

Institutionen för kommunikation och information
Examensarbete i datalogi med inriktning mot nätverks- och systemadministration 15hp
C-nivå
Vårterminen 2011

Thin-Clients

An open-source product comparison

Daniel Hedegren
2011-06-05

Thin-clients

This report is submitted in partial fulfillment of the requirements for the Bachelor's

degree in Computer Science at the Institution for Communication and Information.

This project has been supervised by: Thomas Fischer

2011-06-05

All material in this report which is not my own work has been identified and no

material is included for which a degree has previously been conferred.

Signed: ___

Thin-Clients

Daniel Hedegren

Abstract

This thesis presents a comparison among two different open-source company-

solutions, taking into account the cost, performance and functionality. The compared

open-source solutions are: LTSP and Openthinclient. The thesis also explains the

normal client/server environment, fat- and thin-client environments and the concept of

cloud computing.

Giving a final answer to which product is the best is a challenging task since they both

have strong and weak sides. Depending on what the customer is after when looking to

invest into an open-source alternative of thin-client solutions, the result will be

different.

Keywords: open-source, thin-client, fat-client, cost, performance, monitoring

 I

INDEX

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Purpose .. 1

1.3 Limitations ... 2

2 Background ... 3

2.1 Related work .. 3

2.2 Client/Server Environment .. 3

2.3 Fat-Clients .. 3

2.4 Thin-Clients ... 4

2.4.1 History of Thin-Clients .. 4

2.4.2 Product solutions .. 5

2.4.3 Compared products .. 5

2.4.4 Cloud Computing ... 6

2.5 Host-based monitoring ... 6

3 Problem .. 8

3.1 Purpose .. 8

3.2 Motivation .. 8

3.3 Partial-goals ... 8

4 Method ... 9

4.1 Implementation or Experimentation .. 9

4.2 Gather intelligence and constructing the environment 9

4.3 Conducting Performance tests ... 10

4.3.1 Response-time .. 10

4.3.2 Bandwidth utilization: .. 11

4.3.3 Memory-usage, processor-load, network-load and hard-drive space .. 11

4.4 Comparing prices ... 12

4.5 Constructing scenarios ... 13

5 Implementation ... 14

5.1 Server specification ... 14

5.2 Network configuration ... 14

5.3 Operating system ... 14

5.4 Installing Zabbix .. 14

 2

5.4.1 Zabbix agents ... 16

5.4.2 Configuring Zabbix .. 16

5.5 Script configuration ... 16

5.6 Installation of LTSP ... 18

5.6.1 Configuration ... 19

5.6.2 Performance ... 19

5.6.3 Cost ... 21

5.7 Installation of Openthinclient .. 22

5.7.1 Configuration ... 23

5.7.2 Performance ... 23

5.7.3 Cost ... 25

5.8 Creating Scenarios ... 26

5.8.1 First scenario .. 26

5.8.2 Second scenario .. 26

5.8.3 Third scenario ... 27

6 Analysis .. 28

6.1 Linux Terminal Server Project .. 28

6.2 Openthinclient .. 28

6.3 Cost comparison .. 29

7 Conclusion ... 30

7.1 Discussion .. 30

7.2 Future work .. 30

8 References .. 32

1

1 Introduction

According to Tyson (2010), the name “thin-client” was originally a description of a

computer terminal published by Oracle in 1993.

Now it is the clear definition of a system which has a client that accepts input from

local peripherals only to delegate the data to a server. The server will then process that

data and send it back to the client where the information will be displayed. One of the

big problems with this type of system (henceforth known as a thin-client

environment) is that the potential lack of high performance. Nowadays there are many

different companies that contribute to the thin-client environment, but the problem is

to find out which of these companies supplies you with an adequate solution.

One of the main reasons for a company to invest into thin-client environments is to

achieve centralized administration. This type of administration is preferable since it is

easier to manage than a decentralized environment. By having this kind of solution,

and because the thin-clients are more robust than the fat-clients, the administrator

does not have to visit the end-clients that frequently. Another reason for a company to

invest into thin-client environments is to decrease the cost of their IT-environment so

it is important that the actual cost (including initial cost and support) is as low as

possible while still maintaining quality.

1.1 Motivation

When designing the infrastructure of a network it is important to take all the options

into consideration. It is also important to make sure that the design has an adequate

performance level while taking the cost into consideration so that it does not exceed

the budget. One of the ways to find the correct balance is to use a thin-client

environment, but how do we know which product solution to choose?

Distributors of any product have a tendency to always see themselves as having the

best product on the market. It is important to review these products from an objective

point of view. A technical comparison between several different thin-client solutions

would be preferable.

1.2 Purpose

The purpose of this report is to analyze specific attributes between several thin-client

environments distributed by different companies to make a detailed comparison. The

attributes that will be compared are:

 Performance

o Bandwidth utilization

o Response-time

 Requirements of the server

o Memory

o Processor

o Secondary Storage

 Costs

o Initial costs

 2

o Running costs

o Support costs

The reason using those parameters is due to the fact that if all of them are taken into

account, it provides a holistic perspective when comparing different solutions.

The purpose of the comparison using the attributes listed above is to find out which of

the selected products is best in the respective area. The product seen as the “best” here

will be the product which has the overall better result from the measurement in

combination with the cost.

1.3 Limitations

The main scope of this report is to compare several selected thin-client environments

to give an objective view of the different products. The structure and cost of the

solution will be taken into consideration whereas the companies providing these will

not. The limitations are set on a technical level to the specific products and/or

solutions. There is a limitation in the number of solutions that will be tested. Only two

different solutions will be tested in this case
1
. There is also a limitation to the scale of

the tests. The tests are conducted with a few computers in a laboratory setting without

any real-life environment test which means that the performed tests will be

estimations and approximations. A few scenarios are constructed to carry out the

comparisons.

1 The solutions that will be tested are LTSP- and Openthinclient-environments (see 2.4.2).

 3

2 Background

This chapter explains the normal client/server environment, the different types of

clients, which product solutions of thin-client environments that will be compared, the

concept of cloud computing and the monitoring tool that is used.

2.1 Related work

There is quite a lot of related work related to thin-clients. There are, however, only a

few that has almost the same purpose as this thesis. There is however a few that

should be mentioned:

Rizwan (2011) presents a study carried out to upgrade and evaluating the performance

of thin clients in scientific Server Based Computing (SBC).

Tykesson et.al. (1999) presents a study to provide guidelines for the choice of

architecture in future client/server-applications.

Both of these have parts in them that cover many topics handled in this thesis, but it

does not seem like their respective thesis performs the same type of comparison

performed in this thesis. Rizwan (2011) checks the performance of thin-clients in

general and Tykesson and Ericsson (1999) compare thin-clients to fat-client while this

thesis compares different open-source thin-client solutions.

2.2 Client/Server Environment

The client/server environment is a well known, distributed computing model that

commonly used worldwide. According to Reese (2000), in the client/server model, the

clients are used to initiate requests of specific services that are placed on a server

while servers provide these services to clients. The thin-client environment is a type

of client/server configuration where the main difference compared to the standard

solution of the client/server model is the type of clients. According to McKenna

(2002), the different types of clients are fat-clients and thin-clients. The thin-clients

utilize the servers’ computation capacity instead of local computation, which means

that the thin-clients basically only sends requests to the server and handles local

resources such as display, keyboard and mouse. The fat-client also sends a request to

the server like the thin-client does, but the requests sent from the fat-clients are

requests to authenticate users and to access storage. The main difference between the

thin-clients and the fat-clients are that the fat-client uses the local computation

capacity.

2.3 Fat-Clients

According to McKenna (2000), a fat-client is a type of client where the local

hardware is used for different types of user applications. Updates to this type of client

will be managed locally by the client itself or pushed out through policies or other

equal methods from directory-services. This means that a fat-client needs local

administration in addition to administration through a server. Most of these problems

can, however, be solved by using network bootable images, scripts and group-

policies. How these solutions work will not be described in this thesis. When

architecture is designed for a fat-client environment, it utilizes a centralized control

that mainly consists of authentication and storage, while attributes such as updates,

audio and video are handled by the local client by decentralized processing. This

implies that the hardware requirements on fat-clients are much higher than the ones

 4

on thin-clients, which also means an increase in the initial cost when buying fat-

clients.

One of the big advantages compared to thin-client environments is that the fat-client

would still work even if the network is not reachable. There would be a decrease in

functionality if that would happen, such as: problems to access storage or home-

folders, unable to authenticate to the directory-service or unable to reach the company

database. Even with these problems, the fat-clients still have the option to work

offline with their local user, the local storage and local configuration.

2.4 Thin-Clients

According to Cantiora (2010), a thin-client is a client that has a direct connection to

the centralized server. The thin-client acts as a user interface between the remote user

and the server. This means that the thin-client is a tool for user-interaction that

forwards the users request to the centralized server, where the request is processed

and then sent back. The thin-client is more or less a gateway between the user and the

server to request information from a server and to display the result. The client itself

does not do any operations that require hardware but instead delegates it to the server.

This does put a larger constraint on the server but it also means that the client can

work on minimal hardware. Since the thin-client does not need any particular

hardware it is cheaper, simpler and more reliable than the fat-client. This means that

the thin-client can be deployed in harsher environments.

2.4.1 History of Thin-Clients

According to LLC Books (2010), the first computers were used as an automated

calculation-device. There was no real-time interaction as we know of it today, only a

string of numbers as input and output. These computers slowly developed different

input-methods like hole-punch cards, paper tape, magnetic tapes and eventually a kind

of terminal that acted like a typewriter. The research continued which led to simple

I/O (Input/Output)-devices which had a keyboard as the input-device and a standard

CRT (Cathode Ray Tube)-display as the output-device. These devices only had one

input-device and one output-device which when several users tried to interact with,

led to the development of a centralized node, a mainframe, with “dumb” terminals

acting as the input-devices.

According to Greenberg (2005), the development of computers were driven by the

idea of personal computers (PC), a dedicated computers with local processing-power.

With this idea in mind, the development of a Graphical User Interface (GUI) was

developed. The concept of a GUI was originally developed by XEROX to get a better

way for the user to interact with the computer. The GUI was however not suited for

the dumb-clients since the requirements were too high. It was said to be impractical to

distribute a GUI through the dumb-clients. The PC increased the productivity of the

users drastically, but it lacked the reliability and security gained from the centralized

mainframe, which led to the development of the client/server architecture.

According to Greenberg (2005), the thin-client is as follows:

“-Thin Client/Server Based Computing is defined by the fact that the application is

executed on the server and displayed on the client system. Therefore, a “thin client”

terminal need only have sufficient power to render the display of the user session.

 5

This is the same type of processing as described earlier called a “Mainframe”. This

means that one of the first computers were a version of thin-clients, only much

simpler.

According to Tyson (2010), the name “thin-client” originates from a computer

terminal published by Oracle in 1993, the development on the clients called “Sun-ray

clients”. This is a computer which does not do any local computation, but instead

sends the information to a centralized server where the operation will be performed.

2.4.2 Product solutions

There are many different products/solutions available regarding thin-client

environments. Choosing which one of these to pick might be hard because the

companies distributing these might not give a fair image as to how good or bad their

respective solution is.

In order to narrow the selection down, this thesis will only compare two different

product solutions. In this case, the solutions that will be compared are Openthinclient

and LTSP (Linux Terminal Server Project). While there are many available product-

solutions for thin-client environments, both commercial and open-source, the chosen

products are both open-source products. The reason why two open-source products

were chosen instead of more commercial products like Sun-ray and Citrix is due to

the fact that their solutions have a high cost, and without proper funds, open-source is

the only alternative.

2.4.3 Compared products

The explanation of product-solutions is fetched directly through the given information

of the products from the respective company distributing them. There are many

available options when choosing among the thin-client products. However, most of

them do not have available support other than forums and mail. Due to this, the

chosen products are LTSP and Openthinclient.

LTSP: Linux Terminal Server Project

The Linux Terminal Server Project is an architecture that provides a thin-client

solution for Linux. LTSP themselves provides support through forums but there is

available support from http://disklessworkstations.com. The same place also has

available hardware for sale. LTSP sends all the information between the client and

server through an SSH-tunnel which makes the transactions secure. LTSP is licensed

under GNU GPL v2 which makes the solution completely free to download.

Openthinclient

Openthinclient is a free thin-client solution based on Linux and Java that is intended

for medium to large environments. The solution is available for both Windows and

Linux. Both versions require a directory service such as LDAP (Lightweight

Directory Access Protocol) or Active Directory (AD) to function and since they are

fully supported, this solution can easily integrate with an existing solution.

Openthinclient is licensed under GNU GPL v2 which makes the solution completely

free to download. There are options for hardware-appliances and support of different

levels.

 6

2.4.4 Cloud Computing

According to Sobotta (2009), the definition of cloud computing is: “The outsourcing

of IT hardware and software to centralized external third parties capable of providing

IT capabilities as a service, leveraging the internet [the cloud] and accessed via

(potentially thin) clients that know not, nor care not, how the services are

implemented, maintained or what infrastructure is used to support it.”

According to Sobotta (2009), cloud computing is a concept that has existed for

decades. In recent years, the concept of outsourcing has gotten much attention due to

an increase of distributed services which also has put a large focus on cloud

computing. The concept can be broken down into five smaller segments.

1. Applications

In recent years, the adaptation of cloud computing has increased

drastically, distributing many kinds of services through “the cloud”.

Since they are distributing services, meaning software, this is

commonly known as SaaS (Software as a Service). Examples of these

are: Dropbox, Google Mail, Google docs.

2. Clients

According to Sobotta (2009), a cloud client is a computer that relies on

“the cloud” for delivery of applications and/or services. Like the thin-

client environment, if the network goes down – so does the cloud

client.

3. Platforms

Commonly known as PaaS (Platform as a Service). When referring to a

platform in cloud computing, you are referring to a platform placed in

“the cloud” that is distributing platforms and application to clients.

Since the platform is distributed as well as it distributes applications,

you could say that the PaaS is also distributing Software as a Service.

4. Storage

When discussing storage in cloud computing, you are discussing

normal storage placed in “the cloud”. An example of this is Dropbox.

5. Infrastructure

In cloud computing, it is also possible to distribute entire

infrastructures. According to Sobotta (2009), this is commonly done by

virtualization. This is commonly known as IaaS (Infrastructure as a

Service).

There are many similarities between cloud computing and thin-client environments.

Both of them use a form of distributed infrastructure building on centralized

management, both have a form of clients that is dependent on a functioning network

and both of these distribute services from the central node.

2.5 Host-based monitoring

In order to get a value on all of the wanted attributes that might be needed for the

performance-tests, a monitoring tool must be used. The monitoring tools are generally

 7

used to measure the load of a network or to monitor the health and integrity of

different services to ensure that the network/service does not get overloaded in any

way, or to let the administrator know if a service has gone down. This is especially

useful in enterprise-environments since the server-parks tend to get quite large.

Monitoring tools can also be used to see if a company lives up to the eventual Service

Level Agreements (SLA). The SLA is an agreement between the company and

customer where values are set on attributes, like availability on a service per year,

which the company must uphold.

The monitoring tool that will be used in this case is called Zabbix, which is an open-

source distributed enterprise solution that can be used for monitoring just about

anything on a specific host or network. Most of the measurements are completed by

using that which is called an “Agent
2
”. This is a program that has a direct connection

with the Zabbix-server. These agents collect the information locally by running

different commands and send the results back to the server.

The Zabbix-server automatically creates graphs for every monitored object which will

make it easy to monitor all the attributes needed to conduct the tests (see 4.3). For

information on the installation and configuration of Zabbix, see 5.4.

2
 For more information about the components in Zabbix, please see the following link:

http://www.zabbix.com/documentation/1.8/manual/installation/components

 8

3 Problem

This chapter describes an introduction to the problem, purpose, motivation and goals

of the report.

The main question of this thesis is as follows:

 When comparing different product solutions of thin-client environments

it is important to choose a solution based on performance, functionality

and cost. In this case, two open-source products are chosen for the

comparison but which one is considered the “best” based on the given

attributes?

3.1 Purpose

The purpose of this thesis is to analyze the thin-client environments called LTSP and

Openthinclient to compare their respective solutions. This comparison will be

performed by considering the different attributes shown in section 4.3.3. The final

outcome is a detailed list of the solutions considered and the metrics chosen. This list

supports technicians while selecting thin-client solutions.

3.2 Motivation

The main problem when designing the architecture for a new network is to sort out

different product-solutions from each other. This is a problem because companies that

distribute the different solutions do not provide an objective point of view; they will

always put their product in front of the others. Thus, the main contribution of the

thesis is to provide an objective comparison between specific product-solutions, to

make it easier to know which thin-clients solution to choose.

3.3 Partial-goals

To ensure that this comparison will be as detailed as possible and as focused as it

needs to be for a designer to be able to make important decisions, this report will be

structured with four focused partial-goals. The following goals will be guidelines to

the entire thesis.

1. Performance
3
 of the product-solutions

2. Configuration options for the solution

3. Cost of the entire solution including support

4. Create scenarios to calculate the following attributes:

- Performance

- Cost

- Background

- Requirements

By following these goals, the comparison focuses on technical aspects but will also

provide a comprehensive overview of the whole solution.

3
 For more information about the tests or the measured attributes, see section 4.3.

 9

4 Method

This thesis is conducted by one person alone, so to ensure that the comparison is done

in an objective manner, it is important to describe what knowledge he or she has.

My computer knowledge consists of daily configuration and use of the standard PC

(both Windows and Linux) and home-router for about 15 years. I have also conducted

the three-year education program on Högskolan i Skövde, called “Nätverks- och

Systemadministration 180HP”. This program focuses on administering and

configuring network-devices and servers, but did not involve thin-client

environments. Since the person conducting this research has not been involved in

thin-client environments before it is highly likely that the comparison will be

objective.

4.1 Implementation or Experimentation

The purpose of this thesis is to compare different solutions and present an objective

comparison. With that in mind, the only methods that seemed relevant were either

implementation or experiment. Due to that reason, the mentioned methods were

chosen as potential candidates for this thesis.

According to Berndtsson et al. (2008), implementation is a method used for

implementing a certain solution to demonstrate that the solution has the proposed

properties. This method is often used to compare several implementations of existing

solutions. When this method is used as a research method it is important to make sure

the report is valid and reliable. To ensure the validity of the implementation, you work

according to a proposed solution which in this case is the solutions given by the thin-

client distributors. If the implementation will be handled incorrectly – the validity of

the project will be compromised. To ensure reliability, one has to implement the

solution in a way that it works well enough to be used in the research Berndtsson et

al., 2008).

According to Berndtsson et al. (2008), experiment is a method used to verify or falsify

a stated hypothesis. This method is often used to try and prove that a hypothesis is

correct even though it cannot be said that because the hypothesis is true, the statement

is proven. An experiment can be conducted from many different ways so even if a

person proves a hypothesis, it does not mean that the experiment is fair.

Seeing as the content of this thesis is about comparing several different solutions, the

chosen method is Implementation. This method seems the most systematically suited

with regard to the purpose of this thesis.

4.2 Gather intelligence and constructing the environment

The first step in this project is to gather knowledge about the respective solutions,

which in this case are Openthinclient and LTSP. This is completed by reading official

guides from their respective homepages and/or reading forums if complications occur.

This information is crucial when designing the structure for the tested solutions. With

the given information, a topology
4
 was created to be used as a template when

constructing the environment and is also used to get the same measurement for the

4 A Network-infrastructure map showing all the devices in the solution

 10

price-list (see 4.4). Each step regarding the construction of the environment is

documented in chapter 5 and the topology is shown in appendix A.

In order to ensure the validity and reliability (see 4.1), the configuration is based on

the distributors own guidelines for best-practice, if such exists, and their own

documented solutions.

4.3 Conducting Performance tests

After the product-solutions have been setup, a series of performance tests are

conducted on the environment. The performance tests are conducted from the thin-

clients in the environment and are based on “response-time” and “bandwidth

utilization”. Performance tests on the server regarding “memory-usage”, “processor-

load”, “network-load” and “hard-drive space” are also carried out.

To conduct these tests, several different methods are used (these methods are

explained below). In order to measure the results of the tests, the monitoring tool

called Zabbix is used. In order to get a baseline to be used as a reference-point, this

tool monitors the server with the mentioned attributes even before there actually is

any traffic on the network. The monitoring will continue while the tests occur to get a

reading as to how these tests affect the different systems. Zabbix will then display the

results including history so it will result in a graph showing how the systems react to

each of the tests. Since Zabbix contributes with a complete view of both history and

current information displayed in graphs, this will be the main source where the

performance are compared from.

The following references are taken from appendix A. The tests are conducted from

Thin-client1 to Thin-client Server while monitoring from the Zabbix-server. While

the tests are active, a ping-request is set up from Thin-client2 to Thin-client Server to

measure the latency and eventual packet-loss of the packages.

4.3.1 Response-time

Since response-time is usually measured by sending a package from a source to a

destination to measure the time it took, this test is performed by monitoring hosts with

Zabbix while creating a bash script that uses the tool called “packgen”. This tool can

be used to simulate traffic based on what the configuration options inputted. The tool

can also be used to increase or decrease the MTU, change the packet type, perform

UDP-flood attacks and so on. The scripts will be separated based on UDP and TCP

configurations to simulate different types of traffic and will be used from one of the

clients. The reason why packgen was chosen over the other available alternatives
5
 is

due to discussions and suggestions from different forums where other users have been

in contact with the tool. Packgen has been used in other similar experiments, i.e., see

Chiorean (2009). Packgen is a simple tool that allows the users to conduct tests on the

network bandwidth and Quality of Service (QoS).

While packgen is used in the script to simulate multiple users, it is important to note

that it does not give a fair view of a real user. A user does not act statically during a

certain amount of time but acts randomly. If the script would use a random-timer,

however, the comparison between the products would not give a fair view.

5
 Other available tools are, for example, GASP, Packet Excalibur, PacketGenerator, pktgen.

 11

While this script runs in the background, all the available client are used for normal

desktop tests like trying to edit files and saving large files on the hard-drive. While

these tests are performed, a standard ping-request is conducted from one of the clients

to measure if there are any packet-losses. Since response-time is usually measured by

sending a package from a source to a destination to measure the time it took, this test

is performed by monitoring hosts with Zabbix while creating several bash scripts that

uses the tool called “packgen”. This tool can be used to simulate traffic based on what

the configuration options set. The tool can also be used to increase or decrease the

MTU, change the packet type, perform UDP-flood attacks and so on. The scripts will

be separated based on UDP and TCP configurations to simulate different types of

traffic and will be used from one of the clients. While this script runs in the

background, all the available client, will be used for normal desktop tests like trying

to edit files and saving large files on the hard-drive. While these tests are performed, a

standard ping-request is conducted from one of the clients to measure if there are any

packet-losses.

Figure 1: Response-time measurements

The ping-request is sent from computer B to computer A while the bulk transfer is

conducted from computer C.

4.3.2 Bandwidth utilization:

This test is conducted by configuring the scripts (see 5.5) with a different number of

simulated users so that it will send a lot more packets than before. This produces a

higher load on the network which should result in latency or in worst case; packet-

loss. The measurements are monitored with Zabbix while trying to connect to the

server with another client to see if a connection can be made while the load on the

network is high. It is important to note that it might not be the server that acts as the

bottleneck here; it might be the network device. For that reason, Zabbix will be used

to monitor all the devices in the network, including the network device (with the help

of SNMP) to make sure which device it is that fails first.

4.3.3 Memory-usage, processor-load, network-load and hard-drive space

To ensure that the clients and servers will perform as they should, monitoring will be

used on all of the nodes to measure their performance. This will be handled by

measuring standard values that might affect the overall performance of a computer,

such as memory-usage, processor-load, network-load and hard-drive space. The items

that will be measured from these attributes are:

 Memory usage

o Cached memory

 12

 To store information into a cached memory is to store the

information in a place that has faster access time than the

normal physical memory

o Shared memory

 Typically, it refers to a large block of memory that can be

accessed by several CPU:s simultaneously in a multi-CPU

computer

o Free memory

 Processor load

o Average processor load, one minute

o Average processor load, five minutes

o Average processor load, fifteen minutes

 Network load

o Incoming traffic on the network interface

 Hard-drive space

o Size of remaining space of the partition

 The remaining size of the partition containing the operating

system

o Free disk space on /home

 This purpose of this measurement is to see if the users home-

folders are affected by the thin-client solutions

o Free swap space

 The swap space is a place where information can be stored

temporarily to allow a computer to read and write the data into

the physical memory faster than normal on a hard-drive

All of the compared solutions are monitored this way with Zabbix. The graphs

extracted from these attributes are shown in appendix B-E.

4.4 Comparing prices

In order to give a correct comparison between different product-solutions it is

important to take the costs into consideration. The different types of costs that are

compared are: “initial cost”, “running cost” and “support cost”. For more information,

see Table 1: Thin-client Costs. To ensure that the prices are correct, contact is made

with the respective customer-contact support where the price-list will be requested.

The price-lists will vary depending on the actual size of the network so all of these

price-requests are based on the topology design created for the construction of the

network (see 4.2).

Table 1: Thin-client costs

Type: Definition:

Initial cost After the design of the network topology has been completed, the

required hardware needs to be purchased. It can also involve

 13

purchasing software and support. This is what is called the initial

cost.

Running cost Running cost is the cost of the electricity when the solution has been

implemented and everything is up and running. This also includes

replacement of hardware and maintenance.

Support cost The available support for a solution may vary but there is usually an

option for support where you pay a monthly or yearly fee to the

distributors. Some of the open-source alternatives to thin-client

environments do not require a purchase of support in order for the

environment to work.

4.5 Constructing scenarios

To put the tests into practice, a few imaginary scenarios are created. These scenarios

are based on the results from Zabbix and from own experiences gained from the

testing. The graphs can be used to scale up the tests to calculate how well these tests

would be suited in real-life situations. This is done to ensure the validity of the thesis,

and to provide a larger view of the solutions based on the measured results.

The created scenarios is divided into three different levels; small, medium and

enterprise. The purpose of dividing the scenarios into three levels is to create

scenarios that might appeal a company disregarding of their size.

 14

5 Implementation

This chapter explains the specifications of the environment and a step-by-step guide

how the installation and configuration of the different product-solutions is completed.

5.1 Server specification

The server that is used in this configuration has the following specifications:

Table 2: Server hardware specification

Hardware

CPU INTEL Core i5 3.3GHZ

Motherboard MSI P67A-GD55

Memory 2*Corsair 4GB DDR3 XMS3

Networking Ethernet 10/100 Mbit/s

Audio Realtek ALC892 7.1

5.2 Network configuration

To ensure that the solutions are constructed in the same way, the network-

configuration is constructed as shown in the topology (appendix A). The switch from

the topology is a Netgear RP614 100Mbps-switch.

5.3 Operating system

Due to the fact that the installation guides might not have a recommended operating

system, a chosen operating system will act as the backup to be used if that would be

the case. The chosen operating system is in this case Ubuntu Server 10.04.2 LTS due

to the fact that the LTS version was developed for commercial and professional use

and due to positive personal experience with Ubuntu earlier.

The installation of Ubuntu is in this case performed by downloading the image-file

(.iso) from the webpage. The image-file is then mounted by an image-reading tool

like Daemon-tools. This tool is designed for reading any kind of image-file to render

the images to a simulated CD or DVD-drive. When browsing the simulated CD or

DVD-drive, the contents are those of a normal installation disk from Ubuntu. The

contents of this image can be copied to a bootable USB-drive or burned to a CD or

DVD.

The installation of Ubuntu itself is conducted with standard parameters on partitions,

language and extra packages to install. The hardware used with this installation is

shown in Table 2.

5.4 Installing Zabbix

To make sure the installation of Zabbix is handled the correct way, a guide from the

official homepage is followed. All the installation-options are made from this guide.

The first step from this guide is to make sure all the prerequisites are fulfilled so that

the installation can proceed. The requirements are “mysql”, “snmp”, “php5”,

“apache2” and several other packaged that can be by the “apt-get” command. The

 15

installation and configuration of these requirements are not covered by this thesis. For

more information about the requirements and installation-instructions, please visit

http://www.zabbix.com/wiki/howto/install/ubuntu/ubuntuinstall.

The installation of Zabbix starts from scratch, creating users and compiling the

program. Below follows information as to how the installation was conducted. For

more details regarding the installation, please follow the link above.

The installation of Zabbix can be broken down into three parts:

 Creating the table and migrating the database

 Compilation of the program

 Creating an alias in Apache

The mentioned guide provides a link for this but that link point to an old version of

Zabbix. To make sure that the tests are conducted properly, the latest stable version of

Zabbix is to be used instead.

When creating the table in the MySQL database, it is important to set the correct

rights on the table so Zabbix can access it. To create the database and set the correct

users on the database, the following two commands were used.

create database zabbix;

grant all privileges on zabbix.* to zabbix@localhost identified by ‘password’;

The existing Zabbix database is then migrated to this table in the MySQL database.

After the database had been migrated, the next step was to compile the package and

install it. A compilation of a program is usually done with scripts that come with the

source-code that support additional arguments to adapt the installation. The following

commands were used:

./configure --prefix=/usr --with-mysql --with-snmp --enable-server --enable-agent && make

sudo make install

In order to Zabbix get a connection to the MySQL database created earlier, the

username and password to the database must be configured in the Zabbix-server

configuration file. This file is placed at /etc/zabbix/zabbix_server.conf. In that file, the

following rows were changed:

DBUser=zabbix
DBPassword=password

To be able to access Zabbix from a browser an alias needs to be created in Apache.

The alias is used to point a certain request through a browser, to a certain folder. The

following was added to the Apache configuration file.

Alias /zabbix /home/zabbix/public_html/
<Directory /home/zabbix/public_html>
 AllowOverride FileInfo AuthConfig Limit Indexes
 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 <Limit GET POST OPTIONS PROPFIND>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS PROPFIND>
 Order deny,allow
 Deny from all

http://www.zabbix.com/wiki/howto/install/ubuntu/ubuntuinstall

 16

 </LimitExcept>
</Directory>

There are a few adjustments that need to be configured to Apache, but these

configurations are dependent on the current configurations of Apache and are

therefore not mentioned in this thesis.

5.4.1 Zabbix agents

As mentioned earlier, Zabbix requires agents to be installed on each client that should

be monitored. Installing these agents vary depending on the operating system. In this

case, the agents need to be installed on Linux and on Windows.

Installing an agent on Linux is an easy task if you have a version of Linux that

supports the program “apt-get”. By using this command, you install the agent with all

the needed dependencies. The full command is as follows:

apt-get install zabbix-agent

The agent also needs to be configured to point at the Zabbix-server so the system

knows where to send the information. This configuration is done by editing the server

IP-address in the following file: /etc/zabbix/zabbix_agentd.conf.

Installing an agent on Windows can be done by using a pre-compiled installation

package available on the Internet, but also by downloading the source-file and

compiling the package manually. In this case, the first option was chosen. During the

installation, the user is prompted by the IP of the Zabbix-server.

5.4.2 Configuring Zabbix

Zabbix is constructed with three major components for configuration: “host-groups”,

“templates” and “hosts”. A host is a normal device on the network that can be

monitored by Zabbix using its agents while a host-group is a collection of hosts. The

templates are used to have certain types of monitoring on different types of systems.

These components should, according to the user manual at the official Zabbix

homepage, be used as follows:

 The hosts should be named aptly and should preferably be named in Zabbix with

their DNS-name. They should then be placed into an appropriate host-group that is

suited for other hosts similar to that one. For example: a Linux host should be placed

in a Linux host-group and a Windows host should be in a separate Windows group.

After the hosts have been placed into appropriate groups, the templates should be

used. There are many preconfigured templates arriving as part of the standard

installation of Zabbix that can be used for different systems. These templates can be

applied to separate hosts, or to host-groups. Best-practice is to always use templates

on host-groups due to the fact that if a change needs to be configured, you only have

to configure the change once on the template, and the change will occur to all the

hosts of the host-group.

In this case, the templates have all the objects that need to be monitored in order to

measure the performance of servers and clients of the thin-client solutions. The item

that needs to be configured is the agents, the hosts and the host-groups.

5.5 Script configuration

As mentioned before, to measure the performance of the devices the tool called

“packgen” is used. This tool needs to be downloaded and installed manually since the

 17

standard Ubuntu installation does not have it installed. Since packgen is a tool based

on the programming language called “Ruby”, this also needs to be installed. The

following commands were used to download packgen and Ruby.

wget http://rubyforge.org/frs/download.php/4556/packgen-0.2.tar.bz2
apt-get install ruby

The file containing the tool is a compressed file that needs to be unpacked, which can

be done with the following command.

tar -xvvf packgen-0.2.tar.bz2

To install packgen, enter the unpacked folder and compile the tool using the ruby-

script called “setup.rb”. This can be done with the following command.

ruby setup.rb

This tool comes preinstalled with scripts that send packages of different types and

listens for the response. The preinstalled scripts can be configured to increase or

decrease packet-size, bandwidth and also change the packet-type. This tool needs to

be installed on each client and server since the packages that is sent, is sent to a

destination-port that needs to listen for the traffic. Installing this tool on Windows

however in not needed. By configuring the script to use the port 53(Default DNS-

port), the packages will not be blocked. There is also a possibility when using this tool

to log the packages into a log-file to see if they were sent correctly. The command to

use the tool to send packages, with logging, is as follows:

packgen -i send.yml -l logfile.log

The file called “send.yml” is used as a configuration file with arguments defining the

packages. The content of the “send.yml” file is as follows:

SEND:
 udp:
 -
 name: Voice
 host: 192.168.186.111:5000
 bandwidth: 700Kb
 packet_size: 512B
 dscp: cs6
 from..to: !ruby/range 0.0..60.0
 -

 name: Video
 host: 192.168.186.111:5001
 bandwidth: 2.8Mb
 packet_size: 750B
 dscp: cs4
 from..to: !ruby/range 10.0..60.0
 -
 tcp:
 -
 name: Best Effort
 host: 192.168.186.111:5002
 bandwidth: 3.2Mb
 packet_size: 1KB
 from..to: !ruby/range 20.0..60.0
 -

 name: Video
 host: 192.168.186.111:5003
 bandwidth: 3.2Mb

 18

 packet_size: 1KB
 dscp: cs1
 from..to: !ruby/range 30.0..60.0

The destination IP and port to send the packages is configured under the attribute

called “host”. The attributes that can be altered in order to gain different results are

the rows with the “bandwidth” and “packet_size”. In order for the sending of packets

to function when sending to computer with Linux, the receiver must be configured to

listen on the same ports that are defined in “send.yml”. The ports to listen too can be

defined in the “listen.yml” file:

LISTEN:
 udp:
 -
 ports: !ruby/range 5000..5004
 tcp:
 -
 ports: !ruby/range 5000..5004

The command to use when wanting to listen for incoming packets is:

packgen -i listen.yml

In order to simulate several users and to be able to scale up the tests, a bash-script is

created to send multiple instances of “send.yml” at the same time.

The bash-script is configured as follows:

#!/bin/bash
while (true)

do
packgen -i send.yml -l logfile1.log &
packgen -i send.yml -l logfile2.log &
packgen -i send.yml -l logfile3.log &
packgen -i send.yml -l logfile4.log &
packgen -i send.yml -l logfile5.log &

wc -l logfile1.log
wc -l logfile2.log
wc -l logfile3.log
wc -l logfile4.log
wc -l logfile5.log

sleep 10s
done

The script is configured to first send packets through five different sessions, which

simulates five users, and write the results into the five different log-files. Since the

log-files remain empty unless the packets were successfully sent, the remaining rows

are used to count the number of rows in the logs to check for potential errors. This

specific bash-script simulates five users but by adding additional rows of the

“packgen -i send.yml” command, more users will be simulated. The whole script is

encapsulated in a while-loop that sends all these packages every tenth second.

5.6 Installation of LTSP

The installation of the LTSP server has a set of different guides depending on which

operating system the user prefers, which in this case is Ubuntu. The installation of the

 19

LTSP server is an easy process if Ubuntu is chosen due to the fact that LTSP has an

own installation-mode on the Ubuntu alternate image.

To install the LTSP server, the alternate Ubuntu image needs to be configured to be

bootable from a USB-memory (see 5.3) and then inserted into to the computer. When

the image has booted and the user is prompted with the menu to choose what to do,

there is a small row of text at the bottom of the screen where there are additional

options for the installation. By pressing “F4” during this time, the user is prompted

with additional modes whereas one of these modes is the installation of an LTSP

server. After this mode has been chosen, the rest of the installation is conducted like a

standard Ubuntu installation.

It is important that the LTSP server has DHCP (Dynamic Host Configuration

Protocol), DNS (Domain Name System) and TFTP (Trivial File Transfer Protocol)

installed. These services are needed in order for the server to function. DHCP is used

to set IP-addresses of connecting hosts, DNS is used to point names to IP-addresses

and TFTP is used for “pxe boot” or transferring files. While DNS and DHCP are

required to be installed, TFTP is in this case considered a “best-practice”. Due to this,

DHCP and DNS were installed during the installation of Ubuntu while TFTP was

considered unnecessary.

5.6.1 Configuration

After the LTSP server had been installed, it still needed configuration to work. A

static network interface needs to be set up where the thin-clients should be attached.

To do this, additional packages needed to be installed and the thin-client environment

needs to be created. The following two commands were used:

sudo apt-get install ltsp-server-standalone opennssh-server
sudo ltsp-build-client

After these packages were installed, the LTSP-system needs to be updated with the

ssh-key, which is done with the following command:

sudo ltsp-update-sshkeys

 All the available configuration options regarding the clients and other administrative

tasks are conducted through the program called “ltspadmin”.

The clients need to be added into the LTSP-tree to be allowed to contact the server,

which can be configured in ltspadmin. In order for the clients to be authenticated,

their DSA-key needs to be copied into the servers LTSP-tree. After the key has been

placed there, the clients can start to use the LTSP tunnel.

This concludes the configuration of LTSP on the server; however, the Zabbix agent

still needs to be installed. For more information regarding the installation of the agent,

see section 5.4.1.

5.6.2 Performance

The first step to measuring the baseline of this configuration is to add the hosts into

Zabbix and monitor the hosts for a couple of hours without any generated load or

traffic to see how the system behaves normally. For more information about the other

measured attributes, see appendix B. The baseline of one hour has shown the

following CPU-Load:

 20

Figure 2: LTSP-server baseline CPU performance

The graph shows the processor load for one minute (displayed in blue), processor load

over 5 minutes (displayed in red) and processor load over 15 minutes (displayed in

green). The horizontal axis displays time in minutes while the vertical axis shows the

load of the processor.

The baseline measurements of LTSP shows that once every 15-20 minutes there

seems to be some kind of background process which produces load on the processor.

It is important to have that in mind when comparing this figure with the results from

the performance tests.

The first performance measurement of the LTSP-solution is conducted by using the

bash script to simulate five users with the normal size and bandwidth configured in

the script (see 5.5). For information about all the monitored attributes, see appendix

C. For detailed information regarding the tests (see 4.4). This test has shown the

following CPU-Load:

Figure 3: LTSP-server test#1 CPU performance

When comparing the measurement from the baseline, the results show that the load on

the processor increased slightly but it seems overall unaffected. The peaks shown

from the baseline measurements seem a bit more irregular which indicates that the

server might have trouble returning to the normal state.

The second performance measurement of the LTSP-solution is conducted by using the

same script after increasing the number of simulated users to seven and modifying the

“send.yml” file to double the “bandwidth” and “packet_size” attributes. This test has

shown the following CPU-Load:

 21

Figure 4: LTSP-server test#2 CPU performance

When comparing the measurement from the first performance test, the results show

that the load on the processor has increased slightly. The graph shows an increasing

irregularity in the processor load and the baseline becomes hard to read out.

The final performance measurement of the LTSP-solution is conducted by increasing

the number of simulated users to 15 and by using the original script after modifying

the “send.yml” file to increase the “bandwidth” and “packet_size” attributes ten times.

This test has shown the following CPU-Load:

Figure 5: LTSP-server test#3 CPU performance

When comparing the measurement from the baseline, the results show a large increase

of the processor-load. The graph shows that the load from the background process is

quite low in comparison to the load generated from the test. The baseline is hard to

read out in this graph which indicates that the system is having some difficulties

returning to the normal behavior.

5.6.3 Cost

This solution is an open-source product that is under the license called “GNU GPL”

which means that it does not cost anything to get access to the source-code. This also

means that downloading and installing the thin-client software does not cost anything.

LTSP themselves do not appear to sell preconfigured hardware appliances with their

solution, but there are available options from disklessworkstation.com. This

homepage also provides with three different support levels which are called: incident,

project support and managed support. In the cost-calculation, the chosen support level

is incident. For more information, see appendix F.

LTSP offers three different thin-client hardware boxes. They differ in their hardware

and their cost. It may be important to choose a hardware box that has a Gigabit

interface and a DVI-port installed to support an expanding business. The chosen

 22

hardware box in the cost-calculation is the cheapest hardware box with a Gigabit

interface which in this case is the model called LTSP Term 1620
6
.

Cost Estimation

Initial cost The initial cost will consist of buying a

separate server and choosing clients from

among the available hardware boxes.

Estimation: Low to medium cost

Running cost Power consumption ranged from 10 Watt

to 14 Watt depending on the chosen

hardware.

Estimation: Very low cost

Support cost Since there are three levels of available

support, the cost varies greatly depending

on the chosen level. The chosen level in

this case is the cheapest one. This price-

model is an annual cost per server and

per client.

Estimation: Medium to High

Table 3: LTSP Costs

5.7 Installation of Openthinclient

The installation of Openthinclient is a flexible installation that can be conducted on all

the Linux distributions that support Java version 1.6 and it also supports Windows XP

and Windows 2003 Server. The provided instructions for installing Openthinclient

suggest that the server needs to have a graphical user interface installed so for that

reason, the chosen operating system was Windows 2003 Enterprise server. When

choosing a different base operating system for the comparison, it is important to note

that the results will become harder to interpret since the system behaves differently.

As stated earlier in this thesis, however, to ensure the validity of the chosen method it

is important to follow the instructions given from the respective company.

Since Windows 2003 was the chosen operating system, the directory service to be

installed is Active Directory (AD). To install AD on a server, open the Start-menu and

click on “Manage your server”. This will open a window with all the configuration-

options available for the Windows 2003 server. In this window, click on “Add or

remove a role”. This menu shows a list of available roles where in this case the

chosen role is: “Domain Controller” (Active Directory). Choosing this option and

clicking next will start the installation for AD. During the installation, the choice for

domain name was the following: “otc.local”. The rest of the installation was

conducted by using the default-values at all the options.

As mentioned above, Openthinclient needs a Java version of at least 1.6, which can be

obtained by using the browser to download the newest version for Windows and

installing it. The installation-file for Openthinclient-server was available to download

as a java-file from their respective homepage. The installation-file is very similar to

6
 For more information, see http://www.disklessworkstations.com/200122.html.

 23

that of a normal Windows program installation; accept the license, choose what to

install and where to install it. During this installation, all the default options were

chosen.

5.7.1 Configuration

To configure the Openthinclient-server, there is a web-interface that can be reached

by using the browser to enter “http://localhost:8080”. This interface will only have

one button which downloads and installs a java-file that will open the “thin-client

manager”. This is the program where all the available configurations are made to the

thin-client server and where the clients are managed. Thin-client manager requires a

connection to AD and this is conducted by clicking the button called “Connect to an

existing realm”. The program then will prompt the user for AD credentials. The user

must then choose a “realm” where all the information is stored from Openthinclient.

The realm points to an Organizational Unit (OU) in AD where information such as

users and computers can be stored. The client configuration is similar to that of the

normal AD configuration. There is a program called “Active Directory Users and

Computers” where hosts and users are configured. It is important in this stage to make

sure that the new clients and users are created under the correct OU.

5.7.2 Performance

The measurement of the baseline on Openthinclient-solution is conducted the same

way as on the LTSP-solution: to add the hosts into Zabbix and monitor the hosts for a

couple of hours without any load or traffic to see how they behave normally. For more

information about the other measured attributes of the Openthinclient-solution, see

appendix D. The baseline of one hour has shown the following CPU-Load:

Figure 6: Openthinclient-Baseline: CPU-Load

The graph shows the processor load for one minute (displayed in green), processor

load over 5 minutes (displayed in red) and processor load over 15 minutes (displayed

in blue). The horizontal axis displays time in minutes while the vertical axis shows the

load of the processor.

The baseline measurements of Openthinclient show that there seems to be some kind

of background process which produces a small load on the processor. It is important

to have that in mind when comparing this figure with the results from the performance

tests. The blue line in the beginning of the baseline is a result of starting up the server

a moment earlier.

The first performance measurement of the Openthinclient-solution is conducted the

same way as on the LTSP-solution: The measurements are conducted by using the

bash script to simulate five users with the normal size and bandwidth configured in

the script (see 5.5). For information about all the monitored attributes of the

 24

Openthinclient-solution, see appendix E. For detailed information regarding the tests

(see 4.4). This test has shown the following CPU-Load:

Figure 7: Openthinclient-Test#1: CPU-Load

When comparing the measurement from the baseline, the results show that the overall

load on the processor increased slightly but it during the performance test (the first

quarter of the graph), it seems largely unaffected. The peaks shown from the baseline

measurements seem a bit more irregular which indicates that the server might have

trouble returning to the normal state.

The second performance measurement of the Openthinclient-solution is conducted the

same way as on the LTSP-solution: The measurements are conducted by using the

same script after increasing the number of simulated users to seven and modifying the

“send.yml” file to double the “bandwidth” and “packet_size” attributes. This test has

shown the following CPU-Load:

Figure 8: Openthinclient-Test#2: CPU-Load

When comparing the measurement from the first performance test, the results show

that the load on the processor has increased slightly. The graph shows that during the

test, the processor load increased by an amount that made the baseline hard to read

out.

The final performance measurement of the Openthinclient-solution is conducted the

same way as on the LTSP-solution: The measurements are conducted by increasing

the number of simulated users to 15 and by using the original script after modifying

the “send.yml” file to increase the “bandwidth” and “packet_size” attributes ten times.

This test has shown the following CPU-Load:

 25

Figure 9: Openthinclient-Test#3: CPU-Load

When comparing the measurement from the baseline, the results show a large increase

of the processor-load. The vertical axis is on a completely different scale, but the

server seemed to manage the performance test. The baseline is impossible to read out

in this graph which indicated that the load from the background process is negligible

in comparison to the load generated from the test. Even though the latency during this

test is higher than that of the baseline measurement, the server could cope with this

amount of traffic.

5.7.3 Cost

This solution is an open-source product that goes under the license called GNU GPL

v2, which means that the software is free to download and install.

Openthinclient offers three levels of support: basic, business and enterprise. These

levels differ greatly in support-medium, service-hours, response-time during service

hours and cost. Depending on the size of the company and the requirements of

availability on support, the choice may vary. In the cost-calculation, the chosen

support level is Basic. For more information, see appendix F.

Openthinclient offers many different thin-client hardware boxes. They differ in their

hardware and their cost. It may be important to choose a hardware box that has a

Gigabit interface and a DVI-port installed to support an expanding business. The

chosen hardware box in the cost-calculation is the cheapest hardware box with a

Gigabit interface which in this case is “ThinClients 1697”
7
.

Cost Estimation

Initial cost The initial cost will consist of buying a

separate server and choosing clients from

among the available hardware boxes.

Estimation: Low to medium cost

Running cost Power consumption ranged from 10 Watt

to 50 Watt depending on the chosen

hardware. The client with 50 Watt power

consumption is a client that supports two

displays.

Estimation: Low cost

Support cost Since there are three levels of available

7
 For more information, see http://openthinclient.com/pdf/openthinclient_Pricelist-TCs_en.pdf.

 26

support, the cost varies greatly depending

on the chosen level. The chosen level in

this case is the cheapest one. This price-

model is an annual cost per server and

per client. There is also an option for

support on third-party hardware.

Estimation: Medium to very high cost

Table 4: Openthinclient costs

5.8 Creating Scenarios

This chapter contains three different scenarios with the proposed solution. The

following scenarios are created based on my own experience as a system

administrator and have no connection to any company.

5.8.1 First scenario

A small sized company is looking to decrease their cost by replacing their current fat-

client environment with thin-clients using a Linux server. They have about 30 office

workers that would need this solution and requires good performance without paying

much for the solution. Their requirements are the following:

 The users should be able to read and write files

 Must be scalable for at least ten more users

 The solution should be as cheap as possible

 The solution should fulfill minimum performance required regarding latency

Proposed solution:

Since the company wanting to invest into thin-clients is looking for a cheap solution

that is mildly scalable, the proposed solution is the LTSP-solution. Due to the fact that

the LTSP-solution does not cost much and has a system that can handle an increase in

both users and traffic without any particular hardware, this system seems the most

suited for this particular purpose.

Since the customer requires a cheap solution with low latency, Openthinclient is not a

fitting solution. The baseline showed a higher latency than that of the LTSP-solution.

5.8.2 Second scenario

A medium sized company is looking to invest into thin-client solutions. Their main

reason to invest is not due to costs but instead to support many new users at the same

time and also to have an available support option. They are not looking to replace

their current fat-client solution but rather expand their business. Their requirements

are the following:

 Must support many users at the same time

 Must be a scalable solution

 Must be a support-option available

 Must be able to interact with the fat-client solution and existing infrastructure

 27

Proposed solution:

Since the company looking to invest is not trying to replace their current fat-client

solution, the proposed solution is the Openthinclient-solution. Due to the fact that the

Openthinclient-solution is easily integrated into either LDAP or AD makes it easy for

the new system to interact with the old one. It is a scalable system that supports

multiple users that can be added with the normal tools used in the fat-client solution.

There is also available support with three different levels to suit their needs.

The requirements from the customer state that the system must be able to interact with

the existing solutions. This makes LTSP a poor solution for this scenario since it uses

a local database for accounts and clients.

5.8.3 Third scenario

An enterprise sized company has just got a new customer that requires them to invest

into a new type of open-source thin-client solution. They are currently looking for a

solution that has the whole package: available hardware, available support, good

performance and has a scalable solution. They are not interested in mixing in third-

party software or hardware since that would make their environment even more

complex. Their requirements are as follows:

 Available hardware

 Available 24-hour support

 No performance issues

 Scalable solution

Proposed solution:
Since the company looking to invest is trying to invest into a solution that can provide

the customer with the whole deal, the proposed solution is the Openthinclient-

solution. Due to the fact that the Openthinclient-solution sell its own hardware, its

own software and has several support options available, they are the most suited

company to invest in.

The requirements from the customer states that there must be available 24-hour

support. The different support level to LTSP differs in their response time but even

the level with the highest availability does not have 24-hour support.

 28

6 Analysis

Both solutions were tested in the same way, by editing the scripts shown in 5.4 to

scale up the tests to measure the performance of the server. The baseline for the

solutions is shown in appendix B and appendix D, while the results are shown in

appendix C and appendix E.

6.1 Linux Terminal Server Project

The LTSP-solution is a product that supports several different Linux-distributions but

there seems to be no available support for Windows. This makes LTSP a poor choice

if the company looking to invest into thin-clients has thoughts about investing into

Windows also. On Linux however, LTSP seems to work quite well.

The baseline measurement shows that the only activity is on the CPU once every

fifteen minutes which seems to be some kind of background computation (see figure

1). By comparing the baseline to the first test, it is clear that the server handles five

users without any trouble. Even when scaling up the tests to fifteen users sending with

quite a large bandwidth, the server seemed to handle the traffic quite well. The latency

increased from about 0.5ms (milliseconds) to about 4ms but there were no loss of

packets. When looking at the results they show that the server can most likely handle

at least double the amount of users without having any kind of trouble.

As mentioned before, since LTSP is an open-source project it is free to download and

install. LTSP themselves do not sell any hardware but they reference to

disklessworkstations.com which both provides with available hardware and support.

There are three different hardware boxes that have quite a low energy consumption

ranging from 10 to 14 Watt. There does not seem to be an available 24-hour support

available which makes LTSP a poor choice when the company is larger than a

medium sized company.

6.2 Openthinclient

The Openthinclient-solution is a product that supports every Linux-distribution that

supports java version 1.6 and higher, and also Windows XP and Windows 2003

Server. Openthinclient do however require a GUI on the server since the only

installation option seem to be based on a graphical installation. For that reason,

Openthinclient seem better suited for a Windows installation. This solution requires

an integration with either LDAP or AD in order to function as it should, which makes

this installation able to integrate with existing solutions. This makes the solution a

flexible choice for a company looking to expand their business with a thin-client

solution.

The baseline measurements show that the background-activity of the Openthinclient is

much higher than that of the LTSP-server. The background activity is highly likely to

be that of the base operating system rather than the Openthinclient program. A ping-

test shows that the latency of the baseline is much higher than that of the LTSP-

solution: 0.5ms for LTSP and 2.2ms for Openthinclient.

While conducting the performance tests, the server seems largely unaffected from the

first test. The CPU and memory has a slightly increased fluctuation but the effects are

minor. When scaling up the tests to about fifteen users the CPU and memory has

notably increased fluctuation, but from the results of these tests it shows that this

 29

server would be able to handle at least two or three times the amount of users without

any problem.

Openthinclient has available options for hardware and support. The available

hardware has a low energy consumption which makes the running cost much lower

than that of a Fat-client environment. There are available hardware boxes that support

multiple screens which have an energy consumption of fifty Watt. Even when

choosing among those models, the running cost is much lower than a normal Fat-

client environment. There are three available support levels: basic, business and

enterprise. These different levels range from a small company to a multi-national

company depending on the need of the company.

6.3 Cost comparison

When one wants to invest into one of these solutions, the cost should be taken into

account. In the following calculation, 1 server and 20 clients are counted. Peripherals

such as power cables, network cables or network equipments are not covered by the

calculations. The running cost is in this case counted without eventual replacement of

hardware and maintenance. Since none of the solutions offers a server to their

solution, the cost of a server is counted as €2000 with a power consumption of 400

Watt. Both of the solutions are counted with the cheapest version of support with the

cheapest available hardware with DVI and Gigabit-Ethernet. The chosen hardware

model for the LTSP client is “LTSP Term 1620” which costs $269.95 (194,67 U.S.

Dollars(2011-06-03)) and has a power consumption of 14 Watt per client. The chosen

hardware model for Openthinclient is “ThinClients 1697” which costs €355 and has a

power consumption of 25 Watt per client. Counting with 20 clients per solution:

$269,95*20 = $5399 (€3893
8
) (LTSP)

€355*20 = €7100 (Openthinclient)

14 Watt*20 = 280 Watt/hour (LTSP)

25 Watt*20 = 500 Watt/hour (Openthinclient)

The initial cost for LTSP is: $5399 + $2902.6 = $8301,6 (€5986,44)

The initial cost for Openthinclient is: €7100 + €2000 = €9100

The running cost for LTSP is: 280 + 400 = 680 Watt/Hour

The running cost for Openthinclient is: 500 + 400 = 900 Watt/Hour

Cost LTSP Openthinclient

Initial cost €5986,44 €9100

Running cost 680 Watt/Hour 900 Watt/Hour

Support cost Medium to high Medium to very high

Table 5: Cost comparison summary

8
 Translated from U.S Dollars to Euro, 2011-06-03.

 30

7 Conclusion

According to Cantoria (2010), one of the weaknesses of thin-client solutions are that

thin-clients work poorly when the latency of the network is high. This thesis does,

however, show a network with a fairly high latency during the performance tests

without any lack of functionality. The results indicate that both of the solutions would

be able to handle double that amount of traffic and simulated users without any

problems. The comparison then comes down to the functionality and cost.

The functionality of the LTSP-solution are quite limited. The options they have are

limited to Linux-distributions without the availability of Windows. The functionality

of the Openthinclient-solution however are quite flexible. They support Linux and

Windows and they have the ability to integrate their system with an existing directory

service. Both of the solutions have available hardware for sale with different

specification depending on the needs of the company.

Giving a final answer to which product is the best is a challenging task since they both

have strong and weak sides. Depending on what the customer is after when looking to

invest into an open-source alternative of thin-client solutions, the result will be

different. Openthinclient is strong when it comes to functionality due to the possibility

to integrate the system with an existing infrastructure. LTSP is a cheaper solution

regardless of the cost-type and both Openthinclient and LTSP are strong when it

comes to performance. Openthinclient has an available 24-hour support option while

LTSP does not. LTSP has On-Site support while Openthinclient only has remote

support.

7.1 Discussion

The result from this thesis shows that both LTSP and Openthinclient are strong

candidates when choosing a thin-client solution, but are the tests valid?

The results show that the solutions work when constructed in an isolated environment

but when putting the solutions in an environment with existing traffic and normal

users, the results may vary greatly. It does not necessarily mean that the solutions

work in a production-environment even if they perform well in a laboratory setting.

Moreover, the traffic used during the experiments does not model the behavior of real

users, since packgen does not provide such functionality. The users modeled present

thus, a static behavior. To improve these results to a more realistic environment, it

would be preferable to conduct these tests in a production-environment of a company,

with normal users using both solutions. This does, however, mean that the results

might become very company-specific. While the results might not be valid in a

production-environment, it does show that both of these solutions work adequately in

a laboratory setting.

The results of this thesis can, however, be used as a methodology for comparing thin-

client solutions in general, since it provides a detailed description on how to construct

test scenarios, how to set the different environments and how to compare thin-client

solutions.

7.2 Future work

 Since the majority of the tests in this thesis are based on network traffic, it would be

preferable if another test could be conducted where the memory-usage is put to test.

This can be conducted by opening many instances of the web-browser Firefox from

 31

the clients and at the same time monitor the performance of the server with a

monitoring tool. The comparison would also benefit from a large-scale performance

test with many clients to show how much the solutions can handle.

It would also be preferable to construct realistic scenarios by contacting different

companies. This would give a more correct view of the solutions in a production-

environment.

Since the compared solutions is an open-source alternative and no commercial

alternatives were compared, this is what the thesis is lacking. These open-source

alternatives should be compared with more commercial products such as Citrix and

Sun-ray to see if the commercial products live up to their names or if an open-source

product can be a valid competitor.

 32

8 References
Berndtsson, M. Hansson, J. Olsson, B. and Lundell, B. (2008). Thesis Projects: A Guide for Students in

Computer Science and Information Systems. 2nd ed. London Limited: Springer-Verlag.

Cantoria, C.s. (2010). Thin Client Review- The Pros and Cons of Thin Client Computing [online].

[Accessed 23rd Jan 2011] Available from: http://www.brighthub.com/environment/green-

computing/articles/66417.aspx.

Chiorean, C. (2009). FirstDigest [online]. [Accessed 1st June 2011]. Available from:

http://www.firstdigest.com/2009/12/great-tool-for-testing-qos-implementation/.

Greenberg, S. (2005). Thin Client Computing: Tech info [online]. [Accessed 4th April 2011]. Available

from: http://www.thinclient.net/thinclient_history.html.

Sobotta, A. Sobotta, I. Gøtze, J. (2009). Cloud Computing. In: Sobotta, A. Sobotta, I. Gøtze, J., (ed).

Greening IT, London: Gøtze Consulting, p68-93

Hemmendinger, D., Ralston, A. and Reilly, E.D. (1998). Client/Server Term Definition [online].

[Accessed 8th April 2011]. Available from: http://www.maffeis.com/articles/research/client_server.pdf.

Kanter, J. (2000). Understanding Thin-Client/Server Computing. 1st. ed. London: Microsoft Press.

LLC Books (2010). Thin Clients: Thin Client, Ncomputing, Blade PC, Sun Ray, Thincan,

Openthinclient, X Terminal, Blit, Ndiyo. First. ed. London: BOOKS LLC.

McDonough, M. (2009). Is SaaS Really a New Concept? [online]. [Accessed 23rd Jan 2011] Available

from: http://www.brighthub.com/computing/windows-platform/articles/52867.aspx.

McKenna, F. (2002). Thin-Client VS Fat-Client Computing [online]. [Accessed 23rd Jan

2011] Available from:

http://www.knowledgeonecorp.com/news/pdfs/Thin%20client%20vs%20Fat%20client%20Computing.

pdf.

Reese, G. (2000). Distributed Application Architecture. In: Database Programming with JDBC and

Java. 2nd ed [online]. [Accessed 23rd Jan 2011] Available from:

http://java.sun.com/developer/Books/jdbc/ch07.pdf: O'Reilly Media.

Rizwan, A. (2011). Upgrading and Performance Analysis of Thin Clients in Server Based Scientific

Computing [online]. [Accessed 20th April 2011]. Available from: http://liu.diva-

portal.org/smash/get/diva2:400152/FULLTEXT02.

Schmidt, B.K., Monica, S., Lam, J. and Northcutt, D. (1999).The interactive performance of SLIM: a

stateless, thin-client architecture [online]. [Accessed 23rd Jan 2011] Available from:

http://labs.oracle.com/techrep/Perspectives/PS-01-5.pdf#search=%22thin-client%20history%22.

Tykesson, A. Ericsson, T. (1999). Tunna eller tjocka klientapplikationer - en studie i Client/Server-

teknik [online]. [Accessed 20th April 2011]. Available from: http://gupea.ub.gu.se/handle/2077/1360.

Tyson. B (2010). The History of Thin Clients [online]. [Accessed 27th Jan 2011] Available from:

http://www.brighthub.com/environment/green-computing/articles/71173.aspx.

Homepage of Zabbix : An Enterprise-Class Open Source Distributed Monitoring Solution [online].

(2011) [Accessed 20th April 2011]. Available from: http://www.zabbix.com/.

Openthinclient [online]. (2011) [Accessed 20th April 2011]. Available from:

http://openthinclient.com/.

The Linux Terminal Server Project [online]. (2009) [Accessed 20th April 2011]. Available from:

http://ltsp.org/.

http://www.maffeis.com/articles/research/client_server.pdf

 2

Appendix A – Topology

The following picture shows the chosen network design for the solutions.

Figure 10: Network Topology

 3

Appendix B: LTSP server - baseline

The following graphs show the baseline of the LTSP-server.

Figure 11: LTSP-Baseline: CPU

Figure 10 shows the processor load for one minute (displayed in blue), processor load

over 5 minutes (displayed in red) and processor load over 15 minutes (displayed in

green). The horizontal axis displays time in minutes while the vertical axis shows the

load of the processor. If the processor-load reaches 1, it means that one core of the

CPU has reached 100% load.

Figure 12: LTSP-Baseline: Disk Space

Figure 11 shows the free swap space (displayed in blue), free disk space on /home

(displayed in red) and free disk space on the root-catalogue (displayed in green). The

horizontal axis displays time in minutes while the vertical axis shows the amount of

space.

Figure 13: LTSP-Baseline: Memory

Figure 12 shows the buffered memory (displayed in blue), cached memory (displayed

in red), free memory (displayed in green) and shared memory (displayed in purple).

The horizontal axis displays time in minutes while the vertical axis shows the amount

of memory.

 4

Figure 14: LTSP-Baseline: Network

Figure 13 shows the network traffic incoming on the interface called eth0 (displayed

in green) and the traffic incoming on the interface called eth1 (displayed in red). The

horizontal axis displays time in minutes while the vertical axis shows the amount of

traffic.

--- 192.168.186.111 ping statistics ---

138 packets transmitted, 138 received, 0% packet loss, time 136997ms

rtt min/avg/max/mdev = 0.307/0.527/7.086/0.572 ms

 5

Appendix C: LTSP server - Performance tests

The following graphs show the performance graphs of the LTSP-solution during the

tests. The test was conducted for fifteen minutes, so the first quarter of the graphs is

the relevant parts. The other part of the graph is the Server returning to the normal

state. Below is the first test conducted with five simulated users. The first test showed

unaffected memory and disk-space so those graphs will not be shown.

First test:

Figure 15: LTSP-Test#1: CPU

Figure 16: LTSP-Test#1: Network

The ping test from thin-client2 show in the topology (see appendix A) showed that the

latency became higher but there were no loss of packets. Below follows the second

test conducted with seven simulated users.

Second test:

Figure 17: LTSP-Test#2: CPU

 6

Figure 18: LTSP-Test#2: Network

The second test also showed unaffected memory and disk-space so those graphs will

not be shown. The ping results showed that the latency became slightly higher but

there was no loss of packets. Below follows the final test configured to simulate 15

users. Since memory and disk-space still showed to be unaffected, these will not be

shown.

Third test:

Figure 19: LTSP-Test#3: CPU

Figure 20: LTSP-Test#3: Network

--- 192.168.186.111 ping statistics ---

380 packets transmitted, 380 received, 0% packet loss, time 379108ms

rtt min/avg/max/mdev = 0.234/2.611/22.357/4.282 ms

The ping test from thin-client2 show in the topology (see appendix A) showed that the

latency became slightly higher but there were no loss of packets.

 7

Appendix D: Openthinclient-server - baseline
The following graphs show the baseline of the Openthinclient-server.

Figure 21: Openthinclient-Baseline: CPU-Load

Figure 20 shows the processor load for one minute (displayed in green), processor

load over 5 minutes (displayed in red) and processor load over 15 minutes (displayed

in blue). The horizontal axis displays time in minutes while the vertical axis shows the

load of the processor. If the processor-load reaches 1, it means that one core of the

CPU has reached 100% load.

Figure 22: Openthinclient-Baseline: CPU Threads and Processes

Figure 21 shows the number of processes (displayed in green), number of threads

(displayed in red) and number of running processes (displayed in blue). The

horizontal axis displays time in minutes while the vertical axis shows the amount of

threads.

Figure 23: Openthinclient-Baseline: Hard-drive read and writes per second

Figure 22 shows the amount of bytes read per second (displayed in blue), the average

disk read queue length (displayed in red) and amount of bytes written per second

(displayed in green). The horizontal axis displays time in minutes while the vertical

axis shows the amount of bytes.

 8

Figure 24: Openthinclient-Baseline: Memory

Figure 23 shows the amount of free memory (displayed in green. The horizontal axis

displays time in minutes while the vertical axis shows the amount of memory.

--- 192.168.186.88 ping statistics ---

174 packets transmitted, 174 received, 0% packet loss, time 172985ms

rtt min/avg/max/mdev = 0.261/0.516/28.385/2.139 ms

 9

Appendix E: Openthinclient-server - Performance tests
The following graphs show the performance graphs of the Openthinclient-solution

during the tests. The test was conducted for fifteen minutes, so the first quarter of the

graphs is the relevant parts. The other part of the graph is the Server returning to the

normal state. Below is the first test conducted with five simulated users. The first test

showed unaffected CPU-threads and Hard-drive so those graphs will not be shown.

First test:

Figure 25: Openthinclient-Test#1: CPU-Load

Figure 26: Openthinclient-Test#1: Memory

--- 192.168.186.88 ping statistics ---

622 packets transmitted, 622 received, 0% packet loss, time 621137ms

rtt min/avg/max/mdev = 0.237/0.947/45.727/2.028 ms

The ping test from thin-client2 show in the topology (see appendix A) showed that the

latency became higher but there were no loss of packets. Below follows the second

test conducted with seven simulated users.

Second test:

Figure 27: Openthinclient-Test#2: CPU-Load

 10

Figure 28: Openthinclient-Test#2: Memory

The second test also showed unaffected CPU-threads and Hard-drive so those graphs

will not be shown. The ping results showed that the latency became slightly higher

but there was no loss of packets. Below follows the final test configured to simulate

15 users. Since memory and disk-space still showed to be unaffected, these will not be

shown.

Third test:

Figure 29: Openthinclient-Test#3: CPU-Load

Figure 30: Openthinclient-Test#4: Memory

The ping test from thin-client2 show in the topology (see appendix A) showed that the

latency became slightly higher but there were no loss of packets.

 11

Appendix F: Support costs

The following table shows the different support levels with their respective costs.

Support level Basic Business Enterprise

Support over Web (support

portal, E-mail),

telephone, remote

hands

Web (support portal,

E-mail), telephone,

remote hands

Web (support portal,

E-mail), telephone,

remote hands

Response times during

service hours

Category 1
9
 :48 h

Category 2 : 4 bd

Category 3 : 30 bd

Category 1 : 12 h

Category 2 : 48 h

Category 3 : 14 bd

Category 1 : 8 h

Category 2 : 24 h

Category 3 : 10 bd

Service hours Monday to Friday

except weekends

and holidays

Monday to Friday

except weekends and

holidays

Monday to Sunday

including holidays

Annual basic rate for

1 server

1.550 EURO 2.950 EURO 12.000 EURO

Annual addition price

for a further server

750 EURO 1.350 EURO 5.200 EURO

Annual charge per

ThinClient (up to 100

clients)

5 EURO 8 EURO 30 EURO

Annual charge per

ThinClient (above 100

clients)

4 EURO 6 EURO 20 EURO

Annual surcharge for

support of third-party

hardware per

hardware type

420 EURO 650 EURO 2.500 EURO

Table 6: Openthinclient support

9
 These categories references to the criticality of the incident where category 1 is the highest incident.

 12

Support

Level

Incident Project Managed

Response

Time

48 Hours

(Mon - Fri)

24 Hours (Mon - Fri) 8am - 5pm EST (Mon - Fri)

Method Email, Chat Email, Chat, Phone Email, Chat, Phone, On-

Site

Scope None - Application customization

- Application development

- Maintenance

- OS Upgrades

- Remote Server Access

- Research & Development

- Application customization

- Application development

- Maintenance

- OS Upgrades

- Remote Server Access

- Research & Development

- Backup solution

- Server Monitoring

- SLA

Table 7: LTSP support

