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LULEÅUNIVERSITY

Abstract

Division of Space Technology

Department of Computer Science, Electrical and Space Engineering

Master of Science

by Vineel Kumar Kadarla

In the recent years, CubeSat’s are evolving from purely educational tools to a standard

platform for technology demonstration and miniaturized scientific instrumentation. The

use of COTS (Commercial-Off-The-Shelf) components aided the ongoing miniaturiza-

tion of several technologies and demonstrated successfully. Furthermore advantages in

this small satellite approach are due to their lesser development times and smaller sizes

suitable for multiple CubeSat launches on a single launcher into their respective desig-

nated orbits which is cost effective for Universities. These architectures not only promise

the combination of both temporal resolution of GEO missions with spatial resolution

of LEO missions, but also breaks the trade off in conventional Earth observation satel-

lite designs. A thorough implementation of the firmware of vision payload of the Nano

Satellite VELOX-I for the Earth observation and remote sensing purposes, in the near

future with high scientific payoff is presented here. In course of implementation various

case studies have been learned, current date CCSDS recommendations for image com-

pression have been considered. Effect of key components such as power, memory and

data transmission capability for small satellite remote sensing applications are discussed.

Implementation of the core firmware of the payload and serial interface development in

Java on Linux platform of Payload Processing Unit shall be able to inherit into the

future VELOX missions.
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Chapter 1

Introduction

Nano Satellite class of satellites is a proven cost effective approach for Earth observa-

tion missions with limitations of spatial resolution. 3U CubeSat which falls under this

class allow user to develop the various applications under the common bus architecture

based on COTS components. Generally, imaging systems are developed as an individual

sub system apart from the bus architecture owing to essential constraints like mass,

power, size, etc., in case of special segment of the Nano Satellite class, 3U CubeSat.

The main purpose of development of the vision payload is to capture the Earth im-

ages at an altitude 650 - 700 km, Sun synchronous low earth orbit (LEO) for remote

sensing application. Vision payload is developed as an individual subsystem, and shall

be integrated on to the Nano Satellite VELOX-I. Earth remote sensing helps in study-

ing various phenomena related to Earth surface. The range of applications varies from

agriculture, geology, coast and marine studies to urban development and environmental

affairs. Remote sensing satellites are equipped with payload sensors that capture images

and aggregate data of Earth surface. The gathered information is then transmitted for

further processing and analysis. Satellite mission is one of the main factors that deter-

mines satellite overall dimensions, weight, and cost.[5] On the other hand, this limits

the final specifications to those of the components available in market. For instance,

the final Ground Sample Distance (GSD) is limited by the available commercial camera

systems, which usually do not meet dimensions and resolution requirements simultane-

ously. A better GSD can be achieved if a customized optical design is adopted besides

choosing off the shelf.

1
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The payload comprises of three main modules:

• CMOS Sensor

• FPGA data acquisition board.

• Payload Processing Unit

In order to achieve the necessary (primary) objective of the payload i.e., to capture the

Earth images from such an altitude and the harsh environment, makes the payload to

consider the following absolute requirements.

• Radiation Environment:

XTo overcome the difficulty, a radiation tolerant CMOS sensor have been designed

and developed in house at Satellite Research Center, NTU.

• Optical Lens:

XIn order to satisfy the requirements of altitude and the ground sampling distance

of ∼ 70 meter, need for the design of optics is inevitable and manufacturing process

is outsourced.

1.1 Problem Statement

Most CubeSat employ a high resolution camera on-board and it is inevitable that the

images captured by the camera are larger than what can be sent to the ground station

in a single pass over the ground station. The purpose of Nano Satellite (VELOX-I) is

to capture images of the Earth and relay these images to the ground station with the

limited resources at hand. The focus of this research is to develop the firmware for the

full functionality of the vision payload and implement necessary compression algorithms,

and a detailed study on how these tasks are achieved without affecting the image quality

as well as a suitable design and firmware implementation is presented.

1.2 Research Objectives

The objective of this thesis is to develop the firmware for the vision payload for an Earth

observation Nano Satellite VELOX-I. In order to achieve the main objective, a number

of sub-objectives are identified and executed.
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• Image Acquisition:

XInterfacing to the CMOS sensor to the Payload Processor Unit(PPU).

XControls of CMOS sensor parameters (exposure time, sensitivity, etc.,).

• Image Processing techniques:

XCompress images for better storage and transfer capability.

XEffective compression of the raw files.

XCreation of thumbnail of images captured.

• Serial Interface development:

XDevelopment of serial interface of the payload.

XDevelopment of Image/File handling protocol for tasks like trigger, file transfer,

deletion, etc.,

1.3 Structure of the Thesis

There are seven chapters presented in this thesis and their content are elucidated here

as follows.

Chapter 1 provides the introduction of the project, throws light on the problem state-

ment, motivation behind the research work and justification of its relevance by means.

Chapter 2 contains the background information of the Nano Satellite mission, payload

architecture, tools used and software design methodology adopted during firmware de-

velopment.

Chapter 3 explains the literature survey on issues that are relevant to development of

the payload. The survey starts with a discussion on digital representation of an image,

factors effecting the image acquisition, theory behind image compression and various

techniques available are presented. And first part of the thesis to investigate into viable

compression techniques based on the computational complexity and payload hardware

are studied, compression algorithms were implemented in MATLAB model and results

are presented.

Chapter 4 contains the second part of the thesis’ main contribution. This chapter starts

with the discussion of some key aspects of the payload development such as configu-

ration of the CMOS Sensor via FPGA, various control parameters and artifacts of the

sensor design and overcoming of those by means of different calibration techniques are

presented. File handling structure, various storage formats and exporting of these are

explained with details.

Chapter 5 describes the payload interface development, introduction to the serial UART

interface and various parameters involved in configuring the serial port for the payload

are illustrated with necessary example codes.
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Chapter 6 presents payload handling protocol developed with the help of the control

flow diagram, various functionality of payload are described under respective sections.

Chapter 7 concludes with the research outcome of the thesis, and suggests some possible

research work that can be done in the future to extend the outcome of present research.

1.4 Work Methodology

In order to achieve the expected results in prescribed definitive time line, the work plan

is divided into three phases, and is also represented by Figure [ 1.1]

1. Literature Review

In this phase, numerous similar implementations and their strategies in course of

development are studied and primary modules were implemented in MATLAB.

2. Design Phase

In this phase, a detailed software architecture which is backbone for the payload

firmware development is proposed.

3. Implementation, Integration & Test Phase

In this phase, the proposed software architecture in the earlier phase is imple-

mented module by module, after implementation of the complete desired func-

tionality software codes are integrated and progressively tested in order to avoid

system malfunctioning.
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Background

A new class of Pico satellite, the CubeSat project began as a collaborative effort between

Prof. Jordi Puig Suari at California Polytechnic State University (Cal Poly), San Luis

Obispo, and Prof. Bob Twiggs at Stanford university in 1999. The main purpose of the

project is to provide a standard for design of pico satellites to reduce cost and devel-

opment time, increase accessibility to space, and sustain frequent launches. A standard

one unit (1U) CubeSat occupies volume of 10x10x10 cm3 and weights no more than 1.3

kg. CubeSat, made from off the shelf components, provide a low cost platform and de-

velopment time that is relatively small compared to conventional larger size satellites.[6]

Primary responsibility of the developers is to ensure the safety and success of CubeSat

missions hence they developed guidelines and the one who wants to develop the Cube-

Sat must follow these guidelines. For all the above reasons companies, governmental

organizations, and universities expressed a growing interest in CubeSat as a low cost

mean of doing scientific space research missions and for testing and space qualification

of next generation of small payloads in space. Moreover, a CubeSat provides very useful

educating tools that train students and space engineers using real world satellite expe-

rience. 3U CubeSat is similar to 1U cube but has the dimensions of 30x10x10 cm3 and

weight not exceeding more than 4.5 kg.[5]

2.1 Nano Satellite Mission VELOX-I

VELOX-I is the first Singapore Nano Satellite to operate in LEO and is completely built

by students of Nanyang Technological University. Students participate in the projects

with the support from research students and staff. VELOX-I is planned to be launched

into the Low Earth Orbit in the second quarter of 2013. Attitude determination and

control system, power supply, and vision payload are developed in-house. The on-board

6
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data handling and communication boards are commercially off-the-shelf hardware. The

scientific quantum payload will be developed by the Center for Quantum Technologies.

Ground Station for VHF/UHF bands has been built by NTU undergraduate students

and is operational since May 2010. [7]

Figure 2.1: Artistic impression of the Nano Satellite VELOX - I

Figure 2.2: Structure with Vision Payload

2.1.1 Mission Objectives

• To launch the first Singapore’s Nano Satellite VELOX-I. The satellite will be

designed, built, and operated by students from different schools in College of En-

gineering, NTU.

• To place and operate the satellite in a sun-synchronous LEO.

• To acquire images of Earth and transmit them back to ground station.

A narrow angle camera with tele-optics is used to provide high-resolution images

of Earth from LEO.

• To carry out experiments relevant to technology demonstration.

Payloads being studied: a vision system, a dual-FOV sun sensor and a quantum

physics payload.
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2.1.2 Technical Facts

Table 2.1: Facts: Nano Satellite VELOX -I

Dimensions 100 x 100 x 240 mm (N-Sat)

Mass 3500 g (N-Sat)

Expected lifetime 24 months

Orbit Sun-synchronous LEO, altitude 650 - 700 km

ADCS N-Sat: 3-axis stabilized and controlled: 1 GPS receiver,
2 sun sensors, 2 IMUs, 3 magnetic torquers, 3 reaction wheels;

OBDH Unit 1 OBC with Silicon Lab’s C8051F120 MCU
running data handling software on Salvo ROTS;
2GB SD card for data storage; UART and I2C data interfaces

Communications Low gain antennas for Omni directional
coverage 1 dipole for UHF, 1 dipole for VHF;
UHF/VHF transceiver with AFSK modulation; 9600 bps
down-link / 1200 bps up-link, 1200 bps experimental
inter-satellite link

Power subsystem N-Sat: 4 deployable and 4 body-mounted 3J GaAs panels
for 19.2 W BOL power; 6.0 - 8.4 V unregulated,
latch-protected 5 V and 3.3 V bus;
3600 mAh Li-ion batteries

Structure Hard anodized Al. 7075 chassis with
stainless steel load bearing parts;

Thermal control Passive: Multi-Layer Insulation (MLI)
and radiators (N-Sat)
N-Sat: Vision system with extended optics
for ground sampling distance of 20 m

Ground segment Ground station: NTU campus UHF/VHF high gain cross-yagi
antennas for TT&C and down-link
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Figure 2.3: Conceptual Payload Architecture

Figure 2.4: Block Diagram of the Payload with interfaces

2.2 Payload Architecture

The arrangement of the three modules of the Payload are as shown in the virtual image

Figure 2.3 and its block diagram in the Figure {fig:block. The interface between these

modules can be seen in the Figure 2.4. Payload can be communicated with other devices

with Serial interface (UART) developed and CMOS image sensor configuration can be

loaded and accessed by the Xilinx FPGA module with USB interface.
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2.2.1 Opal Kelly XEM3005

The Opal Kelly XEM3005-1200M32P is a compact 1,200,000-gate Xilinx Spartan-3E

FPGA board with 32MB RAM and USB 2.0 interface enabling an almost instant re-

programming of the FPGA makes us to choose this module for data acquisition from

the CMOS image sensor. It’s chosen for our project for being low cost. It is designed

without the power supply and that makes it better suits the end user design which is

required in our case. This device makes the Software / Hardware co-processing in our

case realizable.[8]

Figure 2.5: Opal Kelly XEM3005 architecture

2.2.2 Radiation Hardened CMOS image sensor

The Radiation tolerant image sensor chip layout for space application is as shown in

the Fig ??. The major design concerns lie within the design of the photo diode and

the floating diffusion node against radiation-induced dark current. In order to adapt

the sensor to the dramatic temperature change in space environment, a programmable

column biasing current circuit was considered in 4T pixel architecture of the sensor

design [9]

2.2.3 Pluggable Processor Module (PPM)

The Cool SpaceRunner-LX800 is a fully self-contained, rugged single board computer.

Its X86-compatible AMD Geode LX800 processor comes with graphics, 256MB RAM

and 2 GB solid state disk without any moving parts is as shown in the Fig 2.7. Either

VGA or LVDS displays are directly supported. All standard peripherals are already inte-

grated on board. There is a LAN interface, four USB host ports, and two serial interfaces,

user configurable to handle either RS232 or RS485 levels.The Cool SpaceRunner-LX800
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Figure 2.6: Radiation Tolerant CMOS image sensor

features status indication LED’s and a programmable watchdog. The computer can be

expanded with standard peripheral cards for the PC/104-Plus bus. This Single board

fan less computer is connected to the CMOS sensor interface board with PC/014-plus.

one of the USB port is connected to the XEM3005 FPGA module for CMOS sensor data

acquisition and operation.[10]

Power consumption is a mere 5 watts and doesn’t require cooling. The board is spec-

ified for the extended ambient temperature range of [-40 ◦ C, +85 ◦ C]. The Cool

SpaceRunner-LX800 uses the LiPPERT Enhanced Management Technology (LEMT).

It handles the boards housekeeping tasks like power sequencing and watchdog, and pro-

vides useful utility functions for the application. Among them is a secure, write and clear

protected Flash area that can be used for security keys. LEMT also enables remote con-

dition monitoring. With its all the above features, the Cool SpaceRunner-LX800 is the

best choice for our purpose that need to operate in adverse environments. [10]
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Figure 2.7: Internal Block diagram of SBC
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Table 2.2: Characteristics of the Optical lens

Focal length 3.5mm - 10.5mm

Maximum Aperture Ratio 1:1.0

Maximum Image Format 4.8mm x 3.6mm (diameter 6 mm)

Operation Range Iris F1.0 - F16C

Flange Back Length 12.5mm

Focus 0.3m - Inf

Zoom 3.5mm - 10.5mm

Object dimension at minimum object distance 3.5mm 52cm x 34.1cm
10.5mm 14.5cm x 10.8cm

2.3 Optical System

For Ground test purposes, we have chosen Computar T3Z3510CS-IR which has the

characteristics that are tabled in 2.2.

Figure 2.8: Test optics of the Payload

The lens system operates in both visible and IR regions of the light. The lens weights

63 grams. The diameter is 41.6mm, the height is 48.8mm. The lens is attached to the

PCB via CS-mount, and operates in temperatures between −20 ◦C to 50 ◦C.

2.4 Operating System - Linux

Linux is a free and open source computer operating systems distributed under open

source software license GNU General Public License. Linux was developed by Linus

Torvalds initially targeting Intel x86 based computer architectures, later ported to more

platforms than any other operating system. Linux due to its portability became pre-

dominant in embedded system developers. Linux kernel can be ported to both memory

and memory less embedded system devices. Many Linux distributions were available

til date, for our project purpose we have considered more popular and yet lite Debian

kernel for payload application development.
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Figure 2.9: Linux Internal Architecture

2.4.1 Internal Architecture

The Linux operating system has unique architecture consists of kernel and shell as its

major components.

1. Shell: It is part of the operating system (OS), which serves as an intermediate

between the user and the OS.

2. Kernel: This serves as a direct interface between the hardware and the OS. Per-

forms operations such as creation, deletion of the processes, scheduling of the pro-

cess management. Provides the mechanisms for synchronization of the processes

and inter process communication.

2.4.2 System Architecture

The decomposition of the Linux Operating System can be as shown in the Figure 2.10

In Linux, everything is considered as a file other than the processes itself.

• User Applications: The user applications are developed in this layer.

• Operating System Services: These services are the part of the OS which also

provide interface to the Kernel.
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Figure 2.10: Linux System Architecture

• Linux Kernel: The Linux Kernel abstracts and mediates access to the hardware

resources including the processor.

• Hardware Controllers: This sub-system consists of all the physical devices in the

Linux installation, devices such as Memory, Processor, USB drives and network

infrastructure.

2.5 Programming Languages & Environment

Application framework of the Payload is developed in Java, while the serial interface

developed in C/C++. In Course of sensor calibration, GUI has been developed in Java.

MATLAB is used for the validation of the Image Processing (compression) algorithms

as a proof of concept before implementation in the real time framework and also to

read raw image. Open source integrated development environment Eclipse is chosen for

firmware development on Linux due to its huge support from the developer’s community

and cross-platform compatibility.

2.6 Software Design Methodology

In order to achieve success in success in large software packages, some kind of strategy

or design methodology is mandatory. Essential steps of software development regardless

of size and complexity of the project are analysis and coding and is as shown in Figure

2.11. More Complex projects needed sophisticated approach with sections such as re-

quirements capture in the preceding stage of analysis and followed by program design

and testing in the manner shown in 2.12. From the lessons learned, the implementation

of the methodology in Figure 2.12 may invite unnecessary risks an failure. Hence, an

iterative interaction between the development phases is appreciable and followed in this

project.
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Figure 2.11: Implementation steps for small software packages

Figure 2.12: Implementation steps for large software packages

Figure 2.13: Iterative interaction between software design stages
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Literature Review

3.1 Digital representation of the images

An image may be defined as a two-dimensional function, f (x,y), where x and y are

spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x,y) is

called intensity or grey scale of the image at that point. When x,y and the intensity

values of f are all finite, discrete quantities, we call the image as digital image.[11]

A digital image f[m,n] described in a two-dimensional discrete space is derived from an

analog image f (x,y) in a continuous space through a sampling process that is termed

as digitization. A two-dimensional continuous image f (x,y) as shown in Fig 3.1 is

divided into N rows and M columns. And the intersection of the row and the column

is termed as pixel. In most cases, which we might consider to be the physical signal

that impinges on the face of a two-dimensional sensor, is actually a function of many

variables including depth (z), color (λ) and time (t). The value assigned to every pixel

is the average brightness in the pixel rounded to the nearest integer value. The process

of representing the amplitude of the two-dimensional signal at a given coordinate as an

integer value with L different gray levels is usually referred to as quantization [1].

3.1.1 Integrated CMOS image Sensor

Image sensors are manufactured in wafer foundries or fabs, these tiny circuits and devices

are etched onto silicon chips. The biggest problem with CCD is that there isn’t enough

economy of scale. They are created in foundries using specialized and expensive processes

that can only be used to make CCD. Today CMOS is the most common method for

manufacturing processors, image sensors and memories due to their high volume process

and low cost feature. There are two basic kind of CMOS image sensors available today.

17
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Figure 3.1: Digital representation of an image [1]

While these image sensors are inexpensive, they suffer from the Fixed Point Noise (FPN)

that resulted from each picture element having its own amplifier. Due to the unmatched

offset and gain characteristics between each amplifiers, they shall impose same noise

pattern on every image.

• Passive Pixel Sensors (PPS) were the first image-sensor devices used in the

1960s. In passive-pixel CMOS sensors, a photo site converts photons into an

electrical charge. This charge is then carried off the sensor and amplified. These

sensors are small and just large enough for the photo sites and their connections.

The problem with these sensors is noise that appears as a background pattern in

the image. To cancel out this noise, sensors often use additional processing steps.

• Active Pixel Sensor (APS) reduce the noise associated with passive-pixel sen-

sors. Circuitry at each pixel determines what its noise level is and cancels it out.

It is this active circuitry that gives the active-pixel device its name. The perfor-

mance of this technology is comparable to many charge-coupled devices (CCDs)

and also allows for a larger image array and higher resolution.[9]

3.1.2 Imager Facts

CMOS image sensors can incorporate other circuits on the same chip, eliminating the

many separate chips required for a CCD. This also allows additional on-chip features to

be added at little extra cost. These features include anti-jitters (image stabilization) and

image compression. Not only does this make the camera smaller, lighter, and cheaper;

it also requires less power so batteries last longer. It is technically feasible but not

economic to use the CCD manufacturing process to integrate other camera functions,
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such as the clock drivers, timing logic, and signal processing on the same chip as the

photo sites. These are normally put on separate chips so CCD cameras contain several

chips, often as many as 8, and not fewer than 3.CMOS image sensors can switch modes

on the fly between still photography and video. While CMOS sensors excel in the capture

of outdoor pictures on sunny days, they suffer in low light conditions. Their sensitivity

to light is decreased because part of each photo site is covered with circuitry that filters

out noise and performs other functions. The percentage of a pixel devoted to collecting

light is called the pixel’s fill factor. CCD’s have a 100% fill factor but CMOS cameras

have much less. The lower the fill factor, the less sensitive the sensor is and the longer

exposure times must be. Too low a fill factor makes indoor photography without a flash

virtually impossible. To compensate for lower fill-factors, micro-lenses can be added to

each pixel to gather light from the insensitive portions of the pixel and focus it down

to the photo site. In addition, the circuitry can be reduced so it doesn’t cover as large

an area. The quality of an image depends on the number of bits to represent an image,

more the number of bits more sharper the image. The radiation tolerant CMOS image

sensor developed in house at VIRTUS IC Design Center, NTU is of 12 bit.[9] [12]

3.1.3 Fill factor

Fill factor represents to the percentage of a photo site that is sensitive to light. Higher

the fill factor, higher sensitive to light and thus represents the good image sensor. In

the Fig 3.2, the photo detector represents the photo site that is sensitive to light and

the rest is the sensor circuitry.[9]

Figure 3.2: Fill factor of the Pixel
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3.1.4 Noise

Noise may be defined as an unwanted electrical signal that interferes with the image

being read and transferred by the image sensor. There are two types of noises generally

associated with the CMOS image sensors.

1. Read Noise: This noise is more generic random noise which is generated by the

noise characteristics of the associated electronics. This noise is also known as

temporal noise.

2. Fixed Pattern Noise: is a distortion that appears in an image due to variations of

device parameters across the sensor.

3.1.4.1 Fixed Pattern Noise

FPN effects the performance and quality of the image sensors, and usually refers to

non-temporal spatial noise which is due to device mismatch in pixels and color filters,

between the multiple gain amplifiers, ADC etc., FPN can be characterized as coherent

or non-coherent.

The most usual and hard noise in image sensors is associated with detectable row-wise

or column-wise artifacts which are due to mismatches in the multiple signal paths, and

un-correlated, row-wise operations in the image sensor. This type of noise is coherent

in nature and in general can be eliminated by reference frame subtraction.

Apart from the type of FPN discussed in earlier paragraph, most frequent FPN are dark

current FPN and FPN due to gain mismatches which are more difficult to remove as

the lead times to eliminate them are higher and dependent on the hardware.

3.1.5 Aspect Ratio

The ratio between the height and width of the sensor, derived from division of vertical

number of pixels(height) by horizontal number of pixels (width) leaving it in the frac-

tional format.

Here in our case, 786 x 512 CMOS sensor would give an aspect ratio of 1.535 [9]

3.2 Storage Capacity

The imaging processing hardware of 3U CubeSat shall process the raw input image from

the payload through necessary steps such as filtering, compression and is stored. The
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output images, according to our mission requirements is store in memory of the SBC

which is in turn transferred to OBDH via serial interface and transmitted back to Earth.

This storage capability is not useful if the data rates are not increased accordingly. In

fact, it is trivial to show that there is a linear relationship between storage capability

and data rate if the constraint is enforced to have enough storage capability to store all

the images that can be downloaded in one access to the ground station:

Storage(MB) = 15/2δT (
min

access
)Rb(Mbps) (3.1)

where Storage(MB) is the storage capability required to be able to empty the memory

during one access to the ground station in MB; δT ( min
access) is the average duration of

an access to the ground station in minutes, Rb(Mbps) is the down-link data rate in

Mbps, and the factor 15
2 = 60

8 comes from transforming bits into bytes and minutes into

seconds. For Rb = 0.25 Mbps, and δT=5( min
access), a storage capability of Storage(MB)=

9.3 MB is required, which is much lower than what can be achieved in CubeSat. It

follows that the real limiting factor is data rates, and not data storage. Furthermore,

we note that payloads that would have high requirements in terms of data storage such

as hyper-spectral image sensors are probably also incompatible with current CubeSat

technology because of other limitations, namely available power and space [13].

3.3 Image Compression

In general digital images need huge amount of space for their storage and require larger

bandwidths for transmission. The goal of the image compression is to reduce the amount

of data needed to represent the digital image. This in turn reduces amount of disk

space needed to store the image (in bytes) and improvises the disk capability to store

larger amounts of data. Further more it also lowers the bandwidth requirements in

transmission channels. 9/7 Wavelet filter based compression technique is chosen as

it is less computationally complex and targeted at Low powered devices (aka Small

Satellites). Ultimate choice was made due to the Nano Satellite mission constraints

(image quality, storage memory, bandwidth and power).[11]

3.3.1 Types of redundancies

Data compression aims to reduce the amount the data required to represent a given

quantity of information while preserving as much information as possible. Here, in the

definition data and information are not the same; data are the means by which the in-

formation is conveyed. The same information can be represented by various amounts of
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data which contain repetitive and irrelevant information are said to contain redundant

data.

If we let a and a’ denote the number of bits in two representations of the same infor-

mation, the relative data redundancy R of the representation with a bits is

R = 1− 1

C
(3.2)

where is C, is commonly called the compression ratio and is defined by

C =
a

a′
(3.3)

Image compression and coding techniques explore three types of redundancies : Coding

redundancy, Inter-pixel (spatial/temporal) redundancy and Psycho-visual redundancy.

3.3.1.1 Coding Redundancy

A code is a system of symbols (i.e.,bytes, bits) that represents information. Each piece

of information is represented by a set of code symbols. The gray level histogram of

an image can be used in construction of codes to reduce the data used to represent it.

Given the normalized histogram of a gray level image where

pr(rk) =
nk
n

(3.4)

Where k = 0,1,2,..., L - 1, rk is the pixel values defined in the interval [0,1] and Pr(k) is

the probability of the occurrence of rk, L is the number of gray levels, nk is the number

of times that kth gray level appears and n is the total number of pixels. ??book)

Average number of bits used to represent each pixel is given by

Lavg =
L−1∑
k=0

l(rk)pr(rk) (3.5)

3.3.1.2 Inter pixel Redundancy

The pixel values of an image are often correlated, there can be large spatial regions in

which the pixel values are clustered around the given intensity or color. Because of these

pixels when we try to encode the intensity of each pixel, the information is unnecessar-

ily replicated in the representation of the neighboring pixels. The type of redundancy

that take form for images is spatial redundancy and for video it is temporal(or inter-

frame)redundancy.Mapping technique is used in removal of inter-pixel redundancy and is
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a reversible process. Original image can be reconstructed from the transformed pixel val-

ues.Compression techniques such as CAC,(1-D, 2-D)Run Length Encoding techniques,

DPCM has inherent behavior of removal of inter-pixel redundancy.[11]

3.3.1.3 Psycho-visual Redundancy

Most 2-D intensity arrays contain information that is ignored by the human visual

system. So, compression techniques should aim in reducing the data that is psycho-

visually redundant.The elimination of this data is possible because the information itself

is not essential for visual processing but it leads to the omission of data with quantitative

information and is commonly referred to as quantization. This is an irreversible process

and leads to loss of image quality when reconstructed. Many compression techniques

exploit this type of redundancy. For instance, JPEG uses DCT of image pixel followed

by quantization of their coefficients. [11]

3.4 Measuring Image Information

The information in an image can be modeled as a probabilistic process, where we first

develop a statistical model of the image generation process. The information content

(entropy) can be estimated based on this model. The information per source (symbol

or pixel), which is also referred as entropy and is calculated by:

H = −
J∑

j=1

P (aj)logP (aj) (3.6)

Where ajrepresent the source symbols, P (aj) refers to the the source symbol / pixel

probability. J refers to the number of symbols or different pixel values.

3.5 Image Compression Model

An image compression system typically composed of two distinct functional compo-

nents: an encoder and a decoder. Whereas the encoder performs the compression, and

the decoder performs the complementary operation to the earlier know as decompres-

sion. Both operations can be performed using software/hardware or the combination

of both firmware and hardware. For our mission criteria, we deploy the compression

algorithms in software.

Input image f(x,...) is fed into the encoder, which creates the compressed representation
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of the input, and when the compressed representation is presented to decoder,a recon-

structed output of the input image f ’ (x,..) is generated. If the compression system

used is loss less, the reconstructed image is an exact replica of the original image.

Figure 3.3: Image Compression Model

The encoding compression process is elucidated here, the encoder in Fig 3.3 is designed

to remove the redundancies through a series of operations.

• Mapper: Transforms the f(x,..) into a format that reduces both spatial and

temporal redundancy. In general, mapping yields the first step of encoding process.

The mapping of an image into a set of less correlated transform coefficients.

• Quantizer: It reduces the accuracy of the mapper’s output in accordance to the

pre-established fidelity criteria. As the process is irreversible, it is omitted in

application where loss less compression are employed.

• Symbol Coder: It generates the fixed-length code to represent the output of the

quantizer and maps the output in accordance with the code.

The decoder in Fig 3.3 contains only two components namely, a symbol encoder

and an inverse mapper. They perform the exact inverse operation of the com-

pression system. As the quantization results in the irreversible information loss,

we don’t include in the reconstruction process and is not included in the decoder

model.
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3.6 Approach types

Figure 3.4: Various compression techniques [2]

Fig 3.4 represents the classification of compression techniques of audio, video, and

image data. Most of the methods are waveform based. For image compression,

the two most widely used techniques are lossy and loss less compression tech-

niques. Hence the subsequent sub-sections discuss lossy and loss less compression

techniques
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Table 3.1: Loss less compression Vs Lossy compression

Loss less Compression Lossy Compression

Compression involves in exact replica Compression involves in approximate
of the original data. reconstruction when decompressed the

original data. Produces imperceptible losses
called as visually loss less

No Loss of quantitative information Loss of quantitative information

Compression ratios are typically low, Higher compression ratios can be achievable,
hence require higher bit rates for transmission requires low bit for transmission, but introduce

artifacts.

Examples of usage: Medical data archiving, Mostly used in music and natural images,
text documents archiving where single errors used in cases where the errors are tolerable.
can damage the content a lot.

3.6.1 Error Metrics for Lossy Compression

For an original image A (x,y), the decompressed is given by A’ (x,y) where M, N

are the dimensions of the images respectively. Mainly two of the error metrics used

to compare the various compression techniques are Mean Square Error (MSE) and

the Mean Square Signal to Noise Ratio (SNRms). MSE is the cumulative square

error between the compressed and the original image and is given by

MSE = 1
MN

M∑
x=1

N∑
y=1

[A(x, y)−A′(x, y)]2

(SNRms) is a measure of the signal to the noise. For our case, we consider signal

as the original image and noise to the error in reconstruction of the image and is

given by

(SNRms) =

M∑
x=1

N∑
y=1

A′(x, y)2

M∑
x=1

N∑
y=1

[A(x, y)−A′(x, y)]2
(3.7)

A compression scheme having the lower values of MSE and higher SNR is consid-

ered to be the better one.
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According to CCSDS recommended standards, data compression algorithm applied

to 2D digital spatial image data from payload instruments.

3.6.2 Discrete Wavelet Transform based compression

The current recommended standard makes use of a three-level, two dimensional

(2D), separable Discrete Wavelet Transform (DWT) with nine and seven taps for

low- and high-pass filters, respectively. Such a transform is produced by repeated

application of a one-dimensional (1D) DWT. Two specific 1D wavelets are specified

within this standard: [4]

1. The 9/7 bi orthogonal DWT, referred to as ‘9/7 Float DWT’

2. The ‘9/7 Integer DWT’ which is non-linear, integer approximation to the

earlier.

While the Float DWT generally exhibits superior compression efficiency in the

lossy domain, only the Integer DWT supports strictly loss less compression. Both

the compression schemes are assumed to use R-bit resolution, [R ≤ 16].

The values output from the 3-level 2D DWT are converted to appropriate integer

values before applying the Bit Plane Encoder. Each integer is represented using a

binary word consisting of a single sign bit along with several magnitude bits. The

maximum word size necessary to store each such integer depends on R. Whereas in

case of, the computed wavelet domain values are rounded to the respective nearest

integers before applying the BPE. A corresponding word length of R+5 bits is

adequate to store these integer values. In the case of the Integer DWT,the com-

puted wavelet domain values are multiplied by integer weights that are uniform

in each sub band. A corresponding word length of R+4 bits is adequate to store

such integers before the weighting factors are applied. [4]

In our Project, we consider the 9/7 Float transform further for compression of the

satellite images.
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3.6.2.1 9/7 Float Transform

The 9/7 Float DWT uses two sets of analysis filter coefficients (’taps’), the numer-

ical values of the filter taps are given in the table 3.2 along with their representa-

tions.

Table 3.2: Filter Coefficients for 9/7 Float DWT [4]

i Lowpass Filter hi Highpass Filter gi
0 0.852698679009 -0.788485616406

±1 0.377402855613 0.418092273222

±2 0.110624404418 0.040689417609

±3 0.023849465020 0.064538882629

4 0.037828455507 -

3.6.2.2 Inverse 9/7 Float Transform

The inverse 9/7 Float DWT uses two sets of synthesis filter coefficients,the numer-

ical values of the filter taps are given in the table 3.2 along with their representa-

tions.

Table 3.3: Filter Coefficients for 9/7 Float DWT [4]

i Lowpass Filter qi Highpass Filter pi
0 0.788485616406 0.852698679009

±1 0.418092273222 0.377402855613

±2 0.040689417609 0.110624404418

±3 0.064538882629 0.023849465020

4 - 0.037828455507
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3.6.3 Single-Level Two-Dimensional DWT

Image de-correlation is accomplished using a two-dimensional DWT,by iteration

of 1D DWT. Viewing the image as a data matrix consisting of rows and columns

of signal vectors, a single-level 2D DWT shall be performed on the image in the

following two steps in the following order:

1. 1D DWT shall be performed on each image row, producing a horizontally

lowpass and a horizontally high-pass filtered intermediate data array, each

half as wide as the original image array, as illustrated in Fig 3.5 (b).

2. the 1-d DWT shall be applied to each column of both intermediate data

arrays to produce four sub bands as shown in Fig 3.5 (c).

Each of the four sub band data arrays obtained is half as wide and half as tall as

the original image array. In illustrations, these sub bands are often shown arranged

as one array which has the same size as the original image array, refer Fig 3.5 (c).

Starting at the upper left and proceeding clockwise in Fig 3.5 (c), the four sub

bands are referred to as LL, HL, HH, LH. [4]

Figure 3.5: 1D DWT
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3.6.4 Multi-Level Two-Dimensional DWT

In order to increase the effectiveness of the compression, we can apply further

levels if DWT decomposition and eliminate the correlation remaining in the LL

sub-bands after DWT decomposition. According to CCSDS, the recommended

levels of decomposition is three. This type of decomposition can be explained by

the Fig 3.6, the LL of the previous level of decomposition is used for further

decomposition. Each additional level of decomposition thus increases the number

of sub bands by three but leaves unchanged the total number of DWT coefficients

used to represent the image data. In general,n levels of 2D DWT decomposition,

the total number of sub bands is therefore 3n+1. [4]

Figure 3.6: 2D three level DWT



Chapter 3. Literature Review 31

3.6.5 Inverse Multi-Level Two-Dimensional DWT

The inversion of multi-level DWT is carried out in the following steps sequentially.[4]

1. The four sub bands of highest level, LL3, LH3, HL3, HH3, shall be inverted

using an inverse single-level 2D DWT to yield the single sub band LL2, which

then replaces the higher-level sub bands in the transform data matrix.

2. The four sub bands LL2, LH2, HL2, HH2 shall be inverted to yield the

single sub band LL1, which again replaces the higher-level sub bands in the

transform data matrix.

3. A final single-level 2-d inverse DWT shall be applied to sub bands LL1, LH1,

HL1,HH1 to reproduce the original image.

3.6.6 Results of compression

Various images have been tested with the implementation of the compression al-

gorithm and best results are documented in the table 3.4 here.

Table 3.4: Results of the compression

Parameter Original Image Compressed Image

Row Size 512 512

Column Size 768 768

Compression ratio for 1-Level(%) 1 27.0805

Compression ratio for 3-Level(%) 1 50.1201
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Figure 3.7: Original test image
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Figure 3.8: Result one level 2D DWT compared with Original Image
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Figure 3.9: Result two Level 2D DWT compared with Original Image
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Figure 3.10: Result three level 2D DWT compared with Original Image



Chapter 4

Firmware Development

4.1 System Configuration

The Vision Payload of Nano Satellite VELOX - I, comprises of a radiation hard-

ened CMOS image sensor which works in array mode. Pixel arrangement in this

mode size are given in the table 4.1. In array scan mode, pixels are arranged in

768 x 512 pattern can be seen in the Figure below 4.1

Parameter Type

Operational Mode Array Mode

Pixel Size 6.5 µm x 6.5 µm

Pixel Array 768 x 512

Table 4.1: Operational Mode

The image captured using the above sensor depends on the different parameters

slated in the table 4.2 given below.

Figure 4.1: Image Sensor Board

36
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Quantity Description

Exposure time Time for which light is exposed to the pixels.
Exposure times are directly proportional to pixel
output.

Readout time Time in which output is read from all the pixels.

Gain The amplification factor for the voltage perceived
before processing.

Vref Vref values at ADC conversion phase, right
balance between the values avoids image extreme
darkening / brightening of the image

Table 4.2: Sensor Parameters

In order to capture the image from the Payload, two main arguments are to be

passed via serial interface ie., they are the slot ID to which the captured files are

stored in the SSD memory and the mode of operation of the payload. The first

and foremost argument is slot ID. slot ID 254 and 255 are not taken as arguments,

these are reserved for specific purposes. One for the random image creation to

test the payload functionality and the later to the standard image stored at the

time of integration & assembly. Second most important parameter is the mode

of operation of the Payload. The mode of operation depends on whether Vref is

zero or not. For the true condition, payload is auto calibrated otherwise image is

captured. After successful completion of either conditions, function returns to the

main and waits for the serial command.

4.2 Programming Essentials

In order to program and execute the Payload firmware, it is to be checked whether

the shared libraries are copied into proper location usr/lib. Device acceptance

rules for FPGA module should be reloaded with commands as in Appendix B.

The Linux installation requires the addition of one file to the directory:

60-opalkelly.rules -----> /etc/udev/rules.d/

This file includes a generic udev rule to set the permissions on all attached Opal

Kelly USB devices to allow user access. Once this file is in place, you will need to

reload the rules by either rebooting or using the following command:

/sbin/udevcontrol reload rules

With these files in place, the Linux device system should automatically provide

write permissions to XEM devices attached to the USB.

For usage of Java API in Linux,
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Figure 4.2: Top Level Flow diagram

libokjFrontPanel.so needs to be copied to the java.library.path.

On Debian, you can copy it to /usr/lib/jvm/jre/lib/i386

okjFrontPanel.jar should be added to your CLASSPATH. It can either be un-

compressed or referred to directly on the javac/java command lines as below.

To build and run ImageAcquisition.java:

javac -classpath okjFrontPanel.jar ImageAcquisition.java

java -classpath .:okjFrontPanel.jar ImageAcquisition e inputfile outputfile

The class diagram for the entire payload firmware is as shown in the Figure 4.3
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Figure 4.3: Class diagram for Payload Firmware
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4.3 System Reset

Performs a reset of the FPGA internals. This requires that FrontPanel support

be present in the FPGA design because the reset signal actually comes from the

FrontPanel Host Interface (application).

if (myErrorCode.equals(ErrorCode.NoError))

public static final int soft reset addr = 0x0f;

public static final int sensor ctrl addr = 0x00;

myOkFrontPanel.SetWireInValue(soft reset addr, 0x8000, 0x8000);

myOkFrontPanel.UpdateWireIns();

myOkFrontPanel.SetWireInValue(soft reset addr, 0x0000, 0x8000);

myOkFrontPanel.UpdateWireIns();

myOkFrontPanel.SetWireInValue(sensor ctrl addr,

mySensorControl.getCMOSvalue(), 0xfffe);

myOkFrontPanel.UpdateWireIns();

Wire In endpoint values are stored internally and updated when necessary by

calling (UpdateWireIns(). The values are updated on every endpoint basis by

calling this method. In addition, specific bits may be updated independent of

other bits within an endpoint by using the optional mask. This method is called

after all Wire In values have been updated using SetWireInValue(). The latter

call merely updates the values held within a data structure inside the class. This

method actually commits the changes to the XEM simultaneously so that all wires

will be updated at the same time.

4.4 Payload Initialization

The FrontPanel API provides a powerful C++ interface to Opal Kelly USB boards.

To build an application using this API, one should include the files okFront-

PanelDLL.h and okFrontPanelDLL.cpp in the project if programmed in C/C++.

These files contain stub functions that call to the DLL or Shared Libraries (in case

of Linux). In our case, as the application framework is developed in Java on Linux

Single Board Computer(SBC), we should also include shared library object files
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during run time termed as ‘libokjFrontPanel.so’ and it is also mandatory to export

their path and specify at the time of compilation. To use the library, you create

an instance of myOkFrontPanel which encapsulates communication with the USB

driver and provides access to FrontPanel endpoints. Initialization is as shown in

the Figure 4.4

Firstly, libraries are to be loaded and an instance is created for checking the system

error codes by,

System.loadLibrary("okjFrontPanel");

ErrorCode myErrorCode;

An instance of the okFrontPanel created in the application by,

okFrontPanel myOkFrontPanel

myOkFrontPanel = new okFrontPanel();

Here, myOkFrontPanel will be referred as a class whenever its sub functions are

needed to be utilized in the application.

Secondly, the computer needs to scan for the XEM model which it is about to

communicate.An empty string variable needs to be declared to store the device

serial number, which will be used to open the device. The sequence of commands

is:

System.out.println("OpenBySerial:" + myErrorCode);

System.out.println("GetDeviceCount:" + myOkFrontPanel.GetDeviceCount());

BoardModel myBoardModel = myOkFrontPanel.GetDeviceListModel(0);

System.out.println("BoardModel:" + myBoardModel.toString());

System.out.println("DeviceID:" + myOkFrontPanel.GetDeviceID());

This retrieves the serial number of the first connected device, depicted by the

integer ‘0’, and stores it in a string myErrorCode, which will be used in the

OpenBySerial function of the myErrorCode class. Besides the retrieving the serial

number of the device, additional commands are used to retrieve the number of de-

vices connected and their respective board models for the user’s reference during

application development.

BoardModel myBoardModel = myOkFrontPanel.GetDeviceListModel(0);

System.out.println("BoardModel:" + myBoardModel.toString());

The command returns an integer relating to the first scanned XEM device, which
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subsequently needs to be referred to a lookup table containing the corresponding

device models. After storing the data into the variables, appropriate combinations

of switch(case) gains access for different functions from the serial interface.

Thirdly, PLL has to be configured with the set the commands defined in the data

sheet of cypress semiconductor and the Opal Kelly user manual [8] [14].

Create an instance for PLL by,

myOkPLL22150 = new okPLL22150();

myOkPLL22150.SetReference(48.0f, false);

// default PLL settings, Vref=48Mhz, fixed for CY22150

myOkPLL22150.SetVCOParameters(400, 48);

// VCO=48*400/48=400Mhz, DO NOT CHANGE THIS.

myOkPLL22150.SetDiv2(DividerSource.DivSrc VCO, 20);

// VCO,DIV2N=20. Div2ByN =400/20 = 20MHz

myOkPLL22150.SetOutputSource(0, ClockSource.ClkSrc Div2By4);

// 400/4 = 100MHz. for SDRAM

myOkPLL22150.SetOutputEnable(0, true);

myOkPLL22150.SetOutputSource(2, ClockSource.ClkSrc Div2ByN);

// Div2ByN =400/20 = 20MHz

myOkPLL22150.SetOutputEnable(2, true); // Div2ByN for exposure clock

// disable other clock outputs

myOkPLL22150.SetDiv1(DividerSource.DivSrc VCO, 20);

// divider1: input,VCO,DIV1N=20. Div1ByN = 400/20=20MHz

myOkPLL22150.SetOutputSource(1, ClockSource.ClkSrc Div1ByN);

// Div1ByN for main clock (sensor, ADC)

myOkPLL22150.SetOutputEnable(1, true);

myOkPLL22150.SetOutputEnable(3, false);

myOkPLL22150.SetOutputEnable(4, false);

myOkPLL22150.SetOutputEnable(5, false);

return myOkFrontPanel.SetPLL22150Configuration(myOkPLL22150);

Finally, a configuration file is loaded into the FPGA. This configuration file is gen-

erated from the Xilinx ISE software, which contains the digital blocks programmed

in VHDL.

myErrorCode = myOkFrontPanel.ConfigureFPGA("get/bin/top.bit");

The above example loads the configuration file named ‘top.bit’ into the FPGA.

This also returns an integer value which indicates whether the configuration is
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Figure 4.4: Payload Initialization

successful. For a no error case, the returned value is 0.

4.5 Configurable Payload Parameters

The Payload can be configured with variable key parameters that effect the image

quality, list of such parameters are shown here. These parameters can be config-

ured via UART serial interface protocol defined in the Chapter 6 in this thesis.
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Table 4.3: Clock Values selection

Register Value Effective Frequency [MHz]

30 13.333333

31 12.903226

32 12.5

33 12.121212

34 11.764706

35 11.428572

36 11.111111

37 10.810811

38 10.526316

39 10.256411

40 10.0

These parameters are configured with arguments (min,max,value) and some typi-

cal values for test have be shown here as an example.

array exposure cnt(0, 1023, 1023),

main clk(1, 40, 25),

exposure clk(1, 40, 31),

cds gain(0, 3, 1),

probe select(0, 1, 1),

vref(0, 255, 127),

stretch lo(0, 4096, 506),

stretch hi(0, 4096, 2956);

These parameters are once initially configured in the from the serial interface

later on the configuration is stored in ‘campar.bin’ and accessed whenever the

configuration is changed depending on the region of interest that is to be captured.

4.6 Main and Exposure Clocks

The main clock provides the timer to the FPGA. Clock register value determine

the quality of the image and for this sensor they are observed in the range of 30-40.

We perform the following experiment: The lens is covered with a lid to prevent

the exposure of the CMOS sensor to light. Then, we sweep through all possible

pairs of clock values, taking 20 exposures for each tuple. We average the images

for each clock value tuple and form the distribution of gray-scale values, as well as

correlation of adjacent pixels.
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Figure 4.5: Black Standard deviation

The results are shown in Figure 4.5 and Figure 4.6. The noise distribution varies

significantly with the choice of clock values.

– To minimize the pixel noise variance, the main clock register should range

between 35 - 38.

– To maximize the correlation of the vertical adjacent pixels, the main clock

register should be set to 35, 37, or 40.

– To maximize the correlation of the horizontal adjacent pixels, the main clock

and exposure clock values can be selected from the list: (35,32), (36,38), (37,

40), (38, 39), (39, 37), ..., (40, 36).

For our final algorithm, we combines these rules of thumb. We have distilled a

list of clock value register tuples that the exposure mechanism chooses randomly

from. In the firmware (40, 39), (39, 34), (39, 32), (37, 40), (37, 39), (37, 38), (37,

32), (36, 40), (36, 39), (36, 38), (36, 37), (36, 36), (35, 32).

4.7 Exposure time

Exposure time has the great impact on image quality as they affects the contrast of

an image. Typically, an image with good contrast values has a spread distribution

of gray-scale values.

– If the exposure time is too small, the image exhibits mostly dark pixels.

– If the exposure time is too large, the image exhibits mostly white pixels

In order to obtain an image with good contrast, the exposure time needs to be

chosen just right. The exposure time does not relate to average intensity, i.e. mean

gray-scale, in a linear fashion. Our experiments suggest, that for each scene, there

is a region on the exposure time logarithmic scale, where the average intensity in-

creases linearly. Once the average intensity approaches a limit, it does not increase

significantly anymore.
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Figure 4.6: Black Standard deviation

Figure 4.7: Exposure time Vs mean gray-scale
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Figure 4.8: Mean gray-scale Vs compressed image size

Above, we mentioned that the average intensity should ideally be medium gray. In

order to back that claim, we evaluate the file sizes of the images in their compressed

format. A low file size means, little information remains in the image, when

compared to an image of the same scene with a larger file size. Our experiments

suggest that the maximum file size is not obtained at the exact medium intensity,

i.e. 50% gray-scale, but above that value namely around 60% gray-scale value.

The results of this observation can be shown in Figures 4.7 and Figure 4.8.

4.8 GUI development

Graphical User Interface is developed in order to experiment the Sensor quality and

faster configuration of key parameters. Images are captured at different instants

with varying configurable parameters. Screen shot of the GUI developed can be

seen in the Figure 4.9. The sliders in the GUI with key configurable parameters

can be adjusted to their (minima,maxima) limits programmed earlier.

4.9 Image Acquisition

During the sensor configuration, the configurable parameters stored in campar.bin

are stored in global variables. For the Readout and Exposure clocks, the respec-

tive PLL [14] will be configured immediately after the file is parsed and read.
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Figure 4.9: GUI for Vision Payload

These parameters are sent to the FPGA for configuration. These variables will

be processed in various sub functions in the program, before sending the updated

configuration parameters to the FPGA The image acquisition operation can be per-

formed anytime after the successful configuration of the sensor & FPGA. Taking

reference from the these values, sensor configuration is set and the corresponding

image with respect to the mode of operation and number of slot to store the cap-

tured image is processed. Next, the data for the Fixed Pattern Noise (FPN) is

loaded and stored in an FPN buffer myByteBuffer2, details on how the FPN values

are obtained will be discussed in the later section. The digitized raw data of the

image is then read from the SDRAM and stored in another buffer myByteBuffer

using the ReadFromBlockPipeOut() function explained earlier. Noise cancellation

of the data is performed by subtracting the FPN values from the obtained raw

data and the new image without noise is obtained. As these values are in 12 bits,

the operations have to be done on a high byte and a low byte, which requires 2

elements for both arrays. Thus bit shifting operations and address assignments

to the values have to be performed during the noise cancellation. In addition,

the obtained values after noise cancellation cannot be outside the 12 bit (0-4095)

range. These values will be set to the corresponding minimum or maximum val-

ues. The algorithm is shown below, where by a for loop is called with the number

of pixels set as a loop count (c0) limit . The retrieved values from the FPGA,

stored in myByteBuffer, is being subtracted with the myByteBuffer2. The higher

bytes of the 2 arrays are multiplied by 256, which is equivalent to an 8 bit left

shift, while the lower bytes are kept at their original value. After the computation,

the final value is stored in the variable myInt, which will be processed to set all
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values below 0 to be 0, and values above 4095 to be 4095. Finally, the individual

buff val will be separated into 2 bytes, storing them at 2 separate locations in the

sdram buffer array. Appropriate masking and bit shifting operations are used to

ensure the values are correct.

After the noise cancellation operation, the data is further mapped into 8 bits us-

ing a set of limits. Similarly, the values outside the limits will be set to either

0 or 255, while the rest will be normalized to their equivalent 8 bit value. The

algorithm shown below processes the similar buff value obtained earlier. The 8 bit

normalization limits are determined by global variables strech lo and strech hi,

whereby values exceeding the limits will be set as 0 for the lower limit and 255 for

the upper limit. The values within range will be normalized by proportion. The

arrays which contain the image information will be subsequently saved in a binary

format file.

After Successful initialization of the Payload, a raw image is stored in the my-

ByteBuffer via routine getRaw(). A condition is introduced to check whether the

image is created or not, TRUE succeeds importing of FPN buffer image to the

myByteBuffer2. New image is produced after cancellation of the Fixed Pattern

Noise. Further image is down scaled from 12 bit resolution to 8 bit and stored in

the external folder Image Container in our case for further operations on board

of the satellite like thumbnail creation, compression, filtering etc., Process can be

explained with the control flow diagram in 4.10.

4.10 Fixed Pattern Noise Cancellation

The FPN noise is the pixel noise generated when the camera is in operation,

whereby particular pixels are susceptible to giving brighter intensities above the

general background noise. The pixel layout of the camera sensor forms patters

of 16 columns of pixels, which resulted in a pattern of vertical lines appearing

on the image. After applying a reference setting (Readout Clk, Exposure Clk,

Array Mode Exposure Count) on the camera, the FPN noise is captured when the

aperture of lens is closed and saved for further processing in removal of the noise.

Vref is adjusted such that the digitized values of the pixel noise are not too high

or too low to perform noise cancellation. If the noise values are too high for noise

cancellation, an image will not be formed due to the low resultant bit values after

cancellation. If the noise values are too low, the vertical lines will still be visibly

prominent in the image. The mean of the digitized 12 bit voltage is monitored in

the GUI upon image capture. white piece of paper is used as an image reference to

determine whether the noise is still visible after noise cancellation.Fixed pixel bias
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Figure 4.10: Image Acquisition
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denotes the average intensity perceived by the pixel location when the exposure

occurs in total darkness. In total darkness, all pixels should ideally read out

identical values (since the light intensity is the same for all pixels). However, due

to irregularities in manufacturing, each pixel and in particular each column has

it’s own characteristic bias. The bias can be established by taking a great number

of images in total darkness and averaging the captured intensities. The pixel bias

does not notably change over time and is therefore called fixed bias. Moreover,

the bias is added to the pixel regardless of intensity. That means, once the pixel

bias is established, it can be subtracted from a regular exposure to significantly

improve imaging quality.

Figure 4.11: Recorded FPN from the Sensor

4.11 CMOS Sensor Calibration

4.11.1 Manual Calibrated Settings

There are 2 ways of configuring the settings manually. The first method is to

input the parameters sequentially in the program, which maybe troublesome and

prone to errors if the parameters are entered in the incorrect sequence. The second

method is to load the settings from a text file, which is more reliable as all the

parameters will be loaded in the same time and these details can be checked

on ground before sending the data to the satellite. That is how we have the

‘campar.bin’ for every best capture of the image stored. We can retrieve the

settings from the file whenever needed.
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4.11.2 Auto Calibration Settings

Auto Calibration routine can be explained with the help of control flow diagram

as shown in 4.12

Figure 4.12: Auto Calibration
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The auto calibration feature was added to increase reliability to the performance

of the vision payload. After the launch of the satellite, manual calibration of the

camera will be very tough and inefficient, as sampled images can only be sent to

the ground station at hourly intervals and lighting conditions in space cannot be

simulated on ground. Therefore, if the camera is able to perform a self calibration

and send a visible raw image back to the ground station, image processing can be

done on ground in order to improve the quality of the captured image. It should

be noted that this auto calibration is only done for the array mode function. As

explained earlier, the critical parameter to be adjusted is Vref as it determines

whether an image can be captured. To ensure that majority of the pixel voltage

values are being sampled within the ADC range, the mean of the digitized values

have to be calculated. A low mean close to 0 signifies that the pixel voltage values

are mostly below the sampling range of the ADC, thereby a lowering of Vref is

required. The same principle can be applied to the opposite bit limit at 4095.

A suitable mean value will be approximately 2048, which is in the middle of the

digital range of the ADC. Hence, the algorithm of the auto calibration involves

sampling image frames which returns the mean value of the digitized voltage. As

long as the mean does not fall between a suitable range, Vref will be increased or

decreased and a frame is captured again.

The other parameters such as the readout time, exposure time, sensor gain and

array exposure count can be set manually from serial interface by the user or be

loaded from the pre-saved configurations. This has to be done as different exposure

times at different 64 environmental conditions will produce different image results.

For example, if the exposure time is set for too long in a bright environment, this

will cause majority of the pixels in the frame to output a high voltage, which makes

the image appear too bright at most of the sections. After all these parameters

have been set, the program will proceed with the Vref auto calibration.

The main algorithm for the auto calibration is shown in 4.12. The global variable

meancalc stores the mean value of the digitized voltage of the pixels, which is

the sum of all the digitized values divided by the number of pixels. A while loop

is implemented to keep repeating the operations inside the loop as long as the

mean value is outside the specified range, which is from 2000 to 2100. In the loop,

the function oneShot() is called to capture an image and update the meancalc

global variable. If the mean is outside the indicated range, ADC value, which is

the digitized value of Vref, will be subtracted or added by 25 bits accordingly.

In this context, a 25 bit shift is equivalent to a 0.02V shift in Vref. Another

stop condition for the while loop is added for cases whereby the Vref is set at

its minimum or maximum value when the adjustment exceeds the allowable Vref

range. This prevents the computer from sending the wrong digital values to the
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ADC which will affect the performance of the camera.

After Vref is set after auto calibration, the buffer limits for the 8 bit normalization

is set by using the last maximum and minimum 12 bit digitized voltage recorded

during the multiple frame captures for auto calibration. The preview of the image

capture with improper exposure settings before auto calibration yields an image

like this in Fig 4.13. And after calibration can be seen in Figure 4.14

Figure 4.13: Image capture before sensor calibration

Figure 4.14: Image capture after sensor auto calibration



Chapter 4. Firmware Development 55

4.12 Image Export & database

The number of the slots for the images folder is temporarily restricted to 255 for the

convenience in the developed despite of availability of huge memory (2 GigaBytes).

After the successful operation of the image acquisition, raw image is stored in the

database with the slot ID that is passed as an argument. Simultaneously the raw

image is processed to create the required image formats such as thumbnail (re-sized

image), compressed raw binary file are achieved.

Figure 4.15: Image database structure

Figure 4.16: Image database structure expanded for particular slot

Text File information of the image captured is as shown below:

date=2012-09-13T12:34:11.747+0800

array exposure cnt=890

main clk=25

exposure clk=31

cds gain=1

probe select=1 vref=127

stretch lo=506

stretch hi=506

acq time ms=285
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Payload Interface Development

5.1 Introduction to Serial Port

The Universal Asynchronous Receiver/Transmitter is abbreviated as UART, which

is serial I/O device and is found on any micro-controller or microprocessor. Serial

port converts the stream of data between parallel and serial formats, transmits on

its output pin and receives on its input pin respectively. The UART takes bytes

of data and transmits individual bits in a sequential fashion, the send and receive

data between two serial ports includes a mandatory shift register which is core

for conversion of these parallel and serial streams of data. Serial transmission of

digital information (bits) through single wire is more cost effective compared to

parallel transmission which needs multiple wires. [15]

5.1.1 Data Flow Speeds & Control

The standard UART clock-frequency for PCs equals to 1,843,200 cycles-per-second.

Each data-bit consumes 16 clock-cycles. So the fastest serial bit-rate in PCs would

be 1843200/16 = 115200 bits-per-second.

56
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Figure 5.1: UART Serial [3]

5.1.2 Character Framing

Figure 5.2: UART single byte frame

An example standard data frame is represented in the figure 5.2 above, following

the conventional way the idle, no data state is held high or powered up. Each data

frame is initiated by a start condition which is normally logic low, and ended by

the stop bit which is logic high. These start/stop conditions are user configurable

and can be of any size. Usually, the logic low at the receiver end and logic high

after data frame indicates the complete transfer of the data frame.

5.2 Serial programming for POSIX systems

Serial programming comply with four mandatory operations in sequential order for

successful establishment of communication over the serial port. These operations

includes opening the serial port, configuring the serial port, read and write bytes

to and from the serial port, and closing the serial port when the task has been

accomplished. It is significant to check the acknowledgment at each stage to ensure

that the task has been completed, because failure may introduce improper data

transfer over the terminal and these errors are difficult to trace.

Serial port being bi-directional, shall be able to send/receive data at the same
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time which is known as over-lapped communication which requires very complex

objects such as threads, mutexes, and semaphores. For my thesis, i have considered

only non-overlapped communication. My goal to create a source/header file that

provides a consistent interface, that the programmer can only link against the

object library for the operating system (Linux). [15]

5.2.1 Opening a Serial Port

The first and foremost step that is necessary to communicate over the serial port

is to open the device. Under Linux, the serial port is treated as a file, so however

in general the commands used would be similar to opening a file. File handling

needs permissions in Linux and they constrained to the particular user in Linux.

So as to provide access to particular files one need to grant permission through

the root user. Here, in our case the PPU is the root, nevertheless it has all the

permissions needed and given if necessary. [15]

int fd = open("/dev/ttyUSB0", O RDWR | O NOCTTY | O NDELAY);

//the name of the serial port as a c-string (char *)

eg., /dev/ttys* serial port name * can be 0/1/2/3 anything,

//configuration tty O RDWR - we need read and write access

//O CTTY- prevent other input (like keyboard) from affecting what we read

//O NDELAY - We don’t care if the other side is connected

(some devices don’t explicitly connect)

O RDWR | O NOCTTY | O NDELAY );

if(fd == -1) {
//Write down the error code

}

5.2.2 Configuration the Serial Port

The second operation before data transfer is to appropriately configure the serial

port. Port configuration includes parameters like communication speed, data size,

parity, flow control and number of stop bits. The communication speed is the speed

at which the serial port can transmit and receive data and is specified in units of

BAUD. Common speeds are 9600 BAUD, 19200 BAUD, and the current maximum

of standard serial ports is 115200 BAUD. Data word size is the size of a piece of

the data, usually a word/byte, or eight bits. Parity is the type of parity used,

either even, odd, or none, and flow control and the number of stop bits are used

to synchronize the communication [15]. It is absolutely mandatory to have same
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communication speeds between two UART devices which are intended to com-

municate. And is also a good practice to maintain time-outs for non-overlapped

communication like in our case. Setting these timeouts ensure the efficient way of

communication to return failure instead of blocking the communication. For our

purpose of the project, instead of using timeout fashion in configuring we expect

an acknowledgement to the host after each successful operation/transfer.

Configuring the serial port in Linux uses termios struct, and carried out in the

following steps:

1. Create the struct and initialize the current port settings.

2. Set the speed attribute of the struct to the desired port with the functions

cfsetispeed() and cfsetospeed(). Note that both speeds are unique to support

the architecture.

3. Apply the settings to the serial port.

struct termios tty; //Create the struct

tcgetattr(fd, &ttyXX); //Get the current settings of the serial port

cfsetispeed(&ttyXX, B9600); //Set the read and write speed to 19200 BAUD

cfsetospeed(&ttyXX, B9600); //All speeds can be prefixed with B as a

settings.

// Where XX should be replaced with the type of port connected to communicate.

tty.c iflag = 0;

tty.c oflag = 0;

tty.c cflag = 0;

tty.c cflag |= CS8;

tty.c cflag |= CLOCAL | CREAD;

tty.c cc[VMIN] = 1;

tty.c cc[VTIME] = 0;

// tty.c cflag|=PARENB|PARODD;

// Now set the tty options (set immediately)

tcsetattr(fd, TCSANOW, &ttyXX);

tcsetattr(fd, TCSAFLUSH, &ttyXX);

// set the status flags

fcntl(fd, F SETFL, O NONBLOCK);

5.2.3 Reading and Writing data onto the Port

In Linux, the serial port is treated as a file, and the file operations(read/write) are

used to send data to and from the port. These operations differ from standard file

input/output operations in that the number of bytes to be read or written and
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the number of bytes actually read or written are very important. It is a good idea

to compare the number of bytes that were actually read/write to the number of

bytes that were supposed to have been read/write to insure the correctness of the

program and the accuracy of the data.

When reading or writing to the serial port, the programmer provides a pointer to a

buffer containing the number of words to be written and the size of the buffer. The

system then returns the actual number of words that have been read or written.

The read and write functions return a boolean value, but this value does not relate

to the success or failure of the operation. Only by checking the actual number of

bytes read or written can the actual success of the operation be ascertained [15].

Code to read and write to a serial port can be found below:

/**********************************

Reading from the Serial Port

***********************************/

//fd is the file descriptor to the serial port

//command is a pointer the array we want to read data into

//bufSize is the amount of data that we want to read in

int serialRead = read(fd, command, bufSize);

/**********************************

Writing to the Serial Port

***********************************/

//write data to the serial port fd is the file descriptor of the serial

port

//buf is a pointer to the data that we want to write to the serial port

//bufSize is the amount of data that we want to write

int serialWrite = write(fd, command, bufSize);

5.2.4 Closing a Serial Port

It is not strictly necessary to close the port, because Linux reclaim all resources

used by the application. It is however a good practice, to explicitly free all resources

used so as to not rely on methods that can’t be controlled. Some applications may

still reside in memory even after the usage of the port, this make the lack of

availability of the port for other application. For this reason, explicitly closing the

port when it is no longer in use is a good habit to use [15].

Closing the serial port on Linux involves a single call to the close() system function,

as the following code demonstrates.
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//close the serial port

if(close(fd) == -1) {
//Unable to open the port. }



Chapter 6

Image Handling Protocol

According to the mission requirements, UART serial interface has been developed.

Chapter 5 describes the configuration and modifications of the serial port settings.

However configuring and opening the serial port doesn’t satisfy our purpose, in

order to access the various functionality of the payload one should be able to con-

figure the CMOS image sensor at any given time and trigger it for the desired

instant. For all these reasons, an image handling protocol is proposed and imple-

mented, that can be followed by the user to gain access for the vision payload with

the UART serial interface.

Such protocol can be defined by the control flow diagram described in 6.1. Com-

mands for the vision payload functionality are defined by the identifiers that are

set in accordance with the OBDH unit, identifiers that are used up by different

sub systems are avoided to quash the duplicity.

Proposed Image Handling protocol shall consist the following functionality.

1. Commands to manual configure image acquisition parameters,

e.g., resolution, windowing and sensor gains.

2. Trigger.

3. File transfer, listing, calculation of size etc.,

4. Calculate the temperatures of the PPU.

5. Indicate status of UART with LED.
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Figure 6.1: Image Handling Flow diagram
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6.1 System Commands

system() executes a command specified in command by calling /bin/sh -c com-

mand, and returns after the successful execution of the command. Include the

library stdlib to use system commands.

Command:

int system(const char ∗ command);

If the Value of the command is NULL, system() returns non-zero if the shell is

available, and zero if not. This type of execution is used in this thesis for multiple

purposes, whenever standard shell commands are required to execute.

6.2 Camera Parameters

The performance of the CMOS image Sensor/Camera depends on the key pa-

rameters of the sensor like exposure frequency, exposure count, gain factor, ADC

reference voltages etc., These parameters if configured with appropriate values can

capture the images of good quality and can be of good use for remote sensing. For

such reason, the Payload firmware has provided the provision to configure these

key parameters from Ground Segment. In order to configure, first an identifier ‘P

(0x50)’ is sent that signs the Payload to be configured followed by the parameters

in HEX with respect to their type and later stored in ‘campar.bin’.

6.3 Listing the configured Parameters

The configured parameters of the CMOS Sensor/Camera are stored in the ‘cam-

par.bin’ file, this binary file is parsed and read, to manually configure the sensor

characteristics. Here after reception of this identifier ‘Q (0x51)’ at the payload

end, PPU transmits the previous configured parameters for the requested device

(e.g., OBDH Unit) in HEX format and is explained with and example in the table

6.1

6.4 Trigger the Camera

The Payload is triggered by executing the compiled program with the help of sys-

tem commands as shown in the Figure 6.1 after the reception of the identifier

‘T(0x54’ followed by the slot ID to store after successful operation.

unsigned char sid;

int res = tty read chars(fd, sid, 1);
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if (0 < res)

trigger into(sid);

6.5 Deletion of the files

OBDH unit can delete the file directory through by command as in the table 6.1

after the transfer of the necessary requested file in order to free the memory at

PPU. Multiple image file deletion can be also performed. This operation is per-

formed by calling the routine dir delete, this is interpreted by Payload via serial

command ‘D(0x44)’ followed by the slot ID to remove from memory.

void dir delete(int dir num)

char command[200];

sprintf(command, "rm -r %s/%03i", root dir, dir num);

printf("trying to delete slot %i with[%s]", dir num, command);

int res = system(command);

printf("result %i", res);

6.6 Listing of the files

When the user wants to know the information about the number of files stored

and vacant slots available, he can call by the command ‘L(0x4C)’ via serial inter-

face to list the available files. But our case here we call files as directories since,

each directory is designed to store various file formats like raw, compressed and

thumbnail formats of the same image files.

void list directory(unsigned char dir num[])

struct dirent *dp;

int dir cntr = 0;

DIR *dir = opendir(root dir);

while ((dp = readdir(dir)) != NULL)

if (strcmp(dp->d name, ".") == 0 || strcmp(dp->d name, "..") == 0)

else

int slot = atoi(dp->d name);

dir cntr++;

dir num[dir cntr] = slot;
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printf("%s [%s] %i", root dir, dp->d name, slot);

closedir(dir);

dir num[0] = dir cntr;
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6.7 Transfer of the file

The designated file that is to be to transferred is calculated for its size initially

and then divided into blocks of desired size and transferred via serial interface to

the user. Before, initiation of the file transfer, PPU calculates the size of the file

that is requested by the OBDH unit and passes the information in the first byte of

the file that is to be transferred. So, that the user (OBDH in our case) knows the

estimated time of opening the port till the accomplishment if the task. However,

each successful operation is acknowledged by an identifier ‘A’.

if (0 < strlen(global fileTransfer.file name))

fstream file(global fileTransfer.file name, ios::in | ios::binary |

ios::ate);

if (file.is open())

global fileTransfer.total = file.tellg();

printf("filesize is if (global fileTransfer.total < 1000000)

file.seekg(0, ios::beg);

global fileTransfer.content = new char[global fileTransfer.total +

block size];

file.read(global fileTransfer.content, global fileTransfer.total);

printf("acquired content");

else

printf("file is too large to transfer!");

file.close();

else

printf("cannot open file");

6.8 List the temperatures

Absolute & ambient temperatures of the AMD chip can be directly accessed, calling

built in methods. With this temperatures somehow, we can estimate the operating

temperature of the payload.

struct sbc temperatures mySbcTemp = getTemperatures();

write(fd, mySbcTemp, sizeof mySbcTemp);
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6.9 Halt the System

The Payload can be halted using the system commands to save the power,whenever

it is not in use and an acknowledgement ‘vj’is sent to the user.

unsigned char msg[3];

int read num = tty read chars(fd, msg, 3);

if (read num == 3)

if (msg[0] == ’a’ msg[1] == ’l’ msg[2] == ’t’)

unsigned char echo[2];

echo[0]=’v’;

echo[1]=’j’;

write(fd,echo,1);

system("halt");

write(fd,echo+1,1);

exit(0);



Chapter 7

Conclusion & Future Work

7.1 Summary of the Thesis

Vision payload for the Nano Satellite VELOX-I has been developed in compliance

to the standards of the 3U CubeSat. Study and implementation of CCSDS rec-

ommended image compression algorithm has been presented and implemented in

MATLAB. In order to estimate the best suitable sensor parameters for imaging,

GUI in Java has been developed and tested. In house developed radiation hard-

ened sensor has been calibrated for best performance with the developed firmware.

Fixed Pattern Noise of the sensor is eliminated before storing the final image. A

thorough literature on UART serial interface development has been presented and

implemented in the Payload firmware. Lastly, image handling protocol has been

proposed and documented for the users to access the Payload. Necessary instruc-

tions and setup procedure has been given in the Appendix for user reference.

Combining all, the objectives of the thesis have been successfully accomplished.

The firmware developed serves as the core for the Payload of its kind and is the

base platform for further application development.

7.2 Future Work

The Payload developed for the mission VELOX-I comprises of three modules

namely, sensor Board, acquisition board and the processing unit. Efficient uti-

lization of mass, size and power of CubeSat mission impose constraints over the

current developed payload. For future similar missions, this architecture consist-

ing of three boards can be replaced by the single System On Chip and processor

board. Furthermore applications of the Payload can be extrapolated to Star Sen-

sor, debris monitoring over current mono Earth observation functionality. These
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applications can be easily build as an extra function without the major changes in

the core firmware. Analysis and calculations of the optics and sensor at extreme

environments is to be performed.



Appendix A

Linux Installation Procedure

Prepared by : Vineel Kadarla & Jan Hakenberg

Date: 2012-Aug-08

Purpose: Project Reference Manual

Target Board : Cool SpaceRunner - LX800 PC/104-Plus SBC

1. Create a bootable USB-drive with debian squeeze 2.6.32-5.

2. Power on the SBC and press F1 to enter into BIOS mode.

Change the Boot Preference order with USB/Flash to the first position.

Press X, to save and exit.

3. Reboot the SBC.

4. Choose “Install” in the welcome screen.

5. Choose Language “English”.

6. Choose Location “Singapore”.

7. Choose Keyboard Layout “American English”

8. During installation, ignore the notification e100/d102e ucode.bin

is missing by selecting “NO”.

9. Ignore notification that network configuration has failed.

10. Do not configure at this time.

11. Enter the Host name (e.g., veloxn).

12. Enter the name of the user (e.g., leonie).

13. Enter the username (e.g., leonie).

14. Enter the user password (e.g., root).

15. Choose guided partitioning (Primary option).

Here it shows your USB drive details and target SSD.

Choose target SSD (scsi1 sda ATA 2GB).

72



Appendix A. Linux Installation Procedure 73

16. All in one partition

17. Finish partitioning

18. Select “yes” to write to disc

19. Install ssh server (press space to select)

20. Install GRUB boot loader

21. Finish installation by removing usb drive and rebooting



Appendix B

Missing Packages

B.1 Intel Network Packages

During installation of Linux (Debian), some of the binary firmware for the various

drivers in the Linux kernel mayn’t be properly installed. For, our case network

packages were erratic while installation. In order to reassure the drivers working

properly one need to download the “Firmware-linux-nonfree” for the respective

kernel and store them on a removable media and mount the device whenever asked

during installation or manually port them after the completion of the installation

process.

1. Store the downloaded executable in removable media,

dpkg -i firmware-linux-nonfree 0.28+squeeze1 all.deb

2. As root, create folder: $sudo mkdir ∼/mnt/myusb.

3. Mount the removable media (eg., Flash drive): $mount /dev/sdb1 /mnt/mysub.

4. Copy the above file to the desired location.

5. Depackage it to manually port the drivers,

$dpkg -i firmware-linux-nonfree 0.28+squeeze1 all.deb
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B.2 Enable network interfaces

To ensure the network bring up , one should edit the file ‘interfaces” located at

/etc/network

1. command :

$nano /etc/network/interfaces or

$vi /etc/network/interfaces

file content:

auto lo

iface lo inet loopback

#DHCP Configuration

allow-hotplug eth0

iface eth0 inet dhcp

2. After installation, don’t forget to bring up the interface which is scripted re-

cently,

command:

$ifup eth0

3. Now, check the network configuration with the commands $ifconfig. Fol-

lowing the above procedure, one should be able to view ip address for the

respective network. Otherwise something went wrong, go to step 1 and con-

tinue.

B.3 Locating the package repository

Check if proper repositories are listed in /etc/apt/sources.list, otherwise edit

the list with

command:

$sudo nano /etc/apt/sources.list

// add these lines to it and save it

deb http://security.debian.org/ squeeze/updates main contrib non-free

deb-src http://security.debian.org/ squeeze/updates main contrib non-free

deb http://ftp.debian.org/debian/ squeeze main contrib non-free

deb-src http://ftp.debian.org/debian/ squeeze main contrib non-free

deb http://ftp.debian.org/debian/ squeeze-updates main contrib non-free

deb-src http://ftp.debian.org/debian/ squeeze-updates main contrib non-free
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Apart from the above repository locations, try to find the address of the local near-

est repository for the respective kernel installed and add them to the above file

accordingly.

B.4 To reload the rules in Ubuntu/Debian without

restart

command:

$sudo /etc/init.d/udev restart

Don’t forget to key in the appropriate root password.

B.5 Enabling default root logging

For applications like ours, in which the system should be in root mode to execute

the necessary privileges of the functionality of the payload (application framework)

and configure the firmware from third party device with an interface without the

intervention of keying in the password every time when kernel layer is accessed.

1. Look for the shell script in /etc/inittab and edit it. command:

$nano /etc/inittab

2. Identify the following line

1:2345:respawn:/sbin/getty 38400 tty1 and comment out as

#1:2345:respawn:/sbin/getty 38400 tty1

3. Add the following line instead of the earlier

1:2345:respawn:/bin/login -f root tty1 /dev/tty1 >/dev/tty1 2>&1

4. Save and exit the file.

5. Reboot the system to enable the root logging after boot.



Appendix C

Specification Documents

Figure C.1: 1U CubeSat Specifications
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Figure C.2: 3U CubeSat Specifications
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