
OpenEngSB Maven
Plugin Manual

Version 2.3.0

ii

Table of Contents

I. User Manual ... 1

1. Using the OpenEngSB Maven Plugin .. 2

1.1. Purpose of the openengsb-maven-plugin ... 2

1.2. Configuring the openengsb-maven-plugin for your project 2

1.3. Available Goals ... 2

II. Contributor Manual ... 7

2. OpenEngSB Maven Plugin for Contributor .. 8

2.1. Exract Sources for Documentation .. 8

1

Part I. User Manual
The user manual explains how the OpenEngSB Maven Plugin is to be used.

2

Chapter 1. Using the OpenEngSB Maven Plugin
The openengsb-maven-plugin is a plugin for Apache Maven, intended to simplify various activities

(creating domains or connectors, building a release artifact of the whole project etc.) when developing

based on the OpenEngSB.

1.1. Purpose of the openengsb-maven-plugin

The purpose of the OpenEngSB Maven Plugin is to provide additional useful goals for the development

of the OpenEngSB itself and all projects which base on the OpenEngSB. It helps in various goals

starting in assembling, checkstyle, license checking and many other various goals which would

otherwise require to duplicate tons of version (and manage it in addition) between the OpenEngSB

and projects which are based on the OpenEngSB.

1.2. Configuring the openengsb-maven-plugin for your project

To use the openengsb-maven-plugin in your project add the following configuration to your project's

pom.xml:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 ...

 <build>

 <plugins>

 <plugin>

 <groupId>org.openengsb</groupId>

 <artifactId>openengsb-maven-plugin</artifactId>

 <version>${openengsb.maven.plugin.version}</version>

 </plugin>

 </plugins>

 </build>

 ...

</project>

The plugin can now be invoked via mvn openengsb:<goal>

1.3. Available Goals

assemble or etc/scripts/assemble.sh

Installs the OpenEngSB and skips tests. Furthermore a nightly profile is activated if available in your

poms.

eclipse or etc/scripts/eclipse.sh

Generates eclipse configuration file for the module where it is invoked from and all submodules. The

generated eclipse projects are also configured to use the checkstyle rules shipped with the plugin (see

checkstyle mojo).

checkstyle

Using the OpenEngSB Maven Plugin

3

Performs a Checkstyle check of the project. The checkstyle configuration file which is used for the

check can be found here. We ship this configuration file with the plugin (and changes need to be done

there) because we think it may be useful for other OpenEngSB related projects. Setting up eclipse

projects with configured checkstyle becomes very easy that way (simply mvn openengsb:eclipse).

genConnector or etc/scripts/gen-connector.sh (For additional info how to create a connector see

???)

Guides interactively through the creation of a connector and generates the artifact via the connector

archetype.

genDomain or etc/scripts/gen-domain.sh (For additional info how to create a domain see ???)

Guides interactively through the creation of a domain and generates the artifact via the domain

archetype.

licenseCheck or etc/scripts/license-check.sh

Performs a check if appropriate license headers are available in every source file. The licenseCheck

mojo wraps the com.mycila.maven-license-plugin. A large part of the default behavior of this mojo

can be changed in src/main/resources/license/licenseConfig.xml. See this site for available

configuration options. The openengsb-maven-plugin needs to be reinstalled after changing its default

behavior.

NOTE: pom.xml files are excluded from license check

Parameters:

• additionalExcludes

Defines path to a file where each line represents a pattern which files to exclude from license check

or license format (additionally to the default excludes).

licenseFormat or etc/scripts/license-format.sh

Adds a license header to files where the license header is missing. Regarding the configuration for this

mojo the same applies as for licenseCheck.

NOTE: pom.xml files are excluded from license format

Parameters:

• additionalExcludes

see description of licenseCheck

prePush or etc/scripts/pre-push.sh

Builds and installs the openengsb, checks for license headers, performs a Checkstyle check and runs

the integration tests.

Parameters:

https://github.com/openengsb/openengsb-maven-plugin/blob/master/src/main/resources/checkstyle/checkstyle.xml
http://code.google.com/p/maven-license-plugin/wiki/Configuration#maven-license-plugin_configuration_options

Using the OpenEngSB Maven Plugin

4

• additionalExcludes

see description of licenseCheck

provision or etc/scripts/run.sh / etc/scripts/quickrun.sh

Equivalent to execute karaf or karaf.bat per hand after build by mvn clean install in a (typically)

assembly directory.

Parameters:

• provisionPathUnix

This setting should be done in the one of the assembly folders and have to point to the final directory

where the karaf system, etc configs and so on consist.

• provisionExecutionPathUnix

The path to the executable in the unix archive file

• additionalRequiredExecutionPathUnix

Sometimes it's required that some executable files, provided in provisionExecutionPathUnix execute

other files which have to made executable to work correctly on themselves. Those files should be

specified here.

• provisionPathWindows

This setting should be done in the one of the assembly folders and have to point to the final directory

where the karaf system, etc configs and so on consist.

• provisionExecutionPathWindows

The path to the executable in the windows archive file

• additionalRequiredExecutionPathWindows

Sometimes it's required that some executable files, provided in provisionExecutionPathWindows

execute other files which have to made executable to work correctly on themselves. Those files

should be specified here.

These parameters are typically configured in the pom of your assembly project (/assembly/pom.xml

for the OpenEngSB)).

pushVersion or etc/scripts/push-version.sh

Updates the development version.

Parameters:

• developmentVersion

The new SNAPSHOT version.

Using the OpenEngSB Maven Plugin

5

extractSource

The goal is a really powerful for including source code into the documentation. It recursively scans

all files on a defined path for specific comments in the code and extracts the source in between into

a soruce listing which could be included afterwards easily. Currently the plugin scans the following

files: .java, .xml, .properties and .cfg. To start an exclude in java your code needs to look like...

 // @extract-start javaout

 private App() {

 }

 // @extract-end

... The format of the comments have to be eactly of the format as shown in the sample. "javaout" could

be replaced on the other hand with whatever you like. A file will be created in the target folder with the

name of your choice ("javaout" in this case) containing the content between the comments. In addition

the "programlisting" and the correct language tag is attached. This allows to directly include the code

which is also compiled for your project, to be included into the documentation.

For xml a simple example would look like:

<blueprint>

 <!-- @extract-start xmlout -->

 <service id="abc" interface="a.b.c">

 <bean class="a.b.d" />

 </service>

 <!-- @extract-end -->

</blueprint>

Property files and cfg files are of exactly the same format and would need to look like:

@extract-start propout

timetablePageName=Timetable

@extract-end

Parameters:

• sourcePath

The path which should be scanned for sources.

• targetPath

The path where the generated files should be pushed to.

releaseNightly or etc/scripts/release-nightly.sh

Mojo to perform nightly releases. This mojo activates the nightly profile in the project, where you can

put your additional configuration for nightly releases (To see what these profiles can be necessary for

please read the descript of the other release mojos).

release<XXX> (You can find a detailed description of the OpenEngSB release process in ???)

Using the OpenEngSB Maven Plugin

6

The release<XXX> mojos (except Nightly) wrap the maven-license-plugin, basically just invoking

mvn release:prepare and then mvn release:perforn with some useful default configuration which

can be reused for other projects related to the openengsb. These mojos perform a release and activate

the <XXX> profile. These release profiles are important and are required to ..

• .. select the appropriate passphrase for the maven release repository from your settings.xml. For

additional information on this topic see ???.

• .. set links depending on the release type. For examples please see the profiles in the pom

• .. configure distribution management of the project site, depending on the release type. For examples

see profiles in docs/homepage/pom

Parameters:

• connectionUrl

URL to your SCM repository (e.g. scm:git:file://~/openengsb). During the release process changes

(version updates, etc) are commited into your SCM.

Goals:

• releaseFinal or etc/scripts/release-final.sh

profile = final

• releaseMilestone or etc/scripts/release-milestone.sh

profile = milestone

• releaseRC or etc/scripts/release-rc.sh

profile = rc

• releaseSupport or etc/scripts/release-support.sh

profile = support

http://code.google.com/p/maven-license-plugin/
https://github.com/openengsb/openengsb/blob/master/pom.xml
https://github.com/openengsb/openengsb/blob/master/docs/homepage/pom.xml

7

Part II. Contributor Manual
The contributor manual explains the internal parts of the OpenEngSB Maven Plugin to show where and how it

could be best extended.

8

Chapter 2. OpenEngSB Maven Plugin for
Contributor

While the previous chapter gave a detailed description of the maven plugin this one focues on the

internals of the plugin and tries to explain the internal structure, helping ppl who want to understand

the internals and extend it.

2.1. Exract Sources for Documentation

Sources for documentation are extracted using the

org.openengsb.openengsbplugin.ExtractDocSourceMojo. The mojo itself includes a list of

implementations of the org.openengsb.openengsbplugin.extract.AnnotatedSourceExtractor interface.

	OpenEngSB Maven Plugin Manual
	Table of Contents
	Part I. User Manual
	Chapter 1. Using the OpenEngSB Maven Plugin
	1.1. Purpose of the openengsb-maven-plugin
	1.2. Configuring the openengsb-maven-plugin for your project
	1.3. Available Goals

	Part II. Contributor Manual
	Chapter 2. OpenEngSB Maven Plugin for Contributor
	2.1. Exract Sources for Documentation

