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ABSTRACT 

 

I have designed, developed and deployed a data acquisition (DAQ) to meet the 

needs of the “µLan” nuclear physics experiment. The main goal of µLan is to 

measure the positive muon lifetime to a precision of 1 part in 106. This 

represents more than an order of magnitude increase in precision beyond the 

current world average. The DAQ design is motivated by the very high data rate 

that this experiment will produce. The collaboration anticipates a muon decay 

rate of 106 µ+’s (positive muon’s) per second and a raw data rate of 100 MB per 

second.  

 

This experiment will be performed with the proton accelerator at Paul Scherrer 

Institut in Villigen, Switzerland. To develop the µLan DAQ, I have set up a mock 

experimental setup at the University of Kentucky. The design and development 

of the DAQ software was conducted using this mock up setup and was finally 

deployed at Paul Scherrer Institut. 

 

Two major components of the µLan DAQ are the front-ends and the 

analyzers. The front-ends are software components developed to collect the 

information related to incoming muons decay and outgoing electrons hits. 

Front-ends collect and store information in the form of data banks. Analyzers 

are the software components that read the information from data banks and 

plot various histograms as is required by the experimenters. 

 

 

 

 



 IV

CONTENTS 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter I Introduction  
 

1.1 Project Overview       1  
1.2 Issues in designing the DAQ     2 
1.3 Organization of Report      4 
 

Chapter II DAQ Architecture Overview 
 

2.1 Three-Tier Architecture      5 
2.1.1 Hardware and front-ends Layer    6 
2.1.2 Backend and Data Storage  Layer    7 
2.1.3 Data Analysis Layer     7 

2.2 DAQ Network Layout      8 
2.3 DAQ Issues        9 

2.3.1 Data Taking Philosophy     9 
2.3.2 Event Synchronization     10 
2.3.3 Event Builder      12 
2.3.4 Online Database      13 

 
Chapter III Front-ends 

 
 3.1 Data Acquisition Programs     14 
 3.2 Modes of Operation      14 
 3.3 CAEN Front-end       15 
  3.3.1  CAEN Data Format     17 
  3.3.2 CAEN Design      18 



 V

  3.3.3   CAEN Activity Diagram     20 
  3.3.4 CAEN Implementation     21 
 3.4 EMC Front-end       23 
  3.4.1  EMC Data Format      24 
  3.4.2 EMC Design       25 
  3.4.3 EMC Implementation     27 
 3.5 WFD Front-end       31 
  3.5.1  WFD Design      31 
  3.5.1  WFD Data Compression     32 
  3.5.1  WFD Implementation     33 
 3.6 Software Testing        34 
 
Chapter IV Conclusion        35 
 
Appendix 

 
A Obtaining Software from CVS Repository   36 
B Analyzers        37  
C Slow Control       39 

 D Front-end Parameters      40 
   CAEN       40 
   EMC        41 
   WFD        43 
 
 REFERENCES        45  



 1

__________ 
CHAPTER  

                                         1 
        __________ 

 
 

INTRODUCTION 
 
 
 
 
 

1.1 OVERVIEW 

 

This data acquisition system has been designed to meet the needs of the “µLan” nuclear 

physics experiment [1], where µLan stands for “muon lifetime analysis experiment”. The name of 

project as it appears on its original proposal is “A Precision Measurement of the Positive Muon 

Lifetime Using a Pulsed Muon Beam and the µLan Detector” [2]. In this project report I refer to the 

experiment as “µLan” and the researchers involved in experiment as the collaboration.  

 

The main goal of the experiment is to measure the positive muon lifetime to a precision of 1 

part in 106. This represents more than an order of magnitude increase in precision beyond 

the current world average. The muon lifetime is used to determine the Fermi coupling 

constant, GF, which is the fundamental quantity governing the strength of all weak 

interactions.  The experiment will be performed with the proton accelerator at Paul Scherrer 

Institut in Villigen, Switzerland [10]. 
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The universities involved in this experiment are Boston University, James Madison 

University, University of California at Berkeley, University of Illinois at Urbana-Champaign, 

and University of Kentucky. 

 

The University of Kentucky has been assigned the responsibility for the design, development 

and deployment of the data acquisition for the µLan experiment. The design of the data 

acquisition system (DAQ) design is based on the Maximum Integrated Data Acquisition 

System (MIDAS) [3]. It is a general purpose system for event based data acquisition in small 

and medium scale physics experiments. It has been developed by Dr. Stefan Ritt, a research 

scientist at Paul Scherrer Institute, Switzerland and Dr. Pierre Amaudruz at TRIUMF 

laboratory, Canada.  

 

1.2 ISSUES IN DESIGNING THE DAQ 

 

The goal of µLan is a measurement of the µ+ (positive muon) lifetime to 2 pico-seconds. The 

µLan experiment will use a pulsed muon beam, which comprises a fill period (beam on) and 

a measurement period (beam off). The pulsed muon beam will typically involve a 5 µs fill 

period and a 25 µs measuring period. Approximately 30 µ+ s will arrive per fill period and 

approximately 10 electrons are detected per measurement period. This yields about 4 x 105 

decay electrons per second or 1 x 1012 decay electrons in roughly thirty days of 100% - live 

running. The time spectrum of the decay electrons after the fill-period will determine the 

muon lifetime [1]. 

 

The incoming µ+ s are counted in an Entrance Muon Counter (a multi wire-chamber) and a 

T0 counter (a plastic scintillator) and stopped in a solid target. The solid target may either be 

a polarization destroying target like AK3 (a ferromagnetic alloy) or a polarization retaining 

target like silver. The decay electrons are counted in a nearly 4 ∏ scintillator array in the 

shape of a truncated isocahedron of 170-elements of scintillating tile pairs that are 

symmetrically arranged about the target center. The signals from the tiles will be fed to 500 

MHz, 8-bit resolution, waveform digitizers (WFD). 
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The DAQ design is motivated by the very high data rate that this experiment will produce. 

The collaboration anticipates that, on average there will be approximately 1 x 106 µ+’s 

(positive muon’s) per second. Experiment will use waveform digitizers (WFD) designed by 

Boston university to record a snapshot of about 100 ns for each event divided in intervals of 

2 ns each. There will be about 100 bytes of data per event. This implies a data collection rate 

of 100 megabytes per second (assuming no compression). In the course of recording 2 x 1012 

events, we would then generate 200 terabytes of data.  It would not be entirely impossible to 

collect so much data but collaboration intended to avoid doing so. We plan to devise 

software that performs both collection and compression of the data from the detector 

components. 

 

Figure 1.1 shows you an image of the “µLan Detector” at Paul Scherrer Institute, 

Switzerland during our fall 2003 experimental run. 

 

 
Fig 1.1 µLan Ball Detector 
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The software performing the data readout out of a hardware module such as the WFD or 

the EMC is termed a “front-end”. We have designed our WFD front-end to both read-out 

the raw data and compress the raw data. The compressed data derived by WFD front-end 

consists of the time, area, height and width of each pulse. Also, we will retain the 

uncompressed raw data for about 1% of events in order to allow for systematic studies of 

compression algorithms. For all other pulses only the compressed data will be stored.  To 

read-out the complete “µLan Detector”, the final µLan experiment run will need 340 WFDs 

to perform the data collection from the µLan Detector. These 340 WFDs are distributed 

over 5 dual processor machines. I have also contributed in developing the software front-

ends for various other components such as multi-hit time-to-digital converters (MHTDCs), 

the multi wire chamber and the flight simulator. The multi wire chamber is used to 

determine the position and rate of incident muon’s and flight simulator is a programmable 

pulser. 

 

1.3 ORGANIZATION OF REPORT 

 

This report is organized in five chapters. Chapter 2 delineates an insight into the details of 

DAQ Architecture. Chapter 3 provides details about the software components that collect 

the data in the experiment. These software components are termed as front-ends. Finally 

Chapter 4 gives the Conclusion. The appendix provides an overview into other components 

of the DAQ. Topics covered in the appendix are slow-control front-ends, data analyzer, and 

details about obtaining software from the CVS repository. 
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__________ 
CHAPTER  

                                         2 
        __________ 

 
 

DAQ ARCHITECTURE  
OVERVIEW 

 
 
 
 

2.1 THREE-LAYER ARCHITECTURE 

 

The DAQ for µLan has been designed in three-layer architecture to distribute the complexity 

involved in the data acquisition system.  

 

Figure 2.1 illustrates the three layers of the data acquisition system. The rectangles in the 

diagram represent either the software or hardware components involved in the experiment. 

The ellipses represent the buffers created to store data fragments from various software 

components. The rectangles with rounded corners represent data stored in a file. The 

horizontal double lines are used to separate different levels. 
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Fig. 2.1 The Three-Tier Architecture for DAQ. 

 

The three layers of the DAQ are explained below: 

 

2.1.1 HARDWARE AND FRONT-END LAYER  (Level one) 

 

This layer of DAQ consists of the hardware and software components needed to collect data 

from the detector. The various electronic modules that record the incoming muon hits and 

outgoing electron hits are waveform digitizer’s (WFD) and multi-hit time-to-digital 

converter’s (MHTDCs)  also known as CAENs. Each of these modules has specific software 

for data read-out and data compression. These software components are described in the 

front-end’s section of this documentation. This layer consists of several dual processor 

machines that host the front-end software that performs the read-out of data. 
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2.1.2 BACKEND AND DATA STORAGE LAYER (Level two) 

 

Data collected by various front-end software components is collected in data segments. 

Each data segment contains many muon decay events. This level involves a dual processor 

machine called the “backend” that collects data from several front-end machines from level 

one. The software component that collects data from each machine and builds a complete 

event is called the “event builder”. The software component that performs the task of 

collecting data from the event builder and storing it on disk is called the “logger”. The data 

collected is stored on various terabyte disk arrays.  

 

2.1.3 DATA ANALYSIS LAYER (Level three) 

 

Once data has been collected and properly stored on a terabyte storage device, this level 

hosts various software components called “analyzers” that helps the collaboration perform 

their analysis on collected data (e.g. building histograms, fitting spectra). 

 

Level Hardware Components Software Components 

Hardware and front ends Several dual processor machines. 

(front-ends) 

MHTDC readout 

WFD readout 

EMC readout 

Slow Control 

Backend One dual processor machine. 

(backend) 

Event Builder 

Data Logger 

Experiment Control 

Data Analysis Terabyte storage machine. 

(terabyte) 

Data Analysis tools 

Mql and ‘C’ Analyzers 

 

Fig. 2.2 Hardware and software components on each level of the DAQ architecture 
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2.2 DAQ NETWORK LAYOUT 

 

The hardware and software layout of the DAQ is shown below: 

 
Fig. 2.3 Hardware Layout of DAQ 

 

The DAQ constitutes several machines connected by a switch. The data collecting machines 

are named FE01-FE0N and the server machine is named BE01. Each FE0X is connected to 

some hardware electronics module such as CAEN, WFD, Magic box, or Flight Simulator. 

Magic-box and flight simulator (FS) are elaborated in appendix of this report.  Each front-

end machine hosts software components corresponding to hardware electronic modules 

attached to it. The terabyte storage device is named TB01. This machine hosts a Redundant 

Arrays of Inexpensive Disks (RAID) consisting of 6 200 GB hard-drives. We had a few 

terabyte storage devices in the fall 2003 and will have more machines for fall 2004. Red hat 

Linux 9.0 has been installed on all machines.  

 

All these machines are internally connected via a switch. These machines communicate with 

external world via BE01. This local network is externally invisible to the world via internet. 

However all these machines can access internet via Linux IP Masquerading [4]. To connect 

to any machine in the DAQ network, we log in to BE01 and then access other machines via 

it. The only means of access to them is SSH. All the front-end machines in the network have 

NFS mounted file system from BE01. The CVS [5] repository for the DAQ software is 

maintained on “gluon.pa.uky.edu”. 
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2.3 DAQ DESIGN ISSUES 

2.3.1 DATA TAKING PHILOSOPHY 

 

The beam we use for taking data is a pulsed muon beam, which comprises a fill period 

(beam on) and measurement period (beam off). We collect the data in segments of length 

0.7-100 milliseconds. The time duration of a data segment is a hardware selectable quantity.  

 
Fig. 2.4 Time structure showing data segments and beam fills 

 

A run comprises a period of continuous data taking that’s stored in a single data file. The 

time duration of a run is not fixed. Each run consists of multiple data segments and each 

segment consists of multiple fills. The duration of each segment and fill is fixed in hardware. 

During each segment, we have fills consisting of a fill period and a measurement period. The 

beginning of the fill (BOF) and end of the fill (EOF) is indicated by the hardware circuit and 

it is fed to the data stream. We collect the muon hits throughout the time segment. The 

muon decay data that’s collected during the measurement period is used to determine the 

muon life time. 
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Since data collection modules are distributed over various front-ends, we need a mechanism 

to make sure that no software front-end should start reading a new data segment while other 

front-ends are still reading out a previous data segments. This is achieved by synchronizing 

these software components. 

 

We also have another issue which relates to distributing data collecting software among 

various machines. Each machine collects data in fragments and sends it over to the backend. 

Therefore we need a software component which runs on the back end machine merging data 

fragments from various software front-ends. The data merging component is called the 

“Event Builder”.  

 

2.3.2 EVENT SYNCHRONIZATION 

 

We need event synchronization to make sure that no front-end will start reading a new data 

segment while other front-ends are still reading out the preceding data segment. I have used 

remote procedure call (RPC) routines in C programming to achieve event synchronization. 

RPC routines allow C programs to communicate with programs on other machines across 

the network.  

 

I have designated one software component as the master front-end, which is the main front-

end performing the event synchronization. We start reading out data from the master front-

end, only when we receive a signal via the parallel port. The master front-end will keep 

polling via the parallel port, to check if it is ready to start read out. This mode of operation is 

termed as polling mode. When the master front-end gets a signal to start read out, it checks 

if all its slaves have finished the preceding read-out. The master can schedule for read-out of 

current time segment, only after all the slaves have finished reading out previous segment. If 

all the slaves have not finished read-out, it will wait until it gets a signal from each front end 

that they are finished. 

 

The other software components operated by the master front-end are termed as the slave 

front-ends. Slave front-ends will start reading out data only when they receive an RPC signal 

from the master front-end to start the readout. Once finishing the readout, the slave will 
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report back to master that it has finished the read-out. Thus a slave front-end will operate 

only when it gets an interrupt from its master. This mode of operation is known as 

“Interrupt mode” of operation. 

 

The Figure 2.5 illustrates the sequence of events that accomplishes the synchronization 

among various other software components. 

 

 
Fig. 2.5 Event Synchronization 

 

Figure 2.5 shows only one slave FE, but in reality there are multiple slave front-ends. In the 

above figure at the start of the nth data segment, the master FE sends a start read-out signal 

to all the slave front-end machines. Each slave after receiving the start read-out signal will 

perform actual data read-out. After reading data from the electronics the slave FE will send a 

finished read-out message to the master FE. In (n+1)th data segment, the master FE will 

send another start the read-out message only after it has received finished read-out message 

from all slave front-ends for the nth data segment. 
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I have designed DAQ with enough flexibility that the number of slave front-ends maintained 

by master front-end is user configurable. 

 

2.3.3 EVENT BUILDER 

 

Event builder is a software component that merges data segment fragments from different 

front-end’s in to a complete data segment. 

 

 
Fig 2.6 Events from various front-ends 

 

The data from each front-end arrives at the backend stored in shared memory segments 

which are termed as “buffers”. The data from various front-ends FE01-FE0N are stored in 

BUF1-BUFN, and transferred to the backend via the network for merging. Each event 

fragment has serial number associated with it. These serial numbers are assigned by the 

front-end software components. Serial numbers are used by the event builder to match 

corresponding data segments. I have designed the event builder to make sure that it works 

independent of number of operating front end machines. 

 

 
Fig. 2.7 Event Builder 
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The Event Builder assembles event fragments from various event buffers BUF1-BUFN in to 

single event buffer called SYSTEM. The Event builder uses serial numbers in BUF1-BUFN 

to match the corresponding data segments. The data collected in SYSTEM buffer is stored 

onto hard disk via a program called the “logger”. 

 

2.3.4 ONLINE DATABASE 

 

We store the experiment settings in a file named “.ODB.SHM”. This file is considered to be 

the database of the experiment, storing the configuration of various front-ends, analyzers, 

etc. The data in this file can either be viewed or modified by using a web-browser interface. 

The utility which interfaces between the web browser and the file “.ODB.SHM” is 

“mhttpd”.  This utility has been developed as part of the MIDAS package. As the database 

of the experiment can be accessed and modified using an online web browser we call it the 

“online database”. 
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__________ 
CHAPTER  

                                         3 
        __________ 

 
 

FRONTENDS 
 
 
 
 

3.1 DATA ACQUISITION PROGRAMS (FRONTENDS) 

 

All of the front-end programs are software routines written in ‘C’ programming language 

and according to MIDAS specifications. Hence, they can easily be integrated into the 

complete MIDAS framework. Compliance with MIDAS specifications permits the use of 

various MIDAS utilities such as online data-base. 

 

Each front-end has been specifically written to handle a unique electronic module. The main 

routine in each front-end program is named “read_FOO_event”. The value of FOO differs 

in each front-end. It is generally the name of the electronic module we plan to read. The 

“read_FOO_event” routine is also known as the read out routine. 

 

3.2 MODES OF OPERATION 

 

The software front-end can be running in any of the following three modes: 
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PERIODIC MODE 

 

The read_FOO_event routine is called periodically with a user specified time period. This 

value can be set using online database. 

 

POLLING MODE 

 

The read_FOO_event routine is called based on the input from an external device such as 

the parallel port. Our program examines a specific parallel port bit, and when it’s set we call 

the read-out routine. This type of operation is useful for the master front-end. 

  

INTERRUPT MODE 

 

This mode of operation is useful for slave front-ends. These front-ends start their read out 

routine if, and only if, they are interrupted by the master front-end. 

 

 

3.3 CAEN FRONT-END 

 

The CAEN front-end is the software that reads out data from a multi-hit time-to-digital 

converter (MHTDC). MHTDCs are used for collecting the times of hits in the 340 detectors 

of the “µLan ball detector”. CAEN [8] is a company producing electronic modules that are 

used for nuclear physics research. The MHTDCs that we use in our experiment were 

developed by CAEN. Hence we term this front-end the CAEN front-end. This front-end 

serves as the master front-end for the data acquisition system, and hence works in polled 

mode.  
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The hardware CAEN MHTDC works in start gating mode as described below: 

 
Fig 3.1 CAEN START GATING MODE 

 

In figure 3.1, hits are generated independent of the start signal. The start signal is generated 

by CAEN logic circuit that’s explained in detail in section 3.3. The CAEN MHTDC records 

hits generated only during the gate period defined by the start signal. For example in figure 

3.1 only hits 2, 3, 4, and 5 are recorded in an event. 

 

The MHTDC will read data based on the start signal generated by the logic circuit shown in 

figure 3.2.  

 
Fig 3.2 CAEN LOGIC CIRCUIT 
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The input for logic circuit in figure 3.2 is driven by the software front-end, and the output 

generated by the above circuit enables the CAEN to work in polled mode. We select the 

length of the data segment by selecting an appropriate time value with the gate generator. 

 

3.3.1 CAEN DATA FORMAT 

 

The format of data generated by the CAEN is as follows:  

 
Each line of data contains 32 bits. Data in each data segment starts with a header word 

which contains an event number, and a start word which contains the start time of data 

segment. Then we will record the time of each muon hit and information about channel 

which generated the hit. At the end of the data segment we identify the end of segment with 

a 32 bit End of Buffer (EOB) marker. EOB marker also gives the number of hits in a data 

segment. 

 

A 32 bit pattern is identified as a header, start, data or EOB based on a unique identifier in 

bits 23 and 24. Valid data consists of 20 bits for hit time and 7 bits for the channel on which 

hits were recorded.  

 

The figure 3.3 has been taken from CAEN user manual [9]. 
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Fig 3.3 CAEN DATA FORMAT 

 

CAEN can also sometimes generate invalid data words, which can be discarded based on 

their bit pattern. 

 

3.3.2 CAEN FRONT-END DESIGN 

The following are the various design issues and solutions related to CAEN front-end: 

 

Issue: CAEN memory is limited 

The memory of CAEN hardware module is limited to 32K data segment. If we wait to the 

end of data segment for the CAEN read-out, the CAEN memory will overflow and hence 

we lose some data. 

Solution: 

The CAEN front-end works in polled mode of operation. We call read_cean_event routine 

only when a hardware data segment is complete, but by that time the CAEN may overflow. 

Hence we have a routine called “Loop readout”, which reads data into a temporary array, 

until we reach the end of data segment. Until then “Loop read out” runs in a tight loop just 

transferring data into an array, and allowing the CAEN hardware to collect more data. When 

we reach the end of a data segment, we are ready to call the read_caen_event, which finishes 

read-out and transfers the data over the network to backend for storage. 
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Issue: Synchronize various front-end machines 

Solve the problem of synchronizing various front-ends. 

Solution: 

CAEN front-end acts as master front-end and informs other machines of when to start 

readout via an RPC mechanism. 

 

Issue: Validity of Data 

Check for valid data based on the data format as specified by CAEN. 

Solution: 

Program will check for valid data bank format. It checks for a header, start, valid data words 

and end of buffer. The data validity check is based on fig 3.3 CAEN data format. 

 

Issue: CAEN Hardware errors 

Sometimes the CAEN module can get in an error state due to loss of synchronization with 

the external clock and resulting in erroneous data. 

Solution: 

After every call to read_caen_event, the software checks the contents of the CAEN status 

register to identify a hardware error. It then generates an error message over the MIDAS 

web interface of the experiment. The figure 3.4 gives the format of the CAEN status 

register, which is used to detect a CAEN error.  

 
Fig 3.4 CAEN Status Register 
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Issue: CAEN buffer overflow errors  

Sometimes due to electronic noise in detector module, the CAEN can generate a lot of data 

and produce CAEN buffer overflows. 

Solution: 

As mentioned in figure 3.5, after every data segment the software checks the status register 

of the CAEN to identify a buffer overflow error. It then generates an error message over the 

MIDAS web interface of the experiment. 

 

Fig 3.4 shows the CAEN status register. It is a 32 bit register. Bit 3 indicates if there is an 

error in the CAEN.  Bits 0, 1, and 2 inform you if they are related to buffer overflow. 

 

3.3.3 CAEN ACTIVITY DIAGRAM 

 
FIG 3.5 CAEN ACTIVITY DIAGRAM 
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Figure 3.5 summarizes the design of CAEN front-end activity using an Activity Diagram [6]. 

When the software front-end is started it does the initialization of the CAEN hardware. 

After executing initialization routines, the software waits for input from the user to start the 

read-out (i.e., it waits for start of run). This waiting stage for user input is indicated by the 

first decision box (diamond-shaped box) after the start.  

 

After the user initiates the start of run, the software checks for following two conditions 

before starting actual readout: (indicated by second decision box) 

 

1. Did the hardware finish collecting data? ( we identify this via an input from 

parallel port ) 

2. Did all slave front-ends finish reading the previous data segment? ( we 

identify this via the RPC calls from the slave front-ends ) 

 

While waiting for the above conditions to be met the software reads data in to a temporary 

array as shown in figure 3.5. After above conditions are met the software completes data 

collection. Later data is stored in a shared memory segment called “buffer” and is transferred 

to event builder for merging event fragments. 

 

At the end of each data segment we check CAEN status registers to see if it reported an 

error. If the status register reports an error, appropriate error handling routines are invoked. 

 

 

3.3.4 CAEN SOFTWARE IMPLEMENTATION 

 

All of the front-ends are implemented in “C” programming language over a Linux platform 

using the MIDAS libraries. 

 

In this section I discuss the important routines of this code and also briefly elaborate on the 

functionality of the code. 
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Initialization routines: 

 
void  CAENopwrite(short code, int CAENindex); 

INT frontend_init(); 

void  InitializeCAENChannels(int CAENindex); 

 

The above routines collect information needed to initialize hardware from online database 

file “.ODB.SHM” and initialize the necessary electronic modules. These modules also 

initialize the parallel port connections needed for the communication between the software 

and hardware. 

 

Loop readout routines: 

 

void CAENLoopRead(int CAENnum); 

 

This routine is used to collect the data fragments into a temporary array while waiting for the 

conditions to be met for the end of data segment.  

 

Slave front-end configuration routines: 

 

INT rpc_ready_for_readout(INT index, void *prpc_param[]); 

INT interrupt_configure(INT cmd, INT source, PTYPE adr); 

 

The above routines establish RPC connections to all of the slave front-end machines.  The 

“rpc_ready_for_readout” routine sends “start read out” message to all slaves. 

 

CAEN final readout routine: 

 

INT read_CAEN_event(char *pevent, INT off); 

 

This routine performs final data reading from hardware. After collecting data it is stored in a 

shared memory segment called “buffer”, which is read by the event builder in order to merge 

the data fragments into complete data segments. 
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Error Checking Routines: 

 

INT CheckCAENStatus(long CAENnumber); 

INT ClearCAEN(long CAENnumber); 

 

This routine checks CAEN status registers to identify an error. When the status register 

reports an error, the error handling routine “ClearCAEN” is invoked. 
 

3.4 EMC FRONT-END(ENTRANCE MUON COUNTER/WIRE CHAMBER) 

 

Entrance Muon Counter (EMC) is equipment used to determine the number and position of 

incoming beam particles. The EMC has a set of vertical wires termed as ‘X-wires’ and a set 

of horizontal wires termed as ‘Y-wires’. The EMC data is read out via CAEN MHTDC. 

 

Whenever a muon passes through the wire chamber one or more of the X and Y wires is 

triggered. By collecting the information regarding the time of hits and the positions of X and 

Y wires, we can find the position of the incident beam particles. A single muon hit can 

sometimes trigger more than one X wire or Y wire. The group of wires triggered for a single 

muon is termed a “clump”. The software needs to recognize hits within a specific period of 

time and group them together as a single clump.  

 

The EMC front-end is a CAEN front-end with special features added to meet the needs of 

an EMC. The EMC generates a lot of data but in general we are interested in the individual 

hits during the measurement period and the total number of hits in the fill period. 

 

We plan to collect data and compress it and then transfer the data to the backend. The EMC 

front-end operates in interrupted mode and is controlled by the CAEN front-end. 
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3.4.1 EMC DATA FORMAT 

 

The compressed data can be of following two types.  

 

Clump by Clump Data: 

 

In this format of data we store information of each clump. Hence we store information 

regarding each muon that passed through wire chamber. 

 

Clump by Clump data has the following format: 

Each line of data is a 32 bit word. 

For each fill period we have: 

  FILL MARKER         // Marker we use is 0xdeadbabe    

FILL_NUMBER        //   Number of Fill 0….N 

HIT_COUNT             //    Number of Hits with a Fill 

CLUMP_COUNT  //    Number of Clumps during Fill period 

FILL_TIME  // Time at start of Fill 

For each clump in a fill we have: 

CLUMP_SIZE // Number of hits with in a clump 

CLUMP_TIME // Time of clump 

X_POSITION  // Weighted X coordinate 

Y_POSITION  // Weighted Y coordinate 

The threshold “delta time” is used to distinguish clumps. 

 

Histogram data 

 

In this mode of operation we do not store the event by event information for each clump. 

Rather we store only the number of hits recorded during a fill period and their x, y and time 

spectra. 

 

The histogram data has the following data format: 

Each line is a 32 bit word. 
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For each fill period we have: 

  FILL MARKER         // Marker we use is 0xdeadbabe    

FILL_NUMBER        //   Number of Fill 0….N 

HIT_COUNT             //    Number of Hits with a Fill 

CLUMP_COUNT  //    Number of Clumps during Fill period 

FILL_TIME  // Time at start of Fill 

X_Spectrum  //  distribution of hits in X wires  

Y_Spectrum  //  distribution of hits in X wires  

Time_Spectrum  //  time distribution  

 

 

3.4.2 EMC DESIGN 

 

The EMC operates on a dual processor machine. To get the most of dual processor machine 

the EMC software forks a new thread to process collected raw data after each time segment. 

At the end of each time segment we store the collected data in a buffer and fork a new 

thread to compress it. After forking the new thread we continue with reading out the EMC. 

 

The design of EMC front-end can be summarized in following activity diagram. Similar to 

the CAEN, after the software front-end is started it performs the initialization of the 

hardware. After executing initialization routines, the software waits for input from the user 

to start the readout (Waits for start of run). This waiting stage for user input is indicated by 

first decision box (diamond-shaped) after the start.  

 

After the user signals the start of readout (start of run), the software waits for a signal from 

the master front-end as indicated in second decision box. While waiting for signal software 

reads data in to an array as shown in figure 3.6. 
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FIG 3.6 EMC Activity Diagram 

 

When the front-end is ready for final data reading for current data segment, it performs the 

final data reading from hardware. After collecting data it compress the data collected and is 

stored in a shared memory segment called “BUF07” and is transferred to event builder for 

merging event fragments. The compressing of data is executed by a separate thread, so that 

compressing data will not slow down the front-end in collecting data for the next data 

segment. 

 

At the end of each data segment we check CAEN status registers to see if an error has 

occurred. If the status register reports an error appropriate error handling routines are 

invoked. 
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3.4.3 EMC SOFTWARE IMPLEMENTATION 

 

The EMC front-end is also implemented in “C” programming language on a Linux platform 

using the MIDAS libraries. 

 

Most of the routines for the EMC front-end are based on the CAEN front-end. Hence, I 

discuss only the data compressing routines. 

 

Data Compression: 

 
void ProcessData(ARGUMENT argum); 

void store_clump(int i); 

void fill_clump(int i); 

void time_order(int i); 

void clump_histo(int i); 

 

ProcessData is the routine that is invoked by a separate thread to compress the data. All 

other routines are subsidiary routines used by ProcessData which help in data compression. 

 

The following are the data structures used by EMC front-end. 

 
Data Structure that helps in decided what type data needs to be stored. These values are 
acquired from online database i.e., file “.ODB.SHM”  
 
typedef struct EMC_settings { 
  BOOL    raw_bank; 
  BOOL    clump_bank; 
  BOOL    histo_bank; 
  INT     deltaTime; 
  BOOL    mode; 
} EMC_SETTINGS; 
 
EMC_SETTINGS emc_settings; 
 

These values can be set using the MIDAS web interface. Figure 4.6 and appendix D gives 

more information about these settings. 
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We fork a new thread using following “pthread” system call: 
 

    if(emc_settings.clump_bank||emc_settings.histo_bank) 

      pthread_create(&th,NULL,(void *)ProcessData,&argu); 

 

We verify that at least one of the compressed data banks is enabled before invoking a 

separate thread for compressing data. Once a new thread is forked, we continue collecting 

data for the next time segment. At end of the new time segment, we look for compressed 

data from the previous time segment by waiting for the thread to complete using following 

system call: 
 

    if(emc_settings.clump_bank||emc_settings.histo_bank) 

      ret = pthread_join(th, NULL);  

 

The CAEN time is represented by 20 bits. The time rollovers for data segment longer than 

0.76 ms. The analyzer accounts for the time rollover. Since the CAEN data is not properly 

time-ordered. I sort the data based on the time of the hit. The time_order() function helps in 

detecting rollover’s and to sort data based on time hits. 

 

The code segment to detect time rollover is mentioned below: 

 
    if(time > prevtime){ 

      // Check if a fake rollover 

      if(time>(prevtime+5e5)) 

 time = time – 0xfffff; 

    } 

    else if(time < prevtime){ 

      if (prevtime > (time + 1e5) ){ 

 if((prevtime - time)<(5e6)){  

   // Valid rollover 

   overflow += 0xfffff; 

   time += 0xfffff; 

 } 

 



 29

We use quick sort to sort data based on time of muon hit. 
  qsort(&(CAEN[i].process[1]), output_bank_size-1, sizeof(compress_caen),compare_caen); 

 

Quick sort uses the following comparison routine: 
int compare_caen(const void *p1, const void *p2) 

{ 

  compress_caen *hit1 = (compress_caen *) p1; 

  compress_caen *hit2 = (compress_caen *) p2; 

  if(hit1->time == hit2->time) { 

    return (hit1->identifier - hit2->identifier); 

  } else { 

    return (int) (hit1->time - hit2->time); 

  } 

 

} 

The Histogram settings for EMC front-end are governed by the user specified parameters 

mentioned in appendix D. Other hard-coded constants are: 

 
#define MAX_X            48 // Total number of X wires in histogram spectra 

#define MAX_Y            48 // Total number of Y wires in histogram spectra 

#define MAX_T            1024 // Total number of time bins in histogram spectra 

#define T_BIN            10e3 // Size of each time bin 

#define WORD_LENGTH      32 // Number of bits in unsigned integer 

 

The data structures used to store EMC spectra information are:  
 

  int clump_x[MAX_X],clump_y[MAX_Y]; 

  int clump_time[MAX_T]; 
 

The array clump_x[i] stores the number of count of number of hits on ith X wire of EMC. 

Similarly, clump_y[i] stores the number of count of number of hits on ith Y wire. The array 

clump_y[i] is incremented when “i = (clumpTime/T_BIN)”. 

 

The following are the user specified parameters which determine the length of X, Y and 

Time spectrum. 
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#define nXBits          hist_settings.nxbits 

#define xBinSize        hist_settings.nxbinsize 

#define nYBits          hist_settings.nybits 

#define yBinSize        hist_settings.nybinsize 

#define nTimeBits       hist_settings.ntbits 

#define timeBinSize     hist_settings.ntbinsize 

 

Above values can be specified using MIDAS web interface. Appendix D and figure 4.6 

specifies more details about setting these parameters. The lengths of X, Y and Time 

spectrum are determined as follows: 
 

xSpectrumSize =  (MAX_X/xBinSize)*nXBits; 

ySpectrumSize =  (MAX_Y/yBinSize)*nYBits; 

timeSpectrumSize =  (MAX_T/timeBinSize)*nTimeBits; 

 

The following loop is used to fill the respective spectra: 
  for(x_count = 0,count=0;count<number_of_bins;count++) 

  { 

    binvalue = 0; 

    for(bin_count=0;(bin_count<xBinSize)&&(x_count<MAX_X);bin_count++) 

      binvalue+=clump_x[x_count++]; 

 

    if(binvalue>=(1<<nXBits)){ 

      binvalue = (1<<nXBits)-1; 

      x_overflow = 1; 

    } 

Similarly, Y and time spectra are filled. 

 

When CAEN hardware is reported to be in error state by the CAEN status register, we first 

try to correct the CAEN error by trying to reset the CAEN MHTDCs. These errors can be 

eliminated by stopping the front-end and starting it again. Via this sequence we reset the 

CAEN hardware and execute all of the CAEN hardware initialization routines once again. 

Every time the front-end stops we reset the CAEN VME crate. 
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3.5 WFD FRONT-END (WAVE FORM DIGITIZER) 

  
The WFD front-end is used to read out data from a Waveform digitizer. It works in 

interrupted slave mode. Interrupts originate from CAEN master front-end.  

 

The WFDs are custom made by Boston University. Similar to the EMC, the WFDs also 

generate large amounts of data, hence we need to compress the data before we transfer data 

over the network. 

 
 
3.5.1 WFD DESIGN 

 

 
 

FIG 3.7 WFD ACTIVITY DIAGRAM 
  

The various parameters needed for compressing WFD data are available via the online 

database. The WFD front-end is similar to CAEN front-end but does not have CAEN error 

checking module. Since the WFD memory is very large and the data per WFD is relatively 

small, there is no loop read-out routine. 
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3.5.2 WFD DATA COMPRESSION 

Figure 3.7 illustrates the steps involved in compressing the data collected by the WFD front-

end.  The first step in figure 3.7 is to wait for the signal (interrupt) from the master front-end 

to start reading out data for the current time-segment. After getting the signal from the 

master front-end we make a function call to decode_bank(), which decodes the data from a 

byte sequence to values comprehensible to other routines. 

 
Figure 3.7 WFD compression sequence diagram 

 

The data from WFD comes in form of two phases. We need to merge data in these two 

phases before we start compressing the data. Next step after decoding data is to 

merge_events(). After merging the data we make a call to Fit_Events() which is responsible 

for compressing the WFD data. The compressed data derived by the WFD front-end 

comprises of the time, area, height and width of each pulse. Also, we will retain the 
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uncompressed raw data for about 1% of the time in order to allow for systematic studies. 

For all other pulses only the compressed data will be stored.  These various parameters and 

thresholds needed by front-end are discussed in appendix D. Later compressed data is stored 

in a data bank via fill_bank() and is transferred to event builder for merging event fragments. 

At the end, we signal to the master front-end that we are ready for collecting data for next 

time segment. 

 

There are two different WFDs. They are old WFD and BU WFD. In old WFD data is 

collected in two phases where as the new BU WFD collects complete data segment. The 

above compression schema is applicable only to old WFD. New BU WFD has the same 

compression schema except that it does not have the phase merging stage. 

   

3.5.3 WFD IMPLEMENTATION 

 
WFD front-end is also implemented in “C” programming language on a Linux platform 

using the MIDAS libraries. Most of the routines for the WFD front-end are similar to other 

front-ends. Hence, I discuss only data compressing routines. 

 

Data Compression: 

 
int DecodeBank(int*); 

int defFit(int,int,int,int,int); 

int fillRawBank(int,int,DWORD *); 

int fillFEBank(DWORD,int,int*); 

 

The data structure used to store WFD data compression routine thresholds is: 

 
typedef struct { 

  INT     threshold; 

  INT     leftwindow; 

  INT     rightwindow; 

} WFD_SOFT_SETTINGS; 
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fillFEBank() is the routine that is invoked to compress the data. All other routines are 

subsidiary routines used by read_wfd_event() which help in pre-processing data before 

compressing it. 

 

3.6 SOFTWARE TESTING 

 
Software can either operate in debug mode or experiment mode. In debug mode the front-

end reads data from a file rather than an electronic module. This mode has been very helpful 

for testing the code given the absence of the final hardware. During unit testing phase, I 

tested components for their individual operations first. After assuring that these front-end 

components work correctly on their own, I have conducted various rate tests to evaluate the 

performance of these front-ends together and also found maximum data rate that can be 

handled by our front-end. I have used “gprof” a gnu profiling tool [11], to analyze and find 

the processor intensive code segments. I have later tried to eliminate the code inefficiencies 

found using “gprof”.  After thorough unit testing, I have conducted integration testing. I 

used an iterative process while integrating various DAQ components, integrating a new 

component in each step. 
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__________ 
CHAPTER  

                                         4 
        __________ 

 
 

CONCLUSION 
 
 
 
 

 

Data acquisition system for the mulan experiment will be deployed at the Paul Scherrer Institut. 

The experiment will measure the positive muon lifetime about one part per million. The data 

acquisition must handle both very high data rates and very large data values. I have 

developed, tested and deployed the DAQ in following stages: 

 

At Nuclear Physics Laboratory at University of Kentucky, I have set-up a mock 

experimental setup in order to develop and test the DAQ components.  Initially I have 

tested programs individually with simulated data read from the hard disk. Next, I tested each 

software component by reading actual electronic modules. A flight simulator was used to 

simulate signals to the electronics modules. After performing unit testing [6], I performed 

integration testing by testing the inter-operation of multiple front-ends.  

 

Stress testing [6] for DAQ with real electronic modules was performed at the Nuclear 

physics laboratory at University of Illinois Urbana-Champaign. Finally, I have deployed the 

whole DAQ at successfully at Paul Scherrer Institut in Villigen, Switzerland. 
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__________ 
APPENDIX 

                                       
        __________ 

 
 
 
 
 
 
 
 

A. OBTAINING THE DAQ FROM CVS 

 

CVS is the Concurrent Versions System, the dominant open-source network-transparent 

version control system. CVS for data acquisition system is maintained on “gluon.pa.uky.edu” 

in the Nuclear Physics Laboratory at the University of Kentucky. 

 

Organization of CVS: 

 

The DAQ repository is organized in the following directory hierarchy: 

 

Analyzer: 

This directory contains analysis code.   

Front-ends: 

The front-end code directory contains various front-ends. 

Midas: 

This folder constitutes of MIDAS libraries needed by front-ends. 
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Obtaining a copy from CVS: 

 

To obtain DAQ from CVS repository:  

First set the following environment variables CVSROOT, CVS_RSH  

Then checkout the package "mulan": 

 

  # export CVSROOT=:ext:admin@gluon.pa.uky.edu:/home/admin/archive/ 

  # export CVS_RSH=ssh 

  # cvs checkout muLan 

 

Use the admin account to have write privileges to the archive and use the guest account for 

read-only access. 

 

B. ANALYZERS  

 

There are several analyzers developed for analyzing the data collected by the DAQ.  The 

analyzers that I have developed are written in ‘C’ Programming Language.  

 

The tasks accomplished by my ‘C’ CAEN data analyzer are as follows: 

 

1. Combine data from several CAEN electronic modules in to a single derived data 

bank. 

2. The CAEN time is represented by 20 bits. The time rollovers for data segment 

longer than 0.76 ms. my analyzer accounts for the time rollover. 

3. The CAEN data is not properly time-ordered. So, I sort the data based on time of 

hit. 

4. I map CAEN channels into detector identifier for the tiles of the µLan ball detector. 

5. I store this refined data in the MIDAS data bank format, so that other analyzers can 

use this new data. 

 

After these steps, I plot various histograms based on the needs of the physicists. 
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The following are some of the plots made by the analyzer. 

 
Fig 4.1 Histogram with time of hit with respect to fill 

 

 
Fig 4.2 Distribution of hits in CAEN channels 
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C. SLOW CONTROL  

 

Typically experiments require control of high voltages, readout of temperatures and similar 

parameters, which are generally referred to as "slow control". MIDAS incorporates a 

complete slow control system into the data acquisition system. This makes it possible to 

write all slow control data together with the normal data to disk. Since the slow control data 

is stored in the online database, all programs running in an experiment have access to it.  

 

There are some slow control items which specifically relates to µLan DAQ like the magic 

box and flight simulator. 

 

The Magic box is a programmable pulser based on XILINX field-programmable gate array 

(FPGA). It is controlled and monitored by a standard PC via the enhanced parallel port. It 

generates the data segment and fill-segment markers needed by our experiment. 

 

The Flight simulator (FS) is a 32 Channel programmable pulse generator. It is used to 

simulate the experimental data. Flight simulator pulses have been extremely useful for testing 

the DAQ. The FS can simulate various pulse trains such as a periodic pulse sequence, 

random pulse sequence and an exponential decay pulse sequence. An exponential 

distribution simulated by flight simulator is shown in figure 4.3. 

 
Fig 4.3 Exponential distribution generated by a FS 
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D. FRONTEND PARAMETERS  

 

The following are screen captures of various software front-end component parameters. All 

the parameters are stored in file “.ODB.SHM”, also termed the online database. These 

screen-shots are taken of the MIDAS web interface. 

 

CAEN PARAMETERS 

 
Fig 4.4  This page lists all the CAEN electronic modules managed by a single front-end. 

 

The figure 4.4 shows 4 electronic modules managed by single CAEN front-end. Each 

CAEN0X has its own module parameters shown in figure 4.5. 

 

In Fig 4.5, the Enabled switch is used to enable or disable a hardware device. The Address 

specifies the memory address of electronic module. This address is used by the electronic 

module to perform the data read-out and module setup. All other parameters help initialize 

the CAEN module. Further information about these parameters can be obtained from 

CAEN Manual [9]. 
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Fig 4.5  Lists the Parameters needed by CAEN hardware module. 

  

EMC PARAMETERS 

 
The following screen-shots list the Parameters used by EMC software module. EMC has all 

the parameters applicable to CAEN module, in addition EMC has following options 

provided to user to enable or disable various compression algorithms. 
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Fig 4.6  Lists the data formats enabled by the EMC software module. 

Based on the above switches we determine which compression algorithm to use for 

compressing EMC data. I have described clump-by-clump, and clump histogram data 

formats, in EMC front-end section 3.4. 

 
Fig 4.6  Lists the parameters needed by EMC data compressing algorithm. 

 



 43

WFD PARAMETERS 

 

Following screen-shot shows various electronic modules managed by single software front-

end. Each WFDXX has its own module parameters. 

 
Fig 4.7 lists various electronic modules managed by WFD software. 

 

The following figure lists various parameters needed by WFD data compressing algorithm. 



 44

 
Fig 4.8  Lists the parameters needed by WFD data compressing algorithm. 

 
Fig 4.9  Lists the data formats enabled by the WFD software module 

 

Based on above switches we determine which compression algorithm to use for compressing 

WFD data. 
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