

UPDATE!! Copyright © <partner1>, <partner2>, and other members of the 4CaaSt
consortium 2010 Page 1

Building the PaaS Cloud of the Future

Immigrant PaaS Technologies:
Experimental Prototype of Software

Components and Documentation
D7.3.3 Version 1.0

WP7 – Immigrant PaaS Technologies

Dissemination Level: Public

Lead Editor: Steve Strauch, University of Stuttgart

09/09/2013

Status: Final

The research leading to these results has received funding from the European Union's
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 258862

Seventh Framework Programme

FP7-ICT-2009-5

Service and Software Architectures, Infrastructures and Engineering

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 2

This is a public deliverable that is provided to the community under a Creative Commons
Attribution 3.0 Unported License: http://creativecommons.org/licenses/by/3.0/

You are free:
to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:
Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).

With the understanding that:
Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain — Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by/3.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/legalcode

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 3

Contributors:
 Vasilios Andrikopoulos, University of Stuttgart

Nicolas Chabanoles, BONITASOFT
François Exertier, Bull
Rouven Krebs, SAP
Benoit Pelletier, Bull
Guillaume Porcher, Bull
Ricardo Jimenez-Peris, UPM
Simon Riggs, 2ndQ
Steve Strauch, University of Stuttgart
Johannes Wettinger, University of Stuttgart
Kathryn Woodcock, 2ndQ

Internal Reviewer(s):

Craig Sheridan, FLEXIANT
Michel Dao, FT

Version History
Version Date Authors Sections Affected

0.1 07/08/2013 Johannes Wettinger
(USTUTT), Steve Strauch
(USTUTT)

Initial version containing
structure and planned content

0.2 09/08/2012 Johannes Wettinger
(USTUTT), Steve Strauch
(USTUTT)

Content regarding Extension of
Apache ServiceMix and partner
responsibilities have been
added.

0.3 04/09/2013 Steve Strauch (USTUTT) Integration of contributions from
involved WP7 partners

0.4 05/09/2013 Johannes Wettinger
(USTUTT), Steve Strauch
(USTUTT)

Final fixes before 4CaaSt
internal review

0.5 08/09/2013 Craig Sheridan (
FLEXIANT), Michel Dao
(FT), Johannes Wettinger
(USTUTT)

Integration of internal review
feedback. Correction of
grammar, spelling, and wording.

0.6 09/09/2013 Steve Strauch (USTUTT) Preparation of final version and
final fixes and corrections.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 4

1.0 09/09/2013 Steve Strauch (USTUTT) Final version

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 5

Table of Contents
Executive Summary ...10

1. Introduction ...11

1.1. Purpose and Scope ..11

1.2. Document Overview ..11

2. Prototype Description ...12

2.1. PostgreSQL ..12

2.2. CumuloNimbo ...12

2.3. Java Open Application Server – JOnAS ..14

2.3.1. Java EE 6 Web Profile Certification ...14

2.3.2. JOnAS Integration With Resource Management ...14

2.3.3. JOnAS Integration With Marketplace ...15

2.3.4. JOnAS Integration With Accounting ..15

2.4. Performance Isolation Benchmarking ..15

2.4.1. Metrics ..15

2.4.2. Measurement Framework..15

2.4.3. MT TPC-W ..16

2.5. Bonita Open Solution – BOS ...16

2.6. Orchestra ..17

2.7. Extension of Apache ServiceMix for Multi-Tenancy ...18

3. Components Management ..22

3.1. PostgreSQL ..22

3.2. CumuloNimbo ...22

3.2.1. Deployment ...22

3.2.2. Monitoring and Accounting ..22

3.2.3. Integration with Marketplace ..22

3.3. Java Open Application Server – JOnAS ..22

3.3.1. Deployment ...22

3.3.2. Monitoring and Accounting ..23

3.3.3. Integration with Marketplace ..23

3.4. Performance Isolation Benchmarking ..24

3.4.1. Measurement Framework – Deployment and Installation24

3.4.2. MT TPC-W ..24

3.5. Bonita Open Solution – BOS ...26

3.6. Orchestra ..28

3.6.1. Deployment ...29

3.6.2. Monitoring ...29

3.6.3. Accounting ..29

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 6

3.6.4. Integration with Marketplace ..29

3.7. Extension of Apache ServiceMix for Multi-Tenancy ...30

4. User Guide ...32

4.1. PostgreSQL ..32

4.1.1. Logical Log Streaming Replication ..32

4.1.2. Bi-Directional Replication ..48

4.2. CumuloNimbo ...53

4.3. Java Open Application Server – JOnAS ..54

4.4. Performance Isolation Benchmarking ..54

4.4.1. Metrics ..54

4.4.2. Measurement Framework..54

4.4.3. TPC-W ..56

4.5. Bonita Open Solution – BOS ...56

4.6. Orchestra ..57

4.7. Extension of Apache ServiceMix for Multi-Tenancy ...57

5. Conclusion ..58

6. References ...59

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 7

List of Figures
Figure 1. CumuloNimbo Ultra-Scalable Database Design ..13

Figure 2. Performance Isolation Measurement Framework ..16

Figure 3. Multi-tenant Version of TPC-W ..16

Figure 4. Overview of ESBMT ..18

Figure 5. Architecture of an ESB Instance ..20

Figure 6. Deployment of MT TPC-W With Four Different Hosts ..25

Figure 7. Screenshot of 4CaaSt Marketplace Showing ESBMT Product31

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 8

List of Tables
Table 1. Overview of Parameters for Measurement Strategy..56

Table 2. Overview of Commands Supported by the Client Console56

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 9

Abbreviations

4CaaSt Building the PaaS Cloud of the Future

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

BC Binding Component

BOS Bonita Open Solution

EAR Enterprise Archive

HDFS Hadoop Distributed File System

ID Identifier

JAR Java Archive

JDBC Java Database Connectivity

JDK Java Development Kit

JOnAS Java Open Application Server

JPA Java Persistence API

OS Operation System

OSGi Open Services Gateway initiative framework

PGXS PostgreSQL Extension System

RDBMS Relational Database Management System

Repmgr Replication Manager for PostgreSQL clusters

REST Representational State Transfer

RP Reporting Period

SA Service Assembly

SoPeCo Software Performance Cockpit

SUT System Under Test

WAR Web application ARchive

URL Uniform Resource Locator

UUID Universally Unique Identifiers

WP Work Package

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 10

Executive Summary
The goal of work package 7 within 4CaaSt is to make proven immigrant platform
technologies cloud-aware. Therefore, we are focusing on technologies stemming from the
following four domains and which are reflected in the structure of the tasks accordingly:
relational databases (Task 7.1), application servers (Task 7.2), composition frameworks and
engines (Task 7.3), and integration technologies such as enterprise service bus (Task 7.4).

This deliverable and the corresponding prototypes provide the final versions of the
prototypical implementation of WP7 components and their documentation. We concentrate in
this document on the delta compared to D7.3.1 [1] and D7.3.2 [2] only and provide
references to other deliverables and documents wherever possible.

In this document we focus on the information required for integrating and using the cloud-
aware building blocks from WP7 within the 4CaaSt platform. In addition, we provide
information on management and usage of the functionality extensions realized for each
building block in RP3.

In particular, in this document we provide the prototype descriptions (Section 2), information
on components management within the 4CaaSt platform such as deployment and monitoring
(Section 3), and user guides (Section 4) for the following immigrant PaaS technologies
extended for Cloud-awareness in RP2:

• PostgreSQL – a BiDirectional Replication for PostgreSQL.

• CumuloNimbo – an ultra-scalable database consisting of four main subsystems:
transactional management, key-value data store, query engine, and configuration
registry.

• Java Open Application Server (JOnAS) – an open source Java EE and OSGi
application server extended for enabling interaction via REST interface and multi-
tenant service handling.

• Performance Isolation Benchmarking – tooling to measure performance isolation

• Bonita Open Solution – an open source BPM solution extended for multi-tenancy
regarding data and configuration isolation.

• Orchestra – an open source WS-BPEL engine.

• Apache ServiceMix – an open source Enterprise Service Bus extended for multi-
tenant aware communication and multi-tenant aware administration and
management.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 11

1. Introduction
This document is based on the former WP7 deliverables D7.3.2 [2] and D7.2.3 [3].
Deliverable D7.3.2 reported and provided the second version of the WP7 prototypes and
documentation focusing on functionality extension of WP7 building blocks. Based on this we
provided new requirements focusing on the integration of WP7 components into the 4CaaSt
platform in D7.2.3.

Thus, this document represents the documentation of the realization of the concrete
requirements, specification, and design to achieve open functionality extensions required in
order to achieve cloud-awareness of immigrant PaaS technologies, but mainly focusing on
the integration of the cloud-aware immigrant technologies into the 4CaaSt platform compared
to the prototypes delivered with D7.3.2. The corresponding runtime artefacts and
components of the prototypes are referenced within this document and delivered together
with this document.

1.1. Purpose and Scope
This is the last and final version of the prototypical implementations and documentations of
the immigrant PaaS technologies to be made cloud-aware in WP7 and to be integrated into
the 4CaaSt platform. This document provides the descriptions of the prototypes, information
on how to integrate each of the prototypes into the 4CaaSt platform, and guidelines how to
use each prototypes. Therefore, this document provides essential information enabling
project internal usage, e.g., in WP8 concerning realization of 4CaaSt use cases, and project
external usage of WP7 building blocks.

1.2. Document Overview
The remainder of this document is structured as follows: the prototype descriptions of the
final version of WP7 components extended for Cloud-awareness and integrated into the
4CaaSt platform is presented in Section 2. The sequence of the components presentation in
this document follows the order of the WP7 tasks the corresponding components belong to.
Information on how to build, install, and set up the prototypical implementations focusing on
the integration into the 4CaaSt platform is provided in Section 3. A user guide for each
prototype focusing on the description of the graphical user interface and the API depending
whether the corresponding prototype provides both or only one of them, is contained in
Section 4. Finally, Section 5 concludes this document.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 12

2. Prototype Description
In this section we present an overview of the final versions of the different WP7 building
blocks focusing on the integration into the 4CaaSt platform and on the improvements and
extensions that have been done during RP3.

2.1. PostgreSQL
In RP3, 4CaaST project has partially sponsored the development of a prototype for
BiDirectional Replication (BDR) for PostgreSQL which has been started in RP2, see D7.2.3
[3] and D7.3.2. [2]. This is a more flexible implementation of the basic “multi-master
database” concept. BDR is a feature being developed for inclusion in PostgreSQL core that
provides greatly enhanced replication capabilities. BDR allows users to create a
geographically distributed multi-master database using Logical Log Streaming Replication
(LLSR) transport.

BDR is designed to provide both high availability and geographically distributed disaster
recovery capabilities.

BDR is not “clustering” as some vendors use the term, in that it doesn't have a distributed
lock manager, global transaction co-ordinator, etc. Each member server is separate yet
connected, with design choices that allow separation between nodes that would not be
possible with global transaction coordination.

The prototype achieves good performance and promises a good final implementation which
is currently on-going. Details are included in the User Guide section.

PostgreSQL has been validated in the 4CaaSt scenario 8.1, see D8.1.4 [6].

2.2. CumuloNimbo
The CumuloNimbo ultra-scalable database consists of four main subsystems:

• Transactional management:

o It is the key innovation in CumuloNimbo. It decomposes the ACID properties
and scales each of them with a distributed scalable component in a
composable manner.

• Key-value data store:

o It provides scalable and reliable storage. It is provided by Apache HBase that
runs on top of Hadoop Distributed File System (HDFS). HDFS provides
persistency and reliability by means of replication.

• Query engine:

o It provides full SQL to access the database.

• Configuration registry:

o It provides a reliable registry where all configuration information is stored and
updated during reconfigurations.

The different tiers are shown in Figure 1.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 13

Figure 1. CumuloNimbo Ultra-Scalable Database Design

The way CumuloNimbo scales transactional processing is by decomposing the ACID
properties and scaling each of them independently. Durability is provided by a set of loggers
that enable to scale the bandwidth required for logging. Isolation is provided by concurrency
controllers that detect conflicts among concurrent transactions and the snapshot server that
provides a consistent snapshot to newly started transactions in the form of a start timestamp.
Atomicity is guaranteed by local transaction managers and the commit sequencer. The
commit sequencer determines the sequencing of transactions by assigning commit
timestamps to committing update transactions.

CumuloNimbo can scale seamlessly thanks to the fact that transactions can commit in
parallel without any synchronization, but full ACID consistency is guaranteed by only making
visible consistent snapshots of the database. In this way, all the activities required to run and
commit a transaction can be fully parallelized and the work distributed among several nodes.
The commit sequencer and snapshot server are not parallelized since the amount of work
they perform per transaction is so small that they are able to process around a million update
transactions per second.

SQL processing is provided by SQL query engines. These query engines are stateless and
only maintain client sessions and perform the query processing. The load of query
processing can be distributed across as many query engines as needed. The query engines
accept connections from the clients that connect through a JDBC driver. The JDBC driver
discovers the available query engine instances via the registry where the current
configuration is stored providing a list of all available components and their addresses.

Once discovered, the available query engine instantiates the JDBC Driver that connects to
one of them randomly using an inverse probability to their relative load. The SQL requests
are sent to the query engine. The query engine parses the SQL, generates the alternative
query plans and the query optimizer chooses the one that looks more optimal. The query
engine then executes this query plan. The leaves of the query plan are query operators that
access the storage. They are custom storage operators that instead of accessing the local
disk, they access the key-value data store to read, update, insert and delete tuples. In the
current implementation the key-value data store used is HBase that runs on top of HDFS.
HDFS provides persistency by storing the tables in persistent storage and high availability by
replicating the files in which the tables are stored.

The relational schema is translated into a key-value data store schema. A table is created
with the tuple values and associated to the primary key. Then, additional tables are created
for secondary indexes to translate the secondary key into the primary key.

The client proxy of the key-value data store has extra functionality with respect to the original
one from HBase. It has a wrapper that provides the transactional semantics. It also provides
three extra methods to start, commit and abort transactions. The wrapper keeps private
versions of updated data that are propagated to the key-value store after the transaction is
made durable in the log. The read operations performed on behalf of a transaction on the
key-value data store are adjusted with the private versions of the performed updates by the
transaction.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 14

2.3. Java Open Application Server – JOnAS
For this release we focused on the Java EE 6 Web profile certification and on the integration
with the 4CaaSt platform’s management facilities (monitoring, resource management,
marketplace integration). The following sections outline the Java EE 6 Web profile
implementation as well as the integration with the 4CaaSt platform.

2.3.1. Java EE 6 Web Profile Certification

JOnAS 5.3 has been enhanced to fulfil the Java EE 6 Web profile and get the certification
from Oracle. See http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-
136984.html.

JOnAS 5.3 now supports the following Java EE 6 Web profile specifications:

• Java Servlet
 3.0

• JavaServer Faces (JSF) 2.0

• JavaServer Pages (JSP) 2.2

• Expression Language (EL) 2.2

• JavaServer Pages Standard Tag Library (JSTL) 1.2

• Debugging Support for Other Languages 1.0

• Enterprise JavaBeans (EJB) 3.1 Lite

• Java Persistence API (JPA) 2.0

• Contexts and Dependency Injection for Java 1.0

• Dependency Injection for Java 1.0

• Bean Validation 1.0

• Managed Beans 1.0

• Interceptors 1.1

• Common Annotations for the Java Platform 1.1

A part of the JOnAS internal components were upgraded and new ones were added (with the
related glue) to implement the specifications. The major components used in the Java EE 6
Web profile are:

• Tomcat (Servlet, JSP)

• EasyBeans (EJB)

• Eclipselink (JPA)

• Jotm (JTA)

• Weld (CDI)

The certification process consisted in passing successfully 100% of the certification tests
suite which represents about 23.000 tests.

2.3.2. JOnAS Integration With Resource Management

The resource management (WP4) is in charge of provisioning JOnAS instances within the
4CaaSt platform. The provisioning relies on Chef scripts (recipes) to automate the
deployment and the configuration. A Chef cookbook “JOnAS_PIC” has been developed. Its
purpose is both to deploy JOnAS as a platform instance component (PIC) as well as to
deploy application components (ACs) on top of the AS. Different versions of this cookbook

http://www.oracle.com/technetwork/java/javaee/overview/compatibility
http://www.oracle.com/technetwork/java/javaee/overview/compatibility
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 15

were developed, allowing to deploy different versions of JOnAS. The latest version contains
recipes allowing to deploy multi-tenant ACs and probes used to perform the accounting and
charging.

2.3.3. JOnAS Integration With Marketplace

The JOnAS integration with marketplace consisted of:

• Providing a JOnAS blueprint

• Defining a pricing model

Both compliant to the approaches developed within 4CaaSt WPs 2 and 3.

2.3.4. JOnAS Integration With Accounting

The JOnAS product needs to be integrated with the accounting interface provided by WP5 to
enable JOnAS to be offered in the 4CaaSt marketplace. This is used by the payment process
for JOnAS instances.

The accounting for JOnAS is based on measuring the number of requests per tenant.

A JASMINe JMX probe is configured in the JOnAS Chef script to get the number of requests
per tenant and a message is sent to the accounting API provided by WP5.

2.4. Performance Isolation Benchmarking
The Aspects concerning Performance Isolation benchmarks are manifold. In D7.3.2 [2] and
D7.2.3 [3] we presented rather scientific contributions like the metrics to quantify
performance isolation on the one hand and rather technical ones like the MT TPC-W
Benchmark and a measurement environment on the other hand. In the following we recap
the architectural aspects to provide a short description of the prototype. We also shortly
recap the metrics.

2.4.1. Metrics

We presented two different approaches and three basic metrics, for quantifying performance
isolation, decoupled from a concrete scenario. The first one is based on the impact of an
increased workload, from one customer, on the QoS of other customers. This metric has
strengths to express the impact of workload on the QoS which is relevant for capacity
planning. The second group of metrics does reduce the workload of the customers working
within their quota (Wa), if the workload of the disruptive customers increases. This maintains
constant QoS for the residual workload of Wa. One subgroup of metrics relies on resulting
significant points (e.g., when Wa becomes 0), another one on the area under the curve of Wa.
The results show strengths of these metrics in ordering a system between the magnitudes of
isolated and non-isolated which makes systems easily comparable.

2.4.2. Measurement Framework

Figure 2 describes the major components used for the measurements Framework. The
SoPeCo controls the general process to estimate the performance isolation behaviour of the
system under test. It selects possible workload configurations and quantifies the degree of
isolation once all measurements are finished. The Experiment Definition defines meta
information for the concrete measurement like the maximum duration or workload
configurations used as reference for the measurements. The Multi-tenant measurements
environment Controller is the plugged in functionality to connect the generic SoPeCo to the
concrete environment. It maps the generic workload profiles from the SoPeCo to concrete
settings used by a load driver which challenges the SUT. Furthermore, the Environment
Controller collects the observed performance data and translates them into a format that
could be understood by the SoPeCo specific plugins to measure performance isolation.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 16

Figure 2. Performance Isolation Measurement Framework

2.4.3. MT TPC-W

The Multi-tenant version of the TPC-W consists of four major parts as shown in Figure 3. The
Client Console presents the user interface to control the applications configuration and the
load drivers load generation. The Load Driver consists of several component instances of
concrete load drivers to generate load for the corresponding tenant. The DB Setup is a small
tool which initializes the DB with data to ensure a consistent amount of data in the database
for each run. The application itself (Book Store) is divided into two major parts. The Java
servlets are rendering the Web page and containing application logic and the component
managing the Persistency related activities. The Persistency encapsulates all DB
interactions. The DB itself could be any SQL storage system with transaction capabilities.

Figure 3. Multi-tenant Version of TPC-W

The Client Console, the DB Setup and the Load Driver is running on a J2SE environment.
The Bookstore is also implemented in Java and relies on a servlet containing. The DB could
be any SQL supporting environment.

2.5. Bonita Open Solution – BOS
In this section we introduce the architecture and realization of Bonita BPM 6 multi-tenant
BPM solution. Moreover, we provide information on how it has been validated and evaluated
in the scope of the 4CaaSt project.

The starting point of the realization was an early version of Bonita Open Solution v6 renamed
Bonita BPM 6. The internal structure of Bonita is composed of several layers: API, BPM
business logic, generic services.

The APIs are the entry points for an external customer layer to query (read / write)
information from Bonita.

The BPM business logic is responsible for translating the customer query in BPM meaningful
action and for delegating it to generic services.

An example of generic service is the persistence service that takes an object and stores it,
another example is the cache service. For a given generic service multiple implementations

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 17

may exist. The implementation of a generic service is selected by configuration at
deployment time.

For purposes of multi-tenancy, we introduced two different levels of users: system wide
administrator and tenant-wide users. The system administrator is in charge of managing the
deployment of Bonita, monitor the system resources consumption and is able to create /
delete tenants. To ensure security this System administrator does not have access to internal
tenant information. A tenant user is not aware of the existence of other tenants and cannot
interfere with them. When creating a new tenant, the System admin provide a tenant user
with the Tenant admin rights to allow him operate on the tenant: create / delete users, install /
delete processes, etc.

Every single customer query may be attached to a tenant to ensure data isolation and
accuracy. In order to make this possible we extended the APIs to let users identify
themselves against a particular tenant user repository. By default this repository is the Bonita
Database (e.g. PostgreSQL), but as any other service it may be possible to change the
implementation of the service by the System admin at deployment time. After authentication
each of the upcoming queries to API will be bound to the tenant thanks to the tenantId. This
way the APIs will be able to gain access to the right instance of each service for the given
tenant and ensure that data will be persisted at the right place, i.e. in the right tenant.

Adding new tenants has a cost in resource consumption (e.g. memory), that is why we had to
allow cluster deployment combined with multi-tenancy. To keep deployment simple we've
made the choice to have all nodes of the cluster idempotent; which means that all nodes
have the same configuration and can do the same actions. Consequently each tenant exists
on each node. A customer request may be redirected to any nodes of the cluster
transparently and get the same answer. Of course all combinations of number of tenants and
nodes are possible, e.g. 1/1, 1/n, n/1, etc.

The main challenges to support multiple active nodes in the cluster were the Cache Service
and the Lock Service. The first one stores in memory temporary results that can be reused in
order to improve response time of queries. The Lock service ensures the data consistency in
case of concurrent access to shared resources.

On top of the APIs Bonita BPM comes with a Web UI, which allows the customization,
administration, management, and interaction with the other layers. The Web UI offers a
customizable interface for human and application interaction with the system, allowing for the
administration and management of tenants and users. The API offers the same functionality
as the Web UI, but also enables the integration and communication of external components
and applications. A Java based client is provided to hide protocol complexity to call Bonita
APIs.

Bonita BPM 6 has been validated by applying it to the 4CaaSt Tourism Application under the
name Bonita Shop.

2.6. Orchestra
Although Orchestra was discontinued from the project in RP2 we had to integrate this
component with the extension state shortly before the discontinuation in PR3, because
Orchestra is used as cloud-aware building block in the 4CaaSt scenarios.

Thus, we addressed the following three domains with respect to integration into the 4CaaSt
platform.

Orchestra was integrated with the Monitoring by defining KPIs designed to be collected by
the JASMINe Monitoring Source as specified in WP5.

Orchestra was integrated with the Resource Management by providing a Chef cookbook for
the Orchestra component (on top of JOnAS)

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 18

And finally, Orchestra was integrated with Marketplace by defining a Blueprint for this
component.

2.7. Extension of Apache ServiceMix for Multi-
Tenancy

In this section we introduce the architecture and realization of ESBMT a multi-tenant open-
source Enterprise Service Bus1. Moreover, we provide information on how this Cloud-aware
building block has been validated and evaluated in the scope of the 4CaaSt project.

In the following we summarize the architecture and realization in details described in [1]. For
purposes of implementing ESBMT we extended the open source ESB Apache ServiceMix
version 4.3.0 [5], hereafter referred to simply as ServiceMix. We present the realization of the
components in the different layers of the framework in a bottom-up fashion, similarly to the
presentation of the architecture in Figure 4.

The Resources layer consists of a JBI Container Instance Cluster and a set of registries. The
JBI Container Instance Cluster bundles together multiple JBI. Each one of these instances
(see Figure 5) performs the tasks usually associated with traditional ESB solutions, that is,
message routing and transformation.

Figure 4. Overview of ESBMT

1 ESBMT: http://www.iaas.uni-stuttgart.de/esbmt/

http://www.iaas.uni-stuttgart.de/esbmt/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 19

For purposes of performance, instances are organized in clusters, using an appropriate
mechanism like the one offered by ServiceMix. Realizing multi-tenancy on this level means
that both BCs and SEs are able to:

• handle service units and service assemblies containing tenant and user specific
configuration information, and

• process such deployment artefacts accordingly in a multi-tenant manner. For
example, a new tenant-specific endpoint has to be created whenever a service
assembly is deployed to this JBI component in order to ensure data isolation between
tenants.

The installation/uninstallation and configuration of BCs and SEs in a JBI Container Instance
is performed through a set of standardized interfaces that also allow for backward
compatibility with non multi-tenant aware components. In terms of implementation
technologies, ServiceMix is based on the OSGi Framework 2. OSGi bundles realize the ESB
functionality complying to the JBI specification.

The original ServiceMix BC for HTTP version 2011.01 and the original Apache Camel SE
version 2011.01 are extended in our prototype in order to support multi-tenant aware
messaging. The Resources layer also contains three different types of registries (Figure 4):
the Service Registry stores the services registered with the JBI environment, as well as the
service assemblies required for the configuration of the BCs and SEs installed in each JBI
Container Instance in the JBI Container Instance Cluster in a tenant-isolated manner; the
Tenant Registry records the set of users for each tenant, the corresponding unique identifiers
to identify them, as well all necessary information to authenticate them. Additionally, each
tenant and user may have associated properties such as tenant or user name represented
as key-value pairs. Moreover the password required for login before administration and
configuration of the JBI environment is stored in the Tenant Registry represented as hash
value generated with MD5. All these data are stored in a in a multi-tenant manner. The
ServiceRegistry, TenantRegistry, and ConfigurationRegistry components are realized based
on PostgreSQL version 9.1.13.

2 OSGi Version 4.3: http://www.osgi.org/Download/Release4V43/
3 PostgreSQL: http://www.postgresql.org/

http://www.osgi.org/Download/Release4V43/
http://www.postgresql.org/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 20

Figure 5. Architecture of an ESB Instance

The Business Logic layer contains an Access Layer component, which acts as a multi-
tenancy enablement layer based on role-based access control. Different categories of roles
can be defined based on their interaction with the system: system-level roles like
administrators, and tenant-level roles like operators. The system administrator configures the
whole system and assigns quotas of resource usage. Therefore, (s)he does not belong to
any particular tenant, has unlimited permissions, and is allowed to interfere in the actions of
all tenant users. The tenant users consume the quotas of resource usage to deploy service
assemblies or to register services. This information is stored in the Configuration Registry. A
tenant administrator can partition the quota of resource usage obtained from the system
administrator. It is important that the system administrator assigns a default tenant
administrator role to at least one tenant user to enable the corresponding tenant to perform
actions. This default tenant administrator can then appoint other tenant administrators or
assign tenant operator roles to tenant users.

The tenants and their corresponding users have to be identified and authenticated once
when the interaction with the JBI environment is initiated. Afterwards, the authorized access
is managed by the Access Layer transparently. The identification of tenants and users is
performed based on unique tenantID and userID keys assigned to them by the Access
Layer.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 21

The various Managers in this layer (Figure 4) encapsulate the business logic required to
manage and interact with the underlying components in the Resources layer: Tenant
Registry, Configuration Registry, and Service Registry Managers for the corresponding
registries, JBI Container Manager to install and uninstall BCs and SEs in JBI Containers in
the cluster, and Service Assembly Manager for their configuration through deploying and
undeploying appropriate service artifacts. The Business Logic layer of the proposed
architecture is implemented as a Web application running in the Java EE 5 application server
JOnAS version 5.2.24.

The Presentation layer contains the Web UI and the Web service API components which
allow the customization, administration, management, and interaction with the other layers.
The Web UI offers a customizable interface for human and application interaction with the
system, allowing for the administration and management of tenants and users. The Web
service API offers the same functionality as the Web UI, but also enables the integration and
communication of external components and applications. It is realized based on the JAX-WS
version 2.0.

ESBMT has been validated by applying it to the 4CaaSt Taxi Application (scenario 8.1), which
is described in detail in [6]. A video demonstrating the architecture of the Taxi Application as
well as its functionality is available at http://www.iaas.uni-stuttgart.de/esbmt/#usecase.

The results of the performance evaluation of ESBMT are available in [1], [7].

4 Java Open Application Server (JOnAS): http://jonas.ow2.org

http://www.iaas.uni-stuttgart.de/esbmt/#usecase
http://jonas.ow2.org/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 22

3. Components Management

This chapter provides the information on component management within the 4CaaSt
platform, e.g. regarding build, deployment, configuration, and start-up of each of the
prototypical implementations of WP7 cloud-aware building blocks extended in RP3.
Additionally, the links are provided, where the required software artefacts per component can
be downloaded. The software artefacts are either publicly available, or they are available in
the 4CaaSt project subversion repository.

3.1. PostgreSQL
As there have not been any changes of the Replication Manager (repmgr) with respect to the
components management and integration into the 4CaaSt platform apart from some bug
fixes, the interested reader is referred to D7.3.2 [2] for details.

3.2. CumuloNimbo
In this section we provide the information on how to integrate CumuloNimbo into the 4CaaSt
platform.

3.2.1. Deployment

Three Chef cookbooks have been implemented following the 4CaaSt guidelines to deploy
the CumuloNimbo ultra-scalable database. Their design and functionality has been described
in D7.2.3 [3]. CumuloNimbo consists of several full subsystems including HDFS, HBase,
Zookeeper, a modified Derby, and a set of transactional management components. Four
conglomerates have been created to ease the deployment of CumuloNimbo and also to force
the collocation of certain subsystems.

3.2.2. Monitoring and Accounting

Monitoring was not targeted as part of the integration exercise with 4CaaSt. The main reason
is that it does not provide any added-value for 4CaaSt, and neither to CumuloNimbo that has
its own monitoring subsystem.

Accounting was also not targeted since there is no special added value for 4CaaSt.

3.2.3. Integration with Marketplace

The integration with the marketplace is currently still on-going work.

3.3. Java Open Application Server – JOnAS
In this section we provide the information on how JOnAS is integrated into the 4CaaSt
platform.

3.3.1. Deployment

Several cookbooks were developed to support the deployment of JOnAS on the 4CaaSt
platform. Those cookbooks are available under
http://109.231.68.170/4caast/trunk/WP4/Cookbooks/JOnAS_PIC-all/.

• Version 5.2, allows to deploy JOnAS 5.2.2 a fully certified Java EE 5 application
server

http://109.231.68.170/4caast/trunk/WP4/Cookbooks/JOnAS_PIC-all/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 23

• Version 5.3.0, allows to deploy JOnAS 5.3.0 a Java EE 6 Web Profile certified
application server with Tomcat 6 as Web Container.

• Version 5.3.1, allows to deploy JOnAS 5.3.0 with Tomcat 7 as Web Container and the
support for multi-tenancy

3.3.2. Monitoring and Accounting

A dedicated JASMINe Probe has been developed to publish accounting events to the
accounting API provided by WP5. This probe is automatically deployed by Chef scripts when
deploying a multi-tenant application on JOnAS.

The JASMINe Probe is available under http://109.231.68.170/4caast/trunk/WP5/jasmine-
probe/jprobe-outer-4caast-accounting/trunk and Chef scripts under
http://109.231.68.170/4caast/trunk/WP4/Cookbooks/JOnAS_PIC-all/5.3.1

3.3.3. Integration with Marketplace

The blueprint format for a Multi-tenant JOnAS 5.3 release is shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>

<bp:blueprint xmlns:bp="http://www.4caast.eu/blueprint" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.4caast.eu/blueprint blueprint_template_v01.xsd

http://www.4caast.eu/MeteringSchema MeteringSchema_v03.xsd"

 xmlns:metering="http://www.4caast.eu/MeteringSchema">

 <bp:basic_properties_section>

 <bp:blueprint_id>JOnAS-Multi-Tenant-Servlet-Container</bp:blueprint_id>

 <bp:blueprint_name>JOnAS-Multi-Tenant-Servlet-Container</bp:blueprint_name>

 <bp:description>This is the Blueprint for Cloud-aware JOnAS Application server</bp:description>

 <bp:ownership>

 <bp:name>JOnAS Team</bp:name>

 <bp:uri>http://jonas.ow2.org</bp:uri>

 </bp:ownership>

 <bp:version>5.3.0-RC1</bp:version>

 <bp:release_date>2012-12-21</bp:release_date>

 <!-- multi tenant capable -->

 <bp:multi-tenant>true</bp:multi-tenant>

 <!--METERING INFO SECTION -->

 <bp:ext_property>

 <bp:p_name>metering info</bp:p_name>

 <metering:metering_section xmlns:metering="http://www.4caast.eu/MeteringSchema">

 <metering:metering_instructions_quantity>

 <metering:id>jonas-servlet-requests-by-webapp-by-tenant</metering:id>

 <metering:unit>CPUInstruction</metering:unit>

 <metering:unit_label>Number of requests by WebApp and by Tenant</metering:unit_label>

 </metering:metering_instructions_quantity>

 </metering:metering_section>

 </bp:ext_property>

 <!--END OF METERING SECTION -->

http://109.231.68.170/4caast/trunk/WP5/jasmine-probe/jprobe-outer-4caast-accounting/trunk
http://109.231.68.170/4caast/trunk/WP5/jasmine-probe/jprobe-outer-4caast-accounting/trunk
http://109.231.68.170/4caast/trunk/WP4/Cookbooks/JOnAS_PIC-all/5.3.1

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 24

 </bp:basic_properties_section>

 <bp:offering_section>

 <bp:offering>

 <bp:offering_id>jonas-servlet-container-3.0</bp:offering_id>

 <bp:resource_name>servlet container v3.0</bp:resource_name>

 <bp:resource_type>Servlet Container v3.0</bp:resource_type>

 <bp:range_of_instance>

 <bp:minimum>1</bp:minimum>

 <bp:maximum>1</bp:maximum>

 </bp:range_of_instance>

 </bp:offering>

 </bp:offering_section>

</bp:blueprint>

3.4. Performance Isolation Benchmarking

3.4.1. Measurement Framework – Deployment and
Installation

The implementation of the SoPeCo containing the Performance Isolation parts can be found
at https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation . To deploy and
install the generic Web based SoPeCo part one can follow the description at
http://www.sopeco.org/tutorials/host-your-own-sopeco-instance. The described installation
for R, a free software environment for statistical computing and graphics, and the description
of the REST interfaces are not relevant for the 4CaaSt specific implementation and can be
ignored. How to connect the SoPeCo to a concrete environment and how to develop a
concrete environment connector is described in the User guide section as these steps have
to be implemented by each user.

3.4.2. MT TPC-W

In the following we describe the installation of the MT TPC-W benchmark. To ensure a
proper test scenario one needs 3 (DB and Application installed together) or 4 (DB and
Application installed separately). To ensure a proper isolation of the application from the load
driver and the client console, each element has to be installed on different machines. In the
following we describe a concrete deployment with 4 hosts used in the context of 4CaaSt, see
Figure 6.

https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation
http://www.sopeco.org/tutorials/host-your-own-sopeco-instance

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 25

Figure 6. Deployment of MT TPC-W With Four Different Hosts

The client console, the Load Driver and DB Setup and the concrete Book Store can be
downloaded from https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation.
In the following we describe the concrete steps on how to deploy and start the components.

3.4.2.1. Client Console

The client console can be simply located at any arbitrary location on a host running JRE6. To
start the Client Console one has to execute the ClientConsole.jar file with java –jar
ClientConsole.jar . To configure the necessary connection information for the Load Driver
and DB Setup (both listening at the same Port and IP behind a Facade). One has to enter
the following information in the Client Console (> corresponds to output; < corresponds to
input):

> Enter ip and port? Enter 'n' for default values. Press Enter to continue.

< Enter

> Enter ip of loaddriver:

< 10.55.12.152

> Enter port of loaddriver:

< 1099

> Connect to: 15.15.15.15:8585

3.4.2.2. Load Driver

The Load Driver can be located at any arbitrary location on a host running JRE6. Before
starting ensure, that the java bin directory is added to the path environment variable. Simply
start the Load Driver with sh Start.sh To stop the Load Driver execute sh Stop.sh . Both
files are directly located by the jar file implementing the concrete functionality and located
within the bundle to be downloaded at https://svn.forge.morfeo-
project.org/4caast/trunk/WP7/release3.0/isolation

3.4.2.3. Book Store

The Book Store concrete war file can be downloaded at https://svn.forge.morfeo-
project.org/4caast/trunk/WP7/release3.0/isolation. Simply drop the MTTPCWApplication.war
into the Tomcats webapps folder to deploy the application. The DB has to be configured via
the applications Web interface. Once the application runs call the URL
http://<hostname>:<port>/MTTPCWApplication/CreateDatabase. At this page the concrete
connection information can be entered. Once this is done click the link Delete Schema and
Create Schema corresponding to the DB System used.

https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 26

3.4.2.4. Database

For the installation of the Database simply follow the instructions of the corresponding
Database Management System. Furthermore, after the installation create a database with
the name tpcw and a user with read/write rights for this database with remote access.

3.5. Bonita Open Solution – BOS
In this section we focus on the management of Bonita BPM building block within the 4CaaSt
platform including deployment, accounting, monitoring and integration with the 4CaaSt
marketplace. All the artefacts required are available in the 4CaaSt svn at
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita.

The final version of the blueprint for Bonita is available at https://svn.forge.morfeo-
project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/blueprint/BonitaOpenSolution-v6.0-
v04.xml. This blueprint builds the technical basis for offering the BPM Engine block within the
4CaaSt platform.

Chef Recipes are available on svn https://svn.forge.morfeo-
project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/deployment/.

Deployment with Chef has been tested on a Flexiscale Virtual machine with an Ubuntu OS.

In order to allow scripting over Bonita deployment to create tenants or manage applications,
such as deploying new AC we had to develop a new Bonita Command Line Interface (CLI).
This CLI can be called by DOS or Unix interpreters, e.g. batch, Bash. Consequently it is now
possible to easily build Chef Recipes to create tenants on demand whenever the 4Caast
Platform requires it.

For now this CLI is quite small but answers the need of 4Caast integration. It has been
designed to be highly extensible. Consequently it is very easy to support any new use cases
that may arise.

In the following listing the usage of the newly developed CLI is explained.

> ./bos-cli.sh help

Usage:

 -tenant

 -create <tenantName>

 -enable <tenantId>

 -disable <tenantId>

 -delete <tenantId>

 -processInstance

 -start <processName:processVersion>

 -process

 -install <pathToBusinessArchive>

 -enable <processId>

 -disable <processId>

 -delete <processId>

 -user

 -create <user>

 -delete <userId>

https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/blueprint/BonitaOpenSolution-v6.0-v04.xml
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/blueprint/BonitaOpenSolution-v6.0-v04.xml
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/blueprint/BonitaOpenSolution-v6.0-v04.xml
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/deployment/
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/bonita/artefacts/deployment/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 27

For instance to deploy a new AC (e.g. BonitaShop 4Caast application in version 1.0) it is just
a matter of executing the following command:

> ./bos-cli.sh -process -install /tmp/BonitaShop--1.0.bar

Find in the following listing the output produced when executing Chef scripts on a client to
automatically deploy Bonita BPM using Chef Server and Chef Client.

> sudo chef-client

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Run List expands to [Bonita]

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Starting Chef Run for chef-client-bonita

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Loading cookbooks [Bonita]

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Undeploy_AC.rb in the

cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Start_AC.rb in the cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Stop_AC.rb in the cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Start_PIC.rb in the cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Deploy_PIC.rb in the

cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Deploy_AC.rb in the cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/default.rb in the cache.

[Thu, 29 Aug 2013 09:40:53 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Stop_PIC.rb in the cache.

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Undeploy_PIC.rb in the

cache.

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: Storing updated cookbooks/Bonita/recipes/Add_Tenant.rb in the

cache.

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: Processing directory[/opt/bonita] action create (Bonita::default

line 15)

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: directory[/opt/bonita] created directory /opt/bonita

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: Processing directory[/opt/bonita/CLI] action create

(Bonita::default line 20)

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: directory[/opt/bonita/CLI] created directory /opt/bonita/CLI

[Thu, 29 Aug 2013 09:40:54 +0000] INFO: Processing remote_file[/tmp/BonitaBPMSubscription-6.0.0-Tomcat-

6.0.35.zip] action create_if_missing (Bonita::default line 26)

[Thu, 29 Aug 2013 09:41:07 +0000] INFO: remote_file[/tmp/BonitaBPMSubscription-6.0.0-Tomcat-6.0.35.zip]

updated

[Thu, 29 Aug 2013 09:41:07 +0000] INFO: Processing remote_file[/tmp/BOS-CLI-6.0.0-SP.zip] action

create_if_missing (Bonita::default line 32)

[Thu, 29 Aug 2013 09:41:07 +0000] INFO: remote_file[/tmp/BOS-CLI-6.0.0-SP.zip] updated

[Thu, 29 Aug 2013 09:41:07 +0000] INFO: Processing package[zip] action install (Bonita::default line 37)

[Thu, 29 Aug 2013 09:41:07 +0000] INFO: Processing execute[unzip] action run (Bonita::default line 40)

[Thu, 29 Aug 2013 09:41:07 +0000] INFO: execute[unzip] sh(unzip -u -o "/tmp/BonitaBPMSubscription-6.0.0-

Tomcat-6.0.35.zip"

)

Archive: /tmp/BonitaBPMSubscription-6.0.0-Tomcat-6.0.35.zip

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 28

 creating: BonitaBPMSubscription-6.0.0-Tomcat-6.0.35/

 creating: BonitaBPMSubscription-6.0.0-Tomcat-6.0.35/webapps/

 creating: BonitaBPMSubscription-6.0.0-Tomcat-6.0.35/webapps/docs/

 creating: BonitaBPMSubscription-6.0.0-Tomcat-6.0.35/webapps/docs/architecture/

 creating: BonitaBPMSubscription-6.0.0-Tomcat-6.0.35/webapps/docs/architecture/requestProcess/

 inflating:

 [lines omitted for consistency]

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[unzip] ran successfully

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: Processing execute[unzip] action run (Bonita::default line 49)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[unzip] sh(unzip -u -o "/tmp/BOS-CLI-6.0.0-SP.zip"

)

Archive: /tmp/BOS-CLI-6.0.0-SP.zip

 creating: bonita/

 creating: bonita/client/

 creating: bonita/client/conf/

 inflating: bos-cli.sh

 [lines ommitted for consistency]

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[unzip] ran successfully

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: Processing execute[allow CLI execution] action run (Bonita::default

line 58)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[allow CLI execution] sh(sudo chmod 777

/opt/bonita/CLI/*.sh)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[allow CLI execution] ran successfully

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: Processing remote_file[/opt/bonita/BonitaBPMSubscription-6.0.0-

Tomcat-6.0.35/bonita/server/licenses/BOSSP-6.0-Beta-NicolasChabanoles-chef-client-bonita-20130626-

20140626.lic] action create_if_missing (Bonita::default line 65)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: remote_file[/opt/bonita/BonitaBPMSubscription-6.0.0-Tomcat-

6.0.35/bonita/server/licenses/BOSSP-6.0-Beta-NicolasChabanoles-chef-client-bonita-20130626-20140626.lic]

updated

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: Processing remote_file[/tmp/MuseumTicketBooking--1.0.bar] action

create_if_missing (Bonita::default line 72)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: remote_file[/tmp/MuseumTicketBooking--1.0.bar] updated

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: Processing execute[start bundle] action run (Bonita::default line

78)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[start bundle] sh(sudo sh /opt/bonita/BonitaBPMSubscription-

6.0.0-Tomcat-6.0.35/bin/catalina.sh start)

[Thu, 29 Aug 2013 09:41:11 +0000] INFO: execute[start bundle] ran successfully

[Thu, 29 Aug 2013 09:41:12 +0000] INFO: Chef Run complete in 18.491267 seconds

[Thu, 29 Aug 2013 09:41:12 +0000] INFO: Running report handlers

[Thu, 29 Aug 2013 09:41:12 +0000] INFO: Report handlers complete

3.6. Orchestra
In this section we provide the information on how Orchestra is integrated into the 4CaaSt
platform.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 29

3.6.1. Deployment

Several cookbooks were developed to support the deployment of Orchestra on the 4CaaSt
platform. Those cookbooks are available under
http://109.231.68.170/4caast/trunk/WP4/Cookbooks/JOnAS-Orchestra_PIC-all/.

3.6.2. Monitoring

Orchestra relies on JMX to provide monitoring indicators. The JASMINe Monitoring Source
was used to collect the KPI as specified in WP5 [11], [12].

Four KPIs were defined to monitor Orchestra instances and to get information about the
global status:

• NumberOfDeployedProcesses: number of processes deployed on the Orchestra
 instance

• AvgExecutionTime: average execution time of the processes deployed on the
 Orchestra instance

• NumberOfCompletedInstances: number of instances in completed state

• NumberOfRunningInstances : number of instances in running state

The Chef cookbook of Orchestra defines the KPIs and a JASMINe probe is configured at
provisioning time to collect them as shown in the following listing.

normal["JOnAS_Orchestra_PIC"]["kpis"] = {

 "jmx_url" => "service:jmx:rmi://localhost/jndi/rmi://localhost:3098/jrmpconnector_jonas-orchestra",

 "kpis" => {

 "numberOfDeployedProcesses" => {"on" => "Orchestra:name=stats", "att" => "NumberOfDeployedProcesses"},

 "avgExecutionTime" => {"on" => "Orchestra:name=stats", "att" => "AvgExecutionTime"},

 "numberOfCompletedInstances"=>{"on" => "Orchestra:name=stats", "att" => "NumberOfCompletedInstances"},

 "numberOfRunningInstances" => {"on" => "Orchestra:name=stats", "att" => "NumberOfRunningInstances"}

 }

}

3.6.3. Accounting

This interface is not implemented as accounting is done at others levels in the 4CaaSt use
cases.

3.6.4. Integration with Marketplace

An Orchestra blueprint was defined as shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>

<bp:blueprint xmlns:p="http://www.4caast.eu/blueprint"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.4caast.eu/blueprint blueprint_template_v01.xsd ">

 <bp:basic_properties_section>

 <bp:blueprint_id>jonas-orchestra-01-Blueprint</bp:blueprint_id>

 <bp:blueprint_name>jonas-orchestra-01-Blueprint</bp:blueprint_name>

http://109.231.68.170/4caast/trunk/WP4/Cookbooks/JOnAS-Orchestra_PIC-all/
http://www.4caast.eu/blueprint
http://www.w3.org/2001/XMLSchema-instance
http://www.4caast.eu/blueprint

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 30

 <bp:description>This is the Blueprint for Cloud-aware Orchestra BPEL engine embedded into JOnAS

 Application server </bp:description>

 <bp:ownership>

 <bp:name>JOnAS Team</bp:name>

 <bp:uri>Fehler! Hyperlink-Referenz ungültig.>

 </bp:ownership>

 <bp:version>4.9.0-M3</bp:version>

 <bp:release_date>2011-10-04</bp:release_date>

 </bp:basic_properties_section>

 <bp:offering_section>

 <bp:offering>

 <bp:offering_id>jonas-orchestra-01</bp:offering_id>

 <bp:resource_name>BPEL Compositon Engine</bp:resource_name>

 <bp:resource_type>BPEL Compositon Engine</bp:resource_type>

 </bp:offering>

 </bp:offering_section>

</bp:blueprint>

3.7. Extension of Apache ServiceMix for Multi-
Tenancy

In this section we focus on the management of the EBMMT building block within the 4CaaSt
platform including deployment, accounting, monitoring and integration with the 4CaaSt
marketplace. As the deployment, accounting, and monitoring is not 4CaaSt specific and thus
does also work without the 4CaaSt platform we have created a manual providing a step-by-
step tutorial for deployment and configuration, accounting, and monitoring of ESBMT available
at http://www.iaas.uni-stuttgart.de/esbmt/#installation. The tutorial also providing the links to
all the publicly available artefacts required is in addition also available in the 4CaaSt svn at
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/esb/ESB_MT_manual.pdf.

As this tutorial covers deployment, monitoring, and accounting in the following we describe
the integration with the 4CaaSt marketplace, which requires the availability of other 4CaaSt
components such as the Blueprint Editor and the Price Model Editor. The integration of
ESBMT with the 4CaaSt marketplace includes two aspects: the creation of a blueprint
specifying the technical details and the definition of a price model and product.

The final version of the blueprint for ESBMT is available at https://svn.forge.morfeo-
project.org/4caast/trunk/WP7/release3.0/esb/artefacts/blueprint/blueprint_asm.xml and has
been created using the latest version of the Blueprint Editor developed by WP2 [8]. This
blueprint builds the technical basis for offering the multi-tenant ESB as building block within
the 4CaaSt platform.

The final version of the price model for ESBMT is available at https://svn.forge.morfeo-
project.org/4caast/trunk/WP7/release3.0/esb/artefacts/price_model/pricemodel_asm.xml and
has been created using the Price Model Editor developed by WP3 [9].

http://www.iaas.uni-stuttgart.de/esbmt/#installation
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/esb/ESB_MT_manual.pdf
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/esb/artefacts/blueprint/blueprint_asm.xml
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/esb/artefacts/blueprint/blueprint_asm.xml
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/esb/artefacts/price_model/pricemodel_asm.xml
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/esb/artefacts/price_model/pricemodel_asm.xml

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 31

Figure 7. Screenshot of 4CaaSt Marketplace Showing ESBMT Product

Figure 7 presents a screenshot of the Marketplace showing the product of ESBMT.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 32

4. User Guide
This chapter provides information and updates on the user guidelines provided in D7.3.2 [2].

4.1. PostgreSQL
In the following we provide guidelines on the usage of PostgreSQL repmgr.

Guidance on getting a testing setup established can be found in Section 4.1.1.5. Please read
the full documentation if you intend to put Bi-Directional Replication into production.

4.1.1. Logical Log Streaming Replication

Logical log streaming replication (LLSR) allows one PostgreSQL master (the "upstream
master") to stream a sequence of changes to another read/write PostgreSQL server (the
"downstream master"). Data is sent in one direction only over a normal libpq connection.

Multiple LLSR connections can be used to set up bi-directional replication as discussed later
in this guide.

4.1.1.1. Overview of Logical Replication

In some ways LLSR is similar to "streaming replication" i.e. physical log streaming replication
(PLSR) from a user perspective; both replicate changes from one server to another.
However, in LLSR the receiving server is also a full master database that can make changes,
unlike the read-only replicas offered by PLSR hot standby. Additionally, LLSR is per-
database, whereas PLSR is per-cluster and replicates all databases at once. There are many
more differences discussed in the relevant sections of this document.

In LLSR the data that is replicated is change data in a special format that allows the changes
to be logically reconstructed on the downstream master. The changes are generated by
reading transaction log (WAL) data, making change capture on the upstream master much
more efficient than trigger based replication, hence why we call this "logical log replication".
Changes are passed from upstream to downstream using the libpq protocol, just as with
physical log streaming replication.

One connection is required for each PostgreSQL database that is replicated. If two servers
are connected, each of which has 50 databases then it would require 50 connections to send
changes in one direction, from upstream to downstream. Each database connection must be
specified, so it is possible to filter out unwanted databases simply by avoiding configuring
replication for those databases.

Setting up replication for new databases is not (yet) automatic, so additional configuration
steps are required after CREATE DATABASE. A restart of the downstream master is also
required. The upstream master only needs restarting if the max_logical_slots parameter is
too low to allow a new replica to be added. Adding replication for databases that do not exist
yet will cause an ERROR, as will dropping a database that is being replicated. Setup is
discussed in more detail below.

Changes are processed by the downstream master using BDR plug-ins. This allows flexible
handing of replication input, including:

• BDR apply process - applies logical changes to the downstream master. The apply
process makes changes directly rather than generating SQL text and then
parse/plan/executing SQL.

• Textual output plugin - a demo plugin that generates SQL text (but doesn't apply
changes)

• pg_xlogdump - examines physical WAL records and produces textual debugging
output. This server program is included in PostgreSQL 9.3.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 33

4.1.1.2. Replication of DML Changes

All changes are replicated: INSERT, UPDATE, DELETE, and TRUNCATE. (TRUNCATE is
not yet implemented, but will be implemented before the feature goes to final release).

Actions that generate WAL data but don't represent logical changes do not result in data
transfer, e.g. full page writes, VACUUMs, hint bit setting. LLSR avoids much of the overhead
from physical WAL, though it has overheads that mean that it doesn't always use less
bandwidth than PLSR.

Locks taken by LOCK and SELECT ... FOR UPDATE/SHARE on the upstream master are
not replicated to downstream masters. Locks taken automatically by INSERT, UPDATE,
DELETE or TRUNCATE *are* taken on the downstream master and may delay replication
apply or concurrent transactions – see Section 4.1.2.3.1.

TEMPORARY and UNLOGGED tables are not replicated. In contrast to physical standby
servers, downstream masters can use temporary and unlogged tables. However, temporary
tables remain specific to a particular session so creating a temporary table on the upstream
master does not create a similar table on the downstream master.

DELETE and UPDATE statements that affect multiple rows on upstream master will cause a
series of row changes on downstream master. These are likely to go at same speed as on
origin, as long as an index is defined on the Primary Key of the table on the downstream
master. UPDATEs and DELETEs require some form of unique constraint, either PRIMARY
KEY or UNIQUE NOT NULL. A warning is issued in the downstream master's logs if the
expected constraint is absent. INSERT on upstream master do not require a unique
constraint in order to replicate correctly, though such usage would prevent conflict detection
between multiple masters, if that was considered important.

UPDATEs that change the value of the Primary Key of a table will be replicated correctly.

The values applied are the final values from the UPDATE on the upstream master, including
any modifications from before-row triggers, rules or functions. Any reflexive conditions, such
as N = N+ 1 are resolved to their final value. Volatile or stable functions are evaluated on the
master side and the resulting values are replicated. Consequently any function side-effects
(writing files, network socket activity, updating internal PostgreSQL variables, etc.) will not
occur on the replicas as the functions are not run again on the replica.

All columns are replicated on each table. Large column values that would be placed in
TOAST tables are replicated without problem, avoiding de-compression and re-compression.
If we update a row but do not change a TOASTed column value, then that data is not sent
downstream.

All data types are handled, not just the built-in datatypes of PostgreSQL core. The only
requirement is that user-defined types are installed identically in both upstream and
downstream master (see "Limitations").

The current LLSR plugin implementation uses the binary libpq protocol, so it requires that the
upstream and downstream master use same CPU architecture and word-length, i.e.
"identical servers", as with physical replication. A textual output option will be added later for
passing data between non-identical servers, e.g. laptops or mobile devices communicating
with a central server.

Changes are accumulated in memory (spilling to disk where required) and then sent to the
downstream server at commit time. Aborted transactions are never sent. Application of
changes on downstream master is currently single-threaded, though this process is efficiently
implemented. Parallel apply is a possible future feature, especially for changes made while
holding AccessExclusiveLock.

Changes are applied to the downstream master in the sequence in which they were
commited on the upstream master. This is a known-good serialized ordering of changes, so
replication serialization failures are not theoretically possible. Such failures are common in
systems that use statement based replication (e.g. MySQL) or trigger based replication (e.g.
Slony version 2.0). Users should note that this means the original order of locking of tables is

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 34

not maintained. Although lock order is probably not an issue for the set of locks held on
upstream master, additional locking on downstream side could cause lock waits or
deadlocking in some cases, discussed in further detail later in this section.

Larger transactions spill to disk on the upstream master once they reach a certain size.
Currently, large transactions can cause increased latency. Future enhancement will be to
stream changes to downstream master once they fill the upstream memory buffer, though
this is likely to be implemented in version 9.5.

SET statements and parameter settings are not replicated. This has no effect on replication
since we only replicate actual changes, not anything at SQL statement level. We always
update the correct tables, whatever the setting of search_path. Values are replicated
correctly irrespective of the values of bytea_output, TimeZone, DateStyle, etc.

NOTIFY is not supported across log based replication, either physical or logical. NOTIFY and
LISTEN will work fine on the upstream master but an upstream NOTIFY will not trigger a
downstream LISTENer.

In some cases, additional deadlocks can occur on apply. This causes an automatic retry of
the apply of the replaying transaction and is only an issue if the deadlock recurs repeatedly,
delaying replication.

From a performance and concurrency perspective the BDR apply process is similar to a
normal backend. Frequent conflicts with locks from other transactions when replaying
changes can slow things down and thus increase replication delay, so reducing the
frequency of such conflicts can be a good way to speed things up. Any lock held by another
transaction on the downstream master - LOCK statements, SELECT ... FOR UPDATE/FOR
SHARE, or INSERT/UPDATE/DELETE row locks - can delay replication if the replication
apply process needs to change the locked table/row.

4.1.1.3. Table Definitions and DDL Replication

DML changes are replicated between tables with matching "Schemaname"."Tablename" on
both upstream and downstream masters. E.g. changes from upstream's public.mytable will
go to downstream's public.mytable while changes to the upstream mychema.mytable will go
to the downstream myschema.mytable. This works even when no schema is specified on
the original SQL since we identify the changed table from its internal OIDs in WAL records
and then map that to whatever internal identifier is used on the downstream node.

This requires careful synchronization of table definitions on each node otherwise ERRORs
will be generated by the replication apply process. In general, tables must be an exact match
between upstream and downstream masters.

There are no plans to implement working replication between dissimilar table definitions.
Tables must meet the following requirements to be compatible for purposes of LLSR:

• The downstream master must only have constraints (CHECK, UNIQUE,
EXCLUSION, FOREIGN KEY, etc.) that are also present on the upstream master.
Replication may initially work with mismatched constraints but is likely to fail as soon
as the downstream master rejects a row the upstream master accepted.

• The table referenced by a FOREIGN KEY on a downstream master must have all the
keys present in the upstream master version of the same table.

• Storage parameters must match except for as allowed below

• Inheritance must be the same

• Dropped columns on master must be present on replicas

• Custom types and enum definitions must match exactly

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 35

• Composite types and enums must have the same oids on master and replication
target

• Extensions defining types used in replicated tables must be of the same version or
fully SQL-level compatible and the oids of the types they define must match.

The following differences are permissible between tables on different nodes:

• The table's pg_class oid, the oid of its associated TOAST table, and the oid of the
table's rowtype in pg_type may differ;

• Extra or missing non-UNIQUE indexes

• Extra keys in downstream lookup tables for FOREIGN KEY references that are not
present on the upstream master

• The table-level storage parameters for fillfactor and autovacuum

• Triggers and rules may differ (they are not executed by replication apply)

Replication of DDL changes between nodes will be possible using event triggers, but is not
yet integrated with LLSR (see Section 4.1.1.4).

Triggers and Rules are NOT executed by apply on downstream side, equivalent to an
enforced setting of session_replication_role = origin.

In future it is expected that composite types and enums with non-identical oids will be
converted using text output and input functions. This feature is not yet implemented.

4.1.1.4. LLSR Limitations

The current LLSR implementation is subject to some limitations, which are being
progressively removed as work progresses.

4.1.1.4.1. Data Definition Compatibility

Table definitions, types, extensions, etc must be near identical between upstream and
downstream masters. See Section 4.1.1.3.

4.1.1.4.2. DDL Replication

DDL replication is not yet supported. This means that any ALTER TABLE may cause the
definitions of tables on either end of a link to go out of sync, causing replication to fail.

DROP TABLE of a table on a downstream master or BDR member may cause replication to
halt as pending rows for that table cannot be applied.

CREATE TABLE will work without problems, but the table must be created on all nodes
before rows are inserted on any node, otherwise replication issues will arise.

The PRIMARY KEY of a table may not be dropped. Other indexes may be added and
removed freely as they do not affect replication.

4.1.1.4.3. Upstream Feedback

No feedback from downstream masters to the upstream master is implemented for
asynchronous LLSR, so upstream masters must be configured to keep enough WAL. See
Section 4.1.1.10.

4.1.1.4.4. TRUNCATE is not Replicated

TRUNCATE is not yet supported, however workarounds with user-level triggers are possible
and a ProcessUtility hook is planned to implement a similar approach globally. The safest
option is to define a user-level BEFORE trigger on each table that RAISEs an ERROR when
TRUNCATE is attempted.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 36

A simple truncate-blocking trigger is shown in the following listing:

CREATE OR REPLACE FUNCTION deny_truncate() RETURNS trigger AS $$

 BEGIN

 IF tg_op = 'TRUNCATE' THEN

 RAISE EXCEPTION 'TRUNCATE is not supported on this table. Please use DELETE FROM.';

 ELSE

 RAISE EXCEPTION 'This trigger only supports TRUNCATE';

 END IF;

 END;

 $$ LANGUAGE plpgsql;

It can be applied to a table with:

CREATE TRIGGER deny_truncate_on_<tablename> BEFORE TRUNCATE ON <tablename>

 FOR EACH STATEMENT EXECUTE PROCEDURE deny_truncate();

A PL/PgSQL DO block that queries pg_class and loops over it to EXECUTE a dynamic SQL
CREATE TRIGGER command for each table that does not already have the trigger can be
used to apply the trigger to all tables.

Alternately, there will be a ProcessUtility_hook available in the BDR extension to
automatically prevent unsupported operations like TRUNCATE.

4.1.1.4.5. CLUSTER and VACUUM FULL limitations

CLUSTER and VACUUM FULL should now be supported without limitation.

4.1.1.5. Initial Setup

To set up LLSR or BDR you first need a patched PostgreSQL that can support LLSR/BDR,
then you need to create one or more LLSR/BDR senders and one or more LLSR/BDR
receivers.

4.1.1.5.1. Installing the Patched PostgreSQL Binaries

Currently BDR is only available in builds of the 'bdr' branch on Andres Freund's Git repo on
git.postgresql.org. PostgreSQL 9.2 and below do not support BDR, and 9.3 requires patches,
so this guide will not work for you if you are trying to use a normal install of PostgreSQL.

First you need to clone, configure, compile and install like normal. Clone the sources from
git://git.postgresql.org/git/users/andresfreund/postgres.git and checkout the bdr branch.

If you have an existing local PostgreSQL git tree specify it as --reference
/path/to/existing/tree to greatly speed your git clone.

The following listing shows an example.

mkdir -p $HOME/bdr

 cd bdr

 git clone -b bdr git://git.postgresql.org/git/users/andresfreund/postgres.git $HOME/bdr/postgres-bdr-src

 cd postgres-bdr-src

 ./configure --prefix=$HOME/bdr/postgres-bdr-bin

 make install

 (cd contrib/btree_gist && make install)

 (cd contrib/bdr && make install)

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 37

This will put everything in $HOME/bdr, with the source code and build tree in
$HOME/bdr/postgres-bdr-src and the installed PostgreSQL in $HOME/bdr/postgres-bdr-bin.
This is a convenient setup for testing and development because it doesn't require you to set
up new users, wrangle permissions, run anything as root, etc. but it isn't recommended that
you deploy this way in production.

To actually use these new binaries you will need to export PATH=$HOME/bdr/postgres-bdr-
bin/bin:$PATH before running initdb, postgres, etc. You don't have to use the psql or libpq
you compiled but you're likely to get version mismatch warnings if you don't.

4.1.1.6. Parameter Reference

The following parameters are new or have been changed in PostgreSQL's new logical
streaming replication.

4.1.1.6.1. shared_preload_libraries = ‘bdr’

To load support for receiving changes on a downstream master, the bdr library must be
added to the existing ‘shared_preload_libraries’ parameter. This loads the bdr library during
postmaster start-up and allows it to create the required background worker(s).

Upstream masters don't need to load the bdr library unless they're also operating as a
downstream master as is the case in a BDR configuration.

4.1.1.6.2. bdr.connections

A comma-separated list of upstream master connection names is specified in
bdr.connections. These names must be simple alphanumeric strings. They are used when
naming the connection in error messages, configuration options and logs, but are otherwise
of no special meaning. A typical two-upstream-master setting might be: bdr.connections =
‘upstream1, upstream2’

4.1.1.6.3. bdr.<connection_name>.dsn

Each connection name must have at least a data source name specified using the
bdr.<connection_name>.dsn parameter. The DSN syntax is the same as that used by
libpq so it is not discussed in further detail here. A dbname for the database to connect to
must be specified; all other parts of the DSN are optional.

The local (downstream) database name is assumed to be the same as the name of the
upstream database being connected to, though future versions will make this configurable.

For the above two-master setting for bdr.connections the DSNs might look like:

 bdr.upstream1.dsn = 'host=10.1.1.2 user=postgres dbname=replicated_db'

 bdr.upstream2.dsn = 'host=10.1.1.3 user=postgres dbname=replicated_db'

4.1.1.6.4. bdr.synchronous_commit

This boolean option controls the synchronous_commit setting for BDR apply workers. It
defaults to on.

If set to off, BDR apply workers will perform async commits, allowing PostgreSQL to
considerably improve throughput. It is safe unless you intend to run BDR with synchronous
replication, in which case bdr.synchronous_commit must be left on.

4.1.1.6.5. max_logical_slots

The new parameter max_logical_slots has been added for use on both upstream and
downstream masters. This parameter controls the maximum number of logical replication
slots - upstream or downstream - that this cluster may have at a time. It must be set at
postmaster start time.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 38

As logical replication slots are persistent, slots are consumed even by replicas that are not
currently connected. Slot management is discussed in Starting, Stopping and Managing
Replication.

max_logical_slots should be set to the sum of the number of logical replication upstream
masters this server will have plus the number of logical replication downstream masters will
connect to it it.

4.1.1.6.6. wal_level = 'logical'

A new setting, 'logical', has been added for the existing wal_level parameter. ‘logical’
includes everything that the existing hot_standby setting does and adds additional details
required for logical changeset decoding to the write-ahead logs.

This additional information is consumed by the upstream-master-side xlog decoding worker.
Downstream masters that do not also act as upstream masters do not require wal_level to be
increased above the default 'minimal'.

wal_level, except for the new 'logical' setting, is
http://www.postgresql.org/docs/current/static/runtime-config-wal.html documented in the
main PostgreSQL manual.

4.1.1.6.7. max_wal_senders

Logical replication hasn't altered the max_wal_senders parameter, but it is important in
upstream masters for logical replication and BDR because every logical sender consumes a
max_wal_senders entry.

You should configure max_wal_senders to the sum of the number of physical and logical
replicas you want to allow an upstream master to serve. If you intend to use pg_basebackup
you should add at least two more senders to allow for its use.

Like max_logical_slots, max_wal_senders entries don't cost a large amount of memory, so
you can overestimate fairly safely.

max_wal_senders is documented in http://www.postgresql.org/docs/current/static/runtime-
config-replication.html the main PostgreSQL documentation.

4.1.1.6.8. wal_keep_segments

Like max_wal_senders, the wal_keep_segments parameter isn't directly changed by logical
replication but is still important for upstream masters. It is not required on downstream-only
masters.

wal_keep_segments should be set to a value that allows for some downtime or unreachable
periods for downstream masters and for heavy bursts of write activity on the upstream
master.

Keep in mind that enough disk space must be available for the WAL segments, each of
which is 16MB. If you run out of disk space the server will halt until disk space is freed and it
may be quite difficult to free space when you can no longer start the server.

If you exceed the required wal_keep_segments and "Insufficient WAL segments retained"
error will be reported. See Section 4.1.1.11.

wal_keep_segments is documented in the
http://www.postgresql.org/docs/current/static/runtime-config-replication.html the main
PostgreSQL manual.

4.1.1.6.9. track_commit_timestamp

Setting this parameter to "on" enables commit timestamp tracking, which is used to
implement last-UPDATE-wins conflict resolution. It is also required for use of the
pg_get_transaction_committime function.

http://www.postgresql.org/docs/current/static/runtime-config-wal.html
http://www.postgresql.org/docs/current/static/runtime-config-replication.html
http://www.postgresql.org/docs/current/static/runtime-config-replication.html
http://www.postgresql.org/docs/current/static/runtime-config-replication.html

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 39

4.1.1.7. Function Reference

The LLSR/BDR patches add several functions to the PostgreSQL core.

4.1.1.7.1. pg_get_transaction_committime

pg_get_transaction_committime(txid integer): Get the timestamp at which the specified
transaction, as identified by transaction ID, committed. This function can be useful when
monitoring replication lag.

4.1.1.7.2. init_logical_replication

init_logical_replication(slotname name, plugin name, OUT slotname text, OUT xlog_position
text) performs the same work as pg_receivellog --init, creating a new logical replication slot.
Given the slot name to create and the plugin to use for the slot, it returns the fully qualified
resulting slot name and the start position in the transaction logs.

This function is mostly useful for implementers of replication tools based on logical
replication's features, and is not typically directly useful to end users. Starting a downstream
master will automatically create a slot so you do not generally need this function when you
are using BDR.

4.1.1.7.3. stop_logical_replication

stop_logical_replication(slotname name) stops logical replication for the named slot,
removing its entry from the upstream master. It has the same effect as pg_receivellog --stop,
but is callable from SQL.

This function is mainly useful for removing unused slots.

4.1.1.7.4. pg_stat_bdr

This function is used by the pg_stat_bdr view. You don't need to call it directly.

4.1.1.7.5. bdr_sequence_alloc, bdr_sequence_options, bdr_sequence_setval

These functions are internal to BDR's distributed sequence implementation and are invoked
via the sequence access methods. You use ordinary sequence manipulation functions like
nextval and setval to manage distributed sequences, see Section 4.1.1.9.

4.1.1.7.6. pg_xlog_wait_remote_apply

The pg_xlog_wait_remote_apply(lsn text, pid integer) function allows you to wait on an
upstream master until all downstream masters' replication has caught up to a certain point.

The lsn argument is a Log Sequence Number, an identifier for the WAL (Write-Ahead Log)
record you want to make sure has been applied on all nodes. The most useful record you will
want to wait for is pg_current_xlog_location(), as discussed in
http://www.postgresql.org/docs/current/static/functions-admin.html PostgreSQL Admin
Functions in the manual.

The pid argument specifies the process ID of a walsender to wait for. It may be set to zero to
wait until the receivers associated with all walsenders on this upstream master have caught
up to the specified lsn, or to a process ID obtained from pg_stat_replication.pid to wait for
just one downstream to catch up.

The most common use is: select pg_xlog_wait_remote_apply(pg_current_xlog_location(), 0),
which will wait until all downstream masters have applied changes up to the time on the
upstream master at which pg_xlog_wait_remote_apply was called.

http://www.postgresql.org/docs/current/static/functions-admin.html

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 40

pg_current_xlog_location is not transactional, so unlike things like current_timestamp it'll
always return the very latest status server-wide, irrespectively of how long the current
transaction has been running for and when it started.

4.1.1.7.7. pg_xlog_wait_remote_receive

pg_xlog_wait_remote_receive is the same as pg_xlog_wait_remote_apply, except that it only
waits until the remote node has confirmed that it's received the given LSN, not until it has
actually applied it after receiving it.

4.1.1.8. Catalog Changes

4.1.1.8.1. pg_seqam

To support Section 4.1.1.9, BDR adds an access method abstraction for sequences. It
serves a similar purpose to index access methods - it abstracts the implementation of
sequence storage from usage of sequences, so the client doesn't need to care whether it's
using a distributed sequence, a local sequence, or something else entirely.

This access method is described by the pg_seqam table. Two entries are defined as shown
in the following listing.

postgres=# select * from pg_seqam ;

 seqamname | seqamalloc | seqamsetval | seqamoptions

 -----------+----------------------+-----------------------+------------------------

 local | sequence_local_alloc | sequence_local_setval | sequence_local_options

 bdr | bdr_sequence_alloc | bdr_sequence_setval | bdr_sequence_options

 (2 rows)

local is the traditional local-only sequence access method.

Bdr is for distributed sequences. For more information, see Section 4.1.1.9.

4.1.1.9. Distributed Sequences

Distributed sequences, or global sequences, are a sequence that is synchronized across all
the nodes in a BDR cohort. A distributed sequence is more expensive to access than a
purely local sequence, but it produces values that are guaranteed unique across the entire
cohort.

Using distributed sequences allows you to avoid the problems with inserts conflicts. If you
define a PRIMARY KEY or UNIQUE column with a DEFAULT nextval(...) expression that
refers to a global sequence shared across all nodes in a BDR cohort, it is not possible for
any node to ever get the same value as any other node. When BDR synchronizes inserts
between the nodes, they can never conflict.

There is no need to use a distributed sequence if:

• You are ensuring global uniqueness using another method such as:

o Local sequences with an offset and increment;

o UUIDs;

o An externally co-ordinated natural key

• You are using the data in a TEMPORARY or UNLOGGED table, as these are never
visible outside the current node.

You can get a listing of distributed sequences defined in a database with the command
shown in the following listing.

SELECT *

 FROM pg_class

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 41

 INNER JOIN pg_seqam ON (pg_class.relam = pg_seqam.oid)

 WHERE pg_seqam.seqamname = 'bdr' AND relkind = 'S';

See Section 4.1.1.8.1 for information on the new pg_seqam catalog table.

New distributed sequences may be created with the USING clause to CREATE SEQUENCE
as shown in the following listing.

CREATE SEQUENCE test_seq USING bdr;

Once you've created a distributed sequence you may use it with nextval like any other
sequence. A few limitations and caveats apply to global sequences at time of writing:

• Only an INCREMENT of 1 (the default) is supported. Client applications that expect a
different increment must be configured to handle increment 1. An extended variant of
<tt>nextval</tt> that takes the number of values to obtain as an argument and returns
a set of values is planned as an extension to aid in porting.

• MINVALUE and MAXVALUE are locked at their defaults and may not be changed.

• START WITH may not be specified; however, setval may be used to set the start
value after the sequence is created.

• The CACHE directive is not supported.

• Sequence values are handed out in chunks, so if three different nodes all call nextval
at the same time they might get values 50, 150 and 250. Thus, at time 't' nextval on
one node may return a value higher than a nextval call at time 't+1' on another node.
Within a single node the usual rules for nextval still apply.

The details used by BDR to manage global sequences are in the bdr_sequence_values,
bdr_sequence_elections and bdr_votes tables in the public schema, though these details are
subject to change.

4.1.1.10. Configuration

Details on individual parameters are described in Section 4.1.1.6.

The following configuration is an example of a simple one-way LLSR replication setup - a
single upstream master to a single downstream master.

The upstream master (sender)'s postgresql.conf should contain settings like:

wal_level = 'logical' # Include enough info for logical replication

 max_logical_slots = X # Number of LLSR senders + any receivers

 max_wal_senders = Y # Y = max_logical_slots plus any physical

 # streaming requirements

 wal_keep_segments = 5000 # Master must retain enough WAL segments to let

 # replicas catch up. Correct value depends on

 # rate of writes on master, max replica downtime

 # allowable. 5000 segments requires 78GB

 # in pg_xlog

 track_commit_timestamp = on # Not strictly required for LLSR, only for BDR

 # conflict resolution.

wal_level = 'logical' # Include enough info for logical replication

 max_logical_slots = X # Number of LLSR senders + any receivers

 max_wal_senders = Y # Y = max_logical_slots plus any physical

 # streaming requirements

 wal_keep_segments = 5000 # Master must retain enough WAL segments to let

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 42

 # replicas catch up. Correct value depends on

 # rate of writes on master, max replica downtime

 # allowable. 5000 segments requires 78GB

 # in pg_xlog

 track_commit_timestamp = on # Not strictly required for LLSR, only for BDR

 # conflict resolution.

Downstream (receiver) postgresql.conf is shown in the following listing:

shared_preload_libraries = 'bdr'

 bdr.connections="name_of_upstream_master" # list of upstream master nodenames

 bdr.<nodename>.dsn = 'dbname=postgres' # connection string for connection

 # from downstream to upstream master

 bdr.<nodename>.local_dbname = 'xxx' # optional parameter to cover the case

 # where the databasename on upstream

 # and downstream master differ.

 # (Not yet implemented)

 bdr.<nodename>.apply_delay # optional parameter to delay apply of

 # transactions, time in milliseconds

 bdr.synchronous_commit = off; # optional parameter to set the

 # synchronous_commit parameter the

 # apply processes will be using.

 # Safe to set to 'off' unless you're

 # doing synchronous replication.

 max_logical_slots = X # set to the number of remotes

Note that a server can be both sender and receiver, either two servers to each other or more
complex configurations like replication chains/trees.

The upstream (sender) pg_hba.conf must be configured to allow the downstream master to
connect for replication. Otherwise you'll see errors like the following on the downstream
master:

FATAL: could not connect to the primary server: FATAL: no pg_hba.conf entry for replication connection

from host "[local]", user "postgres"

A suitable pg_hba.conf entry for a replication connection from the replica server 10.1.4.8
might be:

 host replication postgres 10.1.4.8/32 trust

The user name should match the user name configured in the downstream master's dsn.
MD5 password authentication is supported.

For more details on these parameters, see Section 4.1.1.6.

4.1.1.11. Troubleshooting

4.1.1.11.1. Could not access file "bdr": No such file or directory

If you see the error:

FATAL: could not access file "bdr": No such file or directory

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 43

when starting a database set up to receive BDR replication, you probably forgot to install
contrib/bdr. See above.

4.1.1.11.2. Invalid value for parameter

An error like:

LOG: invalid value for parameter ...

when setting one of these parameters means your server doesn't support logical replication
and will need to be patched or updated.

4.1.1.11.3. Insufficient WAL segments retained ("requested WAL segment ... has already
been removed")

If wal_keep_segments is insufficient to meet the requirements of a replica that has fallen far
behind, the master will report errors like:

ERROR: requested WAL segment 00000001000000010000002D has already been removed

Currently the replica errors look like in the following listing, but a more explicit error message
for this condition is planned.

WARNING: Starting logical replication

 LOG: data stream ended

 LOG: worker process: master (PID 23812) exited with exit code 0

 LOG: starting background worker process "master"

 LOG: master initialized on master, remote dbname=master port=5434 replication=true

fallback_application_name=bdr

 LOG: local sysid 5873181566046043070, remote: 5873181102189050714

 LOG: found valid replication identifier 1

 LOG: starting up replication at 1 from 1/2D9CA220

The only way to recover from this fault is to re-seed the replica database.

This fault could be prevented with feedback from the replica to the master, but this feature is
not planned for the first release of BDR. Another alternative considered for future releases is
making wal_keep_segments a dynamic parameter that is sized on demand.

Monitoring of maximum replica lag and appropriate adjustment of wal_keep_segments will
prevent this fault from arising.

4.1.1.11.4. Couldn't find logical slot

An error like:

ERROR: couldn't find logical slot "bdr: 16384:5873181566046043070-1-24596:"

on the upstream master suggests that a downstream master is trying to connect to a logical
replication slot that no longer exists. The slot cannot be re-created, so it is necessary to re-
seed the downstream replica database.

4.1.1.12. Operational Issues and Debugging

In LLSR there are no user-level (i.e. SQL visible) ERRORs that have special meaning. Any
ERRORs generated are likely to be serious problems of some kind, apart from apply
deadlocks, which are automatically re-tried.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 44

4.1.1.13. Monitoring

The following views are available for monitoring replication activity:

• http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-
STATS-VIEWS-TABLE pg_stat_replication

• pg_stat_logical_decoding (described below)

• pg_stat_bdr (described below)

The following configuration and logging parameters are useful for monitoring replication:

• http://www.postgresql.org/docs/current/static/runtime-config-logging.html#GUC-LOG-
LOCK-WAITS log_lock_waits

4.1.1.13.1. pg_stat_logical_decoding

The new pg_stat_logical_decoding view is specific to logical replication. It is based on the
underlying pg_stat_get_logical_replication_slots function and has the following structure:

 View "pg_catalog.pg_stat_logical_decoding"

 Column | Type | Modifiers

 --------------------------+---------+-----------

 slot_name | text |

 plugin | text |

 database | oid |

 active | boolean |

 xmin | xid |

 last_required_checkpoint | text |

It contains one row for every connection from a downstream master to the server being
queried (the upstream master). On a standalone PostgreSQL server or a downstream-only
master this view will contain no rows.

• slot_name: An internal name for a given logical replication slot (a connection from a
downstream master to this upstream master). This slot name is used by the
downstream master to uniquely identify its self and is used with the pg_receivellog
command when managing logical replication slots. The slot name is composed of the
decoding plugin name, the upstream database oid, the downstream system identifier
(from pg_control), the downstream slot number, and the downstream database oid.

• plugin: The logical replication plugin being used to decode WAL archives. You'll
generally only see bdr_output here.

• database: The oid of the database being replicated by this slot. You can get the
database name by joining on pg_database.oid.

• active: Whether this slot currently has an active connection.

• xmin: The lowest upstream master transaction ID this replication slot can "see", like
the xmin of a transaction or prepared transaction. xmin should keep on advancing as
replication continues. If xmin stops advancing that's a sign that replication has stalled,
possibly leading to the accumulation of bloat in the system catalogs. You can turn this
txid into the time it was committed with pg_get_transaction_committime (see Section
4.1.1.7.1) for monitoring purposes.

• last_required_checkpoint: The checkpoint identifying the oldest WAL record required
to bring this slot up to date with the upstream master. (This column is likely to be
removed in a future version).

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 45

4.1.1.13.2. pg_stat_bdr

The pg_stat_bdr view is supplied by the bdr extension. It provides information on a server's
connection(s) to its upstream master(s). It is not present on upstream-only masters.

The primary purpose of this view is to report statistics on the progress of LLSR apply on a
per-upstream master connection basis.

View structure:

 View "public.pg_stat_bdr"

 Column | Type | Modifiers

 --------------------+--------+-----------

 rep_node_id | oid |

 riremotesysid | name |

 riremotedb | oid |

 rilocaldb | oid |

 nr_commit | bigint |

 nr_rollback | bigint |

 nr_insert | bigint |

 nr_insert_conflict | bigint |

 nr_update | bigint |

 nr_update_conflict | bigint |

 nr_delete | bigint |

 nr_delete_conflict | bigint |

 nr_disconnect | bigint |

Fields:

• rep_node_id: An internal identifier for the replication slot.

• riremotesysid: The remote database system identifier, as reported by the Database
system identifier line of pg_controldata /path/to/datadir

• riremotedb: The remote database OID, i.e. the oid column of the remote server's
pg_catalog.pg_database entry for the replicated database. You can get the database
name with select datname from pg_database where oid = 12345 (where '12345' is the
riremotedb oid).

• rilocaldb: The local database OID, with the same meaning as riremotedb but with
oids from the local system.

''The rest of the rows are statistics about this upstream master slot'':

• nr_commit: Number of commits applied to date from this master

• nr_rollback: Number of rollbacks performed by this apply process due to recoverable
errors (deadlock retries, lost races, etc) or unrecoverable errors like mismatched
constraint errors.

• nr_insert: Number of INSERTs performed

• nr_insert_conflict: Number of INSERTs that resulted in conflicts.

• nr_update: Number of UPDATEs performed

• nr_update_conflict: Number of UPDATEs that resulted in conflicts.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 46

• nr_delete: Number of deletes performed

• nr_delete_conflict: Number of deletes that resulted in conflicts.

• nr_disconnect: Number of times this apply process has lost its connection to the
upstream master since it was started.

This view does not contain any information about how far behind the upstream master this
downstream master is. The upstream master's pg_stat_logical_decoding and
pg_stat_replication views must be queried to determine replication lag.

4.1.1.13.3. Monitoring Replication Status and Lag

As with any replication setup, it is vital to monitor replication status on all BDR nodes to
ensure no node is lagging severely behind the others or is stuck.

In the case of BDR a stuck or crashed node will eventually cause disk space and table bloat
problems on other masters so stuck nodes should be detected and removed or repaired in a
reasonably timely manner. Exactly how urgent this is depends on the workload of the BDR
group.

The pg_stat_logical_decoding view described above may be used to verify that a
downstream master is connected to its upstream master by querying it on the upstream side
- the active boolean column is t if there's a downstream master connected to this upstream.

The xmin column provides an indication of whether replication is advancing; it should
increase as replication progresses. You can turn this into the time the transaction was
committed on the master by running pg_get_transaction_committime(xmin) ''on the upstream
master''. Since txids are different between upstream and downstream masters, running it on
a downstream master with a txid from the upstream master as input would result in an error
and/or incorrect result. An example is shown in the following listing.

postgres=# select slot_name, plugin, database, active, xmin,

 pg_get_transaction_committime(xmin)

 FROM pg_stat_logical_decoding ;

 -[RECORD 1]-----------------+--

 slot_name | bdr: 12910:5882534759278050995-1-12910:

 plugin | bdr_output

 database | 12910

 active | f

 xmin | 1827

 pg_get_transaction_committime | 2013-05-27 06:14:36.851423+00

4.1.1.14. Table and Index Usage Statistics

Statistics on table and index usage are updated normally by the downstream master. This is
essential for correct function of auto-vacuum. If there are no local writes on the downstream
master and stats have not been reset these two views should show matching results
between upstream and downstream:

• pg_stat_user_tables

• pg_statio_user_tables

Since indexes are used to apply changes, the identifying indexes on downstream side may
appear more heavily used with workloads that perform UPDATEs and DELETEs than non-
identifying indexes are.

The built-in index monitoring views are:

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 47

• pg_stat_user_indexes

• pg_statio_user_indexes

All these views are discussed in http://www.postgresql.org/docs/current/static/monitoring-
stats.html#MONITORING-STATS-VIEWS-TABLE the PostgreSQL documentation on the
statistics views.

4.1.1.15. Starting, Stopping, and Managing Replication

Replication is managed with the postgresql.conf settings described in "Parameter Reference"
and "Configuration" above, and using the pg_receivellog utility command.

4.1.1.15.1. Starting a new LLSR Connection

Logical replication is started automatically when a database is configured as a downstream
master in postgresql.conf (see Section 4.1.1.10) and the postmaster is started. No explicit
action is required to start replication, but replication will not actually work unless the
upstream and downstream databases are identical within the requirements set by LLSR in
Section 4.1.1.3.

pg_dump and pg_restore may be used to set up the new replica's database.

4.1.1.15.2. Viewing Logical Replication Slots

Examining the state of logical replication is discussed in Section 4.1.1.13.

4.1.1.15.3. Temporarily Stopping an LLSR Replica

LLSR replicas can be temporarily stopped by shutting down the downstream master's
postmaster.

If the replica is not started back up before the upstream master discards the oldest WAL
segment required for the downstream master to resume replay, as identified by the
last_required_checkpoint column of pg_catalog.pg_stat_logical_decoding then the replica
will not resume replay. The error from Section 4.1.1.11.3 will be reported in the upstream
master's logs. The replica must be re-created for replication to continue.

4.1.1.15.4. Removing an LLSR Replica Permanently

To remove a replication connection permanently, remove its entries from the downstream
master's postgresql.conf, restart the downstream master, then use pg_receivellog to remove
the replication slot on the upstream master.

It is important to remove the replication slot from the upstream master(s) to prevent xid wrap-
around problems and issues with table bloat caused by delayed vacuum.

4.1.1.15.5. Cleaning up Abandoned Replication Slots

To remove a replication slot that was used for a now-defunct replica, find its slot name from
the Section 4.1.1.13.1 view on the upstream master then run:

pg_receivellog -p 5434 -h master-hostname -d dbname \

 --slot='bdr: 16384:5873181566046043070-1-16384:' --stop

where the argument to '--slot' is the slot name you found from the view.

You may need to do this if you've created and then deleted several replicas so
max_logical_slots has filled up with entries for replicas that no longer exist.

http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE
http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 48

4.1.2. Bi-Directional Replication

Bi-Directional replication is built directly on LLSR by configuring two or more servers as both
upstream ''and'' downstream masters of each other.

All of the Log Level Streaming Replication documentation applies to BDR and should be read
before moving on to reading about and configuring BDR.

4.1.2.1. Bi-Directional Replication Use Cases

Bi-Directional Replication is designed to allow a very wide range of server connection
topologies. The simplest to understand would be two servers each sending their changes to
the other, which would be produced by making each server the downstream master of the
other and so using two connections for each database.

Logical and physical streaming replication are designed to work side-by-side. This means
that a master can be replicating using physical streaming replication to a local standby
server, while at the same time replicating logical changes to a remote downstream master.
Logical replication works alongside cascading replication also, so a physical standby can
feed changes to a downstream master, allowing upstream master sending to physical
standby sending to downstream master.

4.1.2.1.1. Simple Multi-Master Pair

A simple mulit-master "HA Cluster" with two servers:

• Server "Alpha" – Master

• Server "Bravo" – Master

Configuration
Alpha:

 wal_level = 'logical'

 max_logical_slots = 3

 max_wal_senders = 4

 wal_keep_segments = 5000

 shared_preload_libraries = 'bdr'

 bdr.connections="bravo"

 bdr.bravo.dsn = 'dbname=dbtoreplicate'

 track_commit_timestamp = on

Bravo:

 wal_level = 'logical'

 max_logical_slots = 3

 max_wal_senders = 4

 wal_keep_segments = 5000

 shared_preload_libraries = 'bdr'

 bdr.connections="alpha"

 bdr.alpha.dsn = 'dbname=dbtoreplicate'

 track_commit_timestamp = on

See Section 4.1.1.10 for an explanation of these parameters.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 49

4.1.2.1.2. HA and Logical Standby

Downstream masters allow users to create temporary tables, so they can be used as
reporting servers.

"HA Cluster":

• Server "Alpha" - Current Master

• Server "Bravo" - Physical Standby - unused, apart from as failover target for Alpha -
potentially specified in synchronous_standby_names

• Server "Charlie" - "Logical Standby" - downstream master

4.1.2.1.3. Very High Availability Multi-Master

A typical configuration for remote multi-master would then be:

• Site 1

o Server "Alpha" - Master - feeds changes to Bravo using physical streaming
with sync replication

o Server "Bravo" - Physical Standby - feeds changes to Charlie using logical
streaming

• Site 2

o Server "Charlie" - Master - feeds changes to Delta using physical streaming
with sync replication

o Server "Delta" - Physical Standby - feeds changes to Alpha using logical
streaming

Bandwidth between Site 1 and Site 2 is minimised.

4.1.2.1.4. 3-Remote Site Simple Multi-Master Plex

BDR supports "all to all" connections, so the latency for any change being applied on other
masters is minimised. (Note that early designs of multi-master were arranged for circular
replication, which has latency issues with larger numbers of nodes)

• Site 1

o Server "Alpha" - Master - feeds changes to Charlie, Echo using logical
streaming

• Site 2

o Server "Charlie" - Master - feeds changes to Alpha, Echo using logical
streaming replication

• Site 3

o Server "Echo" - Master - feeds changes to Alpha, Charlie using logical
streaming replication

Configuration

If you wanted to test this configuration locally you could run three PostgreSQL instances on
different ports. Such a configuration would look like the following if the port numbers were
used as node names for the sake of notational clarity:

Config for node_5440:

 port = 5440

 bdr.connections='node_5441,node_5442'

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 50

 bdr.node_5441.dsn='port=5441 dbname=postgres'

 bdr.node_5442.dsn='port=5442 dbname=postgres'

Config for node_5441:

 port = 5441

 bdr.connections='node_5440,node_5442'

 bdr.node_5440.dsn='port=5440 dbname=postgres'

 bdr.node_5442.dsn='port=5442 dbname=postgres'

Config for node_5442:

 port = 5442

 bdr.connections='node_5440,node_5441'

 bdr.node_5440.dsn='port=5440 dbname=postgres'

 bdr.node_5441.dsn='port=5441 dbname=postgres'

In a typical real-world configuration each server would be on the same port on a different
host instead.

4.1.2.1.5. 3-Remote Site Simple Multi-Master Circular Replication

Simpler config uses "circular replication". This is simpler but results in higher latency for
changes as the number of nodes increases. It's also less resilient to network disruptions and
node faults.

• Site 1

o Server "Alpha" - Master - feeds changes to Charlie using logical streaming
replication

• Site 2

o Server "Charlie" - Master - feeds changes to Echo using logical streaming
replication

• Site 3

o Server "Echo" - Master - feeds changes to Alpha using logical streaming
replication

Regrettably this doesn't actually work yet because we don't cascade logical changes (yet).

Configuration
Using node names that match port numbers, for clarity

Config for node_5440:

 port = 5440

 bdr.connections='node_5441'

 bdr.node_5441.dsn='port=5441 dbname=postgres'

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 51

Config for node_5441:

 port = 5441

 bdr.connections='node_5442'

 bdr.node_5442.dsn='port=5442 dbname=postgres'

Config for node_5442:

 port = 5442

 bdr.connections='node_5440'

 bdr.node_5440.dsn='port=5440 dbname=postgres'

This would usually be done in the real world with databases on different hosts, all running on
the same port.

4.1.2.1.6. 3-Remote Site Max Availability Multi-Master Plex

• Site 1

o Server "Alpha" - Master - feeds changes to Bravo using physical streaming
with sync replication

o Server "Bravo" - Physical Standby - feeds changes to Charlie, Echo using
logical streaming

• Site 2

o Server "Charlie" - Master - feeds changes to Delta using physical streaming
with sync replication

o Server "Delta" - Physical Standby - feeds changes to Alpha, Echo using logical
streaming

• Site 3

o Server "Echo" - Master - feeds changes to Foxtrot using physical streaming
with sync replication

o Server "Foxtrot" - Physical Standby - feeds changes to Alpha, Charlie using
logical streaming

Bandwidth and latency between sites is minimised.

Here the config is left as an exercise for the reader.

4.1.2.1.7. N-site Symmetric Cluster Replication

Symmetric cluster is where all masters are connected to each other.

N=19 has been tested and works fine.

N masters requires N-1 connections to other masters, so practical limits are <100 servers, or
less if you have many separate databases.

The amount of work caused by each change is O(N), so there is a much lower practical limit
based upon resource limits. A future option to limit to filter rows/tables for replication
becomes essential with larger or more heavily updated databases, which is planned.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 52

4.1.2.2. Conflict Avoidance

4.1.2.2.1. Distributed Locking

Some clustering systems use distributed lock mechanisms to prevent concurrent access to
data. These can perform reasonably when servers are very close but cannot support
geographically distributed applications as very low latency is critical for acceptable
performance.

Distributed locking is essentially a pessimistic approach, whereas BDR advocates an
optimistic approach: avoid conflicts where possible but allow some types of conflict to occur
and and resolve them when they arise.

4.1.2.2.2. Global Sequences

Many applications require unique values be assigned to database entries. Some applications
use GUIDs generated by external programs, some use database-supplied values. This is
important with optimistic conflict resolution schemes because uniqueness violations are
"divergent errors" and are not easily resolvable.

The SQL standard requires Sequence objects which provide unique values, though these are
isolated to a single node. These can then be used to supply default values using DEFAULT
nextval('mysequence'), as with PostgreSQL's SERIAL pseudo-type.

BDR requires sequences to work together across multiple nodes. This is implemented as a
new SequenceAccessMethod API (SeqAM), which allows plugins that provide get/set
functions for sequences. Global Sequences are then implemented as a plugin which
implements the SeqAM API and communicates across nodes to allow new ranges of values
to be stored for each sequence.

4.1.2.3. Conflict Detection & Resolution

Because local writes can occur on a master, conflict detection and avoidance is a concern for
basic LLSR setups as well as full BDR configurations.

4.1.2.3.1. Lock Conflicts

Changes from the upstream master are applied on the downstream master by a single apply
process. That process needs to RowExclusiveLock on the changing table and be able to
write lock the changing tuple(s). Concurrent activity will prevent those changes from being
immediately applied because of lock waits. Use the
http://www.postgresql.org/docs/current/static/runtime-config-logging.html#GUC-LOG-LOCK-
WAITS log_lock_waits facility to look for issues with apply blocking on locks.

By concurrent activity on a row, we include

explicit row level locking (SELECT ... FOR UPDATE/FOR SHARE)

• locking from foreign keys

• implicit locking because of row UPDATEs, INSERTs or DELETEs, either from local
activity or apply from other servers

4.1.2.3.2. Data Conflicts

Concurrent updates and deletes may also cause data-level conflicts to occur, which then
require conflict resolution. It is important that these conflicts are resolved in a consistent and
idempotent manner so that all servers end up with identical results.

Concurrent updates are resolved using last-update-wins strategy using timestamps. Should
timestamps be identical, the tie is broken using system identifier from pg_control though this
may change in a future release.

UPDATEs and INSERTs may cause uniqueness violation errors because of primary keys,
unique indexes and exclusion constraints when changes are applied at remote nodes. These

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 53

are not easily resolvable and represent severe application errors that cause the database
contents of multiple servers to diverge from each other. Hence these are known as
"divergent conflicts". Currently, replication stops should a divergent conflict occur. The errors
causing the conflict can be seen in the error log of the downstream master with the problem.

Updates which cannot locate a row are presumed to be DELETE UPDATE conflicts. These
are accepted as successful operations but in the case of UPDATE the data in the UPDATE is
discarded.

All conflicts are resolved at row level. Concurrent updates that touch completely separate
columns can result in "false conflicts", where there is conflict in terms of the data, just in
terms of the row update. Such conflicts will result in just one of those changes being made,
the other discarded according to last update wins. It is not practical to decide when a row
should be merged and when a last-update-wins strategy should be used at the database
level; such decision making would require support for application-specific conflict resolution
plugins.

Changing unlogged and logged tables in the same transaction can result in apparently
strange outcomes since the unlogged tables aren't replicated.

Examples
As an example, let’s say we have two tables Activity and Customer. There is a Foreign Key
from Activity to Customer, constraining us to only record activity rows that have a matching
customer row. We update a row on Customer table on NodeA. The change from NodeA is
applied to NodeB just as we are inserting an activity on NodeB. The inserted activity causes
a FK check.

4.2. CumuloNimbo
In what follows we provide the user guide for the deployment and execution of the
CumuloNimbo ultra-scalable database in the 4CaaSt platform.

The CumuloNimbo ultra-scalable database is deployed and managed through Chef
cookbooks designed following the 4CaaSt template. There are 5 cookbooks, each of them
deploying a different subsystem or subset of subsystems:

• cn_hdfs_all: Deploys and starts HDFS
• cn_hbase_all: Deploys and starts HBase with Zookeeper running locally
• cn_tm_all: Deploys and starts the Transaction Manager
• cn_qe_all: Deploys and starts Derby
• cn_tomcat_all: Deploys and starts Tomcat

The cookbooks follow a common scheme. They all create these directories:

• Software: /home/<user>/<app>
• Data: /local/<user>/<app>
• Java: /home/<user>/jdk1.6.0_22_x32

Where:

• <user> is declared with the attribute user.
• <app> depends on the cookbook being installed:

o cn_hdfs_all: HDFS-SHBase-0.92
o cn_hbase_all: SHBase-0.92
o cn_tm_all: txnmgmt
o cn_qe_all: derbyBIN on home and derbyDATA on local
o cn_tomcat_all: apache-tomcat-6.0.37

The cookbooks should be executed in the following order:

1. cn_hdfs-all
2. cn_hbase-all
3. cn_txnmgmt-all
4. cn_qe-all
5. cn_tomcat-all

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 54

For each cookbook the two recipes required by 4CaaSt, deploy and start, should be
executed in the following order:

1. Deploy_PIC.rb
2. Start_PIC.rb

The cookbooks have multiple attributes that are described below.
The default values of attributes are provided in:

• default.rb

The attributes file provides all the customizable parameters although most of them can be left
as they are. The only exception is the attribute user which must be an existing linux user:

user is the owner of the files and directories under which all the processes will run.
Default user is ubuntu.

4.3. Java Open Application Server – JOnAS
JOnAS documentation is available online at:
http://jonas.ow2.org/JONAS_5_3_0_M7/doc/doc-en/html/. To support JOnAS accounting, the
WP5 JASMINe Probe monitoring source component is used, the way it is installed is
described in D5.3.3 [12].

4.4. Performance Isolation Benchmarking
In this section we provide the information for using the performance isolation measurement
framework.

4.4.1. Metrics

Actually the Metrics are rather a scientific contribution. Nevertheless, for applying them in
real scenarios one has to carefully define the reference workload and QoS Metrics which has
a major impact onto the later results. A user of these metrics should be aware this fact. We
recommend the following:

The QoS metric we focus on is usually the response time as here an increasing value means
a negative performance as this was requested by the metrics algorithms. The time is
measured from the moment a request leaves a tenant to the point in time a tenant receives
the response. As a measure for the workload caused by the tenants we recommend the
number of users associated with each tenant. In a MTA the workload induced by the tenants
is rather homogeneous (except the amount). Thus all users send requests of the same type
which makes different workload configurations comparable and allows to assume a similar
affect onto the system at increasing loads independent from the tenant sending the requests.
We expect that the system runs with a high utilization for economic reasons in reality, thus
we should use a high utilization for the reference workload. Another reason for running under
high utilization is our goal of evaluating performance isolation aspects. In a system with low
utilization, the increased workload of one tenant would have low impact. Therefore, we
should measure the systems overall throughput with increasing number of users. The point
at which the system has the highest throughput could be used as reference workload. If this
point is already exceeding the SLAs the workload at which the highest throughput with still
being within the SLAs should be selected as reference workload.

4.4.2. Measurement Framework

For some general information concerning the SoPeCo and how to use it we refer to
http://www.sopeco.org . In the following we provide some detailed information on how to
implement a Runtime Environment Connector for a specific system and how to setup a
configuration for a concrete measurement.

http://jonas.ow2.org/JONAS_5_3_0_M7/doc/doc-en/html/
http://www.sopeco.org/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 55

4.4.2.1. Creation of an Isolation Specific Measurement
Environment Connector

To implement a Measurement Environment Controller one has to realize the Abstract Class
MultiTenantMeasurementEnvironmentController provided in the jar file at
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation. Similar to the
original version MeasurementEnvironmentController it provides three abstract methods.

• initialize() initializes the target system with the given parameters from the Setup of the
Measurement configuration.

• prepareExperimentSeries() prepares the measurement environment with given
parameter values. It may run some test experiments on the target system. However,
the results from the test experiments will not be stored.

• The runExperiment() method is the main method for running an experiment on the
target system. The results from the experiment are stored in the Persistence.

The parameters transferred are key-value pairs. Especially for the initialize and
prepareExperimentSeries these values are very specific to the concrete implementation and
being set by the user in the SoPeCo configuration for the environment. The runExperiment
method gets a TenantCollection transferred which contains several Tenants. Each of these
Tenants carry the following information: tenant_id, tenant_characteristic (abiding, disruptive),
workload and targetIdentifier (usually referring to the hostname). Furthermore the field
response time is used to return the observed average response time to the SoPeCo.

4.4.2.2. Setup of the Measurement Strategy

In the Web Version of the SoPeCo we currently only support the Impact Based metrics.
Select the Isolation Measurement Strategy from the available ones and provide the following
information for the measurement strategy, see Table 1.

Parameter Description Example

Abiding Tenant host The hostnames of the
abiding tenants separated
by commas. We assume
different hostnames for
each tenant.

Hostname-1,hostname-2

Disruptive Tenant host The hostnames of the
disruptive tenant.

Hostname-3

Abiding Tenant port The ports for the abiding
tenants.

8080,8080

Disruptive Tenant port The ports for the disruptive
tenant.

8080

Abiding workload The amount of workload
for each abiding tenant
separated by commas.

1500,1200

Disruptive workload Describes the range of
disruptive workloads which
should be used for the
measurements. Required
information is a Start value
an End value and a Step
width.

Start=1200

End=5000

Step=200

https://svn.forge.morfeo-project.org/4caast/trunk/WP7/release3.0/isolation

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 56

Duration Describes the duration of
how long one particular
workload configuration
should be measured in
minutes.

10

Table 1. Overview of Parameters for Measurement Strategy

4.4.3. TPC-W

Once the MT-TPCW is deployed the primary user interface is the client console. In Table 2
we present an overview of the commands supported by the console.

Command Meaning

create Creates a new Load Driver instance for one
single tenant. It starts an interactive mode to
ask for the needed information. To use
default values press enter without any value.
Mandatory fields are the number of Emulated
Browsers (#Users), the Destination Address
(e.g., http://hostname:8080/) and a
description identifying the tenant in the client
console.

list Shows a list of all tenants, their id,
description and amount of users running.

kill Stops the load driver generation of workload.

add <tenantId> <amount> Ads <amount> of users to the specific tenant.

remove <tenantId> <amount> Removes <amount> of users to the specific
tenant.

loggerStart Starts the response time logger for all
tenants.

loggerStop Stops the response time logger for all
tenants.

loggerReset Resets the response time logger. The logger
is still logging. All data logged up to that point
is removed.

loggerEvaluate Returns the average response time for each
tenant in the time from the last loggerReset
or loggerStart to the current moment in time
or the time loggerStop was triggered.
loggerEvaluate does not reset the logger.

Table 2. Overview of Commands Supported by the Client Console

4.5. Bonita Open Solution – BOS
There are no changes to be highlighted with respect to user interaction. Thus, the interested
reader is referred to D7.3.1 [1] and D7.3.2 [2] for further information.

http://hostname:8080/

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 57

4.6. Orchestra
Orchestra User Guide is available online
http://download.forge.objectweb.org/orchestra/Orchestra-4.9.0-M4-UserGuide.pdf.

4.7. Extension of Apache ServiceMix for Multi-
Tenancy

With respect to functionality extension in RP3 we focused on security and extended the
multi-tenant HTTP BC of ESBMT in order to enable communication via HTTPS. Apart from
this extension, the user manual provided in the previous version of this deliverable is valid
and the interested reader is for details referred to [2]. Thus, in the following we emphasize
how to extend the test cases in order to use encrypted communication via HTTPS.

For utilizing the whole extended ServiceMix environment please refer to the SoapUI [10]
projects provided in:

https://svn.forge.morfeo-project.org/4caast/trunk/WP7/ExtendedApacheServiceMix/release-
RP2/miscellaneous/SoapUI_TestSuits

The extension for usage of HTTPS only affects the communication via SOAP over HTTPS.
As before the SOAP Binding Component can still be accessed under the following multi-
tenant URL using HTTP:

http://<VM IP Address>:8193/tenant-services/<registered tenant URL>/<Service
Name>/<Endpoint Name>/main.wsdl

For example:

http://187.212.86.2:8193/tenant-services/taxicompany.example.org/httpSoapConsumer/
TaxiProviderHttpSoapConsumerEndpoint/main.wsdl

In addition, the SOAP Binding Component can now also be accessed under the following
multi-tenant URL using HTTPS:

https://<VM IP Address>:8193/tenant-services/<registered tenant URL>/<Service
Name>/<Endpoint Name>/main.wsdl

For example:

https://187.212.86.2:8193/tenant-services/taxicompany.example.org/httpSoapConsumer/
TaxiProviderHttpSoapConsumerEndpoint/main.wsdl

http://download.forge.objectweb.org/orchestra/Orchestra-4.9.0-M4-UserGuide.pdf
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/ExtendedApacheServiceMix/release-RP2/miscellaneous/SoapUI_TestSuits
https://svn.forge.morfeo-project.org/4caast/trunk/WP7/ExtendedApacheServiceMix/release-RP2/miscellaneous/SoapUI_TestSuits

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 58

5. Conclusion
This deliverable provides the final version of the documentation for the prototypical
implementations of the immigrant PaaS technologies extended for cloud-awareness and
integrated into the 4CaaSt platform in WP7 during RP3 of the 4CaaSt project. We focus on
providing information on the architectures of the prototypes (Section 2), component
management including build, installation, setup and configuration (Section 3), and a user
guide (Section 4). The specification and design of the prototypes can be found in previous
deliverable D7.2.3 [3].

All in all with this deliverable we have reached the WP7 goal to enable cloud-awareness for
the building blocks and their seamless collaboration and interaction with other work
packages to ensure coverage of the whole building block lifecycle including offering in the
4CaaSt marketplace, dynamic scalability and deployment, monitoring, as well as accounting
and billing.

Copyright © USTUTT and other members of the 4CaaSt consortium 2013 Page 59

6. References
[1] 4CaaSt Consortium: D7.3.1 Immigrant PaaS Technologies: Experimental

Prototype of Software Components and Documentation, Version 1.0, January, 2012.

[2] 4CaaSt Consortium: D7.3.2 Immigrant PaaS Technologies: Experimental
Prototype of Software Components and Documentation, Version 1.0, January, 2013.

[3] 4CaaSt Consortium: D7.2.3 Immigrant PaaS Technologies: Components
Design and Open Specification, Version 1.0, July, 2013.

[4] Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez, and Frank
Leymann: Implementation and Evaluation of a Multi-Tenant Open-Source ESB. In:
Proceedings of ESOCC’12, 2012. (to appear)

[5] Apache Software Foundation: Apache ServiceMix. http://servicemix.apache.org.

[6] 4CaaSt Consortium: D8.1.4 Use Case Applications eMarketPlace for SMEs:
Report on Integration, Version 2.0, April 10, 2013.

[7] 4CaaSt Consortium: D8.1.6 Use Case Applications eMarketPlace for SMEs:
Report on Experimentation Results, Version 1.0, July 2, 2013.

[8] 4CaaSt Consortium: D2.3.3 Service Engineering and Lifecycle Management:
Experimental Prototype of Software Components and Documentation, Version 1.0,
August, 2013.

[9] 4CaaSt Consortium: D3.3.3 Marketplace Functions: Experimental Prototype of
Software Components and Documentation, Version 1.0, August, 2013.

[10] SmartBear Software. soapUI. http://www.soapui.org.

[11] 4CaaSt Consortium: D5.2.3 Administration, Accounting, Monitoring and
Analytics: Components Design and Open Specification, Version 1.0, July, 2013.

[12] 4CaaSt Consortium: D5.3.3 Administration, Accounting, Monitoring and
Analytics: Experimental Prototype of Software Components and Documentation,
Version 1.0, August, 2013.

All links have been last checked on September 9, 2013

http://servicemix.apache.org/
http://www.soapui.org/

	Executive Summary
	1. Introduction
	1.1. Purpose and Scope
	1.2. Document Overview

	2. Prototype Description
	1.
	2.
	2.1. PostgreSQL
	2.2. CumuloNimbo
	2.3. Java Open Application Server – JOnAS
	2.3.1. Java EE 6 Web Profile Certification
	2.3.2. JOnAS Integration With Resource Management
	2.3.3. JOnAS Integration With Marketplace
	2.3.4. JOnAS Integration With Accounting

	2.4. Performance Isolation Benchmarking
	2.4.1. Metrics
	2.4.2. Measurement Framework
	2.4.3. MT TPC-W

	2.5. Bonita Open Solution – BOS
	2.6. Orchestra
	2.7. Extension of Apache ServiceMix for Multi-Tenancy

	3. Components Management
	3.1. PostgreSQL
	3.2. CumuloNimbo
	3.2.1. Deployment
	3.2.2. Monitoring and Accounting
	3.2.3. Integration with Marketplace

	3.3. Java Open Application Server – JOnAS
	3.3.1. Deployment
	3.3.2. Monitoring and Accounting
	3.3.3. Integration with Marketplace

	3.4. Performance Isolation Benchmarking
	3.4.1. Measurement Framework – Deployment and Installation
	3.4.2. MT TPC-W
	3.4.2.1. Client Console
	3.4.2.2. Load Driver
	3.4.2.3. Book Store
	3.4.2.4. Database

	3.5. Bonita Open Solution – BOS
	3.6. Orchestra
	3.6.1. Deployment
	3.6.2. Monitoring
	3.6.3. Accounting
	3.6.4. Integration with Marketplace

	3.7. Extension of Apache ServiceMix for Multi-Tenancy

	4. User Guide
	4.1. PostgreSQL
	4.1.1. Logical Log Streaming Replication
	4.1.1.1. Overview of Logical Replication
	4.1.1.2. Replication of DML Changes
	4.1.1.3. Table Definitions and DDL Replication
	4.1.1.4. LLSR Limitations
	4.1.1.4.1. Data Definition Compatibility
	4.1.1.4.2. DDL Replication
	4.1.1.4.3. Upstream Feedback
	4.1.1.4.4. TRUNCATE is not Replicated
	4.1.1.4.5. CLUSTER and VACUUM FULL limitations

	4.1.1.5. Initial Setup
	4.1.1.5.1. Installing the Patched PostgreSQL Binaries

	4.1.1.6. Parameter Reference
	4.1.1.6.1. shared_preload_libraries = ‘bdr’
	4.1.1.6.2. bdr.connections
	4.1.1.6.3. bdr.<connection_name>.dsn
	4.1.1.6.4. bdr.synchronous_commit
	4.1.1.6.5. max_logical_slots
	4.1.1.6.6. wal_level = 'logical'
	4.1.1.6.7. max_wal_senders
	4.1.1.6.8. wal_keep_segments
	4.1.1.6.9. track_commit_timestamp

	4.1.1.7. Function Reference
	4.1.1.7.1. pg_get_transaction_committime
	4.1.1.7.2. init_logical_replication
	4.1.1.7.3. stop_logical_replication
	4.1.1.7.4. pg_stat_bdr
	4.1.1.7.5. bdr_sequence_alloc, bdr_sequence_options, bdr_sequence_setval
	4.1.1.7.6. pg_xlog_wait_remote_apply
	4.1.1.7.7. pg_xlog_wait_remote_receive

	4.1.1.8. Catalog Changes
	4.1.1.8.1. pg_seqam

	4.1.1.9. Distributed Sequences
	4.1.1.10. Configuration
	4.1.1.11. Troubleshooting
	4.1.1.11.1. Could not access file "bdr": No such file or directory
	4.1.1.11.2. Invalid value for parameter
	4.1.1.11.3. Insufficient WAL segments retained ("requested WAL segment ... has already been removed")
	4.1.1.11.4. Couldn't find logical slot

	4.1.1.12. Operational Issues and Debugging
	4.1.1.13. Monitoring
	4.1.1.13.1. pg_stat_logical_decoding
	4.1.1.13.2. pg_stat_bdr
	4.1.1.13.3. Monitoring Replication Status and Lag

	4.1.1.14. Table and Index Usage Statistics
	4.1.1.15. Starting, Stopping, and Managing Replication
	4.1.1.15.1. Starting a new LLSR Connection
	4.1.1.15.2. Viewing Logical Replication Slots
	4.1.1.15.3. Temporarily Stopping an LLSR Replica
	4.1.1.15.4. Removing an LLSR Replica Permanently
	4.1.1.15.5. Cleaning up Abandoned Replication Slots

	4.1.2. Bi-Directional Replication
	4.1.2.1. Bi-Directional Replication Use Cases
	4.1.2.1.1. Simple Multi-Master Pair
	4.1.2.1.2. HA and Logical Standby
	4.1.2.1.3. Very High Availability Multi-Master
	4.1.2.1.4. 3-Remote Site Simple Multi-Master Plex
	4.1.2.1.5. 3-Remote Site Simple Multi-Master Circular Replication
	4.1.2.1.6. 3-Remote Site Max Availability Multi-Master Plex
	4.1.2.1.7. N-site Symmetric Cluster Replication

	4.1.2.2. Conflict Avoidance
	4.1.2.2.1. Distributed Locking
	4.1.2.2.2. Global Sequences

	4.1.2.3. Conflict Detection & Resolution
	4.1.2.3.1. Lock Conflicts
	4.1.2.3.2. Data Conflicts

	4.2. CumuloNimbo
	4.3. Java Open Application Server – JOnAS
	4.4. Performance Isolation Benchmarking
	4.4.1. Metrics
	4.4.2. Measurement Framework
	4.4.2.1. Creation of an Isolation Specific Measurement Environment Connector
	4.4.2.2. Setup of the Measurement Strategy

	4.4.3. TPC-W

	4.5. Bonita Open Solution – BOS
	4.6. Orchestra
	4.7. Extension of Apache ServiceMix for Multi-Tenancy

	5. Conclusion
	6. References

