register

	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	5 Creating and Downloading Waveform Files
	Overview of Downloading and Extracting Waveform Files
	Waveform Data Requirements

	Understanding Waveform Data
	Bits and Bytes
	LSB and MSB (Bit Order)
	Little Endian and Big Endian (Byte Order)
	Byte Swapping
	DAC Input Values
	2’s Complement Data Format
	I and Q Interleaving

	Waveform Structure
	File Header
	Marker File
	I/Q File
	Waveform

	Waveform Phase Continuity
	Phase Discontinuity, Distortion, and Spectral Regrowth
	Avoiding Phase Discontinuities

	Waveform Memory
	Memory Allocation
	Memory Size

	Commands for Downloading and Extracting Waveform Data
	Waveform Data Encryption
	File Transfer Methods
	SCPI Command Line Structure
	Commands and File Paths for Downloading and Extracting Waveform Data
	FTP Procedures

	Creating Waveform Data
	Code Algorithm

	Downloading Waveform Data
	Using Simulation Software
	Using Advanced Programming Languages

	Loading, Playing, and Verifying a Downloaded Waveform
	Loading a File from Non–Volatile Memory
	Playing the Waveform
	Verifying the Waveform
	Building and Playing Waveform Sequences

	Using the Download Utilities
	Downloading E443xB Signal Generator Files
	E443xB Data Format
	Storage Locations for E443xB ARB files
	SCPI Commands

	Programming Examples
	C++ Programming Examples
	MATLAB Programming Examples
	Visual Basic Programming Examples
	HP Basic Programming Examples

	Troubleshooting Waveform Files
	Configuring the Pulse/RF Blank (Agilent MXG)
	Configuring the Pulse/RF Blank (ESG/PSG)

	6 Creating and Downloading User–Data Files
	Overview
	Signal Generator Memory
	Memory Allocation
	Memory Size
	Checking Available Memory

	User File Data (Bit/Binary) Downloads (E4438C and E8267D)
	User File Bit Order (LSB and MSB)
	Bit File Type Data
	Binary File Type Data
	User File Size
	Determining Memory Usage for Custom and TDMA User File Data
	Downloading User Files
	Command for Bit File Downloads
	Commands for Binary File Downloads
	Selecting a Downloaded User File as the Data Source
	Modulating and Activating the Carrier
	Modifying User File Data
	Understanding Framed Transmission For Real–Time TDMA
	Real–Time Custom High Data Rates

	Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
	Understanding PRAM Files
	PRAM File Size
	SCPI Command for a List Format Download
	SCPI Command for a Block Data Download
	Selecting a Downloaded PRAM File as the Data Source
	Modulating and Activating the Carrier
	Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory
	Extracting a PRAM File
	Modifying PRAM Files

	FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active Filter

	Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)
	Save and Recall Instrument State Files
	Save and Recall SCPI Commands
	Save and Recall Programming Example Using VISA and C#

	User Flatness Correction Downloads Using C++ and VISA
	Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
	User File Download Problems
	PRAM Download Problems
	User FIR Filter Coefficient File Download Problems

	Symbols/Numerics
	Index

