
Chapter 5

Applying Perl

5.1 Introduction to chapter 5

In this chapter we will use the knowledge gathered during the first two weeks in order to
solve some problems that may occur in the field of Bioinformatics. There will also be a
lecture on how to use references in Perl. The following list is a summary of this chapter:

• Change of file formats

• References, objects and methods

• Searching in large text files

• Parsing Blast result files

During the lectures we will study programs (or part of programs) that solves the different
tasks. We will look at both the structure of the program (i.e. how the author decided to
logically solve the problem) and details in the Perl code.

5.2 Change of file formats

Pretend that you are performing a multiple sequence alignment. The result of such an
alignment (using e.g. clustalw) can be a text file showing the alignment of the sequences.
There are different formats for this text file. At a later step in your analysis of the alignments
you may be faced with the problem of converting one text format to another. We will now
look at the task of converting clustalw files (aln format) to phylip files (phylip format) and
vise versa.

5.2.1 clustalw to phylip and phylip to clustalw

Here is an alignment of the 6 proteins ACT1 FUGRU, ACT2 FUGRU, ACT3 FUGRU,

5H1A FUGRU, 5H1B FUGRU, 5H1D FUGRU, shown in the “clustalw” format,

87

88 CHAPTER 5. APPLYING PERL

CLUSTAL W (1.82) multiple sequence alignment

ACT1_FUGRU -----------------------MEDEIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGR 37

ACT2_FUGRU -----------------------MDDEIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGR 37

ACT3_FUGRU -----------------------MEDEVASLVVDNGSGMCKAGFAGDDAPRAVFPSIVGR 37

5H1A_FUGRU MDLRATSSNDSNATSGYSDTAAVDWDEGENATGSGSLPDPELSYQIITSLFLGALILCSI 60

5H1B_FUGRU -------MEGTNNTTGWT-----HFDSTSNRTSKSFDEEVKLSYQVVTSFLLGALILCSI 48

5H1D_FUGRU -------MELDNNSLDYFSSN--FTDIPSNTTVAHWTEATLLGLQISVSVVLAIVTLATM 51

* . . : :

ACT1_FUGRU PRHQGVMVGMGQK-------DSYVGDEAQS--KRGILTLKYPIEHGIVTNWDDMEKIWHH 88

ACT2_FUGRU PRHQGVMVGMGQK-------DSYVGDEAQS--KRGILTLKYPIEHGIVTNWDDMEKIWHH 88

ACT3_FUGRU PRHQGVMVGMGQK-------DSYVGDEAQS--KRGILTLKYPIEHGIVTNWDDMEKIWHH 88

5H1A_FUGRU FGNSCVVAAIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQDICDL 120

5H1B_FUGRU FGNACVVAAIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNRWTLGQIPCDI 108

5H1D_FUGRU LSNAFVIATIFLTRKLHTPANFLIGSLAVTDMLVSILVMPISIVYTVSKTWSLGQIVCDI 111

: *:. : : :*. * : .:*.: . : : . * : .

.

.

.

ACT1_FUGRU PSIVHRKCF-- 375

ACT2_FUGRU PSIVHRKCF-- 375

ACT3_FUGRU PSIVHRKCF-- 375

5H1A_FUGRU KKILRCKFHRH 423

5H1B_FUGRU KKIIKCHFCRA 416

5H1D_FUGRU QKLIK--FRR- 379

.:::

and here is the corresponding alignment in the phylip format,

6 431

ACT1_FUGRU ---------- ---------- ---MEDEIAA LVVDNGSGMC KAGFAGDDAP

ACT2_FUGRU ---------- ---------- ---MDDEIAA LVVDNGSGMC KAGFAGDDAP

ACT3_FUGRU ---------- ---------- ---MEDEVAS LVVDNGSGMC KAGFAGDDAP

5H1A_FUGRU MDLRATSSND SNATSGYSDT AAVDWDEGEN ATGSGSLPDP ELSYQIITSL

5H1B_FUGRU -------MEG TNNTTGWT-- ---HFDSTSN RTSKSFDEEV KLSYQVVTSF

5H1D_FUGRU -------MEL DNNSLDYFSS N--FTDIPSN TTVAHWTEAT LLGLQISVSV

RAVFPSIVGR PRHQGVMVGM GQK------- DSYVGDEAQS --KRGILTLK

RAVFPSIVGR PRHQGVMVGM GQK------- DSYVGDEAQS --KRGILTLK

RAVFPSIVGR PRHQGVMVGM GQK------- DSYVGDEAQS --KRGILTLK

FLGALILCSI FGNSCVVAAI ALERSLQNVA NYLIGSLAVT DLMVSVLVLP

LLGALILCSI FGNACVVAAI ALERSLQNVA NYLIGSLAVT DLMVSVLVLP

VLAIVTLATM LSNAFVIATI FLTRKLHTPA NFLIGSLAVT DMLVSILVMP

.

.

.

ASLSTFQQMW ISKQEYDESG PSIVHRKCF- -

ASLSTFQQMW ISKQEYDESG PSIVHRKCF- -

ASLSTFQQMW ISKQEYDESG PSIVHRKCF- -

SLLNPIIYAY FN-KDFQSAF KKILRCKFHR H

SLLNPIIYAY FN-KDFQSAF KKIIKCHFCR A

SLINPVIYTV FN-DEFKQAF QKLIK--FRR -

The task is to write a program that can read a text file containing an alignment in one
format and print (on the screen) the alignment using the other format. And vice versa. As
usual when we are programming in Perl there many ways of solving this problem. I will
present one of many possible solutions.

5.2. CHANGE OF FILE FORMATS 89

The program, called convert-missing.pl is divided into the following parts:

• Main program i.e. read command line arguments and load the alignment file to convert

• Subroutine parsing the Phylip format

• Subroutine parsing the ClustalW format

• Subroutine writing (to screen) a Phylip format

• Subroutine writing (to screen) a ClustalW format

Here is the main program.

convert-missing.pl - Main program

1

2 use strict;

3 our(%Seq, @Species); # Global variables

4

5

6 #### The main program ####

7 open my $FH, ’<’, $ARGV[1] or die "Cannot open file $ARGV[1]: $!\n";

8 my @indata = <$FH>;

9 close $FH;

10

11 if(uc($ARGV[0]) eq ’P2C’) {

12 ReadPhylip(@indata);

13 WriteClustalW();

14 }

15 elsif(uc($ARGV[0]) eq ’C2P’) {

16 ReadClustalW(@indata);

17 WritePhylip();

18 }

19 else {

20 die "Error: Unknown conversion mode!\n";

21 }

22

convert-missing.pl - Main program

This program uses two global variables declared using the our(%Seq, @Species); state-
ment. The file is read using the statement my @indata = <$INFILE>, which reads every-
thing into the array @indata. The uc() function converts characters to upper case.

Here is the subroutine that reads a phylip file.

convert-missing.pl - sub ReadPhylip

1

2 sub ReadPhylip {

3

4 # Copy the supplied data to a local data array

5 my @data = @_;

6

7 # Use the first line to find the number of proteins

8 my ($nprot, $plen) = split ’ ’, shift @data;

90 CHAPTER 5. APPLYING PERL

9

10 # Read the first $nprot lines to get the species and the start of the seq

11 my @tmp;

12 for (my $i = 0; $i < $nprot; $i++) {

13 ($Species[$i], @tmp) = split ’ ’, shift @data;

14 chomp @tmp;

15 $Seq{ $Species[$i] } = join ’’, @tmp;

16 }

17

18 # Continue to read lines of sequences

19 my $np = 0;

20 while (my $line = shift @data) {

21 next if ($line =~ /^\s*$/);

22

23 ### TO BE COMPLETED ###

24

25 $Seq{ $Species[$np] } .= $line;

26

27 $np += 1;

28 if ($np == $nprot) {$np = 0;}

29 }

30 }
convert-missing.pl - sub ReadPhylip

To store the alignments a hash is used (i.e. the global variable %Seq), where a sequence is
index by its name (i.e. the species). These names are also stored, in the correct order, in
the array @Species. Some notations:

• The line my @data = @_; simply makes a copy of the supplied array and stores it in
the local array @data.

• Throughout this routine the contents in @data is accessed using the shift function
that chops off the first item of the array and returns it.

• The split() function is used here to split on whitespace.

• The “TO BE COMPLETED” will be left as an follow-up exercise.

Next, the corresponding routine that reads a clustalw file.

convert-missing.pl - sub ReadClustalW

1

2 sub ReadClustalW {

3

4 # Copy the supplied data to a local data array

5 my @data = @_;

6

7 # Skip starting blank lines

8 while ($data[0] =~ /^\s*$/) {shift @data;}

9

10 # The first non-blank line should contain the word CLUSTAL

11 unless ($data[0] =~ /CLUSTAL/) {

12 die "The input file does not contain the word CLUSTAL!\n";

5.2. CHANGE OF FILE FORMATS 91

13 }

14 shift @data;

15

16 # Store the sequenses in a hash

17 my %aux;

18 while (my $line = shift @data) {

19 next unless ($line =~ /(-|\w)/);

20

21 my ($name, $seqtmp, $lentmp) = split ’ ’, $line;

22 $Seq{$name} .= $seqtmp;

23

24 # Find the name in correct order

25 unless (defined $aux{$name}) {

26 push @Species, $name;

27 $aux{$name} = 1;

28 }

29 }

30 }
convert-missing.pl - sub ReadClustalW

Since the protein names are printed on every line of the alignment, it is easy to store the
sequences in the %Seq hash. More specific comments:

• The line

while($data[0] =~ /^\s*$/) {shift @data;}

is a short way of skipping blank lines in the beginning.

• There is a regexp for detecting lines that contains the alignments, namely {/(-|\w)/}

which matches the character ’-’ or alphanumeric characters.

• The %aux hash is only used to get the correct order of the alignment when storing the
names in the @Species array.

Next, the routine that writes a ClustalW format.

convert-missing.pl - sub WriteClustalW

1

2 sub WriteClustalW {

3

4 # Write the ClustalW header

5 print "CLUSTAL W (1.82) multiple sequence alignment\n\n\n";

6

7 my $nprot = scalar @Species;

8 my @aacount;

9 while (length($Seq{ $Species[0] }) > 0) {

10 foreach my $i (0 .. $nprot-1) {

11 printf "%10s\t", $Species[$i];

12 $Seq{ $Species[$i] } =~ s/^(.{1,60})//;

13 my $aas = $1;

14 print "$aas";

15

92 CHAPTER 5. APPLYING PERL

16 # Count the number of non - in the aas

17 my $Naa = 0;

18 while ($aas =~ /\w/g) {

19 $Naa += 1;

20 }

21 $aacount[$i] += $Naa;

22 if ($aacount[$i] > 0) {

23 print " $aacount[$i]\n";

24 }

25 }

26 print "\n\n";

27 }

28 }
convert-missing.pl - sub WriteClustalW

The task is here to write the names on each line followed by 60 amino acid symbols including
gap characters. The line should end with a count of the number of amino acid letters written
sofar.

• The line $Seq{ $Species[$i] } =~ s/^(.{1,60})//; may need some explanation.
Here the task is “chop off”, if possible, the first 60 characters of the sequence. This
is accomplished with the above regexp. s/^(.{q1,60})// means up to 60 characters
are replaced with nothing using the s/// function. However the match is collected in
$1 using () in the regexp.

Finally, the routine that writes a Phylip format.

convert-missing.pl - sub WritePhylip

1

2 sub WritePhylip {

3

4 # Print the header line

5 printf "%d\t%d\n", scalar @Species, length($Seq{ $Species[0] });

6

7 # Now the rest of the sequences

8 my $PrintName = 1;

9 my $nprot = scalar @Species;

10 while (length($Seq{ $Species[0] }) > 0) {

11

12 # The names

13 foreach my $i (0 .. $nprot-1) {

14 my $name = $Species[$i];

15

16 if($PrintName == 1) {

17 printf "%10s\t", $name;

18 } else {

19 printf "%10s\t", ’ ’;

20 }

21

22 # The sequences

23 $Seq{$name} =~ s/^(.{1,50})//;

24 my $aas_tmp = $1;

25

5.2. CHANGE OF FILE FORMATS 93

26 ### TO BE COMPLETED ###

27

28 print "$aas\n";

29 }

30 print "\n";

31 $PrintName = 0;

32 }

33 }
convert-missing.pl - sub WritePhylip

5.2.2 Follow-up tasks 5-1

Download the files for this exercise:
convert-missing.pl, clustalw1.aln, clustalw2.aln, phylip1.aln and phylip2.aln.

and complete the following tasks:

1. Complete the first “TO BE COMPLETED”. The $line scalar contains one line of the
phylip file (without the names), e.g.

K------LCY VALDFEQEMG TAASSSSLEK SYELPD---- --------GQ

Use a regular expression to get rid of the spaces and newline characters in $line.

2. Complete the second “TO BE COMPLETED”. This is the other way around. You
have $aas tmp which is a subsequence of length 50 and you should create $aas which
is the same as $aas tmp but space delimited after every 10 character. E.g.

K------LCYVALDFEQEMGTAASSSSLEKSYELPD------------GQ

should be

K------LCY VALDFEQEMG TAASSSSLEK SYELPD---- --------GQ

3. Test the program using the files clustalw1.align, phylip1.align or
clustalw2.align, phylip2.align. Note this program will not handle the
conservation line appearing in the clustalw format.

4. Change the program so that one does not have to specify the conversion to make, i.e.
the program should recognize that it reads a clustalw file and then convert it to a
phylip file (and vice versa).

5. Add a subroutine to the program that finds the number of full matches in the multiple
alignment. This number should be written at the end of the conversion. By a full
match I mean a residue that is fully conserved among the proteins. Note: For the
“clustal1.aln” alignment this number is 21.

Item 5 can be considered as “things to do if you have time”.

94 CHAPTER 5. APPLYING PERL

5.3 References, objects and methods 1

5.3.1 Creating references

What is a reference? This leads us to the concept of how Perl is storing values in variables.
Each variable has a name and the address that corresponds to a piece of memory associated
with it. Storing addresses is fundamental to references because a reference is a value that
contains the location of another value. We call the scalar value that contains the memory
address a reference. Lets look at the reference of a simple scalar variable,

$var = ’Hello world’;

We can create a reference to this variable using the backslash operator.

$varref = \$var;

Both $var and $varref are scalars. Let’s print them!

print "$var\n";

print "$varref\n";

results in the following output:

Hello world

SCALAR(0x815d7e4)

Here we can see that the reference is just a memory address that holds the value of $var. Why
use references? In some circumstances it is very convenient and sometimes it is necessary.
For example if you want to pass two arrays to a sub-routine, then we need references. We
recall that everything passed to a sub-routine is stored in the @ array, which makes it difficult
to pass two arrays. Another example is if we want to create hashes of arrays, then we also
need references. Before we look at examples we need to know how to create references.

The backslash operator

You can create a reference to any named variable or subroutine with a backslash. Here are
some examples:

$scalarref = \$foo; # Reference to a scalar

$arrayref = \@ARGV; # Reference to an array

$hashref = \%ENV; # Reference to a hash

$constref = \12341.42; # Reference to a constant

$coderef = \&myfunction; # Reference to a sub-routine

($globref = *STDOUT; # Reference to a glob)

1Inspiration of how to write this section is coming from “Programming Perl, third edition”

5.3. REFERENCES, OBJECTS AND METHODS 2 95

Anonymous data

In the examples just shown, the backslash operator makes a copy of a reference that is already
in a variable name, with one exception; The 12341.42 is not referenced by a named variable,
it is just a value. We can also create such anonymous arrays, hashes, and subroutines. For
a reference to an anonymous array we use square brackets:

$anonarr1 = [1, 2, 4, 5, 6];

$anonarr2 = [1, 2, [’One’, ’Two’, ’Three’, ’Four’]];

The last one is a reference to an array, where the third element itself is a reference to another
array. For hashes we use curly brackets to create the anonymous reference.

$anonhash1 = { # Reference to a hash

’A’ => ’CGA’,

’C’ => ’TGC’,

’D’ => ’GAC’

};

$anonhash2 = { # Reference to a hash of arrays

’A’ => [’CGA’, ’GCC’, ’GCG’, ’GCT’],

’C’ => [’TGC’, ’TGT’],

’D’ => [’GAC’, ’GAT’]

};

We can summarize the with the following table:

Reference to Named Anonymous
Scalar \$scalar

Array \@array [LIST]

Hash \%hash { LIST }

Code \&function { CODE }

5.3.2 Using references

There are many ways of creating references, as there are many way of using or dereference
references. Before we look at small examples were we use references, we must learn how to
dereference them.

Variable names

When you come across a scalar like $amino, you should be thinking ”the scalar value of
amino”. This means that there is a amino entry in the “symbol table”, and the $ character
is a way of obtaining the scalar value behind the name. If what is inside is a reference, you
can look inside that (dereferencing $amino) by prepending another $ character. Formulating

96 CHAPTER 5. APPLYING PERL

it in another way, you can replace the literal amino in $amino with a scalar variable that
points to the actual referent. Here is an example,

$amino = "PERLISFUN";

$scalarref = \$amino; # $scalarref is now a reference to $amino

$deref = ${$scalarref}; # $deref is now "PERLISFUN"

We can of course use this way of dereferencing on both arrays and hashes. More examples,

$arrayref = \@aminos; # Make a reference to the array aminos

${$arrayref}[0] = "Gly"; # Set the first element of @$arrayref

push @{$arrayref}, "Ala"; # Add one element to @$arrayref

@{$arrayref}[2..4] = qw/Val Leu Ile/; # Set several elements of @$arrayref

$hashref = \%ahash; # Make a reference to the hash ahash

%{$hashref} = (’GCA’ => "A", ’GCC’ => "A"); # Initialize whole hash

${$hashref}{’GCG’} = "A"; # Set one key/value pair

Is is important to understand that dereferencing happens before any array or hash lookups.
This is why it is important (at least in the beginning) to use curly braces. We can of course
use shortcuts,

$deref = ${$scalarref};

is the same as

$deref = $$scalarref;

@{$arrayref}

is the same as

@$arrayref

%{$hashref}

is the same as

%$hashref

The use of braces is recommended. To help you understand this, note the important dif-
ference between ${$arrayref}[0] and ${$arrayref[0]} where the former means the first
element of the array referred to by $arrayref and the latter, which is dereferencing the first
element of the array named @arrayref. It is important to understand this!

The arrow operator

For references to arrays, hashes (or even subroutines), a third method of dereferencing in-
volves the use of the -> operator. Look at the following equivalent ways of dereferencing:

${$arrayref}[2] = "Val"; # The standard way

$$arrayref[2] = "Val"; # The shortcut way

$arrayref->[2] = "Val"; # This preferred "arrow way"

5.3. REFERENCES, OBJECTS AND METHODS 3 97

${$hashref}{’GCG’} = "A"; # The standard way

$$hashref{’GCG’} = "A"; # The shortcut way

$hashref->{’GCG’} = "A"; # This preferred "arrow way"

We can even use many of these arrow operators,

print $array[3]->{"Perl"}->[0];

You can see from this expression that the fourth element of array is a hash reference, and
the value of the ”Perl” entry in that hash is an array reference.

5.3.3 Examples of using references

Here we will show two examples of how to use references. The first one deals with subroutines
and in the other one we create a hash of arrays.

Passing arrays to subroutines

ref2.pl

1 #! /usr/bin/perl -w

2 use strict;

3

4 #### Main part of the program

5 my @fasta = <>;

6

7 my $hashref = SearchFasta(\@fasta, [’TGG’]);

8

9 my %res = %{$hashref};

10 foreach my $key (sort keys %res) {

11 print "$key: $res{$key}\n";

12 }

13

14 sub SearchFasta {

15

16 # Get the references from the argument array

17 my ($f1ref, $subsref) = @_;

18

19 # Dereference

20 my @f1 = @{$f1ref}; # This makes a copy of the referenced array

21

22 # Make a long string of the fasta sequence

23 my $seq = join ’’, @f1;

24

25 # Remove all comment lines

26 $seq =~ s/>.*?\n//g;

27

28 # Remove all new lines

29 $seq =~ s/\n//g;

30

31 # Loop over all substrings to search for

98 CHAPTER 5. APPLYING PERL

32 my %cnt;

33 foreach my $sub (@{$subsref}) {

34 $cnt{$sub} = ($seq =~ s/$sub/$sub/g);

35 }

36

37 # Return the hash of matches

38 return \%cnt;

39 }
ref2.pl

This small program contains one subroutine SearchFasta that takes two arguments, both
references to arrays. The subroutine returns a reference to a hash. Can you figure out
the purpose of the program? If we run the program on the first entry in the fasta file
ecoli.fasta we get the following output:

1 TGG: 2044

Hash of arrays

In this little example we create a hash and where each value in the hash is an array. This
can only be accomplished using references.

ref3.pl†
1 #! /usr/bin/perl -w

2 use strict;

3

4 # The translation table

5 my %codon;

6 $codon{’A’} = [’GCA’, ’GCC’, ’GCG’, ’GCT’];

7 $codon{’C’} = [’TGC’, ’TGT’];

8 $codon{’D’} = [’GAC’, ’GAT’];

9 $codon{’E’} = [’GAA’, ’GAG’];

10 $codon{’F’} = [’TTC’, ’TTT’];

11 $codon{’G’} = [’GGA’, ’GGC’, ’GGG’, ’GGT’];

12 $codon{’H’} = [’CAC’, ’CAT’];

13 $codon{’I’} = [’ATA’, ’ATC’, ’ATT’];

14 $codon{’K’} = [’AAA’, ’AAG’];

15 $codon{’L’} = [’CTA’, ’CTC’, ’CTG’, ’CTT’, ’TTA’, ’TTG’];

16 $codon{’M’} = [’ATG’];

17 $codon{’N’} = [’AAC’, ’AAT’];

18 $codon{’P’} = [’CCA’, ’CCC’, ’CCG’, ’CCT’];

19 $codon{’Q’} = [’CAA’, ’CAG’];

20 $codon{’R’} = [’AGA’, ’AGG’, ’CGA’, ’CGC’, ’CGG’, ’CGT’];

21 $codon{’S’} = [’AGC’, ’AGT’, ’TCA’, ’TCC’, ’TCG’, ’TCT’];

22 $codon{’T’} = [’ACA’, ’ACC’, ’ACG’, ’ACT’];

23 $codon{’V’} = [’GTA’, ’GTC’, ’GTG’, ’GTT’];

24 $codon{’W’} = [’TGG’];

25 $codon{’Y’} = [’TAC’, ’TAT’];

26

27 # Print the translation table

28 foreach my $aa (sort keys %codon) {

5.3. REFERENCES, OBJECTS AND METHODS 4 99

29 print "$aa: ";

30 foreach my $nuc (@{$codon{$aa}}) {

31 print "$nuc ";

32 }

33 print "\n";

34 }
ref3.pl†

Note the square brackets when defining the hash codon. The expression @{$codon{$aa}}

should be read as: The array referred to by the key $aa in the hash %codon.

5.3.4 Objects and methods

This very short section about objects and methods is meant as a very brief introduction to
prepare you for the coming lectures about CPI.pm and the modules in the BioPerl project.

From “Programming Perl 3rd edition”:

An object is a data structure with a collection of behaviors. Every object gets its behaviors
by virtue of being an instance of a class. The class defines methods : behaviors that apply
to the class and its instances. When the distinction matters, we refer to methods that
apply only to a particular object as instance methods and those that apply to the entire
class as class methods. But this is only a convention–to Perl, a method is just a method,
distinguished only by the type of its first argument.

You can think of an instance method as some action performed by a particular object,
such as printing itself out, copying itself, or altering one or more of its properties. Class
methods might perform operations on many objects collectively or provide other operations
that aren’t dependent on any particular object.

Method invocation

This is how we invoke a method:

invocant->method(list)
invocant->method

E.g.

1 $seq1 = $gb->get_Seq_by_acc($ans);

5.3.5 Follow-up tasks 5-2

1. Make sure you understand the programs ref2.pl and ref3.pl.

2. Write a subroutine that takes two arrays as arguments and returns a hash. The hash
is created from the two arrays such that the first element of the first array is used as
a key and the first element of the second array is the corresponding value, and so on.
Test your subroutine on some arrays.

100 CHAPTER 5. APPLYING PERL

3. Create an array and where each element of the array is a reference to a hash. Write
a subroutine that takes such an array of hashes and display the values and keys of all
hashes defined. Test your subroutine.

5.4 Searching in large text files

In this application, and the exercises that follows, we will use Perl to scan through large text
files. The example below will utilize the Swiss-Prot database used in previous exercises and
a cross-reference file, pdb2sprot.txt, linking PDB id’s with Swiss-Prot ID/AC strings.

The task is to complete the missing information in the second column of the following table:

1 PDB Organism

2 2YTE

3 1K46

4 1RJJ

5 113L

6 1S1J

7 2QKD

8 9LDB

9 3BW6

10 3MEJ

11 1S1S

12 7ZNF

13 1DU5

14 1C4Y

15 1FAD

16 1HY5

The “organism” information can be found in the Swiss-Prot database file and the link be-
tween an PDB ID and the Swiss-Prot ID can be found in the pdb2sprot.txt. Let’s look at
the two files!

5.4.1 The Swiss-Prot flat file

From the user manual of the Swiss-Prot file on can read5:

Swiss-Prot is an annotated protein sequence database. It was established in

1986 and maintained collaboratively, since 1987, by the group of Amos

Bairoch first at the Department of Medical Biochemistry of the University of

Geneva and now at the Swiss Institute of Bioinformatics (SIB) and the EMBL

Data Library (now the EMBL Outstation - The European Bioinformatics

Institute (EBI)). The Swiss-Prot Protein Knowledgebase consists of sequence

5http://www.expasy.ch/sprot/userman.html

5.4. SEARCHING IN LARGE TEXT FILES 101

entries. Sequence entries are composed of different line types, each with

their own format. For standardization purposes the format of Swiss-Prot

follows as closely as possible that of the EMBL Nucleotide Sequence

Database.

Here is one entry from the Swiss-Prot file:

ID Y491_PASMU Reviewed; 127 AA.

AC Q9CNE1;

DT 22-AUG-2003, integrated into UniProtKB/Swiss-Prot.

DT 01-JUN-2001, sequence version 1.

DT 10-AUG-2010, entry version 25.

DE RecName: Full=Uncharacterized protein PM0491;

GN OrderedLocusNames=PM0491;

OS Pasteurella multocida.

OC Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;

OC Pasteurellaceae; Pasteurella.

OX NCBI_TaxID=747;

RN [1]

RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].

RC STRAIN=Pm70;

RX MEDLINE=21145866; PubMed=11248100; DOI=10.1073/pnas.051634598;

RA May B.J., Zhang Q., Li L.L., Paustian M.L., Whittam T.S., Kapur V.;

RT "Complete genomic sequence of Pasteurella multocida Pm70.";

RL Proc. Natl. Acad. Sci. U.S.A. 98:3460-3465(2001).

CC ---

CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms

CC Distributed under the Creative Commons Attribution-NoDerivs License

CC ---

DR EMBL; AE004439; AAK02575.1; -; Genomic_DNA.

DR RefSeq; NP_245428.1; -.

DR GeneID; 1243838; -.

DR GenomeReviews; AE004439_GR; PM0491.

DR KEGG; pmu:PM0491; -.

DR NMPDR; fig|272843.1.peg.491; -.

DR BioCyc; PMUL272843:PM0491-MONOMER; -.

PE 4: Predicted;

KW Complete proteome.

FT CHAIN 1 127 Uncharacterized protein PM0491.

FT /FTId=PRO_0000216293.

SQ SEQUENCE 127 AA; 14589 MW; A85EFFC5579E4184 CRC64;

MQLVFSYIEH KSQVIPVCFW KENHQLHPLT GYLNDPMGGL NYFAFLDKVL SMLRDEDIQQ

GDISSNSWGV EIHGDQVYFC FLFAQEDTSL HFALSRAVLI DILVLWLAFR SQKPVAGYQE

VLSFAEA

//

In this application we will use the ID,OS and SQ lines.

102 CHAPTER 5. APPLYING PERL

5.4.2 The pdb2sprot.txt file

The pdb2sprot.txt file is a cross-reference between PDB ID’s and (if possible) corresponding
Swiss-Prot ID’s. The first few lines of the file looks like this:

code Swiss-Prot entry name(s)

101M MYG_PHYCA (P02185)

102L LYS_BPT4 (P00720)

102M MYG_PHYCA (P02185)

103L LYS_BPT4 (P00720)

103M MYG_PHYCA (P02185)

104L LYS_BPT4 (P00720)

104M MYG_PHYCA (P02185)

105M MYG_PHYCA (P02185)

106M MYG_PHYCA (P02185)

5.4.3 search.pl

Here is a program that will accomplish the task oulined obove. Use sprot-subset2.dat,
whick is a subset of the full Swissprot database. sprot-subset2.dat is available at the
course homepage.

search.pl

1 #!/usr/bin/perl -w

2 ##### Program description #######

3 #

4 # Title: search.pl

5 #

6 # Author(s): Mattias Ohlsson

7 #

8 # Description:

9 #

10 # List of subroutines:

11 #

12 # Overall procedure:

13 #

14 # Usage: ./search.pl {table-file} {key-file} {swissprot-file}

15 #

16 ##################################

17 use strict;

18

19 #### The main program ####

20 unless (@ARGV == 3) {

21 die "You must have three files as argument";

22 }

23

24 # Read the key file

25 my $keyref = readKey($ARGV[1]);

26

27 # Open the table that we should complete

28 open my $tableFH, ’<’, $ARGV[0] or die "Cannot open table file $ARGV[0]";

5.4. SEARCHING IN LARGE TEXT FILES 103

29 while (my $line = <$tableFH>) {

30 next if ($line =~ /^PDB/);

31 chomp $line;

32 my $pdbID = $line;

33 $pdbID =~ s/\s*$//;

34 my $swissID = $keyref->{$pdbID};

35 my ($os, $seq) = searchSwiss($swissID, $ARGV[2]);

36

37 print "$pdbID\t$os\n";

38 }

39 close $tableFH;

40

41 #### End of main program #####

42

43

44 sub readKey {

45 my ($keyFile) = @_;

46

47 open my $kFH, ’<’, $keyFile or die "Cannot open file $keyFile";

48

49 my %ptos;

50 while (my $line = <$kFH>) {

51 next if ($line =~ /^code/);

52

53 # Each line contains 3 items, we are only interested in the first two

54 my ($pdb, $sid) = split ’ ’, $line;

55

56 # Store in a hash

57 $ptos{$pdb} = $sid;

58 }

59 close $kFH;

60

61 return \%ptos;

62

63 } # End of readKey

64

65

66 sub searchSwiss {

67 my ($swissID, $swissFile) = @_;

68

69 open my $sFH, ’<’, $swissFile or die "Cannot open file $swissFile";

70

71 my $os = ’’;

72 my $seq = ’’;

73 while (my $line = <$sFH>) {

74

75 # Check for the correct ID line

76 next unless ($line =~ /^ID\s+$swissID\s+/);

77

78 # Now scan for OS and SQ

79 my $read = 0;

80 while (my $line = <$sFH>) {

81

82 # Stop if we hit the last of entry code

83 last if ($line =~ m|^//|);

104 CHAPTER 5. APPLYING PERL

84

85 # Collect the OS line

86 if ($line =~ /^OS\s+(.+)$/) {

87 $os .= $1 . ’ ’;

88 }

89

90 # Collect the sequence

91 if($read) {

92 $seq .= $line;

93 } elsif ($line =~ /^SQ/) {

94 $read = 1;

95 }

96

97 }

98 last;

99 }

100 close $sFH;

101

102 $seq =~ s/\n//g;

103 $seq =~ s/\s//g;

104

105 return ($os, $seq);

106

107 } # End of searchSwiss
search.pl

5.4.4 Follow-up tasks 5-3

The following files are needed for the below exercises:

search.pl, PDB-table.txt, pdb seqres.txt, mkindex.pl, pdb2sprot.txt and
sprot-subset2.dat.

1. Make sure that you understand this program and then write a program header for
search.pl.

2. Modify the program so that all of the (optional) RX lines are returned and printed
instead of the organism.

3. The file pdb seqres.txt6 contain all PDB entries in Fasta format. Use this file to
extract the protein sequences for all PDB codes in the PDB-table.txt file. Compare
each sequence with the corresponding sequence from the Swiss-Prot database. Print
the difference in length together with the other information.

4. Optimization of the code. The subroutine searchSwiss always starts from the begin-
ning of the Swiss-Prot flat file. For relatively small files this is an acceptable solution,
but for really large files this approach can take very long time.

The Perl functions seek and tell can be used to “move around” in a file handle.
Using the tell function we can create an index that relates a certain ID to a position

6ftp://ftp.wwpdb.org/pub/pdb/derived data/pdb seqres.txt.gz

5.5. BLAST PARSING 105

in the file. With the use of this index and the seek function we can jump directly to
the position of a certain ID.

The Perl script mkindex.pl contains a subroutine that makes such an index. Use this
index and modify the searchSwiss routine to make use of the seek function. This
will significantly speed up the code.

5.5 Blast parsing

In this section we will look at a Perl program that parses the large amount of information
that a Blast run produces. Below is (part of) such a result file (1TEN blastp.res) produced
by the blastp program, when blasting the protein 1TEN (PDB id).

BLASTP 2.2.30+

Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro

A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and

David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs", Nucleic

Acids Res. 25:3389-3402.

Reference for compositional score matrix adjustment: Stephen

F. Altschul, John C. Wootton, E. Michael Gertz, Richa

Agarwala, Aleksandr Morgulis, Alejandro A. Schaffer, and

Yi-Kuo Yu (2005) "Protein database searches using

compositionally adjusted substitution matrices", FEBS J.

272:5101-5109.

RID: 3CDJ5NH701R

Database: All non-redundant GenBank CDS

translations+PDB+SwissProt+PIR+PRF excluding environmental samples

from WGS projects

49,886,901 sequences; 17,905,752,166 total letters

Query=

Length=90

Score E

Sequences producing significant alignments: (Bits) Value

pdb|1TEN|A Chain A, Structure Of A Fibronectin Type Iii Domai... 182 4e-57

dbj|BAG64930.1| unnamed protein product [Homo sapiens] 191 2e-54

.

.

.

ref|XP_005498448.1| PREDICTED: tenascin isoform X3 [Columba l... 158 3e-42

gb|KFQ87172.1| Tenascin-R [Phoenicopterus ruber ruber] 158 3e-42

ALIGNMENTS

>pdb|1TEN|A Chain A, Structure Of A Fibronectin Type Iii Domain From Tenascin

Phased By Mad Analysis Of The Selenomethionyl Protein

Length=90

Score = 182 bits (461), Expect = 4e-57, Method: Compositional matrix adjust.

Identities = 90/90 (100%), Positives = 90/90 (100%), Gaps = 0/90 (0%)

Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG

Sbjct 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

106 CHAPTER 5. APPLYING PERL

Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

NLKPDTEYEVSLISRRGDMSSNPAKETFTT

Sbjct 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

>dbj|BAG64930.1| unnamed protein product [Homo sapiens]

Length=1080

Score = 191 bits (486), Expect = 2e-54, Method: Composition-based stats.

Identities = 90/90 (100%), Positives = 90/90 (100%), Gaps = 0/90 (0%)

Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

.

.

.

There are of course many ways we can try to “summarize” the information found in this
file. The program presented below parses a blast result file (like 1TEN blastp.res) in the
following way: Alignments with the number of identities between a user defined interval are
extracted and (optionally) printed on the screen together with the first identification line
and the actual number of identities (in %).

parse.pl

1 #!/usr/bin/perl -w

2 ####### Program description #######

3 #

4 # Title: parse.pl

5 #

6 # Author(s): Mattias Ohlsson

7 #

8 # Description:

9 # This is a parser for result files produced by the Blastp program

10 # for sequence alignment.

11 #

12 # List of subroutines:

13 # GetSubjects();

14 # GetHSPs();

15 # AnalyzeHSP();

16 #

17 # Overall procedure:

18 # This program loads a result file from a blastp run. The program does

19 # not check that the loaded file is a valid blastp file, only that it

20 # is a non-empty file. The file is stored as a single scalar. All the

21 # analysis is performed on scalar and not on an array containing lines

22 # of the result file. The first step is to split the result into

23 # subjects, this is performed in the GetSubjects routine. The program

24 # then makes a loop over all found subjects and for each subject all

25 # the high scoring pairs are extracted (GetHSP). A second loop is over

26 # all HSPs found and where each HSP is analyzed in the AnalyzeHSP

27 # routine. This routine extracts all the information needed in order

28 # to select the ones with a percentage of identities within a specified

29 # range. The selected ones are printed together with the alignment

30 # (optional).

31 #

32 # Usage:

33 # ./parse.pl {blast result file}

5.5. BLAST PARSING 107

34 #

35 ###################################

36 use strict;

37

38 #### The main program ####

39

40 ### Part 1: Read the input file and check that is non-zero

41 undef $/;

42 my $Blast = (<>);

43 unless (length $Blast > 0) {

44 die "Zero length input file\n";

45 }

46

47 ### Part 2: Some hardcoded constants

48 my $Icutlow = 80;

49 my $Icuthigh = 85;

50 my $PrintAlign = 1;

51

52 ### Part 3: The rest

53 my @subjects = GetSubjects($Blast);

54

55 my (@Idents, @Alns);

56 foreach my $subj (@subjects) {

57

58 my ($sID, $rHSPs) = GetHSPs($subj); # All the high scoring pairs

59

60 undef @Idents;

61 undef @Alns;

62 for (my $i = 0; $i < @{$rHSPs}; $i++) {

63 my $rHPSres = AnalyzeHSP($rHSPs->[$i]);

64 my $id = $rHPSres->{’Pid’};

65

66 # Check the criteria

67 if ($id >= $Icutlow && $id <= $Icuthigh) {

68 push @Idents, $id;

69 push @Alns, $rHPSres->{’Aln’};

70 }

71 }

72

73 if (@Idents) {

74 print "======= ID: $sID =======\n";

75 foreach (my $i = 0; $i < @Idents; $i++) {

76 print "=> Identities: $Idents[$i]%\n";

77 if ($PrintAlign == 1) { print $Alns[$i], "\n"; }

78 }

79 }

80 }

81

82

83 sub GetSubjects {

84 # The blast "file"

85 my ($blast) = @_; # Note this is a copy of the supplied blast "file"!

86

87 # Get rid of everything before the ALIGNMENTS line

88 $blast =~ s/^.*ALIGNMENTS\n//s;

108 CHAPTER 5. APPLYING PERL

89

90 # and everthing after the database statement

91 $blast =~ s/\s\sDatabase:.*//s;

92

93 # Now split on the >xxx pattern but keep the >xxx itself

94 my @subjects = split /(?=>\w{2,3})/, $blast;

95

96 return @subjects;

97

98 } # End of GetSubjects

99

100

101 sub GetHSPs {

102 # One subject

103 my ($subject) = @_; # Note this is a copy of the supplied subject!

104

105 # Extract an ID

106 my $id;

107 if ($subject =~ /^>(\w{2,3}\|.*?\|)/) {

108 $id = $1;

109 } else {

110 print "Warning: Subject does not start with a known format\n";

111 print $subject;

112 exit;

113 }

114

115 # Now get HSPs by dividing at the Score line

116 $subject =~ s/^.*?(?=Score)//s;

117 my @hsps = split /(?=\sScore)/, $subject;

118

119 return($id, \@hsps);

120

121 } # End of GetHSPs

122

123

124 sub AnalyzeHSP {

125 # The HSP

126 my ($hsp) = @_; # Note this is a copy of the supplied hsp!

127

128 # This will store the results

129 my %HSPres;

130 #Identities = 90/90 (100%), Positives = 90/90 (100%), Gaps = 0/90 (0%)

131 # Find the score

132 if ($hsp =~ /Identities\s+=\s+\d+\/\d+\s+\((\d+)%\)/) {

133 $HSPres{’Pid’} = $1;

134 }

135

136 # Get the Alignment

137 $hsp =~ s/^.*?(?=Query)//s;

138 $hsp =~ s/\n(?=\n)//g;

139 $HSPres{’Aln’} = $hsp;

140

141 # Now return a reference to the result hash

142 return \%HSPres;

143

5.5. BLAST PARSING 109

144 } # End of AnalyzeHSP
parse.pl

A few details in this program is worth noting.

• The program treats the input file as single scalar ($Blast) including all line breaks.
A convenient way to read an file into a single scalar is to modify the special variable
$/, called the input record separator. This variable is usually set to \n, the new line
character. By undefining this variable we get the whole input file as a single scalar
(see line 41-42).

• Pattern matching. Normally in a regular expression the dot (.) matches any character,
except the new line one (\n). However if we use the s modifier it matches the new line
character also. This is used in the program several times (e.g. line 88).

• Positive lookahead assertion. Sometimes it useful to have regular expression that
matches in a hypothetical way. Perl have four such constructs. The positive looka-
head assertion is used in this program and it looks like (?=PATTERN). You can see an
example of it at line 138. The regexp s/\n(?=\n)//g looks for two consecutives \n\n
characters, but when it finds two it will on only replace the first one with “nothing”
since the second is a lookahead assertion only. As they put in the Learning Perl text-
book: The Engine works it all out for us by actually trying to match the hypothetical
pattern, and then pretending that it didn’t match (if it did).

This program run on the 1TEN blastp.res file (e.g. >> ./parse.pl 1TEN blastp.res)
results in the following output:

Result of: ./parse.pl 1TEN blastp.res

1 ======= ID: ref|XP_005022418.1| =======

2 => Identities: 84%

3 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

4 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

5 Sbjct 772 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 831

6 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

7 NL+P TEYEV+LISRRGDM S+P KE F T

8 Sbjct 832 NLRPHTEYEVTLISRRGDMESDPVKEVFVT 861

9

10 ======= ID: ref|XP_006137248.1| =======

11 => Identities: 84%

12 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

13 +LDAPSQIEV+DVTDTTALITWFKPLAEID +EL+YG KDVPGDRTTIDL+EDE+QYSIG

14 Sbjct 804 KLDAPSQIEVRDVTDTTALITWFKPLAEIDDMELSYGPKDVPGDRTTIDLSEDESQYSIG 863

15 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

16 NLKP TEYEV+LISRRGDM+S+P KETF T

17 Sbjct 864 NLKPHTEYEVTLISRRGDMTSDPVKETFVT 893

18

19 ======= ID: ref|XP_005022417.1| =======

20 => Identities: 84%

21 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

22 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

23 Sbjct 772 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 831

24 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

110 CHAPTER 5. APPLYING PERL

25 NL+P TEYEV+LISRRGDM S+P KE F T

26 Sbjct 832 NLRPHTEYEVTLISRRGDMESDPVKEVFVT 861

27

28 ======= ID: ref|XP_005022415.1| =======

29 => Identities: 84%

30 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

31 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

32 Sbjct 772 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 831

33 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

34 NL+P TEYEV+LISRRGDM S+P KE F T

35 Sbjct 832 NLRPHTEYEVTLISRRGDMESDPVKEVFVT 861

36

37 ======= ID: ref|XP_005022416.1| =======

38 => Identities: 84%

39 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

40 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

41 Sbjct 772 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 831

42 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

43 NL+P TEYEV+LISRRGDM S+P KE F T

44 Sbjct 832 NLRPHTEYEVTLISRRGDMESDPVKEVFVT 861

45

46 ======= ID: gb|EOA99266.1| =======

47 => Identities: 84%

48 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

49 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

50 Sbjct 772 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 831

51 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

52 NL+P TEYEV+LISRRGDM S+P KE F T

53 Sbjct 832 NLRPHTEYEVTLISRRGDMESDPVKEVFVT 861

54

55 ======= ID: ref|XP_005022414.1| =======

56 => Identities: 84%

57 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

58 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

59 Sbjct 772 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 831

60 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

61 NL+P TEYEV+LISRRGDM S+P KE F T

62 Sbjct 832 NLRPHTEYEVTLISRRGDMESDPVKEVFVT 861

63

64 ======= ID: gb|KFQ40359.1| =======

65 => Identities: 84%

66 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

67 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

68 Sbjct 454 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 513

69 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

70 NL+P TEYEV+LISRRGDM S+P KE F T

71 Sbjct 514 NLRPHTEYEVTLISRRGDMESDPMKEVFVT 543

72

73 ======= ID: ref|XP_005498448.1| =======

74 => Identities: 83%

75 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

76 +LDAPSQIE KDVTDTTALITW KPLA+I+GIELTYG KDVPGDRTTIDL+EDENQYSIG

77 Sbjct 741 KLDAPSQIEAKDVTDTTALITWSKPLADIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 800

78 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

79 NL+P TEYEV+LISRRGDM S+P KE F T

5.6. HAND-IN EXERCISE 3 111

80 Sbjct 801 NLRPHTEYEVTLISRRGDMESDPMKEVFVT 830

81

82 ======= ID: gb|KFQ87172.1| =======

83 => Identities: 84%

84 Query 1 RLDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIG 60

85 +LDAPSQIE KDVTDTTALITW KPLAEI+GIELTYG KDVPGDRTTIDL+EDENQYSIG

86 Sbjct 456 KLDAPSQIEAKDVTDTTALITWSKPLAEIEGIELTYGPKDVPGDRTTIDLSEDENQYSIG 515

87 Query 61 NLKPDTEYEVSLISRRGDMSSNPAKETFTT 90

88 NL+P TEYEV+LISRRGDM S+P KE F T

89 Sbjct 516 NLRPHTEYEVTLISRRGDMESDPMKEVFVT 545

90

Result of: ./parse.pl 1TEN blastp.res

5.5.1 Follow-up tasks 5-4

Download the files:

parse.pl and 1TEN blastp.res.

and complete the following tasks:

1. Add code the subroutine AnalyzeHSP to also extract the number of gaps (if any) in
the alignment and print this on the screen.

2. For each HSP that you select, find the longest sub-alignment that contains only iden-
tities and print it on the screen. As an example, the following alignment

Query: 41 FAGKDLESIKGTAPFETHANRIVGFFSKIIGELPN 75

FAGKDL+S+K TA F THA RIVGF S+I+ + N

Sbjct: 1 FAGKDLDSLKNTASFATHAGRIVGFVSEIVALMGN 35

has FAGKDL as the longest sub-alignment with identities.

3. For each alignment that you select, count the number of sub-alignments, with only
identities, larger than a given number.

Task 3 is of the type: “to do if you have time”.

5.6 Hand-in exercise 3

Select one of the following problems as the hand-in exercise for this week.

1. The program for converting between clustalw and phylip file formats (first section of
this chapter) does not handle the conservation line used in the clustalw files. Write
a Perl program (or add more functionality to an existing one) so that when you
convert from phylip to clustalw format the conservation line is also created. This
program should also recognize the input format, i.e. one should not have to specify
the direction of conversion. Below is a definition of the conservation line:

112 CHAPTER 5. APPLYING PERL

Three characters are now used in the conservation line:

’*’ Indicates positions which have a single, fully conserved residue.

’:’ Indicates that one of the following “strong” groups is fully conserved:
STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW

’.’ Indicates that one of the following ’weaker’ groups is fully conserved:
CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK,
FVLIM, HFY

Summary: You should write a Perl program that converts clustalw files to phylip files
and vice versa. When you run your program on clustalw1.align/clustalw2.align

you should get exactly the phylip1.align/phylip2.align and the other way around.

2. Write a parser for the result files produced by the FASTA sequence alignment program.
This parser should, for each alignment, print the percentage of identities and print the
length of the longest sub-alignment with only identities. To identify each aligned se-
quence, extract the first group characters after >> (e.g. TR:E7EVS8 HUMAN. The FASTA
result file that you should work with is called 1TEN fasta.res and is available at the
course web page.

Summary: Write a parser for the 1TEN fasta.res file. Your output should look like
the sample output file sample-1TEN fasta.txt.

