Content Delivery in
Ad Hoc Wireless Networks

Design Document

Dec 10-03

Client:

lowa State University

Department of Electrical and Computer Engineering

Advisors:
Prof. Lei Ying

Ming Ouyang

Team Members:
Wyatt Brenneman
Taylor McKechnie

Prashanth Yanamandra

December 6, 2010

1 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Table of Contents

List of Figures

List of Tables

List of Definitions

Executive Summary
Acknowledgement

Problem Statement

Operating Environment

Intended Users and Intended Uses
Assumptions

Limitations

Expected End Product and Deliverables
Functional Requirements
Non-Functional Requirements
Technology Considerations

Safety Requirements Considerations
Possible Risks and Risk Management
System Decomposition

Detailed Design

Details of Hardware

Software Design

Testing and Evaluation

Testing Phases

Evaluation

Test Results

10

10

10

11

11

12

13

14

14

14

16

17

18

18

19

19

2 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Estimated Resources
Project Schedule
Task Breakdown
Team Information
Closing Summary
References

Appendix

21

22

22

24

25

26

27

3 lowa State University — Content Delivery in Ad Hoc Wireless Networks

List of Figures

Concept Sketch

Operating Environment

USRP Box

TelosB Sensor

System Decomposition

USRP Circuitry

USRP Block Diagram

Data Packet Sent From USRP
Data Received by USRP
Sensor Data Received by USRP
Sensor Data Relayed by USRP to Base Station Sensor
Light Sensor Graphical Data

Project Schedule

12

12

13

15

16

19

19

20

20

21

22

4 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

List of Tables

Intended Users and Intended Uses
Semester 1 Task Breakdown

Semester 2 Project Task Breakdown

22

23

5 lowa State University — Content Delivery in Ad Hoc Wireless Networks

List of Definitions

Wireless Ad-hoc Network: A decentralized wireless network which does not depend on preexisting
infrastructure like routers but each node participates in data transmission!!

USRP/USRP2 (Universal Software Radio Peripheral): USRP/USRP2 is a general purpose RF
hardware device designed by Ettus Research which provides a low-cost, readily but versatile radio
functionality.

GNU Radio: GNU Radio is an open-source software development toolkit for the development of
software-defined radios. It contains a variety of signal processing algorithms that we will use on the data
collected by the USRP hardware.

P2P (Peer to Peer): A system where the users both supply and consume the data available on the
network.

SD Card (Secure Data Card): A non-volatile memory card which would be used to store programming
for the USRP?2 in its standalone operation mode.

BER (Bit Error Rate): The number of erroneously received bits divided by the total number of
transmitted bits. BER is unit-less and expressed as a percentage.

TinyOS: TinyOS is a free and open source component-based operating system that is written using the
nesC programming language. ™

6 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Executive Summary

As the understanding of the world around evolves and grows, the control and distribution of information
is key to the continual growth and progress of society. Previous exchanges of information required
physically receiving the information from the source, receiving it from a third party, or from large
network sources such as the internet. These previous methods were not conducive to real time sharing of
information between individuals. Our project will allow users to stream data onto the network for others
to view immediately and straight from the sources of the information.

A team of three lowa State University College of Engineering students will work to create an ad Hoc
wireless network which will allow the ability of users to stream information using P2P traffic. Our group
will implement this network with several USRP and USRP2 radios, wireless sensors, and the GNU Radio
protocol.

7 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Acknowledgement:

Our group would like to thank lowa State University for providing the equipment needed for the project
including the USRPs, USRP accessories, and laptops used to complete this project. We would also like to
thank our faculty advisor Professor Lei Ying and his PhD student Ming Ouyang for answering our
questions about the project and helping troubleshoot the errors that we encountered.

Problem Statement

Wireless connectivity has become popular in our everyday life and the ability to exchange information is
increasing just as fast. Examples of technologies implementing ad-hoc networks include Wi-Fi,
Bluetooth and Zigbee.

Our goal is to establish communication between USRPs, USRP to Sensor and Sensor to Sensor using
Zigbee protocol (IEEE 802.15.4). This protocol operates at 2.4GHz broadcasting frequency. We will be
implementing a star network topology for our sensor networks. We also aim to print useful data obtained
from the sensors

SN
v
i
v
\ /
// \\\
N
N
N,
AR
AR
AR
N /OO
\
\\\
‘A
N

Figure: Concept Diagram

8 I lowa State University — Content Delivery in Ad Hoc Wireless Networks

Operating Environment:

Operating Environment:

The eventual network envisioned for this project will be providing P2P streaming service for an
individual building with the users accessing the network also inside the building. Because our system
will be operating indoors to provide network coverage for the entire building we won’t have to worry
about external weather conditions affecting the equipment or the transmission of the data. Since our
network will be operating indoors, the network will need to overcome the many stationary physical path

obstacles as well as smaller

moving path obstacles. N -
Future projects may be S E“S =

implemented to provide an ::: — ;5 3 ::: 5 \

outdoor network and will — N SN bﬁ_&;‘-‘x‘}x}

need to provide physical e) E E E E EEE:E’E‘E
protection from temperature, | S —_——— E — EEEEE%S:&E}‘{;
rain, dust, weather :E:EE;EEgE%E;;
conditions, wildlife, and e e E

vandalism. Moving the
network outside will also
require compensating the
data signal for adverse
weather conditions to
improve reliability.

Intended User Intended Use _
Wirelessly broadcasting information to other users around the area who

Non-technical

unknowledgeable can see it in real time. Should not require any knowledge of how

peripheral device user background network works, user only has to start transmitting by hitting a
“broadcast” button and it should broadcast the data to all users from there

until the user ends filming.

Manage feeds on the network, limiting and/or cutting the connectivity of

Administrator
ones that become too much of a hindrance to the network.

Broadcast of meeting or demonstration from on-site area to an office
building or safe-zone.

Commercial user

Use of our project as an educational tool for wireless sensor

Educational user
communication networks.

lowa State University — Content Delivery in Ad Hoc Wireless Networks

9

Assumptions

e Minimum user access: The system works only when there is at least one user who is broadcasting
and at least one user streaming the data.

e Users within the range of sensors: Users will be able to get best reception when they are in the
range of about 100 feet from the sensory/ USRP network.

e USRP and Laptop in same location: The USRP does computations when it is connected to a
laptop and will not function as a stand-alone system. The USRP2 does allow the use of an SD
card instead of an external laptop for computation. However, using the SD card reduces the
number and complexity of computations available to the USRP2.

¢ Indoor Network: The USRP and sensors will be placed indoors so physical protection from
weather elements will not be needed. We also will have to compensate for signal degradation due
to walls and reflections.

Limitations

e The equipment is not built to operate in extreme temperatures and should be kept indoors.

Expected End Product and Other Deliverables

The end product delivered will be
e Communication between USRPs and sensors

e The kinds of communication that will be available are USRP to USRP, Sensor to Sensor, USPR
to Sensor, Sensor to USRP, and Sensor to USRP to Sensor.

Other Deliverables include

e Project Plan Document

The project plan document highlighting the proposed approach plan will be provided at the completion of
the project

e Design Document

The design document highlighting the design approach considered for the project will be provided at the
completion of the project.

10 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

e Design Review Presentation
The presentation made for the design review will be provided at the completion of the project
e Project Poster

The poster designed highlighting our achievements for the project will be provided at the completion of
the project

e User Guide

A user manual will be provided to the user upon completion of the project in order to act as a reference on
how each element of the system works. This document will include a software guide as well as instruction
sets that assist with training and reference material.

Functional Requirements

Streaming of Wireless Sensor Data throughout Network

0 Our system will allow wireless sensor motes to stream sensor data to the USRP backbone
of our system. The data will be propagated to other wireless motes through the USRP
backbone.

Simultaneous Streaming

0 The fully functional system must be capable of supporting 10 simultaneous streams at
any instant of time. The wireless motes require a unique ID # when programmed so
sensor data can be tracked to the specific sensors.

Utilize the Zigbee 802.15.4 Protocol

0 Our network will be operating in the 2.4 — 2.4835 GHz band, which is the worldwide
band for Zighbee. We will be utilizing channel 16 of this band, which is at 2.48 GHz
center frequency.

Broadcasting range

0 The system must be able to provide good reception for users in a close range

Non- Functional Requirements

e Physical Dimensions

11 | 'owa State University — Content Delivery in Ad Hoc Wireless Networks

0 The dimensions of the sensors need will need to be small enough to be implemented in
classrooms and labs without needing to change any layout of the room. The dimension of
the USRP is fixed.

e Equipment Protection

0 The equipment is placed indoors at all times and does not require weather protection.
e Power Requirements

o The USRP and the USRP2 need an AC to DC converter. The sensors will need 2 AA
batteries to supply power.

Technology Considerations

e Hardware Considerations

0 USRP: We choose to use the USRP because it has been
specifically designed to use the GNU Radio software. By
utilizing a software defined radio, much more flexibility is
given to our system by taking the much of the system design
away from hardware and given to software design.

» Daughterboard: The USRP daughterboard that we
have chosen to use is the RFX2400 Transceiver. This
will allow us to transmit and receive with only one
antenna and also operates within the worldwide Zigbee
802.15.4 band.

0 Sensors: The sensors used in our
system are Crossbow TelosB
sensors. We choose these because
they include voltage,
temperature/humidity, visible light
spectrum, and visible light to
infrared sensors. These sensors
can also be easily programmed
using TinyOS and are powered by
only two AA batteries.

e Software Considerations

0 GNU Radio: GNU Radio is an open-source software development toolkit which enables a
variety of signal processing on the data collected by the USRP hardware. GNU radio is a

12 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

software interface to the USRP. There are also many projects using GNU Radio and
USRPs and we can utilize these projects as a resource for learning.

TinyOS: We will be using TinyOS for programming the wireless motes because it
utilizes nesC which is very similar to C syntax and allows component blocks to be tied
together easily.

Safety Considerations

o Excessive exposure to radio frequency

0 Being exposed to excessive radio frequency can lead to health hazards

e No interference

o Equipment used for this project will not interfere with other radio devices which include

wireless 2 way radios.

All the technology used here is purely for educational purposes and not for jamming other equipment or
for destructive purposes.

Risks and Mitigation Plans

The project is designed with precision and quality; however, there are certain risks, which could
be encountered during the course of project lifetime. The possible risks are indicated below:

e Device/Sensor failure

0 Sensors are prone to fail with increasing time and usage. To reduce the effect of sensor

failing on the system, our team is planning to overlap sensors and make a mesh network.
Taking this approach, we will be able to use other sensors to route the data temporarily,
until the sensor is repaired/ replaced. The sensors we plan to use are commonly available
and will be easy to order and replace.

e Data Transmission Overlap

(0]

Data being sent across a wireless medium is will end up travelling in multiple paths to the
receiver. This can cause deconstructive interference from phase shifting and congestion
in the system. We will implement a way to recognize the desired signal and reduce the
chance of propagating duplicate signals.

13 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

System Decomposition

The USRP sends and receives information from the video sensor wirelessly at 2.4GHz. The data packets
received from the video sensor are processed by the FPGA in the USRP. The processed data is then sent
to the laptop computer through a USB cable or a gigabit cord.

Java:
Serial Forwarder
Oscilloscope

GNU Radio TinyOS

Python/ |l Application
TinyOS C++ Code Code
Application
Code

Transceiver
Daughterboard

Light Temp/Humidity
Sensor Sensor

Microprocessor

Figure: System Decomposition

Detailed Design Overview

USRP

For our project we will be using the USRP as well as the newer USRP2 to provide the hardware interface
of our radio system. The main reason for using the USRP/USRP2 is that they were designed with the
GNU Radio software in mind and created to maximize the capabilities of GNU Radio. The
USRP/USRP2 design is also open source, which means that all of the tools we will be using to create our
final product are open source. This fact allows us forgo typical software and licensing fee that could be
attributed to a typical project of our nature.

14 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

I.I.|IIIII|||¢|,:

Figure: Trasnsceiver Daughter board used in USRP

15 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Details of Hardware

For both our USRP and USRP2 modules we will be using the same antennas and daughterboards.

Antenna: We will be using the VERT2450 antenna on all of our USRPs.

Dual band 2.400 — 2.800 GHz and 4.900 — 5.900 GHz.

Daughterboard: We will be using the RFX2400 Transceiver daughterboard in all of our USRPs.

Fully controllable through radio software or FPGA

Transmitting power of 50mW (17 dBm)

Able to transmit and receive through one antenna and board connection

30 MHz transmit and receive bandwidth
Frequency range of 2.300 — 2.900 GHz

The first generation USRP utilizes 4 high-speed ADCs and DACs which are connected to an Altera

Cyclone EP1C12 FPGA. The USRP also uses USB?2 to interface with laptop.

Analog to Digital Converters

64 Ms/s at 12-bit

Digital to Analog Converters

The second generation USRP2 also
utilizes 4 high-speed ADCs and DACs,
which are then connected to a Xilinx
Spartan 3-2000 FPGA which then
connects to a Gigabit Ethernet interface.

Analog to Digital Converters

Digital to Analog Converters

128 Ms/s at 14-bits

100 Ms/s at 14-bit

400 Ms/s at 16-bits

ADC

FX2
USB 2
Controller

Tranceiver
Daughterboard

ADC

DAC

DAC

FPGA

16 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Software Design

USRP Software

0 The software packages that were used for the USRP software are GNU Radio and UCLA

Zighee PHY. The UCLA Zigbee PHY project was created to extend GNU Radio to
interoperate with Chipcon CC1000 and CC2420 radios. We choose to use this because it
is an open source project and the TelosB mote uses a CC2420 radio for its wireless
transmission. This allowed us to focus on writing an application for our sensor network
without having to write all the physical layer coding needed for Zigbee.

Our python script utilizes two of the example codes provided by the UCLA Zigbhee PHY
project. The project provides a basic transmission script and a basic receive script for
sending and receiving packets formatted for the CC2420 chip. Since we want our
program to be able to transmit and receive messages simultaneously we needed to
combine the two scripts effectively.

The original receive script would send the same message every time, but since we are
forwarding the messages that are received we needed to parse the incoming data into its
Frame Control Field (FCF), packet number, address info, payload, and Cyclical
Redundancy Check (CRC). We then took the packet number, address info, and payload
and passed it to the send_pkt() function. This function is part of the UCLA Zigbee PHY
library, which generates an FCF and CRC for packet information and then sends the data
to the USRP. One of the largest problems with combining the two separate scripts was
that both scripts were written assuming no other program would be accessing the
daughterboard. This meant that initially that the USRP could only receive or only
transmit.

The solution for this problem was to create a new top level class where both the receive
path and transmit path are activated and then combined. Since this became the top level
class, this forced the receive and transmit classes to become second level blocks and
changing some of the class initialization functions.

After connecting both transmit and receive paths together we were then able to transmit
and receive at the same time, but we needed to add a check that the packet received was
not just transmitted. This prevents the USRP from creating an infinite loop where it will
continually send the same message since it is picking up the message it has just
transmitted.

TinyOS Software

o0 To test the functionality of our system of receiving and sending packets from the TelosB

motes we used a basic example application with a few modifications. We choose to use
the Oscilloscope and BaseStation applications provided by TinyOS.

lowa State University — Content Delivery in Ad Hoc Wireless Networks

The Oscilloscope application takes sampled sensor data and transmits it wirelessly using
the CC2420 chip. The data packet contains 10 readings 16-bit sensor data as well as
mote id. The default sensor for the Oscilloscope program was a voltage sensor that
measured the supply voltage of the microprocessor. While this data can be useful to
determine if the batteries may need to be replaced in a mote, the data is nearly constant
and is not useful for a demonstration. To make this application interactive for our
demonstration we choose the sensor that it would be reading to the Hamamatsu s1087
visible light sensor. This allows us to see drastic changes in the sensor readings by
affecting the amount of light that reaches the sensor to verify the real-time transmission
of the data.

Testing and Evaluation

Testing will be performed in various stages during the course of the project. The initial stage of testing
includes testing the system by sending data packets from one USRP to another USRP. We will then move
to testing communications between the USRPs and the sensors.

Testing Phases

As was stated earlier the first stage is testing communication between the USRP devices. This was done
by sending various packets from one USRP to another and checking them to ensure they were the same
packet. We had some user error here when putting in the frequency to transmit and receive on.

The second stage was testing the sensor to sensor communication. In this phase of testing, a sensor

transmitted either light, voltage or temperature readings as data packets to the base station (a sensor
programmed to be a receiver connected to the laptop). The base station printed out the information

received from the transmitter sensor using the Java Oscilloscope application.

The third stage was testing the sensor to USRP communication. Data packets were sent back and forth
between the sensor and the USRP. Data sent from the sensor to the USRP was printed to the screen and
then using another java application included with TinyOS called Listen we printed the data received by
the base station sensor. In this stage we had to ensure the received payload was parsed correctly and
preserved their formatting to prevent any packets failing which the packet would be dropped.

The final stage of testing was sending a packet from a senor to a USPR and then to another sensor. In this
stage we had to ensure that the packet was successfully received and transmitted. To do this we had to
ensure the correct parts of the packet were stripped away when it was received so that the payload (packet
data) was left unchanged. When moving from receiving to transmission we ran in to an error of the USRP
receiving the packet it was transmitting in a continuous loop.

18 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Evaluation

Data packets will be transmitted from a TelosB sensor to an USRP. The USRP will print out the received
sensor data. It will simultaneously transmit the received data to another USRP. The second USRP will
print the received data. We will then compare the received data with the transmitted data to check for
error free transmission. The USRP will then transmit the data to the sensors, which will confirm the data
received by a light blink. This multi-hop transmission will check full system functionality correctness.

Test Results

def send pkt(self, payload='', eof=False):
return self.packet transmitter.send pkt(@x8, struct.pack(“7B", 06x22, @x@, OxFF,8xFF, @x1, ox8, 8x3f), m;ruct.pack{ 298", Ox93 , Ox80 , Ox30 ,
6x88 , 8x40 , 6xd0 , Ox81 , 6x80 , 6x88 , ©x00 , Ox02 , 6x00 , 6x03 , Gx080 , Ox02 , 6x00 , 6x02 ,
0x00 , 6x84 , @x90 , x5 , Ox00 , Ox65 , Ox00 , Ox06 , Ox00 , 6x64 , Gx00 , 6x04) , eof)

Figure: Data Packet Sent From USRP

mobileuser@mobilelinux-01:~/ucla_zigbee phy/src/exanples$ python cc2420 rxtxcode.py -c 2.48e9
cordic_freq = 2.486

Using RX d'board A: Flex 2488 Rx MIMO B

>>> gr_fir fff: using SSE

Using TX d'board A: Flex 2480 Tx MIMO B

gr_vmcircbuf createfilemapping: createfilemapping is not available
/home/mobileuser/.gnuradio/prefs/gr _vmcircbuf default factory: Permission denied

passing through initial if statement

ok = True pktno = 8 mote id = 1 len{payload) = 41 1/1

FCF: (65, 136]

Seq Num: (8]

Address info: [34, B, 255, 255, 1, @, 63]

Payload: [147, 8,09, 0,64, 8, 1,0, 8, 8,2, 0,3,0,2,0,2090,4,05®0,50,6 0 4,0, 4]
CRC: [28, 15]

Decimal Payload: [65, 136, 8, 34, ©, 255, 255, 1, @, 63, 147, 0, 0, ©, 64, 0, 1, 0, 8, 8, 2, 0, 3,90, 2,0, 2,0,4,0,5,0,5, 0,6,0,4,0, 4,28, 15]

862.15.4 pkt = (65, 136, 8, 34, 0, 255, 255, 1, 0, 63, 147, 6, 0, 0, 64, 0, 1, 0, 8, 0,2, 0, 3,0, 2,90, 2,0,4,0,5,90,5,60,6,0,4,0, 4,28, 15)
802 15 4 pkt: waiting for packet...

Figure: Data Received by USRP

The above figures show our hardcoded message from the transmitted USRP to the second USRP. The
FCF is generated by an underlying python script ieee802_15 4 pkt.py and we have modified it to give
the FCF needed by the TelosB mote. The CRC is also generated by the same underlying script and is
based on the data sent and acts as an error check for received packets.

19 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

mobileuser@mobilelinux-81:~/ucla zigbee phy/src/exampless python cc2420 rxtxcode.py -c 2.48e9
cordic_freq = 2.486

Using RX d'board A: Flex 2486 Rx MIMO B

>=> gr_fir fff: using SSE

Using TX d'board A: Flex 2486 Tx MIMO B

gr vmcircbuf createfilemapping: createfilemapping is not available
/home/mobileuser/.gnuradio/prefs/gr vmcircbuf default factory: Permissicn denied

passing through initial if statement

ok = True pktno = 81 mote id = 2 len(payload) = 41 1/1

FCF: [65, 136]

Seq Num: [81]

Address info: [34, &, 255, 255, 2, @, 63]

Payload: (147, 8, ©, ©, 64, @, 2, ©, 81, 8, 3,0, 4,9, 3,9, 3,0,4,0,4,0, 3,0 3,6, 3,8, 3]
CRC: [88, 184]

Decimal Payload: [65, 136, 81, 34, @, 255, 255, 2, @, 63, 147, 9, ©, 9, 64, @, 2, 0, 81, 9, 3, 6, 4,9, 3,0, 3,0,4,0, 4,06, 3,0, 3,0,3,0, 3,88, 104]
§62.15.4 pkt = [65, 136, 81, 34, @, 255, 255, 2, @, 63, 147, 0, 0, 0, 64, 0, 2, 0, 81, 0, 3, 6, 4, 0, 3, 9, 3,0, 4,0, 4,0, 3,0, 3, 0, 3, 0, 3, 88, 184]
802 15 4 pkt: waiting for packet...

packet received.
passing through secondary if statement

ok = True pktno = 82 mote id = 2 len(payload) = 41 2/2

FCF: [65, 136]

Seq Num: [82]

Address info: [34, 0, 255, 255, 2, @, 63]

Payload: [147, 6, 06, 0, 64, 8, 2, 0, 82, 8,5,0,5,98,5,0,5,0,4,890,5,0,5,9,5,890,5,8, 6]
CRC: [73, 158]

Decimal Payload: [65, 136, 82, 34, @, 255, 255, 2, @, 63, 147, 0, 6, @, 64, ©, 2, 9, 82, 9,5, 0,5, 08,5,0,5,0,4,0,5 6,5 09,5 0,5, 0,6, 73, 158]
802.15.4 pkt = [65, 136, 82, 34, @, 255, 255, 2, @, 63, 147, 0, ©, 0, 64, 9, 2, 0, 82, 0,5, 9, 5,0, 5,0,5,0,4,60,5 0,5 86,5 0,5, 0,6, 73, 158]
802 15 4 pkt: waiting for packet...

packet received.
passing through secondary if statement
ok = True pktno = 83 mote id = 2 len(payload) = 41 3/3

Figure: Sensor Data Received by the USRP

For this test condition we sent data from the TelosB mote and received the data on the USRP. Since the
mote is wireless and unconnected to a computer we cannot verify the exact data. However, we can see
that the packet number is increasing by one and the mote id is constant. The payload data
[...,0,3,0,4,0,3,...,0,3,0,3,...] are the sensor readings. Each reading is a 16-bit integer and we covered the
light sensor for this test so the values received are reasonable for this experiment.
mobileuser@ying-03:/opt/tinyos-2.1.0/apps/BaseStation$ java net.tinyos.tools.Listen

00 FF FF 00 02 1C 00 93 00 60 6O 40 00 02 00 00 60 GE 60 6D 0O ©D 60 ©D @0 6C 6P 6D 60 OE 0@ OC 00 OF @0 OF

00 FF FF 00 39 1C 00 93 60 00 00 40 00 62 60 00 00 6E 60 OD 00 6D 60 6D 60 6C 60 6D 00 OF 00 6C 00 OF 00 OF

0@ FF FF 60 02 1C 00 93 0@ 00 PO 40 00 02 0O O1 OO 6F OO0 OE 00 106 GO 11 00 10 60 OF @0 OB ©0 OE @0 OE @O0 OD

0@ FF FF 60 39 1C 60 93 0P 00 €0 40 9O 62 €0 01 PO €F PO OE 0@ 10 0O 11 6P 10 60 OF 0P OB €0 OE 6@ OE €O 6D

00 FF FF 60 62 1C 00 93 00 00 00 40 00 62 60 62 00 6D 60 6D 60 OE 60 OC 60 6C 00 6D 60 OC 00 6C 60 OC 60 OC

00 FF FF @0 39 1C 00 93 00 60 00 40 00 02 00 ©2 ©0 6D 60 ©D 0@ OE 00 ©oC @0 ©C 00 6D 60 ©C 0@ oC 00 oC ee ecC

0@ FF FF 0D 062 1C 00 93 00 00 00 40 00 02 PO ©3 0O €C 00 D 00 6D 60 10 00 OE 60 OE 00 OE 00 OE @0 OF 60 10O

00 FF FF 60 39 1C 00 93 00 60 60 40 60 62 60 63 60 6C 60 6D 00 6D 60 10 00 OF 00 OF 00 OF 00 OF 00 OF 00 10

00 FF FF 60 02 1C 00 93 00 60 00 40 00 62 €0 04 00 11 60 OB 00 OB 0O 09 00 OB 00 OB 00 OE 00 6D 00 GE €0 oC
0@ FF FF @0 39 1C 00 93 00 60 €0 460 60 62 60 04 00 11 60 OB 00 OB 6O 69 0O OB 00 6B 00 OE 00 OD 00 GE @0 OC

Figure: Sensor Data Relayed by USRP to Base Station Sensor

In this test, the BaseStation application from TinyOS will drop any duplicate packets so to ensure that the
USRP was properly forwarding the received packet we modified the mote id. This results in the
BaseStation app picking up two packets: one directly from the sensor and one from the USRP. The fifth
byte denotes the mote id change and as one can see the rest of the data is the exact same for all other bytes
which shows that the packet is forwarded correctly.

20 | 'owa State University — Content Delivery in Ad Hoc Wireless Networks

o Oscilloscope
||_Mote | Color

1 X: 5489 - 5689
Clear data Sample period (ms): 128 c O Y:|0 - 200
50 200 800 3200 12800

Figure: Light Sensor Graphical Data

Estimated Resources and Cost

Resource Number of Units Cost per Unit ~ Total

USRP (Base Kit) 2 $700 $1,400
USRP2 (Base Kit) 3 $1400 $4,200
RFX 2400 Transceiver 5 $275 $1,375
daughterboard

VERT 2450 Antenna 5 $35 $175
Sensors 20 $139 $2,780
Laptops 5 $800 $4,000
Work Hours 450 $20/Hour $9,000
SD Cards 3 $20 $60
Total Cost $22,990

21 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Project Schedule

ITMI:Name |Du’alion | Start ‘|T|'|'['|'|'|TTF TT11 | | | . 11 111

Intial meeting wth dient 1 day Fri 1722110

Project Plan Complete 29 days Fri 1722110

Research background inform ation | 41 days Fri 1722110

USRP Communication | 20 days Mon 3/11/10

USRP & Sensor Communication 30 days Mon 3/29/10

Design Document com plete 38 days Thu 3/4/10

Commitiee Review 1day Tue 42771

ITaaI: Name | Duation | Start Finish

Get new project direction Sdays Mon 823/10 Fri 82710

Update software 15 days Mon 9!64'10_ Fri 972410

USRP to Sensor Comm unication 156ays_ Mon 91'2?-‘10_ Fri 10/115/10

Initial Testing 12days Mon 1011810 Tue 1172110

Work on project poster 8days Mon 1178110 Wed 111710

Test-BreakFix 26 days Mon 10/25/110 Mon 11/29/10

Finial Testing and Documentation 1days Mon 11/2211C Mon 12610) ; H

Final Review Sdays Mon 12/%6/10 Fri 12/1010 : : H |
Task G £)demal Milestone L Manual Summary Rolup cr—
Split s Inactive Task [Manual Summary e

Project: Project Schedule F2010-Gna | Miestone * Inactive Milestone @ Start-only C
Date: Sat 12/4/10 Summary — i Y G——— Finish-only |

Project Summary ==y \janual Task G Progress ——
Extemal Tasks @SS Dumtion-only Deadii &

Task Breakdown

Semester 1#
"Research ~ Hardware ~ Software Design ~ Documentation Total

Implementation

Woyatt Brenneman 35 5 10 30 80
Taylor McKechnie 40 0 10 25 75
Prashanth 35 5 10 30 80
Yanamandra

Total 105 10 30 90 215

27 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Semester 2

Transmission Receiving Signal Testing Documentation Total
Processing

Wyatt Brenneman 20 20 5 30 30 105
Taylor McKechnie 10 10 10 10 30 70
Prashanth 5 5 5 5 40 60
Yanamandra

Total 35 35 20 45 100 235

#

273 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Client/Advisors Information

Professor Lei Ying
3219 Coover Hall
Ames, 1A 50011
leiying@iastate.edu
515 294-5353

Ming Ouyang

2215 Coover Hall
Ames, |1A 50011
mouyang@iastate.edu
515 294-2664

Project Team Information

Wyatt Brenneman

232 Walnut Ave Unit 16
Ames, 1A 50010
wgbn0l@iastate.edu
319 981-7003

Taylor McKechnie

225 Hyland Ave Apt 12
Ames, IA 50014
thrplst@iastate.edu
402 926-1033

Prashanth Yanamandra

143 University Village Apt F
Ames, 1A 50010
psy@iastate.edu

321 704-6321

24 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Closing Summary

In a world where the need of fast and reliable exchange of information is growing our network will
showecase one possibility of how this can be achieved. Our network will rely on the flexibility of P2P
sharing and combine it with the immediate gratification of streaming data. By streaming the data the
users will not be required to wait to view the information they need as well and continue to propagate the
data through the network.

25 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

References

[1] Crossbow Wireless Modules Portfolio — Crossbow Technology. Retrieved March 1, 2010. From the
World Wide Web : < http://www.xbow.com/Products/productdetails.aspx?sid=156>.

[2] TinyOS." Wikipedia, the free encyclopedia. Retrieved December 4, 2010 from the World Wide Web:
<http://en.wikipedia.org/wiki/TinyOS>.

[2] Ettus Research LLC. Retrieved March 1, 2010. From the World Wide Web :
<http://www.ettus.com/>.

[3] "GNU Radio”. Retrieved March 1, 2010 from the World Wide Web. <http://gnuradio.org/trac>.

[4] "GNU Radio." Wikipedia, the free encyclopedia. Retrieved March 1, 2010 from the World Wide Web:
<http://en.wikipedia.org/wiki/GNU_Radio>.

[5] ISU Electrical and Computer Engineering: ECpE Building Addition and Coover Hall Renovations
Project. Retrieved March 1, 2010 from the World Wide Web:
<http://www.ece.iastate.edu/typo3temp/pics/6552a907c0.gif>.

[6] Jackey, John. FPGA for MRFM Cantilever Control. Retrieved April 26, 2010 from the World
Wide Web :< http://www.research.cornell.edu/K1C/events/MRFM2006/pdfs/Jacky%20talk/jackytalk.
html>.

[7] “Peer-to-peer.” Wikipedia, the free encyclopedia. Retrieved March 1, 2010 from the World Wide
Web: <http://en.wikipedia.org/wiki/Peer-to-peer>.

[8] "Universal Software Radio Peripheral.”" Wikipedia, the free encyclopedia. Retrieved March 1, 2010
from the World Wide Web: <http://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral>.

26 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

Appendix

The appendix contains the code designed for the transmitting and receiving functions of the USRP
#!/usr/bin/env python

#

This program was written for a senior design project at lowa State University

under the supervision of Professor Lei Ying, and Ming Ouyang.

#

Receives and Forwards 802.15.4 RADIO packets from TelosB Wireless sensor motes

#

This code is a modified combination of cc2420_rxtest.py and cc2420txtext.py

from the UCLA Zigbee PHY project examples. The cc2420_rxtest.py and

cc2420_txtest.py were created By: : Thomas Schmid, Leslie Choong, Mikhail Tadjikov,
and Sanna Leidelof.

#

Written and Modified by: Wyatt Brenneman and Taylor Mckechnie

from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio.ucla_blks import ieee802_15 4 pkt
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import math,struct, sys, random
def pick_subdevice(u):
The user didn't specify a subdevice on the command line.
If there's a daughterboard on A, select A.
If there's a daughterboard on B, select B.
Otherwise, select A.
if u.db(0, 0).dbid() >=0: #dbid is < 0 if there's no d'board or a problem
return (0, 0)
if u.db(1, 0).dbid() >=0:
return (1, 0)
return (0, 0)
class stats(object):
def __init_ (self):

self.npkts =0
self.nright = 0
#UTHTTT L |
Combine Transmit and Receive Paths

#ITTTH L |
class path_block(gr.top_block):

i=0

mote_id_sent=0

packet_num_sent=0

def __init_ (self):

gr.top_block. _init__(self)
def rx_callback(ok, payload):

27 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

payload2 = map(hex, map(ord, payload))
payloaddec = map(ord, payload)
packet_num = payload[2]

mote_id = payload[7]

#app.start()
if path_block.i==0: #Allows for first received packet to be transmitted
print "passing through initial if statement"
st.npkts +=1
if ok:
st.nright +=1

print "ok = %5r pktno = %d mote_id = %d len(payload) = %4d %d/%d" % (ok,
ord(payload[2]), ord(payload[7]), len(payload),
st.nright, st.npkts)

print "
print "FCF: " + str(map(ord, payload[0:2]))
print "Seq Num: " + str(map(ord, payload[2]))
print "Address info: " + str(map(ord, payload[3:10]))
print "Payload: " + str(map(ord, payload[10:39]))
print "CRC: " + str(map(ord, payload[39:41]))

print "Decimal Payload: " + str(payloaddec)
self.txpath.send_pkt(payload,False)
print "802_15 4 pkt: waiting for packet..."
path_block.i=1
elif (path_block.packet_num_sent = packet_num and path_block.mote_id_sent ==
mote_id) or path_block.mote_id '= mote_id:
print" packet received."”
print "passing through secondary if statement" #Will not allow
transmission if received packet was just transmitted
#This prevents an
infinite transmission loop
st.npkts +=1
if ok:
st.nright +=1

(pktno,) = struct.unpack(''H', payload[0:2])
print "ok = %5r pktno = %d mote_id = %d len(payload) = %4d %d/%d" % (ok,
ord(payload[2]), ord(payload[7]), len(payload),
st.nright, st.npkts)

print "
print "FCF: " + str(map(ord, payload[0:2]))
print "Seq Num: " + str(map(ord, payload[2]))
print "Address info: " + str(map(ord, payload[3:10]))
print "Payload: " + str(map(ord, payload[10:39]))
print "CRC: " + str(map(ord, payload[39:41]))

print "Decimal Payload: " + str(payloaddec)
self.txpath.send_pkt(payload,False)
print "802_15 4 pkt: waiting for packet..."

28 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

path_block.packet_num_sent = packet_num
path_block.mote_id_sent = mote_id
sys.stdout.flush()

parser = OptionParser (option_class=eng_option)
parser.add_option("-R", "--rx-subdev-spec”, type="subdev", default=None,
help="select USRP Rx side A or B (default=first one with a daughterboard)")
parser.add_option("-T", "--tx-subdev-spec"”, type="subdev", default=None,
help="select USRP Tx side A or B (default=first one with a daughterboard)")
parser.add_option ("-c", "--cordic-freq", type="eng_float", default=2480000000,
help="set rx cordic frequency to FREQ", metavar="FREQ")
parser.add_option ("-r", "--data-rate", type="eng_float", default=2000000)
parser.add_option ("-f", "--filename™, type="string",
default="rx.dat", help="write data to FILENAME")
parser.add_option ("-g", "--gain", type="eng_float", default=0,
help="set Rx PGA gain in dB [0,20]")

(options, args) = parser.parse_args ()

st = stats()

i=0

mote_id_sent = 'null'
packet_num_sent = 'null’

self.rxpath = ogpsk_rx_graph(options, rx_callback)
self.txpath = transmit_path(options)
self.connect(self.txpath)

self.connect(self.rxpath)

#UTTT |

Recieve Block

#UTTTTT T T ||

class oqpsk_rx_graph (gr.hier_block2):

def __init__(self, options, rx_callback):
gr.hier_block2.__init__(self, "ogpsk_rx_graph",

gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(0, 0, 0)) # Output signature

print "cordic_freq = %s" % (eng_notation.num_to_str (options.cordic_freq))

self.data_rate = options.data_rate

self.samples_per_symbol = 2

self.usrp_decim = int (64e6 / self.samples_per_symbol / self.data_rate)
self.fs = self.data_rate * self.samples_per_symbol

payload_size = 128 # bytes

u = usrp.source_c (0, self.usrp_decim)
if options.rx_subdev_spec is None:
options.rx_subdev_spec = pick_subdevice(u)
u.set_mux(usrp.determine_rx_mux_value(u, options.rx_subdev_spec))

29 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

subdev = usrp.selected_subdev(u, options.rx_subdev_spec)
print "Using RX d'board %s" % (subdev.side_and_name(),)

u.tune(0, subdev, options.cordic_freq)
u.set_pga(0, options.gain)
u.set_pga(1, options.gain)

self.u=u

self.packet_receiver =
ieee802_15 4 pkt.ieee802_15 4 demod_pkts(self,callback=rx_callback,sps=self.samples_per_symbol,s
ymbol_rate=self.data_rate,
threshold=-1)

self.squelch = gr.pwr_squelch_cc(50, 1, 0, True)
self.connect(self.u, self.squelch, self.packet_receiver)

#UTTTTT T T |

Transmit Block

#ITTT L T

class transmit_path(gr.hier_block?2):

def __init__ (self, options):
gr.hier_block2. _init__ (self, "transmit_path",

gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(0, 0, 0)) # Output signature

self.normal_gain = 8000

self.u = usrp.sink_c()

dac_rate = self.u.dac_rate();

self._data_rate = 2000000

self._spb =2

self._interp = int(128e6 / self._spb / self._data_rate)
self.fs = 128e6 / self._interp
self.u.set_interp_rate(self._interp)

determine the daughterboard subdevice we're using
if options.tx_subdev_spec is None:

options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)
self.u.set_mux(usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec))
self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
print "Using TX d'board %s" % (self.subdev.side_and_name(),)

self.u.tune(0, self.subdev, options.cordic_freq)
self.u.set_pga(0, options.gain)
self.u.set_pga(l, options.gain)

transmitter

self.packet_transmitter = ieee802_15_4 pkt.ieee802_15 4 mod_pkts(self, spb=self._spb,
msgq_limit=2)

self.gain = gr.multiply_const_cc (self.normal_gain)

30 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

self.connect(self.packet_transmitter, self.gain, self.u)
self.set_gain(self.subdev.gain_range()[1]) # set max Tx gain
self.set_auto_tr(True) # enable Auto Transmit/Receive switching

def set_gain(self, gain):
self.gain = gain
self.subdev.set_gain(gain)

def set_auto_tr(self, enable):
return self.subdev.set_auto_tr(enable)

def send_pkt(self, payload, eof=False):
print ™

return self.packet_transmitter.send_pkt(ord(payload[2]),payload[3:10] ,payload[10:39], eof)

def main ():

app = path_block()
app.start()
app.wait()

if _name__=="__main__"
main ()

31 | lowa State University — Content Delivery in Ad Hoc Wireless Networks

